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Abstract
Lagrangian submanifolds in strict nearly Kähler 6-manifolds are related to special Lagrangian

submanifolds in Calabi-Yau 6-manifolds and coassociative cones in G2-manifolds. We prove
that the mean curvature of a Lagrangian submanifold L in a nearly Kähler manifold (M, J, g)
is symplectically dual to the Maslov 1-form on L. Using relative calibrations, we derive a
formula for the second variation of the volume of a Lagrangian submanifold L3 in a strict
nearly Kähler manifold (M6, J, g) and compare it with McLean’s formula for special Lagrangian
submanifolds. We describe a finite dimensional local model of the moduli space of compact
Lagrangian submanifolds in a strict nearly Kähler 6-manifold. We show that there is a real
analytic atlas on (M6, J, g) in which the strict nearly Kähler structure (J, g) is real analytic.
Furthermore, w.r.t. an analytic strict nearly Kähler structure the moduli space of Lagrangian
submanifolds of M6 is a real analytic variety, whence infinitesimal Lagrangian deformations are
smoothly obstructed if and only if they are formally obstructed. As an application, we relate
our results to the description of Lagrangian submanifolds in the sphere S 6 with the standard
nearly Kähler structure described in [34].
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1. Introduction

1. Introduction
Nearly Kähler manifolds first appeared in Gray’s work [15] in connection with Gray’s

notion of weak holonomy. Nearly Kähler manifolds represent an important class in the 16
classes of almost Hermitian manifolds (M, J, g) classified by Gray and Hervella [17]. Let us
recall the definition of a nearly Kähler manifold (M, J, g). Let ∇LC denote the Levi-Civita
covariant derivative associated with the Riemannian metric g.

Definition 1.1([15, §1, Proposition 3.5], [16]). An almost Hermitian manifold (M, g, J)
is called nearly Kähler if (∇LC

X J)X = 0 for all X ∈ T M. A nearly Kähler manifold is called
strict if we have ∇LC

X J � 0 for all X ∈ T M \ {0}, and it is called of constant type if there
exists a positive constant λ such that

‖(∇LC
X J)Y‖2 = λ2(‖X‖2‖Y‖2 − 〈X, Y〉2 − 〈JX, Y〉2)

for every x ∈ M and X, Y ∈ TxM.

Remark 1.2. 1. It is known that any complete simply connected nearly Kähler manifold
is a Riemannian product M1 ×M2 where M1 and M2 are Kähler and strict nearly Kähler, re-
spectively [23, 42]. Furthermore, a de Rham type decomposition of a strictly nearly Kähler
manifold was found by Nagy [43], where the factors of the decomposition are of the fol-
lowing types: 3-symmetric spaces, twistor spaces over quaternionic Kähler manifolds of
positive scalar curvature, and strict nearly Kähler 6-manifolds.

2. It is easy to see that if (M, J, g) is a nearly Kähler manifold of constant type λ, then
(M, J, λ−1g) and (M,−J, λ−1g) are nearly Kähler manifolds of constant type 1.

3. According to [16, Theorem 5.2], a strict nearly Kähler manifold of dimension 6 is
always of constant type.

On an almost Hermitian manifold (M, J, g) the fundamental 2-form ω, defined by ω(X, Y)
:= g(JX, Y), measures the connection between the almost complex structure J and the Rie-
mannian metric g. A submanifold L ⊂ (M, J, g) whose dimenion is half the dimension of
M is called Lagrangian, if ω|L = 0. As in symplectic geometry, the graph of a diffeomor-
phism of M that preserves ω is a Lagrangian submanifold in the almost Hermitian manifold
(M × M, J ⊕ (−J), g ⊕ g). If (M, J, g) is Kähler, then ω is symplectic. Lagrangian submani-
folds in Kähler manifolds have been studied in the context of calibrated geometry [18] and
of relative calibrations [26], [27], in the investigation of the Maslov class [29], [40], of the
variational problem [26], [44], [50], [52], and of the deformation problem/ moduli spaces
[5], [6], [20], [30], [36], [52], etc. The literature on the subject is vast, and the authors omit
the name of many important papers in the field.

The relation between nearly Kähler manifolds (M, J, g) and Riemannian manifolds with
special holonomy is best manifested in dimension 6. In this dimension, a nearly Kähler
manifold is either a Kähler manifold or a strict nearly Kähler manifold [16, Theorem 5.2]. It
is known from Bär’s work [4] that a cone without singular point over a strict nearly Kähler
manifold (M6, J, g) is a 7-manifold with G2-holonomy. It is not hard to see that the cone over
a Lagrangian submanifold L3 in a strict nearly Kähler manifold (M6, J, g) is a coassociative
cone in CM6. Thus the study of strict nearly Kähler 6-manifolds and their Lagrangian sub-
manifolds are essential for the study of singular points of G2-manifolds as well as for the
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study of singular points of coassociative 4-folds. Furthermore, special Lagrangian submani-
folds in Calabi-Yau 6-manifolds could be treated as a limit case of Lagrangian submanifolds
in nearly Kähler manifolds when the type constant λ goes to zero (Remarks 2.7, 3.15). We
also note that Lagrangian submanifolds in the standard nearly Kähler manifold S 6 are found
to be intimately related to holomorphic curves in CP2 and they present extremely rich ge-
ometry [8], [10], [33].

In this paper we study Lagrangian submanifolds L3 in strict nearly Kähler 6-manifolds
(M6, J, g) in two aspects: the variation of the volume functional and Lagrangian deforma-
tions of L3. Since L3 are minimal submanifolds in (M6, J, g) (Corollary 3.6), these two
aspects are related to each other. In particular, results from theory of minimal submanifolds
are applicable to Lagrangian submanifolds in strict nearly Kähler 6-manifolds, for instance
see Remark 5.1. To study variation of the volume functional of L3 we extend the method of
relative calibrations developed by the first named author in [26, 27]. To study deformations
of Lagrangian submanifolds in (M6, J, g) we develop several methods. First we reduce the
overdetermined equation for Lagrangian deformations to an elliptic equation (Proposition
4.4). Since the Fredholm index of the elliptic equation is zero (Proposition 4.6) and, on
the other hand, most interesting examples of Lagrangian submanifolds have nontrivial de-
formations, the usual elliptic method yields only limited results. Thanks to our result on
the analyticity of a strict nearly Kähler structure (Proposition 2.8), we reduce the smooth
Lagrangian deformation problem to the deformation problem in the analytic category. We
prove that the moduli space of Lagrangian deformation is locally an analytic variety and
hence an infinitesimal Lagrangian deformation is smoothly unobstructed iff it is formally
unobstructed (Theorem 4.9, Corollary 4.12).

Our paper is organized as follows. In section 2 we collect some important results on the
canonical Hermitian connection on nearly Kähler manifolds. Then we prove the existence
of a real analytic structure on any strict nearly Kähler 6-manifold (M6, J, g) in which both
J and g are real analytic (Proposition 2.8). In section 3, using a result of the first named
author [26], we establish a relation between the Maslov 1-form and the mean curvature
of a Lagrangian submanifold in a nearly Kähler manifold (M, J, g) (Proposition 3.3) and
show its consequences (Corollaries 3.4, 3.6). If (M6, J, g) is a strictly nearly Kähler 6-
manifold, we derive a simple formula for the second variation of a Lagrangian submanifold
in (M6, J, g) using relative calibrations (Theorem 3.8). We compare this formula with the
formula obtained by McLean for special Lagrangian submanifolds (Corollary 3.12, Remarks
3.13, 3.15, 3.16).

In section 4 we show that the moduli space of closed Lagrangian submanifolds L3 ⊂ M6

of a strict nearly Kähler manifold in the C1-topology is locally a real analytic variety. That
is, the set of C1-small deformations of a compact Lagrangian submanifold can be described
as the inverse image of a point of a real analytic map between open domains in a finite
dimensional vector space, whence any smooth Lagrangian deformation of a Lagrangian
submanifold L3 in a strict nearly Kähler 6-manifold can be written as a convergent power
series (Theorem 4.9).

In section 5, we apply our results to deformations of homogeneous Lagrangian submani-
folds in the standard nearly Kähler sphere S 6 which have been considered by Lotay in [34]
and give an explicit description of the moduli space for some of these cases.
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2. Geometry of nearly Kähler manifolds

2. Geometry of nearly Kähler manifolds
In this section we collect some important results on the canonical Hermitian connec-

tion on nearly Kähler manifolds (Propositions 2.1, 2.2) and derive an important conse-
quence (Corollary 2.3), which plays a central role in the geometry of strict nearly Kähler
6-manifolds (Proposition 2.4, Remark 2.7). At the end of this section we prove the existence
of a real analytic structure on M6, in which both the complex structure J and the metric g
are analytic (Proposition 2.8).

2.1. The canonical Hermitian connection.
2.1. The canonical Hermitian connection. Let U(M) denote the principal bundle con-

sisting of unitary frames (e1, Je1, · · · , en, Jen) over an almost Hermitian manifold (M, J, g).
Denote by {e∗i , (Jei)∗} the dual frames. Then {θi := e∗i +

√−1(Jei)∗} is the canonical Cn-valued
1-form on U(M).

Let ω̃ be a unitary connection 1-form on U(M) and T its torsion 2-form. The Cartan
equation for ω̃, and T [22, Chapter IX, §3] [26, §3] is expressed as follows

dθi = −ω̃i
j ∧ θ j + T i

jkθ
j ∧ θk + T i

j̄kθ̄
j ∧ θk + T i

j̄k̄θ̄
j ∧ θ̄k,

dω̃i
j = −ω̃i

k ∧ ω̃k
j + Ω

i
j,

where Ω is the curvature tensor of ω̃.

Proposition 2.1 ([31, Chapter IV, §112]). Let (M, J, g) be an almost Hermitian manifold.
Then there exists a unique unitary connection 1-form ω̃ on U(M) such that its torsion tensor
T is a two-form of type (2, 0) + (0, 2), i.e.,

T (JX, Y) = T (X, JY).

We shall denote the Levi-Civita connection of g and the canonical connection from this
proposition by ∇LC and ∇can, respectively. If the almost Hermitian manifold is nearly Kähler,
then the following is known.

Proposition 2.2 ([16], [23, Theorem 1]). Suppose that (M, J, g) is a nearly Kähler mani-
fold.

(1) Then T (X, Y) = −J(∇LC
X J)Y.

(2) The associated torsion form T ∗(X, Y,Z) := 〈T (X, Y), Z〉 is skew-symmetric.
(3) ∇canT ∗ = 0.

The skew-symmetry of the torsion of the canonical connection of a nearly Kähler mani-
fold (M, J, g) will play an important rôle in our study of (M, J, g).

We shall derive from Proposition 2.2 the following

Corollary 2.3. On a nearly Kähler manifold (M, J, g) we have dω(X, Y, Z) =

−3T ∗(X, Y, JZ). Furthermore, dω is a 3-form of type (3, 0) + (0, 3), that is,

dω(JX, Y,Z) = dω(X, JY,Z) = dω(X, Y, JZ).

In particular, ∇can(dω) = 0.

Proof. We use the fact that the nearly Kähler condition is equivalent to the following
condition [17, Theorem 3.1]
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(2.1) X�dω = 3∇LC
X ω

for all X ∈ T M. A straightforward calculation shows that (2.1) implies

(2.2) dω(X, Y, Z) = 3〈(∇LC
X J)Y,Z〉.

Since T (X, Y) = −J(∇LC
X J)Y , we obtain immediately the first assertion of Corollary 2.3. The

second assertion follows from the first one, taking into account the fact that T is a 2-form of
type (2, 0) + (0, 2). Finally, the parallelity of dω follows from Proposition 2.2 (3) and since
∇can is unitary. �

2.2. Strict nearly Kähler 6-manifolds.
2.2. Strict nearly Kähler 6-manifolds. Among nearly Kähler manifolds the class of

strict nearly Kähler 6-manifolds is most well-studied. By [16, Theorem 5.2 (1)], any 6-
dimensional nearly Kähler manifold which is not Kähler, is of constant type, i.e., there is a
constant λ > 0 such that

(2.3) ‖∇LC
X (J)Y‖2 = λ2(‖X‖2‖Y‖2 − 〈X, Y〉2 − 〈X, JY〉2).

Throughout this section, M = M6 will be 6-dimensional.

Proposition 2.4. Assume that (M, g, J) is a strict nearly Kähler manifold of constant type
λ (cf. (2.3)). Then 1

3λdω is a special Lagrangian calibration. In particular, (M, g, J) has an
SU(3)-structure.

Proof. It is an immediate consequence of (2.2) and (2.3) that 1
3λdω is a special Lagrangian

calibration, i.e., ω|Σ = 0 on any 3-plane Σ ⊂ TpM with dω|Σ = 3λvolΣ.
Since dω is parallel w.r.t. ∇can and is of type (3, 0) + (0, 3) by Corollary 2.3, it follows

that the complex linear (3, 0)-form Φ ∈ Ω3(M,C) given as

Φ(X, Y, Z) :=
1

3λ
(
dω(X, Y, Z) − √−1 dω(X, Y, JZ)

)
(2.4)

=
1

3λ
(
dω(X, Y, Z) + 3

√−1 T ∗(X, Y,Z)
)

is parallel w.r.t. ∇can and nowhere vanishing, so that a strict nearly Kähler 6-manifold carries
a canonical SU(3)-structure. �

The above argument also shows that for any 3-dimensional subspace Σ ⊂ TpM we have
(cf. [18, Chapter III])

(2.5) |ΦΣ|2 ≤ |volΣ|2 with equality if and only if ω|Σ = 0.

Namely, the first estimate and that equality holds only if ωΣ = 0 follows immediately
from (2.2) and (2.3). For the converse, let (ei)i=1,2,3 be an orthonormal basis of a La-
grangian plane. Then (2.2) implies that ∇LC

e1
(J)e2 is orthogonal to e1, e2, Je1, Je2, so that

e3 ∈ span(∇LC
e1

(J)e2, J∇LC
e1

(J)e2). From this and (2.3), equality in (2.5) follows.
Evidently, there are no calibrated submanifolds of dω, since on such a manifold L ⊂ M

we would have ω|L = 0 by (2.5) and hence, 3λvolL = dω|L = 0. Thus, by (2.5) on a
Lagrangian submanifold L ⊂ M, −Im (Φ)|L = −λ−1T ∗|L is a volume form on L, i.e., it is
calibrated by the non-closed 3-form Im (Φ), see also [26], [27].
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Remark 2.5. For the remainder of our paper we shall choose the orientation on a La-
grangian submanifold L such that

(2.6) volL = −Im (Φ)|L.
This orientation agrees with the natural orientation of the Lagrangian sphere S 3(1) = H∩S 6

in the standard strictly nearly Kähler sphere S 6 ⊂ ImO, see also subsection 5 below. Note
that our choice of the orientation of L agrees with that in [33, p. 2309], but differs from that
in [52, p. 18].

Lemma 2.6. For the orientation of L given by (2.6) we have for any β ∈ Ω1
C0 (L)

(2.7) 3 ∗ β = −(sβ�dω)|L.
Proof. Given x ∈ L, pick a unitary basis (ei, Jei)i=1,2,3 of TxL with dual basis ((ei)∗,

(Jei)∗)i=1,2,3 and complex dual basis θi := (ei)∗ +
√−1(Jei)∗ such that dω(x) = 3Re (θ1 ∧

θ2 ∧ θ3) and ω = −Im (θ1 ∧ θ̄1 + θ2 ∧ θ̄2 + θ3 ∧ θ̄3). Since special Lagrangian planes in TxM
are transitive under the SU(3)-action on TxM [18], we can assume that TxL is spanned by
(Je1, Je2, Je3). Sinceω(x), dω(x) and TxL are invariant under the action of SO(3) ⊂ SU(3) ⊂
Aut(TxM), we can assume furthermore that βx = c·(Je1)∗ and hence sβ = c·L−1

ω (Je1)∗ = c·e1

for some c ≥ 0. By (2.6) on L,

Im (θ1 ∧ θ2 ∧ θ3)|L = −3vol|L,
i.e. (Je1, Je2, Je3) is an oriented frame. Then

3 ∗ (Je1)∗ = 3(Je2)∗ ∧ (Je3)∗ = −(e1�dω)|L,
and multiplication by c yields (2.7) and hence completes the proof. �

Remark 2.7. By the above discussion, a nearly Kähler 6-manifold (M, J, g, ω) of constant
type λ satisfies the following equation (cf. [7, §4])

(2.8) dω = 3λRe (Φ), d Im (Φ) = −2λω ∧ ω.
Thus, a Calabi-Yau 6-manifold can be regarded as an almost strict nearly Kähler manifold
with λ = 0.

In principle, one could verify (2.8) by a direct calculation, but there is a more elegant way
to do this, due to C. Bär. Namely, first of all, by rescaling the metric g (Remark 1.2) we can
assume that the metric is of constant type λ = 1.

In [4, §7] Bär constructed a 3-form ϕ on the cone CM = M ×r2 R
+ equipped with the

warped Riemannian metric ḡ = r2g + dr2 over a strict nearly Kähler 6-manifold (M, J, g) of
constant type 1. We identify M with M × {1} ⊂ CM. The form ϕ on CM is defined by [4,
§7]

(2.9) ϕ(r, x) =
r3

3
dω + r2dr ∧ ω.

For x ∈ M, pick a unitary basis (ei, Jei)i=1,2,3 of TxM with dual frames ((ei)∗, (Jei)∗)i=1,2,3

and the complex coframe θi := (ei)∗ +
√−1(Jei)∗.
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Then (êi)i=1,...,7 with êi := r−1ei and êi+3 := r−1Jei for i = 1, 2, 3 and ê7 := dr form an
orthonormal basis of T(x,r)CM. If we set εi jk = êi ∧ ê j ∧ êk, then ϕ is written by

(2.10) ϕ(r, x) = (ε135 − ε146 − ε236 − ε245) + ε127 + ε347 + ε567,

and ϕ defines a G2-structure on CM. By (2.9), dϕ = 0. Bär also showed that d∗ϕ = 0,
so that this G2-structure is torsion free. In particular, ϕ (resp. ∗ϕ) is an associative (resp.
coassociative) calibration on CM. Furthermore, d∗ϕ = 0 implies the second relation in (2.8)
for λ = 1. From this, we also deduce the following result.

Proposition 2.8. Let (M, J, g) be a strict nearly-Kähler manifold. Then there is a real
analytic structure on M in which both the complex structure J and the metric g are real
analytic.

Proof. It is known that a strict nearly Kähler metric on a 6-manifold M is an Einstein
metric [16, Lemma 4.8]. By the DeTurck-Kazdan theorem [9], M possesses an analytic
atlas in which g is an analytic metric. It follows that in the induced real analytic structure on
CM the aforementioned cone metric ḡ := dr2 + r2g on CM is analytic and the vector field
∂r on CM is analytic. Since the form ϕ ∈ Ω3(CM, ḡ) of (2.9) defining the G2-structure on
CM is harmonic, it is analytic as well. Thus, ∂r�φ = r2ω is analytic, and so is its restriction
to the analytic submanifold M × {1} ⊂ CM.

Therefore, ω ∈ Ω2(M) is analytic, and J is defined by contraction of ω with the real
analytic metric g and hence analytic as well. �

3. Variation of the volume of Lagrangian submanifolds

3. Variation of the volume of Lagrangian submanifolds
In this section we introduce the notion of the Maslov 1-form μ(L) of a Lagrangian sub-

manifold L in a Hermitian manifold (M, J, g) and relate this notion with the classical notion
of the Maslov class of a Lagrangian submanifold in (R2n, ω0) (Remark 3.2). Then we prove
that μ(L) is symplectically dual to the twice of the mean curvature HL of a Lagrangian
submanifold L in a nearly Kähler manifold (M, J, g) (Proposition 3.3) and derive its conse-
quences (Corollaries 3.4, 3.6). Using relative calibrations, we prove a simple formula for the
second variation of the volume of a Lagrangian submanifold in a strictly nearly Kähler 6-
manifolds (Theorem 3.8) and discuss its consequences (Corollary 3.12, Remarks 3.13, 3.15,
3.16). We discuss the relation between the obtained results with known results (Remark 3.7,
3.15, 3.16).

3.1. Maslov 1-form and minimality of a Lagrangian submanifold in a nearly Kähler
manifold.

3.1. Maslov 1-form and minimality of a Lagrangian submanifold in a nearly Kähler
manifold. Let L be a Lagrangian submanifold in an almost Hermitian manifold (M, J, g)
and (ω̃i

j) the canonical Hermitian connection 1-form on U(M, J, g). The Gaussian map gL

sends L to the Lagrangian Grassmanian Lag(M) of Lagrangian subspaces in the tangent
bundle of M. Denote by p : U(M)→ Lag(M) the projection defined by

(v1, Jv1, · · · , vn, Jvn) �→ [v1 ∧ · · · ∧ vn].

Set

γ := −√−1
∑

i

ω̃i
i.
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We recall the following fact

Lemma 3.1 (cf. [5],[26, Proposition 3.1]). There exists a 1-form γ̄ on Lag(M) whose
pull-back to the unitary frame bundle U(M) is equal to γ.

We call 2γ̄ the universal Maslov 1-form and the induced 1-form g∗L(2γ̄) on L the Maslov
1-form of L. We also denote g∗L(2γ̄) by μ(L).

Remark 3.2. For M = R2n we have Lag(M) = R2n × U(n)/O(n). In this case it is well-
known that the Maslov 1-form μ(L) is a closed 1-form and represents its Maslov index of a
Lagrangian submanifold L [40].

Now we relate the Maslov 1-form μ(L) := g∗L(2γ̄) with the mean curvature of a Lagrangian
submanifold L. We define a linear isomorphism Lω : T M → T ∗M as follows.

(3.1) Lω(V) := V�ω.
Proposition 3.3. The Maslov 1-form μ(L) is symplectic dual to the minus twice of the

mean curvature HL of a Lagrangian submanifold L in a nearly Kähler manifold (M, J, g),
that is,

−2Lω(HL) = μ(L).

Proof. By Proposition 2.2(2) the 1-form
∑

ik T i
īk̄
θ̄k vanishes, where T is the torsion of the

connection form ω̃. Using [26, Lemmas 2.1, 3.1 and (3.6)], we obtain for any normal vector
X to L

(3.2) 〈−HL, X〉 = (μ(L)/2, JX).

Since ω(−HL, JX) = 〈−HL, X〉, we derive Proposition 3.3 immediately from (3.2). �

Since the curvature dγ form of the connection form γ is the first Chern form of a nearly
Kähler manifold we obtain immediately

Corollary 3.4. Assume that a Lagrangian submanifold L in a nearly Kähler manifold
(M, J, g) is minimal. Then the restriction of the first Chern form to L vanishes.

In the remainder of this section we assume that L is a Lagrangian submanifold in a strict
nearly Kähler manifold (M, J, g). We also need to fix some notations. Recall the definition
of the ∇can-parallel complex volume form Φ = θ1 ∧ θ2 ∧ θ3 of (2.4), and recall that

ReΦ = (3λ)−1dω, ImΦ = −λ−1T ∗.

Lemma 3.5. Let ξ be a simple 3-vector in R6 = C3 and ω the standard compatible
symplectic form on R6. Then

(1) ([18, Chapter III Theorem 1.7]) |Φ(ξ)|2 = ReΦ(ξ)2 + ImΦ(ξ)2.
(2) ([18, Chapter III (1.17)]) |Φ(ξ)|2 +∑3

i=1 |θi ∧ ω(ξ)|2 = |ξ|2.

We choose the canonical orientation (2.6) on L, i.e., ImΦ|L = −volL. For x ∈ L let ξ(x)
denote the unit simple 3-vector associated with TxL. By [26, Lemma 2.1], [27, Lemma 1.1]
for any V ∈ NL we obtain
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(3.3) 〈−HL,V〉 = (V�d ± ImΦ)(ξ).

(In [26] Lê showed that the formula (3.3) is equivalent to the formula (3.2).) Using (2.8),
we obtain immediately that HL = 0.

Corollary 3.6. Any Lagrangian submanifold L in a strict nearly Kähler 6-manifold
(M, J, g) is orientable and minimal. Hence its Maslov 1-form vanishes.

Remark 3.7. The relation between the Maslov class and the minimality of Lagrangian
submanifolds has been found for Lagrangian submanifolds in various classes of Hermitian
manifolds [40], [29], [26]. Corollary 3.4 extends a previous result by Bryant [5, Proposition
1] and partially extends a result by Lê in [26, Corollary 3.1]. The minimality of Lagrangian
submanifolds in a strict nearly Kähler 6-manifolds has been proved by Schäfer and Smoczyk
by studying the second fundamental form of L in M [52, §4], extending a previous result
by Ejiri [13] for M = S 6. The minimality of a Lagrangian submanifold L in a strict nearly
Kähler manifold M can be also obtained from the minimality of the coassociative cone
CL ⊂ CM.

3.2. Second variation of the volume of Lagrangian submanifolds.
3.2. Second variation of the volume of Lagrangian submanifolds. The second vari-

ation of the volume of a minimal submanifold N in a Riemannian manifold M has been
expressed by Simons [51] in terms of an elliptic second order operator I(N,M) that depends
on the second fundamental form of N and the Riemannian curvature on M, see also [28],
[45]. If L is a Lagrangian submanifold in a strict nearly Kähler manifold M, we shall derive
a simple formula for I(L,M) that depends entirely on the intrinsic geometry of L supplied
with the induced Riemannian metric.

Theorem 3.8. Assume that (M, J, g) is a strict nearly Kähler manifold of constant type λ.
Let V be a normal vector field with compact support on a Lagrangian submanifold L ⊂ M.
Then the second variation of the volume of L with the variation field V is given by

d2

dt2 |t=0vol(Lt) =
∫

L
〈d(Lω(V)) − 3λ ∗ Lω(V), d(Lω(V)) + λ ∗ Lω(V)〉(3.4)

+

∫
L
||d ∗ Lω(V)||2.

Proof. Let φt : L→ M be a variation of L generated by the vector field V . Set

ξt(x) := (φt)∗(ξ(x)).

We observe that, to compute the second variation of the volume of L, using Lemma 3.5 and
the minimality of L, it suffices to compute the second variation of the integral over L of∑3

i=1 |θi ∧ ω(ξ)|2, (ReΦ(ξ))2 and (ImΦ(ξ))2. By the observation that for all x ∈ L

(3.5) |ξ0(x)| = 1,
d
dt
|t=0|(ξt(x))| = 0

we obtain

d2

dt2 |t=0vol(φt(L)) =
∫

L

d2

dt2 |t=0|(ξt(x)| d volx(3.6)
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=
1
2

∫
L

d2

dt2 |t=0(|ξt(x)|2) d volx.

Lemma 3.9. For any x ∈ L we have

d2

dt2 |t=0

3∑
i=1

((θi ∧ ω), ξt(x))2 = 2|dLω(V) − 3λ ∗ Lω(V)|2(x).

Proof. Since ω|L = 0 we have for all i

(3.7)
d2

dt2 |t=0|θi ∧ ω(ξ)|2 = 2[
d
dt
|t=0(θi ∧ ω(ξ))]2.

By Lemma 2.6, taking into account the rescaling factor λ, see also [52, Theorem 8.1], we
have

(3.8)
d
dt
|t=0φ

∗
t (ω)(x) = d(Lω(V))(x) − 3(λ ∗ Lω(V))(x).

Since the RHS of (3.8) is a 2-form on L, there exists an orthonormal basis f 1, f 2, f 3 of T ∗x L
and a number c ∈ R such that

d(Lω(V))(x) − 3(λ ∗ Lω(V))(x) = c · f 1 ∧ f 2.

Using ω|L = 0 and the expression of the RHS of (3.8) in this basis, we obtain of (3.8)

(3.9)
d
dt
|t=0

3∑
i=1

φ∗t (θi ∧ ω) = c · f 1 ∧ f 2 ∧ f 3.

Using again ω|L = 0, we obtain Lemma 3.9 immediately from (3.7) and (3.9). �

Lemma 3.10. For all x ∈ L we have

d2

dt2 |t=0(ReΦ(ξt(x))2) = 2|d ∗ Lω(V)|2(x).

Proof. By Lemma 2.6 we have

(3.10)
dt
dt
|t=0(ReΦ(ξt(x)) = (d ∗ Lω(V))(x).

Since ReΦ(ξ(x)) = 0, we obtain Lemma 3.10 from (3.10) immediately. �

Lemma 3.11. We have

d2

dt2 |t=0

∫
L

ImΦ(ξt)2 dvolx = 8λ
∫

L
〈∗Lω(V), d(Lω(V)) − 3λ ∗ Lω(V)〉 d volx.

Proof. Since (V�ImΦ)|L = 0, (see e.g. [26, Proposition 2.2.(ii)], [27, Proposition 1.2.ii],
which is also now called the first cousin principle), using the Cartan formula we have

(3.11)
d
dt
|t=0(ImΦ(x), ξt(x)) = (V�dImΦ, ξ(x)),

for all x ∈ L.
By (3.3) the RHS of (3.11) vanishes. Since ImΦ(ξ(x)) = −1 for all x ∈ L, we obtain
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(3.12)
d2

dt2 |t=0(ImΦ(ξt(x))2) = −2
d2

dt2 |t=0(ImΦ(ξt(x)).

It follows that

(3.13)
d2

dt2 |t=0

∫
L

ImΦ(ξt(x))2 d volx = −2
d2

dt2 |t=0

∫
L
(φ∗t (ImΦ), ξ) d volx.

Using the Cartan formula, we derive of (3.13)

(3.14)
d2

dt2 |t=0

∫
L

ImΦ(ξt(x))2 d volx = −2
∫

L
V((V�dImΦ) + d(V�ImΦ)).

Since V(d(V�ImΦ)) = d(V(V�ImΦ)), we obtain of (3.14), taking into account that dImΦ
= −2λω ∧ ω
(3.15)

d2

dt2 |t=0

∫
L

ImΦ(ξt(x))2 d volx = 4λ
∫

L
V(V�(ω ∧ ω)).

Taking into account V�(ω ∧ ω) = 2(V�ω) ∧ ω and ω|L = 0 we obtain of (3.15)

(3.16)
d2

dt2 |t=0

∫
L

ImΦ(ξt(x))2 d volx = 8λ
∫

L
(V�ω) ∧ V(ω).

Since (V�ω) = Lω(V) and V(ω) = dLω(V)−3λ∗Lω(V), we obtain Lemma 3.11 immediately
from (3.16). �

Now let us complete the proof of Theorem 3.8. By Lemma 3.5 and equation (3.6), we
obtain

2
d2

dt2 |t=0vol(φt(L)) =
∫

L

d2

dt2 |t=0

3∑
i=1

(θi ∧ ω, ξt)2 d volx(3.17)

+

∫
L

d2

dt2 |t=0(ReΦ, ξt)2 d volx +

∫
L

d2

dt2 |t=0(ImΦ, ξt)2 d volx.

Theorem 3.8 now follows from (3.17) and Lemmas 3.9, 3.10, 3.11. �

Corollary 3.12. Assume that L is a compact Lagrangian submanifold in a strict nearly
Kähler manifold (M, J, g) and H1(L,R) � 0. Let β be a non-zero harmonic 1-form on L.
Then the variation generated by L−1

ω (β) decreases the volume of L.

Remark 3.13. There are many known examples of Lagrangian submanifolds L in the
manifold S 6 supplied with the standard nearly Kähler structure induced from R7 = ImO
such that dim H1(L) is arbitrary large. For instance, L is obtained by composing the Hopf
lifting of a holomorphic curve Σg of genus g in the projective planeCP2 to S 5 with a geodesic
embedding S 5 → S 6 [10, Theorem 1], see also [33, Example 6.11].

Remark 3.14. In [48] Palmer derived a simple formula for the second variation of La-
grangian submanifolds in the standard nearly Kähler 6-sphere by simplifying the classical
second variation formula with help of (relative) calibrations.

Remark 3.15. Letting λ go to zero, we obtain the formula for the second variation of the
volume of a special Lagrangian submanifold L in a Calabi-Yau manifold M with a variation
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field V which is normal to L:

(3.18)
d2

dt2 |t=0vol(Lt) =
∫

L
||d(LωV)||2 +

∫
L
||d∗(LωV)||2.

Formula (3.18) has been obtained by McLean in [36, Theorem 3.13] for special Lagrangian
submanifolds in Calabi-Yau manifolds of dimension 2n as a consequence of his formula for
the second variation of the volume of calibrated submanifolds, using moving frame method.
Note that our proof of Theorem 3.8 can be easily adapted to give (3.18) for special La-
grangian submanifolds Ln ⊂ M2n. Here we use the full version of Lemma 3.5 given in
[18, Chapter III, Theorem 1.7, (1.17)]. The first summand in RHS of (3.18) is the second
variation of the term (|ξ|2 − Φ(ξ)2)/2. The second summand in the RHS of (3.18) is the
second variation of the term (ReΦ(ξ))2/2. By [26, (4.11)], the second variation of the term
ReΦ(ξ) vanishes, if M2n is a Calabi-Yau manifold. This proves (3.18) for any dimension n.
Note that (3.18) also follows from Oh’s second variation formula for Lagrangian minimal
submanifolds in Kähler manifolds [44, Theorem 3.5].

Remark 3.16. Using the strategy of the proof of Theorem 3.8, we can have a (new simple
proof of a) formula for the second variation of the volume of φ-calibrated submanifolds
Nn in a manifold Mm provided with a relative calibration φ such that a generalized version
of Lemma 3.5 is valid, that expresses |ξ|2 as a sum |φ(ξ)|2 + ∑k

i=1 |ReΦk(ξ)|2. Generalized
versions of Lemma 3.5 have been found for Kähler 2p-vectors, coassociative 4-vectors, ect.
in [18].

4. Deformations of Lagrangian submanifolds in strict nearly Kähler 6-manifolds

4. Deformations of Lagrangian submanifolds in strict nearly Kähler 6-manifolds
In this section we consider the moduli space of closed Lagrangian submanifolds L = L3 ⊂

M = M6 of a strict nearly-Kähler 6-manifold. As the dimensions are fixed throughout this
section, we again omit the superscripts. We shall show that any C1-small Lagrangian defor-
mation of L in M is a solution of an elliptic first order PDE of Fredholm index 0 (Proposi-
tions 4.4, 4.6). Furthermore, a closed Lagrangian submanifold L is analytic and any smooth
deformation of L is analytic. Moreover, the moduli space of smooth Lagrangian deforma-
tions of L locally is a finite dimensional analytic variety, hence any formally unobstructed
infinitesimal deformation is smoothly unobstructed (Theorem 4.9, Corollary 4.12).

Our notation on forms will be as follows. By Ω∗(L) we denote smooth differential forms
on L. If we wish to specify the degree of regularity, we write Ω∗Ck (L) for the space of Ck-
regular forms.

4.1. Deformations of Lagrangian submanifolds.
4.1. Deformations of Lagrangian submanifolds. Let L be a submanifold in a Riemann-

ian manifold (M, g). Then the normal exponential mapping ExpL : NL → M identifies a
neighborhood of the 0-section in NL with a tubular neighborhood U(L) ⊂ M of L. With
this, ExpL , which we shall also denote by Exp if no confusion arises, identifies C1-small
deformations of L with C1-small section s : L→ NL.

Now assume that (M, J, g) is a Hermitian manifold and ω is the associated fundamental
2-form. If L ⊂ M is a Lagrangian submanifold, then the isomorphism Lω of (3.1) identifies a
covector in T ∗L (resp. a 1-form α ∈ Ω1(L)) with a vector in NL (resp. a section sα ∈ Γ(NL)).
Since we are interested in Lagrangian deformations of L ⊂ M, we therefore consider the map
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(4.1) F : Ω1
C1 (L) −→ Ω2

C0 (L), α �−→ (Exp(sα))∗(ω).

Evidently, F(0) = 0 as L is Lagrangian, and the space of C1-small Lagrangian deformations
of L can be identified with a neighborhood of 0 ∈ F−1(0).

Now we shall compute the linearization of F at α = 0.

Proposition 4.1. Let (αr)r∈(−ε,ε) be a C1-regular variation of α0 = 0 ∈ Ω1(L), i.e. such
that the map

(−ε, ε) × L −→ T ∗L, (r, x) �−→ αr(x) ∈ T ∗x L

is C1, and let α̇0(x) = ∂r(αr(x))|r=0 be the pointwise derivative. Then

d
dr

∣∣∣∣∣
r=0

F(αr) = dα̇0 − 3 ∗ α̇0,

whence

(4.2) ∂F|0(β) = dβ − 3 ∗ β
for all β ∈ Ω1

C1 (L).

Proof. We define the C1-map

D : (−ε, ε) × L −→ M, (r, x) �−→ Exp(sαr )x =: Dr(x).

Note that D0 = IdL and dD(∂r)|{0}×L = sα̇0 . Also, if we let Φr denote the flow of ∂r on
(−ε, ε) × L, then Dr+t = ΦrDt, whence by definition,

d
dr

∣∣∣∣∣
r=0

F(αr) =
d
dr

∣∣∣∣∣
r=0

D∗r (ω) =
(

d
dr

∣∣∣∣∣
r=0
Φr(D∗(ω))

)∣∣∣∣∣∣{0}×L

= (L∂r D
∗(ω))

∣∣∣{0}×L = (∂r�D∗(dω) + d(∂r�D∗(ω))|{0}×L

= D∗0(sα̇0�dω) + d(D∗0(sα̇0�ω)) = sα̇0�dω + dα̇0.

Here, we used Cartan’s formula for the Lie derivative as well as the fact that by (3.1),
sα̇0�ω = α̇0. Now the formula follows since sα̇0�dω = −3 ∗ α̇0 by (2.7). �

Recall that the Laplace operator on forms is defined as � = (d + d∗)2, where d∗|Ωk(L) =

(−1)k ∗ d∗ is the adjoint of d. Proposition 4.1 yields immediately the following Corollary
4.2, which has been obtained by Schäfer-Smoczyk by a different method.

Corollary 4.2 (cf. [52, Theorem 8.1]). Let (Lr)r∈(−ε,ε) be a C1-regular family of La-
grangian submanifolds of M, such that L0 = L and Lr = Exp(sαr ) for a family (αr)r∈(−ε,ε) in
Ω1(L). Then the derivative β := α̇0 = ∂rαr |r=0 is a solution of

(4.3) ∗dβ − 3β = 0.

In particular, d∗β = 0 and �β = 9β.

We call the map ∂F|0(β) of (4.2) the linearization of the equation F = 0 at 0. We set

Ω1
a(L) := {α ∈ Ω1(L)| �(α) = a · α}.

All eigenvalues a are nonnegative and the eigenspaces Ω1
a(L) are finite dimensional, as �

is an elliptic differential operator [49].
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Lemma 4.3. The map ∗d : Ω1(L)→ Ω1(L) is selfadjoint, and its kernel is dC∞(L) ⊕ Ω1
0.

Moreover, for each a > 0 we have the L2-orthogonal decomposition

Ω1
a(L) ∩ ker d∗ = K√a(L) ⊕ K−√a(L),

where K±√a(L) is the (±√a)-eigenspace of ∗d.

Proof. The Hodge-∗ operator is self adjoint satisfying ∗2 = 1, whereas for the adjoint of
d we have

d∗|Ω1(L) = − ∗ d∗, d∗|Ω2(L) = ∗d ∗ .
Thus, for the restriction of ∗d to Ω1(L) we obtain

(∗d)∗ = d∗∗ = ∗d∗2 = ∗d.
Moreover, since ∗d = d∗∗, it follows that the image of ∗d equals the image of d∗ : Ω2(L)→
Ω1(L), so that the kernel of ∗d is the orthogonal complement of this image, which by Hodge
decomposition equals dC∞(L) ⊕Ω1

0 as claimed.
Since ∗d commutes with �, it follows that ∗d preserves Ω1

a and hence, Ω1
a(L)∩ker d∗. We

have (∗d)2 = d∗d = � on ker d∗, and (∗d)2 = a Id on Ω1
a(L) ∩ ker d∗. Hence these subspaces

can be decomposed into K√a ⊕ K−√a as claimed. �

It follows from (4.2) that

(4.4) TL := ker ∂F|0 = K3(L).

The equation F(α) = 0 with F of (4.1) is overdetermined. In fact, one of the technical
problems we wish to overcome is the fact that ∂F|0 of (4.2) is not an elliptic operator, but
only the restriction of an elliptic first order operator to a subspace as we shall show now.

For this purpose, we extend F by its prolongation dF and add another parameter. Namely,
we extend the map F to

F̂ : Ω1(L) ⊕C∞(L) −→ Ω1(L) ⊕C∞(L)(4.5)

(α, f ) �−→ ( ∗ F(α) + d f ,
1
3
∗ dF(α) + 3 f

)
.

Proposition 4.4. A pair (α, f ) is a solution of the equation F̂(α, f ) = 0 if and only if α is
a solution of the equation F(α) = 0 and f = 0.

Proof. By definition (4.5), (α, f ) is a solution of F̂(α, f ) = 0 iff

(4.6) F(α) = − ∗ d f and ∗ dF(α) = −9 f .

Substituting the first equation into the second implies

−9 f = − ∗ d ∗ d f = d∗d f = � f ,

and as � is nonnegative, this implies f = 0 and F(α) = − ∗ d f = 0. �

Remark 4.5. From this proof, we can also conclude that

(4.7) F̂(α, f ) ∈ TL ⇔ f = 0 and F(α) =
1
3

d ∗ F(α).
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Here, we use the obvious inclusion TL � TL ⊕ {0} ⊂ Ω1(L) ⊕C∞(L).

It follows from (4.2) and (4.5) that the differential

∂F̂|(0,0) : Ω1(L) ⊕C∞(L) −→ Ω1(L) ⊕C∞(L)

has the following form

(4.8) ∂F̂|(0,0)(β, f ) = (∗dβ − 3β + d f , d∗β + 3 f ).

Proposition 4.6. ∂F̂|(0,0) is a self adjoint elliptic first order differential operator, and

ker ∂F̂|(0,0) = TL,

that is, (β, f ) ∈ ker ∂F̂|(0,0) iff ∗dβ = 3β and f = 0.

Proof. The symbol of ∂F̂|(0,0) coincides with that of (∗d + d∗)|Ω1(L) + d|C∞(L), and it is
straightforward to see that the square of the latter operator is �|Ω1(L)⊕C∞(L). From this, the
ellipticity of ∂F̂|(0,0) follows.

We have already seen in Lemma 4.3 that ∗d : Ω1(M)→ Ω1(M) is self adjoint, whence so
is the map (β, f ) �→ (∗dβ − 3β, 3 f ). Thus, we have to show that the map (β, f ) �→ (d f , d∗β)
is self adjoint. But this is evident as d and d∗ are adjoint maps.

To compute the kernel, let (β, f ) be such that ∗dβ − 3β + d f = 0 and d∗β = −3 f . Then,
applying d∗ to the first equation and using the second, it follows that 0 = 9 f + d∗d f =
9 f + � f , and since � is nonnegative, this implies that f = 0. Thus, ∗dβ − 3β = 0, so that
β ∈ TL ⊂ ker d∗. �

Remark 4.7. Propositions 4.4, 4.6 imply that the expected dimension of the moduli space
of Lagrangian submanifolds is zero. On the other hand, most interesting examples of strict
nearly Kähler manifolds possess a non-trivial symmetry group which acts on Lagrangian
submanifolds, so that in this case, the moduli space of these is of positive dimension, cf.
section 5 below.

Observe that the differential at the origin of the restriction F̂ : Ω1(L) → Ω1(L) ⊕ C∞(L)
is a Fredholm operator from Ω1(L) to {(β, f ) ∈ Ω1(L) ⊕ C∞(L) | d∗β + 3 f = 0}. This
can be shown by a direct calculation, or, more elegantly, as follows. Setting D1 := ∂0F̂
and D2(β, f ) := d∗β + 3 f , it easily follows that both D∗1D1 and D1D∗1 + D2D∗2 are elliptic.
Then [41, Proposition 2.2] implies that D1 is a Fredholm operator into the kernel of D2, and
ker D1 = ker D∗1D1.

However, using Fredholm theory in this situation bears further technical difficulties, see
e.g. [34] for a related consideration. Thus, we shall mainly be concerned with the map
F̂ defined on all of Ω1(L) ⊕ C∞(L) and exploit the analyticity of the strict nearly Kähler
structure (J, g) on M in the subsequent sections.

4.2. Analyticity of Lagrangian deformations and its consequences.
4.2. Analyticity of Lagrangian deformations and its consequences. As we pointed

out in Proposition 2.8, a nearly-Kähler manifold (M, g, J, ω) is real analytic. Since any La-
grangian submanifold L ⊂ (M, J, g) is a minimal submanifold in (M, g) [52, Theorem A], the
Morrey regularity theorem for vector solutions of class C1 of a regular variational problem
[37], [38] (see also [39], [18, IV.2.B]) implies that L ⊂ M is a real analytic submanifold of
M. Thus, the normal exponential
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Exp : T ∗εL
Lω
� NεL −→ M

is an analytic diffeomorphism onto a tubular neighborhood of L for sufficiently small ε > 0,
where T ∗εL and NεL denote the ε-disc bundles in the cotangent bundle and the normal bundle
of L, respectively.

Definition 4.8. Let L ⊂ M be a closed Lagrangian submanifold.
(1) An element α ∈ TL is called smoothly unobstructed or smoothly integrable, if there

is a smooth Lagrangian deformation s(t) : L → M such that s(0) = L and ṡ(0) = α.
Otherwise, α is called smoothly obstructed.

(2) An element α ∈ TL is called formally unobstructed or formally integrable, if there
exists a sequence α1 = α, α2, · · · ∈ Ω1(L) such that the formal power series

(4.9) αt :=
∞∑

n=1

αntn ∈ Ω1(L)[[t]]

satisfies

F(αt) = 0 ∈ Ω2(L)[[t]]

as a formal power series in t.
(3) We call L regular if every α ∈ TL is formally unobstructed.

Clearly, if α ∈ TL is smoothly unobstructed, then it is formally unobstructed. Indeed, if
s(t) is a smooth Lagrangian deformation with s(0) = L, then s(t) = Exp(Lω(α(t))) for some
curve α(t) ∈ Ω1(L) with α(0) = 0 such that F(αt) ≡ 0. Let αt :=

∑∞
n=1 αntn ∈ Ω1(L)[[t]] be

the Taylor series of α(t) at t = 0. Then F(αt) is the Taylor series at t = 0 of the function
0 ≡ F(α(t)) and hence vanishes.

The main purpose of this section is to show the converse: every formally unobstructed
element α ∈ TL is smoothly unobstructed, and this condition is equivalent to the smooth
or formal unobstructedness of α w.r.t. an analytic function τ : U → TL with U ⊂ TL

a neighborhood of the origin, i.e. of an analytic function in finitely many variables (cf.
Corollary 4.12 below). More precisely, we show the following

Theorem 4.9. The moduli space of closed Lagrangian submanifolds of a 6-dimensional
nearly-Kähler manifold in the C1-topology locally is a finite dimensional analytic variety.

More concretely, for a closed Lagrangian L ⊂ M there is an open neighborhood U ⊂ TL

of the origin and a real analytic map τ : U → TL with τ(0) = 0 and ∂τ|0 = 0, as well as a
C∞-map Φ : L × U → M such that Lα := Φ(L × {α}) satisfies:

L0 = L, and any closed submanifold L′ ⊂ M C1-close to L is Lagrangian if and only if
L′ = Lα for some α ∈ τ−1(0).

In order to work towards the proof, we let ω̃ := (Exp ◦ Lω)∗(ω) ∈ Ω2(T ∗L), so that
F(α) = α∗(ω̃). We associate to each α ∈ Ω1(L) the vector field ξα on T ∗L which on each
fiber T ∗pL is constant equal to αp.

If α ∈ Ω∗Ck (L) is Ck-regular, we define the Ck-norms at p ∈ L and on L as
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(4.10) ‖α‖Ck;p :=
∑
|I|≤k

‖(DIα)p‖, ‖α‖Ck := sup
p∈L
‖α‖Ck;p,

where the sum is taken over all multi-indices I in a coordinate system of L which is orthog-
onal at p.

Lemma 4.10. There are constants A,K > 0 such that for each Ck-regular α ∈ Ω1
Ck (L),

k ≥ 1, and each p ∈ L we have∥∥∥∥∥ dn

dtn

∣∣∣∣∣
t=0

(F(tα))
∥∥∥∥∥

Ck−1;p
≤ n!AKn‖α‖nCk;p(4.11)

∥∥∥∥∥ dn

dtn

∣∣∣∣∣
t=0

(d(F(tα)))
∥∥∥∥∥

Ck−1;p
≤ n!AKn‖α‖nCk;p.(4.12)

In particular, at each p ∈ L, the maps t �→ F(tα)p ∈ Λ2T ∗pL and t �→ d(F(tα))p ∈ Λ3T ∗pL
are real analytic at t = 0, and all their derivatives w.r.t. t are Ck−1-regular 2-forms and
3-forms on L, respectively.

Proof. Let us describe this situation in local coordinates. Namely, we let x = (xi) be
analytic coordinates on L and let (x; y) = (xi; yr) be the corresponding bundle coordinates
on T ∗L→ L. With this, we can write

ω̃ = fi jdxi ∧ dx j + girdxi ∧ dyr + hrsdyr ∧ dys,

where the coefficients are analytic functions.
After shrinking this coordinate neighborhood, we may assume that the coefficients of the

Riemannian metric g are uniformely bounded. Moreover, by [24, Proposition 2.2.10], there
exist positive constants A1,K1 satisfying the pointwise estimate

|Xn(φ)| ≤ n!A1Kn
1 |X|n(4.13)

for φ ∈ { fi j, gir, hrs} and a vector field X = ar(x)∂yr with arbitrary continuous coefficients
ar(x).

Let α ∈ Ω1
Ck (L) be Ck-regular, and suppose that ‖α‖C0 is sufficiently small, so that its graph

is given in these coordinates by y = α̂(x) for Ck-regular functions α̂(x) = (α̂r(x))r=1,2,3. Thus,
in these coordinates

ξα = α̂r(x)
∂

∂yr ,

and for |t| small

F(tα) = fi j(x; tα̂(x)) dxi ∧ dx j + tgir(x; tα̂(x)) dxi ∧ dα̂r(x)

+t2hrs(x; tα̂(x)) dα̂r(x) ∧ dα̂s(x)

=

(
fi j(x; tα̂(x)) + tg[ir(x; tα̂(x))

∂α̂r

∂x j]

+t2hrs(x; tα̂(x))
∂α̂r

∂x[i

∂α̂s

∂x j]

)
dxi ∧ dx j.

Thus, for fixed x, the map t �→ F(tα)x yields an analytic curve in Λ2T ∗x L. For the derivatives
w.r.t. t of the coefficient functions, note that for φ ∈ { fi j, gir, hrs} and m ∈ N



618 H.V. Lê and L. Schwachhöfer

dm

dtm

∣∣∣∣∣
t=0
φ(x; tα̂(x)) = (ξα)m(φ)(x;0),

whence
dn

dtn

∣∣∣∣∣
t=0

fi j(x; tα̂(x)) = (ξα)n( fi j)(x;0)

dn

dtn

∣∣∣∣∣
t=0

(tgir(x; tα̂(x))) = n(ξα)n−1(gir)(x;0)

dn

dtn

∣∣∣∣∣
t=0

(t2hrs(x; tα̂(x))) = n(n − 1)(ξα)n−2(hrs)(x;0).

Thus, for the derivatives we get

dn

dtn

∣∣∣∣∣
t=0

F(tα)x =

(
(ξα)n( fi j)(x;0) + n(ξα)n−1(g[ir)(x;0)

∂α̂r

∂x j]
(4.14)

+n(n − 1)(ξα)n−2(hrs)(x;0)
∂α̂r

∂x[i

∂α̂s

∂x j]

)
dxi ∧ dx j.

Now (4.13) implies that

|(ξα)m(φ)(x;0)| ≤ m!A1Kn
1 |αx|m

for φ ∈ { fi j, gir, hrs}. Furthermore, since the coefficients of the metric are bounded, there is a
constant K2 > 0 such that at every x and for all i, r∥∥∥∥∥∂α̂

r

∂xi

∥∥∥∥∥
Ck−1;x

≤ K2‖α‖Ck;x.

Since also ‖dxi ∧ dx j‖Ck;x is uniformely bounded, and as |αx| ≤ ‖α‖Ck;x for all k ≥ 0, (4.11)
follows for all p ∈ L parametrized by this coordinate system and for constants A,K de-
pending on these coordinates. As L is compact, it can be covered by finitely many such
neighborhoods, whence (4.11) follows for all p ∈ L for uniform constants A,K > 0.

The estimate on the derivatives of d(F(tα))p = (tα)∗(dω̃) follows analogously. �

It follows from Lemma 4.10 that for each n ∈ N0, there are symmetric tensors

(4.15) ω̃n : �nΩ1
C1 (L) −→ Ω2

C0 (L), dω̃n : �nΩ1
C1 (L) −→ Ω3

C0 (L),

satisfying

‖〈ω̃n;α〉‖Ck−1 ≤ n!AKn‖α‖Ck and ‖〈dω̃n;α〉‖Ck−1 ≤ n!AKn‖α‖Ck

by (4.11) and (4.12), respectively, such that for all α ∈ Ω1
C1 (L) with |αp| < K−1 with K > 0

of (4.11) we have the power series expansion

(4.16) F(α) =
∞∑

n=1

1
n!
〈(ω̃n);α〉, dF(α) =

∞∑
n=1

1
n!
〈(dω̃n);α〉.

In particular, 〈(dω̃n);α〉 = d〈(ω̃n);α〉. It is important to point out that for α ∈ Ω1
Ck (L) we

have d〈(ω̃n);α〉 ∈ Ω3
Ck−1 (L), even though it is the exterior differential of 〈(ω̃n);α〉 ∈ Ω2

Ck−1 (L).
For α ∈ Ω1

C1 (L) the flow of ξα on T ∗L is given by the formula

Φ
ξα
t (β) = β + tα,
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whence

(Φξαt )∗(ω̃
Φ
ξα
t (p)) = F(tα)p,

so that

(4.17) 〈(ω̃n);α〉 = dn

dtn

∣∣∣∣∣
t=0

F(tα) = ((ξα)
n(ω̃)).

Since the vector fields ξα, ξβ for α, β ∈ Ω1
C1 (L) commute, it follows that the symmetrization

of (ω̃n)p is given by

(4.18) 〈(ω̃n);α1, . . . , αn〉 = ξα1
· · ·ξαn

(ω̃).

Proof of Theorem 4.9. Observe that by (4.17) the description of 〈ω̃n;α〉 is given in (4.14) and
hence a first oder differential operator, and the same holds for the description of 〈dω̃n;α〉.
For a vector bundle E → L we denote by L2

k(E) the Sobolev space of sections of E with
regularity (2; k). Thus, the maps ω̃n and dω̃n of (4.15) extend to a symmetric n-linear map

ω̃n : �nL2
k(T ∗L) −→ L2

k−1(Λ2T ∗L),

dω̃n : �nL2
k(T ∗L) −→ L2

k−1(Λ3T ∗L),

By (4.11) we obtain the estimates

‖〈ω̃n;α〉‖L2
k−1(Λ2T ∗L) ≤ n!AKn‖α‖L2

k (T ∗L) and

‖〈dω̃n;α〉‖L2
k−1(Λ3T ∗L) ≤ n!AKn‖α‖L2

k (T ∗L).

In particular, for α ∈ L2
k with ‖α‖L2

k
< K−1, the power series

∑∞
n=0

1
n!
〈ω̃n;α〉 converges in

L2
k−1(Λ2T ∗L), thus defining the maps

Fk : BK−1 (0) −→ L2
k−1(Λ2T ∗L), α �−→ ∑∞

n=0
1
n!
〈ω̃n;α〉

dFk : BK−1 (0) −→ L2
k−1(Λ3T ∗L), α �−→ ∑∞

n=0
1
n!
〈dω̃n;α〉

where BK−1 (0) ⊂ L2
k(T ∗L) is the ball centered at 0. Clearly, Fk and dFk are analytic maps

between Banach spaces in the sense of Definition 6.1, and moreover, because of (4.16) and
(4.17), Fk and dFk extend the maps F : Ω1

Ck (L)→ Ω2
Ck−1 (L) and dF : Ω1

Ck (L)→ Ω3
Ck−1 (L) of

before.
Thus, F̂ of (4.5) extends for all k ≥ 1 to a map

F̂k : BK−1 (0) −→ L2
k−1(T ∗L ⊕ R)

(α, f ) �−→
(
∗ Fk(α) + d f ,

1
3
∗ dFk(α) + 3 f

)

which is analytic at (0, 0) as Fk and dFk are analytic. Observe that ∂F̂k|(0,0) is the extension
of ∂F̂|(0,0) which by Proposition 4.6 is self adjoint and elliptic. Thus, for all k ≥ 1

ker(∂F̂k|(0,0)) = coker(∂F̂k|(0,0)) = TL.

Denote by π = πk : L2
k(T ∗L ⊕ R) → TL the orthogonal projection which is continuous as

TL is finite dimensional. Then
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(4.19) F̂k := π − F̂k : BK−1 (0) −→ L2
k−1(T ∗L ⊕ R)

is again analytic at (0, 0), and its differential at (0, 0) is an isomorphism. Therefore, the
inverse function theorem for analytic maps of Banach spaces (Proposition 6.3) implies that
there is an analytic inverse of F̂k:

Gk : Uk −→ Vk,

where Uk and Vk are open neighborhoods of the origin in L2
k−1(T ∗L ⊕ R) and L2

k(T ∗L ⊕ R),
respectively.

Let U := Uk ∩ TL which is an open neighborhood of the origin and independent of k as
TL ⊂ ∩k≥1L2

k(T ∗L ⊕ R), and define the map

(4.20) τ : U −→ TL, τ(α) := π(Gk(α)) − α.
Then τ is again analytic, and clearly, τ(0) = 0. Moreover, for α ∈ TL we have

∂τ|0(α) = π(∂Gk|(0,0)(α)) − α = π((∂F̂ k|(0,0))−1(α)) − α = 0,

so that ∂τ|0 = 0.
Observe that for α ∈ U we have Gk(α) ∈ Ω1

C∞(L) for all k ≥ 1, so that we may omit the
subscript k. Indeed, the smoothness of G(α) follows since U ⊂ TL consists of smooth (in fact
analytic) forms; moreover, if G(α) = (α̃, f̃ ), then F̂k(α̃, f̃ ) = α ∈ TL. As F̂k(α̃, f̃ ) = F̂(α̃, f̃ )
by the smoothness of (α̃, f̃ ), (4.7) implies that f̃ = 0 and for α̃ = G(α) we have

F(G(α)) =
1
3

d ∗ F(G(α)).

Let us define the C∞-map

Φ : L × U −→ M, (p, α) �−→ Expp(ξG(α)),

and let Lα := Φ(L × {α}). Evidently, L0 = L as Φ(p, 0) = p. If L′ ⊂ M is a closed
submanifold which is C1-close to L, then we may write L′ as the image of p �→ Expp(ξβ)
for some β ∈ Ω1

C1 (L) ⊂ L2
1(T ∗L) with ‖β‖C1 sufficiently small so that β ∈ V1. We remark that

L′ is Lagrangian if and only if F̂1(β) = 0. Let α be the image F̂1(β) ∈ U1. The condition
F̂1(β) = 0 is equal that α = π(β) by (4.19). Then α(= π(β)) is in U(= U1 ∩ TL). Hence
β = G(α) and τ(α) = π(G(α)) − α = 0, and it completes the proof. �

Theorem 4.9 reduces our consideration of smooth deformations of Langrangian subman-
ifolds to the one in analytic category as follows. Namely, in analogy to Definition 4.8 we
define

Definition 4.11. Let L ⊂ M be a closed Lagrangian submanifold, and let τ : U → TL be
the real analytic map from Theorem 4.9.

(1) An element α ∈ TL is called smoothly unobstructed or smoothly integrable w.r.t. τ,
if there is a smooth curve α(t) in TL such that α(0) = 0 and α̇(0) = α, and such that
τ(α(t)) ≡ 0. Otherwise, α is called smoothly obstructed.

(2) An element α ∈ TL is called formally unobstructed or formally integrable w.r.t. τ, if
there exists a sequence α1 = α, α2, · · · ∈ TL such that the formal power series
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(4.21) αt :=
∞∑

n=1

αntn ∈ R[[t]] ⊗R TL

satisfies

τ(αt) = 0 ∈ R[[t]] ⊗R TL

as a formal power series in t.

Corollary 4.12. Let L ⊂ M be as above. Then for α ∈ TL the following are equivalent.

(1) α is smoothly obstructed.
(2) α is formally obstructed.
(3) α is smoothly obstructed w.r.t. τ.
(4) α is formally obstructed w.r.t. τ.

In particular, L ⊂ M is regular iff τ ≡ 0.

Proof. According to Theorem 4.9, a smooth family s(t) of Lagrangian submanifolds with
s(0) = L and ṡ(0) = α must be of the form s(t) = Lα(t) for a smooth curve α(t) ∈ TL

with α(0) = 0 and α̇(0) = α such that τ(α(t)) ≡ 0. That is, α is smoothly obstructed iff
it is smoothly obstructed w.r.t. τ. Likewise, working on the level of formal power series,
it follows from Theorem 4.9 that α is formally obstructed iff it is formally obstructed w.r.t.
τ. But as τ : U → TL is an analytic function in finitely many variables, the equivalence of
smooth and formal obstruction of α ∈ TL follows immediately from Artin’s approximation
theorem [3, Theorem 1.2].

To show the last statement, let τ =
∑∞

n=2 τn be the analytic expansion of τ with τn :
�nTL → TL. If τ � 0, there exists a minimal number n ≥ 2 such that τn � 0, so that there
is some α ∈ TL such that ταn := τn(α, . . . , α) � 0. Let αt :=

∑∞
n=1 αntn be a formal power

series with α1 = α. Then τ(αt) = tnταn mod tn+1, so that τ(αt) � 0. Hence, α is formally
obstructed.

Thus, if all α ∈ TL are formally unobstructed, then τ ≡ 0. �

Corollary 4.13. Each connected component of the moduli space of closed regular La-
grangian submanifolds of M, equipped with the C1-topology, is an analytic manifold whose
tangent space at each L may be canonically identified with TL.

Proof. Let L ⊂ M be a regular Lagrangian submanifold, so that the map τ : U →
TL from Theorem 4.9 vanishes identically. Then the map Φ : L × U induces an analytic
parametrization of all C1-close Lagrangian submanifolds of L, given by α �→ Lα. �

Let us now describe the analytic expansion of τ : U → TL from Theorem 4.9.

Proposition 4.14. For α ∈ TL, define τ̂αn ∈ Ω1(L) for n ∈ N recursively by

(4.22)

τ̂α1 = α

τ̂αn =
n!
3

n∑
r=2

∑
|I|=n

1
r!I!

((
∂F̂|(0,0)

)−1 ∗ (3 − d)〈ωr; τ̂αi1 , . . . , τ̂
α
ir〉

)
Ω1(L)

,

summing over all multi-indices I = (i1, . . . , ir), setting |I| := i1 + . . . + ir and I! := i1! · · · ir!.
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Then

(4.23) τ(α) =
∞∑

n=2

π(τ̂αn ) =:
∞∑

n=2

ταn

with the orthogonal projection π : Ω1(L)→ TL. In fact,

(4.24) ταn = n!
n∑

r=2

∑
|I|=n

1
r!I!
π
(
∗〈ωr; τ̂αi1 , . . . , τ̂

α
ir〉

)
.

Proof. For β ∈ Ω1(L) and any k ≥ 1, the map t �→ F̂ k(tβ) of (4.19) is real analytic at t = 0
with the expansion

(4.25) F̂ k(tβ) = t ∂F̂ k|(0,0)(β) −
∞∑

n=2

tn

3n!
∗ (3 − d)〈ω̃n; β, . . . , β〉.

using the definition of F̂ in (4.5) and the expansions in (4.16). Since ∂F̂ k|(0,0) is invertible,
the map t �→ Gk(tα) is also analytic at t = 0. We expand Gk(tα) as

(4.26) Gk(tα) =
∞∑

n=1

tn

n!
〈gn;α . . . α〉 =:

∞∑
n=1

tn

n!
gαn ,

for n-multilinear maps gn : �nTL −→ Ω1(L) ⊕C∞(L) which we decompose as

gαn = τ̂
α
n + f αn .

By applying F̂ to the equation (4.26), and using (4.25), gαn must be solutions of the equa-
tion

tα = t ∂F̂ k|(0,0)(gα1 ) +
∞∑

n=2

tn
( 1
n!
∂F̂ k|0(gαn )(4.27)

−1
3

n∑
r=2

∑
|I|=n

1
r!I!
∗ (3 − d)〈ωr; τ̂αi1 , . . . , τ̂

α
ir〉

)
.

Comparing the tn-coefficient and using that ∂F̂ k|(0,0) is the identity on TL, we obtain the
equation gα1 = α, so that τ̂α1 = α and f α1 = 0, and

gαn =
n!
3

n∑
r=2

∑
|I|=n

1
r!I!

(
∂F̂|(0,0)

)−1 ∗ (3 − d)〈ωr; τ̂αi1 , . . . , τ̂
α
ir〉.

Hence, τ̂αn of (4.22) is the Ω1(L)-component of gαn .
Now by (4.20), the series expansion of τ is

τ(tα) = π(Gk(tα)) − tα =
∞∑

n=1

tnπ(gαn ) − tα =
∞∑

n=2

tnπ(τ̂αn ),

using that gα1 = α. This shows (4.23), and (4.24) follows as π is the projection onto the

(+1)-eigenspace of F̂ k|(0,0) by definition, so that π
(
F̂ k|(0,0)

)−1
= π. �
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Definition 4.15. Let L ⊂ M be a closed Lagrangian submanifold. The Kuranishi map of
L is the symmetric bilinear map

K : TL × TL −→ Ω2(L), K(α1, α2) := 〈ω2;α1, α2〉 = ξα1
ξα2

(ω).

Thus, by (4.24) we have

τα2 = π ∗ K(α, α),

whence the we obtain the following result.

Proposition 4.16. Assume that L ⊂ M is a Lagrangian submanifold, and let α ∈ TL. If α
is smoothly unobstructed, then π ∗ K(α, α) = 0, i.e.,∫

L
K(α, α) ∧ β = 0 for all β ∈ TL.

Proof. If α ∈ TL is smoothly unobstructed, then by Theorem 4.9 there is a curve α(t) in
TL with α(0) = 0 and α̇(0) = α such that τ(α(t)) ≡ 0. As ∂τ|0 = 0, we have

0 =
d2

dt2

∣∣∣∣∣∣
t=0
τ(α(t)) = 2τ2(α̇, α̇)|t=0 = 2τα2 = 2π ∗ K(α, α).

From this, the claim follows. �

Evidently, with increasing n, the the n-th order formal obstructions of an element α ∈ TL

become increasingly involved.

5. Examples

5. Examples
In this section we wish to apply our results to Lagrangian submanifolds of the standard

nearly Kähler sphere (S 6, J0, g0) and put our work into the context of the deformation results
in [34].

Let O denote the octonions, which is the unique 8-dimensional normed division algebra.
It may be orthogonally decomposed into O = R ·1⊕ ImO, and there is a vector cross product
× on ImO, defined as the imaginary part of the octonion multiplication, i.e.

x × y = 1
2

(x · y − y · x) for all x, y ∈ ImO,

where 〈.; .〉 denotes the scalar product onO. Then the automorphism group G2 ofO preserves
the inner product and acts on the 7-dimensional space ImO, and it clearly preserves the cross
product × on ImO. Furthermore, we define the 3-form ϕ on ImO by

ϕ(x, y, z) := 〈x × y; z〉,
so that ϕ is invariant under the action of G2; indeed, G2 can also be described as the group
of automorphisms on ImO preserving φ.

Let S 6 ⊂ ImO denote the unit sphere with the round metric g0 induced by the inner
product 〈.; .〉 on ImO. Then there is an orthogonal almost complex structure J0 on S 6,
defined as

J0|p(u) := p × u
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for p ∈ S 6 and u ∈ TpS 6 ⊂ ImO. Since the cone metric over S 6 is the flat metric on ImO
which is clearly a (flat) G2-manifold, the result of Bär [4, §7] already mentioned in section
2.2 implies that (S 6, g0, J0) is a strict nearly-Kähler manifold. It follows that the action of
G2 on S 6 ⊂ ImO preserves the nearly-Kähler structure and is in fact the invariance group
of this structure. Moreover, this action of G2 on S 6 is transitive, with stabilizer SU(3) ⊂ G2,
whence we may write the sphere as a homogeneous space

S 6 = G2/SU(3).

We call a Lagrangian submanifold L ⊂ S 6 linearly full, if it is not contained in a totally
geodesic sphere S 5 ⊂ S 6. For instance (cf. [33, Example 6.11.]), if Σ ⊂ CP2 is a holo-
morphic curve, then the inverse image of Σ under the Hopf fibration S 5 → CP2 yields a
Lagrangian submanifold LΣ ⊂ S 5 ⊂ S 6 which is not linearly full. In fact, any Lagrangian
submanifold L ⊂ S 6 which is not linearly full is of this type [33, Theorem 1.1].

In [35], Mashimo gave a complete classification of homogeneous Lagrangian sumbman-
ifolds L ⊂ S 6, i.e., L is the orbit of some subgroup H ⊂ G2. Indeed, there are, up to
G2-equivalence, five inequivalent Lagrangian submanifolds; the description of the induced
metric is given in [8].

(1) The totally geodesic Lagrangian sphere L0 := S 3 ⊂ S 6, given as the intersection of
S 6 with a coassociative subspace V4 ⊂ O, i.e., such that ϕ|V ≡ 0.

(2) The “squashed sphere”

L1 :=

⎧⎪⎪⎨⎪⎪⎩
√

5
3

qiq̄ +
2
3

q̄ε : q ∈ Sp(1)

⎫⎪⎪⎬⎪⎪⎭ ,
on the decomposition O = H ⊕ Hε for some unit octonion ε ∈ H⊥. Clearly, L1

is again a sphere, and the metric induced by this embedding is a Berger metric,
invariant under U(2) ⊂ G2. That is, every oriented isometry of L1 extends to S 6.

(3) The space L2 := LΣ with the notation from above, where Σ ⊂ CP2 is the quadric

z2
1 + z2

2 + z2
3 = 0.

Then L2 ⊂ S 5(1) ⊂ S 6(1) is not linearly full and diffeomorphic to RP3. In fact, it is
acted on simply transitively by the subgroup SO(3) ⊂ SU(3) ⊂ G2, where SU(3) is
the stabilizer of (S 5)⊥. The induced metric on L2 is again a Berger metric, but the
only oriented isometries which extend to S 6 are the elements of SO(3).

(4) There is a (unique) subgroup SO(3) ⊂ G2 which acts irreducibly on ImO, thus
identifying ImO with 

3(R3), the space of harmonic cubic polynomials in the three
variables x, y, z, as an SO(3)-module.

If p ∈ 3(R3) is completely reducible, then – up to a multiple – it is contained in
the SO(3)-orbit of one of the two non-equivalent polynomials

p3(x, y, z) = x(x2 − 3y2) or p4(x, y, z) := xyz,

and we let Lk := SO(3)· pk
|pk | ⊂ S 6 for k = 3, 4 be the SO(3)-orbit of these polynomials.

Then L3 = SO(3)/D3 and L4 = SO(3)/A4, where D3 and A4 denote the dihedral and
the tetrahedral group, respectively.

The induced metric on L3 is a Berger metric, whereas the induced metric on L4 is
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a metric of constant curvature.
Observe that among the homogeous examples given above, the two Lagrangian subspaces

L0 and L2 are not full. Indeed, L0 and L2 coincide with LΣ, where Σ ⊂ CP2 is the degree 1
curve z1 = 0 or the degree 2 curve z2

1 + z2
2 + z2

3 = 0, respectively.
The action of G2 on S 6 is transitive on totally geodesic Lagrangian 3-spheres, whence the

moduli space of deformations of L0 contains its orbit under G2 which is G2/SO(4) and hence
10-dimensional. On the other hand, in [34], Lotay calculated that the formal tangent space
TL0 is 10-dimensional, whence for each element of TL0 there is a local deformation. From
this, it follows immediately that L0 ⊂ S 6 is regular, and the moduli space of its deformation
is the manifold G2/SO(4).

For d = 2, the sets of smooth conics in CP3 is the homogeneous space SL(3,C)/SO(3,C),
whence the moduli space of the Hopf lifts of curves of degree d = 2 is given as

d=2 = G2 ×SU(3) SL(3,C)/SO(3,C).

In particular, d=2 is a manifold of dimension 16, and the moduli space of deformations
of the smooth conic L2 ⊂ S 6 must contain d=2. On the other hand, according to [34],
the formal tangent space TL2 is 16-dimensional, whence for each element of TL2 there is a
local deformation, namely the corresponding curve in d=2. From this, it follows again that
L2 ⊂ S 6 is regular, and the moduli space of local deformation is d=2.

The Lagrangian L1 ⊂ S 6 is full, and stabilized by the action of the subgroup U(2) ⊂ G2

stabilizing the decomposition ImO = ImH⊕H. Thus, the space of its deformations contains
its orbit under the G2-action which is G2/U(2) and hence 10-dimensional. Again, TL1 is 10-
dimensional by [34], whence as in the preceding cases, L1 is regular with local deformation
space G2/U(2).

For the remaining two homogeneous Lagrangian submanifolds L3, L4 ⊂ S 6, the dimen-
sion of TLi has also been calculated in [34], but in these two cases, it is not evident from the
description if these are regular submanifolds nor what the local deformation spaces would
look like. We summarize our discussion in the following table.

Table. Properties of homogeneous Lagrangian subspaces of S 6.

dim TLi Li regular? deformation space of Li

i = 0 8 yes d=1 = G2/SO(4)

i = 1 10 yes G2/U(2)

i = 2 16 yes d=2 = G2 ×SU(3) SL(3,C)/SO(3,C)

i = 3 41 ?

i = 4 22 ?

Remark 5.1. (1) The rigidity of the Lagrangian sphere S 3(1) also follows from the
Simons rigidity theorem which states that each geodesic sphere in S n is rigid as
minimal submanifold up to the motion of the isometry group SO(n+1) [51, Theorem
5.2.3].
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(2) The term rigidity we use here is equivalent to the notion of rigidity in [34, Definition
4.12, p. 28]. Our notation of regularity corresponds to Lotay’s notion of Jacobi
integrability [34, Definition 3.18, p.18]. Lotay’s notion of stability corresponds to a
special case of our notion of regularity [34, Definition 4.12, p. 27-28].

6. Appendix. Real analytic Banach manifolds and implicit function theorem

6. Appendix. Real analytic Banach manifolds and implicit function theorem
In this Appendix we recall the notion of a real analytic Banach manifold, following Eells

[12], see also [11, §2], and the analytic inverse function theorem, following Douady [11,
§6]. Then we prove a simple criterion for a smooth mapping to be analytic (Lemma 6.2).
We also derive the analytic implicit function theorem (Proposition 6.4) from the analytic
inverse function theorem. We always work over the field R of real numbers, if not specified
otherwise.

Let E and F be real Banach spaces, and U an open subset of E. Denote by L(E, F) the
vector space of all continuous linear maps u : E → F. Let us recall that a map φ : U → F
is called Fréchet differentiable at x0 ∈ U if there is an element Φ ∈ L(E, F) such that

lim
v→0

|φ(x0 + v) − φ(x) − Φ(v)|F
|v|E = 0.

In this case Φ(v) is unique and also denoted by φ∗(x, v) or dφ(x; v). We regard dφ as a
mapping from U to L(E, F).

Denote by SLr(E, F) the class of continuous symmetric r-linear maps E ×r times ×E → F.
Inductively, φ is of class Cr, if drφ : U → SLr(E, F) is continuous.

Definition 6.1. Let E and F be two Banach spaces and U an open subset in E. A smooth
map h : U → F is called analytic at a point a ∈ U, if there exists r > 0 such that for all
|x| < r we have (a + x) ∈ U and

(6.1) h(a + x) =
∞∑

k=0

dkh(a; x, · · · , x)
k!

.

To recognize analytic maps among smooth maps we use the following Lemma.

Lemma 6.2. Let U be an open subset of a Banach space E. A smooth mapping f from
U to a Banach space F is analytic at a point x ∈ U iff there exists a positive number r
depending on x such that the following holds. For any affine line l through x the restriction
of f to l ∩ U is analytic at x with radius of convergence at least r.

Proof. The “only if” assertion of Lemma 6.2 is straightforward. Now let us prove the
“if” assertion of Lemma 6.2. Since we do not assume any condition on f , w.l.o.g. we can
assume that x = 0 ∈ E. By the assumption the sphere S (r) of radius r and with center at
x = 0 lies in U. Let s ∈ S (r). Set g(t) := f (ts). By the assumption g(t) is analytic at 0 with
the convergence radius at least r. Since

dg
dt
= d f (ts; s)

and hence
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dng

dtn = dn f (ts; s, · · · , s)

we have the Taylor expansion of g at zero is

(6.2) g(t) = f (0) +
∞∑

k=0

dk f (0, s, · · · , s)tk

k!
.

Comparing (6.2) with (6.1), we obtain immediately Lemma 6.2. �

Having the notion of an analytic mapping between Banach vector spaces, it is straightfor-
ward to define the notion of an analytic Banach manifold. Now we formulate the analytic
inverse function theorem that has been proved in [11].

Proposition 6.3 ([11, Theorem 1]). Let X and Y be two analytic Banach manifolds and
f : X → Y an analytic map. Assume that b = f (a) and Ta f : TaX → TbY is an isomorphism.
Then f is a local isomorphism.

Now we combine the implicit function theorem for Banach spaces as formulated in [25,
Chapter I, Theorem 5.9] and the analytic inverse function theorem to prove the following.

Proposition 6.4. Let U,V be an open sets in Banach spaces E and F respectively, and let
f : U × V → G be an analytic mapping. Let (a, b) ∈ U × V and assume that the restriction
of the differential D f at (a, b) to (0, F) ⊂ E × F to G is a topological isomorphism. Let
f (a, b) = 0. Then there exist a small neighborhood U0 of a in U and an analytic mapping
g : U0 → V such that

f (x, g(x)) = 0

for all x ∈ U0.

Proof. The proof of Proposition 6.4 repeats the proof of the implicit function theorem
given in [25, p. 19]. It reduces to the analytic inverse function theorem 6.3 by considering
the new map φ : U × V → E × F, (x, y) �→ (x, f (x, y)), so we omit the detail of the proof.
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