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Abstract

Lagrangian submanifolds in strict nearly Kédhler 6-manifolds are related to special Lagrangian
submanifolds in Calabi-Yau 6-manifolds and coassociative cones in G,-manifolds. We prove
that the mean curvature of a Lagrangian submanifold L in a nearly Kéhler manifold (M, J, g)
is symplectically dual to the Maslov 1-form on L. Using relative calibrations, we derive a
formula for the second variation of the volume of a Lagrangian submanifold L3 in a strict
nearly Kihler manifold (M®, J, g) and compare it with McLean’s formula for special Lagrangian
submanifolds. We describe a finite dimensional local model of the moduli space of compact
Lagrangian submanifolds in a strict nearly Kihler 6-manifold. We show that there is a real
analytic atlas on (M®, J,g) in which the strict nearly Kihler structure (J,g) is real analytic.
Furthermore, w.r.t. an analytic strict nearly Kéahler structure the moduli space of Lagrangian
submanifolds of M°® is a real analytic variety, whence infinitesimal Lagrangian deformations are
smoothly obstructed if and only if they are formally obstructed. As an application, we relate
our results to the description of Lagrangian submanifolds in the sphere S® with the standard
nearly Kéhler structure described in [34].
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1. Introduction

Nearly Kihler manifolds first appeared in Gray’s work [15] in connection with Gray’s
notion of weak holonomy. Nearly Kihler manifolds represent an important class in the 16
classes of almost Hermitian manifolds (M, J, g) classified by Gray and Hervella [17]. Let us
recall the definition of a nearly Kihler manifold (M, J,g). Let V€ denote the Levi-Civita
covariant derivative associated with the Riemannian metric g.

Derinition 1.1([15, §1, Proposition 3.5], [16]). An almost Hermitian manifold (M, g, J)
is called nearly Kdhler if (V)L(CJ )X = 0 for all X € TM. A nearly Kdhler manifold is called
strict if we have V)L(CJ # 0 for all X € TM \ {0}, and it is called of constant type if there
exists a positive constant A such that

I(VEEDYIF = 2AXIPNYIP = (X, Y)Y = (JX, Y)?)
forevery xe Mand X,Y € T M.

Remark 1.2. 1. It is known that any complete simply connected nearly Kéhler manifold
is a Riemannian product M; X M, where M, and M, are Kihler and strict nearly Kéhler, re-
spectively [23, 42]. Furthermore, a de Rham type decomposition of a strictly nearly Kéhler
manifold was found by Nagy [43], where the factors of the decomposition are of the fol-
lowing types: 3-symmetric spaces, twistor spaces over quaternionic Kdhler manifolds of
positive scalar curvature, and strict nearly Kéhler 6-manifolds.

2. It is easy to see that if (M, J, g) is a nearly Kéhler manifold of constant type A, then
(M, J,A"'g) and (M, —J, 1~ g) are nearly Kihler manifolds of constant type 1.

3. According to [16, Theorem 5.2], a strict nearly Kéhler manifold of dimension 6 is
always of constant type.

On an almost Hermitian manifold (M, J, g) the fundamental 2-form w, defined by w(X, Y)
:= g(JX, Y), measures the connection between the almost complex structure J and the Rie-
mannian metric g. A submanifold L c (M, J,g) whose dimenion is half the dimension of
M is called Lagrangian, if w|, = 0. As in symplectic geometry, the graph of a diffeomor-
phism of M that preserves w is a Lagrangian submanifold in the almost Hermitian manifold
MxXM,J®(-J),g®g). If (M,J,g)is Kéhler, then w is symplectic. Lagrangian submani-
folds in Kéhler manifolds have been studied in the context of calibrated geometry [18] and
of relative calibrations [26], [27], in the investigation of the Maslov class [29], [40], of the
variational problem [26], [44], [50], [52], and of the deformation problem/ moduli spaces
[5], [6], [20], [30], [36], [52], etc. The literature on the subject is vast, and the authors omit
the name of many important papers in the field.

The relation between nearly Kéhler manifolds (M, J, g) and Riemannian manifolds with
special holonomy is best manifested in dimension 6. In this dimension, a nearly Kihler
manifold is either a Kdhler manifold or a strict nearly Kéhler manifold [16, Theorem 5.2]. It
is known from Bér’s work [4] that a cone without singular point over a strict nearly Kéhler
manifold (M®, J, g) is a 7-manifold with G,-holonomy. It is not hard to see that the cone over
a Lagrangian submanifold L? in a strict nearly Kihler manifold (M®, J, g) is a coassociative
cone in CM°®. Thus the study of strict nearly Kihler 6-manifolds and their Lagrangian sub-
manifolds are essential for the study of singular points of G,-manifolds as well as for the
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study of singular points of coassociative 4-folds. Furthermore, special Lagrangian submani-
folds in Calabi-Yau 6-manifolds could be treated as a limit case of Lagrangian submanifolds
in nearly Kdhler manifolds when the type constant A goes to zero (Remarks 2.7, 3.15). We
also note that Lagrangian submanifolds in the standard nearly Kihler manifold S are found
to be intimately related to holomorphic curves in CP? and they present extremely rich ge-
ometry [8], [10], [33].

In this paper we study Lagrangian submanifolds L* in strict nearly Kihler 6-manifolds
(MS, J,g) in two aspects: the variation of the volume functional and Lagrangian deforma-
tions of L. Since L* are minimal submanifolds in (M®, J,g) (Corollary 3.6), these two
aspects are related to each other. In particular, results from theory of minimal submanifolds
are applicable to Lagrangian submanifolds in strict nearly Kidhler 6-manifolds, for instance
see Remark 5.1. To study variation of the volume functional of L? we extend the method of
relative calibrations developed by the first named author in [26, 27]. To study deformations
of Lagrangian submanifolds in (M9, J, g) we develop several methods. First we reduce the
overdetermined equation for Lagrangian deformations to an elliptic equation (Proposition
4.4). Since the Fredholm index of the elliptic equation is zero (Proposition 4.6) and, on
the other hand, most interesting examples of Lagrangian submanifolds have nontrivial de-
formations, the usual elliptic method yields only limited results. Thanks to our result on
the analyticity of a strict nearly Kihler structure (Proposition 2.8), we reduce the smooth
Lagrangian deformation problem to the deformation problem in the analytic category. We
prove that the moduli space of Lagrangian deformation is locally an analytic variety and
hence an infinitesimal Lagrangian deformation is smoothly unobstructed iff it is formally
unobstructed (Theorem 4.9, Corollary 4.12).

Our paper is organized as follows. In section 2 we collect some important results on the
canonical Hermitian connection on nearly Kéhler manifolds. Then we prove the existence
of a real analytic structure on any strict nearly Kihler 6-manifold (M®, J, g) in which both
J and g are real analytic (Proposition 2.8). In section 3, using a result of the first named
author [26], we establish a relation between the Maslov 1-form and the mean curvature
of a Lagrangian submanifold in a nearly Kihler manifold (M, J,g) (Proposition 3.3) and
show its consequences (Corollaries 3.4, 3.6). If (M®,J,g) is a strictly nearly Kihler 6-
manifold, we derive a simple formula for the second variation of a Lagrangian submanifold
in (M®, J,g) using relative calibrations (Theorem 3.8). We compare this formula with the
formula obtained by McLean for special Lagrangian submanifolds (Corollary 3.12, Remarks
3.13,3.15, 3.16).

In section 4 we show that the moduli space of closed Lagrangian submanifolds L3 ¢ M°
of a strict nearly Kihler manifold in the C'-topology is locally a real analytic variety. That
is, the set of C'-small deformations of a compact Lagrangian submanifold can be described
as the inverse image of a point of a real analytic map between open domains in a finite
dimensional vector space, whence any smooth Lagrangian deformation of a Lagrangian
submanifold L? in a strict nearly Kihler 6-manifold can be written as a convergent power
series (Theorem 4.9).

In section 5, we apply our results to deformations of homogeneous Lagrangian submani-
folds in the standard nearly Kihler sphere S® which have been considered by Lotay in [34]
and give an explicit description of the moduli space for some of these cases.



604 H.V. LE anp L. SCHWACHHOFER

2. Geometry of nearly Kéhler manifolds

In this section we collect some important results on the canonical Hermitian connec-
tion on nearly Kdhler manifolds (Propositions 2.1, 2.2) and derive an important conse-
quence (Corollary 2.3), which plays a central role in the geometry of strict nearly Kihler
6-manifolds (Proposition 2.4, Remark 2.7). At the end of this section we prove the existence
of a real analytic structure on M®, in which both the complex structure J and the metric g
are analytic (Proposition 2.8).

2.1. The canonical Hermitian connection. Let U(M) denote the principal bundle con-
sisting of unitary frames (e, Jey, - - , e,, Je,) over an almost Hermitian manifold (M, J, g).
Denote by {e, (Je;)"} the dual frames. Then 0 = e; +V-1 (Je;)"} is the canonical C"-valued
1-form on U(M).

Let @ be a unitary connection 1-form on U(M) and T its torsion 2-form. The Cartan
equation for @, and T [22, Chapter IX, §3] [26, §3] is expressed as follows

def = -\ N0 + T 0 NG+ T O A 6* + TEH A,
. J Jk Jjk
~io_ i~k i
da)j——a)k/\wj+Qj,

where Q is the curvature tensor of @.

Proposition 2.1 ([31, Chapter IV, §112]). Let (M, J, g) be an almost Hermitian manifold.
Then there exists a unique unitary connection I-form @ on U(M) such that its torsion tensor
T is a two-form of type (2,0) + (0,2), i.e.,

TUX,Y)=T(X,JY).

We shall denote the Levi-Civita connection of g and the canonical connection from this
proposition by V€ and V¢, respectively. If the almost Hermitian manifold is nearly Kihler,
then the following is known.

Proposition 2.2 ([16], [23, Theorem 1]). Suppose that (M, J, g) is a nearly Kdhler mani-
fold.
(1) Then T(X,Y) = =J(VEEI)Y.
(2) The associated torsion form T*(X, Y, Z) :=(T(X,Y), Z) is skew-symmetric.
3) verT* = 0.

The skew-symmetry of the torsion of the canonical connection of a nearly Kéhler mani-
fold (M, J, g) will play an important role in our study of (M, J, g).
We shall derive from Proposition 2.2 the following

Corollary 2.3. On a nearly Kdihler manifold (M,J,g) we have dw(X,Y,Z) =
-3T*(X, Y, JZ). Furthermore, dw is a 3-form of type (3,0) + (0, 3), that is,

dw(UX,Y,7) =dw(X,JY,Z) = dw(X, Y, JZ).
In particular, V" (dw) = 0.

Proof. We use the fact that the nearly Kéhler condition is equivalent to the following
condition [17, Theorem 3.1]
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2.1) Xldw = 3Viw
for all X € TM. A straightforward calculation shows that (2.1) implies
(2.2) dw(X,Y,Z) = 3(VE DY, Z).

Since T(X,Y) =—-J (V;;CJ )Y, we obtain immediately the first assertion of Corollary 2.3. The
second assertion follows from the first one, taking into account the fact that 7" is a 2-form of
type (2,0) + (0, 2). Finally, the parallelity of dw follows from Proposition 2.2 (3) and since
Ve is unitary. m|

2.2, Strict nearly Kihler 6-manifolds. Among nearly Kihler manifolds the class of
strict nearly Kéhler 6-manifolds is most well-studied. By [16, Theorem 5.2 (1)], any 6-
dimensional nearly Kidhler manifold which is not Kéhler, is of constant type, i.e., there is a
constant A > 0 such that

(2.3) IVEDYIP = PAXIPIYIP = (X, ¥)* = (X, JY)?).
Throughout this section, M = M will be 6-dimensional.

Proposition 2.4. Assume that (M, g, J) is a strict nearly Kihler manifold of constant type
A(cf. (2.3)). Then ﬁdw is a special Lagrangian calibration. In particular, (M, g, J) has an
SU(3)-structure.

Proof. It is an immediate consequence of (2.2) and (2.3) that ﬁdw is a special Lagrangian
calibration, i.e., wlzy = 0 on any 3-plane X C T\,M with dw|s = 3Avols.

Since dw is parallel w.r.t. V" and is of type (3,0) + (0, 3) by Corollary 2.3, it follows
that the complex linear (3, 0)-form ® € Q3(M, C) given as

(2.4) O(X,Y,7) = %(da)(x, Y,Z) - V-1 dw(X, Y, JZ))

= %(dw(X, Y,Z) +3V-1T*(X,Y,2))

is parallel w.r.t. V" and nowhere vanishing, so that a strict nearly Kdhler 6-manifold carries
a canonical SU(3)-structure. m]

The above argument also shows that for any 3-dimensional subspace £ ¢ T,M we have
(cf. [18, Chapter III])

(2.5) |Ds|* < Jvols|* with equality if and only if w|y = 0.

Namely, the first estimate and that equality holds only if wy = 0 follows immediately
from (2.2) and (2.3). For the converse, let (¢;);=123 be an orthonormal basis of a La-
grangian plane. Then (2.2) implies that VglC(J)ez is orthogonal to ey, e;, Jey, Je,, so that
e3 € span(VéC(J)ez, JV?IC(J)ez). From this and (2.3), equality in (2.5) follows.

Evidently, there are no calibrated submanifolds of dw, since on such a manifold L ¢ M
we would have w|;, = 0 by (2.5) and hence, 34vol;, = dw|, = 0. Thus, by (2.5) on a
Lagrangian submanifold L ¢ M, —~Im (®)|, = —A~!T*|, is a volume form on L, i.e., it is

calibrated by the non-closed 3-form Im (®), see also [26], [27].
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Remark 2.5. For the remainder of our paper we shall choose the orientation on a La-
grangian submanifold L such that

2.6) vol;, = —Im (®)|.

This orientation agrees with the natural orientation of the Lagrangian sphere S3(1) = HN S°®
in the standard strictly nearly Kihler sphere S® ¢ Im Q, see also subsection 5 below. Note
that our choice of the orientation of L agrees with that in [33, p. 2309], but differs from that
in [52, p. 18].

Lemma 2.6. For the orientation of L given by (2.6) we have for any 5 € Qlco (L)
(2.7) 3% =—(sgldw)lr.

Proof. Given x € L, pick a unitary basis (e;, Je;)i=123 of T,L with dual basis ((e;)",
(Je))*)i=123 and complex dual basis 6 := (e;)* + \/—_I(Je,-)* such that dw(x) = 3Re (8" A
> A@®)and w = -Im (9" A 6" + 6% A 6> + 63 A 6%). Since special Lagrangian planes in 7, M
are transitive under the SU(3)-action on T, M [18], we can assume that T, L is spanned by
(Jey, Jea, Je3). Since w(x), dw(x) and T, L are invariant under the action of SO(3) c SU(3) C
Aut(T M), we can assume furthermore that 8, = c¢-(Je;)* and hence sg = c-L(j)1 (Jer))" =c-e
for some ¢ > 0. By (2.6) on L,

Im (6" A 6% A @), = =3vol|y,
i.e. (Jey, Jes, Je3) is an oriented frame. Then
3x(Je)" =3(Jer)" A (Je3)" = —(e1Jdw)lL,

and multiplication by c yields (2.7) and hence completes the proof. m|

Remark 2.7. By the above discussion, a nearly Kéhler 6-manifold (M, J, g, w) of constant
type A satisfies the following equation (cf. [7, §4])

2.8) dw=31Re(®), dIm(®)=-21w A w.

Thus, a Calabi-Yau 6-manifold can be regarded as an almost strict nearly Kéhler manifold
with 4 = 0.

In principle, one could verify (2.8) by a direct calculation, but there is a more elegant way
to do this, due to C. Bér. Namely, first of all, by rescaling the metric g (Remark 1.2) we can
assume that the metric is of constant type 4 = 1.

In [4, §7] Bar constructed a 3-form ¢ on the cone CM = M X, R* equipped with the
warped Riemannian metric § = r2g + dr® over a strict nearly Kihler 6-manifold (M, J, g) of
constant type 1. We identify M with M x {1} ¢ CM. The form ¢ on CM is defined by [4,
§71

3
2.9) o(r, x) = ?dw +72dr A w.

For x € M, pick a unitary basis (e;, Je;)i=123 of T,M with dual frames ((¢;)*, (Je;)")i=123
and the complex coframe ' := (e;)* + V—1(Je;)*.
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.....

orthonormal basis of T,  CM. If we set g;x = &; A &; A &, then ¢ is written by

(2.10) @o(r, x) = (135 — €146 — €236 — €245) + E127 + E347 + E567,

and ¢ defines a G,-structure on CM. By (2.9), dp = 0. Bir also showed that d*¢ = 0,
so that this G,-structure is torsion free. In particular, ¢ (resp. *¢) is an associative (resp.
coassociative) calibration on CM. Furthermore, d*¢ = 0 implies the second relation in (2.8)
for A = 1. From this, we also deduce the following result.

Proposition 2.8. Let (M, J, g) be a strict nearly-Kihler manifold. Then there is a real
analytic structure on M in which both the complex structure J and the metric g are real
analytic.

Proof. It is known that a strict nearly Kéhler metric on a 6-manifold M is an Einstein
metric [16, Lemma 4.8]. By the DeTurck-Kazdan theorem [9], M possesses an analytic
atlas in which ¢ is an analytic metric. It follows that in the induced real analytic structure on
CM the aforementioned cone metric § := dr? + r’g on CM is analytic and the vector field
d, on CM is analytic. Since the form ¢ € Q3(CM, g) of (2.9) defining the G,-structure on
CM is harmonic, it is analytic as well. Thus, d,]¢ = rrwis analytic, and so is its restriction
to the analytic submanifold M x {1} c CM.

Therefore, w € Q*(M) is analytic, and J is defined by contraction of w with the real
analytic metric g and hence analytic as well. m|

3. Variation of the volume of Lagrangian submanifolds

In this section we introduce the notion of the Maslov 1-form u(L) of a Lagrangian sub-
manifold L in a Hermitian manifold (M, J, g) and relate this notion with the classical notion
of the Maslov class of a Lagrangian submanifold in (R*", wy) (Remark 3.2). Then we prove
that u(L) is symplectically dual to the twice of the mean curvature H; of a Lagrangian
submanifold L in a nearly Kdhler manifold (M, J, g) (Proposition 3.3) and derive its conse-
quences (Corollaries 3.4, 3.6). Using relative calibrations, we prove a simple formula for the
second variation of the volume of a Lagrangian submanifold in a strictly nearly Kéhler 6-
manifolds (Theorem 3.8) and discuss its consequences (Corollary 3.12, Remarks 3.13, 3.15,
3.16). We discuss the relation between the obtained results with known results (Remark 3.7,
3.15, 3.16).

3.1. Maslov 1-form and minimality of a Lagrangian submanifold in a nearly Kihler
manifold. Let L be a Lagrangian submanifold in an almost Hermitian manifold (M, J, g)
and (&)é.) the canonical Hermitian connection 1-form on U(M, J, g). The Gaussian map g,
sends L to the Lagrangian Grassmanian Lag(M) of Lagrangian subspaces in the tangent
bundle of M. Denote by p : U(M) — Lag(M) the projection defined by

(v1,Joi, -+ 00, JU) B> (U1 A Ayl

Set

Y= —\/—_IZG)i
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We recall the following fact

Lemma 3.1 (cf. [5],[26, Proposition 3.1]). There exists a I1-form y on Lag(M) whose
pull-back to the unitary frame bundle U(M) is equal to y.

We call 2y the universal Maslov 1-form and the induced 1-form g;(2¥) on L the Maslov
1-form of L. We also denote g, (2y) by u(L).

REmMARK 3.2. For M = R?" we have Lag(M) = R*" x U(n)/O(n). In this case it is well-
known that the Maslov 1-form u(L) is a closed 1-form and represents its Maslov index of a
Lagrangian submanifold L [40].

Now we relate the Maslov 1-form u(L) := g; (2y) with the mean curvature of a Lagrangian
submanifold L. We define a linear isomorphism L, : TM — T*M as follows.

(3.1) L,(V):=V]w.

Proposition 3.3. The Maslov 1-form u(L) is symplectic dual to the minus twice of the
mean curvature Hy of a Lagrangian submanifold L in a nearly Kdhler manifold (M, J, g),
that is,

—2L,(Hy) = p(L).

Proof. By Proposition 2.2(2) the 1-form ) ; T{l_ﬁk vanishes, where 7 is the torsion of the
connection form @. Using [26, Lemmas 2.1, 3.1 and (3.6)], we obtain for any normal vector
XtoL

(3.2) (=HL, X) = (u(L)/2,JX).

Since w(—-Hy, JX) = (—Hy, X), we derive Proposition 3.3 immediately from (3.2). O

Since the curvature dy form of the connection form 7 is the first Chern form of a nearly
Kéhler manifold we obtain immediately

Corollary 3.4. Assume that a Lagrangian submanifold L in a nearly Kdhler manifold
(M, J, g) is minimal. Then the restriction of the first Chern form to L vanishes.

In the remainder of this section we assume that L is a Lagrangian submanifold in a strict
nearly Kihler manifold (M, J, g). We also need to fix some notations. Recall the definition
of the V°“"-parallel complex volume form ® = 6' A 68? A 63 of (2.4), and recall that

Re® = (31) 'dw, Im® = -2"'T*.

Lemma 3.5. Let ¢ be a simple 3-vector in R® = C* and w the standard compatible
symplectic form on RS. Then

(1) ([18, Chapter III Theorem 1.7]) |®(¢)]> = Re ®(¢£)? + Im D(&)>.
(2) ([18, Chapter Il (L.17)]) [P + T2, 16 A w(@) = |1

We choose the canonical orientation (2.6) on L, i.e., Im®|, = —vol;. For x € L let &(x)
denote the unit simple 3-vector associated with 7.L. By [26, Lemma 2.1], [27, Lemma 1.1]
for any V € NL we obtain
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3.3) (—=H.,V)=(V]d £ Im D)().

(In [26] Lé showed that the formula (3.3) is equivalent to the formula (3.2).) Using (2.8),
we obtain immediately that H; = 0.

Corollary 3.6. Any Lagrangian submanifold L in a strict nearly Kdihler 6-manifold
(M, J, g) is orientable and minimal. Hence its Maslov I-form vanishes.

Remark 3.7. The relation between the Maslov class and the minimality of Lagrangian
submanifolds has been found for Lagrangian submanifolds in various classes of Hermitian
manifolds [40], [29], [26]. Corollary 3.4 extends a previous result by Bryant [5, Proposition
1] and partially extends a result by L& in [26, Corollary 3.1]. The minimality of Lagrangian
submanifolds in a strict nearly Kédhler 6-manifolds has been proved by Schifer and Smoczyk
by studying the second fundamental form of L in M [52, §4], extending a previous result
by Ejiri [13] for M = S°. The minimality of a Lagrangian submanifold L in a strict nearly
Kédhler manifold M can be also obtained from the minimality of the coassociative cone
CLcCCM.

3.2. Second variation of the volume of Lagrangian submanifolds. The second vari-
ation of the volume of a minimal submanifold N in a Riemannian manifold M has been
expressed by Simons [51] in terms of an elliptic second order operator (N, M) that depends
on the second fundamental form of N and the Riemannian curvature on M, see also [28],
[45]. If L is a Lagrangian submanifold in a strict nearly Kidhler manifold M, we shall derive
a simple formula for /(L, M) that depends entirely on the intrinsic geometry of L supplied
with the induced Riemannian metric.

Theorem 3.8. Assume that (M, J, g) is a strict nearly Kdhler manifold of constant type A.
Let V be a normal vector field with compact support on a Lagrangian submanifold L C M.
Then the second variation of the volume of L with the variation field V is given by

2
(3.4) %h:OUOl(Lt) = f<d(Lw(V)) =345 Ly(V), d(Ly(V)) + A% Ly(V))
L

+ [z
L
Proof. Let ¢, : L — M be a variation of L generated by the vector field V. Set

&1(x) := (90)-(E(X)).

We observe that, to compute the second variation of the volume of L, using Lemma 3.5 and
the minimality of L, it suffices to compute the second variation of the integral over L of
T2 16 A w@)P, (Re @(£))? and (Im d(£))>. By the observation that for all x € L

d
(3.5 lEo(0)l = 1, Z7=ol& @) =0

we obtain

2

3.6 & [ L)) = d dvol
(3.6) S leowol(L) = fL Sl ol dvol,
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1 d?
= f ol dvol..
L

Lemma 3.9. For any x € L we have

R
Sli=0 ;((9 A ), &(x))? = 2|dL,(V) = 32 % L, (V) (x).

Proof. Since w|; = 0 we have for all i

d2 i 2 d i 2
(3.7 =018 A @I = 207 l=o (0" A w(E)].

By Lemma 2.6, taking into account the rescaling factor 4, see also [52, Theorem 8.1], we
have

d .
(3-8) 7717081 (W)(X) = d(Lo(V))(x) = 3(4# Lo (V)(X)-

Since the RHS of (3.8) is a 2-form on L, there exists an orthonormal basis f!, f2, f3 of T:L
and a number ¢ € R such that

d(Ly(V)(x) = 3(A % Ly(V)(x) = - f1 A f.
Using w|;, = 0 and the expression of the RHS of (3.8) in this basis, we obtain of (3.8)

d \ % pi 1, 2 0 73
(3.9) Elzzo;@@/\w)—c-f AFEA SR
Using again w|; = 0, we obtain Lemma 3.9 immediately from (3.7) and (3.9). m|

Lemma 3.10. For all x € L we have

d2
Tl=o(Re D(&,(x)?) = 2Id * Ly, (V) (x).

Proof. By Lemma 2.6 we have
d
(3.10) d—ilzzo(Re O(&i(x) = (d * Lo,(V))(x).

Since Re ®(£(x)) = 0, we obtain Lemma 3.10 from (3.10) immediately. ]

Lemma 3.11. We have

2
%Itzo flm D(£,)* dvol, = 81 f{*Lw(V), d(Ly,(V)) =34 % L,(V))dvol,.
L L

Proof. Since (V|Im ®)|; = 0, (see e.g. [26, Proposition 2.2.(ii)], [27, Proposition 1.2.ii],
which is also now called the first cousin principle), using the Cartan formula we have

d
(3.11) 7 r=0(Im @(x), £,(20)) = (V]dIm @, £(x)),

forall x € L.
By (3.3) the RHS of (3.11) vanishes. Since Im ®(&(x)) = —1 for all x € L, we obtain
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d2
(3.12) Iz o(Im D((x))*) = —2 Iz o(Im O(&(x)).

It follows that
2

ﬁhz
Using the Cartan formula, we derive of (3.13)

(3.13) 0 f Im ®(&(x))° d vol, = 2—|, ) f (¢;Im ®), &) d vol..
L

2
dr?
Since Ly (d(V]Im ®@)) = d(Ly(V |Im ®)), we obtain of (3.14), taking into account that dIm ®
=2lwAw

(3.14) |+=0 fIm D(£,(x))* dvol,, = —2f£v((VJdIm D) + d(V]Im D)).
L L

2

Gl [ M@0 duot, =41 [ Luviw o).
dt L L

Taking into account V](w A w) = 2(V|w) A w and w|;, = 0 we obtain of (3.15)

(3.15)

d2
(3.16) Wl,zo fIm O(&(x)) dvol, = 84 f(VJw) A Ly(w).
L L
Since (V]w) = L, (V) and Ly(w) = dL,(V)—31%L,(V), we obtain Lemma 3.11 immediately
from (3.16). ]

Now let us complete the proof of Theorem 3.8. By Lemma 3.5 and equation (3.6), we
obtain

2 > 3
17 245l ) = [ Tl D0 N dvol
+ fd—2| (Re @, &) dvol, + fd—2| (Im ®, &) d vol
Ldt2 t=0 s Gt X Ldtz t=0 s Gt X
Theorem 3.8 now follows from (3.17) and Lemmas 3.9, 3.10, 3.11. ]

Corollary 3.12. Assume that L is a compact Lagrangian submanifold in a strict nearly
Kidhler manifold (M, J,g) and H'(L,R) # 0. Let 8 be a non-zero harmonic 1-form on L.
Then the variation generated by L, (B) decreases the volume of L.

Remark 3.13. There are many known examples of Lagrangian submanifolds L in the
manifold S¢ supplied with the standard nearly Kihler structure induced from R7 = Im O
such that dim H'(L) is arbitrary large. For instance, L is obtained by composing the Hopf
lifting of a holomorphic curve X, of genus ¢ in the projective plane CP? to S with a geodesic
embedding S — §9 [10, Theorem 1], see also [33, Example 6.11].

Remark 3.14. In [48] Palmer derived a simple formula for the second variation of La-
grangian submanifolds in the standard nearly Kihler 6-sphere by simplifying the classical
second variation formula with help of (relative) calibrations.

REmARK 3.15. Letting A go to zero, we obtain the formula for the second variation of the
volume of a special Lagrangian submanifold L in a Calabi-Yau manifold M with a variation
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field V which is normal to L:

dZ
(3.18) Salmolt) = [la,vip+ [ @
1 L L

Formula (3.18) has been obtained by McLean in [36, Theorem 3.13] for special Lagrangian
submanifolds in Calabi-Yau manifolds of dimension 2n as a consequence of his formula for
the second variation of the volume of calibrated submanifolds, using moving frame method.
Note that our proof of Theorem 3.8 can be easily adapted to give (3.18) for special La-
grangian submanifolds " ¢ M?". Here we use the full version of Lemma 3.5 given in
[18, Chapter III, Theorem 1.7, (1.17)]. The first summand in RHS of (3.18) is the second
variation of the term (|¢]> — ®(£)?)/2. The second summand in the RHS of (3.18) is the
second variation of the term (Re ®(¢))?/2. By [26, (4.11)], the second variation of the term
Re ®(¢) vanishes, if M?" is a Calabi-Yau manifold. This proves (3.18) for any dimension .
Note that (3.18) also follows from Oh’s second variation formula for Lagrangian minimal
submanifolds in K#hler manifolds [44, Theorem 3.5].

RemMark 3.16. Using the strategy of the proof of Theorem 3.8, we can have a (new simple
proof of a) formula for the second variation of the volume of ¢-calibrated submanifolds
N" in a manifold M™ provided with a relative calibration ¢ such that a generalized version
of Lemma 3.5 is valid, that expresses I€]> as a sum |p(&)* + Zle [Re ®(&)*. Generalized
versions of Lemma 3.5 have been found for Kihler 2 p-vectors, coassociative 4-vectors, ect.
in [18].

4. Deformations of Lagrangian submanifolds in strict nearly Kihler 6-manifolds

In this section we consider the moduli space of closed Lagrangian submanifolds L = L3 ¢
M = M° of a strict nearly-Kihler 6-manifold. As the dimensions are fixed throughout this
section, we again omit the superscripts. We shall show that any C'-small Lagrangian defor-
mation of L in M is a solution of an elliptic first order PDE of Fredholm index O (Proposi-
tions 4.4, 4.6). Furthermore, a closed Lagrangian submanifold L is analytic and any smooth
deformation of L is analytic. Moreover, the moduli space of smooth Lagrangian deforma-
tions of L locally is a finite dimensional analytic variety, hence any formally unobstructed
infinitesimal deformation is smoothly unobstructed (Theorem 4.9, Corollary 4.12).

Our notation on forms will be as follows. By Q*(L) we denote smooth differential forms
on L. If we wish to specify the degree of regularity, we write Q, (L) for the space of ck-
regular forms.

4.1. Deformations of Lagrangian submanifolds. Let L be a submanifold in a Riemann-
ian manifold (M, g). Then the normal exponential mapping Exp; : NL — M identifies a
neighborhood of the 0-section in NL with a tubular neighborhood U(L) ¢ M of L. With
this, Exp; , which we shall also denote by Exp if no confusion arises, identifies C I_small
deformations of L with C'-small section s : L — NL.

Now assume that (M, J, g) is a Hermitian manifold and w is the associated fundamental
2-form. If L ¢ M is a Lagrangian submanifold, then the isomorphism L, of (3.1) identifies a
covector in T*L (resp. a 1-form a € Q! (L)) with a vector in NL (resp. a section s, € [(NL)).
Since we are interested in Lagrangian deformations of L ¢ M, we therefore consider the map
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4.1) F: QL (L) — QZ(L), a — (Exp(sq)) (w).

Evidently, F(0) = 0 as L is Lagrangian, and the space of C'-small Lagrangian deformations
of L can be identified with a neighborhood of 0 € F~1(0).
Now we shall compute the linearization of F' at @ = 0.

Proposition 4.1. Let (;,)re(-e,) be a C Lregular variation of ay = 0 € Q' (L), i.e. such
that the map

(—&,&) X L— T"L, (r,x) — a,(x) e T{L

is C', and let &o(x) = 0,(a(x))|,=0 be the pointwise derivative. Then

d
—|  F(a,) =day -3 * ao,
dr r=0

whence
4.2) OFo(B) =dB -3 =
forall B € Q,(L).
Proof. We define the C'-map
D:(-g,&) XL — M, (r,x) > Exp(sq,)x =1 Dr(x).

Note that Dy = Idy and dD(0,)jo;x. = Sa,- Also, if we let @, denote the flow of 9, on
(—¢,€) X L, then D,,; = ®,D,, whence by definition,
d
—| Fle)
dr r=0 dr r=0 (0}
(£, D"())] gy, = @,1D*(dw) + d(@, ID" (@)l o}

Diy(s4, ldw) + d(D(S4,lw)) = Sg, ldw + ddvg.

d

(Dr(D*(w)))

r=0

Here, we used Cartan’s formula for the Lie derivative as well as the fact that by (3.1),
SaoJw = @p. Now the formula follows since s4,]dw = =3 * ¢ by (2.7). |

Recall that the Laplace operator on forms is defined as A = (d + d*)?, where d oy =
(=1)* % dx is the adjoint of d. Proposition 4.1 yields immediately the following Corollary
4.2, which has been obtained by Schifer-Smoczyk by a different method.

Corollary 4.2 (cf. [52, Theorem 8.1]). Let (L,)re(-cs) be a C'-regular family of La-
grangian submanifolds of M, such that Ly = L and L, = Exp(s,,) for a family (@,)re(-¢¢) in
Q(L). Then the derivative B := &g = 0,a,|,—0 is a solution of

(4.3) *df — 36 =0.
In particular, d*B = 0 and AB = 9p.
We call the map dF|o(8) of (4.2) the linearization of the equation F = 0 at 0. We set
QYL) = (e e QL) A(@) = a-a).

All eigenvalues a are nonnegative and the eigenspaces Q! (L) are finite dimensional, as A
is an elliptic differential operator [49].
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Lemma 4.3. The map =d : Q' (L) — Q!(L) is selfadjoint, and its kernel is dC*(L) ® Q(l).
Moreover, for each a > 0 we have the L?-orthogonal decomposition

QL) Nkerd" = K z(L) @ K_ (L),
where K (L) is the (++/a)-eigenspace of *d.

Proof. The Hodge-* operator is self adjoint satisfying *> = 1, whereas for the adjoint of
d we have

d*|Q](L) = —k d*, d*|QZ(L) = xd * .
Thus, for the restriction of *d to Q'(L) we obtain
(+d)" = d*x = *d** = *d.

Moreover, since *d = d*, it follows that the image of *d equals the image of d* : Q*(L) —
Q'(L), so that the kernel of #d is the orthogonal complement of this image, which by Hodge
decomposition equals dC*(L) ® Q(l) as claimed.

Since *d commutes with 4, it follows that *d preserves Q! and hence, Q(L) Nker d*. We
have (#d)? = d*d = A on kerd"*, and (*d)> = a Id on Q(II(L) N ker d*. Hence these subspaces
can be decomposed into K,; @ K_,; as claimed. |

It follows from (4.2) that

“4.4) T; :=kerdF|y = K3(L).

The equation F(a) = 0 with F of (4.1) is overdetermined. In fact, one of the technical
problems we wish to overcome is the fact that dF|y of (4.2) is not an elliptic operator, but
only the restriction of an elliptic first order operator to a subspace as we shall show now.

For this purpose, we extend F by its prolongation dF and add another parameter. Namely,
we extend the map F to

4.5) F:o\(L)eCc™(L) — Q' (L)®C™(L)
1
(a, f) +— (* F(a) + df, 3 x dF(a) + 3f).

Proposition 4.4. A pair (a, f) is a solution of the equation F(«, f) = 0 if and only if a is
a solution of the equation F(a) = 0 and f = 0.

Proof. By definition (4.5), (, f) is a solution of F(a, f) = 0 iff
(4.6) Fla) = —=df and * dF(a) = -9f.
Substituting the first equation into the second implies

—9f =—xdx*df =d'df = rf,

and as A is nonnegative, this implies f = 0 and F(a) = —*df = 0. |

RemMark 4.5. From this proof, we can also conclude that

4.7 F(a,f)eT, © f=0and F(a) = %d « F(a).
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Here, we use the obvious inclusion 7} = T; & {0} ¢ Q'(L) ® C*(L).

It follows from (4.2) and (4.5) that the differential
0F00) : Q'(L) & C™(L) — Q' (L) ® C™(L)
has the following form
(4.8) OF100)/B, f) = (+dB =3B+ df,d"'B +3).
Proposition 4.6. dF l0,0) is a self adjoint elliptic first order differential operator, and
ker OF lo.o) =TL,
that is, (B, f) € ker 0F |0 iff *dB = 3B and f = 0.

Proof. The symbol of oF l0,0) coincides with that of (xd + d)lqi(z) + dlc~), and it is
straightforward to see that the square of the latter operator is Algi(ygc=). From this, the
ellipticity of dF | ) follows.

We have already seen in Lemma 4.3 that *d : Q!(M) — Q'(M) is self adjoint, whence so
is the map (B, f) — (xdB — 36,3f). Thus, we have to show that the map (8, f) — (df,d"B)
is self adjoint. But this is evident as d and d* are adjoint maps.

To compute the kernel, let (5, f) be such that «*dB — 36 + df = 0 and d"8 = -3 f. Then,
applying d* to the first equation and using the second, it follows that 0 = 9f + d*df =
9f + Af, and since A is nonnegative, this implies that f = 0. Thus, *d — 38 = 0, so that
pBeT, Ckerd". m|

Remark 4.7. Propositions 4.4, 4.6 imply that the expected dimension of the moduli space
of Lagrangian submanifolds is zero. On the other hand, most interesting examples of strict
nearly Kéhler manifolds possess a non-trivial symmetry group which acts on Lagrangian
submanifolds, so that in this case, the moduli space of these is of positive dimension, cf.
section 5 below.

Observe that the differential at the origin of the restriction £ : Q'(L) — Q'(L) ® C*(L)
is a Fredholm operator from Q'(L) to {(8, f) € Q' (L) ® C*(L) | d'B + 3f = 0}. This
can be shown by a direct calculation, or, more elegantly, as follows. Setting D; := doF
and Dy(B, f) := d"B + 3f, it easily follows that both D{D; and DD} + DD} are elliptic.
Then [41, Proposition 2.2] implies that D, is a Fredholm operator into the kernel of D,, and
ker Dy = ker D D;.

However, using Fredholm theory in this situation bears further technical difficulties, see
e.g. [34] for a related consideration. Thus, we shall mainly be concerned with the map
F defined on all of Q'(L) & C*(L) and exploit the analyticity of the strict nearly Kdhler
structure (J, g) on M in the subsequent sections.

4.2. Analyticity of Lagrangian deformations and its consequences. As we pointed
out in Proposition 2.8, a nearly-Kihler manifold (M, g, J, w) is real analytic. Since any La-
grangian submanifold L c (M, J, g) is a minimal submanifold in (M, g) [52, Theorem A], the
Morrey regularity theorem for vector solutions of class C! of a regular variational problem
[37], [38] (see also [39], [18, IV.2.B]) implies that L C M is a real analytic submanifold of
M. Thus, the normal exponential
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L,
Exp:T;L=N.L— M

is an analytic diffeomorphism onto a tubular neighborhood of L for sufficiently small & > 0,
where T;L and N.L denote the &-disc bundles in the cotangent bundle and the normal bundle
of L, respectively.

DeriniTION 4.8. Let L € M be a closed Lagrangian submanifold.

(1) Anelement a € T, is called smoothly unobstructed or smoothly integrable, if there
is a smooth Lagrangian deformation s(¢) : L — M such that s(0) = L and $(0) = «.
Otherwise, « is called smoothly obstructed.

(2) Anelement @ € T} is called formally unobstructed or formally integrable, if there
exists a sequence a; = @, @, - - - € Q!(L) such that the formal power series

(4.9) a, = Z a,t" € QD[]
n=1

satisfies
F(a;) =0 e Q*(L)[[]

as a formal power series in f.
(3) We call L regular if every a € Ty is formally unobstructed.

Clearly, if @ € T is smoothly unobstructed, then it is formally unobstructed. Indeed, if
s(t) is a smooth Lagrangian deformation with s(0) = L, then s(¢) = Exp(L,(a(?))) for some
curve a(f) € Q' (L) with @(0) = 0 such that F(e;) = 0. Let @, := Doy apt" € Q' (L)[[1]] be
the Taylor series of a(¢) at ¢t = 0. Then F(«a,) is the Taylor series at ¢t = O of the function
0 = F(a(?)) and hence vanishes.

The main purpose of this section is to show the converse: every formally unobstructed
element @ € T is smoothly unobstructed, and this condition is equivalent to the smooth
or formal unobstructedness of @ w.r.t. an analytic function 7 : U — T, with U C T
a neighborhood of the origin, i.e. of an analytic function in finitely many variables (cf.
Corollary 4.12 below). More precisely, we show the following

Theorem 4.9. The moduli space of closed Lagrangian submanifolds of a 6-dimensional
nearly-Kdhler manifold in the C'-topology locally is a finite dimensional analytic variety.

More concretely, for a closed Lagrangian L C M there is an open neighborhood U C T,
of the origin and a real analytic map v : U — Ty with 7(0) = 0 and 97|y = 0, as well as a
C®-map ® : LxX U — M such that L, := O(L X {a}) satisfies:

Ly = L, and any closed submanifold L' ¢ M C'-close to L is Lagrangian if and only if
L' = L, for some a € 7'(0).

In order to work towards the proof, we let @ := (Exp o L,)*(w) € Q*(T*L), so that
F(a) = a*(®). We associate to each & € Q'(L) the vector field &, on T*L which on each
fiber T',L is constant equal to @,

IfaeQ (L)isC k_regular, we define the C*-norms at p € L and on L as
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(4.10) lllcy = DL ID )N, llalicr = sup llalics,y,

l1l<k pek
where the sum is taken over all multi-indices / in a coordinate system of L which is orthog-
onal at p.

Lemma 4.10. There are constants A, K > 0 such that for each C*-regular a € Qlck(L),
k > 1, and each p € L we have

n

dr

IA

(4.11)

(F(ta))

=0

. (d(F(ta)))

nAK" |||
- e,

IA

d}‘l
4.12) H y nAK" e,

t= C=lip

In particular, at each p € L, the maps t — F(ta), € AZT;L and t = d(F(ta)), € A3T;L
are real analytic at t = 0, and all their derivatives w.r.t. t are C*"'-regular 2-forms and
3-forms on L, respectively.

Proof. Let us describe this situation in local coordinates. Namely, we let x = (x') be
analytic coordinates on L and let (x;y) = (x; ") be the corresponding bundle coordinates
on T*L — L. With this, we can write

& = fidx' Adx! + gidx' Ady" + hdy” A dy’,

where the coefficients are analytic functions.

After shrinking this coordinate neighborhood, we may assume that the coefficients of the
Riemannian metric g are uniformely bounded. Moreover, by [24, Proposition 2.2.10], there
exist positive constants A, K; satisfying the pointwise estimate

(4.13) IX"(¢)| < n!A;K7|X|"

for ¢ € {fij,gir hrs} and a vector field X = a"(x)d,, with arbitrary continuous coefficients
a’(x).

Leta € Qlck (L) be C*-regular, and suppose that ||a||co is sufficiently small, so that its graph
is given in these coordinates by y = &(x) for C¥-regular functions &(x) = (&"(x)),- 123. Thus,
in these coordinates

fa = &r(X)aiy,,

and for |f| small

F(ta) [ t@(x) dx' A dx? + tg,(x; ta(x)) dx' A d&'(x)

+12hyg(x; 10(x)) A& (x) A A& (x)

AT

0
(ﬁ R G(0) + 1910 (33 160) 5
Xl

AF A

+2 15 (x; 18())

) dx' A dx’.
Xli 0Xj]

Thus, for fixed x, the map ¢ — F(ta), yields an analytic curve in A2T*L. For the derivatives
w.r.t. 1 of the coefficient functions, note that for ¢ € {f;;, g, h,s} and m € N
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T| 9051000 = )" (D)0,
=0
whence
dn A n
o fijxsta(x)) = ()" (fij)x0
=0
| (gl a(0) = n(&)""(gir)x0)
=0
T (Phy(xt6(x)) = n(n — D(E)" () x0)-
r =0

Thus, for the derivatives we get

d" ] o 08"

(4.14) | Fao, = ((ax) (o + 1) e
401 = DE () - 2 Jax' n .

Ox; Oxj

Now (4.13) implies that

|(§a)m(¢)(x;0)| < m!AlKﬂa’xlm

for ¢ € {fi}, gir, hrs}. Furthermore, since the coeflicients of the metric are bounded, there is a
constant K, > 0 such that at every x and for all , r

‘ oa’

oxi
Since also ||dx’ A dx||cx., is uniformely bounded, and as |a,| < |l@||cx., for all k > 0, (4.11)
follows for all p € L parametrized by this coordinate system and for constants A, K de-
pending on these coordinates. As L is compact, it can be covered by finitely many such
neighborhoods, whence (4.11) follows for all p € L for uniform constants A, K > 0.
The estimate on the derivatives of d(F(ta)), = (ta)*(dw) follows analogously. ]

< Kollalcxiy-
Ck1:x

It follows from Lemma 4.10 that for each n € Ny, there are symmetric tensors
(4.15) W 1 O"QL (L) — QL(L),  ddy : O"QL (L) — QL (L),
satisfying

IK@n; )l < n!AK lledlee - and  [Kd@n; @)llci-r < n!AK"||al|cx

by (4.11) and (4.12), respectively, such that for all « € Qél(L) with |a,| < K~! with K > 0
of (4.11) we have the power series expansion

- 1 o 1
(4.16) Fla)= ) ~(@):a).  dF(@) =) —{(dd,):a).
n=1 n=1 "

In particular, ((d@,); @) = d{(&,); @). It is important to point out that for @ € Qlck(L) we
have d{(®,); @) € sz_l (L), even though it is the exterior differential of ((@,); @) € Q7 ,(L).
Fora € Q]C, (L) the flow of &, on T*L is given by the formula

L (B) = B + ta,
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whence
(@) (@) = Fl1),,
so that
d}’l
(4.17) ((@p); ) = o F(ta) = ((Lg,)"(@)).
t=0

Since the vector fields &, &g for a, B € Qlcl (L) commute, it follows that the symmetrization
of (@,), is given by

(4.18) (@) 1y an) = L, - L, (D).

Proof of Theorem 4.9. Observe that by (4.17) the description of {(@,; @) is given in (4.14) and
hence a first oder differential operator, and the same holds for the description of (d@,; @).
For a vector bundle £ — L we denote by Li(E) the Sobolev space of sections of E with
regularity (2; k). Thus, the maps @, and d@,, of (4.15) extend to a symmetric n-linear map
@n O"LAT*L) — LI (N’TL),
d@, : O"LAT*L) — LI (A’T’L),

By (4.11) we obtain the estimates

A

||<(D”;a>||Li_l(/\2T*L) = n'AKn”a/”Li(T*L) and

IA

||<da”;a>||Lﬁ,l(A3T*L) n!AKn”a’”Li(T*L)-

1
. 2 - -1 i © e 1
In particular, for @ € L; with [|a|| < K=, the power series ), n—(wn,a/) converges in

!
L? (A°T*L), thus defining the maps
1
Fi:Bg-1(0) — L2 (A’T"L), @ = N (@)
n!

1
dFy: Bg1(0) — L (A’T*L), a — Yl —{dy; )
n.

where Bg-1(0) C Li(T*L) is the ball centered at 0. Clearly, Fy and dF} are analytic maps
between Banach spaces in the sense of Definition 6.1, and moreover, because of (4.16) and
(4.17), Fy and dFy extend the maps F : Qlck(L) — Qék,, (L) and dF : Qlck(L) - ng_l(L) of
before.
Thus, £ of (4.5) extends for all k > 1 to a map
Fr: Bg(0) — L2 (T'L®R)

1
(@ f) +— (*Fk(a/)+df,§*dFk(a)+3f)

which is analytic at (0,0) as F and dF} are analytic. Observe that dF «l(0,0) 1s the extension
of OF 0,00 which by Proposition 4.6 is self adjoint and elliptic. Thus, for all k > 1
ker(aﬁkko,o)) = COkeI‘(aﬁkko,o)) = TL.

Denote by m = 7y : L,%(T*L ®R) — T the orthogonal projection which is continuous as
T, is finite dimensional. Then
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(4.19) F,:=n—Fy: Bg1(0) — L_(T"L®R)

is again analytic at (0, 0), and its differential at (0, 0) is an isomorphism. Therefore, the
inverse function theorem for analytic maps of Banach spaces (Proposition 6.3) implies that
there is an analytic inverse of £ -

GkiUk—>Vk,

where Uy and Vj are open neighborhoods of the origin in L? (T*L & R) and L}(T*L ® R),
respectively.

Let U := Uy N Ty, which is an open neighborhood of the origin and independent of k as
T, C ﬂkZIL,%(T*L ® R), and define the map

(4.20) 7:U— Ty, (@) := 1(Gr(@)) — a.
Then 7 is again analytic, and clearly, 7(0) = 0. Moreover, for @ € T}, we have
dtlo(@) = n(3Gil.0(@) = @ = 7(OF }00) ™ (@) = a =0,

so that dt]y = 0.

Observe that for @ € U we have Gi(a) € QL. (L) for all k > 1, so that we may omit the
subscript k. Indeed, the smoothness of G(a) follows since U C T consists of smooth (in fact
analytic) forms; moreover, if G(a) = (@, f), then Fy(a, f) =aeT.. As Fia, f) = F(a, f)
by the smoothness of (@, f), (4.7) implies that f = 0 and for @ = G(«) we have

1
F(G(a)) = §d * F(G(a)).
Let us define the C*-map
O:LxU—M,  (p,a)— Expy(&w)

and let L, := ®O(L x {a}). Evidently, Ly = L as ®(p,0) = p. If L’ ¢ M is a closed
submanifold which is C!-close to L, then we may write L’ as the image of p + Exp,(&s)
for some 5 € Qlcl (L) c L%(T*L) with [|8]|c sufficiently small so that 5 € V. We remark that
L’ is Lagrangian if and only if F';(8) = 0. Let « be the image F () € U;. The condition
Fl(ﬁ) = 0 is equal that @ = n(B) by (4.19). Then a(= n(B)) is in U(= U; N T1). Hence
B = G(a) and 7(a) = 7(G(a)) — @ = 0, and it completes the proof. m]

Theorem 4.9 reduces our consideration of smooth deformations of Langrangian subman-
ifolds to the one in analytic category as follows. Namely, in analogy to Definition 4.8 we
define

DermniTion 4.11. Let L € M be a closed Lagrangian submanifold, and let 7 : U — T, be
the real analytic map from Theorem 4.9.

(1) An element « € Ty is called smoothly unobstructed or smoothly integrable w.r.t. T,
if there is a smooth curve a(¢) in T such that @(0) = 0 and &(0) = «, and such that
7(a(t)) = 0. Otherwise, « is called smoothly obstructed.

(2) Anelement a € T} is called formally unobstructed or formally integrable w.r.t. T, if
there exists a sequence | = @, @y, - - - € T such that the formal power series
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421 @ = Z ant" € R[] & Ty

n=1

satisfies
(o)) =0 € R[[7]] ®= T

as a formal power series in f.

Corollary 4.12. Let L C M be as above. Then for a € Ty the following are equivalent.

(1) a is smoothly obstructed.
(2) a is formally obstructed.
(3) a is smoothly obstructed w.r.t. T.
(4) «a is formally obstructed w.r.t. T.

In particular, L C M is regular iff T = 0.

Proof. According to Theorem 4.9, a smooth family s(#) of Lagrangian submanifolds with
s(0) = L and $(0) = a must be of the form s(r) = Ly for a smooth curve a(r) € T,
with a(0) = 0 and @(0) = « such that 7(a(¢)) = 0. That is, @ is smoothly obstructed iff
it is smoothly obstructed w.r.t. 7. Likewise, working on the level of formal power series,
it follows from Theorem 4.9 that « is formally obstructed iff it is formally obstructed w.r.t.
7. Butas 7 : U — T is an analytic function in finitely many variables, the equivalence of
smooth and formal obstruction of @ € T, follows immediately from Artin’s approximation
theorem [3, Theorem 1.2].

To show the last statement, let T = ), 7, be the analytic expansion of 7 with 7, :
O"Ty, — Tp. If T # 0, there exists a minimal number n > 2 such that 7,, # 0, so that there

is some @ € Ty such that 7§ := 7,(e,...,@) # 0. Let @, := )., @,t" be a formal power
series with @1 = a. Then 7(a;) = "% mod "*!, so that 7(a;) # 0. Hence, « is formally
obstructed.

Thus, if all @ € T are formally unobstructed, then 7 = 0. m|

Corollary 4.13. Each connected component of the moduli space of closed regular La-
grangian submanifolds of M, equipped with the C'-topology, is an analytic manifold whose
tangent space at each L may be canonically identified with T.

Proof. Let L ¢ M be a regular Lagrangian submanifold, so that the map 7 : U —
T} from Theorem 4.9 vanishes identically. Then the map @ : L X U induces an analytic
parametrization of all C'-close Lagrangian submanifolds of L, given by a +— L,. |

Let us now describe the analytic expansion of 7 : U — T from Theorem 4.9.

Proposition 4.14. For a € Ty, define ¢ € Q(L) for n € N recursively by

Y07

o= a
(4.22) . n! v 1 L\ > >
o = 322@((5@0’0)) G-t D)
r=2 |I|=n QL)

summing over all multi-indices I = (iy,...,1i,), setting |I| :==i; +...+i,and I :=i!---i,\.
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Then
(4.23) (@)= ) aE) = Y
n=2 n=2

with the orthogonal projection nt : Q'(L) — T;. In fact,

(4.24) =) Y %n(*@,;ﬁf, L)

Proof. For 8 € Q!(L) and any k > 1, the map ¢ — E «(#B) of (4.19) is real analytic at 7 = 0
with the expansion

(4.25) B i) =1 0F o)~ Y o v G = Ao
n=2 '

using the definition of F in (4.5) and the expansions in (4.16). Since 6E «l0,0) 1s invertible,
the map ¢ — Gy (t@) is also analytic at = 0. We expand Gy (fa) as

[e6]

" o 1"
(4.26) Gulta) = ) —lgniar...a) = ) —gi.
! L]

n=1
for n-multilinear maps g, : ©"T; — Q!(L) ® C*(L) which we decompose as
g =+ £y
By applying F to the equation (4.26), and using (4.25), g% must be solutions of the equa-

tion

R = 1 .
4.27) @ = t@EkI(O,O)(g‘f)+Z_;‘tn(aﬁﬁklo(g‘;)

S

n

1
> (3 —d)(w,;%?,...,%;p).
o ril! !

W | =

Comparing the #"-coefficient and using that oF 0,0 18 the identity on 77, we obtain the
equation g{ = a, so that 7§ = a and f{* = 0, and

g2 = ’%‘ > % (0F100)  * B - dXws 5. 8.

r=2 |l|=n

Hence, 7 of (4.22) is the Q!(L)-component of ge.
Now by (4.20), the series expansion of 7 is

t(ta) = 7(Gelta)) — tar = ) "'mlg) — = ) I"7(2),

n=1 n=2
using that g = a. This shows (4.23), and (4.24) follows as x is the projection onto the
. . -1
(+1)-eigenspace of F',|o,0) by definition, so that & (E k|(0,0)) = . O



LAGRANGIAN SUBMANIFOLDS IN NEARLY KAHLER MANIFOLDS 623

DEriniTiON 4.15. Let L € M be a closed Lagrangian submanifold. The Kuranishi map of
L is the symmetric bilinear map

K:T xT, — Q(L), K@) = (wyar,m) = Le, Lo, (w).
Thus, by (4.24) we have
) =1+ K(a, ),
whence the we obtain the following result.

Proposition 4.16. Assume that L C M is a Lagrangian submanifold, and let « € T;. If «
is smoothly unobstructed, then m + K(a, @) =0, i.e.,

fK(a,oz)/\,B=O forallBeTy.
L

Proof. If @ € T is smoothly unobstructed, then by Theorem 4.9 there is a curve a(¢) in
T with a(0) = 0 and @(0) = a such that 7(a(?)) = 0. As dt|y = 0, we have

d2
0= P T(a(t) = 212(@, @)|i=0 = 275 = 21 * K(a, @).
=0
From this, the claim follows. m]

Evidently, with increasing n, the the n-th order formal obstructions of an element @ € T,
become increasingly involved.

5. Examples

In this section we wish to apply our results to Lagrangian submanifolds of the standard
nearly Kihler sphere (S 6, Jo, go) and put our work into the context of the deformation results
in [34].

Let O denote the octonions, which is the unique 8-dimensional normed division algebra.
It may be orthogonally decomposed into O = R-1®Im O, and there is a vector cross product
x on Im O, defined as the imaginary part of the octonion multiplication, i.e.

1
xxyzz(x-y—y-x) for all x,y € Im O,

where (.; .) denotes the scalar product on O. Then the automorphism group G, of O preserves
the inner product and acts on the 7-dimensional space Im O, and it clearly preserves the cross
product X on Im O. Furthermore, we define the 3-form ¢ on Im O by

o(x,y,2) == {(x X Yy;2),

so that ¢ is invariant under the action of G»; indeed, G, can also be described as the group
of automorphisms on Im O preserving ¢.

Let S ¢ ImO denote the unit sphere with the round metric g, induced by the inner
product {.;.) on ImQ. Then there is an orthogonal almost complex structure Jo on S°,
defined as

Jolp(u) := pxXu
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for pe S%and u € T, 6 ¢ Im Q. Since the cone metric over S° is the flat metric on Im Q
which is clearly a (flat) G,-manifold, the result of Bér [4, §7] already mentioned in section
2.2 implies that (S°, go, Jo) is a strict nearly-Kéhler manifold. It follows that the action of
G, on S® ¢ Im O preserves the nearly-Kihler structure and is in fact the invariance group
of this structure. Moreover, this action of G, on S° is transitive, with stabilizer SU(3) ¢ G»,
whence we may write the sphere as a homogeneous space

6 =G,/SUQ).

We call a Lagrangian submanifold L c S° linearly full, if it is not contained in a totally
geodesic sphere S° < S°®. For instance (cf. [33, Example 6.11.]), if ¥ ¢ CP? is a holo-
morphic curve, then the inverse image of X under the Hopf fibration S° — CP? yields a
Lagrangian submanifold Ly ¢ §3 < S® which is not linearly full. In fact, any Lagrangian
submanifold L ¢ S which is not linearly full is of this type [33, Theorem 1.1].

In [35], Mashimo gave a complete classification of homogeneous Lagrangian sumbman-
ifolds L c S°, i.e., L is the orbit of some subgroup H C G,. Indeed, there are, up to
G;-equivalence, five inequivalent Lagrangian submanifolds; the description of the induced
metric is given in [8].

(1) The totally geodesic Lagrangian sphere Ly := S®  S°, given as the intersection of
S with a coassociative subspace V* c 0, i.e., such that ¢|y = 0.
(2) The “squashed sphere”

Ly := {gqiq + §QG i qe€ Sp(l)},
on the decomposition O = H & He for some unit octonion € € H*. Clearly, L;
is again a sphere, and the metric induced by this embedding is a Berger metric,
invariant under U(2) C G,. That is, every oriented isometry of L; extends to S°.

(3) The space L, := Ly with the notation from above, where ¥ c CP? is the quadric

2,2, .2
U+ +z3=0.

Then L, c S>(1) c S%(1) is not linearly full and diffeomorphic to RP?. In fact, it is
acted on simply transitively by the subgroup SO(3) c SU(3) C G,, where SU(3) is
the stabilizer of (S°)*. The induced metric on L, is again a Berger metric, but the
only oriented isometries which extend to S are the elements of SO(3).

(4) There is a (unique) subgroup SO(3) C G, which acts irreducibly on Im O, thus
identifying Im O with H>(R?), the space of harmonic cubic polynomials in the three
variables x, y, z, as an SO(3)-module.

If p € H3(R?) is completely reducible, then — up to a multiple — it is contained in
the SO(3)-orbit of one of the two non-equivalent polynomials

p3(y,2) = x(x* =3y")  or  pa(x,y,2) = xyz,

and we let L, := SO(3)- ﬁ c S°for k = 3,4 be the SO(3)-orbit of these polynomials.
Then Lz = SO(3)/D5 and Ly = SO(3)/A4, where D3 and A4 denote the dihedral and
the tetrahedral group, respectively.

The induced metric on L3 is a Berger metric, whereas the induced metric on Ly is
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a metric of constant curvature.

Observe that among the homogeous examples given above, the two Lagrangian subspaces
Ly and L, are not full. Indeed, Ly and L, coincide with Ly, where T c CP? is the degree 1
curve z; = 0 or the degree 2 curve Z% + Z% + Z% = 0, respectively.

The action of G, on S ° is transitive on totally geodesic Lagrangian 3-spheres, whence the
moduli space of deformations of Ly contains its orbit under G, which is G,/SO(4) and hence
10-dimensional. On the other hand, in [34], Lotay calculated that the formal tangent space
Ty, is 10-dimensional, whence for each element of 7}, there is a local deformation. From
this, it follows immediately that Ly c S is regular, and the moduli space of its deformation
is the manifold G,/SO(4).

For d = 2, the sets of smooth conics in CP? is the homogeneous space SL(3,C)/SO(3,C),
whence the moduli space of the Hopf lifts of curves of degree d = 2 is given as

M= = Gy Xspu3) SL(3,C)/SO(3, C).

In particular, M -, is a manifold of dimension 16, and the moduli space of deformations
of the smooth conic L, ¢ S° must contain My—,. On the other hand, according to [34],
the formal tangent space 7, is 16-dimensional, whence for each element of 7, there is a
local deformation, namely the corresponding curve in M -,. From this, it follows again that
L, c S%is regular, and the moduli space of local deformation is M =5.

The Lagrangian L; c S° is full, and stabilized by the action of the subgroup U(2) C G,
stabilizing the decomposition Im O = Im H@H. Thus, the space of its deformations contains
its orbit under the G;-action which is G,/U(2) and hence 10-dimensional. Again, Ty, is 10-
dimensional by [34], whence as in the preceding cases, L, is regular with local deformation
space G>/U(2).

For the remaining two homogeneous Lagrangian submanifolds Lz, Ly C S°, the dimen-
sion of T, has also been calculated in [34], but in these two cases, it is not evident from the
description if these are regular submanifolds nor what the local deformation spaces would
look like. We summarize our discussion in the following table.

Table. Properties of homogeneous Lagrangian subspaces of S°.

‘ ‘ dim 77, ’ L; regular? deformation space of L;
i=0 8 yes My = G,/SO4)
i=1 10 yes G,/U2)
i=2 16 yes M=> = Gy Xsp3) SL(3,C)/SO(3, C)
i=3 41 ?
i=4 22 ?

REMARK 5.1. (1) The rigidity of the Lagrangian sphere S3(1) also follows from the
Simons rigidity theorem which states that each geodesic sphere in S” is rigid as
minimal submanifold up to the motion of the isometry group SO(n+1) [51, Theorem
5.2.3].
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(2) The term rigidity we use here is equivalent to the notion of rigidity in [34, Definition
4.12, p. 28]. Our notation of regularity corresponds to Lotay’s notion of Jacobi
integrability [34, Definition 3.18, p.18]. Lotay’s notion of stability corresponds to a
special case of our notion of regularity [34, Definition 4.12, p. 27-28].

6. Appendix. Real analytic Banach manifolds and implicit function theorem

In this Appendix we recall the notion of a real analytic Banach manifold, following Eells
[12], see also [11, §2], and the analytic inverse function theorem, following Douady [11,
§6]. Then we prove a simple criterion for a smooth mapping to be analytic (Lemma 6.2).
We also derive the analytic implicit function theorem (Proposition 6.4) from the analytic
inverse function theorem. We always work over the field R of real numbers, if not specified
otherwise.

Let E and F be real Banach spaces, and U an open subset of E. Denote by L(E, F) the
vector space of all continuous linear maps u : E — F. Letusrecall thatamap¢ : U — F
is called Fréchet differentiable at xy € U if there is an element ® € L(E, F) such that

T l¢(x0 +v) — ¢(x) — P)IF
im

=0.
v—0 IUIE

In this case ®(v) is unique and also denoted by ¢.(x,v) or d¢(x;v). We regard d¢ as a
mapping from U to L(E, F).

Denote by SL"(E, F) the class of continuous symmetric r-linear maps E X, jipes XE — F.
Inductively, ¢ is of class C", if d"¢ : U — SL'(E, F) is continuous.

DermniTion 6.1. Let E and F be two Banach spaces and U an open subset in E. A smooth
map h : U — F is called analytic at a point a € U, if there exists r > 0 such that for all
|x| < r we have (a + x) € U and

(o8]

k oy e
6.1) h(a+x)=zw.
k=0 .

To recognize analytic maps among smooth maps we use the following Lemma.

Lemma 6.2. Let U be an open subset of a Banach space E. A smooth mapping f from
U to a Banach space F is analytic at a point x € U iff there exists a positive number r
depending on x such that the following holds. For any affine line [ through x the restriction
of f to lN U is analytic at x with radius of convergence at least r.

Proof. The “only if” assertion of Lemma 6.2 is straightforward. Now let us prove the
“if”” assertion of Lemma 6.2. Since we do not assume any condition on f, w.l.o.g. we can
assume that x = 0 € E. By the assumption the sphere S(r) of radius r and with center at
x =0liesin U. Let s € S(r). Set g(¢) := f(ts). By the assumption g(¢) is analytic at O with
the convergence radius at least r. Since

d
d—f =df(ts;s)

and hence
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d'g
dr’

we have the Taylor expansion of g at zero is

=d"f(ts;s, - ,5)

d* 0, s, -, )i
k! '

(6.2) g(t) = fO) + )
k=0
Comparing (6.2) with (6.1), we obtain immediately Lemma 6.2. O

Having the notion of an analytic mapping between Banach vector spaces, it is straightfor-
ward to define the notion of an analytic Banach manifold. Now we formulate the analytic
inverse function theorem that has been proved in [11].

Proposition 6.3 ([11, Theorem 1]). Let X and Y be two analytic Banach manifolds and
[+ X = Y an analytic map. Assume thatb = f(a)and T,f : T,X — T,Y is an isomorphism.
Then f is a local isomorphism.

Now we combine the implicit function theorem for Banach spaces as formulated in [25,
Chapter I, Theorem 5.9] and the analytic inverse function theorem to prove the following.

Proposition 6.4. Let U,V be an open sets in Banach spaces E and F respectively, and let
f:UXV — G be an analytic mapping. Let (a,b) € U X V and assume that the restriction
of the differential Df at (a,b) to (0,F) Cc E X F to G is a topological isomorphism. Let
f(a,b) = 0. Then there exist a small neighborhood Uy of a in U and an analytic mapping
g : Uy = V such that

fx,9(0)) =0
for all x € U,.

Proof. The proof of Proposition 6.4 repeats the proof of the implicit function theorem
given in [25, p. 19]. It reduces to the analytic inverse function theorem 6.3 by considering
thenewmap ¢ : U XV — EXF, (x,y) — (x, f(x,y)), so we omit the detail of the proof.

O
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