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Abstract

For a linear algebraic group G over Q, we consider the period domains D classifying
G-mixed Hodge structures, and construct the extended period domains Dy. We
give an interpretation of higher Albanese manifolds by Hain and Zucker by using
the above D for some G, and extend them via Dy.
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1 Introduction

For a linear algebraic group G over Q, we consider the period domains D for G-
mixed Hodge structures. We construct the extended period domains Dy, the space
of nilpotent orbits. In this paper, we give an interpretation of higher Albanese
manifolds by Hain and Zucker by using the above D for some G, and extend them
via Dz.

In Section 2, we review a work on higher Albanese manifolds by Hain and
Zucker in [11]. In Section 3, we define D by modifying the definition of Shimura
variety over C by Deligne [4]. In Section 4, we introduce the extended period
domain Dy and state the main results 4.3.1, 4.3.3. In Section 5, we explain the
relation of this Dy with the theory for the usual period domains ([14]), and as
examples, the Mumford-Tate domains, and mixed Shimura varieties. In the case
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where D is the pure Mumford-Tate domain (cf. Green—Griffiths—Kerr’s book [8]),
Ds, essentially coincides with the one by Kerr—Pearlstein ([16]). In Section 6, we
study higher Albanese manifolds by Hain and Zucker by using the present D for
some G, and extend them via Dy.

‘We omit the details of constructions and proofs of the general theory in Section
4 in this paper, which are to be published elsewhere.

For the p-adic variant of this paper, Koshikawa and the first author are prepar-
ing [13].

2 Relation of the work [11] and the present article

In this section, we briefly review the work of Hain and Zucker on unipotent vari-
ations of mixed Hodge structure [11] with which we compare our present article.

2.1 The main theorem of [11]

Let X be a connected smooth algebraic variety over C and b € X, and let F be
a real field, the field of rational numbers, or the ring of integers. Then, [11] (1.6)
asserts that there is an equivalence of categories:

good unipotent variations of mixed mixed Hodge theoretic
Hodge structure on X with = | representations of Cmy(X,b)/J7 !,
unipotency < r, defined over F defined over F

where J is the augmentation ideal, i.e., the kernel of € : Cm(X,b) - C, vy — 1

(v € m(X,0)).
An outline of the proof is as follows.

2.1.1. The functor from the left-hand-side to the right-hand-side is given by taking
the monodromy representation on the fiber over the base point b.

2.1.2. The correspondence from the right-hand-side to the left-hand-side is given
by using higher Albanese manifold of X.

2.1.3. The rigidity of variations of mixed Hodge structure is shown under “good”
condition ([11], (1.5)) at the boundary of X. This rigidity ensures that 2.1.2 yields
the inverse functor of 2.1.1.

2.2 Iterated integration theory of Chen [3]
We review the result of Chen in [3].

2.2.1. Let I be the interval [0,1]. A loop on X with base point b is a C* map
~v: I — X withy(0) = v(1) =b. Let PX = P, X be the loop space on (X, b) which
is the topological space consisting of all loops on X with base point b endowed
with compact-open topology.

A local parameter system of PX is a pair (U, ¢) of an open set U of R™ and
amap ¢ : U —» PX such that ¢ : I x U —» X with ¢(¢t,u) := ¢(u)(t) is a C™



Extended Period Domains, Algebraic Groups, and Higher Albanese Manifolds 453

map. Here n is a non-negative integer. For an open set V of R™ and a C* map
f:V—=U, (V,po f) is also a local parameter system. For a non-negative integer
k, a k-differential form on PX is a collection w = (wy)¢ of a k-differential form
wg on U for a local parameter system (U, ¢) such that, for f: V — U as above,
ffwe = Weof.

2.2.2. Let r be a positive integer. Let &, = {(t1,...,tr) E R"T|0<¢t; < -+ <
tr < 1} be the r-simplex. Let m; : X™ — X be the j-th projection, 1 < j < r.
Let 7 : A, x PX — PX be the projection and let ¢ : A, x PX — X7 be the
map defined by ¢(t1,...,tr,7) = (y(t1),...,7(t:)). Let A¥(X) and A*¥(PX) be
k-th forms on X and on PX, respectively. For positive integers pi,...,pr, put
g =5_1(p; — 1). The iterated integral

I:APH(X) % - x AP (X) = AY(PX), (w1,...,wr) /wl-.-w,,

along pxX « "™ A, x PX —%  Xr, is defined as follows.
It is enough to define it on each local parameter system ¢ : U — PX with
U C R™. Let ¢; be the contraction of a differential form with 'a% and set o :=

Lip*miw;, 1 < j <r. Then o; is a (p; — 1)-th form on A, x U. Write

ar A ANay =: E Qiyonvig (B1y oy by UL, oo Up ) Uy A - A dug,.
1<i; S<ig<n

Define

/wl-uwr = Z (/ ail...ithl '--dtr)duil /\---/\duiq.
Ar

1<i <-<ig<n

2.2.3. The bar complex B®(X) is the subcomplex of the de Rham complex
A*(PX) on PX, which is determined by the de Rham complex A*(X) of X as
follows.

B9(X) is the subspace of A?(PX) generated by the images of

I: AP (X)x - - x AP7(X) —» AYPX), (w1,...,wr)H— /wl--~wr,

for all positive integers r and p;, ..., p, such that ¢ = Z§=1(pj -1).
For1<j<rlety; = Eizl(pk —1), and let v := 0. The exterior differential
d: BY(X) — B9t}(X) is described as

T

d/wl W = Z(_I)Vj—1+1 /wl .. 'wj—ldijj+1 cesWp

=1

r—1
+Z(—1)""+1/w1"'wj—1(wj AWjt1)wjtz - Wr.
j=1
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Length filtration (L,.B*®(X)), is an increasing filtration by subcomplexes of
B*(X), where L, B*(X) is generated by [w; - - - w; for differential forms wy, ..., w;
on X of positive degree over j < r.

Denote by B*(X)c etc. the C-valued iterated integrals etc. Hodge filtra-
tion (FPB*(X)c), is a decreasing filtration by subcomplexes of B*(X)c, where
FPB*(X)c is generated by [ws - - - w, for differential forms w;, € FP1A*(X)c,...,
wy € FPr A*(X)c of positive degree such that Ej p; > Dp.

2.2.4. An element of B%(X) is a function on the loop space PX:
BO(X)XPX—)R, (/wl"'wrvv)’_'/wl"’wr-
v

In this case, every w; is a 1-form on X and, by writing y*w; =: f;(t)dt, it is

described as
/wl...wT:/ fl(tl)"'f‘l‘(t’l‘)dtl”'dt‘l“
v 0<t1 < <tr<1

This induces
HY(B*(X)) x m(X,b) = R

and
H°(B*(X)) — Hom (Zm (X,b),R)
and also
L.H°(B*(X)) — Hom (Zm (X,b)/J"T}, R).

The theorem of Chen in [3] asserts that the last homomorphism is an isomor-
phism.

The filtrations on Crr; (X, b)/J™ 1, which are induced from the length filtration
and the Hodge filtration on the iterated integrals B*(X), form a mixed Hodge

structure called the r-th canonical variation of mired Hodge structure as b varies
over X ([11], (4.21)).

2.3 Higher Albanese manifolds in [11]

Put G := m1(X,b). Let R be a commutative ring with unity. Let € : RG — R be
the augmentation map. Let A : RG — RG'® RG be the coproduct A(g) :==g®g.
Let RG" := limRG/J"*! be the J-adic completion and J the closed ideal of RG"

generated by(_Jf Define
Gr:={he€ RG"|e(h) =1, A(h) = h@h} C 1+ J,
gr:={h e J|A(h) = 1&h + h&1}.

Let Gpr = Gr/(GrN (1+J™1)) and g, r := gr/(gr N J™+1) ([11], (2.13)). Let
F be the Hodge filtration on g, ¢ induced by the one on CG/J"+1. Let F OCA}'r,C be
the corresponding subgroup of G,,c. The higher Albanese manifold in [11] (5.15)
is defined by

A" (X) := Grz\ Gr.c/F°Grc.
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2.4 Inverse correspondence

We explain 2.1.2. An inverse correspondence is constructed as follows ([11],
(5.21)). Given a mixed Hodge theoretic representation V, i.e., a ring homomor-
phism Cm;(X,b)/J™"! — End(V) of mixed Hodge structures, we have a map
Alb"(X) — D(V), where D(V) is the classifying space of Hodge filtrations on
V. Composing the higher Albanese map X — Alb"(X) with the above map and
pulling back the universal variation of mixed Hodge structure on the classifying
space, we get a variation of mixed Hodge structure on X.

2.5 The aim of the present paper

In this paper, we have the following two contributions 2.5.1 and 2.5.2 to the work
of Hain and Zucker.

2.5.1. We give a description of the functor represented by the higher Albanese
manifold in terms of tensor functors (see Section 6.1). Here we give a rough sketch
of it (the precise and more general statement is given in Theorem 6.1.10).

Let ', be the image of m;(X,b) — Cm(X,b)/J"+. By [19] p.85, p.474, cf.
also [11] (2.17) (iii), if we define the subgroups I'" of m1(X,b) by I'® := m1(X,b)
and I'*1 := [r;(X,b),T?] for i > 0, then T, is the quotient group of (X, b)/I'"
such that the kernel of (X, b)/T™ — I, consists of all elements of m; (X, b)/I'" of
finite orders. Let Cx r, be the category of variations of Q-MHS H on X satisfying
the following conditions.

(i) For any w € Z, gr’/'H is a constant polarizable Hodge structure.

(ii) H is good at infinity in the sense of [11] (1.5).

(iii) The monodromy action of 71(X,b) on Hq(b) (which is unipotent under
(1)) factors through I';.

Then our result is roughly that for a complex analytic space S, there is a
functorial bijection between the set Mor(S, AIb"(X)) of morphisms and the set of
isomorphism classes of exact tensor functors Cx r, — MHS(S), where MHS(S)
denotes the category of analytic families of Q-MHS parametrized by S, which
sends hx to hg for any Q-MHS h (more precisely, see 6.1.9 (i)). Here objects of
MHS(S) need not satisfy Griffiths transversality, though objects of Cx r, should
satisfy it. hx (resp. hg) denotes the constant variation (resp. family) of Q-MHS
on X (resp. S) associated to h.

2.5.2. We construct toroidal partial compactifications of Alb"(X), and describe
the functors represented by them generalizing 2.5.1 to its log version. See Section
6.2 for details.

2.5.3. We will deduce these results 2.5.1 and 2.5.2 from the work of Hain and
Zucker and from our general theory of (extended) period domains for mixed Hodge
structures associated to algebraic groups, which we develop in Section 3 and Sec-
tion 4.
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3 The period domain D

Let G be a linear algebraic group over Q. Let GG, be the unipotent radical of G.
Let Rep(G) be the category of finite-dimensional linear representations of G over

Q.

3.1 G-mixed Hodge structures and period domain D

We define and consider the notion of G-mired Hodge structure (G-MHS for short).

3.1.1. As in [4], let Sc/r be the Weil restriction of the multiplicative group G,
from C to R. It represents the functor R — (C ®gr R)* for commutative rings R
over R. We have Sc/r(R) = C*, and Sc/g is understood as C* regarded as an
algebraic group over R.

Let w: Gy r — Sc/r be the homomorphism induced from the natural maps
R* — (C ®gr R)* for commutative rings R over R.

3.1.2. A linear representation of Sc/r over R is equivalent to a finite-dimensional
R-vector space V endowed with a decomposition

Vo:=CerV = V&
p,9€Z

such that for any p,q, V&® coincides with the complex conjugate of V&7 (that
is, the image of VE? under CQrV — C®rV ; 2®v — Z®v). For a linear
representation V' of Sc/gr, the corresponding decomposition is defined by

VE? = {v e V| [2]lv = 2Pz% for z € C*}.
Here [2] denotes z regarded as an element of Sc/r(R).

3.1.3. Let ho : Sc/r — (G/Gu)r be a homomorphism. Assume that the com-

posite G r — Sc /R — (G/Gy)r is Q-rational and central. Assume also that
for one (and hence any) lifting G, r — Gr of this composite, the adjoint action
of G r on Lie(Gy)r = R ®q Lie(Gy,) is of weight < —1.

Then, for any V € Rep(G), the action of G, on V via a lifting G, — G of
the above G,, — G/G,, defines a rational increasing filtration W on V called the
wetght filtration, which is independent of the lifting.

In the above situation, a G-mized Hodge structure (G-MHS, for short) is de-
fined as an exact ®-functor from Rep(G) to the category of Q-MHS keeping the
underlying vector spaces with the weight filtrations.

3.1.4. Let H be a G-MHS. By 3.1.2 and Tannaka duality ([7]), the Hodge decom-
positions of gr' of H(V') for V € Rep(G) give a homomorphism Sg/r — (G/Gu)r
such that the composite Gm,r — Sc/r — (G/Gu)r is Q-rational and central.
We call this homomorphism the homomorphism associated with H.

3.1.5. We define the period domain D associated to G and hg as the set of all iso-
morphism classes of G-MHS whose associated homomorphism Sc/r — (G/Gu)r
is (G/G,)(R)-conjugate to hg. This D is also called the period domain of type
G, ho).
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3.2 Complex analytic structure of D

We first give a real analytic understanding of D, and then consider the complex
analytic structure of it.
Fix a homomorphism kg : S¢/r — (G/Gu)r as in 3.1.3.

3.2.1. Let h: Sg/r — Gr be a homomorphism such that the composite G, r =5

Sc/r 2 Gr — (G/Gy)r coincides with hg ow. We define an R-subspace L(h) of
Lie(G)r = R ®q Lie(G) as the set of all § € Lie(G)r such that the (p, g)-Hodge
component of § with respect to the adjoint action of Sc/r via h (3.1.2) is 0 unless
p<0andq<O0.

3.2.2. For ¢ € L(h), we obtain a G-MHS H (h, d) as follows. For a linear represen-
tation V of G over Q, H(h,6)(V) is (V, W, F'), where W is the weight filtration on
V (3.1.3) and F' is the Hodge filtration on Vg = C ®q V defined in the following
way. Let Vg = Gap’ q VE'? be the Hodge decomposition defined by the action of
SC/R via h (312) Let

FP .= exp(if) ( @ Vg’q> :

p’'2p,9€Z

Proposition 3.2.3. The above construction (h,6) — H(h,d) gives a bijection
from the set of all (h,d8) as above onto the set of all isomorphism classes of G-
MHS.

Proof. By [2] and by Tannaka duality (cf. [7]). ]

3.2.4. Consider the action of the subgroup G(R)G(C) of G(C) on D defined by
changing Hodge filtrations.

Proposition 3.2.5. The action of G(R)G,(C) on D is transitive.
Proof. This follows from the definition of D in 3.1.5 and Proposition 3.2.3. O

3.2.6. Let C be the category of triples (V, W, F), where V is a finite-dimensional
Q-vector space, W is an increasing filtration on V (called the weight filtration),
and F is a decreasing filtration on V¢ (called Hodge filtration).

Let Y be the set of all isomorphism classes of exact ®-functors from Rep(G) to
the category C preserving the underlying vector spaces and the weight filtrations.

Then G(C) acts on Y by changing the Hodge filtration. We have D C Y and
D is stable in Y under the action of G(R)G,(C).

Let

D:=G(C)D CY.

Since the action of G(C) on D is transitive and the isotropy group of each point
of D is an algebraic subgroup of G(C), D has a natural structure of a complex
analytic manifold as a G(C)-homogeneous space.

Proposition 3.2.7. D is open in D.
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Proof. Let G, = G/G,. By considering the Hodge decomposition of Lie(G,)¢,
we can see the equality Lie(G,)c = Lie(G,)r + F°Lie(G,)c. Since Lie(G,)r N
FOLie(G,)c = 0 in Lie(G,)c, we have

dimg Lie(G,)c/F°Lie(G,)c = dimg Lie(G,)r,
and hence the proposition follows. O

Corollary 3.2.8. D is a complez analytic manifold.

3.3 Polarizability

For a linear algebraic group G, let G’ be the commutator algebraic subgroup.

3.3.1. Let hg : Sc/r — (G/Gu)r be as in 3.1.3. Let C be the image of 7 €
C* = Sc/r(R) by ho in (G/GL)(R). We say that hg is R-polarizable if {a €
(G/GL) (R) | Ca = aC?} is a maximal compact subgroup of (G/G,) (R).

3.3.2. A relationship with the usual R-polarizability is as follows ([5], 2.11). Let
ho be as in 3.1.3. Let H be a G-MHS such that the associated Sc/r — (G/Gu)r
is R-polarizable. Let V' € Rep(G). Then for each w € Z, there is an R-bilinear
form on gr’ (V)gr which is stable under (G/G,)" and which polarizes grl¥ H(V).

3.3.3. We will often consider a subgroup I' of G(Q) satisfying the following con-
dition.

There is a faithful V € Rep(G) and a Z-lattice L in V such that L is stable
under the action of I'.

Proposition 3.3.4. Let ho : Sc/r — (G/Gu)r be as in 3.1.3. Assume that
ho : Sc/r — (G/Gu)r is R-polarizable (3.3.1). Let I' be a subgroup of G(Q)
satisfying the condition in 3.3.3.
Then the following holds.
(1) The action of T' on D is proper, and the quotient space I'\ D is Hausdorff.
(2) If T is torsion-free and if yp = p with vy €' and some p € D, then v =1.
(3) If T is torsion-free, then the projection D — T'\ D is a local homeomor-
phism.

Proof. (1) By the assumption of R-polarizability, the action of T on D is proper.
By [14] Part III 4.2.4.1, the quotient space I \ D is Hausdorff.

(2) By the condition in 3.3.3, I' is discrete. (2) follows then from R-polarizability
and torsion-freeness of I'.

(3) Since I is discrete and D is Hausdorff, (2) implies (3) by [14] Part III
4.2.4.2. a

4 Space of nilpotent orbits Dy

We define the extended period domain Dy D D as the space of nilpotent orbits,
and state the main results. We fix G and hg as in 3.1.3. Assume that hg is
R-polarizable.
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4.1 Definition of Dy

4.1.1. A nilpotent cone is a subset ¢ of Lie(G)r satisfying the following (i)—(iii).
(i) o =R>oN1 + - -- + R>oN,, for some Ni,..., N, € Lie(G)r.
(ii) For any V € Rep(G), the image of o under the induced map Lie(G)r —
Endgr (V) consists of nilpotent operators.
(iii) [N,N'] =0 for any N,N' € o.

4.1.2. Let F € D and let o be a nilpotent cone. We say that the pair (o, F)
generates a nilpotent orbit if the following (1)-(iii) are satisfied.

(i) There is a faithful V € Rep(G) such that the action of o on Vg is admis-
sible with respect to W, i.e., there exist a family (M (7, W)), of finite increasing
filtrations M (7, W) on V given for each face T of o which satisfy the compatibility
conditions (1)—(4) in [14] Part III 1.2.2.

(ii) NFP C FP~! forany N € 0 and p € Z.

(iii) Let N1, ..., Nn be asin (i) in 4.1.1. Then exp(3_7_, 2z;N;)F € Dif z; € C
and Im(z;) >0 (1 <j<n).

A nilpotent orbit is a pair (0, Z) of a nilpotent cone o and an exp(o¢)-orbit Z
in D satisfying that for any F € Z, (o, F) generates a nilpotent orbit. Here oc
denotes the C-linear span of o in Lie(G)c.

4.1.3. A weak fan ¥ in Lie(G) is a nonempty set of sharp rational nilpotent cones
satisfying the conditions that it is closed under taking faces and that any 0,0’ € &
coincide if they have a common interior point and if there is an F' € D such that
both (o, F') and (¢’, F') generate nilpotent orbits.

For a weak fan X, let Ds be the set of all nilpotent orbits (o, Z) such that
o € ¥. Then D is naturally embedded in Dy, by F — ({0}, F).

Let I' be a subgroup of G(Q) satisfying the condition in 3.3.3. We say that X
and T are strongly compatible if X is stable under the adjoint action of I' and if
any o € ¥ is generated by elements whose exp in G(R) belong to I'. If this is the
case, I' naturally acts on Dy.

4.2 Log mixed Hodge structures

4.2.1. We work in the category B(log) of locally ringed spaces over C with fs
log structures satisfying a certain condition, which contains the category of fs log
analytic spaces over C ([14], Part III, 1.1). For an object S = (S, Os, M) of B(log),
there exists the associated ringed space S'°8 = (S'°8, O}S‘.’g ) and a proper surjective
morphism S'°¢ — S of ringed spaces ([14], Part III). We denote by LMH(S) the
category of log Q-mixed Hodge structures over S ([14], Part III, 1.3).

Let T be a subgroup of G(Q) satisfying the condition in 3.3.3. A G-LMH over
S with a T-level structure is a pair (H, u) of an exact ®-functor H : Rep(G) —
LMH(S) and a global section u of the quotient sheaf I'\ Z, where T is the following
sheaf on S'°¢. For an open set U of S'°8, Z(U) is the set of all isomorphisms

Hqlu 2 id of @-functors from Rep(G) to the category of local systems of Q-
modules over U preserving the weight filtrations.
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4.2.2. Let (G, hp) be as in 3.1.3, let T be a subgroup of G(Q) satisfying the
condition in 3.3.3 and let ¥ be a weak fan in Lie(G) which is strongly compatible
with . A G-LMH over S with a I'-level structure (H,p) is said to be of type
(ho, X) if the following (i) and (ii) are satisfied for any s € S and any t € s'°8,
Take a ®-isomorphism fi; : Hq: = id which belongs to p.

(i) There is a 0 € ¥ such that the logarithm of the action of the local mon-
odromy cone Hom ((Mgs/O%)s,N) C m1(s!°¢) on Hq, is contained, via fi, in
o C Lie(G)r.

(i) Let 0 € ¥ be the smallest cone satisfying (i). Let a : Og’,% — C be a
ring homomorphism which induces the evaluation Og, — C at s and consider the
element F : V — jiz(a(H(V))) of Y (3.2.6). Then this element belongs to D and
(0, F) generates a nilpotent orbit (4.1.2).

If (H,u) is of type (ho,X), we have a map S — TI'\ Dy, called the period
map associated to (H, u), which sends s € S to the class of the nilpotent orbit
(0,Z) € Dy obtained in the above (ii).

4.2.3. Let (G, ho,T',X) be as in 4.2.2. We endow I'\ Dy, with a topology, a sheaf
of rings O over C and a log structure M defined as follows. The topology is the
strongest topology for which the period map S — I'\ Dy is continuous for any
(S, H, ), where S is an object of B(log), H is a G-LMH on S, and p is a I'-level
structure which is of type (ho, X). For an open set U of I'\ Dg, O(U) (resp. M (U))
is the set of all C-valued functions f on U such that for any (S, H, 1) as above
with the period map ¢ : S — I'\ D, the pullback of f on U’ := ¢~*(U) belongs
to the image of Oy (resp. My) in the sheaf of C-valued functions on U’.

These structures of I\ Dy, are defined also by defining spaces E, (¢ € ¥) in a
similar way as [14] Part III. We get the same structures when we use only S = E,
for o € ¥ and the universal objects (H, 1) over E, in the above definitions of the
structures.

4.2.4. Let S be an object of B(log). Let S° be the underlying locally ringed space
over C of S with the trivial log structure.

By an MHS over S, we mean an LMH over S°.

Let (G,ho) be as in 3.1.3 and let T' be a subgroup of G(Q) satisfying the
condition in 3.3.3. By a G-MHS over S with I'-level structure, we mean a G-LMH
over S° with I'-level structure. By a G-MHS over S with I'-level structure of type
ho, we mean a G-LMH over S° with I-level structure of type (ho,X) where ¥ is
the fan consisting of the one cone {0}.

4.3 Main results

We state main results for moduli of G-log mixed Hodge structures in our general
theory.

Theorem 4.3.1. Let (G, ho,T',X) be as in 4.2.2. Assume that hg is R-polarizable.
Then

(1) T'\ Dy is Hausdorff.

(2) When T is neat, I'\ Dy, is a log manifold ([14], Part III, 1.1.5). In partic-
ular, T'\ Dy, belongs to B(log).
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Here we say that I' is neat if there is a faithful V' € Rep(G) such that for
any v € I', the subgroup of C* generated by all eigenvalues of v : Vo — Vi is
torsion-free.

4.3.2. The outline of the proof is as follows. As in [14], we can define various
spaces Dgr,(2), Dps, Eo etc., and have the theory of CKS map. Then, as in [14],
by using the CKS map, good properties of I\ Dx, are deduced from those of the
space of SL(2)-orbits Dg,(2), which reduce to the R-polarizable version of [14].
We remark that what were shown in [14] by using Q-polarizations still hold under
R-polarizations (3.3.2) .

Theorem 4.3.3. Let (G, ho,I',X) be as in Theorem 4.8.1. WhenT is neat, I'\ Dx
represents the contravariant functor from B(log) to (Set):
S {isom. class of G-LMH over S with a I'-level structure of type (ho,X)}.

The proof of 4.3.3 is similar to the proof of [14] Part III 2.6.6.

Concerning extensions of period maps to the boundary, we have:

Theorem 4.3.4. Let (G, hp) be as in 8.1.8. Assume that hg is R-polarizable. Let
S be a connected, log smooth, fs log analytic space, and let U be the open subspace
of S consisting of all points of S at which the log structure of S is trivial. Let T’
be a subgroup of G(Q) as in 3.3.3. Assume that I’ is neat.

Let (H,p) be a G-MHS over U with a I'-level structure of type ho (4.2.4). Let
¢ : U — T'\D be the associated period map. Assume that (H,u) extends to a
G-LMH over S with a I'-level structure (4.2.1). Then:

(1) For any point s € S, there ezist an open neighborhood V of s, a log modi-
fication V' of V' ([15], 8.6.12), a subgroup I of T', and a fan ¥ in Lie(G) which
is strongly compatible with I such that the period map p|luny lifts to a morphism
UNV —TI"\ D which extends uniquely to a morphism V' — I\ Dx. of log mani-
folds. Furthermore, we can take a commutative group I".

U > UnV cC 14

‘| | !

r'\D «—— I"\D c I'\Ds.

(2) Assume S\ U is a smooth divisor. Then we can take V =V’ = S and
I" =T. That is, we have a commutative diagram

U cC S
gl |
'\D c T\Ds.
(3) Assume that T is commutative. Then we can take IV =T.

(4) Assume that T’ is commutative and that the following condition (i) is satis-

fed.
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(i) There is a finite family (S;)1<j<n of connected locally closed analytic sub-
spaces of S such that S = U;;l S; as a set and such that, for each j, the inverse

image of the sheaf Mg/OZF on S; is locally constant.
Then we can take IV =T and V = S.

Note that in (1), we can take a fan ¥ (we do not need a weak fan).

This is the G-mixed Hodge version of [14] Part III Theorem 7.5.1 in mixed case
and of [15] Theorem 4.3.1 in pure case. The proof goes exactly in the same way
as in the pure case treated in [15].

5 Basic examples

We discuss basic examples of D to which our theory can be applied so that we can
give Dy, for these D.

5.1 Usual period domains

We explain that the classical Griffiths domains [9] and their mixed Hodge gen-
eralization in [20] are essentially regarded as special cases of the period domains
of this paper. In this case, our partial compactifications essentially coincide with
those in [14] Part III.

Let A = (Ho, W, ({ , )w)w,(h?%)pq) be as usual as in [14] Part III. Let G
be the subgroup of Aut(Ho,q, W) consisting of elements which induce similitudes
for (, )w for each w. That is, G := {g € Aut(Hp,q,W) | for any w, there
is a ty € Gy, such that (9z,gy)w = tuw(z,y)w for any z,y € gr!¥'}. Let G; =
Aut(Ho,q, W, ((; Jw)w) C G.

Let D(A) be the period domain of [20]. Then D(A) is identified with an open
and closed part of D in this paper as follows.

Assume that D(A) is not empty and fix an r € D(A). Then the Hodge de-
composition of gr'¥r induces ho : So/r — (G/Gu)r. (We have ([z]z, [2]y)w =
|2]2¥(z,y) for z € C* (see 3.1.2 for [2]).) Consider the associated period do-
main D (3.1.3). Then D is a finite disjoint union of G1(R)G,(C)-orbits which are
open and closed in D. Let D be the G1(R)G,(C)-orbit in D consisting of points
whose associated homomorphisms Sc/r — (G/Gu)r are (G1/G.)(R)-conjugate
to ho. Then the map H — H(Hj,q) gives a G1(R)G,(C)-equivariant isomorphism

D S D(A).

5.2 Mixed Mumford—Tate domains

5.2.1. Let H be a Q-MHS whose gr”¥ are R-polarizable.

The Mumford-Tate group G of H is the Tannaka group (cf. [18]) of the Tannaka
category generated by H (cf. [1]). Explicitly, it is the smallest Q-subgroup G of
Aut(Hq) such that Gr contains the image of the homomorphism A : Sc/r —
Aut(Hgr) and such that Lie(G)r contains §. Here h and ¢ are determined by
the canonical splitting of H ([2], [14], Part II, 1.2). In the case where H is pure,
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G is the smallest Q-subgroup of Aut(Hq) such that Gr contains the image of
SC/R g Aut(HR).
The following proposition is well-known in the pure case.

Proposition 5.2.2. The two definitions of G in 5.2.1 coincide.

Proof. Let G be the group explicitly defined in the latter part of 5.2.1.

Let J be the Tannaka group defined in the beginning of 5.2.1. By Tannaka
duality, the theory of (h,d) of MHS gives a homomorphism Sc/r — Jr and 6 €
Lie(J)r. The homomorphism J — Aut(Hgq) is injective (otherwise, if K denotes
the kernel, representations of J/ K would form a smaller Tannaka category). Hence
we have G C J. We will use

Claim. For linear representations Vi and Va of J over Q, we have Hom ;(V7,
V2) = Hom ¢(V1, V2).

This is because

Hom ;(V1,V2) C Hom (W1, V2) C Hom mus(Vi, V2) = Hom ;(V4, Va).

By the pure case, we have G/G, = J/J,. (For this, a point is that G, coincides
with the kernel G; of G — Aut(ng). We have G1 C G,. It is sufficient to prove
that G/G is reductive. This is seen from the polarizability of gr'”.)

Assume G # J. Then by G/G, = J/J,, we have G, # J,. Hence the map
Gy — Ju/[Ju, Ju] is not surjective. Since the image of this map is stable under
the adjoint action of G/G, = J/J,, the image is a normal subgroup of J/[Jy, Ju]-
Let @ be the quotient of J/[J,,J,] by this image. Let @; be the quotient of
Ju/[Ju, Ju] by the image of G,. Then @ is a semi-direct product of @Q; and G/G,,.
We consider the following representations V) and V5 of Q) over Q. Let V; = Q
with the trivial action of Q. Let Vo, = Q © @1 on which G/G, acts by the trivial
action on Q and by the adjoint action on @i, and v € @ acts by sending (1, 0)
to (1,v) and trivially on @;. The Q-linear map V; — V, which sends 1 to (1,0) is
a G-homomorphism but not a J-homomorphism. This contradicts the Claim. O

5.2.3. The Mumford—Tate domain associated to H is defined as the period domain
D associated to G and hg : Sc/r — (G/Gu)r which is defined by gr'V H.

In the pure case, our I'\ Dy, is essentially the same as the one by Kerr—
Pearlstein ([16]).

5.3 Mixed Shimura varieties

See [18] for the generality of mixed Shimura varieties. This is the case where the
universal object satisfies Griffiths transversality. gr!¥Lie(G) should be 0 unless
w = 0,—1,—2. The (p, g)-Hodge component of gr’¥ Lie(G) for w = 0 (resp. w =
—1, resp. w = —2) should be 0 unless (p, ¢) is (1,-1), (0,0), and (—1,1) (resp.
(0,~1) and (—1,0), resp. (—1,—1)). (If this condition is satisfied by one point of
D, it is satisfied by all points of D.)

For example, the universal abelian variety over a Shimura variety of PEL (po-
larizations, endomorphisms, and level structures) type is a mixed Shimura variety.
Toroidal compactifications of these universal abelian varieties are expressed as
T'\ Ds.
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6 Higher Albanese manifolds and their toroidal
partial compactifications

6.1 TUnderstanding higher Albanese manifolds by D

6.1.1. Let X be a connected smooth algebraic variety over C. Fix b € X. Let
I be a quotient group of m(X,b) and assume that I' is a torsion-free nilpotent
group.

Let G = Gr be the unipotent algebraic group over Q whose Lie algebra is
defined as follows. Let I be the augmentation ideal Ker(Q[I'] — Q) of Q[I']. Then
Lie(G) is the Q-subspace of Q[I']" := lim Q[I']/I™ generated by all log(7) (y € T').
The Lie product of Lie(G) is defined by [z,y] = zy — yz. We have I' C G(Q).

We have

Lie(G) ={h € Q[I')" | A(h) =h® 1+ 1Q h},

G(R) ={g € (R[[]")* | A(g) = g ® g}

for any commutative ring R over Q, where A : R[I']" — R[I' x I'|" is the ring
homomorphism induced by the ring homomorphism R[I'] — R[['xI]; y+— y®7

(yel).

6.1.2. For r > 0, let ', be the torsion-free nilpotent quotient group of m1(X, b)
defined in 2.5.1. Then for a given I' as in 6.1.1, there is an r > 1 such that T’
is a quotient of I',. We define the weight filtration on Lie(Gr) (resp. the Hodge
filtration on Lie(Gr)c) as the image of that of Lie(Gr,) (resp. Lie(Gr,)c) (2.2.4,
2.3). This gives a structure of an MHS on Lie(Gr) which is independent of the
choice of 7. A

Note that Gr, is written as G, in 2.3.

6.1.3. The higher Albanese manifold Ax r of X for I is as follows. Let F°G(C)
be the algebraic subgroup of G(C) over C corresponding to the Lie subalgebra
FOLie(G)c of Lie(G)c. Define

Axr :=T\G(C)/F°G(C).

Let I’y be as in 2.5.1. For I' =T';, Ax r coincides with Alb"(X) in 2.3.

In the case where I' is Hq(X,Z)/(torsion) regarded as a quotient group of
m1(X,b), Ax,r coincides with the Albanese variety I'\ H1(X,C)/F°H,(X,C) of
X.

We will give an understanding of Ax r by using D of this paper in Theorem
6.1.6.

We will describe the functor represented by Ax r in Theorem 6.1.10.

6.1.4. Take a Q-MHS V, with polarizable gr'¥ having the Q-MHS Lie(G) as a
direct summand (6.1.2). Let @ be the Mumford-Tate group associated to the Vj
(5.2.1). The action of @ on Lie(G) induces an action of @ on G. By using this
action, define the semidirect product G of Q and G with an exact sequence 1 —
G—G—Q— 1 Wehave G C Gy. We have ho : Sc/r = (Q/Qu)r = (G/Gu)r
given by the Hodge decomposition of gr'¥ V.
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Then (G,T) satisfies the condition in 3.3.3, and I' is a neat subgroup of G(Q).
Let D¢ (resp. Dg) be the period domain D for G (resp. Q) and hg (3.1.5).
We have a canonical map I'\ Dg — Dg induced by the canonical homomorphism

G- Q.

6.1.5. We define bg € Dg and bg € D¢ as follows. Let bg € Dg be the isomor-
phism class of the evident functor Rep(Q) — Q-MHS (cf. 5.2). Since Q C G is
a semidirect summand, we have the restriction functor Rep(G) — Rep(Q). Let
bg € D¢ be the isomorphism class of the composite functor Rep(G) — Rep(Q)
and bg : Rep(Q) — Q-MHS. Then we see that the map Dg — Dg, induced by
the canonical homomorphism G — @, sends bg to bg. Let D be the fiber of the
map Dg — Dg over bg.

The following theorem is a generalization of [11] (5.10) into the present context
of tensor functors.

Theorem 6.1.6. The map G(C) — D¢ ; g — gbg induces isomorphisms:
(1) G(C)/F°G(C) = D.
(2) AX,I‘ = F\D

Proof. We prove (1), from which (2) follows. Define

F°(G(R)G.(C)) := {g € G(R)G.(C) | gbc = b},

FY(QR)Q.(C)) == {g € QR)Qu(C) | gbg = bo}-
Then we have a commutative diagram of exact sequences
11— G(C) —— GR)G,(C) —— QR)QuC) —— 1

U U U
1 —— F%(G(C)) —— FY(GR)Gu(C)) —— FU(QR)Qu(C)) —— L

Here the surjectivity of FO(G(R)G4(C)) — F9(Q(R)Q.(C)) follows from
FO(QR)Qu(C)) C F°G(R)Gy(C)) which is induced from Q(R)Q.(C) C
G(R)G.(C).

Combining this with (G(R)G+(C))/F° = Dg; g — gbg and (Q(R)Q.(C))/F°
5 Dgj g — gbo, we get G(C)/F° = D; g — gbg. a

6.1.7. Let Cx,r be the category of variations of Q-MHS H on X satisfying the
following conditions.

(i) For any w € Z, gr’VH is a constant polarizable Hodge structure.

(ii) H is good at infinity in the sense of [11] (1.5).

(i) The monodromy action of m (X,b) on Hg(b) (which is unipotent under
(1)) factors through I'.

Let Cﬁ(,r be the category of Q-MHS H with polarizable gr'¥ endowed with an
action of the Lie algebra Lie(G) on Hq such that Lie(G) ® H — H is a homomor-
phism of MHS.
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6.1.8. Let Cx,, (resp. C ) be the left (resp. right) category in the equivalence of
categories at the beginning of 2.1. Then we have

Cxr, DCxyr, Cxrp, DCx,,

Uexr=Ucxr. = Cxr, U Ckr=U cr. = Cx,-
T T T T T T

The equivalences Cx,, ~ C , in 2.1 for all 7 induce an equivalence |, Cx,r =~
U, C%x ,, and it induces an equivalence

CX’]_" >~ CS(,P
between the full subcategories.

6.1.9. Define a contravariant functor
Fr : B(log) — (Set)

as follows.

Fr(S) is the set of isomorphism classes of pairs (H, u), where H is an exact
®-functor Cx,r — MHS(S) and p is a I'-level structure, satisfying the following
condition (i). Here a I'-level structure means a global section of the sheaf I'\ Z,

where 7 is the sheaf of functorial ®-isomorphisms H(H)q 5 H(b)q of Q-local
systems preserving weight filtrations.

(i) For any Q-MHS h, we have a functorial ®-isomorphism H(hx) = hg such
that the induced isomorphism of local systems H(hx)q = hq = hx(b)q belongs
to u. Here hx (resp. hg) denotes the constant variation (resp. family) of Q-MHS
over X (resp. S) associated to h.

Theorem 6.1.10. The higher Albanese manifold Ax r represents Fr.

Proof. For S € B(log), we show Mor(S, Ax,r) ~ Fr(S).
The map from the right-hand-side to the left-hand-side is as follows. For an
element Cx r — MHS(S) of Fr(S), consider the composition

Rep(G) C CS(,I‘ ~Cxr — MHS(S).

Here C is given by the induced action of Lie(G). By the non-log version of the
general theorem 4.3.4, this yields a morphism S — I'\ Dg whose image is sent to
bg under I'\ Dg — Dg. Thus we get an element S — I'\D = Axr (6.1.6) of
MOI(S, AX,F)-

As for the map from the left-hand-side to the right-hand-side, which is inverse
to the above map, we give two constructions.

The first construction is as follows. Assume that we are given a morphism
S — Ax,r. Similarly as in 2.4, for an object V' of C%'F, we have a Lie algebra homo-
morphism Lie(G) — End(V) which is a homomorphism of MHS, and it induces a
morphism from Ax r to the classifying space I'\ D(V) for V. Pulling back the uni-
versal variation of MHS on I'\ D(V') by the composition S — Ax,r — I'\ D(V),
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we get an object of MHS(S). This gives a desired pair (H,u) of a functor
H:Cxr ~C% — MHS(S) and a I-level structure .

The second construction is as follows. Assume we are given a morphism S —
Ax r and an object V of CS{,F. Let @ be the Mumford-Tate group of the Q-MHS
Vo := Lie(G) ® V, and define G as in 6.1.4. Then we have S » Axr ~T'\D —
'\ Dg. By the non-log version of Theorem 4.3.3, the object V of Rep(G) gives
an object of MHS(S). |

6.1.11. The higher Albanese map ¢ : X — Axrp corresponds in 6.1.10 to the
evident functor H : Cx,r — MHS(X).

6.2 Toroidal partial compactifications

6.2.1. Let G be asin 6.1.4. Let X be a weak fan in Lie(G) such that ¢ C Lie(G)r
for any 0 € ¥. Assume that ¥ and I in 6.1.1 are strongly compatible (4.1.3).
Then, we have a canonical morphism I'\ Dg 5 — Dg, extending the morphism
'\ Dg — Dg, induced by the homomorphism G — Q.

6.2.2. Define the toroidal partial compactification Ax s of Axr as the sub-
space of I'\ Dg » which is defined to be the inverse image of bg. We can endow
Ax s with a structure of a log manifold such that for any object S of B(log),
Mor(S, Ax r x) coincides with the set of all morphisms S — I'\ D¢ » whose im-
ages in Dg are bg (6.1.5).

This Ax s is independent of the choice of V4 in 6.1.4 which is used in the
definitions of ¢ and G.

6.2.3. Define a contravariant functor
Fr s : B(log) — (Set)

as follows.

Fr =(S) is the set of isomorphism classes of pairs (H, u) where H is an exact
®-functor Cx,r — LMH(S) and p is a I'-level structure satisfying the condition (i)
in 6.1.9 and also the following condition (ii).

(ii) The following (ii-1) and (ii-2) are satisfied for any s € S and any ¢ € s'°8.
Let fi; : H(H)q,+ = H(b)q be a functorial ®-isomorphism which belongs to pq.

(ii-1) There is a 0 € X such that the logarithm of the action of the local
monodromy cone Hom ((Ms/0%)s,N) C m1(s'°8) on Hq is contained, via fi¢, in
o C Lie(g)R.

(ii-2) Let 0 € X be the smallest cone which satisfies (ii-1) and let a : (915?7% —-C
be a ring homomorphism which induces the evaluation Og s — C at s. Then, for
each H € Cx,r, (0, it(a(H(H)))) generates a nilpotent orbit in the sense of [14]
Part IIT 2.2.2.

Theorem 6.2.4. The functor Fr x is represented by Axr x.

Proof. This follows from Theorem 4.3.3. The proof is similar to the one of Theorem
6.1.10. We replace MHS(S) there by LMH(S) and, in the latter half of the proof,
we use the second construction of the inverse map. O
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6.2.5. Let = be the set of all rational nilpotent cones in Lie(G)r of rank < 1.
Then = is a fan and is strongly compatible with T'.

Theorem 6.2.6. Let X be a smooth algebraic variety over C which contains X as
a dense open subset such that the complement X \. X is a smooth divisor. Endow
X with the log structure associated to this divisor.

Then the higher Albanese map ¢ : X — Axr extends uniquely to a morphism
%: X — Axrz of log manifolds giving a commutative diagram

X c X

| g
Axr C Axrg.

Proof. Since an object of Cx r is good at infinity, it extends to an LMH over X.
Hence this theorem follows from (2) of the general theorem 4.3.4 by using Theorem
6.2.4. a

6.3 Example
6.3.1. We consider

X :=P!(C)\{0,1,00} Cc X :=P}(C).

‘We will consider the toroidal partial compactification of the second higher Albanese
manifold Alb?(X) (2.3) and the extended higher Albanese map from X to it (6.2.6).
The description of the degeneration at the boundary of X becomes simpler if we
take the base point b of the theory of Hain—Zucker in the boundary outside X.
For this, we can use the idea of tangential base point of Deligne ([6], Section 15
“Points base & l'infini”) and its variant described in 6.3.6.

As in [12],
1 Z Z 1 C C
AB(X)= [0 1 Z \ 01 C

0 0 1 0 0 1

The right-hand-side is actually a period domain G, z\ D(A) of classical type
(see 6.3.2 below) and the toroidal partial compactification of Alb?*(X) with re-
spect to the fan E (6.2.5) is isomorphic to the toroidal partial compactification
Gu,z \ D(A)= of this classical period domain considered in [14] Part III. We first
consider this period domain of the classical type in 6.3.2-6.3.5.

6.3.2. Let A = (Ho,W,(( , )w)wez, (h??)p qez) be as follows. Hy is a free Z-
module of rank 3 with basis (e;)1<j<3, W is the increasing filtration on Hy q
defined as

W_s=0CW_4=W_3=Qe1 CW_2=W_; =Qe; + Qez C Wy = Hyq,

() Yw @ g6 (Ho,Q) % gri¥ (Ho,q) — Q are the Q-bilinear forms characterized by
<63,63>0 = (62,62)-2 = (61,61>_4 =1, and R0 = p~1-1 = h_2’—2 =1, hP9 =0
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for the other (p,q). For R = Z,C, let G, r be the group of automorphisms of
the R-module Hy g which preserve W and induce the identity map on gr’”. Then
G, r is identified with the group of unipotent upper triangular (3, 3)-matrices with
entries in R.

The period domain D(A) is isomorphic to G, ,c where the matrix

1 68 A
0 1 «
0 0 1

corresponds to the following decreasing filtration F' = F(a, 8, A\) on Hy,c: F! =0,
FO is generated by e3 + aey + dey, F~! is generated by FO and e; + Be;, and
F2= HO,C-

The natural action of G, c on D(A) is identified with the natural action of
Gy,c on itself from the left.

6.3.3. Let = be the set of all cones of the form R>¢N where N is a Q-linear map
Ho,q — Ho,q such that NW,, C Wy, for all w € Z. We consider the extended
period domain D(A)z ([14], Part III).

For N : Hyq — Ho,q defined by Ne3 = aez + cer, Nea = be;, Ney = 0
(a,b,c € Q), (N, F(e, 8, X)) generates a nilpotent orbit if and only if it satisfies the
Griffiths transversality NFP C FP~! (p € Z), and hence if and only if ¢ = a8 — ba.
Hence for ¢ = R>oN, D, # D if and only if either a # 0 or b # 0.

6.3.4. By [14] Part III, the quotient G, z \ D(A)z has a structure of a log manifold.

Let N : Hy q — Ho,q be the Q-linear map defined by Nes = ez, Nea = Ne; =
0 and let 0 = R>oN.

We describe the local structure of G,z \ D(A)z at the point corresponding
to a o-nilpotent orbit. Let p be the image of an element of D(A), \ D(A) in
Gu,z \D(A)=. Then for some )y € C, p is the class of the o-nilpotent orbit
generated by (N, F(0,0,))). Let Y be the log manifold {(¢g,8,\) € C3 | B =
0 if ¢ = 0} with the strong topology ([15], Section 3.1), with the structure sheaf of
rings which is the inverse image of the sheaf of holomorphic functions on C3, and
with the log structure generated by g. Then there is an open neighborhood U of
(0,0,)) in C3 and an open immersion

YNUS Guz\D(A)=

of log manifolds which sends (g, 8, \) € YNU with ¢ # 0 to the class of F(a, 8, ) =
exp(aN)F(0,3,)), where a € C is such that ¢ = €2™**, and which sends (0,0, \o)
to p.

6.3.5. We can show that for any p € G,z \ D(A)= which does not belong to
Guz \ D(A), there are an open neighborhood U of (0,0,0) in C® and an open
immersion Y NU — G,z \ D(A)z of log manifolds which sends (0, 0,0) to p.

6.3.6. We describe how to formulate a base point in the boundary in the theory
of Hain—Zucker. The following is a variant of tangential base point of Deligne and
matches log Hodge theory well.



470 Kazuya Kato, Chikara Nakayama, Sampei Usui

_ Let X be a connected smooth algebraic variety over C, let D be a divisor on
X with normal crossings, and let X := X \ D. Endow X with the log structure
associated to D. We formulate a base point in X outside X as follows.

In our definition, a base point in the boundary of X is a pair b = (y,a) where y
is a point of Ylog which does not belong to X, and a is a specialization Olyogy — C.

That is, y is a pair (z,h) where z is a point of X which does not belong to X,
h is a homomorphism M_g)?pap — St := {2z € C* | |z| = 1} whose restriction

to the subgroup O%I of M%pz coincides with f — f(z)/|f(z)|, and a is a ring

homomorphism Olyogy — C whose restriction to the subring O , of O;gy coincides

with f — f(z).

A path between y and a point b’ of X induces an isomorphism
m (X%, y) 2 m(X,Y).

We can use m (Ylog, y) in place of w1 (X, ') (b’ € X) in the theory of Hain—Zucker.
Let I' be a nilpotent torsion-free quotient group of m; (Ylog, y). Then we have

the unipotent algebraic group G over Q by using m; (Ylog,y) by the method of
6.1.1. We obtain a structure of a Q-MHS on Lie(G) as follows. For &’ € X, let
G(b') be the unipotent group G in 6.1.1 obtained by using the base point b’. Then
when & € X moves, the MHS Lie(G(b')) forms an object H of Cx . Since H is
good at infinity, it extends uniquely to a Q-LMH H on X. By the specialization
of H by a at y, we obtain a structure of Q-MHS on Lie(G).

The main theorem of Hain—Zucker [11] introduced in Section 2.1 and results
in Sections 6.1 and 6.2 remain true when we use the base point in the boundary,
and are deduced from the work [11] and by the arguments in Sections 6.1 and 6.2.

6.3.7. A tangential base point of Deligne in the boundary of X ([6], Section 15)
gives a base point b in the boundary in our sense (6.3.6). We explain this in the
case where X is a curve. In this case, a tangential base point in the boundary
is a non-zero element v of the tangent space T,(X) = Hom c(m;/m2,C) with
z € X \ X and m; being the maxmal ideal of (97@. We have the corresponding
base point b = (y,a), y = (z, h) in the boundary in our sense as follows.

h: M%p . S! is the unique group homomorphism which sends any element

fof (’)—}’% . to f(z)/|f(z)| and any prime element ¢ of Ox , to v(t)/|v(t)|. a is the
unique ring homomorphism Ol;gy — C satisfying the following (i) and (ii).

(i) a(f) = f(z) for any f € O’X—z
(ii) Let ¢ be a prime element of Ox  such that A(t) = 1 (that is, v(t) € R>o).

Let f € (’)%Ogy be the branch of log(t) such that the imaginary part of f(z’)

converges to 0 if 2’ € X converges to y in X'°°. Then a(f) = log(v(t)) € R.
6.3.8. Now let X = P}(C) \ {0,1,00}, X = P!(C). We take the base point b in

the boundary of X corresponding to the tangent vector v at 0 € X which sends
the class of the coordinate function z of C C P!(C) in mo/m2 to 1. That is,
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b= (y,a),y = (0,h) € X'°® where h sends the coordinate function z to 1 and a
sends the branch of log(z) which has real value on Rx¢ to 0.

The group m; (Ylog, y) is a free group of rank 2 generated by elements -y and
v1- Here for @ = 0,1, 74 is the class of the following loop [0,1] — X'°¢ which we
denote also by 7. Let z be the coordinate function of C C P(C) as above. Then
Y0(t) = (0, h) where h sends z to e?™%. 41(0) = v1(1) = (0, h) where h sends z to
1. For 0 <t < 1/3, 71(t) =3t € X. For 1/3 <t < 2/3, v1(t) = (1, h) where h
sends 1 — z to e2™(*~1) For 2/3 <t <1, 11(t) =3(1 —t) € X.

6.3.9. Let I" be the quotient group m (Ylog,y)/[ﬂ'l, [r1,m]] of m1 = m (Ylog,y).
We consider Ax r (6.1.3) which is the second higher Albanese manifold of X by
using the above base point b in the boundary (6.3.8).

For o = 0,1, let N, = log(v,) € Lie(G). Then Lie(G) is three-dimensional over
Q with basis No, N1, [N, No| (cf. 6.1.1).

The mixed Hodge structure on Lie(G) is as follows. The weight filtration is
given by

W_s=0CW_ysy=W_3=Q- [NI,NO] CW_, = Lie(g).

Ny and Nj are of Hodge type (—1,—1), and [Ny, Ng] is of Hodge type (-2, —2).
We have F°G(C) = {1} and hence

Axr =T\G(C).
The following 6.3.10 and 6.3.11 are seen from [6] (cf. also [12]).

6.3.10. Consider the following Q-MHS V' and the Lie action of Lie(G) on V.
V = Hy,q with the Hodge filtration F'(0,0,0) on V¢ (6.3.2). The action of Lie(G)
is as follows. Noe3 = €2, Noej =0 for ] = 1,2; N1€2 = €1, Nlej =0 fOI‘j = 1,3.
Then the action Lie(G) ® V — V is a homomorphism of MHS.

This induces an isomorphism Ax r = Gu,z \ D(A) of complex analytic mani-
folds. It extends to an isomorphism Ax = = G,z \ D(A)z of log manifolds.

The composition X — Gy z \ D(A) of the higher Albanese map X — Axr
and the above isomorphism sends z € X to the class of

F((2mi) "t log(x), (2m3) "ty (x), (2m5) ~2ly(x)),
where l;(z) = —log(1 — z) and lz(z) is the dilog function.

6.3.11. There is another isomorphism Axr = Gyz \ D(A) which may be more
popular. Consider the Q-MHS V as in 6.3.10 and consider the Lie action of
Lie(G) on V such that Noes = e1, Noe; = 0 for j = 1,3; Nies = ez, Niej =0
for j = 1,2. Then the action Lie(G) ® V — V is a homomorphism of MHS. This
induces an isomorphism Ax r = Gu,z \ D(A) of complex analytic manifolds and
an isomorphism Ax rz = Gy z \ D(A)z of log manifolds.
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In this case, the composition X — G, z\ D(A) of the higher Albanese map
X — Axr and the above isomorphism sends z € X to the class of

(1 —(2mi)"llog(z) (2mi)2la(z) ) -
0 1 —@m)" Uy (z) | € Guc = D).
0 0 1

The pullback on X of the universal object on G,z \ D(A) under this composite
map is the so-called dilog sheaf on X.

6.3.12. Consider the extended higher Albanese map X — Axrz= (6.2.6). Let
X — Gyuz\ D(A)z be the composite of this extended map and the isomorphism
Axrz = Gyz\D(A)s in 6.3.10. Then the image of 0 € X under this composite
map is the class of the nilpotent orbit generated by (N, F(0,0,0)) with N as in
6.3.4 (i.e., N = Ng in 6.3.10). Let Y NU — Gy z \ D(A)= be the open immersion
given in 6.3.4 with A\g = 0. Then if z € X is near to 0 € X, the image of = in
Gu,z \ D(A)z is the image of

(z, (2m8) "1 (z), (2mi) ~2la(z)) €Y N U.
The last element converges to (0,0,0) when x converges to 0 € X.
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