

Title	Torelli theorem for surfaces with p_g = c^2_1 = 1 and K ample and with certain type of automorphism
Author(s)	Usui, Sampei
Citation	Compositio Mathematica. 1982, 45(3), p. 293-314
Version Type	VoR
URL	https://hdl.handle.net/11094/73373
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

COMPOSITIO MATHEMATICA

SAMPEI USUI

Torelli theorem for surfaces with $p_g = c_1^2 = 1$ and K ample and with certain type of automorphism

Compositio Mathematica, tome 45, nº 3 (1982), p. 293-314 <http://www.numdam.org/item?id=CM 1982 45 3 293 0>

© Foundation Compositio Mathematica, 1982, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 45, Fasc. 3, 1982, pag. 293–314 © 1982 Martinus Nijhoff Publishers – The Hague Printed in the Netherlands

TORELLI THEOREM FOR SURFACES WITH $p_g = c_1^2 = 1$ AND K AMPLE AND WITH CERTAIN TYPE OF AUTOMORPHISM

Sampei Usui

0. Introduction

The moduli space of isomorphism classes of surfaces with $p_g = c_1^2 = 1$ is studied by Catanese in [2]. Every such surface with the ample canonical divisor can be represented as a smooth weighted complete intersection of type (6, 6) in $\mathbf{P} = \mathbf{P}(1, 2, 2, 3, 3)$ parametrized by a Zariski open set $U \subset \mathbf{A}^{26}$ (cf. (1.3)). This leads to a universal family

$$\pi':\mathscr{X}'\to U.$$

There is an 8-dimensional subroup G of Aut(P) (cf. (1.5) and (1.6)) acting on U with finite isotropy groups and

$$M = U/G =$$
the moduli space of canonical surfaces
with $p_g = c_1^2 = 1$.

In particular, $\dim_{\mathbf{C}} M = 18$.

The period domain *D*, which parametrizes polarized Hodge structures on the second primitive cohomology groups of the surfaces in question, is isomorphic to

$$\{[a] \in \mathbf{P}(L \otimes \mathbf{C}) \mid (a, a) = 0, (a, \bar{a}) > 0\}$$

where L is a free Z-module of rank 20 equipped with a symmetric bilinear form (,) of signature (2, 18). The group $\Gamma = Aut(L)$ acts properly discontinuously on D.

0010-437X/82030293-22\$00.20/0

Set

$$\tilde{U} = \{(u, \alpha) \mid u \in U, \alpha \in \text{Isom}(P^2(X_u, \mathbb{Z}), L)\} \text{ and } \tilde{\mathscr{X}}' = \mathscr{X}' \times \tilde{U}$$

Then we have the universal family

(0.1)
$$\tilde{\pi}: \tilde{\mathscr{X}} = \tilde{\mathscr{X}}'/G \to \tilde{M} = \tilde{U}/G$$

of marked canonical surfaces with $p_g = c_1^2 = 1$ (cf. Proposition (2.24) in [11]). \tilde{M} and $\tilde{\mathcal{X}}$ are complex manifolds and this family serves as a universal family of the deformations of the surfaces in question. This gives a period map

$$\Phi: \tilde{M} \to D.$$

Catanese has shown in [2] (cf. also [12]) that Φ has non-empty ramification locus $\tilde{\Delta} \subset \tilde{M}$. Thus the local Torelli fails at $\tilde{m} \in \tilde{\Delta}$. The problem then is to study how badly it can fail. First of all observe that

dim Ker
$$d\Phi(\tilde{m}) \leq 2$$
.

This directly follows from the exact sequence

$$0 \longrightarrow H^{0}(C_{\check{m}}, \Omega^{1}_{X_{\check{m}}} \otimes \mathcal{O}_{C_{\check{m}}}) \longrightarrow H^{1}(X_{\check{m}}, T_{X_{\check{m}}}) \xrightarrow{d\Phi(m)} H^{1}(X_{\check{m}}, \Omega^{1}_{X_{\check{m}}})$$

together with the fact that $h^0(C_{\tilde{m}}, \Omega^1_{X_{\tilde{m}}} \otimes \mathcal{O}_{C_{\tilde{m}}}) \leq h^0(C_{\tilde{m}}, \Omega^1_{C_{\tilde{m}}}) = 2$, where $C_{\tilde{m}}$ is the canonical curve of $X_{\tilde{m}}$. This means that the fibre of Φ through $\tilde{m} \in \tilde{M}$ has at most dimension 2. Todorov ([9]) and the author ([10]) have shown that this indeed happens for certain surfaces $X_{\tilde{m}}$ which are double coverings of K3 surfaces.

We have classified in [11] the automorphisms of the surfaces in question and shown, in particular, that any automorphism of prime order of the surfaces in question is conjugate to one of σ_1 , σ_3 , σ_8 , σ_{11} , σ_{15} , $\sigma_0 \in \text{Aut}(\mathbf{P})$, which are defined respectively by

$$\sigma_{1}(x_{0}, y_{1}, y_{2}, z_{3}, z_{4}) = (x_{0}, y_{1}, y_{2}, z_{3}, -z_{4})$$

$$\sigma_{3}(x_{0}, y_{1}, y_{2}, z_{3}, z_{4}) = (x_{0}, y_{1}, y_{2}, -z_{3}, -z_{4})$$

$$\sigma_{8}(x_{0}, y_{1}, y_{2}, z_{3}, z_{4}) = (x_{0}, \omega y_{1}, y_{2}, z_{3}, z_{4})$$

$$\sigma_{11}(x_{0}, y_{1}, y_{2}, z_{3}, z_{4}) = (x_{0}, \omega y_{1}, \omega y_{2}, x_{3}, z_{4})$$

$$\sigma_{15}(x_{0}, y_{1}, y_{2}, z_{3}, z_{4}) = (x_{0}, \omega y_{1}, \omega^{2} y_{2}, z_{3}, z_{4})$$

$$\sigma_{0}(x_{0}, y_{1}, y_{2}, z_{3}, z_{4}) = (x_{0}, y_{1}, -y_{2}, z_{4}, z_{3})$$

[2]

where x_0 , y_1 , y_2 , z_3 and z_4 are weighted homogeneous coordinates of **P**(1, 2, 2, 3, 3) and $\omega = \exp(2\pi i/3)$. By using this classification, we have shown:

 Φ has the 2-dimensional fibre through $\tilde{m} \in \tilde{M} \stackrel{\text{def}}{\Leftrightarrow} \exists \sigma \in \operatorname{Aut}(X_{\tilde{m}})$ which is conjugate to σ_3 ,

 Φ has the positive dimensional $\in \exists \sigma \in \operatorname{Aut}(X_{\tilde{m}})$ which is fibre through $\tilde{m} \in \tilde{M}$ $\leftarrow \operatorname{conjugate to } \sigma_1 \text{ or } \sigma_8$

(see, for detail, [10] and [11]).

In this paper, we investigate those canonical surfaces with $p_g = c_1^2 = 1$ which have automorphisms conjugate to σ_{15} . Let M_{15} be the set of isomorphism classes of these surfaces. After our classification in [11], we have:

 M_{15} = the set of isomorphism classes of canonical surfaces with $p_g = c_1^2 = 1$ and with an automorphism of order 3 acting trivially on the holomorphic 2-forms.

Set $\sigma = \sigma_{15}$ and let us consider smooth weighted complete intersections of type (6, 6) in **P** = **P**(1, 2, 2, 3, 3) with defining equations

(0.2)
$$\begin{cases} f = z_3^2 + f_0 z_4 x_0^3 + f_{111} y_1^3 + f_{222} y_2^3 + f_{012} x_0^2 y_1 y_2 + f_{000} x_0^6, \\ g = z_4^2 + g_0 z_3 x_0^3 + g_{111} y_1^3 + g_{222} y_2^3 + g_{012} x_0^2 y_1 y_2 + g_{000} x_0^6. \end{cases}$$

These surfaces are stable under the action of σ . Denote by

$$(0.3) \qquad \qquad \pi_{15}' \colon \mathscr{X}_{15}' \to U_{15}$$

the smooth family of weighted complete intersections of type (6, 6) in **P**(1, 2, 2, 3, 3) with equations (0.2) parametrized by their 10 coefficients

$$(f_0, f_{111}, f_{222}, f_{012}, f_{000}, g_0, g_{111}, g_{222}, g_{012}, g_{000}) \in U_{15} \subset \mathbf{A}^{10}.$$

The automorphism $\sigma \in \operatorname{Aut}(\mathbf{P})$ has the induced action on the family (0.3) which is trivial on the parameter space U_{15} . We abuse the notation σ for indicating the induced automorphism of each fibre $X_u = \pi_{15}^{\prime-1}(u)$ ($u \in U_{15}$).

There exists a 4-dimensional subgroup $H \subset G \subset Aut(\mathbf{P})$ (cf. (1.12)) and our Proposition (1.14) asserts that

$$U_{15}/H \rightarrow M_{15}$$
 (and hence dim $M_{15} = 6$)

sending $u \in U_{15}$ to the isomorphism class containing X_u , and that, for any $X \in M_{15}$ and for any automorphism α of X of order 3 acting trivially on $H^0(X, K_X)$, there exists a point $u \in U_{15}$ and an isomorphism $\tau: X_u \cong X$ such that $\alpha = \tau \sigma \tau^{-1}$.

Let $u_k \in U_{15}$ and set $X_k = X_{u_k}$ (k = 1, 2). Take a basis ω_{X_k} of $H^0(X_k, K_{X_k})$. Set

$$H_2(X_k, \mathbb{Z})^{\sigma} = \operatorname{Ker}\{1 - \sigma : H_2(X_k, \mathbb{Z}) \to H_2(X_k, \mathbb{Z})\}.$$

Now our main theorem in the present paper is stated as follows:

THEOREM (3.4): Let $u_k \in U_{15}$ (k = 1, 2). Suppose that there exists a path $\tilde{\tau}$ in U_{15} joining u_1 and u_2 which induces an isometry

$$\tau_*: H_2(X_1, \mathbb{Z})^{\sigma} \to H_2(X_2, \mathbb{Z})^{\sigma}$$

preserving the periods of integrals of the holomorphic 2-forms ω_{X_k} on X_k , i.e.

$$\int_{\tau_*\gamma} \omega_{X_2} = (constant) \int_{\gamma} \omega_{X_1} \quad for \ all \ \gamma \in H_2(X_1, \mathbb{Z}),$$

where (constant) is independent of γ .

Then, there exists an isomorphism

$$\tau: X_1 \to X_2$$

inducing the given isometry τ_* and such τ is uniquely determined up to composition with an element of the group $\langle \sigma \rangle$ generated by σ . We have also $\tau \sigma \tau^{-1} = \sigma$ or σ^2 .

Roughly speaking, Theorem (3.4) is proved by applying the Strong Torelli Theorem for algebraic K3 surfaces (cf. [8], [1] and [7]) to the K3 surfaces obtained as the desingularizations of $X_u/\langle \sigma \rangle$ ($u \in U_{15}$).

Our present results can be rephrased in the language of period map as follows. Fix a base point $u_0 \in U_{15}$ and identify $P^2(X_{u_0}, \mathbb{Z}) = L$. Set

$$\tilde{U}_{15} = \left\{ (u, \tau_*) \middle| \begin{array}{c} u \in U_{15}, \ \tau_* \in \operatorname{Isom}(P^2(X_u, \mathbb{Z}), L) \text{ coming from a path} \\ \tilde{\tau} \text{ joining } u \text{ and } u_0 \text{ in } U_{15} \end{array} \right\}$$

and

$$\tilde{\mathscr{X}}_{15}' = \mathscr{X}_{15}' \underset{U_{15}}{\times} \tilde{U}_{15}.$$

Note that the fibre of $\tilde{U}_{15} \rightarrow U_{15}$ is the geometric monodromy group $\Gamma_{U_{15}} = \text{Im}\{\pi_1(U_{15}) \rightarrow \text{Aut}(L)\}$. Then we have, as in a similar way as (0.1), the universal family

$$\tilde{\pi}_{15}:\tilde{\mathscr{X}}_{15}=\tilde{\mathscr{X}}_{15}'/H\to\tilde{M}_{15}=\tilde{U}_{15}/H$$

and the period map

 $\Phi_{15}: \tilde{M}_{15} \rightarrow D.$

 Φ_{15} induces a set-theoretic map

$$\Phi_{15}: M_{15} \to D/\Gamma_{U_{15}}.$$

Our Proposition (1.17) and Theorem (3.4) assert that Φ_{15} is unramified and $\overline{\Phi}_{15}$ is injective.

The following are unknown at present:

- (0.4) Whether Φ_{15} is an immersion.
- (0.5) The description of the difference of $\Gamma_{U_{15}}$ and $\Gamma = \operatorname{Aut}(L)$.
- (0.6) The determination of the image of Φ_{15} .
- (0.7) The study of the surfaces with automorphisms conjugate to σ_{11} or to σ_{0} .
- (0.8) The determination of all the points of \tilde{M} through which Φ has 1-dimensional fibres.

Every variety in this paper is a variety over the field C of complex numbers.

1. Surfaces with $p_g = c_1^2 = 1$

1.1. F. Catanese showed in [2] that the canonical models of the surfaces with $p_g = c_1^2 = 1$ are represented as weighted complete intersections of type (6, 6) in $\mathbf{P} = \mathbf{P}(1, 2, 2, 3, 3)$. If we assume furthermore that the canonical invertible sheaf K_X of the surface X in question is ample, the canonical model of X is smooth and hence we can identify X with its canonical model.

Let $R = C[x_0, y_1, y_2, z_3, z_4]$ be the weighted polynomial ring with deg $x_0 = 1$, deg $y_1 = \deg y_2 = 2$ and deg $z_3 = \deg z_4 = 3$. Catanese also showed that the defining equations of the canonical models in question are partially normalized as follows (cf. [2]):

(1.1)
$$\begin{cases} f = z_3^2 + f^{(1)} z_4 x_0 + f^{(3)}, \\ g = z_4^2 + g^{(1)} z_3 x_0 + g^{(3)}, \end{cases}$$

where $f^{(1)}$ and $g^{(1)}$ are linear and $f^{(3)}$ and $g^{(3)}$ are cubic forms in x_0^2 , y_1 and y_2 , i.e., by using the notation $y_0 = x_0^2$,

(1.2)
$$f^{(1)} = \sum_{0 \le i \le 2} f_i y_i, \quad f^{(3)} = \sum_{0 \le i \le j \le k \le 2} f_{ijk} y_i y_j y_k,$$
$$g^{(1)} = \sum_{0 \le i \le 2} g_i y_i, \quad g^{(3)} = \sum_{0 \le i \le j \le k \le 2} g_{ijk} y_i y_j y_k,$$

Varying these 26 coefficients f_i , f_{ijk} , g_i and g_{ijk} , we get a family of weighted complete intersections in $\mathbf{P} = \mathbf{P}(1, 2, 2, 3, 3)$. Set

(1.3)
$$U = \left\{ u \in \mathbf{A}^{26} \middle| \begin{array}{l} \text{the corresponding surface is a} \\ \text{smooth weighted complete intersections} \\ \text{of type (6, 6) in } \mathbf{P}(1, 2, 2, 3, 3) \end{array} \right\}$$

and let

$$(1.4) \qquad \qquad \mathscr{X}' \to U$$

be the family of the surfaces in P(1, 2, 2, 3, 3). Note that U is a Zariski open subset of A^{26} .

Let G be the group consisting of the non-degenerate matrices over C of the forms

	<i>d</i> ₀		0	
(1.5)	$d_{10} \\ d_{20}$	$\begin{array}{ccc} d_{11} & d_1 \\ d_{21} & d_2 \end{array}$	0	and
		0	$\begin{array}{ccc} d_3 & 0 \\ 0 & d_4 \end{array}$	
	d_0		0	
(1.6)	d_{10} d_{20}	$\begin{array}{ccc} d_{11} & d_1 \\ d_{21} & d_2 \end{array}$		
		0	$\begin{array}{ccc} 0 & d_3 \\ d_4 & 0 \end{array}$	

acting on P(1, 2, 2, 3, 3) as

$$\begin{cases} x_0 \mapsto d_0 x_0 \\ y_i \mapsto \sum_{0 \le j \le 2} d_{ij} y_j & (i = 1, 2) \\ z_i \mapsto d_i z_i & (i = 3, 4) \end{cases}$$

in case (1.5), and

$$\begin{cases} x_0 \mapsto d_0 x_0 \\ y_i \mapsto \sum_{0 \le j \le 2} d_{ij} y_j & (i = 1, 2) \\ z_3 \mapsto d_3 z_4 \\ z_4 \mapsto d_4 z_3 \end{cases}$$

in case (1.6).

Since the canonical invertible sheaves of the surfaces X_u ($u \in U$) are isomorphic to $\mathcal{O}_{X_u}(1)$ and their defining equations are partially normalized as (1.1), we can prove easily that every isomorphism between the surfaces X_u ($u \in U$) is induced from some element in G (see, for detail, [2] or [11]). Hence we see, by [4], that

(1.7) U/G = the coarse moduli scheme of complete, smooth surfaces with $p_g = c_1^2 = 1$ and K ample.

1.2. In [11], we classified the automorphisms of the surfaces X with $p_g = c_1^2 = 1$ and K_X ample, and determined the induced action on $H^2(X, \mathbb{C})$, on $H^{2,0}(X)$ and on $H^1(X, T_X)$.

Among these automorphisms we are mainly interested in the present paper in σ_{15} in Theorem (2.14) in [11]. We fix, throughout this paper, the notation

(1.8)
$$\sigma = \sigma_{15} = (1, \omega, \omega^2, 1, 1) \in G$$

which means the diagonal matrix

$$\sigma = \begin{bmatrix} 1 & & & \\ & \omega & 0 & & \\ & & \omega^2 & & \\ & 0 & 1 & & \\ & & & & 1 \end{bmatrix}, \text{ where } \omega = \exp(2\pi\sqrt{-1}/3).$$

Set

$$(1.9) U_{15} = \{u \in U \mid \sigma u = u\}$$

and denote by

$$(1.10) \qquad \qquad \pi_{15}':\mathscr{X}_{15}' \to U_{15}$$

the family induced from (1.4) by $U_{15} \hookrightarrow U$. More explicitly, the defining equations of the surfaces $X_u = \pi_{15}^{\prime-1}(u)$ ($u \in U_{15}$) have the following forms:

(1.11)
$$\begin{cases} f = z_3^2 + f_0 z_4 x_0^3 + f_{111} y_1^3 + f_{222} y_2^3 + f_{012} x_0^2 y_1 y_2 + f_{000} x_0^6, \\ g = z_4^2 + g_0 z_3 x_0^3 + g_{111} y_1^3 + g_{222} y_2^3 + g_{012} x_0^2 y_1 y_2 + g_{000} x_0^6. \end{cases}$$

Define

$$H = \{\tau \in G \mid \tau(U_{15}) \cap U_{15} \neq \emptyset\}.$$

By an elementary calculation using (1.11), we can prove that H consists of the following four types of matrices:

(1.12)

We can also prove, by using the forms (1.12), that H is the normalizer of $\langle \sigma \rangle$ in G, where $\langle \sigma \rangle$ is the subgroup of G generated by σ in (1.8).

Set

(1.13) M_{15} = the set of the isomorphism classes of the complete, smooth surfaces with $p_g = c_1^2 = 1$ and K ample and with an automorphism of order 3 acting trivially on the holomorphic 2-forms.

PROPOSITION (1.14): We have a natural bijection $U_{15}/H \simeq M_{15}$ as sets and U_{15}/H is a 6-dimensional irreducible subvariety of the coarse moduli space U/G in (1.7). Moreover, for any surface $X \in M_{15}$ and for any automorphism α of X of order 3 acting trivially on $H^0(X, K_X)$, there exist a point $u \in U_{15}$ and an isomorphism $\tau: X_u \cong X$ satisfying $\alpha = \tau \sigma \tau^{-1}$.

PROOF: This is an immediate consequence of Theorem (2.14) in [11]. Note that "natural" in the statement of the proposition means that *H*-orbit of $u \in U_{15}$ corresponds to the isomorphism class containing X_u . Q.E.D.

1.3. Let $X = X_u$ for some $u \in U_{15}$ and let S be the parameter space of the Kuranishi family of the deformations of $X = X_{s_0}$ ($s_0 \in S$).

S is smooth and the Kuranishi family is universal (see, for detail, [11]). Hence, $\sigma \in \operatorname{Aut}(X)$ has the induced action on S via the identification $X = X_{s_0}$. Set

$$S^{\sigma} = \{s \in S \mid \sigma s = s\}.$$

Note that, since σ is of finite order, S^{σ} is a submanifold of S. Note also that S^{σ} is the parameter space of the universal family of the deformations of the pair (X, σ) of the surface X and $\sigma \in Aut(X)$.

Let

$$(1.16) \qquad \phi: S \to D$$

be the period map, using the Hodge decomposition of the second primitive cohomology group $P^2(X_s, C)$ ($s \in S$), obtained from the Kuranishi family, where D is the period domain (see, for detail, [5]).

PROPOSITION (1.17) (Local Torelli theorem for the restricted family): The restriction

res
$$\phi: S^{\sigma} \to D$$

of the period map ϕ in (1.16) is injective.

[9]

PROOF: First of all, note that σ has induced actions on S as above and also on D and that ϕ is σ -equivariant with these induced actions. Let

$$d\phi(s_0): T_S(s_0) \to T_D(\phi(s_0))$$

be the differential map of the period map ϕ at $s_0 \in S$. Since $T_S(s_0)$ (resp. $T_D(\phi(s_0))$ can be identified with $H^1(X, T_X)$ (resp. Hom $(P^{2,0}(X), P^{1,1}(X))$), we know, from Theorem (2.14) in [11], that the decomposition of $T_S(s_0)$ and $T_D(\phi(s_0))$ into their eigen spaces under the action of σ are the following:

(1.18)
$$\begin{aligned} T_S(s_0) &= T_1 \oplus T_\omega \oplus T_{\omega^2} & \text{with dim } T_1 = \dim T_\omega = \dim T_{\omega^2} = 6, \\ T_D(\phi(s_0)) &= T'_1 \oplus T'_\omega \oplus T'_{\omega^2} & \text{with dim } T'_1 = 8, \\ \dim T'_\omega &= \dim T'_{\omega^2} = 5, \end{aligned}$$

where T_{λ} (resp. T'_{λ}) is the λ -eigen subspace of $T_{S}(s_{0})$ (resp. $T_{D}(\phi(s_{0}))$).

Since $d\phi(s_0)$ is also σ -equivariant, $d\phi(s_0)$ is compatible with the decompositions in (1.18). Hence, from (1.18), Ker $d\phi(s_0)$ contains at least 2-dimensional subspace of $T_{\omega} \bigoplus T_{\omega^2}$. On the other hand, it can be shown easily (cf. [6], [2] or [11]) that dim Ker $d\phi(s_0) \leq 2$. Thus, we can conclude that

(1.19)
$$T_1 \cap \text{Ker } d\phi(s_0) = \{0\}.$$

Since $T_{S^{\sigma}}(s_0) = T_1$, (1.19) means that

res
$$d\phi(s_0): T_{S^{\sigma}}(s_0) \to T_D(\phi(s_0))$$

is injective. This shows that

res
$$\phi: S^{\sigma} \to D$$

is injective, because we consider S^{σ} as germ.

2. Structure theorem

We continue to use the notation in the previous section.

2.1. Let $X = X_u$ ($u \in U_{15}$). Since $\sigma = (1, \omega, \omega^2, 1, 1)$ (see (1.18)), the fixed points of X by σ satisfy the equations

$$(2.1) x_0 = y_1 = 0,$$

302

O.E.D.

(2.2)
$$x_0 = y_2 = 0$$
 or

(2.3)
$$y_1 = y_2 = 0.$$

We can calculate easily that

the intersection number of the curves $(x_0 = 0)$ and $(y_i = 0) = 2$ (i = 1, 2) the intersection number of the curves $(y_1 = 0)$ and $(y_2 = 0) = 4$.

Moreover, since $\sigma \in \operatorname{Aut}(X)$ is of finite order, the fixed points locus X^{σ} of X by σ is smooth. Thus we get that X^{σ} consists of 8 distinct points. We denote these points by

(2.4)
$$X = \{D_i, E_i \ (i = 1, 2, 3, 4)\},$$
 where
 $D_i \ (i = 1, 2)$ satisfy the equations (2.1),
 $D_i \ (i = 3, 4)$ satisfy the equations (2.2) and
 $E_i \ (i = 1, 2, 3, 4)$ satisfy the equations (2.3).

Since we can take $x_0z_3/y_{2,}^2$, y_1/y_2 (resp. x_0z_3/y_1^2 , y_2/y_1 ; resp. y_1/x_0^2 , y_2/x_0^2) as local coordinates of X at D_i (i = 1, 2) (resp. D_i (i = 3, 4) resp. E_i (i = 1, 2, 3, 4)), we see that the induced actions of σ on the normal spaces of these points in X are

(2.5)
$$(\omega^2, \omega^2)$$
 at D_i $(i = 1, 2),$
 (ω, ω) at D_i $(i = 3, 4)$ and
 (ω, ω^2) at E_i $(i = 1, 2, 3, 4).$

Let

be the blowing-up of X with center X^{σ} . Denote by

(2.7)
$$\tilde{D}_i \text{ and } \tilde{E}_i \quad (i = 1, 2, 3, 4)$$

the exceptional curves on \tilde{X} corresponding to the points D_i and E_i on X respectively.

The action of σ extends naturally on \tilde{X} so that the morphism (2.6) is σ -equivariant. From (2.5), we see that there are 2 distinct points, say

(2.8)
$$\tilde{E}_{ij}$$
 $(j = 1, 2),$

303

[11]

on each \tilde{E}_i which are fixed by σ , and the fixed points locus \tilde{X}^{σ} of \tilde{X} by σ is

(2.9)
$$\tilde{X}^{\sigma} = \{\tilde{D}_i, \tilde{E}_{ij} \ (i = 1, 2, 3, 4; j = 1, 2)\}.$$

We know, also from (2.5), that the induced action of σ on the normal bundle of each component of \tilde{X}^{σ} in \tilde{X} is

(2.10)

$$\begin{array}{rcl}
(\omega^2) & \text{along} & D_i & (i = 1, 2), \\
(\omega) & \text{along} & \tilde{D}_i & (i = 3, 4), \\
(\omega, \omega) & \text{at} & \tilde{E}_{i1} & (i = 1, 2, 3, 4) & \text{and} \\
(\omega^2, \omega^2) & \text{at} & \tilde{E}_{i2} & (i = 1, 2, 3, 4).
\end{array}$$

Let

 $(2.11) \qquad \qquad \hat{X} \to \tilde{X}$

be the blowing-up of \tilde{X} with center \tilde{X}^{σ} . Denote by

(2.12)
$$\hat{D}_i, \hat{E}_i \text{ and } \hat{E}_{ij} \quad (i = 1, 2, 3, 4; j = 1, 2)$$

the curves on \hat{X} which are the inverse images of \tilde{D}_i , the proper transforms of \tilde{E}_i and the exceptional divisors corresponding to \tilde{E}_{ij} respectively.

The action of σ extends again to \hat{X} and we see, from (2.10), that the fixed points locus \hat{X}^{σ} of \hat{X} by σ is now a disjoint union of 12 curves, i.e.

(2.13)
$$\hat{X}^{\sigma} = \{\hat{D}_i, \hat{E}_{ij} \ (i = 1, 2, 3, 4; j = 1, 2)\}.$$

From (2.10) again, we know that the induced action of σ on the normal bundle of each component of \hat{X}^{σ} in \hat{X} is the following:

(2.14)
(
$$\omega$$
) along \hat{D}_i ($i = 3, 4$) and along \hat{E}_{i1} ($i = 1, 2, 3, 4$).
(ω^2) along \hat{D}_i ($i = 1, 2$) and along \hat{E}_{i2} ($i = 1, 2, 3, 4$).

We denote by

$$(2.15) p: \hat{X} \to X$$

the composite morphism of (2.11) and (2.6). Note that p is σ -equivariant.

We can calculate easily the self-intersection numbers of the exceptional curves on \hat{X} of the morphism p:

$$(2.16) \quad (\hat{D}_i)^2 = (\hat{E}_{ij})^2 = -1, \quad (\hat{E}_i)^2 = -3 \quad (i = 1, 2, 3, 4; j = 1, 2).$$

Denote by

the canonical divisor of X and its proper transform by p in (2.15). Since $x_0 = 0$ is the homogeneous equation of C in X, C contains 4 points D_i (i = 1, 2, 3, 4) in (2.4). From this fact we get that

$$(\hat{C})^2 = -3.$$

2.2. Since $\sigma \in \operatorname{Aut}(\hat{X})$ is of order 3 and \hat{X}^{σ} is of pure codimension 1, we get a ramified triple covering

$$(2.19) r: \hat{X} \to \hat{Y},$$

where $\hat{Y} = \hat{X}/\langle \sigma \rangle$ is smooth. We denote by \hat{R} the ramification locus and by \hat{B} the branch locus of *r*, i.e.

(2.20)
$$\hat{R} = \hat{X}^{\sigma} = \sum_{1 \le i \le 4} \hat{D}_i + \sum_{1 \le i \le 4, j = 1, 2} \hat{E}_{ij} \text{ and } \hat{B} = r(\hat{R}).$$

We consider \hat{R} and \hat{B} as reduced curves.

We use the notation

(2.21)
$$\hat{C}' = r(\hat{C}), \quad \hat{D}'_i = r(\hat{D}_i), \quad \hat{E}'_i = r(\hat{E}_i) \text{ and } \hat{E}'_{ij} = r(\hat{E}_{ij}),$$

where all these curves are considered as reduced curves on \hat{Y} .

LEMMA (2.22): All the curves in (2.21) are smooth, irreducible, rational curves with self-intersection numbers

$$(\hat{C}')^2 = (\hat{E}'_i)^2 = -1$$
 and $(\hat{D}'_i)^2 = (\hat{E}'_{ij})^2 = -3$ $(i = 1, 2, 3, 4; j = 1, 2).$

PROOF: We see easily that C is a smooth curve of genus 2 by the Jacobian criterion and adjunction formula. Hence, so is \hat{C} , because \hat{C} is isomorphic to C. From the construction, we know that

$$\hat{C} \rightarrow \hat{C}'$$

is a triple covering ramified at 4 distinct points $\hat{C} \cap (\Sigma_{1 \le i \le 4} \hat{D}_i)$. Hence, we see that \hat{C}' is a smooth, irreducible, rational curve by the Hurwitz formula.

In the same way, by using the fact that

$$\hat{E}_i \rightarrow \hat{E}'_i$$

is a triple covering ramified at 2 distinct points $\hat{E}_i \cap (\hat{E}_{i1} + \hat{E}_{i2})$, we can prove that \hat{E}'_i are also smooth, irreducible, rational curves.

The same assertion for the curves \hat{D}'_i and \hat{E}'_{ij} is trivial because they are isomorphic to \hat{D}_i and \hat{E}_{ij} respectively.

As for the statement for the self-intersection numbers, we can obtain immediately from (2.16) and (2.18) by the projection formula. Q.E.D.

2.3. Let

$$(2.23) q: \hat{Y} \to Y$$

be the morphism obtained by blowing-down the exceptional curves of the first kind \hat{C}' and \hat{E}'_i (*i* = 1, 2, 3, 4). Set

(2.24)
$$C' = q(\hat{C}'), \quad E'_i = q(\hat{E}'_i), \quad D'_i = q(\hat{D}'_i) \text{ and } E'_{ij} = q(\hat{E}'_{ij})$$

 $(i = 1, 2, 3, 4; j = 1, 2).$

Then, C' and E'_i are points, and D'_i and E'_{ij} are smooth, irreducible, rational curves with self-intersection number -2.

We write down the configurations of the points and the curves appeared in 2.1, 2.2 and 2.3 with their self-intersection numbers:

2.4. Now we can state the relation of our surfaces with K3 surfaces. We use the notation in 2.1, 2.2 and 2.3.

PROPOSITION (2.26) (Structure theorem): Set $X = X_u$ ($u \in U^{\sigma}$). Then, starting from X, we can construct a diagram

$$\begin{array}{c} X \xleftarrow{p} \hat{X} \\ & \downarrow^{r} \\ Y \xleftarrow{q} \hat{Y} \end{array}$$

where

(i) p is the morphism in (2.15), i.e. the morphism obtained by a sequence of blowings-up at the fixed points by σ , so that the fixed points locus in \hat{X} under the induced action of σ is of pure codimension 1,

(ii) r is the morphism in (2.19), i.e. the natural projection onto the quotient of \hat{X} by the group $\langle \sigma \rangle$ generated by σ , and

(iii) q is the morphism in (2.23), i.e. the morphism obtained by blowing-down onto the minimal model Y.

Moreover, we have that

- (iv) Y is a minimal K3 surface,
- (v) $3(\sum_{1 \le i \le 4} D'_i) 2(\sum_{1 \le i \le 4, j=1, 2} E'_{ij})$ is an ample divisor on Y, and
- (vi) $\pi_1(\hat{X} \hat{R}) = \{1\}$, where \hat{R} is the ramification locus of r.

PROOF: The remaining things to prove are the assertions (iv), (v) and (vi).

First, we will prove (iv). By the construction of Y, it is clear that the unique holomorphic 2-form on X, vanishing on C and σ -invariant, gives a nowhere vanishing holomorphic 2-form on Y. Combining this with $q(Y) \le q(X) = 0$, we get (iv).

For the proof of (v), we use the configuration (2.25). First of all, we see that

(2.27)
$$\left(3\left(\sum_{1\leq i\leq 4}D'_{i}\right)-2\left(\sum_{1\leq i\leq 4, j=1,2}E'_{ij}\right)\right)^{2} = 9\left(\sum D'_{i}\right)^{2}+4\left(\sum E'_{ij}\right)^{2}=4>0.$$

By the assumption, C is ample and hence so is

$$p^{*}(4C) - \left(\sum \hat{D}_{i} + \sum \hat{E}_{i} + 2\left(\sum \hat{E}_{ij}\right)\right)$$
$$= 4\hat{C} - \left(\sum \hat{E}_{i}\right) + 3\left(\sum \hat{D}_{i}\right) - 2\left(\sum \hat{E}_{ij}\right).$$

Since r is a finite morphism and

$$3\left(4\hat{C}-\left(\sum \hat{E}_{i}\right)+3\left(\sum \hat{D}_{i}\right)-2\left(\sum \hat{E}_{ij}\right)\right)$$
$$=r^{*}\left(12\hat{C}'-3\left(\sum \hat{E}_{i}'\right)+3\left(\sum \hat{D}_{i}'\right)-2\left(\sum \hat{E}_{ij}'\right)\right),$$

we see that

$$12\hat{C}'-3\left(\sum \hat{E}'_{i}\right)+3\left(\sum \hat{D}'_{i}\right)-2\left(\sum \hat{E}'_{ij}\right)$$

is an ample divisor on \hat{Y} . Denote this divisor by F. Since \hat{C}' and \hat{E}'_i are the exceptional curves of the morphism q, we see, by the Nakai criterion of ampleness for F, that for any integral curve Z on Y

(2.28)
$$\left(3\left(\sum D'_{i}\right)-2\left(\sum E'_{ij}\right),Z\right)$$
$$= \left(q^{*}\left(3\left(\sum D'_{i}\right)-2\left(\sum E'_{ij}\right)\right),q^{*}Z\right) = (F,q^{*}Z) > 0.$$

Thus, the assertion (v) follows from (2.27) and (2.28) by the Nakai criterion again.

Finally, we will prove (vi). We use the result in [2]:

 $\pi_1(X) = \{1\}.$

Since X^{σ} consists of finite points, we see that

(2.29)
$$\pi_1(X - X^{\sigma}) = \pi_1(X) = \{1\}.$$

By using (2.29) and the following diagram

$$X - X^{\sigma} \stackrel{\sim}{\leftarrow} \hat{X} - \left(\hat{R} + \sum_{1 \leq i \leq 4} \hat{E}_i\right)$$
$$\bigcap_{\hat{X} - \hat{R},}$$

we get our assertion (vi).

3. Torelli theorem

In this section, we will prove the Torelli theorem for the surfaces with $p_g = c_1^2 = 1$, with an ample canonical divisor and with an automorphism of order 3 acting trivially on the holomorphic 2-forms.

We continue to use the notation in the previous sections.

First, we give an elementary lemma which can be verified easily by a standard argument using the discreteness of integral homology groups.

LEMMA (3.1): Let ψ be a morphism of smooth families $\{V_t\}_{t \in T}$ and $\{W_t\}_{t \in T}$ of compact, complex manifolds over a complex manifold T and suppose we are given a path α in T joining two points t and t' in T.

Then, we have a commutative diagram

$$\begin{array}{c} H_n(\mathbf{V}_t, \mathbf{Z}) \xrightarrow{\psi_{t*}} H_n(\mathbf{W}_t, \mathbf{Z}) \\ & & \\ \alpha_* \downarrow \wr & \\ H_n(\mathbf{V}_{t'}, \mathbf{Z}) \xrightarrow{\psi_{t'*}} H_n(\mathbf{W}_{t'}, \mathbf{Z}) \end{array}$$

for all n, where α_* is the isomorphism obtained by a C^{∞} -trivialization along the path α , and this α_* is compatible with intersection products.

Q.E.D.

Let $\pi'_{15}: \mathscr{X}'_{15} \to U_{15}$ be the family in (1.10). For any two points $u_k \in U_{15}$ (k = 1, 2), taking a path $\tilde{\tau}$ in U_{15} joining u_1 and u_2 and applying Lemma (3.1), we get a commutative diagram

(3.2)
$$\begin{array}{c} H_{2}(X_{1}, \mathbb{Z}) \xrightarrow{1-\sigma} H_{2}(X_{1}, \mathbb{Z}) \\ & & & \\ \tau_{*} \downarrow^{\downarrow} & & \\ H_{2}(X_{2}, \mathbb{Z}) \xrightarrow{1-\sigma} H_{2}(X_{2}, \mathbb{Z}) \end{array}$$

where $X_k = \pi_{15}^{\prime-1}(u_k)$ and τ_* is the isometry obtained from the path $\tilde{\tau}$. Hence, we get the induced isometry

(3.3)
$$\tau_* : H_2(X_1, \mathbb{Z})^{\sigma} \cong H_2(X_2, \mathbb{Z})^{\sigma}$$

of the kernels of $1 - \sigma$ in (3.2).

THEOREM (3.4): Suppose we are given two points $u_k \in U_{15}$ (k = 1, 2)and a path $\tilde{\tau}$ in U_{15} joining u_1 and u_2 , and suppose the induced isometry τ_* in (3.3) preserves the periods of integrals of the holomolphic 2-forms ω_{X_k} on $X_k = \pi_{15}^{\prime-1}(u_k)$ (k = 1, 2), i.e.

$$\int_{\tau_*\gamma} \omega_{X_2} = (constant) \int_{\gamma} \omega_{X_1}$$

for all $\gamma \in H_2(X_1, \mathbb{Z})^{\sigma}$, where (constant) is independent of γ .

Then, there exists an isomorphism

$$\tau: X_1 \widetilde{\to} X_2$$

inducing the given τ_* and such τ is uniquely determined up to composition with an element of the group $\langle \sigma \rangle$ generated by σ . We have also $\tau \sigma \tau^{-1} = \sigma$ or σ^2 .

PROOF: Starting from the family (1.10), we can construct, in a similar way as in the section 2, a commutative diagram

whose fibre over every point of U_{15} satisfies the properties (i) to (vi) in Proposition (2.26). In fact, \tilde{p} and \tilde{r} in (3.5) can be constructed just in the same way as p and r in the section 2, and the construction of \tilde{q} in (3.5) is justified by the result in [3].

For k = 1, 2, set $\hat{X}_k = \hat{\pi}^{-1}(u_k)$, $\hat{Y}_k = \hat{\pi}'^{-1}(u_k)$, and $Y_k = \pi'^{-1}(u_k)$, and let $p_k: \hat{X}_k \to X_k$, $r_k: \hat{X}_k \to \hat{Y}_k$ and $q_k: \hat{Y}_k \to Y_k$ be the restrictions to the fibres of the morphisms \tilde{p} , \tilde{q} and \tilde{r} in (3.5) respectively. We denote by $\hat{D}_i^{(k)}$, $\hat{E}_i^{(k)}$ and $\hat{E}_{ij}^{(k)}$ the corresponding curves on \hat{X}_k and by $C'^{(k)}$, $D'_i^{(k)}$, $E'_i^{(k)}$ and $E'_{ij}^{(k)}$ the corresponding points and curves on Y_k (k = 1, 2) constructed in the section 2. Denote also by \hat{R}_k and \hat{B}_k the ramification locus and the branch locus of the triple covering $r_k: \hat{X}_k \to$ \hat{Y}_k (k = 1, 2). For a divisor F on a surface, we denote by [F] the integral homology class represented by F.

Then, by Lemma (3.1), we get, from (3.5), the commutative diagram of homology groups:

$$\begin{array}{c|c} H_2(X_1, \mathbb{Z})^{\sigma} & \xleftarrow{p_{1*}} H_2(\hat{X}_1, \mathbb{Z})^{\sigma} & \xrightarrow{r_{1*}} H_2(\hat{Y}_1, \mathbb{Z}) & \xrightarrow{q_{1*}} H_2(Y_1, \mathbb{Z}) \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ H_2(X_2, \mathbb{Z})^{\sigma} & \xleftarrow{p_{2*}} H_2(\hat{X}_2, \mathbb{Z})^{\sigma} & \xrightarrow{r_{2*}} H_2(\hat{Y}_2, \mathbb{Z}) & \xrightarrow{q_{2*}} H_2(Y_2, \mathbb{Z}) \end{array}$$

(3.6)

$$\begin{array}{cccc} H_2(X_1, \mathbf{Z})^{\sigma} & \stackrel{p_1^*}{\longleftarrow} & H_2(\hat{X}_1, \mathbf{Z})^{\sigma} & \stackrel{r_1^*}{\longrightarrow} & H_2(\hat{Y}_1, \mathbf{Z}) & \stackrel{q_1^*}{\longrightarrow} & H_2(Y_1, \mathbf{Z}) \\ & & & & & \\ & & & & \\ &$$

where $\hat{\tau}_*$, $\hat{\tau}'_*$ and τ'_* are the induced isometries, like τ_* , from the path $\tilde{\tau}$. By our construction of (3.5), we see that

(3.7)
$$\begin{aligned} \hat{\tau}_{*}([\hat{D}_{i}^{(1)}]) &= [\hat{D}_{i}^{(2)}], \quad \hat{\tau}_{*}([\hat{E}_{i}^{(1)}]) = [\hat{E}_{i}^{(2)}], \quad \hat{\tau}_{*}([\hat{E}_{ij}^{(1)}]) = [\hat{E}_{ij}^{(2)}], \\ \hat{\tau}_{*}'([\hat{B}_{1}]) &= [\hat{B}_{2}], \quad \tau_{*}'([D_{i}^{(1)}]) = [D_{i}^{\prime(2)}], \quad \tau_{*}'([E_{ij}^{\prime(1)}]) = [E_{ij}^{\prime(2)}]. \end{aligned}$$

Note also that $p_{k*}p_k^* = id$, $q_{k*}q_k^* = id$, $r_{k*}r_k^* = 3id$ and $r_k^*r_{k*} = 3id$ (k = 1, 2).

Let $\omega_{\dot{X}_k}$ (resp. $\omega_{\dot{Y}_k}, \omega_{Y_k}$) be the holomorphic 2-form on \hat{X}_k (resp.

 \hat{Y}_k, Y_k induced from ω_{X_k} (k = 1, 2). Since

$$\int_{\gamma} \omega_{Y_k} = \int_{q_k^* \gamma} \omega_{\dot{Y}_k} = 3 \int_{r_k^* q_k^* \gamma} \omega_{\dot{X}_k} = 3 \int_{p_{k*} r_k^* q_k^* \gamma} \omega_{X_k}$$

for any $\gamma \in H_2(Y_k, \mathbb{Z})$, we can deduce, by (3.6), the property

$$\int_{\tau_*'\gamma} \omega_{Y_2} = (\text{constant}) \int_{\gamma} \omega_{Y_1} \text{ for all } \gamma \in H_2(Y_1, \mathbb{Z})$$

from that on X_k .

Since

$$\tau'_{*}\left(\left[3\left\{\sum_{i} D_{i}^{\prime(1)}\right)-2\left(\sum_{i,j} E_{ij}^{\prime(1)}\right)\right]\right)=\left[3\left(\sum_{i} E_{i}^{\prime(2)}\right)-2\left(\sum_{i,j} E_{ij}^{\prime(2)}\right)\right]$$

from (3.7), we see, by (v) in Proposition (2.26), that τ'_* sends some ample divisor class on Y_1 to an ample divisor class on Y_2 .

Hence, we can apply the Strong Torelli Theorem for algebraic K3 surfaces proved and supplemented in [8], [1] and [7] to our case, and we see that there exists uniquely the isomorphism

$$\tau': Y_1 \xrightarrow{\sim} Y_2$$

inducing the isometry τ'_* in (3.6).

Considering (3.7) and intersection numbers, we can observe easily

$$\tau'(D'^{(1)}_i) = D'^{(2)}_i \text{ and } \tau'(E'^{(1)}_{ij}) = E'^{(2)}_{ij}$$

and hence, in particular,

$$\tau'(C'^{(1)}) = C'^{(2)}$$
 and $\tau'(E'^{(1)}_i) = E'^{(2)}_i$.

Therefore, by the construction of $q_k: \hat{Y}_k \to Y_k, \tau'$ can be lifted uniquely to an isomorphism

$$\hat{\tau}': \hat{Y}_1 \xrightarrow{\sim} \hat{Y}_2$$

inducing the isometry $\hat{\tau}'_*$ in (3.6).

Considering (3.7) and intersection numbers again, we see

$$\hat{\tau}'(\hat{B}_1) = \hat{B}_2.$$

Since we know that $r_k: \hat{X}_k - \hat{R}_k \rightarrow \hat{Y}_k - \hat{B}_k$ are universal coverings by (vi) in Proposition (2.26), there exists an isomorphism

$$\hat{\tau}: \hat{X}_1 - \hat{R}_1 \xrightarrow{\sim} \hat{X}_2 - \hat{R}_2$$

compatible with $\hat{\tau}'$. Such $\hat{\tau}$ are unique up to the covering transformation group $\langle \sigma \rangle$. Now, by the Riemann Extension Theorem, $\hat{\tau}$ extends uniquely to an isomorphism

$$\hat{\tau}: \hat{X}_1 \cong \hat{X}_2,$$

where we abuse the notation $\hat{\tau}$. $\hat{\tau}$ is compatible with $\hat{\tau}'$ and hence induces the isometry $\hat{\tau}_*$ in (3.6).

By the argument on intersection numbers, we get, from (3.7), that

$$\hat{\tau}(\hat{D}_{i}^{(1)}) = \hat{D}_{i}^{(2)}, \quad \hat{\tau}(\hat{E}_{ii}^{(1)}) = \hat{E}_{ii}^{(12)} \text{ and } \hat{\tau}(\hat{E}_{i}^{(1)}) = \hat{E}_{i}^{(2)}.$$

Hence, $\hat{\tau}$ descends uniquely to an isomorphism

$$\tau: X_1 \widetilde{\to} X_2$$

inducing the given isometry τ_* .

The other assertion follows easily.

Q.E.D.

REFERENCES

- D. BURNS and M. RAPOPORT: On the Torelli problems for Kählerian K-3 surfaces. Ann, scient. Éc. Norm. Sup. 4^e sér. 8-2 (1975) 235-274.
- [2] F. CATANESE: Surfaces with $K^2 = p_g = 1$ and their period mapping. Proc. Summer Meeting on Algebraic Geometry, Copenhagen 1978, Lecture Notes in Math. No 732, Springer Verlag, 1-29.
- [3] A. FUJIKI and S. NAKANO; Supplement to "On the inverse of Monoidal Transformation", Publ. R.I.M.S. Kyoto Univ. 7 (1972) 637-644.
- [4] D. GIESEKER: Global moduli for surfaces of general type. Invent. Math. 43 (1977) 233-282.
- [5] P. GRIFFITHS: Periods of integrals on algebraic manifolds I, II, III: Amer. J. Math. 90 (1968) 568-626; 805-865; Publ. Math. I.H.E.S. 38 (1970) 125-180.
- [6] F.I. KINEV: A simply connected surface of general type for which the local Torelli theorem does not hold (Russian). Cont. Ren. Acad. Bulgare des Sci. 30-3 (1977) 323-325.
- [7] E. LOOIJENGA and C. PETERS: Torelli theorems for Kähler K3 surfaces, Comp. Math. 42-2 (1981) 145-186.
- [8] I. PIATECKIĬ-ŠAPIRO and I.R. ŠAFAREVIČ: A Torelli theorem for algebraic surfaces of type K-3, Izv. Akad. Nauk. 35 (1971) 530-572.

- [9] A.N. TODOROV: Surfaces of general type with $p_g = 1$ and (K, K) = 1. I, Ann. scient. Éc. Norm. Sup. 4^e sér. 13-1 (1980) 1-21.
- [10] S. USUI: Period map of surfaces with $p_g = c_1^2 = 1$ and K ample. Mem. Fac. Sci. Kochi Univ. (Magn.) 2 (1981) 37-73.
- [11] S. US<u>UI: Effect</u> of automorphisms on variation of Hodge structure. J. Math. Kyoto Univ. 21-4 (1981).
- [12] F. CATANESE: The moduli and the global period mapping of surfaces with $K^2 = p_g = 1$: A counterexample to the global Torelli problem, Comp. Math. 41-3 (1980) 401-414.

(Oblatum 27-III-1981, 30-VI-1981)

Kochi University Department of Mathematics Faculty of Sciences Kochi, 780 Japan Univ. 21-4 (1981).