|

) <

The University of Osaka
Institutional Knowledge Archive

Torelli theorem for surfaces with p g =¢"2 1 =
Title 1 and K ample and with certain type of
automorphism

Author(s) |Usui, Sampei

Citation |Compositio Mathematica. 1982, 45(3), p. 293-314

Version Type|VoR

URL https://hdl. handle.net/11094/73373

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



COMPOSITIO MATHEMATICA

SAMPEI USUI

Torelli theorem for surfaces with p, = ¢} = 1 and K
ample and with certain type of automorphism

Compositio Mathematica, tome 45, n°3 (1982), p. 293-314
<http://www.numdam.org/item?id=CM_1982__45_3 293 0>

© Foundation Compositio Mathematica, 1982, tous droits réservés.

L’acces aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique 1’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=CM_1982__45_3_293_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

COMPOSITIO MATHEMATICA, Vol. 45, Fasc. 3, 1982, pag. 293-314
© 1982 Martinus Nijhoff Publishers - The Hague
Printed in the Netherlands

TORELLI THEOREM FOR SURFACES WITH p, =ci=1 AND
K AMPLE AND WITH CERTAIN TYPE OF AUTOMORPHISM

Sampei Usui

0. Introduction

The moduli space of isomorphism classes of surfaces with p, =
c¢i=1 is studied by Catanese in [2]. Every such surface with the
ample canonical divisor can be represented as a smooth weighted
complete intersection of type (6, 6) in P=P(1, 2, 2, 3, 3) parametrized
by a Zariski open set U C A% (cf. (1.3)). This leads to a universal
family

7' ¥ - U.

There is an 8-dimensional subroup G of Aut(P) (cf. (1.5) and (1.6))
acting on U with finite isotropy groups and

M=U/G = thfa moduli 2space of canonical surfaces
with p, =ci=1.
In particular, dim¢cM = 18.
The period domain D, which parametrizes polarized Hodge struc-
tures on the second primitive cohomology groups of the surfaces in
question, is isomorphic to

{lal€P(LQC)|(a,a)=0,(a,a)>0}
where L is a free Z-module of rank 20 equipped with a symmetric

bilinear form ( , ) of signature (2, 18). The group I' = Aut(L) acts
properly discontinuously on D.
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294 S. Usui [2]
Set
U={ua)|u€U, aclsomP(X,Z),L)} and =2 >L§(~J.
Then we have the universal family
(0.1) #:%=%1G->M =U|G

of marked canonical surfaces with p, = ¢=1 (cf. Proposition (2.24)
in [11]). M and & are complex manifolds and this family serves as a
universal family of the deformations of the surfaces in question. This
gives a period map

®:M-D.

Catanese has shown in [2] (cf. also [12]) that @ has non-empty
ramification locus A C M. Thus the local Torelli fails at m € A. The
problem then is to study how badly it can fail. First of all observe that

dim Ker d®(m) =2.

This directly follows from the exact sequence

0—— HCp, 2k, ® Oc,) —— H'(Xm» Tx,) ——> H'(Xn, 2k,)

together with the fact that h%Ca, 2%, ® 0c,)=<h%Cs, Q¢,) =2,
where Cy is the canonical curve of Xy. This means that the fibre of ¢
through 1 € M has at most dimension 2. Todorov ([9]) and the author
([10]) have shown that this indeed happens for certain surfaces X
which are double coverings of K3 surfaces.

We have classified in [11] the automorphisms of the surfaces in
question and shown, in particular, that any automorphism of prime
order of the surfaces in question is conjugate to one of o, a3, g3, o1y,
o1s, oy € Aut(P), which are defined respectively by

o1(Xo, Y1, ¥2, 23, 24) = (X0, Y1, ¥2, 23, —Z4)
o5(Xo, Y1, Y2, 23, 2) = (X0, Y1, Y2, — 23, —24)
as(Xo, Y1, Y25 23, 24) = (X0, WY1, Y2, 23, Z4)
a11(xo, Y1, Y2, 23, 24) = (X0, WY1, WY2, X3, Z4)
a15(X0, Y1, Y2, 23, 24) = (X0, Y1, 072, 23, Z4)

(T()’(X(), ¥1, ¥2, 23, 24) = (xO, Y, = Y2, 24, Z3)
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where xo, y1, ¥2, z3 and z4 are weighted homogeneous coordinates of
P(1, 2, 2,3, 3) and w = exp(2mi/3). By using this classification, we have
shown:

® has the 2-dimensional 3o € Aut(X,;) which is
fibre through m € M < conjugate to o3,

® has the positive dimensional = 3o € Aut(X,;) which is
fibre through m € M conjugate to o, or og

(see, for detail, [10] and [11]).

In this paper, we investigate those canonical surfaces with p, =
ci=1 which have automorphisms conjugate to o;s. Let M;s be the set
of isomorphism classes of these surfaces. After our classification in
[11], we have:

Ms=the set of isomorphism classes of canonical surfaces with
pe = ¢ =1 and with an automorphism of order 3 acting trivially
on the holomorphic 2-forms.

Set o = o015 and let us consider smooth weighted complete inter-
sections of type (6, 6) in P =P(l, 2,2, 3, 3) with defining equations

02) { f =23+ fozaxd + fruyl+ fauy3 + forxdy1y2 + fooox$,

g = z5+ goz3x3 + i1y 1+ 822Y3 + on2X5Y1Y2 + ZoooX$.
These surfaces are stable under the action of . Denote by
(0.3) wis:&is—> Us

the smooth family of weighted complete intersections of type (6, 6) in
P(1, 2,2, 3, 3) with equations (0.2) parametrized by their 10 coefficients

(fo, f111, f222, forzs fooo, 80, 8111, 8222, Gor2, Bow) € U'ys C A".

The automorphism o € Aut(P) has the induced action on the family
(0.3) which is trivial on the parameter space U;s. We abuse the
notation o for indicating the induced automorphism of each fibre
X, = m55'(u) (u € Uy).

There exists a 4-dimensional subgroup H C G C Aut(P) (cf. (1.12))
and our Proposition (1.14) asserts that

U;s/H> M5 (and hence dim M5 = 6)
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sending u € U;s to the isomorphism class containing X,, and that, for
any X € M;s and for any automorphism « of X of order 3 acting
trivially on H%(X, Kx), there exists a point u € U;s and an isomor-
phism 7:X,5 X such that « = 7o\,

Let uy € U;s and set X, =X, (k=1,2). Take a basis wx, of

H°(Xi, Kx,)- Set
Hy(Xi, Z)° = Ker{l — 0 : HAX\, Z) > HAXy, Z)}.
Now our main theorem in the present paper is stated as follows:

THEOREM (3.4): Let u, € Uys (k = 1,2). Suppose that there exists a
path 7 in U,s joining u, and u, which induces an isometry

75 Hy(Xy, Z)” = Hi(X, Z)°

preserving the periods of integrals of the holomorphic 2-forms wx, on
Xk, i.e.

f wx, = (constant)f wx, forall y € HAX,, Z),
T*Y Y

where (constant) is independent of .
Then, there exists an isomorphism

T:X1—>X2

inducing the given isometry 74 and such v is uniquely determined up to
composition with an element of the group (o) generated by o. We have
also ror™'= o or %

Roughly speaking, Theorem (3.4) is proved by applying the Strong
Torelli Theorem for algebraic K3 surfaces (cf. [8], [1] and [7]) to the
K3 surfaces obtained as the desingularizations of X,/(o) (u € Us).

Our present results can be rephrased in the language of period map
as follows. Fix a base point uy € U;s and identify P2(X,,°, Z)= L. Set

u € Uss, 74 € Isom(P4X,, Z), L) coming from a path}

Uis= {(u, T+) 7 joining u and u in Uss

and

95’15:%555 Uss.
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Note that the fibre of U;s— Ujs is the geometric monodromy group
I'y,,=Im{m(U,s)—> Aut(L)}. Then we have, as in a similar way as
(0.1), the universal family

f1s: &is = ZislH ->M;s=U,s/H
and the period map
D5 Mls - D.
@5 induces a set-theoretic map
®,5: Mis—> DTy,

Our Proposition (1.17) and Theorem (3.4) assert that @; is unramified
and ®; is injective.
The following are unknown at present:

(0.4) Whether &5 is an immersion.

(0.5) The description of the difference of I'y, and I = Aut(L).

(0.6) The determination of the image of @;s.

(0.7) The study of the surfaces with automorphisms conjugate to
011 Or to oy.

(0.8) The determination of all the points of M through which & has
1-dimensional fibres.

Every variety in this paper is a variety over the field C of complex
numbers.

1. Surfaces with p, = ci=1

1.1. F. Catanese showed in [2] that the canonical models of the
surfaces with p, = ¢} =1 are represented as weighted complete inter-
sections of type (6, 6) in P=P(1,2,2,3,3). If we assume furthermore
that the canonical invertible sheaf Kx of the surface X in question is
ample, the canonical model of X is smooth and hence we can identify
X with its canonical model.

Let R = C[xo, y1, ¥2, 23, 24] be the weighted polynomial ring with
degxo=1, degy,=deg y,=2 and degz;=deg z,= 3. Catanese also
showed that the defining equations of the canonical models in ques-
tion are partially normalized as follows (cf. [2]):

(1.1) 3

{f =23+ fPzexo + f©,
g =2i+8"zxo+ 8%,
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[€)]

where f® and g” are linear and f and g® are cubic forms in x3, y,

and y,, i.e., by using the notation y, = x3,

fO = 02 fye 9= 0<.Z . FiikYi¥i¥ks

=i=2 =isj=sk

(1.2)
m— . ® =
g OZ gy, 8

=i=2 O=isj

R 8iikYiYiYk-

IIA

k=

Varying these 26 coeflicients f;, fix, g and gix, we get a family of
weighted complete intersections in P = P(1, 2, 2, 3, 3). Set

the corresponding surface is a
(1.3) U ={u € A®| smooth weighted complete intersections
of type (6,6) in P(1,2,2,3,3)

and let

(1.9) ¥ ->U

be the family of the surfaces in P(1, 2, 2, 3, 3). Note that U is a Zariski
open subset of A%,

Let G be the group consisting of the non-degenerate matrices over
C of the forms

do
0
le dll dlZ
(15) B dzo dz] d22 and
d; 0
0 lo 4,
do
0
le dll dl2
(1.6) dy | dy d»n
0 d
0 3
d, 0
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acting on P(1,2,2, 3, 3) as

Xo F> doxo
ir> 2 diy (i=1,2)
0=sj=2

z > diz; (i=3,4)
in case (1.5), and

Xo > d()x()
yi ""E diyyy (=12
057=2

Z23+> dszy

Z4 > dsz;

in case (1.6).

Since the canonical invertible sheaves of the surfaces X, (u € U)
are isomorphic to Ox,(1) and their defining equations are partially
normalized as (1.1), we can prove easily that every isomorphism
between the surfaces X, (u € U) is induced from some element in G
(see, for detail, [2] or [11]). Hence we see, by [4], that

(1.7) U/G = the coarse moduli scheme of complete, smooth surfaces
with p, = ¢i=1 and K ample.

1.2. In [11], we classified the automorphisms of the surfaces X
with p, = ¢} =1 and Kx ample, and determined the induced action on
H*(X, C), on H**(X) and on H'(X, Tx).

Among these automorphisms we are mainly interested in the
present paper in ;s in Theorem (2.14) in [11]. We fix, throughout this
paper, the notation

(1.8) oc=0s5=(1,0,0%,1,)EG

which means the diagonal matrix

o= ) , where w = exp(27r\/—_f/3).
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Set

(1.9) Us={u€ U |ou=u}

and denote by

(1.10) wis: 15— Uss

the family induced from (1.4) by U;s & U. More explicitly, the defining

equations of the surfaces X, = 7is"(u) (u € Ujs) have the following

forms:

f =23+ fozaxd+ finyi+ faoy3 + forx3y1y2 + fowox$,

iy [T I e e e ,
8 = z3+ goz3xot+ giuY1+ &22¥2 1 8o12X5Y1Y2 + SoooXo-

Define
H={r€G |7(Us) N Uy @},

By an elementary calculation using (1.11), we can prove that H
consists of the following four types of matrices:

do dy
0 0
di 0 0 d,
0 d, d, 0
d; 0 d; 0
0 0 d 0 0 d
(1.12)
d() dO
0 0
dl 0 0 dl
0 d, d, 0
0 d; 0 d;
0
0 ds 0 d, 0

We can also prove, by using the forms (1.12), that H is the normalizer
of (o) in G, where (o) is the subgroup of G generated by o in (1.8).
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Set

(1.13) M,s=the set of the isomorphism classes of the complete,
smooth surfaces with p, = ¢} =1and K ample and with
an automorphism of order 3 acting trivially on the
holomorphic 2-forms.

ProrosITION (1.14): We have a natural bijection U;s/H= M;s as
sets and Uys/H is a 6-dimensional irreducible subvariety of the coarse
moduli space U/G in (1.7). Moreover, for any surface X € Ms and for
any automorphism o of X of order 3 acting trivially on H°(X, Kx),
there exist a point u € U;s and an isomorphism 7:X,> X satisfying

a=rT1o7

Proor: This is an immediate consequence of Theorem (2.14) in
[11]. Note that “natural” in the statement of the proposition means
that H-orbit of u € U;s corresponds to the isomorphism class con-
taining X, Q.E.D.

1.3. Let X = X, for some u € Ujs and let S be the parameter space
of the Kuranishi family of the deformations of X = X (s0€ S).

S is smooth and the Kuranishi family is universal (see, for detail,
[11]). Hence, o € Aut(X) has the induced action on S via the
identification X = X,. Set

(1.15) S°={s€ S |os=s}.

Note that, since o is of finite order, S” is a submanifold of S. Note

also that S” is the parameter space of the universal family of the

deformations of the pair (X, o) of the surface X and o € Aut(X).
Let

(1.16) ¢:S->D

be the period map, using the Hodge decomposition of the second
primitive cohomology group P*X,,C) (s €S), obtained from the
Kuranishi family, where D is the period domain (see, for detail, [5]).

PRroPOSITION (1.17) (Local Torelli theorem for the restricted family):
The restriction

res¢:S°—>D

of the period map ¢ in (1.16) is injective.
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Proor: First of all, note that o has induced actions on S as above
and also on D and that ¢ is o-equivariant with these induced actions.
Let

dd(so): Ts(so) = Tp(d(s0)

be the differential map of the period map ¢ at soE€ S. Since Ts(so)
(resp. To(é(sg)) can be identified with H'(X, Tx) (resp.
Hom(P>(X), P*(X))), we know, from Theorem (2.14) in [11], that
the decomposition of Ts(so) and Tp(¢(se)) into their eigen spaces
under the action of o are the following:

Ts(s) = T\® T,H T, with dim T, =dim T, = dim T,2=6,
Tp(dp(s)=TiPT.,PHT. withdimT;=S8,
dim T,=dim Tz=5,

(1.18)

where T, (resp. T)) is the A-eigen subspace of Ts(so) (resp. Tp(¢(s0))).

Since d(s¢) is also o-equivariant, dd(se) is compatible with the
decompositions in (1.18). Hence, from (1.18), Ker d¢(s,) contains at
least 2-dimensional subspace of T, T,:. On the other hand, it can be
shown easily (cf. [6], [2] or [11]) that dim Ker d¢(so) = 2. Thus, we can
conclude that

(1.19) TN Ker dé(so) = {0}.
Since Tso(so) = Ty, (1.19) means that

res do (o) : Tse(s0) = Tp(P(s0))
is injective. This shows that

res¢p:S°->D

is injective, because we consider S’ as germ. Q.E.D.

2. Structure theorem
We continue to use the notation in the previous section.
2.1. Let X =X, (u € Uys). Since o = (1, w, 0%, 1, 1) (see (1.18)), the
fixed points of X by o satisfy the equations

(21) xo=)’1=0,
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(22) Xo=Y2= 0 or
(2.3) y1=y2=0.

We can calculate easily that

the intersection number of the curves (xo=0)and (y;=0)=2(i=1,2)
the intersection number of the curves (y; = 0) and (y,= 0)=4.

Moreover, since o € Aut(X) is of finite order, the fixed points locus
X of X by o is smooth. Thus we get that X consists of 8 distinct
points. We denote these points by

2.4) X ={D, E; (i=1,2,3,4)}, where
D; (i =1, 2) satisfy the equations (2.1),
D; (i =3, 4) satisfy the equations (2.2) and
E; (i =1, 2, 3, 4) satisfy the equations (2.3).

Since we can take xozs/y3, yi/y» (resp. Xozs/yl, ya/ys; resp. yi/xi,
y2/x3) as local coordinates of X at D; (i = 1, 2) (resp. D; (i = 3, 4) resp.
E: (i=1,2,3,4)), we see that the induced actions of o on the normal
spaces of these points in X are

(wZ, w2) at Dl' (i = 19 2)a
2.5) (w,w) atD;(i=3,4)and
(w,w?) atE; (i=1,2,3,4).

Let
(2.6) X->X
be the blowing-up of X with center X°. Denote by
2.7 Diand E; (i=1,2,3,4)
the exceptional curves on X corresponding to the points D; and E; on
X respectively.

The action of o extends naturally on X so that the morphism (2.6)
is o-equivariant. From (2.5), we see that there are 2 distinct points,

say

2.8) Ei (=12,
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on each E; which are fixed by o, and the fixed points locus X° of X
by o is

(2.9) X ={D, E;(i=1,2,3,4;j=1,2)}.

We know, also from (2.5), that the induced action of o on the
normal bundle of each component of X in X is

(0?) along D (i=1,2),
along D; (i=3,4),
2.10) (») g D (' )
(0, 0) at Eqi (i=1,2,3,4) and
(0% 0?) at E, (i=1,2,3,4).
Let
.11 X->X

be the blowing-up of X with center X°. Denote by
(2.12) D,E and E; (i=1,2,3,4,j=1,2)

the curves on X which are the inverse images of D, the proper
transforms of E; and the exceptional divisors corresponding to E;
respectively.

The action of o extends again to X and we see, from (2.10), that
the fixed points locus X° of X by o is now a disjoint union of 12
curves, i.e.

(2.13) X°={D,E;(i=1,2,3,4;j=1,2)}

From (2.10) again, we know that the induced action of o on the
normal bundle of each component of X° in X is the following:

o1 (w) along D; (i =3,4) and along E;, (i = 1,2, 3, 4).
' (02 along D; (i = 1,2) and along E, (i = 1,2, 3, 4).
We denote by

(2.15) p:X->X

the composite morphism of (2.11) and (2.6). Note that p is o-
equivariant.
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We can calculate easily the self-intersection numbers of the excep-
tional curves on X of the morphism p:

(2.16) (D)*=(E;=-1, (E)’=-3 (i=1,2,3,4;j=1,2).
Denote by
(2.17) C and €

the canonical divisor of X and its proper transform by p in (2.15).
Since xo,= 0 is the homogeneous equation of C in X, C contains 4
points D; (i = 1,2, 3,4) in (2.4). From this fact we get that

(2.18) (€)= -3.

2.2. Since o € Aut(X) is of order 3 and X’ is of pure codimension
1, we get a ramified triple covering

(2.19) r:X-Y,

where Y = X/(o) is smooth. We denote by R the ramification locus
and by B the branch locus of r, i.e.

(2.20) R=X°=3 D+ 3 E; and B=rR).
1=i=4 1=i=4,j=12

We consider R and B as reduced curves.
We use the notation

@21) C'=r(), Di=rD), Ei=r(E) and Ej=r(Ey),
where all these curves are considered as reduced curves on Y.

LEMMA (2.22): All the curves in (2.21) are smooth, irreducible,
rational curves with self-intersection numbers

(C'Y=EP=-1 and D)=E;’=-3 (=1,2,3,4;,j=1,2).
PRrROOF: We see easily that C is a smooth curve of genus 2 by the
Jacobian criterion and adjunction formula. Hence, so is C, because C

is isomorphic to C. From the construction, we know that

(o= Yok
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is a triple covering ramified at 4 distinct points C N (S 1si=s Dy). Hence,
we see that €’ is a smooth, irreducible, rational curve by the Hurwitz
formula.

In the same way, by using the fact that

EA,—>EA:

is a triple covering ramified at 2 distinct points E; N (E;; + Ei), we can
prove that E’ are also smooth, irreducible, rational curves.

The same assertion for the curves D} and E); is trivial because they
are isomorphic to D; and E,~,~ respectively.

As for the statement for the self-intersection numbers, we can
obtain immediately from (2.16) and (2.18) by the projection for-
mula. Q.E.D.

2.3. Let
(2.23) q:Y->Y

be the morphism obtained by blowing-down the exceptional curves of
the first kind ¢’ and E} (i = 1,2, 3,4). Set

(224) C'=q(C), Ei=q(E), Di=q(D) and E}=q(E}
(i=1,2,3,4;j=1,2).

Then, C' and Ej are points, and D’ and E; are smooth, irreducible,
rational curves with self-intersection number —2.

We write down the configurations of the points and the curves
appeared in 2.1, 2.2 and 2.3 with their self-intersection numbers:

on X on X
———A———,
C ¢
. -1 -1
D, E,® D, 1 —.3
E, .
R Ell __1 —l El2
D4  Ese L. | - 2
2
(2.25) ) X L ks
D Ese D, -1 -3
3 E;;
. E _ - F
D E,® b, —! ! TN i
4 4 E4 )
E41 E42
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onY onY
&
P D
Eh E{ ™ Ej, -, E; -,
L2 nl BTy 3 PR
E3 E; ~SEj5 E; .

2.4. Now we can state the relation of our surfaces with K3 sur-
faces. We use the notation in 2.1, 2.2 and 2.3.

ProPOSITION (2.26) (Structure theorem): Set X =X, (ueU”’).
Then, starting from X, we can construct a diagram

where

(i) p is the morphism in (2.15), i.e. the morphism obtained by a
sequence of blowings-up at the fixed points by o, so that the fixed
points locus in X under the induced action of o is of pure codimension
1,

(ii) r is the morphism in (2.19), i.e. the natural projection onto the
quotient of X by the group (o) generated by o, and

(iii) q is the morphism in (2.23), i.e. the morphism obtained by
blowing-down onto the minimal model Y.

Moreover, we have that

(iv) Y is a minimal K3 surface,

(v) 3Cisiz4 D) — 2(Z1si=4,j-1,2 E}) is an ample divisor on Y, and

(vi) m(X -R)= {1}, where R is the ramification locus of r.

Proor: The remaining things to prove are the assertions (iv), (v)
and (vi).
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First, we will prove (iv). By the construction of Y, it is clear that
the unique holomorphic 2-form on X, vanishing on C and o-invariant,
gives a nowhere vanishing holomorphic 2-form on Y. Combining this
with q(Y) = q(X) =0, we get (iv).

For the proof of (v), we use the configuration (2.25). First of all, we

see that
2
)

=9<§‘, D§)2+4 (2 E;j)2=4>0.

e}

1=i=4

2.27) (3 ( 2 D%> —2 (1§i§4,1‘=1,2

By the assumption, C is ample and hence so is
p*U0)- (S D+ S E+2 (S E))
(3 )3(30)2 ().

Since r is a finite morphism and
s(e-(28)43(20)-2(25))

 r(nes(za)s(s)2(s k)
we sce that

12¢'-3 (3 B)+3 (S D1)-2 (S B3)

is an ample divisor on Y. Denote this divisor by F. Since ' and E’
are the exceptional curves of the morphism g, we see, by the Nakai
criterion of ampleness for F, that for any integral curve Z on Y

2.28) (3 (Z D’;) ) (2 E’i,-), z)
(B35 r)- o

Thus, the assertion (v) follows from (2.27) and (2.28) by the Nakai
criterion again.
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Finally, we will prove (vi). We use the result in [2]:
m(X) = {1}.
Since X7 consists of finite points, we see that
(2.29) m(X — X)) = m(X)={1}.
By using (2.29) and the following diagram
X—X”:LX—(RJr D E)

1=i=4
N

X-R

we get our assertion (vi). Q.E.D.

3. Torelli theorem

In this section, we will prove the Torelli theorem for the surfaces
with p,=ci=1, with an ample canonical divisor and with an
automorphism of order 3 acting trivially on the holomorphic 2-forms.

We continue to use the notation in the previous sections.

First, we give an elementary lemma which can be verified easily by
a standard argument using the discreteness of integral homology
groups.

LEMMA (3.1): Let  be a morphism of smooth families {V,},cr and
{Wiker of compact, complex manifolds over a complex manifold T

and suppose we are given a path a in T joining two points t and t' in
T.

Then, we have a commutative diagram

H,(V, Z) —2 H,(W, Z)

a*lz a*lz

H,(Vy, Z) —2 s H(W,, Z)

for all n, where ay is the isomorphism obtained by a C*-trivialization
along the path a, and this a is compatible with intersection products.
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Let wis:&1s—> Uys be the family in (1.10). For any two points
u € Ujs (k=1,2), taking a path 7 in U,s joining u; and u, and
applying Lemma (3.1), we get a commutative diagram

1-o
Hy(X,,Z) —— HxX,, Z)
(3.2) “lz T*lf

Hy(X», Z) —— Hi(X>, Z)

where X, = 7i5'(u) and 74 is the isometry obtained from the path 7.
Hence, we get the induced isometry

(3.3) Tx: HAX,, 2)’S HAX>, Z)°
of the kernels of 1— o in (3.2).

THEOREM (3.4): Suppose we are given two points u, € Uys (k =1, 2)
and a path 7 in Us joining u, and u,, and suppose the induced

isometry 74 in (3.3) preserves the periods of integrals of the holomol-
phic 2-forms wx, on Xy = wis'(w) (k = 1,2), i.e.

f wxz=(constant)f wx,
T*Y Y

for all y € HY(X,, Z)°, where (constant) is independent of vy.
Then, there exists an isomorphism

T X] =3 Xz
inducing the given 74 and such 7 is uniquely determined up to
composition with an element of the group (o) generated by o. We have

also ro7™'= o or .

ProoOF: Starting from the family (1.10), we can construct, in a
similar way as in the section 2, a commutative diagram

Flet L @ Ly
(3.5) , \\ //
mis & Ly w
UIS
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whose fibre over every point of U;s satisfies the properties (i) to (vi)
in Proposition (2.26). In fact, p and 7 in (3.5) can be constructed just
in the same way as p and r in the section 2, and the construction of §
in (3.5) is justified by the result in [3].

For k =1,2, set Xy = # (), Y« = 7 (), and Yy = 7w '(w), and
let px: Xi— Xi, re: Xc— Yi and qgi: Yi— Yi be the restrictions to the
fibres of the morphisms p, g and 7 in (3.5) respectively. We denote by
D¥, E® and E¥ the corresponding curves on X, and by C'®, D'®,
E{® and E}¥ the corresponding points and curves on Y, (k =1,2)
constructed in the section 2. Denote also by R. and B, the
ramification locus and the branch locus of the triple covering r, : X -
Y« (k=1,2). For a divisor F on a surface, we denote by [F] the
integral homology class represented by F.

Then, by Lemma (3.1), we get, from (3.5), the commutative diagram
of homology groups:

HyXy, Z)° <2 — Hy(X,, 2)° —2> Hy(Y,, Z) —= H(Y,, Z)

T*jz 4*12 4;12 ,;lg

Hy(Xy, Z)° «22— Hy(X,, 7)° —2— HyY2, Z) ——> HyY, Z)
(3.6)

Hy(X,, Z)° «<2— Hy(X,, 2)° —— HyY,, Z) —— H(Y,, Z)

nll 7 *ll T ;ll T "‘lz

HoXs, Z)° «——— Hy(Xy, 2)° —2— HyY,, ) —=— HAY,, Z)

where 74, 7} and 7§ are the induced isometries, like 74, from the path
7. By our construction of (3.5), we see that

37 #((DPD = [DP), #(EPD =[EPD, #(EPD=[EP],
T #(BD=[Bl, *,(D®)=[D{), L (E])=[EP.
Note also that p,,p% = id, qk*q,’f=id, rk*rf=3id and rfrk*=3id
k=1,2).
Let wg, (resp. oy,, wy,) be the holomorphic 2-form on X; (resp.
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Y, Y) induced from wy, (k = 1,2). Since

wak=f. wr =3, wx=3]  ox
Y qkY TkqkY PTkdkY

for any y € H)Y\, Z), we can deduce, by (3.6), the property

f wy, = (constant) f oy, forall y € H(Y,, Z)
.Y 4

*

from that on X,.
Since

(o023 =) (3 5r)-2 (3 #0)

from (3.7), we see, by (v) in Proposition (2.26), that 7', sends some
ample divisor class on Y, to an ample divisor class on Y.

Hence, we can apply the Strong Torelli Theorem for algebraic K3
surfaces proved and supplemented in [8], [1] and [7] to our case, and
we see that there exists uniquely the isomorphism

T'ZY[S Y2

inducing the isometry  in (3.6).
Considering (3.7) and intersection numbers, we can observe easily

(Di")=D® and 7(Ef")=E{
and hence, in particular,
(C'"=C® and 1(E®)=E®P.

Therefore, by the construction of qi:Yi— Yy, 7' can be lifted
uniquely to an isomorphism

"f"Zle)Yz

inducing the isometry 7} in (3.6).
Considering (3.7) and intersection numbers again, we see

#(By) = B..
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Since we know that r.: Xy — R~ Y« — By are universal coverings by
(vi) in Proposition (2.26), there exists an isomorphism

1::X1—R1;X2—R2

compatible with 7. Such 7 are unique up to the covering trans-
formation group (o). Now, by the Riemann Extension Theorem, 7
extends uniquely to an isomorphism

f:Xl:;Xz,

where we abuse the notation 7. 7 is compatible with 7' and hence
induces the isometry 7, in (3.6).
By the argument on intersection numbers, we get, from (3.7), that

#DM=DP, #EP)=E} and #EP)=EP.
Hence, 7 descends uniquely to an isomorphism
T. Xl 5 Xz

inducing the given isometry .
The other assertion follows easily. Q.E.D.
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