



|              |                                                                                                           |
|--------------|-----------------------------------------------------------------------------------------------------------|
| Title        | Torelli theorem for surfaces with $p_g = c_2 - 1 = 1$ and $K$ ample and with certain type of automorphism |
| Author(s)    | Usui, Sampei                                                                                              |
| Citation     | Compositio Mathematica. 1982, 45(3), p. 293-314                                                           |
| Version Type | VoR                                                                                                       |
| URL          | <a href="https://hdl.handle.net/11094/73373">https://hdl.handle.net/11094/73373</a>                       |
| rights       |                                                                                                           |
| Note         |                                                                                                           |

*The University of Osaka Institutional Knowledge Archive : OUKA*

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

# COMPOSITIO MATHEMATICA

SAMPEI USUI

**Torelli theorem for surfaces with  $p_g = c_1^2 = 1$  and  $K$  ample and with certain type of automorphism**

*Compositio Mathematica*, tome 45, n° 3 (1982), p. 293-314

[http://www.numdam.org/item?id=CM\\_1982\\_45\\_3\\_293\\_0](http://www.numdam.org/item?id=CM_1982_45_3_293_0)

© Foundation Compositio Mathematica, 1982, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (<http://www.compositio.nl/>) implique l'accord avec les conditions générales d'utilisation (<http://www.numdam.org/conditions>). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

*Article numérisé dans le cadre du programme  
Numérisation de documents anciens mathématiques  
http://www.numdam.org/*

## **TORELLI THEOREM FOR SURFACES WITH $p_g = c_1^2 = 1$ AND K AMPLE AND WITH CERTAIN TYPE OF AUTOMORPHISM**

Sampei Usui

### **0. Introduction**

The moduli space of isomorphism classes of surfaces with  $p_g = c_1^2 = 1$  is studied by Catanese in [2]. Every such surface with the ample canonical divisor can be represented as a smooth weighted complete intersection of type  $(6, 6)$  in  $\mathbf{P} = \mathbf{P}(1, 2, 2, 3, 3)$  parametrized by a Zariski open set  $U \subset \mathbf{A}^{26}$  (cf. (1.3)). This leads to a universal family

$$\pi' : \mathcal{X}' \rightarrow U.$$

There is an 8-dimensional subgroup  $G$  of  $\text{Aut}(\mathbf{P})$  (cf. (1.5) and (1.6)) acting on  $U$  with finite isotropy groups and

$$M = U/G = \begin{matrix} \text{the moduli space of canonical surfaces} \\ \text{with } p_g = c_1^2 = 1. \end{matrix}$$

In particular,  $\dim_{\mathbf{C}} M = 18$ .

The period domain  $D$ , which parametrizes polarized Hodge structures on the second primitive cohomology groups of the surfaces in question, is isomorphic to

$$\{[a] \in \mathbf{P}(L \otimes \mathbf{C}) \mid (a, a) = 0, (a, \bar{a}) > 0\}$$

where  $L$  is a free  $\mathbf{Z}$ -module of rank 20 equipped with a symmetric bilinear form  $( , )$  of signature  $(2, 18)$ . The group  $\Gamma = \text{Aut}(L)$  acts properly discontinuously on  $D$ .

Set

$$\tilde{U} = \{(u, \alpha) \mid u \in U, \alpha \in \text{Isom}(P^2(X_u, \mathbf{Z}), L)\} \quad \text{and} \quad \tilde{\mathcal{X}}' = \mathcal{X}' \times_{\mathcal{U}} \tilde{U}.$$

Then we have the universal family

$$(0.1) \quad \tilde{\pi} : \tilde{\mathcal{X}} = \tilde{\mathcal{X}}' / G \rightarrow \tilde{M} = \tilde{U} / G$$

of marked canonical surfaces with  $p_g = c_1^2 = 1$  (cf. Proposition (2.24) in [11]).  $\tilde{M}$  and  $\tilde{\mathcal{X}}$  are complex manifolds and this family serves as a universal family of the deformations of the surfaces in question. This gives a period map

$$\Phi : \tilde{M} \rightarrow D.$$

Catanese has shown in [2] (cf. also [12]) that  $\Phi$  has non-empty ramification locus  $\tilde{\Delta} \subset \tilde{M}$ . Thus the local Torelli fails at  $\tilde{m} \in \tilde{\Delta}$ . The problem then is to study how badly it can fail. First of all observe that

$$\dim \text{Ker } d\Phi(\tilde{m}) \leq 2.$$

This directly follows from the exact sequence

$$0 \longrightarrow H^0(C_{\tilde{m}}, \Omega_{X_{\tilde{m}}}^1 \otimes \mathcal{O}_{C_{\tilde{m}}}) \longrightarrow H^1(X_{\tilde{m}}, T_{X_{\tilde{m}}}) \xrightarrow{d\Phi(\tilde{m})} H^1(X_{\tilde{m}}, \Omega_{X_{\tilde{m}}}^1)$$

together with the fact that  $h^0(C_{\tilde{m}}, \Omega_{X_{\tilde{m}}}^1 \otimes \mathcal{O}_{C_{\tilde{m}}}) \leq h^0(C_{\tilde{m}}, \Omega_{C_{\tilde{m}}}^1) = 2$ , where  $C_{\tilde{m}}$  is the canonical curve of  $X_{\tilde{m}}$ . This means that the fibre of  $\Phi$  through  $\tilde{m} \in \tilde{M}$  has at most dimension 2. Todorov ([9]) and the author ([10]) have shown that this indeed happens for certain surfaces  $X_{\tilde{m}}$  which are double coverings of K3 surfaces.

We have classified in [11] the automorphisms of the surfaces in question and shown, in particular, that any automorphism of prime order of the surfaces in question is conjugate to one of  $\sigma_1, \sigma_3, \sigma_8, \sigma_{11}, \sigma_{15}, \sigma_0 \in \text{Aut}(\mathbf{P})$ , which are defined respectively by

$$\begin{aligned} \sigma_1(x_0, y_1, y_2, z_3, z_4) &= (x_0, y_1, y_2, z_3, -z_4) \\ \sigma_3(x_0, y_1, y_2, z_3, z_4) &= (x_0, y_1, y_2, -z_3, -z_4) \\ \sigma_8(x_0, y_1, y_2, z_3, z_4) &= (x_0, \omega y_1, y_2, z_3, z_4) \\ \sigma_{11}(x_0, y_1, y_2, z_3, z_4) &= (x_0, \omega y_1, \omega y_2, x_3, z_4) \\ \sigma_{15}(x_0, y_1, y_2, z_3, z_4) &= (x_0, \omega y_1, \omega^2 y_2, z_3, z_4) \\ \sigma_0(x_0, y_1, y_2, z_3, z_4) &= (x_0, y_1, -y_2, z_4, z_3) \end{aligned}$$

where  $x_0, y_1, y_2, z_3$  and  $z_4$  are weighted homogeneous coordinates of  $\mathbf{P}(1, 2, 2, 3, 3)$  and  $\omega = \exp(2\pi i/3)$ . By using this classification, we have shown:

$\Phi$  has the 2-dimensional  $\Leftrightarrow \exists \sigma \in \text{Aut}(X_{\tilde{m}})$  which is fibre through  $\tilde{m} \in \tilde{M}$   $\Leftrightarrow$  conjugate to  $\sigma_3$ ,

$\Phi$  has the positive dimensional  $\Leftrightarrow \exists \sigma \in \text{Aut}(X_{\tilde{m}})$  which is fibre through  $\tilde{m} \in \tilde{M}$   $\Leftrightarrow$  conjugate to  $\sigma_1$  or  $\sigma_8$

(see, for detail, [10] and [11]).

In this paper, we investigate those canonical surfaces with  $p_g = c_1^2 = 1$  which have automorphisms conjugate to  $\sigma_{15}$ . Let  $M_{15}$  be the set of isomorphism classes of these surfaces. After our classification in [11], we have:

$M_{15}$  = the set of isomorphism classes of canonical surfaces with  $p_g = c_1^2 = 1$  and with an automorphism of order 3 acting trivially on the holomorphic 2-forms.

Set  $\sigma = \sigma_{15}$  and let us consider smooth weighted complete intersections of type (6, 6) in  $\mathbf{P} = \mathbf{P}(1, 2, 2, 3, 3)$  with defining equations

$$(0.2) \quad \begin{cases} f = z_3^2 + f_0 z_4 x_0^3 + f_{111} y_1^3 + f_{222} y_2^3 + f_{012} x_0^2 y_1 y_2 + f_{000} x_0^6, \\ g = z_4^2 + g_0 z_3 x_0^3 + g_{111} y_1^3 + g_{222} y_2^3 + g_{012} x_0^2 y_1 y_2 + g_{000} x_0^6. \end{cases}$$

These surfaces are stable under the action of  $\sigma$ . Denote by

$$(0.3) \quad \pi'_{15}: \mathcal{X}'_{15} \rightarrow U_{15}$$

the smooth family of weighted complete intersections of type (6, 6) in  $\mathbf{P}(1, 2, 2, 3, 3)$  with equations (0.2) parametrized by their 10 coefficients

$$(f_0, f_{111}, f_{222}, f_{012}, f_{000}, g_0, g_{111}, g_{222}, g_{012}, g_{000}) \in U_{15} \subset \mathbf{A}^{10}.$$

The automorphism  $\sigma \in \text{Aut}(\mathbf{P})$  has the induced action on the family (0.3) which is trivial on the parameter space  $U_{15}$ . We abuse the notation  $\sigma$  for indicating the induced automorphism of each fibre  $X_u = \pi'^{-1}_{15}(u)$  ( $u \in U_{15}$ ).

There exists a 4-dimensional subgroup  $H \subset G \subset \text{Aut}(\mathbf{P})$  (cf. (1.12)) and our Proposition (1.14) asserts that

$$U_{15}/H \cong M_{15} \quad (\text{and hence } \dim M_{15} = 6)$$

sending  $u \in U_{15}$  to the isomorphism class containing  $X_u$ , and that, for any  $X \in M_{15}$  and for any automorphism  $\alpha$  of  $X$  of order 3 acting trivially on  $H^0(X, K_X)$ , there exists a point  $u \in U_{15}$  and an isomorphism  $\tau: X_u \xrightarrow{\sim} X$  such that  $\alpha = \tau \sigma \tau^{-1}$ .

Let  $u_k \in U_{15}$  and set  $X_k = X_{u_k}$  ( $k = 1, 2$ ). Take a basis  $\omega_{X_k}$  of  $H^0(X_k, K_{X_k})$ . Set

$$H_2(X_k, \mathbf{Z})^\sigma = \text{Ker}\{1 - \sigma: H_2(X_k, \mathbf{Z}) \rightarrow H_2(X_k, \mathbf{Z})\}.$$

Now our main theorem in the present paper is stated as follows:

**THEOREM (3.4):** *Let  $u_k \in U_{15}$  ( $k = 1, 2$ ). Suppose that there exists a path  $\tilde{\tau}$  in  $U_{15}$  joining  $u_1$  and  $u_2$  which induces an isometry*

$$\tau_*: H_2(X_1, \mathbf{Z})^\sigma \rightarrow H_2(X_2, \mathbf{Z})^\sigma$$

*preserving the periods of integrals of the holomorphic 2-forms  $\omega_{X_k}$  on  $X_k$ , i.e.*

$$\int_{\tau_* \gamma} \omega_{X_2} = (\text{constant}) \int_\gamma \omega_{X_1} \quad \text{for all } \gamma \in H_2(X_1, \mathbf{Z}),$$

*where (constant) is independent of  $\gamma$ .*

*Then, there exists an isomorphism*

$$\tau: X_1 \rightarrow X_2$$

*inducing the given isometry  $\tau_*$  and such  $\tau$  is uniquely determined up to composition with an element of the group  $\langle \sigma \rangle$  generated by  $\sigma$ . We have also  $\tau \sigma \tau^{-1} = \sigma$  or  $\sigma^2$ .*

Roughly speaking, Theorem (3.4) is proved by applying the Strong Torelli Theorem for algebraic K3 surfaces (cf. [8], [1] and [7]) to the K3 surfaces obtained as the desingularizations of  $X_u \langle \sigma \rangle$  ( $u \in U_{15}$ ).

Our present results can be rephrased in the language of period map as follows. Fix a base point  $u_0 \in U_{15}$  and identify  $P^2(X_{u_0}, \mathbf{Z}) = L$ . Set

$$\tilde{U}_{15} = \left\{ (u, \tau_*) \left| \begin{array}{l} u \in U_{15}, \tau_* \in \text{Isom}(P^2(X_u, \mathbf{Z}), L) \text{ coming from a path} \\ \tilde{\tau} \text{ joining } u \text{ and } u_0 \text{ in } U_{15} \end{array} \right. \right\}$$

and

$$\tilde{\mathcal{X}}'_{15} = \mathcal{X}'_{15} \times_{U_{15}} \tilde{U}_{15}.$$

Note that the fibre of  $\tilde{U}_{15} \rightarrow U_{15}$  is the geometric monodromy group  $\Gamma_{U_{15}} = \text{Im}\{\pi_1(U_{15}) \rightarrow \text{Aut}(L)\}$ . Then we have, as in a similar way as (0.1), the universal family

$$\tilde{\pi}_{15}: \tilde{\mathcal{X}}_{15} = \tilde{\mathcal{X}}'_{15}/H \rightarrow \tilde{M}_{15} = \tilde{U}_{15}/H$$

and the period map

$$\Phi_{15}: \tilde{M}_{15} \rightarrow D.$$

$\Phi_{15}$  induces a set-theoretic map

$$\bar{\Phi}_{15}: M_{15} \rightarrow D/\Gamma_{U_{15}}.$$

Our Proposition (1.17) and Theorem (3.4) assert that  $\Phi_{15}$  is unramified and  $\bar{\Phi}_{15}$  is injective.

The following are unknown at present:

- (0.4) Whether  $\Phi_{15}$  is an immersion.
- (0.5) The description of the difference of  $\Gamma_{U_{15}}$  and  $\Gamma = \text{Aut}(L)$ .
- (0.6) The determination of the image of  $\Phi_{15}$ .
- (0.7) The study of the surfaces with automorphisms conjugate to  $\sigma_{11}$  or to  $\sigma_0$ .
- (0.8) The determination of all the points of  $\tilde{M}$  through which  $\Phi$  has 1-dimensional fibres.

Every variety in this paper is a variety over the field  $\mathbf{C}$  of complex numbers.

## 1. Surfaces with $p_g = c_1^2 = 1$

**1.1.** F. Catanese showed in [2] that the canonical models of the surfaces with  $p_g = c_1^2 = 1$  are represented as weighted complete intersections of type  $(6, 6)$  in  $\mathbf{P} = \mathbf{P}(1, 2, 2, 3, 3)$ . If we assume furthermore that the canonical invertible sheaf  $K_X$  of the surface  $X$  in question is ample, the canonical model of  $X$  is smooth and hence we can identify  $X$  with its canonical model.

Let  $R = \mathbf{C}[x_0, y_1, y_2, z_3, z_4]$  be the weighted polynomial ring with  $\deg x_0 = 1$ ,  $\deg y_1 = \deg y_2 = 2$  and  $\deg z_3 = \deg z_4 = 3$ . Catanese also showed that the defining equations of the canonical models in question are partially normalized as follows (cf. [2]):

$$(1.1) \quad \begin{cases} f = z_3^2 + f^{(1)}z_4x_0 + f^{(3)}, \\ g = z_4^2 + g^{(1)}z_3x_0 + g^{(3)}, \end{cases}$$

where  $f^{(1)}$  and  $g^{(1)}$  are linear and  $f^{(3)}$  and  $g^{(3)}$  are cubic forms in  $x_0^2$ ,  $y_1$  and  $y_2$ , i.e., by using the notation  $y_0 = x_0^2$ ,

$$(1.2) \quad \begin{aligned} f^{(1)} &= \sum_{0 \leq i \leq 2} f_i y_i, & f^{(3)} &= \sum_{0 \leq i \leq j \leq k \leq 2} f_{ijk} y_i y_j y_k, \\ g^{(1)} &= \sum_{0 \leq i \leq 2} g_i y_i, & g^{(3)} &= \sum_{0 \leq i \leq j \leq k \leq 2} g_{ijk} y_i y_j y_k. \end{aligned}$$

Varying these 26 coefficients  $f_i$ ,  $f_{ijk}$ ,  $g_i$  and  $g_{ijk}$ , we get a family of weighted complete intersections in  $\mathbf{P} = \mathbf{P}(1, 2, 2, 3, 3)$ . Set

$$(1.3) \quad U = \left\{ u \in \mathbf{A}^{26} \left| \begin{array}{l} \text{the corresponding surface is a} \\ \text{smooth weighted complete intersections} \\ \text{of type (6, 6) in } \mathbf{P}(1, 2, 2, 3, 3) \end{array} \right. \right\}$$

and let

$$(1.4) \quad \mathcal{X}' \rightarrow U$$

be the family of the surfaces in  $\mathbf{P}(1, 2, 2, 3, 3)$ . Note that  $U$  is a Zariski open subset of  $\mathbf{A}^{26}$ .

Let  $G$  be the group consisting of the non-degenerate matrices over  $\mathbf{C}$  of the forms

$$(1.5) \quad \begin{array}{|c|c|c|} \hline d_0 & & \\ \hline d_{10} & d_{11} & d_{12} \\ d_{20} & d_{21} & d_{22} \\ \hline & 0 & \\ \hline & d_3 & 0 \\ & 0 & d_4 \\ \hline \end{array} \quad \text{and}$$

$$(1.6) \quad \begin{array}{|c|c|c|} \hline d_0 & & \\ \hline d_{10} & d_{11} & d_{12} \\ d_{20} & d_{21} & d_{22} \\ \hline & 0 & \\ \hline & 0 & d_3 \\ & d_4 & 0 \\ \hline \end{array}$$

acting on  $\mathbf{P}(1, 2, 2, 3, 3)$  as

$$\begin{cases} x_0 \mapsto d_0 x_0 \\ y_i \mapsto \sum_{0 \leq j \leq 2} d_{ij} y_j \quad (i = 1, 2) \\ z_i \mapsto d_i z_i \quad (i = 3, 4) \end{cases}$$

in case (1.5), and

$$\begin{cases} x_0 \mapsto d_0 x_0 \\ y_i \mapsto \sum_{0 \leq j \leq 2} d_{ij} y_j \quad (i = 1, 2) \\ z_3 \mapsto d_3 z_4 \\ z_4 \mapsto d_4 z_3 \end{cases}$$

in case (1.6).

Since the canonical invertible sheaves of the surfaces  $X_u$  ( $u \in U$ ) are isomorphic to  $\mathcal{O}_{X_u}(1)$  and their defining equations are partially normalized as (1.1), we can prove easily that every isomorphism between the surfaces  $X_u$  ( $u \in U$ ) is induced from some element in  $G$  (see, for detail, [2] or [11]). Hence we see, by [4], that

(1.7)  $U/G =$  the coarse moduli scheme of complete, smooth surfaces with  $p_g = c_1^2 = 1$  and  $K$  ample.

**1.2.** In [11], we classified the automorphisms of the surfaces  $X$  with  $p_g = c_1^2 = 1$  and  $K_X$  ample, and determined the induced action on  $H^2(X, \mathbb{C})$ , on  $H^{2,0}(X)$  and on  $H^1(X, T_X)$ .

Among these automorphisms we are mainly interested in the present paper in  $\sigma_{15}$  in Theorem (2.14) in [11]. We fix, throughout this paper, the notation

$$(1.8) \quad \sigma = \sigma_{15} = (1, \omega, \omega^2, 1, 1) \in G$$

which means the diagonal matrix

$$\sigma = \begin{bmatrix} 1 & & & & \\ & \omega & & 0 & \\ & & \omega^2 & & \\ & 0 & & 1 & \\ & & & & 1 \end{bmatrix}, \text{ where } \omega = \exp(2\pi\sqrt{-1}/3).$$

Set

$$(1.9) \quad U_{15} = \{u \in U \mid \sigma u = u\}$$

and denote by

$$(1.10) \quad \pi'_{15}: \mathcal{X}'_{15} \rightarrow U_{15}$$

the family induced from (1.4) by  $U_{15} \hookrightarrow U$ . More explicitly, the defining equations of the surfaces  $X_u = \pi'^{-1}_{15}(u)$  ( $u \in U_{15}$ ) have the following forms:

$$(1.11) \quad \begin{cases} f = z_3^2 + f_0 z_4 x_0^3 + f_{111} y_1^3 + f_{222} y_2^3 + f_{012} x_0^2 y_1 y_2 + f_{000} x_0^6, \\ g = z_4^2 + g_0 z_3 x_0^3 + g_{111} y_1^3 + g_{222} y_2^3 + g_{012} x_0^2 y_1 y_2 + g_{000} x_0^6. \end{cases}$$

Define

$$H = \{\tau \in G \mid \tau(U_{15}) \cap U_{15} \neq \emptyset\}.$$

By an elementary calculation using (1.11), we can prove that  $H$  consists of the following four types of matrices:

$$(1.12) \quad \begin{array}{c} \begin{array}{|c|c|c|} \hline d_0 & & \\ \hline & \begin{array}{|c|c|} \hline d_1 & 0 \\ \hline 0 & d_2 \\ \hline \end{array} & 0 \\ \hline \end{array} \quad \begin{array}{|c|c|c|} \hline d_0 & & \\ \hline & \begin{array}{|c|c|} \hline 0 & d_1 \\ \hline d_2 & 0 \\ \hline \end{array} & 0 \\ \hline \end{array} \\ \begin{array}{|c|c|c|} \hline 0 & \begin{array}{|c|c|} \hline d_3 & 0 \\ \hline 0 & d_4 \\ \hline \end{array} & \\ \hline \end{array} \quad \begin{array}{|c|c|c|} \hline 0 & \begin{array}{|c|c|} \hline d_3 & 0 \\ \hline 0 & d_4 \\ \hline \end{array} & \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{|c|c|c|} \hline d_0 & & \\ \hline & \begin{array}{|c|c|} \hline d_1 & 0 \\ \hline 0 & d_2 \\ \hline \end{array} & 0 \\ \hline \end{array} \quad \begin{array}{|c|c|c|} \hline d_0 & & \\ \hline & \begin{array}{|c|c|} \hline 0 & d_1 \\ \hline d_2 & 0 \\ \hline \end{array} & 0 \\ \hline \end{array} \\ \begin{array}{|c|c|c|} \hline 0 & \begin{array}{|c|c|} \hline 0 & d_3 \\ \hline d_4 & 0 \\ \hline \end{array} & \\ \hline \end{array} \quad \begin{array}{|c|c|c|} \hline 0 & \begin{array}{|c|c|} \hline 0 & d_3 \\ \hline d_4 & 0 \\ \hline \end{array} & \\ \hline \end{array} \\ \hline \end{array} \end{array}$$

We can also prove, by using the forms (1.12), that  $H$  is the normalizer of  $\langle \sigma \rangle$  in  $G$ , where  $\langle \sigma \rangle$  is the subgroup of  $G$  generated by  $\sigma$  in (1.8).

Set

(1.13)  $M_{15}$  = the set of the isomorphism classes of the complete, smooth surfaces with  $p_g = c_1^2 = 1$  and  $K$  ample and with an automorphism of order 3 acting trivially on the holomorphic 2-forms.

PROPOSITION (1.14): *We have a natural bijection  $U_{15}/H \cong M_{15}$  as sets and  $U_{15}/H$  is a 6-dimensional irreducible subvariety of the coarse moduli space  $U/G$  in (1.7). Moreover, for any surface  $X \in M_{15}$  and for any automorphism  $\alpha$  of  $X$  of order 3 acting trivially on  $H^0(X, K_X)$ , there exist a point  $u \in U_{15}$  and an isomorphism  $\tau: X_u \xrightarrow{\sim} X$  satisfying  $\alpha = \tau \sigma \tau^{-1}$ .*

PROOF: This is an immediate consequence of Theorem (2.14) in [11]. Note that “natural” in the statement of the proposition means that  $H$ -orbit of  $u \in U_{15}$  corresponds to the isomorphism class containing  $X_u$ . Q.E.D.

1.3. Let  $X = X_u$  for some  $u \in U_{15}$  and let  $S$  be the parameter space of the Kuranishi family of the deformations of  $X = X_{s_0}$  ( $s_0 \in S$ ).

$S$  is smooth and the Kuranishi family is universal (see, for detail, [11]). Hence,  $\sigma \in \text{Aut}(X)$  has the induced action on  $S$  via the identification  $X = X_{s_0}$ . Set

$$(1.15) \quad S^\sigma = \{s \in S \mid \sigma s = s\}.$$

Note that, since  $\sigma$  is of finite order,  $S^\sigma$  is a submanifold of  $S$ . Note also that  $S^\sigma$  is the parameter space of the universal family of the deformations of the pair  $(X, \sigma)$  of the surface  $X$  and  $\sigma \in \text{Aut}(X)$ .

Let

$$(1.16) \quad \phi: S \rightarrow D$$

be the period map, using the Hodge decomposition of the second primitive cohomology group  $P^2(X_s, \mathbb{C})$  ( $s \in S$ ), obtained from the Kuranishi family, where  $D$  is the period domain (see, for detail, [5]).

PROPOSITION (1.17) (*Local Torelli theorem for the restricted family*):  
*The restriction*

$$\text{res } \phi: S^\sigma \rightarrow D$$

*of the period map  $\phi$  in (1.16) is injective.*

**PROOF:** First of all, note that  $\sigma$  has induced actions on  $S$  as above and also on  $D$  and that  $\phi$  is  $\sigma$ -equivariant with these induced actions.

Let

$$d\phi(s_0) : T_S(s_0) \rightarrow T_D(\phi(s_0))$$

be the differential map of the period map  $\phi$  at  $s_0 \in S$ . Since  $T_S(s_0)$  (resp.  $T_D(\phi(s_0))$ ) can be identified with  $H^1(X, T_X)$  (resp.  $\text{Hom}(P^{2,0}(X), P^{1,1}(X))$ ), we know, from Theorem (2.14) in [11], that the decomposition of  $T_S(s_0)$  and  $T_D(\phi(s_0))$  into their eigen spaces under the action of  $\sigma$  are the following:

$$(1.18) \quad \begin{aligned} T_S(s_0) &= T_1 \oplus T_\omega \oplus T_{\omega^2} \quad \text{with } \dim T_1 = \dim T_\omega = \dim T_{\omega^2} = 6, \\ T_D(\phi(s_0)) &= T'_1 \oplus T'_\omega \oplus T'_{\omega^2} \quad \text{with } \dim T'_1 = 8, \\ \dim T'_\omega &= \dim T'_{\omega^2} = 5, \end{aligned}$$

where  $T_\lambda$  (resp.  $T'_\lambda$ ) is the  $\lambda$ -eigen subspace of  $T_S(s_0)$  (resp.  $T_D(\phi(s_0))$ ).

Since  $d\phi(s_0)$  is also  $\sigma$ -equivariant,  $d\phi(s_0)$  is compatible with the decompositions in (1.18). Hence, from (1.18),  $\text{Ker } d\phi(s_0)$  contains at least 2-dimensional subspace of  $T_\omega \oplus T_{\omega^2}$ . On the other hand, it can be shown easily (cf. [6], [2] or [11]) that  $\dim \text{Ker } d\phi(s_0) \leq 2$ . Thus, we can conclude that

$$(1.19) \quad T_1 \cap \text{Ker } d\phi(s_0) = \{0\}.$$

Since  $T_{S^\sigma}(s_0) = T_1$ , (1.19) means that

$$\text{res } d\phi(s_0) : T_{S^\sigma}(s_0) \rightarrow T_D(\phi(s_0))$$

is injective. This shows that

$$\text{res } \phi : S^\sigma \rightarrow D$$

is injective, because we consider  $S^\sigma$  as germ.

Q.E.D.

## 2. Structure theorem

We continue to use the notation in the previous section.

**2.1.** Let  $X = X_u$  ( $u \in U_{15}$ ). Since  $\sigma = (1, \omega, \omega^2, 1, 1)$  (see (1.18)), the fixed points of  $X$  by  $\sigma$  satisfy the equations

$$(2.1) \quad x_0 = y_1 = 0,$$

$$(2.2) \quad x_0 = y_2 = 0 \quad \text{or}$$

$$(2.3) \quad y_1 = y_2 = 0.$$

We can calculate easily that

the intersection number of the curves  $(x_0 = 0)$  and  $(y_i = 0)$  ( $i = 1, 2$ ) is 2,  
the intersection number of the curves  $(y_1 = 0)$  and  $(y_2 = 0)$  is 4.

Moreover, since  $\sigma \in \text{Aut}(X)$  is of finite order, the fixed points locus  $X^\sigma$  of  $X$  by  $\sigma$  is smooth. Thus we get that  $X^\sigma$  consists of 8 distinct points. We denote these points by

$$(2.4) \quad \begin{aligned} X &= \{D_i, E_i \mid i = 1, 2, 3, 4\}, \quad \text{where} \\ D_i \quad (i &= 1, 2) &\text{ satisfy the equations (2.1),} \\ D_i \quad (i &= 3, 4) &\text{ satisfy the equations (2.2) and} \\ E_i \quad (i &= 1, 2, 3, 4) &\text{ satisfy the equations (2.3).} \end{aligned}$$

Since we can take  $x_0 z_3 / y_2^2$ ,  $y_1 / y_2$  (resp.  $x_0 z_3 / y_1^2$ ,  $y_2 / y_1$ ; resp.  $y_1 / x_0^2$ ,  $y_2 / x_0^2$ ) as local coordinates of  $X$  at  $D_i$  ( $i = 1, 2$ ) (resp.  $D_i$  ( $i = 3, 4$ ) resp.  $E_i$  ( $i = 1, 2, 3, 4$ )), we see that the induced actions of  $\sigma$  on the normal spaces of these points in  $X$  are

$$(2.5) \quad \begin{aligned} (\omega^2, \omega^2) &\quad \text{at } D_i \quad (i = 1, 2), \\ (\omega, \omega) &\quad \text{at } D_i \quad (i = 3, 4) \text{ and} \\ (\omega, \omega^2) &\quad \text{at } E_i \quad (i = 1, 2, 3, 4). \end{aligned}$$

Let

$$(2.6) \quad \tilde{X} \rightarrow X$$

be the blowing-up of  $X$  with center  $X^\sigma$ . Denote by

$$(2.7) \quad \tilde{D}_i \text{ and } \tilde{E}_i \quad (i = 1, 2, 3, 4)$$

the exceptional curves on  $\tilde{X}$  corresponding to the points  $D_i$  and  $E_i$  on  $X$  respectively.

The action of  $\sigma$  extends naturally on  $\tilde{X}$  so that the morphism (2.6) is  $\sigma$ -equivariant. From (2.5), we see that there are 2 distinct points, say

$$(2.8) \quad \tilde{E}_{ij} \quad (j = 1, 2),$$

on each  $\tilde{E}_i$  which are fixed by  $\sigma$ , and the fixed points locus  $\tilde{X}^\sigma$  of  $\tilde{X}$  by  $\sigma$  is

$$(2.9) \quad \tilde{X}^\sigma = \{\tilde{D}_i, \tilde{E}_{ij} \ (i = 1, 2, 3, 4; j = 1, 2)\}.$$

We know, also from (2.5), that the induced action of  $\sigma$  on the normal bundle of each component of  $\tilde{X}^\sigma$  in  $\tilde{X}$  is

$$(2.10) \quad \begin{aligned} (\omega^2) & \quad \text{along } \tilde{D}_i \quad (i = 1, 2), \\ (\omega) & \quad \text{along } \tilde{D}_i \quad (i = 3, 4), \\ (\omega, \omega) & \quad \text{at } \tilde{E}_{i1} \quad (i = 1, 2, 3, 4) \quad \text{and} \\ (\omega^2, \omega^2) & \quad \text{at } \tilde{E}_{i2} \quad (i = 1, 2, 3, 4). \end{aligned}$$

Let

$$(2.11) \quad \hat{X} \rightarrow \tilde{X}$$

be the blowing-up of  $\tilde{X}$  with center  $\tilde{X}^\sigma$ . Denote by

$$(2.12) \quad \hat{D}_i, \hat{E}_i \quad \text{and} \quad \hat{E}_{ij} \quad (i = 1, 2, 3, 4; j = 1, 2)$$

the curves on  $\hat{X}$  which are the inverse images of  $\tilde{D}_i$ , the proper transforms of  $\tilde{E}_i$  and the exceptional divisors corresponding to  $\tilde{E}_{ij}$  respectively.

The action of  $\sigma$  extends again to  $\hat{X}$  and we see, from (2.10), that the fixed points locus  $\hat{X}^\sigma$  of  $\hat{X}$  by  $\sigma$  is now a disjoint union of 12 curves, i.e.

$$(2.13) \quad \hat{X}^\sigma = \{\hat{D}_i, \hat{E}_{ij} \ (i = 1, 2, 3, 4; j = 1, 2)\}.$$

From (2.10) again, we know that the induced action of  $\sigma$  on the normal bundle of each component of  $\hat{X}^\sigma$  in  $\hat{X}$  is the following:

$$(2.14) \quad \begin{aligned} (\omega) & \quad \text{along } \hat{D}_i \ (i = 3, 4) \text{ and along } \hat{E}_{i1} \ (i = 1, 2, 3, 4), \\ (\omega^2) & \quad \text{along } \hat{D}_i \ (i = 1, 2) \text{ and along } \hat{E}_{i2} \ (i = 1, 2, 3, 4). \end{aligned}$$

We denote by

$$(2.15) \quad p : \hat{X} \rightarrow X$$

the composite morphism of (2.11) and (2.6). Note that  $p$  is  $\sigma$ -equivariant.

We can calculate easily the self-intersection numbers of the exceptional curves on  $\hat{X}$  of the morphism  $p$ :

$$(2.16) \quad (\hat{D}_i)^2 = (\hat{E}_{ij})^2 = -1, \quad (\hat{E}_i)^2 = -3 \quad (i = 1, 2, 3, 4; j = 1, 2).$$

Denote by

$$(2.17) \quad C \text{ and } \hat{C}$$

the canonical divisor of  $X$  and its proper transform by  $p$  in (2.15). Since  $x_0 = 0$  is the homogeneous equation of  $C$  in  $X$ ,  $C$  contains 4 points  $D_i$  ( $i = 1, 2, 3, 4$ ) in (2.4). From this fact we get that

$$(2.18) \quad (\hat{C})^2 = -3.$$

**2.2.** Since  $\sigma \in \text{Aut}(\hat{X})$  is of order 3 and  $\hat{X}^\sigma$  is of pure codimension 1, we get a ramified triple covering

$$(2.19) \quad r: \hat{X} \rightarrow \hat{Y},$$

where  $\hat{Y} = \hat{X}/\langle \sigma \rangle$  is smooth. We denote by  $\hat{R}$  the ramification locus and by  $\hat{B}$  the branch locus of  $r$ , i.e.

$$(2.20) \quad \hat{R} = \hat{X}^\sigma = \sum_{1 \leq i \leq 4} \hat{D}_i + \sum_{1 \leq i \leq 4, j=1,2} \hat{E}_{ij} \quad \text{and} \quad \hat{B} = r(\hat{R}).$$

We consider  $\hat{R}$  and  $\hat{B}$  as reduced curves.

We use the notation

$$(2.21) \quad \hat{C}' = r(\hat{C}), \quad \hat{D}'_i = r(\hat{D}_i), \quad \hat{E}'_i = r(\hat{E}_i) \quad \text{and} \quad \hat{E}'_{ij} = r(\hat{E}_{ij}),$$

where all these curves are considered as reduced curves on  $\hat{Y}$ .

**LEMMA (2.22):** *All the curves in (2.21) are smooth, irreducible, rational curves with self-intersection numbers*

$$(\hat{C}')^2 = (\hat{E}'_i)^2 = -1 \quad \text{and} \quad (\hat{D}'_i)^2 = (\hat{E}'_{ij})^2 = -3 \quad (i = 1, 2, 3, 4; j = 1, 2).$$

**PROOF:** We see easily that  $C$  is a smooth curve of genus 2 by the Jacobian criterion and adjunction formula. Hence, so is  $\hat{C}$ , because  $\hat{C}$  is isomorphic to  $C$ . From the construction, we know that

$$\hat{C} \rightarrow \hat{C}'$$

is a triple covering ramified at 4 distinct points  $\hat{C} \cap (\sum_{1 \leq i \leq 4} \hat{D}_i)$ . Hence, we see that  $\hat{C}'$  is a smooth, irreducible, rational curve by the Hurwitz formula.

In the same way, by using the fact that

$$\hat{E}_i \rightarrow \hat{E}'_i$$

is a triple covering ramified at 2 distinct points  $\hat{E}_i \cap (\hat{E}'_{i1} + \hat{E}'_{i2})$ , we can prove that  $\hat{E}'_i$  are also smooth, irreducible, rational curves.

The same assertion for the curves  $\hat{D}'_i$  and  $\hat{E}'_{ij}$  is trivial because they are isomorphic to  $\hat{D}_i$  and  $\hat{E}_{ij}$  respectively.

As for the statement for the self-intersection numbers, we can obtain immediately from (2.16) and (2.18) by the projection formula. Q.E.D.

**2.3.** Let

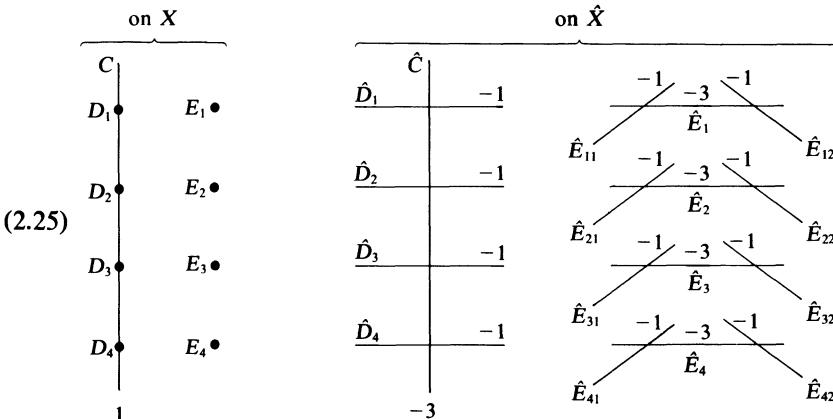
$$(2.23) \quad q : \hat{Y} \rightarrow Y$$

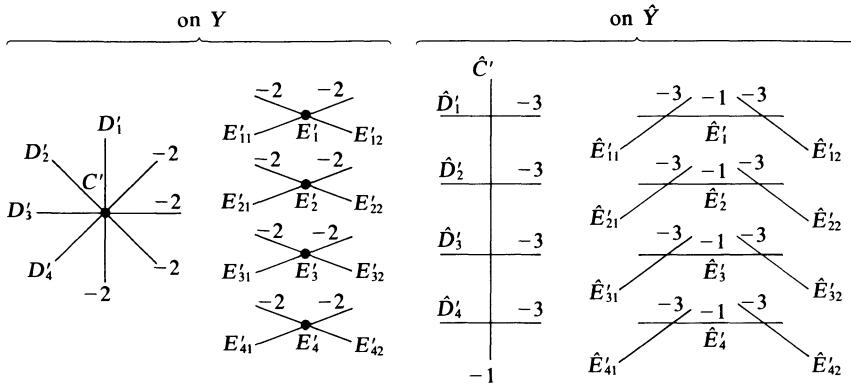
be the morphism obtained by blowing-down the exceptional curves of the first kind  $\hat{C}'$  and  $\hat{E}'_i$  ( $i = 1, 2, 3, 4$ ). Set

$$(2.24) \quad C' = q(\hat{C}'), \quad E'_i = q(\hat{E}'_i), \quad D'_i = q(\hat{D}'_i) \quad \text{and} \quad E'_{ij} = q(\hat{E}'_{ij}) \quad (i = 1, 2, 3, 4; j = 1, 2).$$

Then,  $C'$  and  $E'_i$  are points, and  $D'_i$  and  $E'_{ij}$  are smooth, irreducible, rational curves with self-intersection number  $-2$ .

We write down the configurations of the points and the curves appeared in 2.1, 2.2 and 2.3 with their self-intersection numbers:





**2.4.** Now we can state the relation of our surfaces with K3 surfaces. We use the notation in 2.1, 2.2 and 2.3.

**PROPOSITION (2.26) (Structure theorem):** Set  $X = X_u$  ( $u \in U^\sigma$ ). Then, starting from  $X$ , we can construct a diagram

$$\begin{array}{ccc} X & \xleftarrow{p} & \hat{X} \\ & & \downarrow r \\ Y & \xleftarrow{q} & \hat{Y} \end{array}$$

where

- (i)  $p$  is the morphism in (2.15), i.e. the morphism obtained by a sequence of blowings-up at the fixed points by  $\sigma$ , so that the fixed points locus in  $\hat{X}$  under the induced action of  $\sigma$  is of pure codimension 1,
- (ii)  $r$  is the morphism in (2.19), i.e. the natural projection onto the quotient of  $\hat{X}$  by the group  $\langle \sigma \rangle$  generated by  $\sigma$ , and
- (iii)  $q$  is the morphism in (2.23), i.e. the morphism obtained by blowing-down onto the minimal model  $Y$ .

Moreover, we have that

- (iv)  $Y$  is a minimal K3 surface,
- (v)  $3(\sum_{1 \leq i \leq 4} D'_i) - 2(\sum_{1 \leq i \leq 4, j=1,2} E'_{ij})$  is an ample divisor on  $Y$ , and
- (vi)  $\pi_1(\hat{X} - \hat{R}) = \{1\}$ , where  $\hat{R}$  is the ramification locus of  $r$ .

**PROOF:** The remaining things to prove are the assertions (iv), (v) and (vi).

First, we will prove (iv). By the construction of  $Y$ , it is clear that the unique holomorphic 2-form on  $X$ , vanishing on  $C$  and  $\sigma$ -invariant, gives a nowhere vanishing holomorphic 2-form on  $Y$ . Combining this with  $q(Y) \leq q(X) = 0$ , we get (iv).

For the proof of (v), we use the configuration (2.25). First of all, we see that

$$(2.27) \quad \begin{aligned} & \left( 3 \left( \sum_{1 \leq i \leq 4} D'_i \right) - 2 \left( \sum_{1 \leq i \leq 4, j=1,2} E'_{ij} \right) \right)^2 \\ &= 9 \left( \sum D'_i \right)^2 + 4 \left( \sum E'_{ij} \right)^2 = 4 > 0. \end{aligned}$$

By the assumption,  $C$  is ample and hence so is

$$\begin{aligned} p^*(4C) - & \left( \sum \hat{D}_i + \sum \hat{E}_i + 2 \left( \sum \hat{E}_{ij} \right) \right) \\ &= 4\hat{C} - \left( \sum \hat{E}_i \right) + 3 \left( \sum \hat{D}_i \right) - 2 \left( \sum \hat{E}_{ij} \right). \end{aligned}$$

Since  $r$  is a finite morphism and

$$\begin{aligned} & 3 \left( 4\hat{C} - \left( \sum \hat{E}_i \right) + 3 \left( \sum \hat{D}_i \right) - 2 \left( \sum \hat{E}_{ij} \right) \right) \\ &= r^* \left( 12\hat{C}' - 3 \left( \sum \hat{E}'_i \right) + 3 \left( \sum \hat{D}'_i \right) - 2 \left( \sum \hat{E}'_{ij} \right) \right), \end{aligned}$$

we see that

$$12\hat{C}' - 3 \left( \sum \hat{E}'_i \right) + 3 \left( \sum \hat{D}'_i \right) - 2 \left( \sum \hat{E}'_{ij} \right)$$

is an ample divisor on  $\hat{Y}$ . Denote this divisor by  $F$ . Since  $\hat{C}'$  and  $\hat{E}'_i$  are the exceptional curves of the morphism  $q$ , we see, by the Nakai criterion of ampleness for  $F$ , that for any integral curve  $Z$  on  $Y$

$$(2.28) \quad \begin{aligned} & \left( 3 \left( \sum D'_i \right) - 2 \left( \sum E'_{ij} \right), Z \right) \\ &= \left( q^* \left( 3 \left( \sum D'_i \right) - 2 \left( \sum E'_{ij} \right) \right), q^* Z \right) = (F, q^* Z) > 0. \end{aligned}$$

Thus, the assertion (v) follows from (2.27) and (2.28) by the Nakai criterion again.

Finally, we will prove (vi). We use the result in [2]:

$$\pi_1(X) = \{1\}.$$

Since  $X^\sigma$  consists of finite points, we see that

$$(2.29) \quad \pi_1(X - X^\sigma) = \pi_1(X) = \{1\}.$$

By using (2.29) and the following diagram

$$X - X^\sigma \leftarrow \hat{X} - \left( \hat{R} + \sum_{1 \leq i \leq 4} \hat{E}_i \right) \cap_{\hat{X} - \hat{R}},$$

we get our assertion (vi). Q.E.D.

### 3. Torelli theorem

In this section, we will prove the Torelli theorem for the surfaces with  $p_g = c_1^2 = 1$ , with an ample canonical divisor and with an automorphism of order 3 acting trivially on the holomorphic 2-forms.

We continue to use the notation in the previous sections.

First, we give an elementary lemma which can be verified easily by a standard argument using the discreteness of integral homology groups.

**LEMMA (3.1):** *Let  $\psi$  be a morphism of smooth families  $\{V_t\}_{t \in T}$  and  $\{W_t\}_{t \in T}$  of compact, complex manifolds over a complex manifold  $T$  and suppose we are given a path  $\alpha$  in  $T$  joining two points  $t$  and  $t'$  in  $T$ .*

*Then, we have a commutative diagram*

$$\begin{array}{ccc} H_n(V_t, \mathbf{Z}) & \xrightarrow{\psi_{t*}} & H_n(W_t, \mathbf{Z}) \\ \alpha_* \downarrow \wr & & \alpha_* \downarrow \wr \\ H_n(V_{t'}, \mathbf{Z}) & \xrightarrow{\psi_{t'*}} & H_n(W_{t'}, \mathbf{Z}) \end{array}$$

*for all  $n$ , where  $\alpha_*$  is the isomorphism obtained by a  $C^\infty$ -trivialization along the path  $\alpha$ , and this  $\alpha_*$  is compatible with intersection products.*

Let  $\pi'_{15}: \mathcal{X}'_{15} \rightarrow U_{15}$  be the family in (1.10). For any two points  $u_k \in U_{15}$  ( $k = 1, 2$ ), taking a path  $\tilde{\tau}$  in  $U_{15}$  joining  $u_1$  and  $u_2$  and applying Lemma (3.1), we get a commutative diagram

$$(3.2) \quad \begin{array}{ccc} H_2(X_1, \mathbf{Z}) & \xrightarrow{1-\sigma} & H_2(X_1, \mathbf{Z}) \\ \tau_* \downarrow & & \downarrow \tau_* \\ H_2(X_2, \mathbf{Z}) & \xrightarrow{1-\sigma} & H_2(X_2, \mathbf{Z}) \end{array}$$

where  $X_k = \pi'^{-1}_{15}(u_k)$  and  $\tau_*$  is the isometry obtained from the path  $\tilde{\tau}$ . Hence, we get the induced isometry

$$(3.3) \quad \tau_*: H_2(X_1, \mathbf{Z})^\sigma \xrightarrow{\sim} H_2(X_2, \mathbf{Z})^\sigma$$

of the kernels of  $1 - \sigma$  in (3.2).

**THEOREM (3.4):** Suppose we are given two points  $u_k \in U_{15}$  ( $k = 1, 2$ ) and a path  $\tilde{\tau}$  in  $U_{15}$  joining  $u_1$  and  $u_2$ , and suppose the induced isometry  $\tau_*$  in (3.3) preserves the periods of integrals of the holomorphic 2-forms  $\omega_{X_k}$  on  $X_k = \pi'^{-1}_{15}(u_k)$  ( $k = 1, 2$ ), i.e.

$$\int_{\tau_* \gamma} \omega_{X_2} = (\text{constant}) \int_\gamma \omega_{X_1}$$

for all  $\gamma \in H_2(X_1, \mathbf{Z})^\sigma$ , where (constant) is independent of  $\gamma$ .

Then, there exists an isomorphism

$$\tau: X_1 \xrightarrow{\sim} X_2$$

inducing the given  $\tau_*$  and such  $\tau$  is uniquely determined up to composition with an element of the group  $\langle \sigma \rangle$  generated by  $\sigma$ . We have also  $\tau \sigma \tau^{-1} = \sigma$  or  $\sigma^2$ .

**PROOF:** Starting from the family (1.10), we can construct, in a similar way as in the section 2, a commutative diagram

$$(3.5) \quad \begin{array}{ccccc} \mathcal{X}'_{15} & \xleftarrow{\bar{p}} & \hat{\mathcal{X}} & \xrightarrow{\bar{r}} & \hat{\mathcal{Y}} \\ \pi'_{15} \searrow & \hat{\pi} \swarrow & & \hat{\pi}' \swarrow & \pi' \searrow \\ & & U_{15} & & \end{array}$$

whose fibre over every point of  $U_{15}$  satisfies the properties (i) to (vi) in Proposition (2.26). In fact,  $\tilde{p}$  and  $\tilde{r}$  in (3.5) can be constructed just in the same way as  $p$  and  $r$  in the section 2, and the construction of  $\tilde{q}$  in (3.5) is justified by the result in [3].

For  $k = 1, 2$ , set  $\hat{X}_k = \hat{\pi}^{-1}(u_k)$ ,  $\hat{Y}_k = \hat{\pi}'^{-1}(u_k)$ , and  $Y_k = \pi'^{-1}(u_k)$ , and let  $p_k : \hat{X}_k \rightarrow X_k$ ,  $r_k : \hat{X}_k \rightarrow \hat{Y}_k$  and  $q_k : \hat{Y}_k \rightarrow Y_k$  be the restrictions to the fibres of the morphisms  $\tilde{p}$ ,  $\tilde{q}$  and  $\tilde{r}$  in (3.5) respectively. We denote by  $\hat{D}_i^{(k)}$ ,  $\hat{E}_i^{(k)}$  and  $\hat{E}_{ij}^{(k)}$  the corresponding curves on  $\hat{X}_k$  and by  $C'^{(k)}$ ,  $D_i'^{(k)}$ ,  $E_i'^{(k)}$  and  $E_{ij}'^{(k)}$  the corresponding points and curves on  $Y_k$  ( $k = 1, 2$ ) constructed in the section 2. Denote also by  $\hat{R}_k$  and  $\hat{B}_k$  the ramification locus and the branch locus of the triple covering  $r_k : \hat{X}_k \rightarrow \hat{Y}_k$  ( $k = 1, 2$ ). For a divisor  $F$  on a surface, we denote by  $[F]$  the integral homology class represented by  $F$ .

Then, by Lemma (3.1), we get, from (3.5), the commutative diagram of homology groups:

$$\begin{array}{ccccccc}
 H_2(X_1, \mathbf{Z})^\sigma & \xleftarrow{p_{1*}} & H_2(\hat{X}_1, \mathbf{Z})^\sigma & \xrightarrow{r_{1*}} & H_2(\hat{Y}_1, \mathbf{Z}) & \xrightarrow{q_{1*}} & H_2(Y_1, \mathbf{Z}) \\
 \tau_* \downarrow \wr & & \hat{\tau}_* \downarrow \wr & & \hat{\tau}'_* \downarrow \wr & & \tau'_* \downarrow \wr \\
 H_2(X_2, \mathbf{Z})^\sigma & \xleftarrow{p_{2*}} & H_2(\hat{X}_2, \mathbf{Z})^\sigma & \xrightarrow{r_{2*}} & H_2(\hat{Y}_2, \mathbf{Z}) & \xrightarrow{q_{2*}} & H_2(Y_2, \mathbf{Z})
 \end{array}$$

(3.6)

$$\begin{array}{ccccccc}
 H_2(X_1, \mathbf{Z})^\sigma & \xleftarrow{p_1^*} & H_2(\hat{X}_1, \mathbf{Z})^\sigma & \xrightarrow{r_1^*} & H_2(\hat{Y}_1, \mathbf{Z}) & \xrightarrow{q_1^*} & H_2(Y_1, \mathbf{Z}) \\
 \tau_* \downarrow \wr & & \hat{\tau}_* \downarrow \wr & & \hat{\tau}'_* \downarrow \wr & & \tau'_* \downarrow \wr \\
 H_2(X_2, \mathbf{Z})^\sigma & \xleftarrow{p_2^*} & H_2(\hat{X}_2, \mathbf{Z})^\sigma & \xrightarrow{r_2^*} & H_2(\hat{Y}_2, \mathbf{Z}) & \xrightarrow{q_2^*} & H_2(Y_2, \mathbf{Z})
 \end{array}$$

where  $\hat{\tau}_*$ ,  $\hat{\tau}'_*$  and  $\tau'_*$  are the induced isometries, like  $\tau_*$ , from the path  $\tilde{\tau}$ . By our construction of (3.5), we see that

$$\begin{aligned}
 (3.7) \quad & \hat{\tau}_*([\hat{D}_i^{(1)}]) = [\hat{D}_i^{(2)}], \quad \hat{\tau}_*([\hat{E}_i^{(1)}]) = [\hat{E}_i^{(2)}], \quad \hat{\tau}_*([\hat{E}_{ij}^{(1)}]) = [\hat{E}_{ij}^{(2)}], \\
 & \hat{\tau}'_*([\hat{B}_1]) = [\hat{B}_2], \quad \tau'_*([D_i'^{(1)}]) = [D_i'^{(2)}], \quad \tau'_*([E_{ij}'^{(1)}]) = [E_{ij}'^{(2)}].
 \end{aligned}$$

Note also that  $p_{k*}p_k^* = id$ ,  $q_{k*}q_k^* = id$ ,  $r_{k*}r_k^* = 3id$  and  $r_k^*r_{k*} = 3id$  ( $k = 1, 2$ ).

Let  $\omega_{\hat{X}_k}$  (resp.  $\omega_{\hat{Y}_k}$ ,  $\omega_{Y_k}$ ) be the holomorphic 2-form on  $\hat{X}_k$  (resp.

$\hat{Y}_k, Y_k$ ) induced from  $\omega_{X_k}$  ( $k = 1, 2$ ). Since

$$\int_{\gamma} \omega_{Y_k} = \int_{q_k^* \gamma} \omega_{\hat{Y}_k} = 3 \int_{r_k^* q_k^* \gamma} \omega_{\hat{X}_k} = 3 \int_{p_k^* r_k^* q_k^* \gamma} \omega_{X_k}$$

for any  $\gamma \in H_2(Y_k, \mathbf{Z})$ , we can deduce, by (3.6), the property

$$\int_{\tau'_* \gamma} \omega_{Y_2} = (\text{constant}) \int_{\gamma} \omega_{Y_1} \quad \text{for all } \gamma \in H_2(Y_1, \mathbf{Z})$$

from that on  $X_k$ .

Since

$$\tau'_* \left( \left[ 3 \left\{ \sum_i D_i'^{(1)} \right\} - 2 \left( \sum_{i,j} E_{ij}'^{(1)} \right) \right] \right) = \left[ 3 \left( \sum_i E_i'^{(2)} \right) - 2 \left( \sum_{i,j} E_{ij}'^{(2)} \right) \right]$$

from (3.7), we see, by (v) in Proposition (2.26), that  $\tau'_*$  sends some ample divisor class on  $Y_1$  to an ample divisor class on  $Y_2$ .

Hence, we can apply the Strong Torelli Theorem for algebraic K3 surfaces proved and supplemented in [8], [1] and [7] to our case, and we see that there exists uniquely the isomorphism

$$\tau': Y_1 \xrightarrow{\sim} Y_2$$

inducing the isometry  $\tau'_*$  in (3.6).

Considering (3.7) and intersection numbers, we can observe easily

$$\tau'(D_i'^{(1)}) = D_i'^{(2)} \quad \text{and} \quad \tau'(E_{ij}'^{(1)}) = E_{ij}'^{(2)}$$

and hence, in particular,

$$\tau'(C'^{(1)}) = C'^{(2)} \quad \text{and} \quad \tau'(E_i'^{(1)}) = E_i'^{(2)}.$$

Therefore, by the construction of  $q_k: \hat{Y}_k \rightarrow Y_k$ ,  $\tau'$  can be lifted uniquely to an isomorphism

$$\hat{\tau}': \hat{Y}_1 \xrightarrow{\sim} \hat{Y}_2$$

inducing the isometry  $\hat{\tau}'_*$  in (3.6).

Considering (3.7) and intersection numbers again, we see

$$\hat{\tau}'(\hat{B}_1) = \hat{B}_2.$$

Since we know that  $r_k : \hat{X}_k - \hat{R}_k \rightarrow \hat{Y}_k - \hat{B}_k$  are universal coverings by (vi) in Proposition (2.26), there exists an isomorphism

$$\hat{\tau} : \hat{X}_1 - \hat{R}_1 \xrightarrow{\sim} \hat{X}_2 - \hat{R}_2$$

compatible with  $\hat{\tau}'$ . Such  $\hat{\tau}$  are unique up to the covering transformation group  $\langle \sigma \rangle$ . Now, by the Riemann Extension Theorem,  $\hat{\tau}$  extends uniquely to an isomorphism

$$\hat{\tau} : \hat{X}_1 \xrightarrow{\sim} \hat{X}_2,$$

where we abuse the notation  $\hat{\tau}$ .  $\hat{\tau}$  is compatible with  $\hat{\tau}'$  and hence induces the isometry  $\hat{\tau}_*$  in (3.6).

By the argument on intersection numbers, we get, from (3.7), that

$$\hat{\tau}(\hat{D}_i^{(1)}) = \hat{D}_i^{(2)}, \quad \hat{\tau}(\hat{E}_{ij}^{(1)}) = \hat{E}_{ij}^{(2)} \quad \text{and} \quad \hat{\tau}(\hat{E}_i^{(1)}) = \hat{E}_i^{(2)}.$$

Hence,  $\hat{\tau}$  descends uniquely to an isomorphism

$$\tau : X_1 \xrightarrow{\sim} X_2$$

inducing the given isometry  $\tau_*$ .

The other assertion follows easily.

Q.E.D.

## REFERENCES

- [1] D. BURNS and M. RAPOPORT: On the Torelli problems for Kählerian K-3 surfaces. *Ann. scient. Éc. Norm. Sup. 4<sup>e</sup> sér. 8-2* (1975) 235-274.
- [2] F. CATANESE: Surfaces with  $K^2 = p_g = 1$  and their period mapping. Proc. Summer Meeting on Algebraic Geometry, Copenhagen 1978, *Lecture Notes in Math. No 732*, Springer Verlag, 1-29.
- [3] A. FUJIKI and S. NAKANO; Supplement to “On the inverse of Monoidal Transformation”, *Publ. R.I.M.S. Kyoto Univ. 7* (1972) 637-644.
- [4] D. GIESEKER: Global moduli for surfaces of general type. *Invent. Math. 43* (1977) 233-282.
- [5] P. GRIFFITHS: Periods of integrals on algebraic manifolds I, II, III: *Amer. J. Math. 90* (1968) 568-626; 805-865; *Publ. Math. I.H.E.S. 38* (1970) 125-180.
- [6] F.I. KINEV: A simply connected surface of general type for which the local Torelli theorem does not hold (Russian). *Cont. Ren. Acad. Bulgare des Sci. 30-3* (1977) 323-325.
- [7] E. LOOIJENGA and C. PETERS: Torelli theorems for Kähler K3 surfaces, *Comp. Math. 42-2* (1981) 145-186.
- [8] I. PIATECKI-ŠAPIRO and I.R. ŠAFAREVIČ: A Torelli theorem for algebraic surfaces of type K-3, *Izv. Akad. Nauk. 35* (1971) 530-572.

- [9] A.N. TODOROV: Surfaces of general type with  $p_g = 1$  and  $(K, K) = 1$ . I, *Ann. scient. Éc. Norm. Sup. 4<sup>e</sup> sér. 13-1* (1980) 1-21.
- [10] S. USUI: Period map of surfaces with  $p_g = c_1^2 = 1$  and  $K$  ample. *Mem. Fac. Sci. Kochi Univ. (Math.)* 2 (1981) 37-73.
- [11] S. USUI: Effect of automorphisms on variation of Hodge structure. *J. Math. Kyoto Univ.* 21-4 (1981).
- [12] F. CATÂNESE: The moduli and the global period mapping of surfaces with  $K^2 = p_g = 1$ : A counterexample to the global Torelli problem, *Comp. Math.* 41-3 (1980) 401-414.

(Oblatum 27-III-1981, 30-VI-1981)

Kochi University  
Department of Mathematics  
Faculty of Sciences  
Kochi, 780 Japan  
*Univ.* 21-4 (1981).