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Introduction

For a compact Kahler manifold X, P. A. Griffiths constructed and studied a
“period map” from the parameter space of the deformations of X to the “Griffiths
domain” which parametrizes the Hodge structures on the underlying differentiable
manifold of X ([2]). As one of these studies, he formulated the local Torelli
problem in the form (P,) in § 1, which asks whether a period map separates infinitely
near points (cf. [2] and also [7]). After examining this problem in some examples,
Griffiths presented in his article [3] a problem: “(7.1). PROBLEM*. Find methods
to treat the local Torelli theorem. In particular, decide whether it is true or false
for simply-connected canonical surfaces (i.e. surfaces with ample canonical bundle).”

The purpose of the present paper is to give a proof of the local Torelli theorem
for some non-singular “weighted complete intersections” (see Theorem 2.1 below).

In the author’s previous paper [7], he gave a proof of the local Torelli theorem
for non-singular complete intersections with ample canonical line bundle. On the
other hand, Sigefimi Mori introduced and studied a family of varieties so called
“weighted complete intersections” ([S]). Weighted complete intersections have
several properties similar to those of complete intersections (cf. [5] and also § 1),
so that our method in [7] is naturally applicable for some weighted complete inter-
sections. However, we need some assumptions (the assumptions i) and ii) in
Theorem 2.1) in order to let our method work well.

§ 3 includes the discussions on these assumptions and some examples for which
our method breaks down.

The author wishes to thank Professor S. Mori for the valuable suggestions.

§1. Preliminaries

a. Local Torelli porblem. In this subsection, we recall the formulation of
the local Torelli problem (for the background of this problem see [2] and also [7]).
Let X be a compact Kdhler manifold. The local Torelli problem is the ques-
tion whether the period map of Griffiths separates infinitely near points at the point,
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in the parameter space of the Kuranishi family of the deformations of X, corre-
sponding to X.
The local Torelli problem in r-th cohomology is formulated as follows.

(P) Let H(X, Tx)QH™ 1" X)—H""*%X) be the pairing induced from
TxQ2% -0 (1<i<Lr). Iste H(X,Ty) zero if t-a; is zero in H =44 X) for
every a; € H-t*1i-Y(X) (1<i<r)?

b. Weighted complete intersections. S. Mori generalized the notion of com-
plete intersection and studied so called “weighted complete intersections™ ([5]).
The following definitions and results are found in [5].

Definition 1.1. Let n, e, - - -, e, be positive integers. We set

m=l.c.m.{e, - -, e},
and
re)=r(ey, -+ -,e,)= min #{i|0<i<n, pte;}.

p: prime

Let K be a field.
Q(ey, - -+, €,), or simply Q(e) is the scheme Proj (K[X,, - - -, X,]), where the
gradation of K[X,, - - -, X,] is defined as follows;

deg X;=e; (0<i<n), and dega=0 (aeK).

For an integer a, @Opy,(a), or simply @py(a) is the coherent @p,-module corre-
sponding to the homogeneous K[X,, - - -, X,]-module K[X,, - - -, X,](a).

For a positive integer h, S, is the closed subset of Q(e), defined by the ideal
generated by {X,|hfe;}.

It is easy to see that the singular locus of Q(e) is (), S,-

Definition 1.2. With the notations in Definition 1.1, P(e,, - - -, e,), or simply
P(e) is the open subscheme Q(e)—|J,, S, of Q(e). We call the scheme P(e) a
weak projective space of size (e, - - -, e,), or simply of size (¢). We define @p(a)
=0y(a) | P(e) for every integer a.

Definition 1.3. With the notations in Definitions 1.1 and 1.2, let ¢, a,, - - -, a,
be positive integers. We consider Proj (K[X,, - - -, X,1/(F,, - - -, F.)) for homogene-
ous elements F,, - - -, F, in the graded ring K[X,, - - -, X, ] with deg F;=a; (1<j<c),
satisfying the following conditions.

i) F,, ---,F, form a regular sequence of K[X,, - - -, X,].

i) V,(F, -, FINUicrSph=9.

An algebraic K-scheme X is called a weighted complete intersection in P(e) of
type (a,, - - -, a.), if X is isomorphic to such a K-scheme
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Proj (K[X,, - -+, X,1/(F, - - -, Fo)).

In this case, for an arbitrary integer a, we denote by 0,(a) the @5-module in-
duced from 0p(a).

Results. (1) We see that codimgy,, |, ., S,=r(e), and the maximal dimension
of complete subschemes of P(e) is given by r(e)—1.

(2) 0p(1) is an invertible sheaf on P(e), and we have a natural isomorphism
0.(1)®2=50,(a) for every integer a.

(3) For a weighted complete intersection X, Ox(1) is an ample invertible sheaf.
Moreover, if dim X >3, then we have Pic X =~ Z and O4(1) generates Pic X.

(4) Let X=Proj (K[Xy, -+, X,1/(Fy, - -+, F.)) be a weighted complete inter-
section of dimension>1 in P(e) of type (a,, ---,a,). Then we have

(K[XO’ St Xn]/(Fl’ R Fc))aL)Ho(Xa ax(a)) (a € Z)9
H!(X, 04(a))=0 (a,je Z,0<j<n—c=dim X),

and
wx=@x(z: a;—2, ei)
j=1 i=0
where wy denotes the dualizing sheaf of X.
(5) We have the following exact sequence.
0—>0p——>P7_ Op(e;)—>T p—>0.
Restricting this sequence to a weighted complete intersection X in P(e), we have
0—> 03— P  Ox(e;)—>Tp| X—>0.

(6) If X is a non-singular weighted complete intersection in P(e) of type
(ap, - -+, a,), then the normal bundle N,p of X in P(e) is isomorphic to ®5.., Ox(a,),
and we have the following exact sequence.

0—>T3—>Tp|X—>Ny,p—>0.

§2. Local Torelli theorem

In this section, we shall apply the method used in the previous paper [7] to
non-singular weighted complete intersections.

We use the same notations as in § 1. We take K=C the field of complex
numbers.

The following theorem is our main result.

Theorem 2.1. Let X=Proj(C[X,, ---,X,]/(F,, ---,F.)) be a non-singular
weighted complete intersection in Ple,, - - -,e,) of type (a,, ---,a,) of dimension
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d>2. Assume that a;>1 (1<j<c), and that the canonical line bundle is ample.
Assume, furthermore,

i) e=e=1;

ii) for some integer b with 2<b<n, F,,---,F,, X,, X,, X, form a regular
sequence of C[X,, -+, X,].

Then the local Torelli theorem in the d-th cohomology holds for X.

Before proving the above theorem, we first reformulate the local Torelli problem
for such a non-singular weighted complete intersection X as in Theorem 2.1.

In addition to the notations in § 1, we use the following notations; R=C[X,,
..+, X,], I is the homogeneous ideal of R generated by {F,, - - -, F,}, and k is the
integer with 0x(k)=Kjy (cf. (4) in § 1).

From the exact sequence (5) in § 1, we have the exact sequence of cohomology
groups:

o (X, Ox(e))——>H'(X, Tp| X)—>H(X, 0x)—>D. H(X, Ox(e))).

By (4) in §1, we see that @7, H'(X, Ox(e;))=0, and that HYX, 05)=0 in case
d>2 and HXX, 03)—®r_, H(X, Ox(e,)) is injective in case d=2. Indeed, since
k>0, the last statement follows from the fact that the dual of this morphism

m_o H'(X, Ox(k—e;))—HY(X, 04(k)) is surjective (cf. (4) in § 1). Hence we have
H'(X,Tp|X)=0. Therefore, from the exact sequences (5) and (6) in § 1, we have
the following diagram.

7o H'(X, Ox(e,))
HX, Tp| X)—>®5., H(X, 0x(ay)—>H' (X, T x)—>0,

0

where the row and the column are exact. Tensoring K to the exact sequences (5)
and (6) in § 1, we obtain a similar diagram.

7o H'(X, Ox(e;+ k)
HX, Tp(k) | X) —>@5_, H(X, Ox(a+k)—>H'(X, T x(k)),

0

where the row and the column are exact. Note that the composite homomorphism
@r_o H'(X, Ox(e;+ £))—H(X, Tp(£) | X)—@5_; H'(X, Ox(a;+ £)) (6=0, k) is given
by the Jacobian matrix
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[OFI"'anFI]
F, - --d,F, ’

where 9;F, denotes 9F,;/3X,; (1<j<c,0<i<n). Therefore, in order to prove (P)
for r=d, it is enough to prove the following (P,).

(P,) Let @, be homogeneous elements in R of degree a; (1<j<c). Suppose
that, for each homogeneous element G in R of degree k, there exist homogeneous
elements A,, - - -, A, in R satisfying

?, [ R I o I
G = mod I.
o, 0F, - 0,F |4,

Then there exist homogeneous elements B, - - -, B, in R satisfying

Q, oFy -+« 0,.F ][ B,
E =] ccceeen mod I.
Qc oFc"'anFc Bn

In the statement (P,) above, we take G to be a monomial only in X,, X;. Then,
by splitting G into a product of X, (=0, 1) and another monomial and by multi-
plying the latter to @,’s, we modify (P,) a little stronger assertion as follows.

(P;) Let @, be homogeneous elements in R of degree <a;+k—1 (1<j<o).
Suppose that, for each v (v=0, 1), there exist homogeneous elements A, ---,A,,
in R with deg A,,<k+e; (0<i<n) satisfying

@1 aOFl cte anFl- Auo
(%,) xl:l=f - mod 1.
Qc UFc tre anFc_ Avn

Then there exist homogeneous elements B,, - - -, B, in R satisfying

D, 0.F, - - - 8,F,][ B,
=! ........ mod 1.
d)c ao c' " anFc _Bn

It is easy to see that, by the inductive use of (P;), we obtain (P,).
Next we prove some lemmas which play an essential roll in the proof of
Theorem 2.1.

Lemma 2.2. With the notations in Theorem 2.1, we have

H(X, Q57 (@)=0  (¢<).
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Proof. We prove this in two steps.
Step 1. H'(X, 25'(0) | X)—=>H"(X, 25(¥)) “<L1).

Indeed, we have the following exact sequence dual to the exact sequence (6)
in §1.

(1) 0—>N—>0% | X—>0Q4%—>0,

where N is the conormal bundle of X in P(e). By (6) in § 1, we have N=
@5-10x(—ay). The exact sequence (1) induces a filtration of 2%4°'|X. Tensoring
0x(£), we have the filtration

Q48| X=E,DE,D---DE;_,DE;=0

of Q4°%(¢)| X, with the successive quotients
Gi=Ei/Evi( A N) ®25-4).

Hence we have the following short exact sequences.
(2) 0—>E;,,—>E,—>G;—0 0<Ligd—-1).
Since a,>1 (1<j<o),

(f\ N) ®0x(6)  (>0,4<1)

are direct sums of negative line bundles. Hence, by the Nakano vanishing theorem,
we have

HI(X,G)=0 i>0,j=0,1).

Therefore, observing the cohomology sequences of the exact sequences (2), we
obtain the desired results.

Step 2. H'(X, 2%(4)| X)=0 “<L.

We have the following exact sequence dual to the exact sequence (5) in § 1.
(3) 00— 2% | X—> @7 Ox(—e;)—>0x—>0.
In case d=2, tensoring 0,(¢) to (3), we have

(4) 0—>2%(4) | X—> @7, 0x(£—e)——> 0z (£)—>0.
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For £<0, we see that H'(X, 0x(¢—e;))=0. Hence H'(X, 2%(¢)|X)=0. For ¢
=1, we see that

R ife-=1
H(X, 05(1—e, g{ 0 =1
@ Oxd—e) =" oSt
and that
H(X, 0x(1))=R,.

Hence we have

1, HYX, 0(1— e))—>H(X, 0x(1))
A
ZT l
R®: @R >R,

Therefore, by the exact sequence (4), we obtain the desired results in this case. In
case d >3, observe the following exact sequence induced from (3).

0—>0%(0) IX—>(d/_\l @, @x(—em) ® 0(0).
Since
H°(X, (/\ (@rs 0x(—e,))) ® @x(é)) —0 (<D,

we obtain the desired results. Q.E.D.
By virtue of Lemma 2.2, we obtain the following key lemma.

Lemma 2.3. Let A; be homogeneous elements in R with deg A;<k+e;+1
0<Li<Ln). Assume that

0 0,F, -+ - 0,F 1[4,
=] ccceeenn mod .
0 OoF, - 0,F, |4,
Then there exists a homogeneous element C in R, which is independent of the
suffix i, such that

A;=e,X,C mod]I 0<i<Ln).

Proof. From the exact sequences (5) and (6) in § 1, we have the following
diagram :
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H'(X, 0x(£))

Dr_y HY(X, O(e;+ £)

a

0—>H(X, T5(£))—>H'X, To(£') | X)—t> H(X, N,p(£)).

Y

0

Since the composite homomorphism -« is given by the Jacobian matrix

[aoFl"'anF1
a0 c"'anFc ’

the statement of Lemma 2.3 is equivalent to
(5) H(X,Tx(¢)=0  (I'<k+1).

Moreover, since T yQK ,—>02%1, thatis, Tx(k)=02%", (5) is equivalent to Lemma
2.2. Q.E.D.

Finally we prove Theorem 2.1.

Proof. It is enough to prove the assertion (P,). Let X,(x,) (resp. X,(x,)) be
the equation obtained by multiplying X, (resp. X)) to the equation (*,) (resp. (%))
in (P,). By subtracing the equation X,(*,) from the equation X,(x,), we have that

0 aoFl tte anF1 XOAIO_XIAOO
E =] «ccccee ; mod 1.
0 aoFc cc anFc XOAln—XlAOn

Applying Lemma 2.3 for 4;=X,4,,—X,A4,;, we obtain C in R such that
(6) XA,,— X Ay=¢;X,C modlI 0<i<n).

We now use the assumption ii) repeatedly in order to cancel X,, X;, X,. Observing
the above formula (6) for i=b modulo (F,, - - -, F,, X,, X;), we can cancel X, and
we have

C=X,D+X,E mod I

for some D and E in R. Substituting this formula into (6), we have
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X (A4,,—e, X, D)— X (Ay+ e, X,E)=0 mod .
Observing this formula modulo (F,, - - -, F,, X,), we can cancel X, and we obtain
(7) Ay+e;X,E=X,B, mod [

for some B; in R (0<i<n). Substituting this formula (7) into (%,) in (P;), we have

2, 0F, -+ -9,F\|[ By oF1 - - 0:F ][ eXo
X, E =X, oo —E] «--c0e.. . mod /.
(Dc aOFc' : 'anFc Bn ach' : 'anFc ean

The last term in this equation vanishes by the Euler’s formula. Observing this
equation modulo (F,, ---,F,), we can cancel X, and we obtain the desired con-
clusion. Q.E.D.

§3. On the assumptions i) and ii) in Theorem 2.1

In this section we discuss the additional assumptions i) and ii) in Theorem 2.1.
We use the same notations as in § 1.
In the following cases, the assumptions i) and ii) in Theorem 2.1 are fulfiled.

Proposition 3.1. Let X=Proj (K[X,, ---, X,1/(Fy, - -+, F.)) be a weighted
complete intersection of dimension>2 in P(e). If one of the following conditions
is satisfied, then the assumption ii) in Theorem 2.1 is fulfiled.

i) e,=e,=1, and that dim X is the maximal dimension of the complete sub-
schemes of P(e).

ii) e,=e,=:-.-=e,_,=1. In this case, we may have to change X, - - -, X ,_,
by a linear transformation if necessary.

Proof. Casei). Let S, be a maximal dimensional component of the singular
locus (U<, S, of Q(e). We see that S,=V ,({X;|hfe;}) and that ${X;|hte}=r(e)
by definition. We have dim X =r(e)—1 by virtue of (1) in § 1. Hence we have that

${Fy - - B {X|hfe)=n+1.

On the other hand, by the definition of weighted complete intersection, we see that
XNS,=3J. Therefore, {F,, ---,F;} ] {X;|hfe;} form a regular sequence of R.
Case ii). In this case, the fixed points of the linear system K[X,, - -, X,], is
V. (X, ---,X,_,), which is the only singular point on Q(e¢). Therefore, by the
definition of weighted complete intersection, the assertion is verified. Q.E.D.

The following example also satisfies the assumptions i) and ii) in Theorem 2.1.

Example 3.2. Let n,q,¢ey, -+, €, €4, * *+,€5,q bE positive integers with
n>2 and with ¢,)=-.-=e,=1. Let K[X, --+, X, Xp41> -+ > Xn4ql be a graded
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ring whose gradation is given by deg X;=e¢; (0<i<n-4q). Letc be a non-negative

integer with n—c>2. Take homogeneous elements F,, - - -, F,, Fq,,, - -+, Fe,q i
K[X,, - -+, X,,,] of degree>1, which satisfy the following conditions (1) and (2).

(1) F,eK[X, ---,X,] (1<j<c), and F,, - - -, F, form a regular sequence of
K[X,, - -+, X,].

(2) Fop;=F.;+X}{; where F_,; e K[X,, ---,X,,,_,] and b, is a positive in-
teger (1<j<q).

Put Y ;=Proj (K[Xy, - -+, X 41/ (Fy, -, Fe,5) (0<j<q) and put Y=Y, and
X=Y,. Thenitis easy to see that the following properties (3) and (4) hold.

(3) Y is a complete intersection of dimension>2, and Y, is a weighted com-
plete intersection (1<j<q).

(4) The natural morphism Y ;,—Y,_,, corresponding to the inclusion

K[Xm ° 'aXn+j—1];_>K[X0: . ';Xn+j]’

is a b;-sheeted branched cyclic covering (1<j<q).
Changing variables X, - - -, X, by a linear transformation if necessary, we see
that the above example X satisfies the assumptions i) and ii) in Theorem 2.1.

Remark 3.3. Let Y be a complete intersection of dimension>3, and let

X=Y—Y, ,—> - —>Y,—>Y,=Y

be a sequence of branched cyclic coverings over Y, that is, Y ;—Y,_, is a branched
cyclic covering (1<j<q).

Then, by virtue of (3) in § 1, we see that, as in Example 3.2, such X becomes
a weighted complete intersection (cf. Corollary to Theorem 1.2 in [8]).

In case dim Y =2, the above statement is false in general (e.g. take Y =P' X P").

Next we show some examples for which we can not apply our method.
Before showing examples, we prove a lemma.

Lemma 3.4. Let Y be a non-singular projective algebaic variety over a field K
and let Z be a non-singular closed subsheme of Y defined over K. Let i: Y=——>P¥
be a projective embedding. Assume that dim Z<} dim Y.

Then there exists a hypersurface H in PY with the following properties.

i) Y .H is non-singular, and

ii) Y-H contains Z.

Moreover, we may assume that, for such a hypersurface H, deg H is large
enough.

Proof. Let £, be the 0y-ideal of Z. Let

¥ =Proj (@20 F3)—>Y
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be the blowing-up of Y with the center Z. Let L=i*@p(1) be the induced line
bundle on Y. Then it is seen that, for a large integer a, z*(L®*)®0y(1) is very
ample. Let j: Y=—>P" be the projective embedding by the global sections of
7*(L®*)®05(1). Note that each fibre of x is embedded linearly by j. We denote by
B the set {H’|H’ is a hyperplane of PY’, which contains some fibres of z~'(Z)—Z}.
B can be considered as a closed subscheme of Gr (N, N'—1). Since 77 }(Z)—Z is
a Pr-bundle, where r=codimy Z—1, Z can be considered as a closed subscheme of
Gr(N’,r). Now consider the following diagram.

FIN';N'—1,r)
p g

Gr(N’',N’'—1)DOB Gr(N’,r)DZ.
By definition, we see that B=pogq~'(Z). Since g is a P¥'~“*V-bundle, we see that

dim pog~'(Z)<dim g '(Z2)=N'—(r+1)+dim Z
=N’—(codimy Z—dim Z)<N’,

where the last inequality follows from the assumption dim Z<}dim Y. Hence
there is a hyperplane H’ of P?¥" which satisfies the following conditions.

i) Y.H’is non-singular, and

i”) H’ does not contain any fibres of 7~(Z)—Z.
Since 0y (x(H’)) =L®?, there is a hypersurface H of P¥ of degree a with Y- H=x=(H’).
It is easy to see that this hypersurface H possesses the required properties. Q.E.D.

The following example shows that if we admit only the assumption i) in Theorem
2.1, our argument in proving the local Torelli theorem breaks down.

Example 3.5. Let ¢, ¢, ¢,, ¢;, e, be positive integers. Assume that

(1) e,=e,=1, and that

(2) e, e, e, are greater than 1 and any two of them is mutually prime. Let
R=CI[X,, - - -, X,] be the graded ring with deg X;,=¢; (0<i<4). Put m=l.c.m.
{eg, + -+, e} =e,eq4e,, and let

Fi=X7+ XD+ e, X7/ + e, X7/ + e, X[/

be a homogeneous element in R of degree m. Put Y=Proj(R/(F,) and Z=
Proj (R/(F,, X,, X})). Then it is easy to see by the Jacobian criterion that ¥ and Z
are non-singular weighted complete intersections in P(e,, - - -, e,) of type (m) and of
type (m, 1, 1) respectively.

Applying Lemma 3.4 to Y, Z and L=0y(m), we have a homogeneous element
F,in R of degree am for a large enough integer a, satisfying the following conditions.
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(3) X=Proj(R/(F,, F,) is a non-singular weighted complete intersection in
P(ey, - - -, e,) of type (m, am).

(4) X contains Z.

For this X, it is easy to see the follows.

(5) H'X, 2%(£)%0 (£=e,, e, e,, €52, €,e,, e,¢;) (cf. the proof of Lemma 2.2).

(6) F,,F, X, X, do not form a regular sequence of R.

The fact (5) shows that if we want to prove the local Torelli theorem for this
X by our method, we shall have to begin cancelling by using X, and X,. Butitis
impossible because of the fact (6) (cf. the proof of Theorem 2.1).

The next example shows that we can not apply our method, if we remove the
assumption i) in Theorem 2.1.

Example 3.6. Let ¢,=5, ¢,=7, ¢,=8 and ¢,=9. Let X be a non-singular
weighted hypersurface in P(e,, e,, e,, €;) (such a X exists). For this X, it is easy to
see the following.

1) HYX, 2%(£))x0 ({=e.e,, i#]) (cf. the proof of Lemma 2.2). Hence, by
using any pair of {X,;|0<i< 3}, we can not begin canceling (cf. the proof of Theorem
2.1).
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