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Local Torelli theorem for some non-singular 
weighted complete intersections 

Introduction 

By Sampei Usu1 

(Received June 3, 1976) 

For a compact Kahler manifold X, P.A. Griffiths constructed and studied a 
"period map" from the parameter space of the deformations of X to the "Griffiths 
domain" which parametrizes the Hodge structures on the underlying differentiable 
manifold of X ([2]). As one of these studies, he formulated the local Torelli 
problem in the form (P,) in § 1, which asks whether a period map separates infinitely 
near points (cf. [2] and also [7]). After examining this problem in some examples, 
Griffiths presented in his article [3] a problem : "(7 .1). PROBLEM*. Find methods 
to treat the local Torelli theorem. In particular, decide whether it is true or false 
for simply-connected canonical surfaces (i.e. surfaces with ample canonical bundle)." 

The purpose of the present paper is to give a proof of the local Torelli theorem 
for some non-singular "weighted complete intersections" (see Theorem 2.1 below). 

In the author's previous paper [7], he gave a proof of the local Torelli theorem 
for non-singular complete intersections with ample canonical line bundle. On the 
other hand, Sigefimi Mori introduced and studied a family of varieties so called 
"weighted complete intersections" ([5]). Weighted complete intersections have 
several properties similar to those of complete intersections (cf. [5] and also § 1), 
so that our method in [7] is naturally applicable for some weighted complete inter­
sections. However, we need some assumptions (the assumptions i) and ii) in 
Theorem 2.1) in order to let our method work well. 

§ 3 includes the discussions on these assumptions and some examples for which 
our method breaks down. 

The author wishes to thank Professor S. Mori for the valuable suggestions. 

§ 1. Preliminaries 

a. Local Torelli porblem. In this subsection, we recall the formulation of 
the local Torelli problem (for the background of this problem see [2] and also [7]). 

Let X be a compact Kahler manifold. The local Torelli problem is the ques­
tion whether the period map of Griffiths separates infinitely near points at the point, 
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in the parameter space of the Kuranishi family of the deformations of X, corre­
sponding to X. 

The local Torelli problem in r-th cohomology is formulated as follows. 

(P1) Let H 1(X, T x)®Hr-i+l,i-l(X)-Hr-i,i(X) be the pairing induced from 

Tx®Q7x-t+ 1-Q7x-t (1::=;;i::=;;r). Is -r E H 1(X, Tx) zero if-r·at is zero in Hr-i,i(X) for 
every ai E Hr-i+l,i- 1(X) (1 ::=;;i::=;;r)? 

b. Weighted complete intersections. S. Mori generalized the notion of com­
plete intersection and studied so called "weighted complete intersections" ([5]). 

and 

The following definitions and results are found in [5]. 

Definition 1.1. Let n, e0, • • •, en be positive integers. We set 

m=l.c.m.{e0, • • ·, en}, 

r(e)=r(e0, ··•,en)= min #{ilO::=;;i::=;;n,p{et}-
p: prime 

Let K be a field. 
Q(e0, • • •, en), or simply Q(e) is the scheme Proj (K[X0 , • • •, X nD, where the 

gradation of K[X0, • • • , X nl is defined as follows ; 

deg Xi=et (O::=;;i::=;;n), .and deg a=O (a e K). 

For an integer a, 0ace/a), or simply 0a(a) is the coherent 0ac•J-module corre­
sponding to the homogeneous K[X0, • • ·, Xn]-module K[X0 , • • •, Xn](a). 

For a positive integer h, S,,, is the closed subset of Q(e), defined by the ideal 
generated by {Xt I h{ei}-

It is easy to see that the singular locus of Q(e) is U 1<,,, Sh. 

Definition 1.2. With the notations in Definition 1.1, P(e0, • • •, en), or simply 
P(e) is the open subscheme Q(e)-Ui<h Sh of Q(e). We call the scheme P(e) a 
weak projective space of size (e0, • • •, en), or simply of size (e). We define 0p(a) 

=0a(a) I P(e) for every integer a. 

Definition 1.3. With the notations in Definitions 1.1 and 1.2, let c, ai, • • •, a0 

be positive integers. We consider Proj (K[X0 , • • •, Xn]/(F" • • •, F0)) for homogene­
ous elements Fi, • • •, F 0 in the graded ring K[X0 , • • ·, X n1 with deg F1=a1 (1 ::=;;j::=;;c), 
satisfying the following conditions. 

i) F1, • • •, F0 form a regular sequence of K[X0 , • • ·, XnJ-

ii) V+(F1, ···,Fc)nU1<hSh=0. 
An algebraic K-scheme Xis called a weighted complete intersection in P(e) of 

type (a" • • •, a0 ), if Xis isomorphic to such a K-scheme 
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Proj (K[X0, • • ·, Xn]/(Fi, ···,Fe)). 

In this case, for an arbitrary integer a, we denote by 0 x(a) the 0 x-module in­
duced from 0p(a). 

Results. (1) We see that codima<•> LJ 1<,,,S,,,=r(e), and the maximal dimension 
of complete subschemes of P(e) is given by r(e)-1. 

(2) 0p(l) is an invertible sheaf on P(e), and we have a natural isomorphism 
0p(l)®a~0p(a) for every integer a. 

(3) For a weighted complete intersection X, 0x(l) is an ample invertible sheaf. 
Moreover, if dimX23, then we have.Picx~z and (i}x(l) generates PicX. 

(4) Let X=Proj (K[X0, • • ·,Xn]/(F1 , ···,Fe)) be a weighted complete inter­
section of dimension2 l in P(e) of type (a1, • • •, ae). Then we have 

(K[Xo, · · ·, Xn]/(F1, • • ·, Fe))a~H0(X, 0x(a)) (a E Z), 

H 1(X, (i}x(a))=O (a, j e Z, O<j<n-c=dimX), 

and 

where a, x denotes the dualizing sheaf of X. 
(5) We have the fallowing exact sequence. 

Restricting this sequence to a weighted complete intersection X in P(e), we have 

0------+(i/x----+EB~=o (i}x(e1,)---+T p I X----+O. 

(6) If X is a non-singular weighted complete intersection in P(e) of type 
(ai, • • •, ae), then the normal bundle N X/P of X in P(e) is isomorphic to EB1=1 (!} x(a 1), 

and we have the following exact sequence. 

0------+ T x----+ T p IX ----+N x 1p----+O. 

§ 2. Local Torelli theorem 

In this section, we shall apply the method used in the previous paper [7] to 
non-singular weighted complete intersections. 

We use the same notations as in § 1. We take K = C the field of complex 
numbers. 

The following theorem is our main result. 

Theorem 2.1. Let X =Proj (C[X0, • • •, Xn]/(Fi, •••,Fe)) be a non-singular 
weighted complete intersection in P(e0, • • •, en) of type (a1, • • ·, ae) of dimension 
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d?:_2. Assume that aJ>l (l-S:,j-S:,c), and that the canonical line bundle is ample. 
Assume, furthermore, 

i) e0=e1=1; 
ii) for some integer b with 2-S:, b -S:, n, F1, • • •, F 0 , X 0, X 1, X b form a regular 

sequence of C[X0, • • ·, X nl • 
Then the local Torelli theorem in the d-th cohomology holds for X. 

Before proving the above theorem, we first reformulate the local Torelli problem 
for such a non-singular weighted complete intersection X as in Theorem 2.1. 

In addition to the notations in § 1, we use the following notations; R=C[X0, 

• • •, Xn], I is the homogeneous ideal of R generated by {F1, • • •, F0}, and k is the 
integer with 0x(k)=Kx (cf. (4) in§ 1). 

From the exact sequence (5) in § 1, we have the exact sequence of cohomology 
groups: 

By (4) in § 1, we see that ffif= 0 H 1(X, 0x(ei))=O, and that H 2(X, 0x)=O in case 
d>2 and H2(X, 0x)-ffif= 0 H2(X, 0x(ei)) is injective in case d=2. Indeed, since 
k > 0, the last statement follows from the fact that the dual of this morphism 
ffif=o H0(X, 0x(k-et))-H0(X, 0x(k)) is surjective (cf. (4) in§ 1). Hence we have 
H 1(X, TplX)=O. Therefore, from the exact sequences (5) and (6) in§ 1, we have 
the following diagram. 

where the row and the column are exact. Tensoring Kx to the exact sequences (5) 
and (6) in§ 1, we obtain a similar diagram. 

ffi~=O H 0(X, (!) x(ei + k)) 

1 
H0(X, T p(k) IX) ~ffij=l H0(X, 0x(a+k))~H1(X, T x(k)), 

1 
0 

where the row and the column are exact. Note that the composite homomorphism 
ffif=o H0(X, 0x(et+ ,€))-H0(X, T p(t) IX)-ffij=l H0(X, 0x(aj+ £)) (t=O, k) is given 
by the Jacobian matrix 
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where aiFJ denotes aFJ/aX,, (1 ~j~c, O~i~n). Therefore, in order to prove (P1) 

for r=d, it is enough to prove the following (P2). 

(P2) Let </)J be homogeneous elements in R of degree ai (1:5:,j~c). Suppose 
that, for each homogeneous element G in R of degree k, there exist homogeneous 
elements A 0, • • •, A,. in R satisfying 

mod/. 

Then there exist homogeneous elements B 0, • • •, B,. in R satisfying 

modi. 

In the statement (P2) above, we take G to be a monomial only in X 0, X 1• Then, 
by splitting G into a product of X. (lJ=0, 1) and another monomial and by multi­
plying the latter to </) /s, we modify (P2) a little stronger assertion as follows. 

(P 3) Let </) J be homogeneous elements in R of degree ~ a 1 + k- 1 (1 ::;J~ c). 
Suppose that, for each lJ (lJ=0, 1), there exist homogeneous elements A,0, • • •, A,n 
in R with degA,;~k+ei (O~i~n) satisfying 

mod/. 

Then there exist homogeneous elements B0, • • •, B,. in R satisfying 

mod/. 

It is easy to see that, by the inductive use of (P3), we obtain (P2). 

Next we prove some lemmas which play an essential roll in the proof of 
Theorem 2.1. 

Lemma 2.2. With the notations in Theorem 2.1, we have 

(£~ 1). 
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Proof. We prove this in two steps. 

Step 1. (ts 1). 

Indef'<l, we have the following exact sequence dual to the exact sequence (6) 
in§ 1. 

(1) 

where N is the conormal bundle of X in P(e). By (6) in § 1, we have N= 
EB'.t= 1 0 x( -a J). The exact sequence (1) induces a filtration of .Q1,-1 IX. Tensoring 
0xU), we have the filtration 

of .Q1,-1(t) IX, with the successive quotients 

Hence we have the following short exact sequences. 

(2) 0--,)-Ei + 1--,)-Et--,)-G t--,)-0 cosisd-1). 

(i>O,tsl) 

are direct sums of negative line bundles. Hence, by the Nakano vanishing theorem, 
we have 

(i>O, i=O, 1). 

Therefore, observing the cohomology sequences of the exact sequences (2), we 
obtain the desired results. 

Step 2. (ts 1). 

We have the following exact sequence dual to the exact sequence (5) in § 1. 

( 3) 

In case d=2, tensoring 0x(t) to (3), we have 

( 4) 
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For £50, we see that H0(X, 0x(£-ei))=O. Hence H0(X, .Q}.(£) JX)=O. For£ 
= 1, we see that 

and that 

Hence we have 

if ei= 1, 
if ei> 1, 

Therefore, by the exact sequence (4), we obtain the desired results in this case. In 
case d?:_3, observe the following exact sequence induced from (3). 

Since 

(£51), 

we obtain the desired results. Q.E.D. 

By virtue of Lemma 2.2, we obtain the following key lemma. 

Lemma 2.3. Let Ai be homogeneous elements in R with deg Ai 5 k + ei + 1 
(O5i5n). Assume that 

mod/. 

Then there exists a homogeneous element C in R, which is independent of the 
suffix i, such that 

(O5i5n). 

Proof. From the exact sequences (5) and (6) in § 1, we have the following 
diagram: 
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Since the composite homomorphism f3 • a is given by the Jacobian matrix 

the statement of Lemma 2.3 is equivalent to 

( 5) H 0(X, T x<£'))=0 (iJ'~k+l). 

Moreover, since T x®Kx~ni-1, that is, T x(k)=Qi-1 , (5) is equivalent to Lemma 
2.2. Q.E.D. 

Finally we prove Theorem 2.1. 

Proof. It is enough to prove the assertion (P3). Let Xh,) (resp. Xi{*0)) be 
the equation obtained by multiplying X0 (resp. X 1) to the equation (*,) (resp. (*0)) 

in (P3). By subtracing the equation Xh0) from the equation Xo(*,), we have that 

modi. 

Applying Lemma 2.3 for Ai=X0A,i-X1A 0i, we obtain C in R such that 

(6) (O~i~n). 

We now use the assumption ii) repeatedly in order to cancel Xb, X 1, X0 • Observing 
the above formula (6) for i=b modulo (F1, • • •, F0 , X 0, X 1), we can cancel Xb and 
we have 

mod/ 

for some D and E in R. Substituting this formula into (6), we have 
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mod/. 

Observing this formula modulo (F1, •••,Fe, X 0), we can cancel X 1 and we obtain 

( 7) mod/ 

for some Bi in R (O~i~n). Substituting this formula (7) into (*0) in (P3), we have 

mod/. 

The last term in this equation vanishes by the Euler's formula. Observing this 
equation modulo (F1, •••,Fe), we can cancel X 0 and we obtain the desired con­
clusion. Q.E.D. 

§ 3. On the assumptions i) and ii) in Theorem 2.1 

In this section we discuss the additional assumptions i) and ii) in Theorem 2.1. 
We use the same notations as in § 1. 
In the following cases, the assumptions i) and ii) in Theorem 2.1 are fulfiled. 

Proposition 3.1. Let X =Proj (K[X0, • • ·, Xn]/(F1, •••,Fe)) be a weighted 
complete intersection of dimension?:_2 in P(e). If one of the following conditions 
is satisfied, then the assumption ii) in Theorem 2.1 is fulfiled. 

i) e0 = e1 = 1, and that dim X is the maximal dimension of the complete sub­
schemes of P(e). 

ii) e0=e1 = .. · =en-i = 1. In this case, we may have to change X 0 , .. ·, X n-i 
by a linear trans! ormation if necessary. 

Proof. Case i). Let S,., be a maximal dimensional component of the singular 
locus U1<1,,S,., of Q(e). We see that S"=V+({Xilh,!'ei}) and that #{Xilh,!'ei}=r(e) 
by definition. We have dimX =r(e)-1 by virtue of (1) in§ 1. Hence we have that 

On the other hand, by the definition of weighted complete intersection, we see that 
XnS,.,=0. Therefore, {Fi,•• •,Fe} U {Xilh,!'ei} form a regular sequence ofR. 

Case ii). In this case, the fixed points of the linear system K[X0, • • •, Xn] 1 is 
V+(X0 , • • •,Xn_ 1), which is the only singular point on Q(e). Therefore, by the 
definition of weighted complete intersection, the assertion is verified. Q.E.D. 

The following example also satisfies the assumptions i) and ii) in Theorem 2.1. 

Example 3.2. Let n, q, e0, • • •, en, en+i• · · ·, en+q be positive integers with 
n?:.2 and with e0= •••=en= 1. Let K[X0, • • ·, Xn, Xn+i• · · ·, Xn+q] be a graded 
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ring whose gradation is given by deg X, = e, (0 s i::,;; n + q). Let c be a non-negative 
integer with n-c?:_2. Take homogeneous elements F1, • • •, Fe, Fe+i, • • •, Fe+q in 
K[X0, • • ·, Xn+q] of degree> 1, which satisfy the following conditions (1) and (2). 

(I) F1 E K[X0, • • ·, Xn] (1 sjsc), and F1, ···,Fe form a regular sequence of 
K[Xo, · · ·, X n1-

(2) Fe+J=F~+i +X~L where F~+i E K[X0, • • ·, X n+J-i] and b1 is a positive in­
teger (1 sjsq). 

Put Y 1=Proj (K[Xo, · · ·, Xn+ 11/(F1, • • ·, Fe+J)) (Osjsq) and put Y = Y 0 and 
X=Yq. Then it is easy to see that the following properties (3) and (4) hold. 

(3) Y is a complete intersection of dimension?:_2, and Y 1 is a weighted com­
plete intersection (1 sjsq). 

(4) The natural morphism Yr-+Y1_ 1, corresponding to the inclusion 

is a b rsheeted branched cyclic covering (1 s j sq). 
Changing variables X 0, • • •, Xn by a linear transformation if necessary, we see 

that the above example X satisfies the assumptions i) and ii) in Theorem 2.1. 

Remark 3.3. Let Y be a complete intersection of dimension?:_ 3, and let 

be a sequence of branched cyclic coverings over Y, that is, Yr-+Y1_ 1 is a branched 
cyclic covering (1 sjsq). 

Then, by virtue of (3) in§ 1, we see that, as in Example 3.2, such X becomes 
a weighted complete intersection (cf. Corollary to Theorem 1.2 in [8]). 

In case dim Y =2, the above statement is false in general (e.g. take Y =P1 XP1). 

Next we show some examples for which we can not apply our method. 
Before showing examples, we prove a lemma. 

Lemma 3.4. Let Y be a non-singular projective algebaic variety over a field K 
and let Z be a non-singular closed subsheme of Y defined over K. Let i: Y~PN 
be a projective embedding. Assume that dim Z < ½ dim Y. 

Then there exists a hypersurface Hin pN with the following properties. 
i) Y • H is non-singular, and 

ii) Y • H contains Z. 
Moreover, we may assume that, for such a hypersurface H, degH is large 

enough. 

Proof. Let .f z be the <'.Dy-ideal of Z. Let 
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be the blowing-up of Y with the center Z. Let L=i*0p(l) be the induced line 
bundle on Y. Then it is seen that, for a large integer a, ir*(L®a)Q90y(l) is very 
ample. Let j: Y ~p:v' be the projective embedding by the global sections of 
ir*(L®a)@@p-(1). Note that each fibre of iris embedded linearly by j. We denote by 
B the set {H' I H' is a hyperplane of pN', which contains some fibres of 1r- 1(Z)-Z}. 
B can be considered as a closed subscheme of Gr (N', N' -1). Since 1r- 1(Z)-Z is 
a pr -bundle, where r = codimy Z-1, Z can be considered as a closed subscheme of 
Gr(N', r). Now consider the following diagram. 

Fl(N'; N' -1, r) 

y~ 
Gr(N', N'-l)-:::JB Gr(N', r)-:::JZ. 

By definition, we see that B=poq- 1(Z). Since q is a pN'-<r+ 1>-bundle, we see that 

dim poq- 1(Z):::;;dim q- 1(Z)=N' -(r+ 1) +dim Z 

=N'-(codimy Z-dim Z)<N', 

where the last inequality follows from the assumption dim Z < ½ dim Y. Hence 
there is a hyperplane H' of pN' which satisfies the following conditions. 

i') Y • H' is non-singular, and 
i") H' does not contain any fibres of 1r- 1(Z)---,,z. 

Since 0y(ir(H')) =L®a, there is a hypersurface Hof pN of degree a with Y • H =ir(H'). 

It is easy to see that this hypersurface H possesses the required properties. Q.E.D. 

The following example shows that if we admit only the assumption i) in Theorem 
2.1, our argument in proving the local Torelli theorem breaks down. 

Example 3.5. Let e0 , e1, e2, e3 , e4 be positive integers. Assume that 
(1) e0=e1=l, and that 
(2) e2, e3, e4 are greater than 1 and any two of them is mutually prime. Let 

R=C[X0, • • •, X4] be the graded ring with degXt=ei (0:::;;i:::;;4). Put m=l.c.m. 
{e0 , • • ·, e4}=e2e3e4, and let 

be a homogeneous element in R of degree m. Put Y=Proj (R/(F1)) and Z= 
Proj (R/(F 1, X 0 , X 1)). Then it is easy to see by the Jacobian criterion that Y and Z 
are non-singular weighted complete intersections in P(e0, • • •, e4) of type (m) and of 
type (m, 1, 1) respectively. 

Applying Lemma 3.4 to Y, Zand L=0y(m), we have a homogeneous element 
F 2 in R of degree am for a large enough integer a, satisfying the following conditions. 



734 S. Usm 

(3) X =Proj (Rf (F1, F2)) is a non-singular weighted complete intersection in 
P(e0, • • •, e,) of type (m, am). 

(4) X contains Z. 
For this X, it is easy to see the follows. 
(5) H0(X, QHt))="i=O (t=e2, e3, e,, e3e,, e,e2 , e2e3) (cf. the proof of Lemma 2.2). 
(6) F 1, F 2, X 0, X 1 do not form a regular sequence of R. 
The fact (5) shows that if we want to prove the local Torelli theorem for this 

X by our method, we shall have to begin cancelling by using X 0 and Xi- But it is 
impossible because of the fact (6) (cf. the proof of Theorem 2.1). 

The next example shows that we can not apply our method, if we remove the 
assumption i) in Theorem 2.1. 

Example 3.6. Let e0=5, e1=7, e2=8 and e3=9. Let X be a non-singular 
weighted hypersurface in P(e0, ei, e2 , e3) (such a X exists). For this X, it is easy to 
see the following. 

(1) H0(X,QHt))="i=O (t=eteJ, i=!=j) (cf. theproofofLemma2.2). Hence, by 
using any pair of {Xt IO sis 3}, we can not begin canceling (cf. the proof of Theorem 
2.1). 
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