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Let X be a smooth projective variety with the ample canonical invertible 
sheaf Kx defined over C. Then, the Kuranishi family n:: X->S of the de­
formations of 7Z'-1 (s0) =X (s0 ES) is canonically polarized and universal, and 
hence Aut (X) induces an action on the family n:: X -s preserving s0• Take 
rJ E Aut (X) , set sa = { the fixed points of u in S} and denote by 11:lf: Xtl 
_,,St1 the restriction of the family 11:: X->S to S,,4S. Then (f induces an 
action on the variation H 6 = (Hz, vcr, F\ Q6 ) of polarized Hodge structures of 
weight n arising from the restricted family 11:t1: Xa--.st1. In particular, the 
local system H~=H"z®C (resp. each Hodge filter (F6 ) i) decomposes H';: 
= $1-]1 (resp. (Ft1) 1 = EB (FIT) 1) into the eigen subsheaves under the action 

l A 

of rJ and we have 

for each eigenvalue A (see Theorem 1. 4). In this manner, each automorphism 
of X imposes a restriction on the variation of Hodge structures. We state this 
fact in the section 1. 

In the sections 2 and 3, we study, as an example, the surfaces with 
Pu=d=l and K ample. We calculate all the automorphisms of these srfaces 
and determine explicidy the induced action of each automorphism on the vari­
ation H 6 = (H"z, f?a, F,,, Q") · of polarized Hodge structures of weight 2 arising 
from the restricted family n~: X,,->S~ (see Theorem 2. 14) (The calculation 
is carried out in the section 3). After constructing the fine moduli 7t: X 
-'>M of marked surfaces and period map ID: J..1 -'>D, we rephrase mainly 
interesting part of the above result into the language of period map ID and 
we get that some automorphisms of the surfaces X give an effect on the 
period map (/) to have positive· dimensional fibres through the points corres­
sponding to X (see Theorem 2. 29) . 

After having prepared this paper, the author notices the paper of K. N. Chakiris [10]. 
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The author thanks Professor A. Fujiki and Professor K. Ueno for useful 
suggestions. 

Notation and convention. 

Every variety, in this paper, is defined over the field C of complex 
numbers. 

For complex analytic manifold X, 

.Q:k = the sheaf of holomorphic 1-forms on X, 

.Q~=A QL 
Kx=det Q~ and 

Tx= the dual sheaf of J&}. 

§ I. General theory 

Let X be a d-dimensional smooth projective variety and let re: X->S 
be the Kuranishi family of the deformations of e: A-->X,, =n-1 (s0) (s0 ES). 
We denote by Aut(X, S, "• s0) the automorphisms of the family n:: x-s 
preserving the point s0 ES, and let 

e*: Aut (.X, S, r., s0)->Aut (X) 

be the homomorphism sending uEAut (X, S, 7C, s0) to e-10 (O"[x,.) oe EAut (X). 
We assume, for simplicity, the following two conditions throughout this 

section: 

(1. 1) The canonical invertible sheaf Kx of X is ample. 

(1. 2) The parameter sjJace S is smooth. 

Lemma I. 3. 

(1. 3. 1) The family 7C: X->S is canonically polarized. 

(1. 3. 2) Aut (X) is a finite group. 

(1. 3. 3) e*: Aut (X, S, it, s0)->Aut (X) is an isomorphism. 

Proof. Since we consider the family 1t: X->S in the sense of germ at 
s0 and since ampleness is an open condition, (1. 3. 1) follows from (1. 1). 

X is canonically polarized and hence Aut (X) is an algebraic group. 
By the vanishing theorem of Kodaira-Nakano, H 0 (X, T x) = 0, since Tx:::::::Qf,-1 

@K;1 and (1. 1). Therefore we have (1. 3. 2). 
H 0(X, Tx)=O implies that the Kuranishi family n: X-S has the universal 

property (cf. [9]). (1. 3. 3) is an immediate consequence of this universality. 
Q.E.D. 
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Let H = (Hz, Ji', F, Q) be the variation of polarized Hodge structures of 
weight n over S arising from the canonically polarized family rr: X-S 
(cf. [2], [ 4]). We recall here briefly the notation Hz, Ji', F and Q. Denote 
by wEH0 (S, R 2n*Z) the cohomology class of the relative canonical invertible 
sheaf Kx1s- Define 

n n c,>d-n+!J\ zd-nH 
P "*Q=Ker (R n-*Q--• R rc*Q) and 

P"rr*Z = P"rc*Q n Im (R"rc*Z-> R"rc*Q) . 

Then, we denote 

by Hz= the local system P"n*Z, 

by Ji' =the Gauss-Manin connection on H 0 =Hz®Os, 

by F=the Hodge filtration of H 0 and 

by Q= the locally constant bilinear form on H 0 defined by 

Q ($, 1J) = (-1) n(n-1)/2 I ~ /\1/ j\(J) (s) d.-n 

Jx. 
for f,1/EP"(X., C) =Ho(s) (sES), where X,=rc-1 (s) and w(s) EH1• 1 (X,) 
induced from w. 

Now we consider the effect of an automorphism of X on the variation 
of polarized Hodge structure H. Aut (X) acts on the family rr: 3: _.,,3 via 
(1. 3. 3). Take O"EAut (X) and denote by S" the fixed points of 6 in S. 
Note that S" is a submanifold of S because <J is of finite order. Let 

be the restriction of the family n: X->S to over S" and let H" = (Hz, Ji'\ F", Q") 
be the variation of polarized Hodge structure arising from the restricted family 
n": X"->S". We see, by functoriality, that 

H" = the restriction of H to S". 
Since (J induces the action on H", in particular, the Hodge filtration 

H~ = (F") 0 :::) (r) 1 :::) ···:::) (r)":::) {O} 

is compatible with the action of (J on H~ =H"z@{:}8a. Let 

He= EBHf (resp. (F") i = EB (F") D 
l l 

be the decomposition of the local system H 0 =H"z®C (resp. the locally 
free sheaf (F") ') into the eigen subsystems Hf (resp. subsheaves (F") i) 
under the action of 6, where l denotes the corresponding eigen value. 

Summarizing up the above, we can formulate the effect of an automrphism 
(J of X on the variation of polarized Hodge structures H as follows: 

Theorem 1. 4. With the above notion, we have 
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for each eigen value J.... 

Remark 1. 5. Recall that the identification Ts=R1n*Tx,s is com­
patible with the induced actions of Ci. Let 

be the decomposition into the subslieaves under the action of 6. Then 
we have 

that is, Ts11 can be considered as the subsheaf of R'n*Tx11,s11 consisting of 
the Ci-invariant sections. 

§ 2. Example; surfaces with Pu= Ci= I and K ample. 

(a) F. Catanese showed in [1] that every canonical model of a minimal 
surface X with f>u =Ci= 1 can be represented as a weighted complete intersec­
tion of type (6, 6) in P (1, 2, 2, 3, 3) (for the notion of ·weighted complete 
intersection see [7]). Note that if we assL1me furthermore the canonical in­
vertible sheaf Kx to be ample, X has no rational curves with self-intersection 
number -2 and hence X is isomorphic to its canonical model. 

Let R = C[x0, y 1, y 2, z 3, z4] be the weighted polynomial ring with deg Xo 

= 1, deg y 1 = deg y2 = 2 and deg z3 = deg Z 4 = 3. The defining equations of a 
smooth weighted complete intersection of type (6, 6) in P (1, 2, 2, 3, 3) can 
be normalized as follows (cf. [1]) : 

(2.1) { f=zi+ f. (IJ.Z4Xo+.,f<3)' 

g = z~ + g(I) Z3Xo + g<3) , 

where fen and gm are linear and f<3' and g<3l are cubic forms m x~, y 1 and 
y 2, i.e., by using the notation Yo=x!, 

. 
f<1>= ~f,Y;, 

i=O 

. 
g(l) = ~ (Jf.Yi, 

,~o 

These coefficients form a Zariski open set U in 26-dimensional affine space, 
that is, 

{ 
the corresponding surf ace is a smooth } 

U = u E A28 weighted complete intersection of type . 

(6, 6) in P(l, 2, 2, 3, 3) 
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For u, u' EU, denote by f and (] (resp. f' and g') the normalized forms 
as (2. 1) corresponding to u (resp. u') and by I,, (resp. Iw) the homogeneous 
ideal of R generated by f and g (resp. f' and g'), and set X,.=Proj(R/ Iu) 

(resp. X,.,=Proj(R/Iu,)). Since Kx,.=ux,.(1) (resp. Kx,.=c?xu(l)), we have 

EB H 0 (X,., Ki::') =::.R/1,, (resp. EB H 0 (X,.,, Kf::',) ~R/1,.,). 
m;;,,o m::;,o 

Hence, an isomorphism 6: X.,.->Xu• induces the automorphism as graded ring 
u: R->R with ul,v = I,, (we use the same letter 6 for simplicity of notation). 
More explicitly, (J can be represented by a non-degenerate matrix 

1 

d10 dn dn 

(2. 2) d:o d21 d22 

d3 

d, 

1 

dio dn d12 

(2. 3) d20 du dn 

d3 

d, 

with the action 

{ 
6xo = xo , 

<Jy,=d,ox~+duY1 +d,2Y2 

6z1=d1z, (i=3, 4), 

111 case (2. 2) , and 

111 case (2. 3) *i 

l UXo=Xo, 

uy,=d10x~+d11Y1 +d12Y2 

uza=d3z,, 
<Jz~=d,z3 , 

or 

(i=l, 2), 

(i = 1, 2), 

*> O' can be represented in this manner by choosing a suitable pair of isomorphisms Kx,.'.::::<'x,. (1) 
and Kx ,.,=:=e/x ,.•(1}. 
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Denote by G the group consisting of these matrices 6. Then, the induced 
action of G on U is 

f=fJf'/dL g = ug' /dI 

in case (2. 2) and 

g = <1 f' I aa , f = <1g' Id.: 

in case (2. 3). Note that the quotient space U/G is the coarse moduli space 

of the surfaces with Po= Ci= 1 and K ample (cf. [11]). 
Set n': X' ->U the smooth family of the weighted complete intersections 

of type (6, 6) in P (1, 2, 2, 3, 3) parametrized by U. The induced action of G 
on X' is evident. 

(h) Let X be a smooth weighted complete intersection of type (6, 6) 
m P = P (1, 2, 2, 3, 3). Denote by 1/1 a basis of S 0 (X, Kx) and by C the 

divisor of the zeros of t/J, i.e. the canonical divisor of X. By using the 
well-known exact sequences 

(2. 4) 

(2. 5) 

0->Tx-+T p@(Jx->N,y1p->0, 

0->c'Jx-> EB Bx(ei)->Tp@CJx->0 
o:s::,:s::~ 

(where e0 =l, e1 =e~=2 and e3=e.1 =3) and 

(2. 6) 

we can calculate easily the following data on cohomology groups: 

(2. 7) 

(2. 8) 

(2. 9) 

(2. 10) 

H 0 (X, Tx) =I-I2(X, Tx) =0, dim I--:l1(X, Tx) =18. 

H 0 (X, Q1;c) = 0, dim I-:I1 (X, Q~) = 19. 

H 1 (X, Tp@eJ.-i:) =0, dim H 1 (X, Tp®Kx) =1. 

dim S 0 (C, Q1;c@(Jc) <2. 

Let tJ) be the fundamental (1, 1)-form on X correspoi;iding to the canonical 

polarization of X and let 

H 1 (X, Tx®Kx) ~I--l2 (X, Kx) 

be the map defined as the contraction with (J). Tensoring Kx to the exact 
sequence (2. 4) and taking the cohomology sequence, we have 

H 0 (X, Nx,p®Kx) ~H1 (X, Tx®Kx) ->I-11 (X, T®Kx) 

Lemma 2.11. 

I-1° (X, N.r,p®Kx) !..:,.H1 (X, Tx®Kx) ~H2 (X, Kx) 
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is exact. 

Proof. t0EH1 (X, Q~) comes from some wEH1 (X, SJp@eJx) and we 
have a canonical factorization 

Since w is surjective and dim H 2 (X, Kx) = dim H 1 (X, T p@Kx) = l from (2. 9), 
we get our assertion. Q.E.D. 

(c) Let X be a surface with Pu= Ci= l and Kx ample. By (2. 7), we 
see that the Kuranishi family n: X->S of the deformations of s: X • X,, 
= rr- 1 (s0) (s0 ES) is a universal family with the smooth parameter space S 
of dimension 18. Let 1-I = (S, 1-Iz, 17, F, Q) be the variation of polarized Hodge 
structures of weight 2 arising from the family rr: X->S. 

Note that in case of weight 2, by virtue of the polarization Q, the Hodge 
filtration F can be uniquely determined by its second filter F2, i.e. F 0=H0 

and F 1 = (F2) L with respect to the bilinear form Q. Note also that rank F 0 

= dim P2 (X, C) = 20, rank Fl= dim P2• 0 (X) + dim pl. I (X) = 19 and rank F 2 

= dim P2•0 (X) = 1. Hence, in order to get the explicit form of the result (1. 4) 
for our present example, it is enough to perform the following program: 

(2. 12) Choose a rejJresentative from each equivalence class of 

where 

{(Jl 3X: a surface with P9 =ci=l and Kx amp[e, }/~ 
,s.t. rJeAut(.X.') 

(J r-.,{J' # 3 ' { X X': surface with P9 =ci =l and K ample, 

.-: x • x', 
s.t. rJeAut(X),rJ'eAut(X') and rJ'=r:orJor:-1• 

(2. 13) For each representative (J in (2. 12) and for each surface 
X with O"EAut (X), determine explicitly the decompositions of the sheaves 
H'h, (Fa) 2 and Ts<2)r:J8 a into their eigen sub sheaves under the induced 
action of O". (Here we' use the notation l-I'h, (Fa) 2 and T 8@CJS<T in the 
same sense as in the section l.) 

We will carry out the above procedure in the next section. Consequently, 
we obtain: 

Theorem 2. 14. r1ny automorfJhism u=/=id of a comj)lete, smooth 
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surface with Pu= Ci= l and K ample is equivalent, in the sense of (2.12) , 
to some {J, in the table below and such a u, is uniquely determined by 
Ci. The induced actions of {J on Ts®Dsft, H'::J and (F.r) 2 are as follows: 

u1= (1, 1, 1, 1, -1) 

u2= (1, 1, -1, -1, i) 

u3= (1, 1, 1, -1, -1) 

{J, = (1, -1, -1, i, i) 

us= (1, -1, -1, i, -i) 

68 = (1, 1, w, 1, 1) 

(J9= (1, 1, a>, 1, -1) 

G'10= (1, 1, (J), -1, -1) 

611 = (1, (J), t.O, 1, 1) 

U12 = (1, (J), (J), 1, -1) 

U13=(l,(J), -w, -1,i) 

uu= (1, w, (J), -1, -1) 

induced action of {J on Ts®Osft, (F([) 2 

and H.r respectively 

CI1s,-J3) (-1) 
(-110, J,) 

(11, - Is, il2, - il1) ( - i) 
( - ils, ils, h - 11) 

(112, -Io) (1) 
(112, -Is) 

(JG, -Ia, ih -il2) (-1) 
(-Is, h -il,, il,) 

(lo, - Ia, il3, - iJ3) (1) 
(Is, -h if,, -il,) 

(Iz, -1,, i]3, -ila, el1, e-111, -sl2, -e-112) (1) 
(I,, -1,, iI2, - il:, sl2, e-112, - el,, - s-1J2) 

(12, -I,, ila, -ila, s/2, s-1J1, - s/1, - s-1J2) ( -1) 
( -1,, I,, -if 2, il2, -el 2, - e-112, el 2, s-11,) 

(Iu, (J)J1, (Jil:) (a>) 
((J)]9, {J)2lo, 12) 

(11, Wlo, -12, -())11, (J)2]z) (-w) 
(-Wl1, -w2J7, {J)]z, ())212, -12) 

Us, wls, -h -Wl2, (}>212) (w) 
(wls,W 2ls, -wl,, -())21,,12) 

Ch t.02h (J)ls) (t.0 2) 

(t.0 211, t.011, Io) 

(Is, (JJ2],, t.Olo, -())12, 11) ( -())2) 

( - (J) 2fs, - wle, -I,, 12, ())2 Ii, (J)f1) 

CI:, - ()) 21:, -Ia, (Ji/2, (})[3, - (})[3, iwl1, -iwl1, il1) 
(-i(Ji) 

( - iw2l 3, iwl3, io:ila, -i(J)fa, - il2, il2, Ii, 
- Ix, ())211, (J)J 1) 

(I,, (J) 2f,, wl,, -(J)J,, -12) (w2) 

(W2ls, Wls, 12, -1,, -o>21:, -(J)l:) 



Variation of I-lodge structures 

0"10= (1, w, w2, 1, -1) 

<Fn = (1, w, W2, -1, -1) 

60, = (1, 1, -1, (1, 1)) 

6s,= (1, 1, -1, (1, -1)) 

CJo, wlo, (jifo) (1) 
(f10, (J)]G, W2Js) 

CJs, -Ii, wJ5, Q)2f5, -wI1, -QlI1) (-1) 
(-Is, 12, -(})]4, -al]4, wl1, ())211) 

(I,, -12, wl,, al14, -wl2, -(jJ2J2) (1) 
CJo, - ]4, Wla, (J)2la, - (})]2, - ())212) 

Ch-Jg) C-1) 
(-Iu,Ia) 

(Ia, -Ia, ila, -ils) (1) 
(Ir, -Is, il4, - i14) 

653 

lh = (1, i, - i, (1, i)) 
(Is, -Is,ils, -ifs, eI2, -e-111, e-111, -el2) (-i) 
(-i]4, il4, 12, -12, e-112, el2, -sl2, -s-112) 

6a, = (1, -1, w\ (1, 1)) 

<1w= (1, -1, w2, (1, -1)) 

where we use the notation: 

(14, w2I,, - Is, - alls, wI1, - wJ1) ( - w2) 
( - w2ls, -mls, w2J4, wJ4, -Ii, Ii) 

CI2, w2Is, -Ia, -w2I2, iI2, -iw2I1, -il2, ialli, 
wli, -wli) (w2) 

(w2Is, wla, -w2I2, -wl2, iw2I2, -iwl2, -iw2I2, 
iwl2, 11, -Ii) 

u,..__,Gt is the equivalence relation in (2. 12). 
i=v-1, w=exp(2n-i/3) and e=exp(2;ri/8). 

1 

eG and 

1 

di 

d2 EG. 

di 
d4 

(J..Jrn,, ... , lrlm,) indicates that the ranli of J..i-eigen subsheaves is m; 
(i=l, ···,r). 
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Remark 2. 15. There are seve1·al relations among u/ s in the table 
in Theorem (2.14), e.g. u:=O"~=O"~=u;=u~, 0'10 =6'80'11 0'1 etc. In particular, 
only the fallowing are of prime order: 

Corollary 2. 16. For any surface X with Pu=Ci =l and Kx ample, 

Aut (X) ->Aut (P2 (X, C)) 

is injective. 

Proof. This is an immediate consequence of Theorem 2. 14. Q.E.D. 

(d) In this subsection, we will rephrase some of the result in Theorem 
2. 14. We continue to use the notation X, 7C: X->S, H = (S, Hz, P, F, Q), 
n~: x~-sa and H~ = (S~, H"z, r~, F\ Qa) in the same sense as in the subsec­
tion (c). 

Let 

(2. 17) ¢: s-n 
be the period map associating to the variation of polarized Hodge structres 
H. Recall that (2. 17) is constructed in the following way: Fixing a c= -
trivialization of the family 1r: X->S, we get the isomorphisms a$: P 2 (X., C) 
->P2 (X, C) (sES) preserving the polarization Q. Then the map 

¢: S->P19 = {lines in P 2 (X, C) through the origin} 

defined by 

¢ ( s) = the line a, (P2• 0 (X,) ) in P 2 (X, C) 

is holomorphic and factorizes 

where 

s-pl9 
~ u 
DcD 

D= ffEP10 IQ(\;,~) =0} and 

D= ffE.DIQ(~,f) >O}. 

This map S->D is the period map (2. 17). 

Lemma 2. 18. The fibre of the period map ¢ through s0 is at most 
2-dimensional. 
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Proof. By the result of Griffiths ( [3]), the differential drp (s0) of the 
period map ¢ at s0 can be identified with the map 

H 1 (X, Tx) ->Hom (P2• 0 (X), P 1• 1 (X)) 

induced from the pairring 

On the other hand, we get the exact sequence 

where we use the notation if; and C in the subsection (b). Since H 0 (X, .Qi-) 
=0 (2. 8), we have 

Ker d¢(s0) =Ker (EJ1(X, Tx) !..>H1 (X, Qi-)) 

-.:=::.H0 (X, J'Ji-®Clo). 

Hence, we get the assertion from (2. 10) Q.E.D. 

Proposition 2. 19. 
exists O' E Aut (X) with 
period map ¢ in (2. 17) 

We use the notation in Theorem 2.14. If there 
<i,.._,,u1 or IJs (resp. IJ"-'63), then the fibre of the 
through s0 is of dimension > 1 (resp. = 2). 

Proof. Since D is a smooth quadratic hypersurface in P 19 and D is 

an open subset of D in the classical topology, we see that TJJ is a locally 
free sheaf of rank 18. On the other hand, the pullback of the horizontal 
tangent bundle T1 is Hom (F2, F 1/F2) which is also of rank 18. Therefore 
we have 

(2. 20) 

Note that, via the action on P 2 (X, C), Aut (X) has the induced 
on D and the period map ¢ in (2. 17) becomes Aut (X)-equivalent. 
by D~ the submanifold of D consisting of the fixed points of u in D. 
we have the commutative diagram 

(2. 21) 
S~D 

u u 
S"~D~ 

action 
Denote 
Then, 

From (2. 20) and the functoriality of variation of Hodge structures, we get 
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:::::Hom (F2, F 1/F2) ®Os" 

::=:Hom ( (F•) 2, c• F) 1/ (I') 2), 

Where the identification in every step is compatible with the action of u. 
By using the fact that the Hodge bundle (F') 0/ (F") 1 can be identified 

with the complex conjugate of (F4) 2 and that u induces a real operator on 
l-I"o, we can derive the induced action of (Jon Hom ( (F") 2, (F6 ) 1/ (F6 ) 2) from 
the table in Theorem 2. 14. Because of the same reason in Remark 1. 5, 
T Dfl can be naturally identified with the eigen subsheaf of TD@()Dr; with eigen 
value 1 under the action of u. Thus, we get 

rank Ts11 rank TD11 

<1~61 15 14 
(2. 22) 

<1~(13 12 10 

(J ~as 9 8 

The assertion follows from (2. 22) and (2. 18). Q.E.D. 

Fix a smooth, complete surface X with Pr,= Ci= 1 and Kx ample and denote 
by L the Euclidian lattice consisting of the Z-valued primitive cohomology 
group P 2 (X,Z) plus the Hodge-Riemann bilinear form Q on P 2 (X,Z). Re­
call that rank P 2 (X, Z) = 20 and the signature of Q is (2, 18). 

We use the notation in (a). Set 

[J = { (u, a) luE U, aEisom(P2 (Xu, Z), L)}, 

Where aEisom (P2 (X,,, Z), L) means an isomorphism as Euclidian lattices, i.e. 
an isomorphism of the Z-modules compatible with the bilinear forms. By 
using the fundamental group ;r1 (U) of U, we can define the topology on 
U so that the first projection 

(2. 2.3) ).I: U->U 

becomes an etale covering. Let 

'it' : X' = X' X [j -> [j 
u 

be the base extension of the family 7r': X' ->U by the morphism (2. 23). 
Then G has the induced actions on tJ and X', which make r. a G-equivariant 

map. 
By a marked surface we understand a couple (X', a) consisting of a 
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smooth, complete surface X' with Pu=Ci =1 and an ample Kx, and of an 
isomorphism a: P 2 (X', Z) • L as Euclidian lattices. By a family of marked 
surfaces we mean a smooth, proper holomorphic map f: Y->Z of analytic 
spaces Y and Z with the property that every fibre off is a marked surface, 
and we call the universal family among these families of marked surfaces 
the fine moduli of marked surfaces. 

Proposition 2. 24. The quotient spaces M = (J JG and X = X' JG have 
the structures of complex analytic manifold, and the family 

is the fine moduli of the mar/led surfaces with dim ivi = 18. 

Before proving the above proportion, we should prepare a lemma. 

Lemma 2. 25. Let Yi (i = 1, 2) be topological spaces and let f: Y1 

-> Y2 be a continuous map. Let G be a topological groujJ and we consider 
the situation that G acts both on Yi (£=1,2) and, with these actions, 
f becomes a G-equivariant map. Then, if the action of G on Y2 is proper, 
so is the action of G on Y1• 

Proof. Consider the commutative diagram 

'ijl' 1 
Y1XY1 

(2. 26) lfxf 
Y2XY:, 

where P'1. (g, Yi) = (gy;, Y;) for g E G and y 1 E Y1. (i = 1, 2). We must show 
that lJf11 (K) is compact whenever K is a compact subset of Y1 X Yi. We 
may assume without loss of generality that K = K" X K' for compact subsets 
](' and K." of Y1• 

Restricting the diagram (2. 26), we get 

G X K' -----'~ 

idxf'l 

Gxf(K') 

Y1XK' 

lfxf' 
Y2Xf(K1 ) • 

Since 1Jf2 is a proper map, so is ?//;. idXf' being also a proper map, we 
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see that the composite map 7/1"~ o (idX f') is proper and consequently the map 
w; is proper. In particular, ?/'"11 (K) = w;- 1 (K" X K') is compact. Q.E.D. 

Proof of Proposition 2. 24. Let 

W: cxu-uxu 

be the morphism defined by 7/1" (g, u) = (gu, u) for g E G and u EU. Since 7/1" is 
a morphism in the category of schemes, we can use the valuative criterion 
for showing the properness of the morphism 7/1". Let A be a discrete valuation 

ring and let K be its quotient field. Set V = Spec (A) and V' = Spec (K) 
and denote by 1J (resp. s) the generic poit (resp. closed point) of V. Given 
a commutative diagram 

V' 
{3' 

(2. 27) 1 {3 v------';. UxU 

We must show existence and uniqueness of the morphism r: V--+GX U which 

1s compatible with the diagram (2. 27). 

Set (6,, u,) =fJ' (1/) and 

X~=X'xuV X' 

,r~ l l .- (i=l, 2), 

pr,o(i 
V u 

where pri means the i-th projection of Ux U. Then, 6, induces the isomorphism 

X 2., = n-~ - 1 (1/) --+X1,, = n;-1 (1/) as canonically polarized surfaces. Hence, by the 
theorem of Matsusaka-Mumford ( [6]), there exists uniquely the isomorphism 

6: x:-X~ over V which is the extension of 6,. Consideri:1g this 6 as a 
V-valued point of G, we get the desired morphism r: V--+GX U. 

Combining the above result and Lemma 2. 25, we see that the action of 
G on a and X' are proper, and hence the quotient spaces jJ = a /G and 

X = X' /G exist in the category of analytic spaces ( [5]). According to 
Corollary 2. 16, the actions of G on U and X' have no foced points. There­

fore, M and X are manifolds. The last part of the assertion is obvious 
from our construction. Q.E.D. 

Let D be the classifying space, used m (2. 17) , with respect to the fixed 
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X. By using the fine moduli 7f: X-M obtained in Proposition 2. 24, we 

can define the global period map 

~2~ @:M-D 

by @(m) = (the line am(P2·0 (Xm)) in L@C) for mEM, where n-1(m) 

= (Xm, am). 
For mEM with n-1(m) = (Xm,am), set 

{
the automorphisms of the surfaces Xm} 

Aut(Xm) = 
(omitting the datum am) 

Using the notation in Theorem 2. 14, define 

Mi= {m.EMI there exists O"EAut(Xm) with 0""-'0"£} for each O"i in the 
table in Theorem 2. 14. 

After Remark 2. 15, we are interested, in particular, in the automorphisms 

O"i of prime order, that is, 

Note that 0"1 has the conjugate 

0"1,2 = (1, 1, 1, -1, 1). 

We denote 0"1 by 6 1, 1 when we want to distinguish this from its conjugate 
6 1, 2• Using these conjugates, we have the relation 

Let p: u-M be the projection (cf. Proposition 2. 24) and let Ji: a-u 
be the covering (2. 23) . Set 

M 1,J = P (v-1 (Fixu (61,1))) (j = l, 2), 

where Fixu(u1,1) is the set of the fixed points of 61,1 in U. It is easy to 

see that MI and M 1,1 have the structures of analytic subspace of M, and, 
m particular, Ms and M1. 1 (j=l, 2) are submanifolds. 

Theorem 2. 29. With the above notation, we have: 
(2.29.1) dimM1,1 =15 (j=l,2) and dimMs=12. M 1=M1,1UM1,2 

and M 1,1 (J=l, 2) intersect transversally with M1. 1 nM1, 2 =M3• For every 
point m EM 1 (resp. m EM 3), the fibre of the period map @ in (2. 28) 

through m is of dimension > l (resp. = 2). 
(2. 29. 2) dim M 8 = 9. For every point m EM 8, the fibre of@ through 

m is of di-mension > I. 

Proof. Take m EM and u Ep- 1 (m), and set u = v (u). Note, first, that 

Ji: (U, u)-(U, u) is isomorphic in the sense of germs and (M, m) can be 
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considered as the parameter space of the Kuranishi family of the deformation 
of Xfi!. Hence, by Theorem 2. 14, we get that 

dim.M 1,1 =15 (i=l, 2), 

dim.M3 =12 and 

dim M 8 =9. 

M 1 = M 1, 1 UM 1, 2 is an immediate consequence of their definition. 
Since Fixu (61, 1) (resp. Fixu (61, 2), Fixu (63)) is G-stable with the equations 

f(I) = 0 (resp. gm = 0, f(I) = g(I) = 0) and p: U -> M is smooth, the assertion 

of M 1. 1 and Af 1.2 intersecting transversally with ]).1 1, 1 n Af 1, 2 = Af 3 follows from 
the corresponding fact about Fixu (61,1) (j = l, 2) and Fixu(0"3) 

The statement about the dimension of the fibre of the period map (/) is 
an interpretation of Proposition 2. 19. Q.E.D. 

Note 2. 30. By using the method in the forthcoming j)aper ([8]), 
we can further observe that 

{ 2 if and only if m EMa and 
dim.r. <D-2 ((.li (m)) = 1 if m.EM1UMs-Ma. 

§ 3. Calculation 

In this section, we solve the problems (2. 12) and (2. 13). We employ 
the notation of the previous section. 

(a) As we mentioned in the section 2, (a), U and G have the following 
properties: 

(3. 1) For any surface X with Pu= Ci= 1 and Kx ample, there exists 
uE U, such that X is isomorphic to the weighted complete intersection 
X,, corresponding to u. 

(3. 2) Let u, u' EU. Then, any isomorphism between X,, and X,_.,, 
if exists, is induced from some element of G. 

(3. 3) For uE U, 

Aut(X,.) = {6EGl6u=u}. 

By these (3. 1), (3. 2) and (3. 3) , the problem (2. 12) is divided into 
the following two elementary questions: 

(3. 4) Divide G into the conjugate classes with respect to the action 
of G on G itself as inne1· automorphism, and choose a representative from 
each conjugate class. 

(3. 5) Select those elements of G, from among the representatives 
obtained in (3. 4), by which some point of U is fixed. 

As for (3. 4), after elementary calculation in linear algebra, we get: 
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Lemma 3. 6. Any element of G can be normalized by the inner auto­
m01-phism into one of the following matrices, which is uniquely detennined 
up to the interchanges of d1 and d: and of d3 and d~: 

1 1 

d1 

(3. 6. I) (3. 6. 2) d2 

1 
d, 

1 1 

d1 

(3. 6. 3) (3. 6. 4,) 1 d1 

1 
d, 

1 1 

d10 1 dio 1 

(3. 6. 5) d2 (3. 6. 6) d: 

di 1 
d, d, 

1 1 

1 1 

(3. 6. 7) d20 1 (3. 6. 8) d20 1 

d3 1 

d, d, 

1 1 

d10 1 d10 1 

(3. 6. 9) 1 1 (3. 6. 10) 1 1 

1 

d, di 
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As an answer of the question (3. 5), we get the following: 

Proposition 3. 7. Those 22 matrices 6/ s appeared in the table in 
Theorem 2. 14 form a complete system of representatives of the equivalence 
classes in (2. 12), and any two of these rJ;' s are not equivalent to each 
other. 

Proof. The proof consists of several steps. 

Step 1. Since Aut (X,,) is a finite group for every uE U by (2. 7), we 
know that, among the canonical forms in Lemma 3. 6, only the forms (3. 6. 1) 
and (3. 6. 2) can occur as automorphisms of X,, for some u E U and, a priori, 
we also know that every d; of these matrices must be a root unity. 

Step 2. Take uE U and let f and g be normalized forms (2. 1) of 
defining equations of Xu. If fm=(Jm=O or f 222 =g222 =0, Xu would have points 
which lie on the singular locus of Proj (R) . Hence, we have that 

(3. 8) { 
fm or Ym 1s not zero 

fm or Ym 1s not zero. 

and 

If f 1 = f 111 = fm = 0, X,, would have the singular points with .1:o = Y2 = Z3 

= 0. Similar reasonning shows that 

(3. 9) ! f1, fm or fm is not 

f,, fm or fm ~s not 

g1, gm or (/m 1s not 

Yz, (/1:i2 or Y222 1s not 

zero, 

zero, 

zero 

zero. 

and 

If fo=foo1=foo2=fooo=gooo=O, X" would have the singular points with 
Y1 = y, = Za = Z 4 = 0. Therefore, we see that 

(3. 10) f o, f ooi, foo2, f ooo or (/000 is not zero. 

By using the symmetry among the coefficients of f and g caused by the 
actions of the matrices 

1 1 

1 1 
P1= 1 and P:= 1 

1 1 
1 1 

it is enough to consider the following possibilities: 
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(3. 11. 1) fmfmg1gdo=:/=O. 

(3. 11. 2) f 111fmg1gdoa1=:/=0. 

(3. 11. 3) f 111/222g1gdooo=:/=O. 

(3. 11. 4,) fmfmg1g2gooo=:/=O. 

(3. 11. 5) fmf222g1gm=:/=O. 

(3. 11. 6) fmfmg1gm=:/=O. 

(3. 11. 7) f 111fmg111g12do=:/=O. 

(3. 11. 8) f mf 222gmgmfoo1=:/=0. 

(3. 11. 9) /111/222g111g122/002=:/=0. 

(3. 11 .10) fmfmgmgmfooo=:/=O. 

(3. II. II) f11dmg111g122(Jooo=:/=O. 

(3. 11. 12) fm/222gu1g22do=:/=O. 

(3. 11. 13) f mf222gm(Jm/001=:/=0. 

(3. 11. 14,) f1uf222(Jm(J222fooo=:/=O. 

(3. 11. 15) fwf 222gm(]122=/=0. 

(3. 11. 16) fmg22d2g1=:/=0. 

(3. II. 17) f111g222/2(]112=:/=0. 

(3. II. 18) f mgmfmguda=:/=O. 

(3. 11. 19) fm(J222fmgmfoo1=:/=0. 

(3. 11. 20) f111gmf122Gmfoo2=:/=0. 

(3. 11. 21) fm(J22dm(J112/ooo=:/=O. 

Step 3. Let (] = (l, d 1, d2, d3, d4) be a matrix of the form (3. 6. 1). 
The condition (Ju= u means explicitly the following relations: We use the nota­
tion d 0 =l. 

(3. 12) l f1d1d~ = f,di (O<i<2), 

fmd1d1dk=f,1kdi (0<i<j<k<2), 

g,d,d3 =g,d! (O<i<2) and 

g,,kd!djdk =(J,,kd! (0<i<j<k<2). 

Now we can proceed case by case. 
Case (3. 11. 1). From (3. 12), we have the relations 

Hence <J= (1, 73, r\ r, f), where r7 = 1. Suppose r=:/=l, then we get g111 = g112 
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=gm= O'm = 0 from (3. 12). But this implies that X,, contains those points 
x 0=z3=z.,=0 which are singular points of Proj(R). Therefore, in this case, 
only (J = (1, 1, 1, 1, 1) occurs. 

Case (3. 11. 2). From (3. 12), we have 

Hence <i = (1, t', r', t, r), where rs= 1. Suppose r2+1, then we get glll = O'm 
(/m. =gm= 0 from (3. 12). This is impossible as in case (3. 11. 1). Therefore, 
in this case, we would have (J = (1, 1, 1, 1, 1) or (1, 1, 1, 1, -1). 

We omit here such kind of routine argument for other cases (3. 11. i) 
(3<i<21). As a result, in case of diagonal matrices, we would obtain 

in the table in Theorem (2. 14). 

Step 4. We deal, in this step, with a matrix (J= (1, di, d2, (1, d 4)) of 
the form (3. 6. 2). Note that, in case (j is an isotropy of some point ll of 
U, (J2 = (1, d'f, di, d4,d4) must be also an isotropy of the same point u. There­
fore, after the result in Step 3, we may only consider the cases 

62 =<J1 (i=O, 3, 4, 8, 10, 11, 14, 15, 17), 

where 60 = (1, 1, 1, 1, 1). 

Case (j2 = 60• Considering the conjugates by pi, we have three possibilities: 

(j= (1, 1, 1, (1, 1)), (1, 1, -1, (1, 1)) or (1, -1, -1, (1, 1)). In case u 
= (1,1,1, (1,1)) or (1, -1, -1, (1,1)),we getP3'(0,Yi,Y2) = ±l3'(0,yi,y2), 

but this implies that Xu contains singular points of Proj (R). Therefore, in 
this case, only (j0, = (1, 1, -1, (1, 1)) would occur. 

Case r/ = (54• By the same argument as above, we would have <54 , = (1, i, 
-i, (1, i)). 

Case <r=u8• We have four possibilities: 

u= (1, 1, al, (1, 1)), (1, 1, -ai, (1, 1)), 

(1, -1, al, (1, 1)) or (1, -1, -ol, (1, 1)). 

In case <J= (1, 1, ol, (1, 1)) or (1, -1, -oi, (1, 1)), we have f' 3' (0, Yi, y 2) 

= ±g<3l (0, Yi, y2), which is impossible as before. In case u= (1, 1, -oi, (1, 1)), 
f and g must be 

{ 
f =zi+ f1Z4XoY1 + foz4xi+ f111Yi+ fmyg+ fo11X~Yi+ foo1XiY1 + foooX~, 

Q'=z1+ f1Z3XoY1 + fozax~+ fmYi- fmY~+ fo11X~Y~+ foo1XtY1 + foooxi, 

and hence 

f -a= (z3-Z4) (z3+Z4 + f1XoY1 + fox~) +2f222Yt which shows that Xu has 
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the singular points with 

Therefore, in this case, only 08, = (1, -1, ul, (1, 1)) would occur. 
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Case cl= u10• By the similar reasonning as above, we would get 6w 

= (1, -1, a>\ (1, -1)) . 
In a similar way as in the above cases, we can prove that there are no 

isotropies (j of some uE U in case ff2 = or (i = 11, H, 15, 17). 

Step 5. Finally, we claim that every 61 obtained in Step 3 and Step 4 
really occurs. It is easy to prove, by Jacobian criterion, that, for general choice 
of the coefficients, the following equations define smooth weighted complete 
intersections of type (6, 6) in P (1, 2, 2, 3, 3) : 

(3.13) { 

(3.14) { 
(3. 15) { 

(3. 16) { 
(3. 17) { 

f = Zi + fmYi + f222Y~ + foooX~ , 

g = z; + Gm Yi+ GmY~ + goooXg . 

f=z;+ fmYi+ fmY1Y~+ foo2XtY2, 

Y=z;+ G112Y~Y2+ gmy;+goo1XiY1. 

f = z~ + fmYi + f122Y1Y~ + foooXg , 

(! = z! + YaZ3Xg + (l112YiY2 + (!mY~ · 

f = z; + f111Yi + fmyg + fauX~Yi + foo1xiy 1 + foooX~ , 

(J=z!-f111Yi+ fmY~+ J011x~y!-foo1X~Y1 + foooxi, 

f =z~+ fmYi+ fmYiY2+ fmY1Y;+ fmyg+ foa1XJY1 + foo2XiY2, 

(/= z~-ifmYi + ifmYiY:- ifmY1Yi + ifmY~ + ifoo1XtY1 -ifoazxJyz. 

Giving an order by inclusion to the set consisting of the fixed points loci 
m U of <J/s the minimal members are those corresponding to 

The point of U corresponding to (3. 13) (resp. (3. 14), (3. 15), (3. 16), 
(3. 17)) is fixed by 61-1 and u17 (resp. 66, 62 and 6 13 , uw, /J.1,). 

Remark 3. 18. As we have already used in step 5 of the proof of 
Proposition (3. 7), we can get easily the defining equations of the fixed 
}Joints loci in U of (J/ s in the table in Theorem 2. 14, which are all linear. 

(b) let (J, be one of the matrices in the table in Theorem 2. 14 and let 
u EU be a point with u,u = u. Set X = Xu. 

Proposition 3. 19. Each u1 induces on 1's@(')g1, the action indicated in 
the table in Theorem (2. 14). 
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Proof. Note first that, in order to determine the induced action of <l; 

on the locally free sheaf Ts(l)()sr,, it is enough to investigate the induced 
action of <l; on its fibre (Ts<:?)tJsr,) (so) ~H1 (X, Tx) at s0• 

Since the morphisms in the exact sequence (2. 4) are equivariant with 

respect to the induced actions of Aut (X), so is the morphisms in the exact 

sequence 

(3. 20) 

where we use (2. 7) and (2. 9). Hence we can reduce the study of the 
induced action of <l;EAut(X) on H 1 (X, Tx) to that on H 0 (X, Tp@tJx) and 

H 0 (X,Nx,p) . 

Denote by res H 0 (X, T p(?!)() x) (resp. res H 0 (X, Nx,p)) the image of 

H 0 (X, T p@() x) (resp. H 0 (X, Nx,p)) by the restriction map to the open subset 

of X defined by Xo=FO. 
Now the proof of Proposition 3. 19 will be accomplished in a sequece of 

lemmas. 

Lemma 3. 21. lVe can choose as a C-linear basis of res H 0(X, Tp@()x) 
the following: 

{ 8 a is a monomial in R of } 
(a/ x~) 8 (ytf x~) degree 2, i = l, 2 

U {ca/xD 8 I a is a monomial in R of}. 
8 (z;/ x~) , degree 3, i = 3, 4 

Proof. Let q: A-'>P be the principal Gm-bundle over P=P(l, 2, 2, 3, 3). 
Recall that the exact sequence (2. 5) is derived from the exact sequence 

by taking its direct image, taking Gm-invariant subsheaves and finally restricting 

to X, that is, 

(3. 22) 

Taking the cohomology sequence of (3. 22), we have 

Note that the morphism r above sends 

with a;E (R/1),, (0<i<4), to the induced operator r(0) EH0 (X, Tp@tJx) 
from ()P to tJx, that is, 
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In particular, 

It is evident that we can take 

(3. 24) { a } u { a I a is a monomial in R of l 
Xo- a- j 

OXo oyi degree 2, i = l, 2 

U {a_§_ I' a is a monomial in R of } 
ozi degree 3, i = 3, 4 
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as a C-linear basis of H 0 (X, (q*TA) 0 m(ly() x). 

the fact dim Ker -r= 1, we get the assertion. 

Combining (3. 24) , (3. 23) and 

Q.E.D. 

Lemma 3. 25. We can take as a C-linear basis of res H 0 (X, Nx1p) 

the following: 

{ a I a is a monomial in R of degree} 
(a/ x:) o (f / xi) 6 except z; and z~ 

u {ca/x:) a I a is a monomial in R of degree}. 
o (g / x~) 6 except Zi and z~ 

Proof. Under the well-known isomorphisms 

H 0 (X, N x;p)-:::::.H0 (X, C?x(6))EB2-:::::. (R/I)f2 , 

(a, b) E (R/ 1) f 2 corresponds to the element rE H 0 (X, Nx1p) with 

res r = (a/xg) __ a __ + (b/x~) __ a __ 
a (f / x~) a (g/ x~) 

We can exclude z~ (i=3, 4) by using the relations of the ideal I. Q.E.D. 

Lemma 3. 26. Let T (resp. N) be the C-linear subspace of 
res H 0 (X, T pQ90 x) (resp. res H 0 (X, Nx1p)) spanned by 

u {cz/x3) a 1· i=3 4} 
i O o(zi/xD ' 
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u {ca/xg) a I a is a monomial in Yt } 
a (f / x~) (i = 0, l, 2) of degree 6 

U{czaXoY,/x~) f) ji=0,1,2} 
fJ(g/x~) : 

u {ca;xg) a I a is a monomial in Yt }), 
fJ(g/xi) (i=O, l, 2) of degree 5 

where we use the notation '.Vo= x:. Then, the sequence 

o-r-N-res H 1 (X, Tx)-'>0 

induced from (3. 20) is exact. 

Proof. Recall that the morphism 

/t: res H 0 (X, T p(i)() x) -'>res H 0 (X, Nx1p) 

sends 

I: (a1/xD 8 + I: (a1/xD 8 
l,;'.i,;'.2 0 (Y1/ xD 3,;'.i,;'.4 0 (z;/ x~) 

111 res H 0 (X, T p(l)() x) to 

{ I: (aJrD-~ClL~~t+ I: (a,/xi) au;x~)} 8 
1:;;1,;:2 a (y ,/ x~) asi,C:4 a (z;/ xD a Cf/ x~) 

+ { I: Cai/ xD 8 (g/ x~) + I: (a;/ xi) 8 (g/ x~) } 8 
lsi:,;;2 a (y JrD a:,;t:;;4 a (z/ x~) 8 (g Ix~) 

m res H 0 (X, N.rip), and hence we have, in particular, 

( a ) a a 
{ 

µ (a/x~) fJ(za/xi) =2(zaa/xi) o(f/x~) +(g(!lxoa/x~) o(g/xi), 

µ ( (a/xD 8(z~/x~-) =(f<1lxoa/xnac:x~) +2(z,a/xi) o(g~x~), 

(3. 27) 

where a stands for a monomial in R of degree 3. By the relations of the 
ideal I, we see, furthermore, that 

µ ( (za/ xi) O ) = - 2 ( (f<1lz4Xo + f<3l) / X~) O 
a ( Za/ xi) a (f Ix~) 

(3. 28) 
+ ( <Ilz x /xe) 8 

g a o o 8 (g / xg) ' 

( (~ /x3) 0 ) _ (f(l)~ X /xG) 0 
µ ,<,' O a(z,/xi) - ... , O O a(g/x~) 

- 2 ( (g<1>zaxo + g<3l) / x~) f} 
8(f/x~) 
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By (3. 27) and (3. 28), we can eliminate the members 

{ (zsa/ x~) a I a is a monomial in x 0 , y 1, y 2 } 

a(f/x~) and z 4 of degree 3 

U { (z,a/ x~) 8 ·1 a is a monomial in x 0, y 1, y 2 } 

fJ(g/x~) and Zs of degree 3 

of the basis of res H 0 (X, Nx1p) given in Lemma 3.25 and we obtain the 

assertion. Q.E.D. 

Continuation of Proof of Proposition 3. 19. By using the bases of 
res H 0 (X, T p(gj() x) and res H 0 (X, Nx1p) given in Lemma 3. 21 and Lemma 
3. 25 respectively, we can determine the induced action of 6; on res H 1 (X, Tx) 

and hence, by the identity theorem, on H 1 (X, Tx). Lemma 3. 26 contributes 
to save trouble in calculation. We add here a remark that, in case of 6; 

(i = 0', 3', 4', 8', 10'), we have to change the bases in Lemma 3. 26 into more 
suitable ones, that is, the bases consisting of eigen vectors. The actual calcu-

lation is a routine task and we omit it. Q.E.D. 

• 
Proposition 3. 29. The induced action of each (J1 on (F6') 2 is as in 

the table in Theorem 2. 14. 

Proof. As in the proof of Proposition 3. 19, it is enough to study the 
induced action of /J; on the fibre (F6') 2 (s0) =H0 (X, Kx) of the invertible sheaf 
(F"1) 2 at s0• Let </; be the global section of Kx corresponding to x 0 ER1 

under the isomorphisms 

H 0 (X, Kx) =H0 (X, CJx(l)) = (R/I) ,=R,. 

Then, by the Poincare residue formula, we have 

(3. 30) 

where by res we mean the restriction to the open subset of X defined by 

x =f=O and the Jacobian f) (f / x~, g / x~) =½=0 Since res <(; forms a basis of 
0 a (zs/ x~, z,/ x~) · 

res H 0 (X, Kx) , we can calculate, by (3. 30), the induced action of (J1 on 

res H 0 (X, Kx). which determines that on H 0 (X, Kx) by the identity theorem. 

Q.E.D. 

Proposition 3. 31. Each 6; induces on H"cj the action stated in the 
table in Theorem 2. 14. 

Proof. As before, it 1s enough to investigate the induced action of 6t 
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on the fibre H';j (s0) =P2 (X, C). By using the Hodge decomposition 

P 2 (X,C)=P2• 0 (X)E9P1• 1 (X)E8P0• 2 (X) with P 0•2 (X)=J52. 0 (X) and the 
fact that (J'i induces a real operator on P 2 (X, C), we have already known, by 
Proposition 3. 29, the induced action on P 2• 0 (X) and P 0•2 (X). 

The remaining thing is to determine the induced action of (J'; on P 1• 1 (X). 
Tensoring Kx to the exact sequence (2. 4) and taking its cohomology 

sequence, we have the exact sequence 

(3. 32) 

by (2. 8) and Lemma 2. 11. Note that the morphisms in the exact sequence 

(3. 32) are all equivariant with respect to the induced actions of Aut (X), 
and hence the problem is reduced to two parts, that is, determination of the 

induced actions on H 0 (X, T pQ9Kx) and H 0 (X, Nx,p@Kx) . 
Since, in the rest part of the proof, the arguments are parallel to those 

in the proof of Proposition 3. 19, we will only state the consequence of each 
step. By res we mean here the restriction to the open subset of X defined 

by xo=foO and the Jacobian o(f/x~, g/x~) :;,i=O 
o (zs/ x~, z~/ xD · 

Lemma 3. 33. We can take as a C-linear basis of res H 0 (X, Tp@K~ 
the following: 

{ (y ti x~) o Ii= 1, 2} 

U {Ca/x~) fJ @tf/ 1' a is a monomial in R of} 
fJ (Yt! xD degree 3, i = l, 2 

U { (a/ x~) fJ @tf/ I a is a monomial in R of } , 
fJ ( ztf x~) degree 4, i = 3, 4 

where 

Lemma 3. 34. We can take as a C-linear basis of res H 0 (X, Nx,p®Kx) 
the following: 

{ (a/ x~) fJ @tf/ I a is a monomial in R of degree} 
fJ (f / x~) 7 except ZiXo and z!xo 

u {ca/xD f) @c//1 a is a monomial in R of degree} 
fJ (g / x~) 7 except ZiXo and z;xo 

where we use the notation cf/ in Lemma 3. 33. 
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Lemma 3. 35. Let T' (resp. N') be the C-linear subspace of 
res H 0 (X, T p@Kx) (resp. res H 0 (X, Nxip®Kx)) spanned by 

{(y,/x~)OI i=l, 2} 

U { (a/ x:) a ®</J' I a is a monomial in R of} 
8 (ytf x~) degree 3, i = l, 2 

u { (z,xo/ xt) a @¢' I i = 3, 4} 
o(ztfx~) 

resp. (z,a/xi)---®</J ( { fj , 1· a is a monomial in x 0, y 1 } 

o (f / xg) and y 2 of degree 4 

U { ( / 1) fJ fQ\,1,, I a is a monomial in x 0, y 1 } 
a Xo a (f / xg) VY'I-' and Y2 of degree 7 

U { (z3a/ x~) a ®</J' I a is a monomial in x 0 , y 1 } 

o(g/x~) and Y2 of degree 4 

U { (a/ x~) 8 ®</J' I a is a monomial in x 0, y 1 } ) • 

o(g/xg) and Y2 of degree 7 

Then, (3. 32) induces the exact sequence 

Continuation of Proof of Proposition 3. 31. By using the above lemmas, 
we can calculate, as in the proof of Proposition 3. 19, the induced action of 

<51 on P 1• 1 (X). Q.E.D. 
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