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Studies of closed/open mirror symmetry 
for quintic threefolds through log mixed 

Hodge theory 
Sampei Usui 

Dedicated to Kazuhiro Konno and dedicated to James D. Lewis on 
his sixtieth birthday 

ABSTRACT. We correct the definitions and descriptions of the integral structures in 
[30). The previous flat basis in [ibid] is characterized by the Frobenius solutions 
and is integral in the first approximation by mean of the graded quotients of 
monodromy filtration, but it is not integral in the strict sense. In this article, we use 
f-integral structure of lritani in (7) for A-model. Using this precise version, we 
study open mirror symmetry for quintic threefolds through log mixed Hodge 
theory, especially the recent result on Neron models for admissible normal 
functions with non-torsion extensions in the joint work [14] with K. Kato and C. 
Nakayama. We understand asymptotic conditions as values in the fiber over a base 
point on the boundary 
of S108 • 
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2.2. Picard-Fuchs equation on B-model of mirror V0 

2.3. A-model of quintic V 
2.4. Integral structure 
2.5. Correspondence table 
2.6. Proofs of results in 2.5 
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3.1. Proofof Theorem 0.4.1 over log disc S 
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0 Introduction 

In a series of joint works with K. Kato and C. Nakayama, we are constructing 
a fundamental diagram which consists of various kind of partial compactifica­
tions of classifying space of mixed Hodge structures and their relations. We try 
to understand mirror symmetry in this framework of the fundamental diagram. 
In this paper, we first complete the insufficient results 3.5-3.6 in the previous 
paper of Usui [30] (see Remark in 2.6 below), and then study open mirror 
symmetry for quintic threefolds through log mixed Hodge theory, especially 
the fine moduli of log Hodge structures and Neron models over it. 

0.1. Fundamental Diagram 

For a classifying space D of Hodge structures of specified type, we have 

DsL(2),val --+ DBS.val 

+ + 
f\Dr,val +- 1 

D'£,val ~ DsL(2) Dgs 

+ + 
f\Dr +- v" r 

(f is a monodromy group) in pure case: [15], [16], (17]. For mixed case, we 
should extend to an amplified diagram: [9], [10], [12], [13), continuing. 

0.2. Mirror symmetry for quintic three/olds 

Let V be a quintic threefold in P4 and v; be its mirror family (cf. (l], Sect. 
4.2). For simplicity, we denote the family v; simply by V0 if there would be 
no confusions. 

Mirror symmetry for the A-model of quintic threefold V and the B-model 
of its mirror V0 was predicted by Candelas-de Ia Ossa-Green-Parks in 
the famous paper [2]. We recall two styles of the theorem 0.2.1 and 0.2.2 
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below. Every statement in the present paper is near the large radius point 
qo of the complexified Kahler moduli KM(V) and the maximally unipotent 
monodromy point po of the complex moduli M (V 0 ). 

Lett:= Yi!Yo, u := t/211: i be the canonical parameters and q := e1 = e2,r;;., be 
the canonical coordinate for B-model in 2.2 below and the respective ones for 
A-model in 2.3 below. 

The following theorem is due to Givental [5] and Lian-Liu-Yau [20]. 

Theorem 0.2.1. (Potential). The potentials of the two models coincide: 
V yo 

«l>ow(t) = <l)aM(t). 

Morrison [22] formulated the following style Theorem 0.2.2 and proved the 
theorem except integral structure. Iritani [7] defined f-integral structure for 
A-model and proved the theorem completely for wider objects. 

Theorem 0.2.2. (Variation of Hodge structure). The isomorphism (q0 E 

KM(V)) +'.-- (po E M(V 0 )) of neighborhoods of the compactifications, by 
the canonical coordinates q = exp(2n iu), lifts to an isomorphism, over the 
punctured neighborhoods KM(V) +'.-- M(V 0 ), of polarized Z-variations of 
Hodge structure with a specified section 

Our Theorem 0.2.3 below is equivalent to Theorem 0.2.1 and Theorem 0.2.2 
by a log version [17], Theorem 2.5.14 of the nilpotent orbit theorem of Schmid 
[27] (this part of (30] is valid}. 

Theorem 0.2.3. (Log Hodge structure, Log pperiod map). The isomorphism 
(qo E KM(V)) +'.-- (po E M(V0 )) of neighborhoods of the compactifications 
uniquely lifts to an isomorphism of B-model log variation of polarized 
Hodge structure with a specified section 0. for V0 and A-model log 
variation of polarized Hodge structure with a specified section T3 for V, 
whose restriction over the punctured JCM(V) +'.-- M(V 0 ) coincides with the 
isomorphism of variations of polarized Hodge structure with specified sections 
in Theorem 0.2.2. 

This rephrases as follows. Let a be the common monodromy cone, 
transformed by a level structure into End of a reference fiber of the local 
system, for the A-model and for the B-model. Then, we have a commutative 
diagram of horizontal log period maps 

(qo E JCM(V)) +'.-- (po E M(V 0 )) 

~ ✓ 
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with extensions of specified sections in Theorem 0.2.2, where [o- ,exp(o'c)Fo] is 
the class of the nilpotent orbit, regarded as a boundary point, and r (O' )gP\D.­
is the fine moduli of log Hodge structures of specified type which will be 
explained in Section 1 below. 

0.3. Open mirror symmetry for quintic three/olds 

The following theorem is due to Walcher [31) and Morrison-Walcher [23]. 

Theorem 0.3.1. (Inhomogenous solutions). The potentials of the two models 
coincide: Let .C be the Picard-Fuchs differential operator for quintic mirror 
family ( cf 2.2 below). Let 

u (l 1 '""" 2) 7A = - ± - + -2 L., fldc/1 
2 4 27l' dodd 

be the A-model domainwall tension in [23], where the nd are open 
G,vmov-Witten invariants, and 

1C+ 

Ts= Q 
c_ 

be the B-model domainwall tension, where C± C V 0 are the disjoint smooth 

cwves coming from the two conics in {x, + X2 = X3 + X4 = 0} n Vv, C P4(C) 
[ibid]. 

Then 

L(yo(z)'T,i(z))=C(Ts(z))( = 1~! 2✓Z) (z= (S~)s)· 

Concerning this, we have the following observations. 

0.4. Log mixed Hodge structure, Log normal function 

We describe for B-model. The same holds for A-model by 0.2-0.3 and the 
correspondence table in 2.5 below .. 

Put 7-l := 11,V0 and T := Ts. We use e0 E J0,0 , e1 E 11•1 which are a part of 
a basis of 1-lo respecting the Deligne decomposition at p0 (see 2.5 (3B)) and 
a part of flat basis s0 = e0 , s1 = e1 - (u - l)e0 of 1-lz (see 2.5 (7B)). To make 
the local monodromy of T unipotent, we take a double cover z1l2 r+ z. Let 
Lo. be the translated local system comparing to the trivial extension Q(-2) EB 
1-lo by (0, -(TJy0)s0) in &xt1 (Q(-2), 1-lo)- Let JLQ be the Neron model on a 
neighborhood S of p0 in the z112-plane which lies over LQ in [14) (there is a 
difference of Tate twist). Then, J LQ = &xt/_MH/s(Z(-2), 1-l) (extension group 
of log mixed Hodge structures over S) in the present case (cf. [13), Corollary 
6.1.6, and 1.8 below), and we have the following theorem. 
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Theorem 0.4.1. (Log normal function). 

(1) The normalized tension T/y0 is understood as a multi-valued truncated 
normal function by (T /y0 )s0. Then it lifts and extends uniquely to a 
single-valued log normal function S--+ JLQ so that the corresponding 

exact sequence O--+ 11.--+ 1£--+ Z( -2)--+ 0 of log mixed Hodge structures 
over S is given by the liftings lz and lp in i£ of (27l" i)-2 · I E Z(-2) 
respecting the lattice and the Hodge filtration, respectively, which are 

defined as follows: lz := ((27l"i)-2 • I, -(T/yo)s0) with (T/y0 )s0 E 

11.otog = (grf}0 tog, and lp - I z := (t3(T !Yo))e1 - (T /yo)e0, where t3 := 

27l"iqd/dq. 
(2) A splitting of the weight filtration W of the local system ilz, i.e., a splitting 

compatible with the monodromy of the local system ilz, is given by It= 
lz + s1 /2, and the log normal function over it is given by I'/!1 - It = 
(t3(T/yo))e 1 -(T/yo)e0, where t3 is as in ( ]). 

(3) Theorem 0.3.J says that the inverse of the normal function in (1) 

from its image is given by 167l" 2 / 15 times the Picard-Fuchs differential 
operator .C. 

Theorem 0.4.1 is proved in Section 3, and after these proofs some geometric 
backgrounds are discussed in Section 3.3. 

0.5. 

The organization of this paper is as follows. Section I is a summary of log 
mixed Hodge theory mainly from [17], [13] and [14], which is used to study 
mirror symmetry in later sections and also is expected to work as a brief guide 
of this theory. In Section 2, after preparations including [ -integral structure 
in [6] and [7], we give a correspondence table of closed mirror symmetry for 
quintic threefolds and their mirrors, which is the precision and the expansion 
of our previous paper [30], Sect. 3. In Section 3, we prove log mixed Hodge 
theoretic interpretation Theorem 0.4. l. We also give some discussions on the 
related geometries and local systems in Section 3.3. 

Acknowledgments. The author thanks Kazuya Kato and Chikara Nakayama for 
series of joint works on log Hodge theory, from which he learns a lot and enjoys 
exciting studies. He thanks Hiroshi Iritani for pointing out insufficient parts in 
the previous paper [30]. He also thanks Yukiko Konishi and Satoshi Minabe, 
together with Iritani, for stimulating seminars on the present topic. The author 
thanks the referees for careful readings and useful comments. 

Notation. 

Fix A := (Ho, W, ( { , }w)w, (hp,q)p,q), where 
Ho is a free Z-module of finite rank, 
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W is an increasing filtration on Ho.Q := Q 0 Ho, 
( , } w is a non-degenerate ( -1) w -symmetric bilinear form on gr:, 
(lzM)p,q is a set of Hodge numbers. 
D : the classifying space of graded polarized mixed Hodge structures for the 

data A, consisting of all Hodge filtrations. 
D: the "compact dual" of D. 
GA := Aut(Ho,,1, W, ( (, }w)w), where Ho.A :=A® Ho (A= Z, Q, R, C), 
9A := LieGA = End(Ho,,1, W, ( {, }w)w) (A= Q, R, C). 

1 Log mixed Hodge theory 

This section is a summary of log mixed Hodge theory from (17], [13], and 
[14]. We write a general fonn of these results as a brief guide for future use. 
Section 1.8 is adapted for the use in Section 3. The corresponding results in 
(13] and [14] are written in more general settings. 

1.1. Category B(log) 

Let S be a subset of an analytic space Z. The strong topology of S in Z is the 
strongest one among those topologies on S in which, for any analytic space A 

and any morphismf: A--+ Z withf(A) c Sas sets,!: A--+ Sis continuous. S 
is regarded as a local ringed space by the pullback sheaf of Oz. 

Let B be the calegory of local ringed spaces S over C which have an open 
covering (Ui.);. satisfying the following condition: For each 1, there exist an 
analytic space Zt, and a subset S;. of Z;. such that, as local ringed space over 
C, U;. is isomorphic to an open subset of S;. which is endowed with the strong 
topology in Z,1 and the inverse image of Oz,. 

A log structure on a local ringed space S is a sheaf of monoids M on S 
together with a homomorphisim a: M • Os such that a- 1 o; ~ 0 5 .fs log 
structure means, locally on the underlying space, the log structure has a chart 
which is finitely generated, integral and saturated. 

Let .B(log) be the category of objects of 13 endowed with an fs log structure. 
A log analytic space is called log smooth if, locally, it is isomorphic to 

an open set of a toric variety endowed with the canonical log structure. A 
log manifold is a log local ringed space over C which has an open covering 
(U;.h satisfying the following condition: For each)., there exist a log smooth 
fs log analytic space Z;., a finite subset h of global log differential 1-forms 
r(Z;.,m1), and an isomorphism of log local ringed spaces over C between Ui. 

and an open subset of S;. := {z E Z;. I the image of/;, in the stalk w~ is zero} in 
the strong topology in Z; .. 
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1.2. Ringed space (S10g, a1°g) 
The ringed space (S10g, O~g) was defined for fs log schemes by K. Kato and C. 
Nakayama in [8]. It was generalized for the category B(log) in [15]. 

Let SE B(log). As a set define 
S10g := {(s,h) Is E S,h : M'f' • S1 homomorphism s.t. h(u) = u/lul 

if u E o;s}. 
Endow S10g with the weakest topology such that the following two maps are 

continuous. 
(1) r : slog • s, (s,h) f-+ s. 

(2) For any open set Uc Sand any/ E r(U,MgP), r-1 (U) • S1, (s,h) r-+ 

h(fs). 
Then, r is proper and surjective with fiber r- 1 (s) = (S1 y<s), where r(s) is 

the rank of (Mgp ;o;)s which varies withs ES. 
Define a sheaf C on S10g as the fiber product: 

l l l 
Cont(*,iR) ~ Cont(*,S1) 3 h(f). 

Let 1: r- 1 (Os) • C be a morphism induced from 

f r- 1(Os) 
exp 

r- 1 (O;) C r- 1 (Mgp) E ---+ 

l l l 
(f -1)/2 Cont(*,iR) 

exp 
Cont(*,S1). E ---+ 

Define 
dog._ r- 1(Os)®Symz(.C) 

s .- (f®l-l®1(f)I/Er-1(Os)) 

Thus r : (S10g, 0~0 g) • (S, Os) is a morphism of ringed spaces over C. Fors ES 
and t E S10g lying overs, let tj E £ 1 (1 s} s r(s)) be elements such that their 

images in (Mgp / O;)s of exp(tj) form a basis. Then, o~:f = 0s.sltj (I s j s 
r(s))l is a polynomial ring. 

1.3. Torie variety 

Torie varieties offer typical examples of S10g and also they are building blocks 

of fine moduli spaces of log mixed Hodge structures. 
Let CJ C 9R be a nilpotent cone, i.e., a sharp cone, CJ n (-CJ) = {O}, generated 

by a finite number of mutually commutative nilpotent elements. Assume that 

the cone generators of CJ can be taken from 9Q· Let r be a subgroup of Gz. 
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Define a monoid f'(cr) := r nexp(cr) and the dual monoid P(cr) := f(cr)v = 

Hom(f(cr),N). Define a toric variety and a torus by 

toriccr: = Spec(ClP(cr)D(Q=Hom(P(cr),emult)::) torus": 

= Hom (P(cr ?P, ex), 

where emutt is e regarded as a monoid by multiplication and P(cr )gp is the 

group generated by the monoid P(cr ). The exponential sequence O -+ Z -+ 
e -+ ex -+ 1 induces the universal covering of the torus 

0--+ Hom (P(cr)gP,Z)-+ Hom (P(cr)gp,C) ~ Hom(P(cr)gp,ex)-+ 1, 

where Hom(P(cr)gp,Z) = r(cr)gp is considered as the fundamental group of 
torusa, and e(z® y) := e2"iz ® y (z Ee, y E f'(cr)gp = Hom(P(cr)gP,Z)). 

Fix the above cone er. For a face p of er, define.P(p) := {l E P(cr )gp j /(p) ::=-:: 0}. 
Then we have an open covering 

torica = Spec(C[P(cr )])(C) = LJ Spec(C[.P(p )l){e). 

We now recall a stratification. Fix the above cone er and let p be a face of the 
cone (J. Then, we have a homomorphism P(p )lP(cr) and hence a morphism 

toricp -+ toric". The origin Op E toricp is the monoid homomorphism P(cr)-+ 
emult sending 1 to 1 and all the other elements of P(p) to 0, which is sent to a 

point of torica by the above morphism. Then, as a set, we have a stratification 
into torus orbits 

torica = {e(z)Op Ip -<er, z E crc/(pc + log f(cr )gp) }. 

Here e(c logy):= e(c ® y) = e2"ic ® y (c Ee, y E f(cr )gP). 

For S : = tori ca, the polar coordinate R:::o x S 1 -+ R:::0S 1 = e induces r : 
SI0g-+ Sas 

r : SI0g = Hom (P(cr ), R;t1 x Hom (P(cr ), S1) 

= { (e(iy)Op,e(x)) Ip -< er, x E cra/(pa + log r (er )gp), y E era/ pa) 

-+ S = Hom (P((J ), emult), 

r (e(ib)Op,e(a)) = e(a + ib)Op. 

Since O-+ pa/log f'(p)gp-+ crR/log f(cr )gp-+ crR/(PR + log f(cr )gp)-+ 0 
is exact, the fiber of r, as a set, is described as 

where r = r(p) := rankp varies with p--< er. 
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Let H" = (H",z, W,((, )w)w) be the canonical local system endowed 
with the weight filtration and the polarizations on graded quotients on 
S10g, which are given by the representation n- 1 (S10g) = r(a )gp c Gz = 

Aut(Ho, W,((, )w)w), 

1.4. Local systems on (S10g' o1°g) 
We recall three results about local systems on (S10g, 01°g) E B(log) from [17), 

Sect. 2.3. 
Let L be a locally constant sheaf of abelian groups on S10g. For s E S and 

t E S10g lying over s, we call the action of n- 1 (s10g) = n- 1 ( r - l (s)) on L1 the local 

monodromy of Lat t. We say the local monodromy of Lis unipotent if the local 
monodromy of L at t is uni potent for any t E S10g. 

Let s E S. Let (qj)I~:S.n be a finite family of elements of M}:, whose 
image in (Mf /O;)s is a free basis, and let (yj)I~:S.n be the dual basis of 
n- 1 (s10g), that is [yj,qd = (2n-i)oik where [, ] is the pairing given by n- 1 (s10g) ~ 
Hom(M;P /0;-,z). 

Let L be a locally constant sheaf on S10g of free Z-modules of finite rank. 
Lets E S and t E r-1 (s), and assume that the local monodromy of L at t is 
unipotent. For a fixed t, we denote Lo the constant sheaf on S10g with fiber L,. 

Let Lo,Q = Q ©A Lo, and let Ni : Lo,Q • Lo,Q be the endomorphism of constant 
sheaf which is induced by the logarithm of the monodromy action of Yi on the 
stalk L, of the locally constant sheaf L. Lift qi in r(S,MjP) (by replacing S by 
an open neighborhood of s), and let 

n '= exp(L)2n-i)-1log(q;) ©Nj): 01°g ©QLo,Q • ol0g ©Q Lo,Q· 
j=l 

Note that the operator ¢' depends on the choices of the branches of log(qj) 
in 01°g locally on S10g, but that the subsheaf ,-1 ( 1 © Lo) of 01°g ©z Lo is 

independent of the choices and hence is defined globally on S10g. 

The following proposition shows that the locally constant sheaf L is 
embedded in 01°g © Lo. 

Proposition 1.4.1. ([17), Prop. 2.3.2). Let the situation be as above. If we 

replace S by some open neighborhood of s, we have an isomorphism of 
01°g -modules 

V : ol0 g ©AL • ol0 g ©A Lo 

satisfying the following condition (I). 

(1) The restriction of v to L = 1 © L induces an isomorphism of locally 
constant sheaves v : L • ,-1 (I © Lo). 
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If we take suitable branches log(qj)1,o in o1~f of the germs log(qj)r at t 
(1 ~j ~ n), we can take an isomorphism v which satisfies above (1) and 
also the following (2). 

(2) The branch ¢1,o of the germ¢,, de.fined by the fixed branches log(qj)i,o of 
the germs log(q,-)1, satisfies v(l@ v) = ¢,:ci1 (1@ v)for any VE L, = Lo. 

The following proposition yields a log Hodge theoretic understanding [ibid, 
Sect. 2.3.6] of the canonical extension of Deligne in [3]. 

Proposition 1.4.2. ([17], Prop. 2.3.3). Let SE B(log) and let L be a locally 
constant sheaf of .finite dimensional C-vector spaces on S10g. 

(i) If the local monodromy of L is unipotent, the Os-module M := 

iA01°g ©c L) is locally free of finite rank, and we have an isomorphism 
Olog M ~ olog s ®os • s ©cL. 

(ii) Conversely, assume that there are a locally free Os-module M of .finite 
rank on Sand an isomorphism of01°g-modules 01°g®osM::::: 01°g©cL. Then 

the local monodromy of Lis unipotent and M ~ r*(01°g ©c L). 

Proposition 1.4.3. ([17], Prop. 2.3.4). Let S E B(log), let L be a locally 
constant sheaf on S10g of free Q-modules of finite rank. Assume that the local 
monodromy of L is unipotent. 

(i) There exists a unique Q-homomorphism 

satisfying the following condition ( 1 ). 
(1) For any s E S, any t E S10g lying over s, and any y E n- 1 (s10g), if hy : 
(Mf P /0;), • Z denotes the homomorphism corresponding to y by n- 1 (s10g)::::: 

Hom (Mr' ;o; ,Z), the composition L1 !!,,. (MJP /O;),©L1 ~ L1 coincides with 
the logarithm of the action of y on L1• 

(ii) Assume that Sis anfs log point {s). Let 

N':L • w1@L 

be the composition of N and the Q-linearmapMfP ;o;@L • w] ©L,f©v i---+ 

(2ni)- 1dlog(f) © v, and let l @N': 0!0g ©L • w]'10g ©L be the 0!0 g-linear 
homomorphism induced by N'. Let M : = H° (s10g, 0!0g © L) = r* ( 0!0g © L ). 
Then the restriction M • w] ©cM of d© lL: 0!0 g©L • w]'10g©L coincides 
with the restriction of l © N' to M. 

Nin the above proposition is described as follows. Assume L = ¢-1 (l ©Lo) 
as in the first proposition. Then N(C1 (1 © v)) := LJ=l qi ©¢- 1 (1 ©Njv) for 

V ELo. 
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1.5. Graded polarized log mixed Hodge structure 

Let S E B(log). A pre-graded polarized log mixed Hodge structure on S is 
a tuple H = (Hz, W,((, }w)w,Ho) consisting of a local system of Z-free 
modules Hz of finite rank on S10g, an increasing filtration W of HQ:= Q©Hz, a 
non-degenerate (- l)w -symmetric Q-bilinear form (, }w on gr!:;', a locally free 

Os-module Ho on S, a specified isomorphism ol0 g ©z Hz:::::: o1°g ©as Ho 
(log Riemann-Hilbert correspondence), and a specified decreasing filtration 

FHo of Ho such that FPHo and Ho/FPHo are locally free. Put FP := 
ol0 g ©as FPHo. Then r:*FP = FPH0 . For each integer w, the orthogonality 
condition (FP(gr!:;'),Fq(gr!:;')}w =0 (p+q > w) is imposed. 

A pre-graded polarized log mixed Hodge structure on Sis a graded polarized 

log mixed Hodge structure on S if its pullback to each s E S is a graded 
polarized log mixed Hodge structure on s in the following sense. 

Let (Hz,W,((, }w)w,Ho) be a pre-graded polarized log mixed Hodge 
structure on a log points. It is a graded polarized log mixed Hodge structure 

if it satisfies the following three conditions. 
(I) (Admissibility). For each logarithm N of the local monodromy of the 

local system (HR, W, ((, )w)w), there exists a W-relative N-filtration M(N, W). 
(2) (Griffiths transversality). For any integer p, V FP c w1·10g © pp-I is 

satisfied, where co1 ,log is the sheaf of 0!0 g -module of log differential I-forms on 

(s10g,0!0g), and v =d© IHz: 0!0 g©Hz • co1'10g©Hz is the log Gauss-Manin 

connection. 
(3) (Positivity). For a point t E s10g and a C-algebra homomorphism a: 

o!~g • C, define a filtration F(a):= C®o'og F, on He,,- Then, (Hz,1(gr!:;'), (, )w, 
s,t 

F(a)) is a polarized Hodge structure of weight w in the usual sense if a is 

sufficiently twisted, i.e., for (qj)J:::J~,, C Ms inducing generators of Ms/Osx, 
I exp(a(logqj)) I « 1 for any j. 

1.6. Nilpotent orbit 

Let a C 9R be a nilpotent cone (see 1.3). A subset Z Cb is a-nilpotent orbit 

if the following (I)-( 4) hold for F E Z. 

(1) Z = exp(ac)F. 
(2) For any NE a, there exists W-relative N-filtration M(N, W). 
(3) For any NE a any p, NFP c p-I. 

( 4) If Ni, . .. ,N,, generate a and Yi » 0 for any j, then exp('E,i iyiNi)F ED. 

A weak fan I: in 9Q is a set of nilpotent cones in 9R, defined over Q, which 
satisfies the following three conditions. 

(5) Every a E I: is admissible relative to W. 

(6) If a EI: and r:-< a, then r: EI:. 
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(7) If a ,a' E I: have a common interior point and if there exists FE b such 
that (a ,F) and (a',F) generate nilpotent orbits, then a= a'. 

Let I: be a weak fan and r be a subgroup of Gz. I: and r are strongly 

compatible if the following two conditions are satisfied. 

(8) If a EI: and y Er, then Ad(y )a EL. 
(9) For any a E I:, a is generated by log r(a ), where f(a) := r n exp(a ). 

1.7. Moduli of log mixed Hodge structures of type <I> 

Let <l> := (A, I:, f) be a data consisting of a Hodge data A (in Notation), a weak 
fan I: and a subgroup r of Gz such that I: and rare strongly compatible (1.6). 

Let a EI: and S := toric,,. Let Hu= (Hu,Z, W,((, )w)w) be the canonical 
local system Hu,z endowed with the weight filtration Wand the polarizations 
(, )w on the graded quotients gr! (w E Z) over S10g, which is determined by 
the representation r C Gz = Aut(Ho, W, ( (, )w)w)-

Let Eu := toricu x b. The universal pre-graded polarized log mixed Hodge 

structure H on Eu is given by Hu together with the isomorphism d.0g ©z 
E" 

Hu,z = O~og ©o. Ho (1.5), where Ho := OE © Ho is the free OE· -module 
Er, Ea " <1 

coming from that on b endowed with the universal Hodge filtration F. 

Let Eu := {x E Eu I Hix is a graded polarized log mixed Hodge structure on x). 

Note that slits appear in Eu because of log-pointwise Griffiths transversality 1.5 
(2) and positivity 1.5 (3), or equivalently 1.6 (3) and 1.6 ( 4) respectively. 

As a set, define D,. := {(a ,Z) I nilpotent orbit, a E I:, Z CD}. Let a E I:. 
Assume that r is neat. A structure as an object of B(log) on r \D,. is 
introduced by a diagram: 

GPLMH 
Eu C E:=toricu xb 

lac•lorsor 

lloc. isom. 

f \D,. 

The action of h E ac on (e(a)Op,F) E Eu is (e(h+a)Op,exp(-h)F), and the 
projection is (e(a)Op, F) 1-+ [p, exp(pc + a)F]. 

Let SE B(log). A log mixed Hodge structure of type <Don Sis a pre-graded 
polarized log mixed Hodge structure H = (Hz, W, ((, )w)w,Ho) endowed with 
f-level structureµ E H°(S10g, f \Isom((Hz, W, ((, )w)w), (Ho, W, ((, )w)w))) 

satisfying the following condition: For any points ES, any point t E r-1 (s) = 
s10g and any representative µ1 : Hz,1 • Ho, there exists a E I: such that a 
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contains ji, 1n((sI0g)ji,; 1 and (a ,µ1(C ®dog F1)) generates a nilpotent orbit. 
s,, 

Here n((s10g) := Image(Hom ((Ms/O;)s,N) ~ n 1 (s10g)---+ Aut(Hz,1)) is the 
local monodromy monoid of Hz at s (cf. [17], Sect. 3.3.2). (Then, the smallest 
such a exists.) 

Theorem 1.7.1. For a given data <l>, we have the following. 

(i) r \DL E B(log), which is Hausdorff. If r is neat, r \DL is a log manifold. 

(ii) On B(!og), r \ DL represents a functor LMH,t, of log mixed Hodge 

structures of type <l>. 

Log period map. Given <l>. Let SE B(log). Then we have an isomorphism 

LMH,t,(S) • Map(S, r \DL), 

Hr+ (S 3 s r+ [a ,exp(ac)ji,1(C ®o'og F1)])(t E ,- 1 (s)), s., 

which is functorial in S. 
A log period map is a unified compactification of a period map and a normal 

function of Griffiths. 
The above r \DL is the fine moduli of log mixed Hodge structures of type 

<l>, whose underlying coarse moduli, in the sense of log points, is the set of 
equivalence classes of all nilpotent orbits of specified type. 

1.8. Neron model for admissible normal function 

We review some results from [14], Theorem 1.3, [13], Section 6.1, and [11], 
Section 8 adapted to the situation 0.4 in Introduction. 

For a pure case hP,q = l (p + q = 3, p, q 2: 0) and hP,q = 0 otherwise, a 
complete fan is constructed in [17], Section 12.3. For a mixed case hP,q = l 
(the above (p,q), plus (p,q) = (2,2)) and hP·q = 0 otherwise, over the above 
fan, a fan of Neron model for given admissible normal function is constructed 
in [14], Theorem 3.1, and we have a Neron model in the following sense. 

Let S E B(log), U := Striv C S (consisting of those points with trivial log 
structure), H(-J) be a polarized variation of Hodge structure of weight -1 
(Tate-twisted by 2 for 1i in Introduction 0.4) on U and 4J be a local system of 
Q-vector spaces which is an extension of Q by H(-J),Q· An admissible normal 
function over U for H(-J) underlain by the local system 4J can be regarded as 
an admissible variation of mixed Hodge structure which is an extension of Z 
by H(-I) and lies over local system 4J. 

For any given unipotent admissible normal function over U as above, H(-J) 
and LQ extend to a polarized log mixed Hodge structure on S and a local system 
on S10g, respectively, denoted by the same symbols, and there is a relative log 
manifold 14:i. over S which is strict over S (i.e., endowed with the pullback log 



5 Studies of closed/open mirror symmetry for quintic threefolds 147 

structure from S) and which represents the following functor on B/S0 (S0 EB 
is the underlying space of S): 

S' 1---+ {LMH Hon S' satisfying H(gr!') = H(wJls' (w = -1,0) and(*) 
below}/isom. 

( *) Locally on S', there is an isomorphism HQ :::::'. LQ on (S')10g preserving W. 

Here H(w)ls' is the pullback of H(w) by the structure morphism S' - S0 , and S' 
is endowed with the pullback log structure from S. 

Put H' := H(-I)· In the present case, we have h:-Q = £xtLMtt;s(Z,H') by 
[13], Corollary 6.1.6. This is the subgroup of r:*(H~10g/(F° + H~)) restricted 
by admissibility condition and log-pointwise Griffiths transversality condition 

([II], Section 8, cf. 1.5). LedLQ be the pullback of J¼ by r*(H~10g/F°) -

r:*(H~10g/(F° + H~)), and ]¼ be the image of]¼ by r*(H~108 /F°) -
r:*(H~10g/ p-l ). Then, by using the polarization, we have a commutative 
diagram: 

t t 
C r*(H~log/F°) ~ r*((Ji'°)*) 

t t 

C r*(H~log/F- 1) ~ r*((F1)*). 

2 Quintic threefolds 

Let V be a quintic threefold in P4 and let v; be its mirror family (cf. [ I], Sect. 
4.2). 

In this section, we give a correspondence table of A-model for V and 
B-model for v;. This is a precision and an expansion of our previous [30], 

Sect. 3 by using f-integral structure of Iritani [7]. We will use this table in 
Section 3 below. 

2.1. Quintic mirror family 

Following [21], [23], etc., we briefly recall the construction of the mirror 

family v; by quotient method. Let V"' :f := Li=i xJ-5 lfl ITJ=1 Xj = 0 ( If/ E P1) 

be the Dwork pencil of quintics in P4. Let µ 5 be the group consisting of the fifth 
roots of the unity in C. Then the group G := { (aj) E (µ 5) 5 I a 1 ... a5 = I} acts on 

V"' by Xj 1---+ ajXj. Let v; be a crepant resolution of quotient singularity of V"' / G 
(cf. [21], [23]). Divide further by the action (x1, ... ,x5) 1---+ (a-1x1,x2, ..• ,x5) 

and If/ 1---+ alfl (a E µ5). 
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2.2. Picard-Fuchs equation on the mirror V0 

Let 0. be a 3-form on v; with a log pole over If/= oo induced from 

5 

( ~)
3Resv ( If/ ~(-l)i-lx·dx1 I\··· /\dx-1\ · · · /\dx5). 21r l If/ f L.., J J 

j=I 

Let z := 1/(51/1)5 and 0 := zd/dz. Let 

,C := 04 - 5z(50 + 1 )(50 + 2)(50 + 3)(50 + 4) 

be the Picard-Fuchs differential operator for 0., i.e., ,CO. = 0 via the 
Gauss-Manin connection V. There are three special points of the complex 
moduli: 

z = 0 : maximally unipotent monodromy point, 
z = oo : Gepner point, 
z = l/55 : conifold point. 

At z = 0, the Picard-Fuchs differential equation ,Cy= 0 has the indicial 
equation p 4 = 0 (p is indeterminate), i.e., maximally unipotent. By the 
Frobenius method, we have a basis of solutions yj(z) (0 Si :S 3) as follows. 
Let 

-(- . ) ·= ~ n;;i=l (5p + m) (- )n+p 
y z,p . ~ n:=l(p+m)5 z 

be a solution of ,C(ji(-z; p)) = p4(-z)P, and let 

1 a;y(-z;p) 
y(-z;p)=yo(z)+y1(z)p+y2(z)p2+y3(z)p3+···, Yi(z):=J! api lp=O 

be the Taylor expansion at p = 0. Then, Yi (O :S j S 3) form a basis of 
homogeneous solutions for the linear differential equation ,Cy= 0. We have 

- +. - "00 ~z" Yo - JO - L...n=O {n!)5 ' 

_ +- 1 f _ 1 5 '°'oo ~ ('°'5n 1 ) n YI -JO ogz+ I -Yo ogz+ L...n=I (n!)5 L...j=n+I J z, 

2!y2 = Jo (log z)2 + 2f1 log z + h, 

3!y3 = fo(Iogz)3 + 3f1 (Iogz)2 + 3fzlogz + f3, 

where all Jj are holomorphic functions in z with f0 (0) = 1 and Jj(0) = 0 for 
j > 0. 

Define the canonical parameters by t := YI !Yo, u := t/21r i, and the canonical 
coordinate by q := e1 = e2";" which is a specific chart of the log structure given 
by the divisor (z = 0) of a disc in P1 and gives a mirror map. 
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Write z = z(q) which is holomorphic in q. Then we have 

5 00 (Sn)! Sn 1 
logz = 2ir iu - o(z( )) L (n!)5 ( _L -:- )z(qf • 

Y q n=l J=n+l J 

The Gauss-Manin potential of v; is 

,...Yo -~(Y1Y2_Y3) 
"'GM- · 

2 Yo Yo Yo 

Let Q := 0./yo and r5 := 2ir iqd/dq = du. Then, the Yukawa coupling at 
z= 0 is 

Y:=- O./\V0V0VaO.=----- - . 1 - - 5 (qdz)3 
vo (1 + 55z)yo(z)2 zdq 

2.3. A-model of quintic V 

Let V be a general quintic hypersurface in P4. Let H be the cohomology class 
of a hyperplane section of Vin P4, K(V) = R>oH be the Kahler cone of V, 
and u be the coordinate of CH. Put t := 2ir iu. A complexified Kahler moduli 
is defined as 

K:M(V) := (H2 (V,R) + iK(V))/H2(V,Z) ~ ~ *, uH r+ q := e2"iu_ 

Let CE H2(V,Z) be the homology class of a line on V. 

For fJ = dC E H2(V,Z), define q/J := ¢1. The Gromov-Witten potential of V 
is defined as 

<1>6w := i 1 (2iriuH)3 + L Ndq/J = ~(2iri)3u3 + LNdqd. 
V O'I/JEH2(V,Z) d>O 

Here the Gromov-Witten invariant Nd is 

Mo,o(P'4,d) !!-Mo,1 (J>4,d) ~ J>4, 

Nd:= r Csd+l (ir1*eTOP4(5)). J Mo,o (P4 ,d) 

Note that Nd = 0 if d ::S 0. Let Nd = Lkid nd/kk-3. Then nd/k is the instanton 
number. (n1 here is different from n1 in Theorem 0.3.1.) 

The differentials of <I>= <1>6w are computed easily: 

2.4. Integral structure 

As we stated in Introduction, we consider everything near the large radius point 
q0 and the maximally unipotent monodromy point p0 . Let S be a neighborhood 
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disc of q0 (resp. p0) in K:M(V) (resp. M(V 0 )) for A-model of V (resp. for 
B-model of V0 ), and let S* be S "- {q0 } (resp. S "- {p0 }) for A-model (resp. 
B-model) (see 2.2, 2.3). Endow S with the log structure associated to the 
divisor S "- S*. 

The B-model variation of Hodge structure 1-lv0 is the usual variation of 
Hodge structure arising from the smooth projective family f : X --+ S* of the 
quintic mirrors over the punctured neighborhood of p0 . Its integral structure is 
the usual one 1-lr = R3f*Z. This is compatible with the monodromy weight 
filtration M around Po- Define Mk,Z := Mk n 1-lr for all k. 

For the A-model 11,v on S*, the locally free sheaf on S*, the Hodge filtration, 
and the monodromy weight filtration M around q0 are given by 1-l~ := 
Os•© (E0o~:s3 H2P(V)), FP :=Os•© H:s2<3-P)(V), and M2p := H2:2<3-Pl(V), 

respectively. Iritani defined f-integral structure in more general setting in [7], 
Definition 3.6. In the present case, it is characterized as follows. Let H and 
C be a hyperplane section and a line on V, respectively. Then, in the present 
case, a basis of the f-integral structure is given by {s(t') It' is Ov,OH,Oc,Opd 
[ibid, Example 6.18], wheres([) is a unique vcven_flat section satisfying an 
asymptotic condition 

s([) ~ (2ni)- 3e-2"iuH • f(Tv) · (2ni)dcg/2ch(£) 

at the large radius point q0 when Im(u) --+ oo for each fixed Re(u). Here, for 
3 ~ 

the Chern roots c(Tv) = fl=I (1 +oj), the Gamma class f(Tv) is defined by 

3 

[(Tv) := n f(l +oj) = exp(-y c1 (V) + L(-l)k(k- l)!((k)chk(Tv)) 
j=l 

= exp(((2)ch2(Tv) - 2((3)ch3(Tv )) 

where y is the Euler constant, and deg IH2P(V) := 2p. The important point 

is that this class f (T v) plays the role of a "square root" of the Todd class 
in Hirzebruch-Riemann-Roch ([6], 1; [7], 1, (13)). Denote this f-integral 
structure by 1-lf. This is compatible with the monodromy weight filtration M 
and we define Mk,Z := Mk n Hf for all k. The above asymptotic relation is 
actually computed as 

0 1 3 s :=s(Op1) = 5H , 

1 1 
s1 :=s(Oc) = 5(2ni)-1H2 + 5(-u+ l)H3, 

s2 :=s(OH) ~ (2ni)-2H + ~(2ni)- 1 (- u - !)H2 + (!u2 + !u + 2-)H3 
2 2 2 2 12 ' 
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+ (-!u3 _ 2-u+ 5i((3))H3. 
6 12 1r 3 

Fixing an isomorphism of VHS in (2) in Introduction, we also use sf' for the 
corresponding v'-flat integral basis for the B-model 1-lr (vanishing cycles are 
used for B-model in [7], Theorems 6.9, 6.10, Example 6.18). 

In both A-model case and B-model case, the integral structures 1ii and 
1-lr on S* extend to the local systems of Z-modules over S10g ([24]; [17], 

Proposition 2.3.5), still denoted Hi and 1-lr, respectively. 
Consider a diagram: 

,slog:= Rx i(0,oo]:) S* :=Rx i(0,oo) 

1 1 
S* 

s 
The coordinate u of S* extends over S10g. Fix base points as u0 = 0 + ioo E 

,slog ~ b := 6 + ioo E S10g ~ q = 0 E S, where q = 0 corresponds to qo for 
A-model and p0 for B-model. Note that fixing a base point u = u0 on ,slog is 
equivalent to fixing a base point b on S10g and also a branch of (2ni)- 1 logq. 

Let B := 1-li(uo) = 1-l'f,(b) for A-model and B := 1-lr(uo) = 1-lr(b) for 
B-model. 

2.5. Correspondence table 

We use the mirror theorems in Introduction 0.2-0.3. Put <I> := <D6w = <1>6~ 
and fix an isomorphisim of VHS in 0.2.2 in Introduction ( cf. 2.4 ). 

(1 A) Polarization of A-model of V. 

S(a,/J) := (-lf(21ri)3 i a U/J (a E W·P(V),/J E H 3-P·3-P(V)). 

(lB) Polarization of B-model of V0 • 

Q(a,/J):=(-1)3<3-l)/Z { aU/J=- { aU/J (a,[JeH3(V0 )). 

Jv0 Jv0 

(2A) Z-basis compatible with monodromy weight filtration. 

LetB := 1if (u0 ) = 1i'f,(b) be as in Section 2.4. Let b3 := s3(u0 ) = s(Ov )(u0 ), 

b2 := s2 (uo) = s(OH)(uo), b1 := s1 (uo) = s(Oc)(uo) and b0 := s0 (uo) = 

s(Op1)(uo) be the basis of the fiber Bat uo coming from v'-flat integral basis 
in 2.4. 
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The endomorphism of BQ := Q ® B coming from the monodromy logarithm 
coincides with the cup product with -2n-iH where His a hyperplane section 
of V ([7], Definition 3.6; cf. Proposition 1.4.3). Hence the above basis is 
compatible with the monodrorny weight filtration M. 

(2B) Z-basis compatible with monodromy weight filtration. 

LetB := 1-lr (uo) = 1-lr (b), and b0,b1 ,b2,b3 be the basis of B corresponding 
to that in (2A) by the mirror symmetry 0.2.2 and 0.2.3 in Introduction. 

The endomorphism of BQ coming from the monodromy logarithm is 
denoted by N, and the above basis is compatible with the monodromy weight 
filtration M [ibid]. 

For both cases (2A) and (2B), we regard B as a constant sheaf on S10& and 
also on S, endowed with the associated filtrations M. 

From the asymptotics of the basis sP (O ~ p S 3) in 2.4, the matrix of the 

polarization pairings S in (IA) and Q in (lB) for the basis bP = sP(uo) is 
computed as 

(S(b", b") ),,, = (Q(b", b') ),,.,, = ( ~ 
0 0 -1) 0 1 -1 

-1 0 -5 . 

1 5 0 

(3A) Sections compatible with Deligne decomposition and inducing Z-basis 

of gr"1 for A-model ofV. 

Let T3, T2, T 1, and I° be the basis of 1-£0 corresponding to the e3, e2, e1, and 
e0 in (3B) below by the mirror symmetry 0.2.2 and 0.2.3 in Introduction. Then 

S(T3,T°) = I and S(T2,T1) = -1. Hence T3. T2, -T°, T1 form a symplectic 
base for Sin (IA). 

Note that on gr'-1 they are 

where H and C are the cohomology classes of a hyperplane section and a line 

on V, respectively. Abusing notation, we mean by C the Poincare dual class of 
the homology class in 2.3. 

(3B) Sections compatible with Deligne decomposition and inducing Z-basis 

of gr'-1 for B-model of V0 • 

We use Deligne decomposition [4]. We consider B in (2B) as a constant 

sheaf on S10g. We have locally free Os-submodules M2p := r:*(0~0 g ®zM2pB) 
and FP in r:*(0;0g ®z B) = Os ®z B (canonical extension of Deligne in 
Proposition 1.4.2). The mixed Hodge structure of Hodge-Tate type (M,F) 
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has decomposition: 

Os©zB= E91p,p, 
p 

Transporting the basis bP (0 SP'S. 3) of Bin (2B), regarded as sections of the 

constant sheaf B on S10g, via isomorphism 

JP•P • 0s©zg1B 

we define sections eP E JP,P (0-:;;_ p -:::. 3) over S. Then, e3, e2 ,-e0, e1 form a 

symplectic basis for Qin (lB), and e3 =ii= O./y0 over S. 
The asymptotic relation of the TP in (3A) (resp. the eP in (3B)) can be 

computed, via the sP, from (7 A) (resp. (7B)) below. 
(4A) A-model connection V = vevm ofV. 

Let r5 = d/du = 211:iqdjdq. The Dubrovin connection V (cf. [1], Sect. 8.4) is 

characterized by 

V,,T2 = _l_d3cD Tl= (s +-1_ d3cI>hol)Tl 
(211: i) 3 du3 (211: i)3 du3 ' 

V is flat, i.e., V2 = 0, and extends to a log connection over S10g. 

(4B) B-model connection V = VGM 0JV0 • 

Let r5 = d/du = 21.iqd/dq. The Gauss-Manin connection Vis computed as 

V,,eo = 0, V,5e1 = eo, V e2 - 1 d3cD e• - 5 (q dz)\1 
0 - (2n- i)3 du3 - (1 + 55)y0(z)2 ~ dq ' 

'vge3l = e2 . 

V is flat, i.e., V2 = 0, and extends to a log connection over S10g. 

(SA) V-fiat basis of'H.~ inducing Z-basis of gr"1. 

s°:=r-0, s• :=T'-uT°, s2:=T2 __ I_d2<J>Tt+_l_d<I>T°, 
(2,r i)3 du2 (21r i)3 du 

-3 3 2 l ( d2<I> dcJ.>) 1 I ( dcI> ),,..o s :=T-uT +-- u--- T --- u--2cI> 1-. 
(2n- i)3 du2 dlu (21r i)3 du 

Then s3, s2,-s0 , s1 form a symplectic basis for Sin (lA). 

(SB) 'v-flat basis for 11.t inducing Z-basis of gt"1• 

_3 3 2 1 ( d2<J> dcI>) 1 l ( d<I> ) 0 
s :=e -ue +-- u--- e --- u--2<1> e. 

(2n- i)3 du2 du (2n- i)3 du 

Then s3, s2 ,-s0 , s1 form a symplectic basis for Qin (lB). 



154 Sampei Usui 

For both cases (5A) and (5B), by using (4A) and (4B), the 'v-flat bases sP 
are determined inductively on O '5::.P:::; 3 from the TP in (3A) and the eP in (3B). 
These 'v-flat bases sP are characterized by the Frobenius solutions Yi (O sj $ 3) 
in 2.2 such that y0 T3 in A-model and yoe3 = ,Q in B-model coincide with 

Yos3 + (2n-i)- 1y1s2 +5(2n:i)-2y2s1 +5(2n-i)-3y3s°. 

(6A), (6B) Relations of V-fiat Z-basis sP and the V-fiat basis s". 

0 -0 I -I -0 2 -2 5_1 35_0 3 -3 25_1 25i((3)_o 
s=s, s=s+s, s=s- 2s+ 12s, s=s+ 12s+ n- 3 s. 

(7 A) Expression of the TP by the sP over S10&. 

It is computed that TP are written by the 'v-flat Z-basis sP of 1{~ as follows. 

yO =s°, T 1 =s1 + (u- l)s0 , 

2 ( 1 d2 (f} 5) 1 ( 1 ( d2 (f} d<I>) 65) o T =s2+ ---+- s + -- u--- -Su-- s 
(21Z' i)3 du2 2 (21Z' i)3 du2 du 12 ' 

T3 =s3 +usi+ (-l_d<I> + ~u- 25)s1 + (-1-(u d<I> -2<I>) 
(21r i)3 du 2 12 (2n i)3 du 

65 25 25i ) 0 
- 12u+ 12 - ~((3) s · 

(7B) Expression of the el' by the sP over slog_ 

It is computed that eP are written by the 'v-flat Z-basis sP of 1lr as follows. 

e0 =s°, e1 = s1 + (u- l)s°, 

2 2 ( 1 d2 <I> 5) 1 ( I ( d2<I> d<I>) 65) 0 e =s + ---+- s + -- u--- -5u-- s 
(2id)3 du2 2 (2n i)3 du2 du 12 ' 

e3=s3+us2+(-l_d<I> +~u- 25)sI+(-l-(ud<J> -2<1>) 
(2ir i)3 du 2 12 (2ir i)3 du 

65 25 25i ) 0 
-12u+ 12 -~((3) s · 

(8A), (8B) Relations of integral periods and Frobenius solutions. 
Let Y/j (O $j::: 3) be the integral periods defined by the condition that yoT3 

in A-model and y0e3 = Q in B-model coincide with Y/os3 + 17 1 s2 + ms1 + 113s0• 

Then the relations in (6A), (6B) are interpreted as 

5 25 
11o=Yo, 111 =(2ni)-1Y1, 112=5(2iri)-2y2+ 2(21ri)- 1Y1 - 12yo, 

3 2 65 I (25 25i((3)) 
'73 = 5(2n i)- Y3 -5(21f i)- Y2 + 12 (2ir i)- YI+ 12 - 11:3 Yo• 
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Remark. The '1i coincide with the corresponding coefficients of the expression 
of y0T3 in (7 A) and of y0e3 = n in (7B), and yield the same integral structure 
for periods given in [2] and [18]. Indeed, for the notation Til'j in [18], (8), they 

are related as TJYo = 110, w1 = 111, w2 = 112 -5111, and n:r3 = -173 - ,72 - 5171. 

2.6. Proofs of results in 2.5 

Proofs of (4A) and (4B) in 2.5. We prove (4B). (4A) follows by mirror 
symmetry theorems in Introduction 0.2. 

We improve the proof of [1], Prop. 5.6.1 carefully by a log Hodge theoretic 
understanding in 1.4 of the relation among a constant sheaf and the local 
system on S10£, the canonical extension of Deligne on S, and the Deligne 
decomposition. 

We investigate the Gauss-Manin connection V, corresponding to the local 
system 1-l'[, contracted with o = 21t iqd/dq. Since eP maps to a V(grt;1)-flat 
element of grt;1, V 0{eP) lies in M2p-1 = M2p-2. But eP is also an element 
of :FP, so that V0(eP) lies in J"P-l by Griffiths transversality. This shows that 
V0(eP) is an element of JP-l,p-l, and it follows that 

for some Y1,Y2,Y3 E Oi0 g. However, since Q(e3,e1) = 0 by orthogonality of 
Hodge filtration, we have 

0 =oQ(e3,e1) = Q(V0(e3),e1) + Q(e3, V0(e1)) = Y3Q(e2,e1) + Y1Q(e3,e0) 

=-Y3+Y1, 

where the last equality follows from 2.5 (3B). 
Since V has a regular singular point and o = 2n:iqd/dq, Y1 is holomorphic 

over S. Considering over the log point po, we claim Yi (O) = ± 1. Since e1 is 
taken to be the canonical extension over p0, we have V0(e 1) = N(e1) = -e0 by 
[17], Prop. 2.3.4 (ii) (cf. Proposition 1.4.3). Replacing e1, e2 by -e1, -e2, we 
have Y1 (0) = 1. 

Since we use the canonical coordinate q in 2.2, the arguments in [1], Sect. 
5.6.4, Sect. 2.3, yield 

Taking logarithm of both sides and differentiating them by d/dlogq, we 
have Y1 (q) = 1, hence V0e1 = e0 and V0e3 = e2• Thus, relative to the basis 
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e0 , e1 ,e2 , e3 and using the canonical coordinate q, V0 has the connection matrix 

where Y = Y2. 

The proofs in [ibid, Proof of Prop. 5.6.l] for the following assertions work 
well: e3 is the normalized 3-form Q; the Picard-Fuchs equation for Q is 
V}(V}O/Y) = O; Y is the Yukawa coupling. The notation e0 ,e1,e2 ,e3 (resp. 
Yo, T 1, T2 , T3) in the present paper corresponds to e3, e2, e1, eo in [ibid, p.105] 
(resp. T°, T 1, T1, To in [ibid, Sect. 8.5.3]). 0 

Proofs of (SA), (5B), (6A), (6B), (7A), and (7B) in 2.5. 

We use mirror symmetry theorems in Introduction 0.2. 
From eP in (3B) and V0 in (4B), we produce '? inductively on O :Sp s 3 

as in (5B). These are transported as (5A) in A-model. For the last assertion in 
(5B) on the relation of V-flat basis sP and the basis of the Frobenius solutions 
yj, since y0 T3, y0e3 = Q, and the last expression in (5B) are killed by the 
operator .C, it is enough to show the equality on the fiber Be := C 0 B, i.e., the 
coincidence of the initial conditions. We work in A-model. By the asymptotics 
of the reverse relation of (5A) and of the expressions of yj in 2.2, we have 

d<l> d<l> 
YoT3 =yos3 +yous2 + Yo(21l"i)-3-s1 +yo(21l"i)-\u- -2<l>)s0 

du du 

~ YoS3 + yous2 + ~you2s1 + ~you3s0 
2 6 

5 5 ~ s3 + ((21l"i)-I logz)s2 + 2((21l"i)- 1 logz)2s1 + 6((21l"i)- 1 logz)3s0 

~ Yos3 + (21l"i)- 1y1s2 +5(21l"i)-2y2s1 +5(21l"i)-3y3s0. 

To prove (6A), (6B), (7A), and (7B), we want to find c10,c21 ,c20,c32,c31 ,c30 E 

C such that, on the fiber B, 

so(uo) = bo, SI (uo) = bl + CIOsO(uo), s2(uo) = b2 + c21 s' (uo) + c20sO(uo), 

Then, since'? and sP are V-flat, we have 

Express the eP by the sP by using the inverse expressions of the above and of 
(5B). Transporting these into A-model, we get expression of the TP by the sP 
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and the dk. Using Iritani asymptotics for the sl' in A-model in 2.4, we get 

1 1 CIO 
T° =5H3, yl = (21r i)-15H2 + 5H3, 

( 
5 c32 c32c21 c3t )) 2 + ---+--+- H 
12 2 5 5 

+ ---+- u+ --+- H. (( 1 c 31 c 20 ) (5i((3) c 30 )) 3 

6 5 5 1r 3 5 

Since TP E :FP by construction ((3A), (3B) in 2.5), we see that all coefficients 
of Hj in the above expressions of TP are zero for j + p > 3. Thus we get 

c 10 = -1, c 21 = 5/2, c 20 = -35/12, c 32 = 0, c 31 = -25/12, c 30 = -25i((3)/1r3. 

(6A), (6B), (7A), and (7B) follow from this and (5A), (5B). 
We prove (8A), (8B). The same argument goes for both cases. We use the 

notation in B-model. By the definition of the Y/j and (5B), n = yt0s3 + yt 1s2 + 
yt2s 1 + yt3s0 = Yos3 + (21r i)-1 Y1s2 + 5(21r i)-2y2s1 + 5(27r i)- 3y3s0 . Substituting 
( 6B) and comparing the coefficients of sP, we have expressions of the Yj by the 
Y/j• Solving these for the Y/j, we get (8B). • 

Remark. It was pointed out by Hiroshi Iritani that the definitions and the 
descriptions of integral structures 3.5, 3.6 in [30] are insufficient. Actually, 
they were the first approximations of integral structures by means of gcAf, 
which are characterized by the Frobenius solutions as in the last statement 
of (5A) and (5B) in 2.5. The second proof in [ibid, 3.9] works well even in this 
approximation. 

3 Proof of Theorem 0.4.1 

In this section, we prove Theorem 0.4.1 in Introduction for open mirror 
symmetry of quintic threefolds. We prove it by constructing a normal function 
in log mixed Hodge theory for B-model in 3.1-3.2 below. This argument is 
applicable to the case of A-model by the theorems in Introduction 0.2 and 0.3 
and the correspondence table in 2.5. We give some discussions on geometries 
and local systems in 3.3. 



158 Sampei Usui 

3.1. Proof of Theorem 0.4.1 over log disc S 

We consider B-model. To make the monodromy of TiJ unipotent, we take a 
double cover z112 r+ z_ Let S be a neighborhood disc of p0 in the z'l2-plane 
endowed with log structure associated to the divisor p0 in S. Denote by 1-l and 
T the pullbacks of the log Hodge structure 11,v0 and the tension TiJ by the 
double covering, respectively. 

We are looking for an extension il: 

0 - H - il - Z(-2) - 0 

of log mixed Hodge structures with grf il = Z( -2) and grf il = 1-l, which has 
liftings lz and lF of (21ri)-2 - I E Z(-2) in il respecting the lattice and the 
Hodge filtration, respectively, such that the tension T is described as 

(I) 

where Q is the polarization of 1-l coming from 2.5 (IB) and n is the 3-form 
from 2.2. 

To find such a log mixed Hodge structure, we use the basis eP (O s p s 3) 
respecting the Deligne decomposition of (1-l,M,F) from 2.5 (3B), and the 
V-flat integral basis ~ (O s p s 3) from 2.5 (5B). We also use the integral 
periods 11i (0 sj s 3) in 2.5 (8B). Note that these players are already extended 
and live together over S10g. 

Let the local system½ and the Neron model hQ be as in 0.4 in Introduction 
(see also 1.8). Then JLQ = ExtLMH;s(Z(-2),1-l), and let lz := ((21ri)-2 • I, 

-(T/11o)s0) E Hz be a lifting of (21ri)-2 • 1 E Z(-2) = (grf)z, where 
(T/11o)s0 E 1-l0 1og = (grf)0 1og. In particular, the connection V = v0 M on 1-l is 
extended over il by V(Iz) = 0. 

To find IF, we write IF - lz = ae3 +be2 +ce1 - (T /11o)e0 with a,b,c E o1°g 
by using (1). The Griffiths transversality condition on IF - lz is understood as 
vanishing of the coefficient of e0 in 'v0(1F - lz). Using 2.5 (4B), we have 

( I d3 <1> ) 'vo0F- lz) = (Ja)e3 +(a+Jb)e2 + b-( . 3 - 3 +Jc e1 +(c-J(T/11o))e0 . 
21r 1) du 

Hence, the above condition is equivalent to c = J(T/170 ) and a,b arbitrary. 
Using the relation "modulo F 2," we can take a= b = 0. Thus 

The pair lz and lF yields the desired element of ExtLMH/s(Z(-2), 1-l), hence 
IF - lz yields the desired log normal function. Theorem 0.4.1 (1) is proved. 

Next, we will find a splitting of the weight filtration W of the local system 
LQ_, i.e., a splitting of W which is compatible with the local monodromy of 
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the local system LQ. We use the monodromy table (3.14) in [31]. This is 

computed for A-model but applicable also for B-model by the theorems in 
Introduction 0.2---0.3 and in Section 2.5. Let T~ be the monodromy around 

Po: z112 = 0 and putN := log(T~). By [ibid], N('T /110) = -1 henceN(lz) = s0. 
On the other hand, we have N(s1) = -2s0 . (Here we use the rotation of the 
monodromy as logz 1-+ logz + 2n i.) Define 

spl 1 I ( 2 1 I / 0) -lz := lz+-s = (2ni)- · 1, -s - -s E 1-lQ· 
2 2 110 

Then N(lt) ~ 0, and this gives the desired splitting of W of the local 

system LQ. 
A lifting 1 j" for it, respecting the Hodge filtration, is computed as before 

and we get 

(2) lj" =it+ (c5(:) )e' - : e0 . 

The pair it and lj" yields the desired element of £xtLMH/s(Z(-2), 1-l) which 

splits the weight filtration W of the local system LQ. Note that 1j" - it= 
lF - lz = (J('T /17o))e 1 - ('T /11o)e0. Theorem 0.4.1 (2) is proved. 

Theorem 0.4.1 (3) follows immediately from the above results. 

We add a remark that the W-relative N-filtration M = M(N, W) on HR in the 
admissibility condition 1.5 (1) is given by 

M-1 =OCMo=M1 =Rs0 cM2=M3=M1+Rs1 

3.2. Proofs of(l) and (2) in Theorem 0.4.1 over log point Po 

We still consider B-model. We show here that (1) and (2) in Theorem 0.4.1 

have meanings just over the log point po and that the computations in their 

proofs become simpler. 
Recall that 

(1) 171 110 'T=-- - -+a0 r 
2 4 

( ao := :~, r : tau function) 

from [31]. We substitute z112 = 0 to 'T carefully as follows. Recall 171 = 170u 
from 2.2 and u = x + iy from 2.4. Write v := x + ioo and define 

V 1 
'T(0) := -- - - +ao 

2 4 
in 0 10g = C[v] PO • 

We abuse the notation eP and sP also for their restrictions over the log point Po, 
and so they live together over p~g = (S 1, C[ v]). 
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Similarly as in 0.4 in Introduction, but using now T(0)s0 instead of 
(T / rJ°)s0 because Y/0 (0) = 1, we define a local system LQ and a Neron model 
JLQ lying over LQ. Let it, be an extension of log mixed Hodge structures over 
the log point po, we are looking for, like in 3.1, and let lz := ((2ni)-2 • 

1, -T(0)s0) be a lifting of (2ni)-2 • 1 E Z(-2) = (gr.f)z in Hz. Hence the 
connection 'v on 1i is extended over it, by 'v(lz) = 0. Note that both 2niq~ 

and 2n izfz coincide with fv now, which is denoted by J. To find lF, write 
IF - lz = ae3 + be2 + ce1 -T(0)e0 (a,b,c E C[v], Y/o(0) = 1) and compute 
'v0(1F - lz) as in 3.1. Then, by the Griffiths transversality, we have c = -1/2, 
a and b arbitrary. By the relation "modulo F2 ," a and b can be reduced to 0. 
Thus, we have 

I O 1 I (V l ) 0 lF=lz+(t5T(0))e -T(0)e =lz- 2e + 2+ 4-ao e. 

The pair lz and IF yields the desired element of £xtLMH/s(Z(-2), 1i). 
Theorem 0.4. l (1) is proved. 

The splitting of the weight filtration W of the local system LQ is computed 
as in 3.1 but more simply, and we define 

ti':= lz + ~s1 = ( (2ni)-2 • 1, ~s1 -T(0)s0) E HQ, 

Similarly, a lifting 17' for ti' is computed simply, and we get 

17' = l~g + (JT(0))e1 -T(0)e0 . 

Theorem 0.4.1 (2) is proved. D 

Remark. Note that 0.4.1 (3) does not have meaning in the present context. This 
is because tau function disappears except its constant term when z112 = 0 is 
substituted. That is, in this step, we lose the transcendental data of the tension 
T, contained as the extension of its underlying local system, from which we 
can recover the position of the quintic mirror in its complex moduli space. 

3.3. Discussions on geometries and local systems 

We discuss here the relation with geometries and local systems considered in 
[31] and [23]. Forgetting Hodge structures, we consider only local systems 
corresponding to the monodromy of integral periods and tensions. 

Let V \V and v; be a quintic threefold and its mirror from 2.1. Let S be a small 
neighborhood in the z-plane (z in 2.2) of the maximal unipotent monodromy 
point Po endowed with the log structure associated to the divisor p0 . 

We first consider B-model. Let the setting be as in [23], Sect. 4. For z =I- 0 
near 0, i.e., near Po, let v; be the mirror quintic and C+,z U C-,z be the disjoint 
union of smooth rational curves on v; corning from the two conics contained 
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in V 1/f n {x1 +x2 = x3 +x4 = 0} c P4(C). From the relative homology sequence 
for (V;, (C+,z U C_,2)), we have 

a 
(1) 0---+ H3(V;;Z)-+ H3(V;, (C+,z U C-,z);Z) • Z([C+,zl - [C-,2D • 0, 

where Z([C+,zl - [C_,z]) is Ker(H2CC+,z u C,z;Z) -+ H2(V;;Z)). The 
monodromy T 00 around p0 interchanges C+,z and C-.z· 

Respecting the sequence (1), we take a family of cycles Poincare duality 
isomorphic to the flat integral basis sP (0 :5 p ::5 3) in 2.4 and a family of 
chains joining from C-,z to C+,z (a choice up to integral cycles and up to 
half twists), and over them integrate the family of 3-forms Q(z) with log 
pole over z = 0 (z in the punctured disc in the z-plane) in 2.2, then we have 
a family of vectors (170 ,17 1,172 ,173, T) consisting of periods (2.5 (SB)) and a 
tension. This corresponds to the data in [31 ], [23] (cf. Remark in 2.5). Since 

Too(T) = -(T +111 +110) by (31], (3.14), we find T +½171 +¾110 = ~~ r (see 3.2 
(I)) is an eigenvector of the monodromy T 00 with eigenvalue -1. 

The family of sequences ( 1) (z f= 0) forms an exact sequence of local systems 
of Z-modules. Pulling this back to S" in 3.1 by the double cover z112 1-+ z, we 
have a sequence with unipotent local monodromy and its extension over S10g. 

Applying Tate twist (-3) and Poincare duality isomorphism to the left and the 
right ends of this exact sequence, we have a local system L' over S10g which is 
an extension of Z(-2) by 1-lz: 

(2) 0 • 1-lz • L' • Z(-2)---+ 0. 

Take a lifting lz := ((21ri)-2 • 1, (T/170 )s0 ) in L' of (21ri)- 2 • l E Z(-2), and 

extend 'v on 1-lz over L' by 'v(lz) = 0. We look for a 'v-flat T~-invariant 
element associated to lz. This is done as in 3.1, and we get it:= lz - (s 1 /2). 
Thus we know that L' coincides with Hz in 3.1. 

For the relative monodromy weight filtration M = M(N, W) of L', we see 
that lz E M4 and s 1 E M 2 are the smallest filters containing each element in 
question. Taking the graded quotients by M of the sequence (2), we have 

(3) gr'f 1-lz • gr'f L', 

0---+ g/f1-lz • gr'fI; • Z(-2) • 0, 

0 • g~1iz • ~L' • (2-torsion) • 0, 

g~1iz • g~L'. 

Here we abuse the notation M also for the monodromy filtration on 1-lz, 
because it coincides with the restriction of M = M(N, W) to 1-lz. The 2-torsion 
in the third sequence of (3) corresponds to a half twist of chains from C_ to 
C+. Standing on a half integral point and looking at the integral points nearby, 
we have two orientations. These correspond to the two orientations of a half 
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twist of the chains, and also correspond to T± := ±(;~ r - -'!f-) - ~ in [31]. 
7- is different from -T+ by the complementary half twist, i.e., T+ + ,_ = -111. 

By using mirror symmetries in 0.2-0.4, or more precisely, by the results 

in Section 2.5 and Section 3.1, 1lz = 1lr, 'T = IB, lz, V = v0 M, it, and 

M = M(N, W) of B-model are transformed to the corresponding 1lz = 1lj,, 
'T = Yo IA, lz, V = veven, 1t, and M = M(N, W) of A-model, and the exact 

sequences (2) and (3) of B-model are transformed to the corresponding exact 

sequences of A-model. 

It is interesting to study the relations of these exact sequences with the 

geometries of Fermat quintic V = V 'fl with 1/1 = 0 and its Lagrangian 

submanifoldLg := vnP4(R) in [31], 2.1; [23], 3. 

Remark. 

(1) The argument in 3.3 can be performed even over the log point Po­
(2) [26] and [ 19] are related with the topics in this subsection. 
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