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Introduction

Let X be a smooth, complete surface with p,=c}=1 and K ample. Let
n: —S be the Kuranishi family of the deformations of X; =X(s,€S) and let
¢: S— D be the period map in the second cohomology (cf. 2.1). In this paper, we
investigate what kind of fibre ¢ has. Our main results are Theorem (5.1) and
Theorem (6.1).

In Theorem (5.1), we show that the period map ¢ actually has 0-dimensional,
1-dimensional and 2-dimensional fibers. The method here is an elementary
caluculus by using the Jacobian of the period map ¢ (cf. Lemma (4.10)) and the
kernel of the differential map d¢(s) at s € S of the period map ¢ (cf. Lemma (4.3)
and Lemma (4.10)). Unfortunately, our result is imcomplete (cf. Remark (5.9)).

In Theorem (6.1), we get the relationship among some properties on {se S|
dim Ker d¢(s)=2} (cf. also Lemma (3.18)).

In § 1, we summarize some results on the surfaces X with p,=c}=1: Rep-
resentation of such surfaces as weighted complete intersections of type (6, 6)
in P(1, 2, 2, 3, 3) (the result of Catanese [2]). Some results on the cohomology
groups of these surfaces X.

In §2, we calculate the Jacobian of the period map ¢ by means of the co-
efficients of the defining equations of the surface X.

In § 3, we study the ramification divisor 4 of the period map ¢: The singular
locus of 4. The subset {se 4|dim Ker d¢(s)=2}.

In §4, we calculate explicitly the kernel of the differential d¢(s) by means of
the coefficients of the defining equations of the corresponding surface X.

In §5 and §6, we prove Theorem (5.1) and Theorem (6.1) mentioned above.

In this paper, the author owes much to the result of Catanese [2].

The present paper is deeply concerned with the author’s forthcoming paper [7].

Notation and Convention

Every variety in this paper is defined over the field C of complex numbers.

Research partially supported by the Grant-in-Aid for Encouragement of Young Scientist
(A)-474031.
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For a complex manifold X, we denote
QL =the sheaf of holomorphic differential 1-forms,

Ky =det Q3,
Ty=the dual of Q}.

More generally, for a smooth morphism f: XY, we use the notation
Q1 =the sheaf of relative holomorphic differential 1-forms i.e. Q%/f*Q},
K, =det Q1,

T,;=the dual of QF.

For a submanifold Z of a manifold X, we denote
Nz,x =the sheaf associated to the normal bundle to Z in X,

Ny x=the dual of N .

1. Surfaces with p,=cf=1

1.1. F. Catanese ([2]) showed that the canonical model of the surfaces of
general type with p,=c?=1 are represented as weighted complete intersections of
type (6, 6) in P(1, 2, 2, 3,3). (For the concept of weighted complete intersection,
see [5].) If we assume, furthermore, that their canonical invertible sheaves are
ample, they contain no rational curves with self-intersection number —2 and
hence their canonical models are smooth.

1.2. We summarize here some cohomological properties of the surface in
question, which will be used later.

Let X be a smooth weighted complete intersection of type (6, 6) in P=
P(1, 2, 2,3, 3). Denote by C the canonical divisor of X.

By using the facts

Nyp=0x(6)®2 and Ky~0(1)
and the well-known exact sequences
(1.1) 0——’ Tx_’ TP®0X__>NX/P_’0’

> Q

(1.2) 0— 0y —> oD, Oxle) — To®0y
(where eg=1, e, =¢,=2 and e;=e,=3) and:

(1.3) 0— Nejy — Q4®0. — QF — 0,
we can calculate easily the following data on cohomology groups (cf. [5]):
(1.4) HYX, Tyy=H¥X, Ty)=0, dim HY(X, Ty)=18.

(1.5) HO(X, Q4)=0, dim HY(X, Q})=19.

(1.6) dim HY(C, Qk®0.)=2.
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(1.7 dim HY(X, To®0,)=16, H(X, Te®0x)=H*(X, Tp®0)=0.
(1.8) dim HO(X, To®Ky) =28, dim H!(X, Te®Ky)=1.

(1.9) dim H(C, To,®Kx®0c) =12, dim H'(C, Te®Kx®0c)=1.
(1.10) dim HO(X, Nyp)=34, HY(X, Nyp)=HX, Ny,p)=0.

(1.11) dim H(X, Ny p®Kx)=46, H'(X, Ny,p®Ky)=0.

(1.12) dim H(C, Nx,p®@Kx®0c)=12, HYC, Ny,p®Kx®0)=0.

Let w be the fundamental (1, 1)-form corresponding to the canonial polar-
ization of X and let

H\(X, Ty® Ky) -2 H¥(X, Ky)

be the map defined as the contraction with w. Tensoring Ky to the exact sequence
(1.1) and taking the cohomology sequence, we have

HO(X, Nyp®Ky) —2 H(X, Ty®Ky) —> HI(X, To®Ky).
Lemma (1.13).
HO(X, Ny, p®Ky) —2 H(X, Ty®Ky) —2> H¥X, Ky) is exact.

PrOOF. we HY(X, Q%) comes from some @ e H(X, Q2L®0,) and we have
a canonical factorization

HY (X, Ty® Ky) -2 H*(X, Ky).

HI(X, Tpe®Ky)

Since w is surjective and dim H*(X, Ky)=dim H{(X, To,®Ky)=1 (1.8),
we get our assertion. Q.E.D.

1.3. Let H be the Hilbert scheme parametrizing smooth weighted complete
intersections of type (6, 6) in P=P(1, 2, 2, 3, 3) and let

' — PxH

"1 ./projection
H

be the universal family.

Let R=C[xq, ¥;, Y2, Z3, Z4] be the weighted polynomial ring with deg x,=1,
deg y;=2 (i=1, 2) and deg z;=3 (i=3, 4) and let Aut (R) be the group of auto-
morphisms of the graded C-algebra R. Denote by G’ the image of the anti-
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automorphism Aut (R)—Aut (P) of groups, i.e. G'=the group of linear auto-
morphisms of P. Since Ky ~0y(1) for X,=n"!(t)(teH), H/G is the
coarse moduli scheme of complete, smooth, minimal surfaces with p,=ci=1

and K ample.
The defining equations of a smooth weighted complete intersection of type
(6, 6) in P(1, 2, 2, 3, 3) can be normalized as follows (see [2]):

f=THf D200+,
(1.14)

g=23+9Wz3x,+g?,
where f() and gV are linear and f(® and g3 are cubic forms in x3, y, and
V2, 1.e., by using the notation y,=x3,

JO= 3 fow [O=__ T [y

0sis2 Osisjsks

gPV= ¥ gy, ¢g¥= > GijkVijVk-

05is2 0sisSjsks2

These coefficients form a Zariski open set U in 26-dimensional affine space,
that is,

the corresponding surface is a
U= ( ue A?% | smooth weighted complete intersection
of type (6, 6) in P(1, 2, 2, 3, 3)

Note that U can be considered as a closed subscheme of the Hilbert scheme
H. Denote by n': £'—>U the pull-back of the universal family n': &' —»H
by UGH.

Set

G={ceG |o(U)cU}.

Then an element o € G can be represented by a non-singular matrix

| d
le dll d1z 0
(115) d20 d21 dzz
0 dy, 0
’ 0 d,

or
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do
dio | dyy dp 0
(1.16) dyp | dy dy
i 0 | 0 d;
' d4 0
with the action
0xo=doXo,

0y.-=0§§§2duy,- (i=1, 2),
02;=d,z; (i=3,4)

in case (1.15), and
0xo=doXo,

oyi= X2 du.Vj (i=1,2),

0sjs2
623=d324,
0'24=d423,

in case (1.16).
The induced action of G on U is, for u=(f, g)e U,

u=(f, 9) — ou=(of/d3, og/d})
in case (1.15), and

u=(f, g) — ou=(0g/d}, o f|d3)
in case (1.16), and we have

U/G —= H|G =the coarse moduli scheme of complete, smooth
surfaces with p,=x}=1 and K ample.

2. Period map and its Jacobian

. 21. Let X be a complete, smooth surface with p,=c{=1 and Ky ample.
By (1.7), we see that the Kuranishi family n: £ —S of the deformations of X =
X, =n"1(so) (5o € S) is a universal family with the smooth parameter space S of
dimmension 18.
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Let
(2,1) QS:S—»D

be the period map arising from the Kuranishi family n: 2—S. Recall that
(2.1) is constructed in the following way (cf. [3]): Fixing a C*-trivialization of
the family n: £ —S, we get the isomorphisms o,:P*(X,.C)—P?(X, C) (s€S) of
the primitive cohomology groups preserving the Hodge-Riemann bilinear form Q.
Then the map

¢: S — P19 ={lines in P?(X, C) through the origin}
defined by
¢(s)=the line a(P?°(X,)) in P¥(X, C)
is holomorphic and factorizes

S — P19
U
DcD

where
D={¢eP?|Q(¢ ¢&)=0} and
D={¢eD|Q(, &)>0}.

This map ¢: S—D is the period map (2.1).

2.2. We continue to use the notation in 2.1.

By the universality of the Kuranishi family, we have uniquely determined
morphism p*: H—S (in the sense of germs) from the Hilbert scheme H to S.
Since the composite morphism p’: USH—S (in the sense of germs) is smooth?),
we can take a section S&U and hence we can consider that the Kuranishi family
n: —Sisasubfamily of n': 2'— U in 1.3, that is, we have the following diagram:

X' c¥ <cPxH

b

ScUcH

1 In the paper (7], we constructs the fine moduli %: F — M of marked surfaces with po=ci=1
and K ample, whose parameter space M is finite over the 'course moduli space M of surfaces
with p,=c?=1 and K ample. By the universality of the fine moduli, we get the morphism
p: U—M whose germ at the point in question coincides with the morphism p’: U—S, and
we can prove that the morphism j: U—M is smooth by its construction.
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Denote by q’ the first projection Px U—-P.
Recall also that the canonical divisors C, on X,=7n""'(u) (u e U) form a flat
family ¢’— U satisfying the commutative diagram (cf. [6]):

€ &

L/~

U.

Taking the direct image sheaves of the commutative exact diagram

0 0 0
| l I
0 Ty g*Tp®0y ———————— Nyt jpxy———— 0

l l l

0— > T, ®K, g*Te®Ky —— > Ny oy ® Ky —— 0

l l l

» T QK @0y — q’*TP®Kn’®(9<¢' I NI'/PXU®KW'®0V’ —0

l l l

0 0 0

0

we get, by using (1.4), (1.5), (1.7), (1.10), (1.11) and (1.12), the diagram (2.3) in
the next page.

LEMMA (2.4) The following sheaves are cohomologically flat in dimension
0 with respect to the morphism n': Z'->U and their direct images ny( ) have
the ranks indicated just after them respectively:

q*Tp®04, 16. q*Tp®K,, 28.
I*Te@®K @0, 12 Npypuys 34.
Nerpxu®Kpr 46, Nppuy®Kp®0,., 12.

The following are cohomologically flat in dimension 1 and their first direct
images R'ny( ) have the ranks indicating just after them respectively:

T, 18. T,®K,, 19.
I*Te®Ky, 1. *Te®K, @0, 1.

Proor. By Continuity Theorem (cf. [1]), we get our assertion immediately
from (1.4), (1.5), (1.7), (1.8), (1.9), (1.10), (1.11) and (1.12). Q.E.D.



(2.3)
0
0 0 , n;(T,,@lKn'@@«) — n;(q'*TPéK,,@a;) —
0 —a n;(q'*},,@a,') — n;Nir,pxu : ’ Rlnl;T,' i
liz i1 i
0— (g * To@ K ) —2 n;(N,',}mK,,') d R*n;(T{@K,')f—»R'n;@'lr.,@K,oﬁo

1 b b b l

0- (T, ®K, R0 ) — n;‘,*(ql*TP®K1r'®0's") -z, n;(NI'/PxU®Kn'®0({') =2, R (T, ® K, ®0y) = R'1i(g"*Tp® K, @) — 0

| l l l l

— R, T, » 0 0 0 0

|

B Rln;(an ®K1r') —_

l

1nsn) tedureg
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2.3. For the later use, we will represent the morphism j,: m(¢"*T, ®K,.)
=N (Ngpxu®K,) in (2.3) by choosing suitable frames.

We consider, as in 2.2, the family n’: £'— U to be that in the sense of germ
at some fixed point u e U.

Let f and g be the normalized forms in (1.14) of the defining equations of
Z' in Px U, where their coefficients f;, f;;1, g; and g;;, are considered to be pa-
rameters on U. Let % be the open subset of &’ defined by x,+0 and a(f/x§,
9/x8)/0(z3/x3, z4/x3)*0. For a sheaf F on &, we denote by res nyF the sheaf
on U defined by

I'(V, res nyF)=the restriction of F(n'~Y(V), F) to #'~Y(V)n% for an open
subset V of U.

Note that, by Poincaré residue formura, we can take

2.5) ool xo) (- LB 8128 N ay x3) m ] 33)

0(z3/x3, 24/ x3)

as a frame of res n, K,.. Set

(26) v =( LR IR ay, 133) 1 d(yald).

0(23/x3, 24/ x3)

Note also that res m Ny /pyy (resp. res my(Ny/pxu®Ky)) has a frame

{(a/xg)—a(—ﬁﬁla is a monomial in R of degree 6}
0

(2.7)
U {(a/xg) T(g‘?ﬁ'a is a monomial in R of degree 6}
modulo
6y O 6y 0
(f1x8) afIx8) ° (9/x8) W,
(2.8)

15 3arss 208 (@150 505758

<resp. {(a/x?,) Wf% Y’ ‘a is a monomial in R of degree 7}
2.9
U {(a/xZ,) Wg(‘/jx—g)— Y’ ‘a is a monomial in R of degree 7}

modulo

(5ol 39) 775y OV (9%0/3D) 57735y OV
(2.10) 5 ;
(ol 33) 55 ey @V and (90/38) 55 8y ®V)
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Let N (resp. I, N’, I') be the free @y-mdule of rank 38 (resp. 4, 50, 4) with
(2.7) (resp. (2.8), (2.9), (2.10)) as its free frame. Then we have natural exact
sequences:

0—1—N—nNgpxy — 0 and

0—I'"—> N' —> (Ng/pxu®K,) — 0.
Let

Jires m(q*Te®0,) — N

(resp. Jy : res T(@ * Tp®K,) —> N')
be a lifting of the morphism j (resp. j;) in (2.3). Set

T=resmy (@ *Tp®0,)®I and

T =res my (@ *Te ®K,)DI'.
Let

Jj:T—> N (resp. ji: T'—— N')

be the morphism defined by j(resp. j,) and natural inclusion I&N (resp. I'SN').
Then we can replace the part

(g *Te®0,) -4 n:kN;'/pxu

! !

e (g*Tp® K,) -, n:k(NS"/PXU®Kn')

of the diagram (2.3) by

J’
.

N

<45 N
"

J
1 N/

(2.11)

2

’

N o—

without losing commutativity and exactness, where i; and i5 are the morphisms
obtained by tensoring (2.5).
Now we represent the morphism jj in (2.11) by using the following frames.
(2.12) Frameof T': We can divide the frame of T’ into two parts (2.12.1)
and (2.12.2) bellow, so that the last part (2.12.2) is the frame of the image of i)
in (2.11).
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0
a(J’l/x%)

D130, (ral5D)0,  (2al ) v,
ol ) 5005y @Y ()55 Ty OV
(z3/38) 55 55 @V -

) oy @V (sl 5 @V
(3158) 55 7y ©'s - (8 5 T @3,
sl gy OV ) T OV
(2550l 58) 353y ®V's (2ax0l58) 505 Tz ®V
(0 1331589) 55 Ty OV (r238138) 55 Sy OV
(3158 5Ty @V (5%l 8) 7y @V
(2050l 58) 305 ©V's (13138) 5553 @V
(r233158) 5y @V (58138) 5503y V'
(130l 33) 575 53y O (22%0/33) 3505 T2y @V
(B3 505 Ty O (%ol 3955 Tz O
(2%l 33) 55 Ty @' (B35 2 @V
(%0l ) 577557 @' (9%0l3D) 5715y @V

(ol D) a0y ®V's (0%0/5) 505058 V'

where Y’ is (2.6) and

- U2y
0= (1 > 22(y,/x(2,) 0(yi/x3) +3§l

. 3(zi/x3) —5(23—,63)®¢'-

Sis <
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(2.13) Frame of N':

(2.3)).

(2.13.1)

(2.13.2)

Sampei Usui

GarH ) 57y OV (@l D5 OV
(2ur3) 5 ®Vs (325D 5005 OV
(5940259 50 @V (513 5505y OV
(503159 5y OV (@3717205D) 507758y OV

(250315 577555 ®V @ar3Ix) 505058 O

(el D) g @V eyl 5T OV

(ol D g O (szarol D) 57 OV

(ehnol 5 778y OV (22138150 575 @V
(233238150 507758y ®V's (2338159 57755y ®V
(2350l 59 gy OV's (257450 x0) 55 5 O
(250 ¥0) g5 g @' (Gar 385D 55 ey OV
(24325815055 58y @ (23815955 8y OV
(2B 5 OV (v 238139 507 OV s

(258159 50758y @V (232138159 505055 OV

The frame of N’ can be divided into three parts (2.13.1),
(2.13.2) and (2.13.3) bellow in the following way. The image of (2.13.1) in
Te(Nepxy® K ®0,) forms its frame (cf. (2.3)). The image of (2.13.3) in
Tye(Ngp x v ® K,) forms a frame of i,(Ty), where the sheaf Ty of the tangent bundle
to U can be considered naturally a subsheaf of Ty®0Oy~nyN, pyy (cf. also
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2 /-7 a ’ 4 /4.7 L !
(%J’zxo/lo)m@)‘/f s (23x5/x8) 3(g/x8) Y,
(50l 3D 577 @' (3v2%olxD) 5r7e @V
(71 73%0/ ) 5775 OV (7%l 5D) 57 7g OV
RN S OV (17D 5 OV
3RD 5 @V (13815 5 @V
sioy_ 0 ’ 710 ’
(y2x3/x{) 3(f]x8) ®Y’, (x§/x3) 3(7/x8) Y,
(%0l D) 5505 OV (1yawol D) 505755 OV
(17350l 5) 55058 OV (73%0/3D) g OV
AR 50Ty OV (110233 xD) a0 OV

3RID 50 Vs (D5 OV

(258150 gy ©V's (53/38) g gy @V

Let J be the matrix corresponding to the morphism j; in (2.11) with respect
to the frames (2.12) and (2.13). J is a 50 x 32 matrix with functions on U as its
entries and J is divided into 6 blocks according to the division of the frames. Set

(2.14)

\
J 0 12
11 Vi
A
J= J21 J22 /12
Ty | Iz )26
12 20

Then, we have
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(2.15)
A0 3% i |
2 fi 2112 2f122 0 |
0 f; Si22 3222
0 6
g, 0 39111 9112
g2 91 0 29112 29122 J
0 3
= g2 9122 39222 y
i Sz 2
0 2112 2f122 2
Ji22 3222 2
0 6
39111 9112 2
29112 29122 0 2
{
9122 39222 2 /
S~ 6 77777/¥ 6 __/

The other matrices J;(i=2, 3; j=1, 2) can be also calculate in a trivial way.
Since the space is limitted, we omit to write down these matrices.

2.4. We continue to use the notation above.

Recall that, by the result of Griffiths ([3]), the differential

d¢: T — ¢*T)
of the period map ¢ in (2.1) can be identified with the morphism
R, T, — #am (1. K,, Pn, QL)
induced from the pairing

Tn®K1r I ‘Q71n
where

Plzr, Q! =the primitive part of Rz, QL.

Hence, by the functoriality, the pull-back of d¢ by the morphism p’: U-S (in
the sense of germs as before) can be identified with

Rt T, — Hom (13K, P, QL).
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Let ¢ be a frame of n,K,.. Then, we have a commutative diagram

p'*Ts paldd), p'*o*T,

4 (

(2.16) R\ T, — Hom (n4K,, P,QL)
|
I l®*”

Rin, T, &%, P'n, QL.

From (1.13), (2.3), (2.11) and (2.16), we get a commutative diagram

0 0
l |
0 > T i N — 5 Rz, T, — 0
li'z ) lii ‘ li’
(2.17) 0 > T ! N 2L P\iQL — 0

-
3.
—
S

(g *Te @K, ®0y) -z, Tc:k(NI’/PxU®Kn’ ®0,)

l

0

O —

51

We denote by A the 6 x 6 minor matrix of J,, in (2.15) consisting of the first

6 rows and the first 6 columns, i.e.

4| }
(2.18) Ji= '—— , where I is the 6 x 6 unit matrix.
4| 2

(=]

LEMMA (2.19) For suitable coordinates of S and D, we have
the Jacobian of ¢p=det A,

where A is the matrix in (2.18).

PROOF. Set
|
Jll
J22
(2.20) J=1 Jy and J'=
J3z
"31
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Note that the matrix J” (resp. J,) represents the morphism j’ (resp.j,) in (2.17)
for suitable frames. Since j' and jj in (2.17) are injective, the matrices J” and
J in (1.14) are of maximal rank and hence we get that rank J' =12, rank J"=20
and rank J=32.

Let E be a subset of {l1, 2,..., 50} such that det J(E) does not vanish at the
point u € U in question, where we denote by J(E) the 32 x 32 minor matrix of J
consisting of the e-th rows (ee E). We can divide E=E’ L E” so that det J'(E’)
and det J"(E"—12) do not vanish at the point u € U, where we use the notation

E'—12={e—12|e€E"}

and also the notation J'(E") and J"(E" —12) as above.
Denote by v, v5,..., U5 the frame of N’ in (2.13). Then, from (2.17),

{s'0i7"Y(v,) | e€ {13,..., 50}\E"}
(resp. {s3(v.) |ee {1,..., SO}\E})

form a fram of R!'m, T, (resp. PlnyQLl). By using these frames, the morphism
i’ in (2.17) can be represented by the matrix

—J J(E) 0

* I
Since
—J J(E')! 0 {
det =(det A)-25-det J'(E’)™?
* I ‘
and det J'(E’) is non-vanishing at u € U, we get our assertion. Q.E.D.

3. Ramification locus of period map

We continue to use the notation in the previous section.

3.1, As in the beginning of 2.2, n: £—S is the Kuranishi family of the
deformations of X=X, =X, with ugeU, so€S and p'(ug)=s,. Let de(so):
Ts(s0)— Tp(d(sy)) be the differential of the period map ¢ in (2.1) at s,€ S and
let A(u,) be the matrix obtained by evaluating 4 in (2.18) at uoe U. Let C be
the canonical divisor on X as before.

LemMMA (3.1) We have
dim Ker d¢(sy) =corank A(uy)=dim H(C, Q}®0-)L2.
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In particular, the fibre of the period map ¢ in (2.1) through s, is at most 2-
dimensional.

PROOF. Restricting (2.2) to X=X, and taking the cohomology diagram,
we get an exact diagram

(3.2)
0

1

0—HYC, TY®Kx®0)—HO(C, Tp® Kx®0 ) 121490, HO(C, Ny ;p @ Kx®0).

J’i(uo)

HY (X, Ty)

l

HI(X’ TX®KX)

Since i(uy) in (3.2) can be identified with d¢(s,) in the same sense as in the
beginning of 2.4 and since j,(uq) in (3.2) is represented by the matrix J,(ug)
obtained from J,, in (2.15) by evaluating at u,, we have

dim Ker d¢(sy) =corank A(us)=dim H(C, Q®0,),

where we used the natural identification Ty®Ky=~Q}. Now the assertion
follows from (1.6). Q.E.D.

Set

U;={ue U |corank A(u)=1i} and
(3.3)
S;={se S|dim Ker d¢(s)=i} (i=0,1, 2).
Then, U; (i=0, 1, 2) (resp. S; (i=0, 1, 2)) form a stratification of U (resp. S).
We also use the following notation:

A’=U1UU2.
do={ued'| fi=f,=9¢,=9g,=0 at u}.
inot fi=f,=0 but g,=g,=0, or

A1=3ued’ )
fi=f,=0 butnot g,=g,=0 at u

' fi S )
rank =1, and neither

(3.4) n=(ued’ 91 92

f1=f,=0 nor g,=g,=0 at u
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( fi fa ) ]
rank =2 at wup.
g1 92

’z={ueA'

4=8,US,.
4;=p'(4}) (i=0,1, 11, 2).
LemMMA (3.5) 4y, 47, 47, and 45 are G-stable.

PrROOF. The assertion follows immediately from the obserbation of the in-
duced action of G on f,, f,, g; and g¢,. Q.E.D.

Note that 4; (resp. 4;) (i=0, 1, 11, 2) form a stratification of 4’ (resp. 4).
We normalize, further, the defining equations of X, according to u e 4;
(i=0, 1, 11, 2) as follows:

f=23+fozsx3+f

3.5) for wued.
g=23+goz3x3+9¥,
f=25+z4x0y+f,

(3.6) for ued.
g=23+goz3x3+g>,
f=25+z4x0y, +f P,

(3.7 for uedy,.
g=23+23%0y; +9oz3x3+9,
f=25+z4xop, +f P,

3.8) for ueds,.
g=23+73%y,+9?,

3.2. For simplicity of notation, we use the following:

i Sz 39111 9112
(f) (resp.(g))=the matrix| 2f;,, 2f12, (resp.| 29112 29122 ))-
(3.9) fi22 3222 gi22 3922>

If(, DI (resp. |g(i, j))=the 2x 2 minor determinant of the matrix
(f) (resp.(g)) with the i-th and the
Jj-th rows.

LEMMA (3.10) Set
A"={uedj, U d;|rank (f)=rank(g)=1 at u}.

Then, we have:



(i) U,=4pu4”
4y and 4" are both G-stable and of codimension 4 in U.

(disjoint union).

Period map of surfaces

(ii) S,=4d,yU p'(4") (disjoint union).
4, and p'(4") are both of codimension 4 in S.

PROOF.

The inclusion U,> 4, U 4” is obvious.
by dividing cases according to u € 4; (i=0, 1, 11, 2).

In case u € 4}, we use the normalized form (3.6) of the defining equations

It is enough to prove (i), since (ii) follows immediately from (i).
We will prove the other inclusion

of X,. Then the matrix A4 in (2.18) is evaluated at u as
3.f’lll fllZ
2f112 2.f122
f122 3f222
(3.11) A(u) =
39111 9112
29112 29122
9122 39222

If fi22=f52,=0, the points on X, with xo=y;=2z3;=0 become singular points
of X,. Hence

(3.12) f122¥0 or fy;,%0.

If rank (g)*2, g3(0, y,, y,)=0 has a triple root, say y;=a; (i=1, 2), and hence
the points on X, with xo=2z,=0 and y;=a; (i=1, 2) become singular points of
X,. Therefore we have

(3.13) rank (g)=2.

By (3.11), (3.12) and (3.13), we see that corank A=1.
In case u e 4y,, we use the normalized form (3.7) of the defining equations
of X,. We assume

not rank (f)=rank(g)=1 at u.
This is equivalent to assume .
(3.14) not |f(1, 3)=11(2, 3)I=lg(1, 3)|=19(2, 3)|=0 at u.

The matrix A is evaluated at u as
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10| ¥ fio }
0 1 212 2122 | 0

(3.15) = |20 T Yo l l
10 ! ! 39111 G2 l
0 1 0 29112 29122 |
00 : 9122 39222 i

As in the above case, we see that

(3.16) fi122#F0 or f,,,%+0, and

3.17) 1220 or g,,,%0.

By (3.14), (3.16) and (3.17), we can observe that at least one of the following 5x 5
minor determinants of A(u) does not vanish:

125 61=£g122lf(1, 3], [1; 6l=%g,22/f(2, 3)I,
125 5= £3g2251f(1, 3, 115 5= £3922,1/(2, 3)I,
55 4= £ fi2219(1, ), 14; 4= f12219(2, 3)I,

155 3l=£3f22219(1, 3)I, |45 3|=£3f32.19(2, 3)|,
where

|i; jl=the 5x 5 minor determinant of A(u) omtting the
i-th row and the j-th column.

In case u e 4;, we use the normalized form (3.8). The matrix A becomes

o Y s |

01| % % 0
o) = 0 0 Jiz2 3222 | ‘-
0 0 \ 39111 Gi2 |
1 0 0 I 29112 29122
i 0 1 ’ 9122 3922: :
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Observing the following 5 x 5 minor determinants of A(u)
125 61=£3g,1,1f(1, 3, 165 6]=%3g,1:1/(2, 3)I,
125 5= %g1 020/ (L D], 115 51= %911/, 3),
15: 3]=1+3/f22,19(1, 3)I, 165 3]=1£31312l9(1, 2)I,
15; 4l= % fi22l9(1, 3|, 165 4= = f22l9(1, 2)I,

we can find a non-vanishing one in the same manner as in the case u € 47;.

Thus we have proven U, =4, U 4".

It is easy to see that the condition rank (f)=1 (resp. rank (g)=1) is equivalent
to the condition that, in P? with homogeneous coordinates y,, y; and y,, the
cubic curve f(3=0 (resp. ¢g®=0) and the line y,=0 intersects at only one
point. From this, it follows that 4” is G-stable.

The other assertions are easy to verify and we omit their proof.
Q.E.D.

3.3. We investigate in the next lemma the singular loci of 4’ and 4 in (3.4).
LEMMA (3.18) Set
4" ={uedy |(1f(1, MU, D=1, DS 3D
x(lg(1, 3l g(L, 3 —1g(1, 2)I1g(2, 3)N=0 and
(f,(1£@2, Il 1g(1, =111, Ilg(1, 3
=LA/, gL, 3)I-1/(1, 21g(2, 3))
x(g.(1g(2, A1, 3l —1g(L, DS, I
=g(1g(1, S, 3 =1g(1, DS, HN=0 at u}.

Then we have:
(i) Sing(4")=U,u 4"
(ii) Sing(4)=S,u p'(4").

ProOF. Since 4’ is smooth over 4, (ii) follows from (i). Hence it is enough
to prove (i).

We use the new affine coordinates ¢;, &, n; and ;5 of U obtained from
the old ones f;, fi;1, g: and g;;, by translating the origin to u, i.e.

Si=fi—flw), ni=g;—g{u) 0=i£2),
Nije=fije=Fip(W)s  Mijp=g:i(1) 0=i£jsk=2).

With these new coordinates, the determinant

(3.19)



det |-

(3.20)

GHfiw) 0 3+ ) Enp+fin®)
Satfo(w) & +fi(w) 2112 +S112(1))  2(&122+/122(0))
0 &2 +12(u) €122 +/122(u) 3(8222 +/222(1))
ntgw) 0 3111 +9111 ()
n2+g,(u) ny+g,(u) 0- 2(1112+ 9 112())
0 M2 +9g2(%) M2z +9122(2)

N2+ g 112(%)
2(’1122"‘91.22(1‘))
3(11222 + G222(u))

86

s pdweg
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gives the Taylor expansion of det A at u.

We will prove (i) in dividing cases with respect to the stratification 4; (i=
0,1, 11, 2) of 4'.
In case ue 4;. We observe first the subcase

not fi=f,=0 but g,=g,=0 at u.

In this subcase, the linear term of (3.20) is

m(Fi(1F 2, gL, DI=-1F(1, 3l g(2, 3))
=LA, 3g(1, DI=1f(1L, 2)[1g(2, 3))) ()
—n2(A(£ 2, 3 g(1, 2)[ =171, g1, 3))
=501, gL, DI =111, 2lg(1, 3)D) (w)

Since f, or f,%0 at u, u e Sing (4') is equivalent to

(3.21)

de{ [£2, gL, A=, Illg2, 3 1A, gL, HI-1f(1, 2)]1g(2, 3)I}
1£(2, gL, D=1, I g1, B 1f(L, 3l 1g(L, 2)I-11(1, 2)Ig(1, 3)|

=L, DILA, DN =1FC D2, 3D gL, gL, 3)I—1g(1, 21g(2, 3))
=0 at u

and

(3.22) HUSF@, Dl g(L, I =1f(L, 3 1g(2, 3)I)

=f(f(1, 3l 1g(1, D=1, 2)lg(2, 3))=0 at u.

Similarly, we see, in the subcase f,=f,=0 but not g,=g,=0 at u, that
ue Sing(4’) is equivalent to (3.21) and

(3.23) g1(g(2, S, 3 —1g(1, IS, 3D
—9g2(lg(1, A, 3 —1g(L, DI1f(2, I)=0 at u.
Combining (3.21), (3.22) and (3.23), we scc that
Sing (4')n 4y =4".

In case u e 4}, we will first prove thie assertion for such u that the defining
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equations of X, is normalized as (3.7). At such point u, the linear term of (3.20)
becomes

(3.24) Si(= 112, Il g(1, D+, g2, 3)) ()
+&(17(, g, =171, 292, 3)) ()
+mi(Lf (L, 3192, 112, lg(1, 3)) ()
+na(=1f (1, g1, I +11(2, I g(1, 2)1) (w)
+&111(3- 3222192, 3D (w)
+&112(—f12219(2, 3)| =2 3f32,19(1, ) (u)
+&122(=f11219(2, 3 +2-2f15219(1, 3)) ()
+¢22203- 311 1:19(2, 3| =3-2f11219(1, 3D (w)
+111(= 33922212, 3)) (w)
+1112(91221 (2, 3 +2- 392,11, 3D (w)
+1122(91121f(2, 3| —=2-2g,,,| (1, 3D ()
+1222(=3- 391,11/ (2, 3 +3-29,1,1f(1, D).

We claim that every coefficient of (3.24) is zero if and only if

(3.25) (1, DI=112, JI=1g(1, I =1g(2, 3)|=0 at u.

It is evident that (3.25) is a sufficient condition. Assume now that |g(2, 3)|+0
at u. This implies that f,,,=f122=f1,2=f1:1=0 at u. But if f,,,=f,,=0
at u, the points with xo =y, =z3=0 become singular points of X,. Hence |g(2, 3)|
=0 and also |g(1, 3)|=0 at u. The same reasoning assures that [f(2, 3)|=
|f(1, 3)]=0 at u.

By using the fact (f5,f2)*(0, 0) and (g,, g,)*(0, 0) at u once more, we
see that (3.25) is equivalent to

(3.26) rank (f)=rank (g)=1.

As we have shown at the final stage of the proof of Lemma (3.10), the condition
(3.26) is invariant under the action of G. Thus the assertion in case u € 47, is
proven.

In case u € 43, by using the normalized form (3.8), we can get the condition
(3.26) with a similar argument as in the previous case u € 45;. Q.E.D.
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REMARK (3.27) We remark here that 4” in (3.10) and 4" in (3.18) are not
empty sets.

4" contain such point u with

f=23+24%0p1+ 53,

X .

g=zi+y,(yi—y3)+x8.

4" n 47, contain such point u with
{ f=23+2,x0(y1 —y2) + 3,

g=zi+z3%0(y; — ¥2) +y3+x§.

4™ n 45 contain such point u with

X .

[ f=23+2z4%0y1+ 3,

g=25+23%0y2+y3+x§.

4. Explicit calculation of Ker dg(s)

Let ugeU. Let n: Z—>S be the Kuranishi family of the deformations of
X=X, (50€S) and let p’: U»S be the morphism (in the sense of germs)
sending u, to s, as in the beginning of 2.2. Take ue U and set s=p'(u)€eS.
In this section, we will calculate explicitly a lifting € Ty(u) of the kernel of the
differential d¢(s): Tg(s)— Tp(p(s)) of the period map ¢ at s in terms of the co-
ordinates of ue U.

We use the notation in the previous sections.

4.1. Taking the fibers at ue U of the diagram (2.17), we have a com-

mutative, exact diagram:

0 0
0 — T(x) () y N(u) -9, HI(X, Ty) — 0
li’z(u) 1i', (u) li'(lt)
@.1) 0 — T'(x) i y N'(u) =, pLi(x) — 0

1r’1(u) l’i (u)

H(C, Tp®@Kx®0) -2, HO(C, Ny p®@Kx®0,)

l l

0 0
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where X=X, and C=C,,.
LEmMMA (4.2) By using the notation in (4.1), we see that
Ker j,(u) == Ker i'(u)=Ker d¢(s)
via s'(u)eiy(u)™ oji(u)ora(u)™".

Proor. This follows immediately from the diagram (4.1) and (2.16). (cf.
also the proof of Lemma (3.1).) Q.E.D.

4.2. Let
’ ro. ’ ’
Wiseiny le, W13,..., ‘VJZ
’ oLt 2 ’
(resp. V,eees V25 Vi3senes U2y} Vasyeney Usg)

be the basis of T'(u) (resp. N'(u)) induced from the frame (2.12) (resp. (2.13)).
Let

Wizseeny Was
(T€SP. Vy35e-5 V243 V2s5ye-rs Vsg)
be the basis of T(u) (resp. N(u)) defined by
) (w)=w,  (132ex32)
(resp. iy(u) (ve)=v,  (132e=50)).

Then
raw)(w,)  (1=Zex12)

(resp. riw)(ve)  (1=e=12)

form a basis of H(C, T,®@ Kx®0c) (tesp. HOYC, Ny p®Kx®0,)).
By using these bases the morphisms

J'(), ji(u) and j3(u)
are represented by the evaluation of the matrices
J” in (2.20), J in (2.14) and J,, in (2.15) at u respectively.

4.3. Using the affine coordinates (3.19) of U, Ty(u) is identified with a
subspace of N(u) in the sense that

a%f (z4xoyx/x8)a—(7(TfW ’
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5, J
5_'7i= (z3%0y i/ x§) a(g (u_)“/xg)— s
0

d
T = i Y uI%8) G T=8) >

-

g

0
- RV Y 6 A7 T .
a’7ijk iy ) 0(g(u)/x3)

This means that T,(u) is considered to be the subspace of N(u) spanned by v,
(255e<50).

4.4. Now we caluculate a lifting of Ker d¢)(s) to Ty(u) by tracing each step
of the morphism in (4.2). We use the notation above.

LeMMA (4.3) A lifting of every vector in Ker d¢(s) to Ty(u) is obtained by

a,
(4-4) (025’---, USO)B E ’
as

where a, (1<e=<6) is a solution of the linear equation

a,’ 0"
{2)-(0)
ag 0

(A is the matrix in (2.18)) and B is the 26 x 6 matrix (4.6) in the next pages.
The converse is also true, i.e. every vector in Ty(u) of the form (4.4) is a
lifting of some vector in Ker d¢(s).

PrOOF. Take y= Y a;rj(w;)eKerj,(u). By the remark in 4.2, this
15is12

is equivalent to finding coefficients a (1 =e=12) satisfying

(20

By the form of the matrix J,,, this is also equivalent to finding a,(1 £e<6) with

{2-1)

since a, (7<e=<12) are given by

aq 1 a,
@7) ( : >=—-;A'< : >
a; - /23
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(4.6)
Yo i 0 |20 - Jon2
0 1 3 | fo: £ 2/022
0 0 Soo1 foo2
(©) 0
YRR I 3 1
fo11 I —5/f18111 P 3 f18112— 2811
2oty 2 -2 -3 - -3y
for2 i 2fon f18112 — 5 28111 L —/18122 5 /28112
2. i _3 . L _3 s
fo22 | 2fo12 | — 5 /18122—f28112 C 3 /182202f 38122
1 5
0 202 | —f18220 — 5/ 28122 j — 528222
4o | _3 _, L1 1 B
foo1 5 fo8111—2f18011 - 3 fo8112— 5 /18012~ f28011
af, i 4 - _3 L _ _3
fooz | #o01 | —So8112  — 3/ 18012 S28011 | —Sof122 —S18022 — 5 /S28o12
0o ia 1 _ 1 P03 _s
i 4f002 5 f08122— /18022 3/28012 i — 508222 /28022
6 Lo 3 P 1
fooo | —foo11  — 5 /18001 i — 5 /08012~ 5 f18002 — /28001
0 ‘6 1 1 : 3
{ 6f000 | — 3 f08012—S18002 — /28001 i —/08022 — 5 /28002
o | o 1 1,
: — 5 /08001~ /18000 i~ fogo02 —/f28000
obtained from (3, 3)-block by
ok
() replacing f and g respectively

(%) (resp. (**)) is obtained from (1, 1)-block (resp. (1, 3)-block) by repracing f and g
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obtained from (1,2)-block by

repracing f and g respectively

obtained from (3, 2)-block by
i replacing f and g respectively

0 0

3 1 2
—z/1& —z/1/2861 — 3 /18

5 1 L 5
“Tflfz§1 _""f%gz —Tf%gl “Tflfzgz

1 1 3
—5f38 —gfi)28 : -3/

7 1 F 3 1
—5fo/18 —Tf%go L =g fof281—5Sof182— 7 [1/280 |

1 3 1 7 1
—';foflgz—jfofzgl*jflfzgo —;ff_ofzgz _Tf%go

1 1 1 1
“'Tfoflgo"'z‘f(z)gl ——4'fofzgo—7f%8'z

respectively.

65
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where A’ is the 6 x 6 matrix in (2.18).
Set
n= 3% awier,@’()=T'w and

15is1
72=j1) (y,) e N'(u).

Then, by the remark in 4.2 again, we see that

a;
, , ag; , , Jai a, '
y2= (01,7, v50)J = (U}35+++5 Us0) : .
(_) I3 a2
0

Set

J21 a,

Y3=(V135--+» Vs0) : .
31 a;
By the form of the matrix J,,, we can find a vector
! " a'13 ./
'y =(vl3,..., 1)50)., : EIm] (u)

aszz
so that
(4.8) A13=019=033=024=035=036=037=033=09=03,=0
and

a
, Jaw Jaz a> a,
(4.9) y3+7" =(v1350++5 Us0) = (V550005 Us0)(J3132) | ¢
J31 Ia a3 as2
as,

ie. y3+7 € Ty(u).
Set y,=7y3+7y'. Then, by the construction, y, is a lifting to Ty(u) of the vector
in Ker d¢(s) corresponding to y€ Ker j,(u) under the isomorphism in (4.2).
From (4.7), (4.8) and (4.9), a, (7<e<32) can be expressed as linear com-
binations of a, (1<e<6). Thus we can calculate the matrix B so that y, is the
form (4.4). Q.E.D.

The following lemma can be obtained elementarily and we omit the proof.



a, a, az ay as %
4 1 1, 0 0 0 0
4, 1A(, 3)i 1£(2, 3) =322 S122 0 0
not | f(1, 3)| £, 3)I 1£Q1, 3) =3/, S122 =1, 3) [£(1, 3)i
=lg(1, 3)|=0 x1g(1, 3)| xlg(2, 3)| xlg(1, 3)| x g1, 3)| %X3g522 X122
4 not | £(2, 3)I 1£(2, 3)| 1£(2, 3)| ~3f325 f122 =12, 3) 112, D
1 =lg(2, 3)|=0 xlg(1, 3) x|g(2, 3)| x1g(2, 3)| *1g(2, 3 X385 X822
rank (f)= o | A
rank (g)=1 0 0 —3f22013 Si2aty —3g322t3 812202
not | f(1, 3)| 1rQ1, 3)l 1£(2, 3)I —3f522 f122 1LA(1, 3 -1rd, 3)|
=(g(1, 2)|=0 X lg(1, 2)| x|g(1, 2)| xlg(1, 2)| x|g(1, 2)i X812 Xx3g111
4 not | (2, 3)| 1AQ1, 3) £, 3)| —3/f222 Sf122 1f(2, 3] —1f@, 3)|
2 =lg(1, 3)|=0 X g1, 3)| x g1, 3)| Xlgd, 3)| x (g1, 3)| Xg112 x3g111
rank (f)= B
r:nk)(g)=l 0 0 —3/f22214 S122ty g112t2 —3g111t2

:(s'p) uonenba 1eaulf 2y} jo

suonnios Sulf[oj ay3 198 am ‘(Z ‘11 ‘1 ‘0=1) !y o n yum "Y jo suonenbs uruysp

aq3 Jo (8'¢) pue (L°€) “(9°€) ‘(s'€) swaoj pazijewiou 3y} Suis()  (01'y) YW

sasejIns Jo dew poirsd

29
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where ¢, and ¢, are independent parameters, and we have relations

AL 3192 3| =12 I lg(L, =0 in case uedy, and |f(1,3)llg(, I
—1f(2, 3)|1g(1, 2)]=0in case u € 4,.

5. Fibres of the period map

Let uoe U, let n: £—>S be the Kuranishi family of the deformations of
X, =X, (so€S)and let p': U—S be the morphism (in the sense of germs) sending
uy to so. ForueU, we set s=p'(u)eS.

We will investigate, in this section, the fibres of the period map ¢: S—D
in (2.1).

We use the notation in the previous sections.

THEOREM (5.1) With the above notation, we get the following assertions
for the fibres of the period map ¢.

(5.1.1) In case uy € Ay, using the normalized form (3.5), we have:

fo=90=0 at uy if and only if the period map ¢ has 2-dimensional fibre
through s,.

If fo=0 and go=+0 at u,, the period map ¢ has 1-dimensional fibre through
So-

If fo+0 and go=0 at u,, the period map ¢ has 1-dimensional fibre through
So-

If fogo+0 at uy and if the period map ¢ has positive dimensional fibre
through sq, it must be 1-diemnsional and the point se€ S, which starts from s,
and moves along this fibre, will go into A,.

(5.1.2) In case ug € 41, using the normalized form (3.6), we have:

If go=0 at u,, the period map ¢ has 1-dimensional fibre through s,.

If go=+0 at uy and if the period map ¢ has positive dimensional fibre
through so, the point s€ S, which starts from s, and moves along this fibre, will
go into 4,.

(5.1.3) In case uy€ 4}y, using the normalized form (3.7), we get the fol-
lowing :

If fi12=f122=f012=J022=/002=9112=9122=9012=9022=9002=0 at u,,
the period map ¢ has 1-dimensional fibre through s,.

If rank (f)=rank (g)=1 at uy, i.e. uy € 4" (see (3.10)), and if the period map
¢ has positive dimensional fibre through sy, it must be 1-dimensional and the
point s€ S, which starts from s, and moves along this fibre, will leave from
p'(4").

(5.1.4) In case uge d,, using the normalized form (3.8), we have the
following:

If rank (f)=rank (g)=1 at u,, i.e. uged”, and if the period map ¢ has
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positive dimensional fibre through sq, the point s€ S, which stars from sy, and
moves along this fibre, will leave from p'(4").

PROOF. Set
Zi={ueUl|g,=g,=9go=0 at uj,
Zy={ueUlfi=f,=fo=91=9,=9o=0 at u} and

Sr=fr12=f122=fo12=S022=f002=92
Zsz MEU! 3
' =g112=9122=9012=YJo22=YJoo2=0 at u

and setalso Z;,=p'(Z}) (i=1, 2, 3). Then Z;(i=1, 2, 3) are “linear’’ subvarieties
of U and Z; (i=1, 2, 3) are analytic submanifolds of S (see, for detail, [7]).

It is easy to see that Z3 N 4”=¢, where we use the notation 4” in (3.10).
Hence we see from (3.10), that

dim Ker d¢(s)=2 for seZ, and
(5.2)
dim Ker d¢(s)=1 for seZ\Z, (i=1, 3).

In case u e Zj, we know, from (4.3) and (4.10), that the coefficients of the

liftings € Tp(u) of Ker de¢(s) corresponding to the part uzs=a—(2’—, 029=—(%
1 2

and v3o=-a?1—o of the basis v, (255e=<50) of Ty(u) are all zero. This implies
that

(5.3) Ker dp(s)c= T, (s) at any point SeEZ,

Combining (5.2) and (5.3), we can conclude that, in case uy e Z{\Z5, the period
map ¢ has smooth, 1-dimensional fibre through s,.

In a similar manner, we get also that the period map ¢ has smooth, 2-di-
mensional (resp. 1-dimensional) fibre through s, in case ug € Z5 (resp. ug€Z3\Z5).

For the other assertion, we will prove them case by case.

First of all, we identify Ty(u,) with the ambiant space A2¢ of U by means
of the affine coordinates &;, n;, &, and n;j in (3.19).

Case fi=f,=g,=9,=0 and f,9,+0 at uy,: From (4.3) and (4.10), we see

that the coefficients of the liftings Ty(uo) of Ker d¢(s,) corresponding to the part
0

0 0 0 d
V25 =3F > V26 =3, > V21=5E s V28 =g T V29 =5, " and 30="34, of the

basis v, (25<e=<50) of Ty(u,) are as follows.

&1=3fot;, &2=3fots, &o=0,

(5.4)
o n1=3got1» N2=3gotz, Mo=0,
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where t; (i=1, 2) are independent parameters.

If the period map ¢ has positive dimensional fibre through s,, starting from
s=s5, and moving along this fibre, the point s, by (5.4), will go into 4,,\p'(4").
In particular, the fibre of the period map ¢ through s, is at most 1-dimensional.

In a similar way, we get the last half of (5.1.2).

Case uge 47, n 4": We use the normalized form (3.7). It is easy to see that
f2229222#0 at u,, unless otherwise X, has singular points. Hence the condition

rank (f)=rank (g)=1
is equivalent to
1S, =112, 3l=lg(1, 3)|=1g(2, 3)|=0

and also equivalent to

(5.5) fini=af223, f112=3a*f222,  f122=30f222,

g111=b%9222, 9112=3b9322. g122=3bg33,,

for some a, be C. Note that (5.5) means

0, yy, y2)= faza(ay,+y,)* and
930, y1, ¥2)=9g222(by, +y2)%

and hence we see that a+b, unless otherwise X, is not contained in
P(1, 2, 2, 3, 3).

From (4.3), (4.10) and (5.5), we see that the coefficients of the liftings Ty(u,)
of Ker d¢(s,) corresponding to the part

-0 -0 -9 -0 -
b32= 08112’ Y33 = 08122 V3a= 08222’ Pa2= Nz’ Pas= N2z

and v,,= 6118 - of the basis v, (25=5e=50) of Ty(u,) are as follows.
222
= 2 2 p 32
$112=3%f2229222t,(2b*—ab), €122=—7"f222922211(3b—a),
(5.6) $222=3/2229222t1s M112=3%f12229222t:(2a% — ab),

32
Ni22= szzzgzzztz(3a =b), 1322=3f2229222t3

where ¢t; (i=1, 2) are independent parameters.
The equations of the tangent spaces |f(2, 3)|=0 and [g(2, 3)|=0 in A2® are
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128112 2f122% [2f112 28122
| | + ’ and
| €122 3fa221 | fi22 38222
5.7
[21112 29122 29112 2142, .
: + respectively.
| Mi22 39222 9112 M2z

Substituting (5.5) and (5.6) into (5.7), we get

22.33f3,29222(a—b)*t; and
(5.8)
22.33f,,,93,,(a—b)*t, respectively.

If the period map ¢ has positive dimensional fibre through sy, we see from (5.8)
that, starting from s=s, and moving along this fibre, the point s will leave from
p'(4”). Thus, we get the desired assertion in this case.

In a similar way, we get (5.1.4). Q.E.D.

REMARK (5.9) In the cases (5.1.3) and (5.1.4), our results in Theorem
(5.1) are imperfect.

In these cases, we know a rough idea of the algorithm to determine what
kind of fibre the period map ¢ has through a given point s, €S:
“'1) Givena point uge U. Set

h,=the pull-back of the Jacobian det A of d¢
by the morphism p': U-S.

In case h,(ug)+0, we stop the process at this stage.

2) In case h(uy)=0: For ueU with h,(u)=0, we can calculate ex-
plicitly, by (4.3) and (4.10), the liftings t(u) € Ty(u) of Kerd¢(s). Calculate
also the equation hi(u) of the tangent cone to {ueU|h,(u)=0} at u and set

hy(u) = hi(z(w)).

In case h,(ug)+0, we stop the process at this stage.
3) In case hy(uy)=0: Calculate the equation hy(u) of the tangent cone to
{ueU| hy(u)=0} at u and set

h3(u) = ha(t(u)) .

In case hy(ug)+0, we stop the process at this stage. In case hi(uy)=0, con-
tinue the process and get the equaiions hy, hs,....

4) We can conclude the period map ¢ has positive dimensional fibre
;hrbjugh so if and only if

©dim, {ueU|h(u)=0 (i=1,2;:..)}>0.
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Unfortunately, the above algorithm is too complicated to perform at present.

6. Some properties on S, = {s€ S| dim Ker d¢(u) =2}

We will investigate, in this section, some properties on S, in (3.3) and their
relations. We use the notation in the previous sections.

THEOREM (6.1) LetugeU and set X=X, Consider the following properties:

(@) The bi-canonical map @ ,x: X—P? is a Galois covering with the
group (Z)2Z)%2,

@) fW=g"=0at u,.

(a”) The period map ¢ has 2-dimensional fibre through so=p'(u,).

(b) The canonical divisor C of X is smooth and the exact sequence

0—>]\75/X——>Q§®0C~—> QL—0

splits.

) fi=f2=9,=9,=0 at u,.

(¢) dim Kerdd(sg)=2.

() fi=f.=g,=9,=0 or rank (f)=rank (g)=1 at u,.

Then, among the above properties, we have the following equivalences
and implications:

(a) = (@)= (a") = (b) == (b') == (¢) == (¢").

We kow also that the subvarieties of S satisfying the property (a) (resp.(b), (c))
is of codimension 6 (resp.4, 4) in S and irreducible (resp. irreducible, of disjoint
union of two irreduclble components).

Proor. The implication (a’)=-(a) is immediatly verified by observing that
the involusions z3— — z; and z,—~ —z, form a system of generators of the covering
transformation group of @,4,: X—>P2. The converse is an exercise in the Galois
theory (for detail, see [2]).

The equivalence between (a’) and (a”) is the first part in (5.1.1) and we have
already proven.

The implication (a)=>(b) follows from the observation of the induced action
of the involution xo— —x, (for detail, see [2]).

The implication (b)=>(c) is easy (see [4] and also [2]).

The equivalence between (c) and (c¢’) has already stated in Lemma (3.10).

We have known that the subvariety of S satisfying the property (b) is of
codimension <4 in S (see [6]). It is easy to see that the subvariety of S satisfying
the property (c’) is of codimension 4 in S. Note also that the canonical divisor
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of X,, has singularity if rank (f)=rank (g)=1 at u,. Combining the above three
facts and the implication (b)=>(c’), which has been already proven, we get the
equivalence between (b) and (b’).

The last assertion is an immediate consequence of the characterizations (a’),
(b") and (c’) of (a), (b) and (c) respectively. Q.E.D.
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