Title	Period map of surfaces with $\mathrm{p}_{\mathrm{L}} \mathrm{g}=\mathrm{c}^{\wedge} 2_{-} 1=1$ and Author(s)
Usui, Sampei	
Citation	Memoirs of the Faculty of Science, Kochi University. Ser. A, Mathematics. 1981, 2, p. 37- 73
Version Type	VoR
URL	https://hdl.handle. net/11094/73380
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. Library.osaka-u.ac.jp/
Osaka University

PERIOD MAP OF SURFACES WITH $p_{g}=c_{1}^{2}=1$ AND K AMPLE

Sampei UsuI
(Received September 15, 1980)

Introduction

Let X be a smooth, complete surface with $p_{g}=c_{1}^{2}=1$ and K ample. Let $\pi: \mathscr{X} \rightarrow S$ be the Kuranishi family of the deformations of $X_{s_{0}}=X\left(s_{0} \in S\right)$ and let $\phi: S \rightarrow D$ be the period map in the second cohomology (cf. 2.1). In this paper, we investigate what kind of fibre ϕ has. Our main results are Theorem (5.1) and Theorem (6.1).

In Theorem (5.1), we show that the period map ϕ actually has 0 -dimensional, 1 -dimensional and 2-dimensional fibers. The method here is an elementary caluculus by using the Jacobian of the period map ϕ (cf. Lemma (4.10)) and the kernel of the differential map $d \phi(s)$ at $s \in S$ of the period map ϕ (cf. Lemma (4.3) and Lemma (4.10)). Unfortunately, our result is imcomplete (cf. Remark (5.9)).

In Theorem (6.1), we get the relationship among some properties on $\{s \in S \mid$ $\operatorname{dim} \operatorname{Ker} d \phi(s)=2\}$ (cf. also Lemma (3.18)).

In $\S 1$, we summarize some results on the surfaces X with $p_{g}=c_{1}^{2}=1$: Representation of such surfaces as weighted complete intersections of type $(6,6)$ in $\mathbf{P}(1,2,2,3,3)$ (the result of Catanese [2]). Some results on the cohomology groups of these surfaces X.

In §2, we calculate the Jacobian of the period map ϕ by means of the coefficients of the defining equations of the surface X.

In § 3, we study the ramification divisor Δ of the period map ϕ : The singular locus of Δ. The subset $\{s \in \Delta \mid \operatorname{dim} \operatorname{Ker} d \phi(s)=2\}$.

In $\S 4$, we calculate explicitly the kernel of the differential $d \phi(s)$ by means of the coefficients of the defining equations of the corresponding surface X.

In $\S 5$ and $\S 6$, we prove Theorem (5.1) and Theorem (6.1) mentioned above.
In this paper, the author owes much to the result of Catanese [2].
The present paper is deeply concerned with the author's forthcoming paper [7].

Notation and Convention

Every variety in this paper is defined over the field \mathbf{C} of complex numbers.

[^0]For a complex manifold X, we denote
$\Omega_{X}^{1}=$ the sheaf of holomorphic differential 1-forms,
$K_{X}=\operatorname{det} \Omega_{X}^{1}$,
$T_{X}=$ the dual of Ω_{X}^{1}.
More generally, for a smooth morphism $f: X \rightarrow Y$, we use the notation
$\Omega_{f}^{1}=$ the sheaf of relative holomorphic differential 1-forms i.e. $\Omega_{X}^{1} / f^{*} \Omega_{Y}^{1}$,
$K_{f}=\operatorname{det} \Omega_{f}^{1}$,
$T_{f}=$ the dual of Ω_{f}^{1}.
For a submanifold Z of a manifold X, we denote
$N_{Z / X}=$ the sheaf associated to the normal bundle to Z in X,
$\check{N}_{Z / X}=$ the dual of $N_{Z / X}$.

1. Surfaces with $p_{g}=c_{1}^{2}=1$

1.1. F. Catanese ([2]) showed that the canonical model of the surfaces of general type with $p_{g}=c_{1}^{2}=1$ are represented as weighted complete intersections of type $(6,6)$ in $\mathbf{P}(1,2,2,3,3)$. (For the concept of weighted complete intersection, see [5].) If we assume, furthermore, that their canonical invertible sheaves are ample, they contain no rational curves with self-intersection number -2 and hence their canonical models are smooth.
1.2. We summarize here some cohomological properties of the surface in question, which will be used later.

Let X be a smooth weighted complete intersection of type $(6,6)$ in $\mathbf{P}=$ $\mathbf{P}(1,2,2,3,3)$. Denote by C the canonical divisor of X.

By using the facts

$$
N_{X / \mathbf{P}} \simeq \mathcal{O}_{X}(6)^{\oplus 2} \quad \text { and } \quad K_{X} \simeq \mathcal{O}_{X}(1)
$$

and the well-known exact sequences

$$
\begin{align*}
& 0 \longrightarrow T_{X} \longrightarrow T_{\mathbf{P}} \otimes \mathcal{O}_{X} \longrightarrow N_{X / \mathbf{P}} \longrightarrow 0, \tag{1.1}\\
& 0 \longrightarrow \mathcal{O}_{X} \longrightarrow \underset{0 \leqq i \leqq 4}{\oplus} \mathcal{O}_{X}\left(e_{i}\right) \longrightarrow T_{\mathbf{p}} \otimes \mathcal{O}_{X} \longrightarrow 0 \tag{1.2}
\end{align*}
$$

(where $e_{0}=1, e_{1}=e_{2}=2$ and $e_{3}=e_{4}=3$) and

$$
\begin{equation*}
0 \longrightarrow \check{N}_{C / X} \longrightarrow \Omega_{X}^{1} \otimes \mathcal{O}_{C} \longrightarrow \Omega_{C}^{1} \longrightarrow 0 \tag{1.3}
\end{equation*}
$$

we can calculate easily the following data on cohomology groups (cf. [5]):

$$
\begin{align*}
& H^{0}\left(X, T_{X}\right)=H^{2}\left(X, T_{X}\right)=0, \quad \operatorname{dim} H^{1}\left(X, T_{X}\right)=18 . \tag{1.4}\\
& H^{0}\left(X, \Omega_{X}^{1}\right)=0, \quad \operatorname{dim} H^{1}\left(X, \Omega_{X}^{1}\right)=19 . \tag{1.5}\\
& \operatorname{dim} H^{0}\left(C, \Omega_{X}^{1} \otimes \mathcal{O}_{C}\right) \leqq 2 . \tag{1.6}
\end{align*}
$$

$$
\begin{align*}
& \operatorname{dim} H^{0}\left(X, T_{\mathbf{P}} \otimes \mathcal{O}_{X}\right)=16, \quad H^{1}\left(X, T_{\mathbf{P}} \otimes \mathcal{O}_{X}\right)=H^{2}\left(X, T_{\mathbf{P}} \otimes \mathcal{O}_{X}\right)=0 . \tag{1.7}\\
& \operatorname{dim} H^{0}\left(X, T_{\mathbf{P}} \otimes K_{X}\right)=28, \quad \operatorname{dim} H^{1}\left(X, T_{\mathbf{P}} \otimes K_{X}\right)=1 . \tag{1.8}\\
& \operatorname{dim} H^{0}\left(C, T_{\mathbf{P}} \otimes K_{X} \otimes \mathcal{O}_{C}\right)=12, \quad \operatorname{dim} H^{1}\left(C, T_{\mathbf{P}} \otimes K_{X} \otimes \mathcal{O}_{C}\right)=1 . \tag{1.9}\\
& \operatorname{dim} H^{0}\left(X, N_{X / \mathbf{P}}\right)=34, \quad H^{1}\left(X, N_{X / \mathbf{P}}\right)=H^{2}\left(X, N_{X / \mathbf{P}}\right)=0 . \tag{1.10}\\
& \operatorname{dim} H^{0}\left(X, N_{X / \mathbf{P}} \otimes K_{X}\right)=46, \quad H^{1}\left(X, N_{X / \mathbf{P}} \otimes K_{X}\right)=0 . \tag{1.11}\\
& \operatorname{dim} H^{0}\left(C, N_{X / \mathbf{P}} \otimes K_{X} \otimes \mathcal{O}_{C}\right)=12, \quad H^{1}\left(C, N_{X / \mathbf{P}} \otimes K_{X} \otimes \mathcal{O}_{C}\right)=0 . \tag{1.12}
\end{align*}
$$

Let ω be the fundamental $(1,1)$-form corresponding to the canonial polarization of X and let

$$
H^{1}\left(X, T_{X} \otimes K_{X}\right) \xrightarrow{\omega} H^{2}\left(X, K_{X}\right)
$$

be the map defined as the contraction with ω. Tensoring K_{X} to the exact sequence (1.1) and taking the cohomology sequence, we have

$$
H^{0}\left(X, N_{X / \mathbf{P}} \otimes K_{X}\right) \xrightarrow{\delta} H^{1}\left(X, T_{X} \otimes K_{X}\right) \longrightarrow H^{1}\left(X, T_{\mathbf{P}} \otimes K_{X}\right) .
$$

Lemma (1.13).
$H^{0}\left(X, N_{X / \mathbf{P}} \otimes K_{X}\right) \xrightarrow{\delta} H^{1}\left(X, T_{X} \otimes K_{X}\right) \xrightarrow{\omega} H^{2}\left(X, K_{X}\right) \quad$ is exact.
Proof. $\omega \in H^{1}\left(X, \Omega_{X}^{1}\right)$ comes from some $\tilde{\omega} \in H^{1}\left(X, \Omega_{\mathbf{P}}^{1} \otimes \mathcal{O}_{X}\right)$ and we have a canonical factorization

Since ω is surjective and $\operatorname{dim} H^{2}\left(X, K_{X}\right)=\operatorname{dim} H^{1}\left(X, T_{\mathbf{P}} \otimes K_{X}\right)=1$ (1.8), we get our assertion.
Q.E.D.
1.3. Let H be the Hilbert scheme parametrizing smooth weighted complete intersections of type (6,6) in $\mathbf{P}=\mathbf{P}(1,2,2,3,3)$ and let

be the universal family.
Let $R=\mathbf{C}\left[x_{0}, y_{1}, y_{2}, z_{3}, z_{4}\right]$ be the weighted polynomial ring with $\operatorname{deg} x_{0}=1$, $\operatorname{deg} y_{i}=2(i=1,2)$ and $\operatorname{deg} z_{i}=3(i=3,4)$ and let Aut (R) be the group of automorphisms of the graded \mathbf{C}-algebra R. Denote by G^{*} the image of the anti-
automorphism Aut $(R) \rightarrow$ Aut (\mathbf{P}) of groups, i.e. $G^{*}=$ the group of linear automorphisms of \mathbf{P}. Since $K_{X_{t}} \simeq \mathcal{O}_{X_{t}}(1)$ for $X_{t}=\pi^{\cdot-1}(t)(t \in H), H / G^{\cdot}$ is the coarse moduli scheme of complete, smooth, minimal surfaces with $p_{g}=c_{1}^{2}=1$ and K ample.

The defining equations of a smooth weighted complete intersection of type $(6,6)$ in $\mathbf{P}(1,2,2,3,3)$ can be normalized as follows (see [2]):

$$
\left\{\begin{array}{l}
f=z_{3}^{2}+f^{(1)} z_{4} x_{0}+f^{(3)} \tag{1.14}\\
g=z_{4}^{2}+g^{(1)} z_{3} x_{0}+g^{(3)}
\end{array}\right.
$$

where $f^{(1)}$ and $g^{(1)}$ are linear and $f^{(3)}$ and $g^{(3)}$ are cubic forms in x_{0}^{2}, y_{1} and y_{2}, i.e., by using the notation $y_{0}=x_{0}^{2}$,

$$
\begin{aligned}
& f^{(1)}=\sum_{0 \leqq i \leqq 2} f_{i} y_{i}, \quad f^{(3)}=\sum_{0 \leqq i \leqq j \leqq k \leqq 2} f_{i j k} y_{i} y_{j} y_{k}, \\
& g^{(1)}=\sum_{0 \leqq i \leqq 2} g_{i} y_{i}, \quad g^{(3)}=\sum_{0 \leqq i \leqq j \leqq k \leqq 2} g_{i j k} y_{i} y_{j} y_{k} .
\end{aligned}
$$

These coefficients form a Zariski open set U in 26 -dimensional affine space, that is,

$$
U=\left\{\begin{array}{l|l}
u \in \mathbf{A}^{26} & \begin{array}{l}
\text { the corresponding surface is a } \\
\text { smooth weighted complete intersection } \\
\text { of type }(6,6) \text { in } \mathbf{P}(1,2,2,3,3)
\end{array}
\end{array}\right\} .
$$

Note that U can be considered as a closed subscheme of the Hilbert scheme H. Denote by $\pi^{\prime}: \mathscr{X}^{\prime} \rightarrow U$ the pull-back of the universal family $\pi^{\prime}: \mathscr{X} \rightarrow H$ by $U \hookrightarrow H$.

Set

$$
G=\left\{\sigma \in G^{\cdot} \mid \sigma(U) \subset U\right\} .
$$

Then an element $\sigma \in G$ can be represented by a non-singular matrix

d_{0}			
d_{10}	d_{11}	d_{12}	0
d_{20}	d_{21}	d_{22}	
	0		d_{3} 0

d_{0}			
d_{10}	d_{11}	d_{12}	0
d_{20}	d_{21}	d_{22}	
	0		0
		d_{3}	
		d_{4}	0

with the action

$$
\left\{\begin{array}{l}
\sigma x_{0}=d_{0} x_{0} \\
\sigma y_{i}=\sum_{0 \leqq j \leq 2} d_{i j} y_{j} \quad(i=1,2) \\
\sigma z_{i}=d_{i} z_{i} \quad(i=3,4)
\end{array}\right.
$$

in case (1.15), and

$$
\left\{\begin{array}{l}
\sigma x_{0}=d_{0} x_{0} \\
\sigma y_{i}=\sum_{0 \leqq j \leqq 2} d_{i j} y_{j} \quad(i=1,2) \\
\sigma z_{3}=d_{3} z_{4} \\
\sigma z_{4}=d_{4} z_{3}
\end{array}\right.
$$

in case (1.16).
The induced action of G on U is, for $u=(f, g) \in U$,

$$
u=(f, g) \longmapsto \sigma u=\left(\sigma f / d_{3}^{2}, \sigma g / d_{4}^{2}\right)
$$

in case (1.15), and

$$
u=(f, g) \longmapsto \sigma u=\left(\sigma g / d_{4}^{2}, \sigma f / d_{3}^{2}\right)
$$

in case (1.16), and we have
$U / G \xrightarrow{\sim} H / G^{*}=$ the coarse moduli scheme of complete, smooth surfaces with $p_{g}=x_{1}^{2}=1$ and K ample.

2. Period map and its Jacobian

2.1. Let X be a complete, smooth surface with $p_{g}=c_{1}^{2}=1$ and K_{X} ample. By (1.7), we see that the Kuranishi family $\pi: \mathscr{X} \rightarrow S$ of the deformations of $X=$ $X_{s_{0}}=\pi^{-1}\left(s_{0}\right)\left(s_{0} \in S\right)$ is a universal family with the smooth parameter space S of dimmension 18.

Let

$$
\begin{equation*}
\phi: S \longrightarrow D \tag{2.1}
\end{equation*}
$$

be the period map arising from the Kuranishi family $\pi: \mathscr{X} \rightarrow S$. Recall that (2.1) is constructed in the following way (cf. [3]): Fixing a C^{∞}-trivialization of the family $\pi: \mathscr{X} \rightarrow S$, we get the isomorphisms $\alpha_{s}: P^{2}\left(X_{s^{\prime}} \mathbf{C}\right) \rightarrow P^{2}(X, \mathbf{C})(s \in S)$ of the primitive cohomology groups preserving the Hodge-Riemann bilinear form Q. Then the map

$$
\phi: S \longrightarrow \mathbf{P}^{19}=\left\{\text { lines in } P^{2}(X, \mathbf{C}) \text { through the origin }\right\}
$$

defined by

$$
\phi(s)=\text { the line } \alpha_{s}\left(P^{2,0}\left(X_{s}\right)\right) \text { in } P^{2}(X, \mathbf{C})
$$

is holomorphic and factorizes

where

$$
\begin{aligned}
& \bar{D}=\left\{\xi \in \mathbf{P}^{19} \mid Q(\xi, \xi)=0\right\} \quad \text { and } \\
& D=\{\xi \in \breve{D} \mid Q(\xi, \bar{\xi})>0\} .
\end{aligned}
$$

This map $\phi: S \rightarrow D$ is the period map (2.1).
2.2. We continue to use the notation in 2.1.

By the universality of the Kuranishi family, we have uniquely determined morphism $p^{r}: H \rightarrow S$ (in the sense of germs) from the Hilbert scheme H to S. Since the composite morphism $p^{\prime}: U \hookrightarrow H \rightarrow S$ (in the sense of germs) is smooth ${ }^{1)}$, we can take a section $S \hookrightarrow U$ and hence we can consider that the Kuranishi family $\pi: \mathscr{X} \rightarrow S$ is a subfamily of $\pi^{\prime}: \mathscr{X}^{\prime} \rightarrow U$ in 1.3 , that is, we have the following diagram:

[^1]Denote by q^{\prime} the first projection $\mathbf{P} \times U \rightarrow \mathbf{P}$.
Recall also that the canonical divisors C_{u} on $X_{u}=\pi^{\prime-1}(u)(u \in U)$ form a flat family $\mathscr{C}^{\prime} \rightarrow U$ satisfying the commutative diagram (cf. [6]):

Taking the direct image sheaves of the commutative exact diagram

we get, by using (1.4), (1.5), (1.7), (1.10), (1.11) and (1.12), the diagram (2.3) in the next page.

Lemma (2.4) The following sheaves are cohomologically flat in dimension 0 with respect to the morphism $\pi^{\prime}: \mathscr{X}^{\prime} \rightarrow U$ and their direct images $\pi_{*}^{\prime}()$ have the ranks indicated just after them respectively:

$$
\begin{aligned}
& q^{*} T_{\mathbf{P}} \otimes \mathcal{O}_{\boldsymbol{z}^{\prime}}, 16 . \quad q^{\prime *} T_{\mathbf{P}} \otimes K_{\pi^{\prime}}, 28 . \\
& q^{\prime *} T_{\mathbf{P}} \otimes K_{\pi^{\prime}} \otimes \mathcal{O}_{\mathbb{R}^{\prime}}, 12 . \quad N_{x^{\prime} / \mathbf{P} \times \mathbf{U}}, 34 . \\
& N_{x^{\prime} / \mathbf{P} \times \mathrm{U}} \otimes K_{\pi^{\prime}}, \text { 46. } \quad N_{x^{\prime} / \mathbf{P} \times \mathrm{U}} \otimes K_{\pi^{\prime}} \otimes \mathcal{O}_{8^{\prime}}, 12 .
\end{aligned}
$$

The following are cohomologically flat in dimension 1 and their first direct images $R^{1} \pi_{*}^{\prime}()$ have the ranks indicating just after them respectively:

$$
\begin{aligned}
& T_{\pi^{\prime}}, \text { 18. } \quad T_{\pi^{\prime}} \otimes K_{\pi^{\prime}}, 19 \\
& q^{*} * T_{\mathbf{P}} \otimes K_{\pi^{\prime}}, 1 . \quad q^{*} T_{\mathbf{P}} \otimes K_{\pi^{\prime}} \otimes \mathcal{O}_{\mathscr{Q}^{\prime}}, 1
\end{aligned}
$$

Proof. By Continuity Theorem (cf. [1]), we get our assertion immediately from (1.4), (1.5), (1.7), (1.8), (1.9), (1.10), (1.11) and (1.12).
Q.E.D.
(2.3)

2.3. For the later use, we will represent the morphism $j_{1}: \pi_{*}^{\prime}\left(q^{\prime *} T_{\pi^{\prime}} \otimes K_{\pi^{\prime}}\right)$ $\rightarrow \pi_{*}^{\prime}\left(N_{x^{\prime} / \mathbf{P} \times U} \otimes K_{\pi^{\prime}}\right)$ in (2.3) by choosing suitable frames.

We consider, as in 2.2 , the family $\pi^{\prime}: \mathscr{X}^{\prime} \rightarrow U$ to be that in the sense of germ at some fixed point $u \in U$.

Let f and g be the normalized forms in (1.14) of the defining equations of X^{\prime} in $\mathbf{P} \times U$, where their coefficients $f_{i}, f_{i j k}, g_{i}$ and $g_{i j k}$ are considered to be parameters on U. Let \mathscr{U} be the open subset of \mathscr{X}^{\prime} defined by $x_{0} \neq 0$ and $\partial\left(f / x_{0}^{6}\right.$, $\left.g / x_{0}^{6}\right) / \partial\left(z_{3} / x_{0}^{3}, z_{4} / x_{0}^{3}\right) \neq 0$. For a sheaf F on X^{\prime}, we denote by res $\pi_{*}^{\prime} F$ the sheaf on U defined by
$\Gamma\left(V\right.$, res $\left.\pi_{*}^{\prime} F\right)=$ the restriction of $\Gamma\left(\pi^{\prime-1}(V), F\right)$ to $\pi^{\prime-1}(V) \cap \mathscr{U}$ for an open subset V of U.

Note that, by Poincaré residue formura, we can take

$$
\begin{equation*}
\left(x_{0} / x_{0}\right)\left(\frac{\partial\left(f / x_{0}^{6}, g / x_{0}^{6}\right)}{\partial\left(z_{3} / x_{0}^{3}, z_{4} / x_{0}^{3}\right)}\right)^{-1} d\left(y_{1} / x_{0}^{2}\right) \wedge d\left(y_{2} / x_{0}^{2}\right) \tag{2.5}
\end{equation*}
$$

as a frame of res $\pi_{*}^{\prime} K_{\pi^{\prime}}$. Set

$$
\begin{equation*}
\psi^{\prime}=\left(\frac{\partial\left(f / x_{0}^{6}, g / x_{0}^{6}\right)}{\partial\left(z_{3} / x_{0}^{3}, z_{4} / x_{0}^{3}\right)}\right)^{-1} d\left(y_{1} / x_{0}^{2}\right) \wedge d\left(y_{2} / x_{0}^{2}\right) \tag{2.6}
\end{equation*}
$$

Note also that res $\pi_{*}^{\prime} N_{\boldsymbol{g}^{\prime} / \mathbf{P} \times \mathrm{U}}\left(\right.$ resp. res $\left.\pi_{*}^{\prime}\left(N_{\boldsymbol{x}^{\prime} / \mathbf{P} \times U} \otimes K_{\pi^{\prime}}\right)\right)$ has a frame

$$
\begin{align*}
& \left\{\left.\left(a / x_{0}^{6}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \right\rvert\, a \text { is a monomial in } R \text { of degree } 6\right\} \tag{2.7}\\
& \cup\left\{\left.\left(a \mid x_{0}^{6}\right) \frac{\partial}{\partial\left(g \mid x_{0}^{6}\right)} \right\rvert\, a \text { is a monomial in } R \text { of degree } 6\right\}
\end{align*}
$$

modulo

$$
\left(f / x_{0}^{6}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)}, \quad\left(g / x_{0}^{6}\right) \frac{\partial}{\partial\left(f \mid x_{0}^{6}\right)}
$$

$$
\begin{equation*}
\left(f / x_{0}^{6}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \quad \text { and } \quad\left(g / x_{0}^{6}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \tag{2.8}
\end{equation*}
$$

(resp. $\left\{\left.\left(a / x_{0}^{7}\right) \frac{\partial}{\partial\left(f \mid x_{0}^{6}\right)} \otimes \psi^{\prime} \right\rvert\, a\right.$ is a monomial in R of degree 7$\}$

$$
\begin{equation*}
\cup\left\{\left.\left(a / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime} \right\rvert\, a \text { is a monomial in } R \text { of degree } 7\right\} \tag{2.9}
\end{equation*}
$$

modulo

$$
\begin{align*}
& \left(f x_{0} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f \mid x_{0}^{6}\right)} \otimes \psi^{\prime}, \quad\left(g x_{0} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f \mid x_{0}^{6}\right)} \otimes \psi^{\prime}, \\
& \left.\left(f x_{0} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime} \quad \text { and } \quad\left(g x_{0} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime}\right) \tag{2.10}
\end{align*}
$$

Let N (resp. I, N^{\prime}, I^{\prime}) be the free \mathcal{O}_{U}-mdule of rank 38 (resp. 4, 50, 4) with (2.7) (resp. (2.8), (2.9), (2.10)) as its free frame. Then we have natural exact sequences:

$$
\begin{aligned}
& 0 \longrightarrow I \longrightarrow N \longrightarrow \pi_{*}^{\prime} N_{x^{\prime} / \mathbf{P} \times U} \longrightarrow 0 \text { and } \\
& 0 \longrightarrow I^{\prime} \longrightarrow N^{\prime} \longrightarrow \pi_{*}^{\prime}\left(N_{x^{\prime} / \mathbf{P} \times U} \otimes K_{\pi^{\prime}}\right) \longrightarrow 0 .
\end{aligned}
$$

Let

$$
\begin{aligned}
& \tilde{j}: \text { res } \pi_{*}^{\prime}\left(q^{\prime *} T_{\mathbf{P}} \otimes \mathcal{O}_{x^{\prime}}\right) \longrightarrow N \\
& \left(\text { resp. } \tilde{j}_{1}: \text { res } \pi_{*}^{\prime}\left(q^{*} * T_{\mathbf{P}} \otimes K_{\pi^{\prime}}\right) \longrightarrow N^{\prime}\right)
\end{aligned}
$$

be a lifting of the morphism j (resp. j_{1}) in (2.3). Set

$$
\begin{aligned}
& T=\operatorname{res} \pi_{*}^{\prime}\left(q^{\prime *} T_{\mathbf{P}} \otimes \mathcal{O}_{x^{\prime}}\right) \oplus I \quad \text { and } \\
& T^{\prime}=\text { res } \pi_{*}^{\prime}\left(q^{*} * T_{\mathbf{P}} \otimes K_{\pi^{\prime}}\right) \oplus I^{\prime} .
\end{aligned}
$$

Let

$$
\left.j^{\prime}: T \longrightarrow N \quad \text { (resp. } j_{1}^{\prime}: T^{\prime} \longrightarrow N^{\prime}\right)
$$

be the morphism defined by \tilde{j} (resp. $\tilde{\jmath}_{1}$) and natural inclusion $I \hookrightarrow N\left(\right.$ resp. $\left.I^{\prime} \hookrightarrow N^{\prime}\right)$.
Then we can replace the part

of the diagram (2.3) by

without losing commutativity and exactness, where i_{1}^{\prime} and i_{2}^{\prime} are the morphisms obtained by tensoring (2.5).

Now we represent the morphism j_{1}^{\prime} in (2.11) by using the following frames.
(2.12) Frame of T^{\prime} : We can divide the frame of T^{\prime} into two parts (2.12.1) and (2.12.2) bellow, so that the last part (2.12.2) is the frame of the image of i_{2}^{\prime} in (2.11).

$$
\begin{align*}
& \begin{cases}\left(y_{1} / x_{0}^{2}\right) \theta, \quad\left(y_{2} / x_{0}^{2}\right) \theta, & \left(z_{4} / x_{0}^{3}\right) \cdot \frac{\partial}{\partial\left(y_{1} / x_{0}^{2}\right)} \otimes \psi^{\prime}, \\
\left(z_{4} / x_{0}^{3}\right) \frac{\partial}{\partial\left(y_{2} / x_{0}^{2}\right)} \otimes \psi^{\prime}, & \left(z_{3} / x_{0}^{3}\right) \frac{\partial}{\partial\left(y_{1} / x_{0}^{2}\right)} \otimes \psi^{\prime}, \\
\left(z_{3} / x_{0}^{3}\right) \frac{\partial}{\partial\left(y_{2} / x_{0}^{2}\right)} \otimes \psi^{\prime}, \\
\left(y_{1}^{2} / x_{0}^{4}\right) \frac{\partial}{\partial\left(z_{3} / x_{0}^{3}\right)} \otimes \psi^{\prime}, & \left(y_{1} .^{\prime} / x_{0}^{4}\right) \frac{\partial}{\partial\left(z_{3} / x_{0}^{3}\right)} \otimes \psi^{\prime},\end{cases} \tag{2.12.1}\\
& \left(y_{2}^{2} / x_{0}^{4}\right) \frac{\partial}{\partial\left(z_{3} / x_{0}^{3}\right)} \otimes \psi^{\prime}, \quad\left(y_{1}^{2} / x_{0}^{4}\right) \frac{\partial}{\partial\left(z_{4} / x_{0}^{3}\right)} \otimes x \psi^{\prime}, \\
& \left(y_{1} y_{2} / x_{0}^{4}\right) \frac{\partial}{\partial\left(z_{4} / x_{0}^{3}\right)} \otimes \psi^{\prime}, \quad\left(y_{2}^{2} / x_{0}^{4}\right) \frac{\partial}{\partial\left(z_{4} / x_{0}^{3}\right)} \otimes \psi^{\prime} ; \\
& \left(\left(z_{3} x_{0} / x_{0}^{4}\right) \frac{\partial}{\partial\left(z_{3} / x_{0}^{3}\right)} \otimes \psi^{\prime}, \quad\left(z_{4} x_{0} / x_{0}^{4}\right) \frac{\partial}{\partial\left(z_{3} / x_{0}^{3}\right)} \otimes \psi^{\prime},\right. \\
& \left(y_{1} x_{0}^{2} / x_{0}^{4}\right) \frac{\partial}{\partial\left(z_{3} / x_{0}^{3}\right)} \otimes \psi^{\prime}, \quad\left(y_{2} x_{0}^{2} / x_{0}^{4}\right) \frac{\partial}{\partial\left(z_{3} / x_{0}^{3}\right)} \otimes \psi^{\prime}, \\
& \left(x_{0}^{4} / x_{0}^{4}\right) \frac{\partial}{\partial\left(z_{3} / x_{0}^{3}\right)} \otimes \psi^{\prime}, \quad\left(z_{3} x_{0} / x_{0}^{4}\right) \frac{\partial}{\partial\left(z_{4} / x_{0}^{3}\right)} \otimes \psi^{\prime}, \\
& \left(z_{4} x_{0} / x_{0}^{4}\right) \frac{\partial}{\partial\left(z_{4} / x_{0}^{3}\right)} \otimes \psi^{\prime}, \quad\left(y_{1} x_{0}^{2} / x_{0}^{4}\right) \frac{\partial}{\partial\left(z_{4} / x_{0}^{3}\right)} \otimes \psi^{\prime}, \\
& \left(y^{\prime} x_{0}^{2} / x_{0}^{4}\right) \frac{\partial}{\partial\left(z_{4} / x_{0}^{3}\right)} \otimes \psi^{\prime}, \quad\left(x_{0}^{4} / x_{0}^{4}\right) \frac{\partial}{\partial\left(z_{4} / x_{0}^{3}\right)} \otimes \psi^{\prime}, \tag{2.12.2}\\
& \left(y_{1} x_{0} / x_{0}^{3}\right)-\frac{\partial}{\partial\left(y_{1} / x_{0}^{2}\right)} \otimes \psi^{\prime}, \quad\left(y_{2} x_{0} / x_{0}^{3}\right) \frac{\partial}{\partial\left(y_{1} / x_{0}^{2}\right)} \otimes \psi^{\prime}, \\
& \left(x_{0}^{3} / x_{0}^{3}\right) \frac{\partial}{\partial\left(y_{1} / x_{0}^{2}\right)} \otimes \psi^{\prime}, \quad\left(y_{1} x_{0} / x_{0}^{3}\right)-\frac{\partial}{\partial\left(y_{2} / x_{0}^{2}\right)} \otimes \psi^{\prime}, \\
& \left(y_{2} x_{0} / x_{0}^{3}\right) \frac{\partial}{\partial\left(y_{2} / x_{0}^{2}\right)} \otimes \psi^{\prime}, \quad\left(x_{0}^{3} / x_{0}^{3}\right) \frac{\partial}{\partial\left(y_{2} / x_{0}^{2}\right)} \otimes \psi^{\prime}, \\
& \left(f x_{0} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, \quad\left(g x_{0} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, \\
& \left(f x_{0} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime}, \quad\left(g x_{0} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime},
\end{align*}
$$

where ψ^{\prime} is (2.6) and

$$
\theta=-\left(\sum_{1 \leqq i \leq 2} 2\left(y_{i} / x_{0}^{2}\right) \frac{\partial}{\partial\left(y_{i} / x_{0}^{2}\right)}+\sum_{3 \leqq i \leq 4} 3\left(z_{i} / x_{0}^{3}\right) \frac{\partial}{\partial\left(z_{i} / x_{0}^{3}\right)} \otimes \psi^{\prime}\right.
$$

(2.13) Frame of N^{\prime} : The frame of N^{\prime} can be divided into three parts (2.13.1), (2.13.2) and (2.13.3) bellow in the following way. The image of (2.13.1) in $\pi_{*}^{\prime}\left(N_{Q^{\prime} / \mathbf{P} \times U} \otimes K_{\pi^{\prime}} \otimes \mathcal{O}_{\mathscr{C}^{\prime}}\right)$ forms its frame (cf. (2.3)). The image of (2.13.3) in $\pi_{*}^{\prime}\left(N_{q \cdot / \mathbf{P} \times U} \otimes K_{\pi^{\prime}}\right)$ forms a frame of $i_{1}\left(T_{U}\right)$, where the sheaf T_{U} of the tangent bundle to U can be considered naturally a subsheaf of $T_{H} \otimes \mathcal{O}_{U} \simeq \pi_{*}^{\prime} N_{\boldsymbol{P}^{\prime} / \mathbf{P} \times U}$ (cf. also (2.3)).

$$
\begin{align*}
& \left(\left(z_{4} y_{1}^{2} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, \quad\left(z_{4} y_{1} y_{2} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime},\right. \\
& \left(z_{4} y_{2}^{2} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, \quad\left(z_{3} y_{1}^{2} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime}, \\
& \left(z_{3} y_{1}, y_{2} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime}, \quad\left(z_{3} y_{2}^{2} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime}, \tag{2.13.1}\\
& \left(z_{3} y_{1}^{2} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, \quad\left(z_{3} y_{1} y_{2} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, \\
& \left(z_{3} y_{2}^{2} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)}-\otimes \psi^{\prime}, \quad\left(z_{4} y_{1}^{2} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime}, \\
& \left(z_{4} y_{1} y_{2} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime}, \quad\left(z_{4} y_{2}^{2} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime} ; \\
& \left(\left(z_{3}^{2} x_{0} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, \quad\left(z_{3} z_{4} x_{0} / x_{0}^{7}\right)-\frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime},\right. \\
& \left(z_{4}^{2} x_{0} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, \quad\left(z_{3} y_{1} x_{0}^{2} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, \\
& \begin{array}{l}
\left(z_{3} y_{2} x_{0}^{2} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, \quad\left(z_{3} x_{0}^{4} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, \\
\left(z_{3}^{2} x_{0} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime}, \quad\left(z_{3} z_{4} x_{0} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime \prime}
\end{array} \tag{2.13.2}\\
& \left(z_{4}^{2} x_{0} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime}, \quad\left(z_{4} y^{\prime}, x_{0}^{2} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime}, \\
& \left(z_{4} y_{2} x_{0}^{2} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime}, \quad\left(z_{4} x_{0}^{4} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime} ; \\
& \left(z_{4} y_{1} x_{0}^{2} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, \quad\left(z_{4} y_{2} x_{0}^{2} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, \\
& \left(z_{4} x_{0}^{4} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, \quad\left(z_{3} y_{1} x_{0}^{2} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime},
\end{align*}
$$

$$
\begin{cases}\begin{array}{ll}
\left.z_{3} y_{2} x_{0}^{2} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime}, & \left(z_{3} x_{0}^{4} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime}, \\
\left(y_{1}^{3} x_{0} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, & \left(y_{1}^{2} y_{2} x_{0} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, \\
\left(y_{1} y_{2}^{2} x_{0} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, & \left(y_{2}^{3} x_{0} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, \\
\left(y_{1}^{2} x_{0}^{3} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, & \left(y_{1} y_{2} x_{0}^{3} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, \\
\left(y_{2}^{2} x_{0}^{3} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, & \left(y_{1} x_{0}^{5} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, \\
\left(y_{2} x_{0}^{5} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, & \left(x_{0}^{7} / x_{0}^{7}\right) \frac{\partial}{\partial\left(f / x_{0}^{6}\right)} \otimes \psi^{\prime}, \\
\left(y_{1}^{3} x_{0} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime}, & \left(y_{1}^{2} y_{2} x_{0} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime}, \\
\left(y_{1} y_{2}^{2} x_{0} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime}, & \left(y_{2}^{3} x_{0} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime}, \\
\left(y_{1}^{2} x_{0}^{3} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{7}\right)} \otimes \psi^{\prime}, & \left(y_{1} y_{2} x_{0}^{3} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime}, \\
\left(y_{2}^{2} x_{0}^{3} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime}, & \left(y_{1} x_{0}^{5} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime}, \\
\left(y_{2} x_{0}^{5} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime}, & \left(x_{0}^{7} / x_{0}^{7}\right) \frac{\partial}{\partial\left(g / x_{0}^{6}\right)} \otimes \psi^{\prime} .
\end{array},\end{cases}
$$

Let J be the matrix corresponding to the morphism j_{1}^{\prime} in (2.11) with respect to the frames (2.12) and (2.13). J is a 50×32 matrix with functions on U as its entries and J is divided into 6 blocks according to the division of the frames. Set

Then, we have
(2.15)

$J_{11}=$	$\begin{array}{cc} f_{1} & 0 \\ f_{2} & f_{1} \\ 0 & f_{2} \end{array}$	$\begin{array}{cc} 3 f_{111} & f_{112} \\ 2 f_{112} & 2 f_{122} \\ f_{122} & 3 f_{222} \end{array}$	0	0
	$\begin{array}{cc} g_{1} & 0 \\ g_{2} & g_{1} \\ 0 & g_{2} \end{array}$	0	$\begin{array}{rc} 3 g_{111} & g_{112} \\ 2 g_{112} & 2 g_{122} \\ g_{122} & 3 g_{222} \end{array}$	
	0	0	$\begin{array}{cc} 3 f_{111} & f_{112} \\ 2 f_{112} & 2 f_{122} \\ f_{122} & 3 f_{222} \end{array}$	2 2 2
		$\begin{array}{rc} 3 g_{111} & g_{112} \\ 2 g_{112} & 2 g_{122} \\ g_{122} & 3 g_{222} \end{array}$	0	2 2

The other matrices $J_{i j}(i=2,3 ; j=1,2)$ can be also calculate in a trivial way. Since the space is limitted, we omit to write down these matrices.
2.4. We continue to use the notation above.

Recall that, by the result of Griffiths ([3]), the differential

$$
d \phi: T_{S} \longrightarrow \phi^{*} T_{D}
$$

of the period map ϕ in (2.1) can be identified with the morphism

$$
R^{1} \pi_{*} T_{\pi} \longrightarrow \mathscr{H} \text { am }\left(\pi_{*} K_{\pi}, P^{1} \pi_{*} \Omega_{\pi}^{1}\right)
$$

induced from the pairing

$$
T_{\pi} \otimes K_{\pi} \longrightarrow \Omega_{\pi}^{1}
$$

where

$$
P^{1} \pi_{*} \Omega_{\pi}^{1}=\text { the primitive part of } R^{1} \pi_{*} \Omega_{\pi}^{1} .
$$

Hence, by the functoriality, the pull-back of $d \phi$ by the morphism $p^{\prime}: U \rightarrow S$ (in the sense of germs as before) can be identified with

$$
R^{1} \pi_{*}^{\prime} T_{\pi^{\prime}} \longrightarrow \mathscr{H} a m\left(\pi_{*}^{\prime} K_{\pi^{\prime}} P^{1} \pi_{*}^{\prime} \Omega_{\pi^{\prime}}^{1}\right)
$$

Let ψ be a frame of $\pi_{*}^{\prime} K_{\pi^{\prime}}$. Then, we have a commutative diagram

From (1.13), (2.3), (2.11) and (2.16), we get a commutative diagram
(2.17)

We denote by A the 6×6 minor matrix of J_{11} in (2.15) consisting of the first 6 rows and the first 6 columns, i.e.

$$
J_{11}=\begin{array}{|c|c|}
\hline A & 0 \tag{2.18}\\
\hline A^{\prime} & 2 I_{6} \\
\hline
\end{array}, \quad \text { where } I_{6} \text { is the } 6 \times 6 \text { unit matrix. }
$$

Lemma (2.19) For suitable coordinates of S and D, we have

$$
\text { the Jacobian of } \phi=\operatorname{det} A \text {, }
$$

where A is the matrix in (2.18).
Proof. Set

$$
J^{\prime}=\begin{array}{|c|}
\hline J_{11} \tag{2.20}\\
\hline J_{21} \\
\hline J_{31} \\
\hline J_{22} \\
\hline J_{32} \\
\hline
\end{array} .
$$

Note that the matrix $J^{\prime \prime}$ (resp. J_{11}) represents the morphism j^{\prime} (resp. j_{2}) in (2.17) for suitable frames. Since j^{\prime} and j_{1}^{\prime} in (2.17) are injective, the matrices $J^{\prime \prime}$ and J in (1.14) are of maximal rank and hence we get that rank $J^{\prime}=12$, rank $J^{\prime \prime}=20$ and rank $J=32$.

Let E be a subset of $\{1,2, \ldots, 50\}$ such that det $J(E)$ does not vanish at the point $u \in U$ in question, where we denote by $J(E)$ the 32×32 minor matrix of J consisting of the e-th rows $(e \in E)$. We can divide $E=E^{\prime} \Perp E^{\prime \prime}$ so that $\operatorname{det} J^{\prime}\left(E^{\prime}\right)$ and det $J^{\prime \prime}\left(E^{\prime \prime}-12\right)$ do not vanish at the point $u \in U$, where we use the notation

$$
E^{\prime \prime}-12=\left\{e-12 \mid e \in E^{\prime \prime}\right\}
$$

and also the notation $J^{\prime}\left(E^{\prime}\right)$ and $J^{\prime \prime}\left(E^{\prime \prime}-12\right)$ as above.
Denote by $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{50}^{\prime}$ the frame of N^{\prime} in (2.13). Then, from (2.17),

$$
\begin{aligned}
& \left\{s^{\prime} \circ i_{1}^{\prime-1}\left(v_{e}^{\prime}\right) \mid e \in\{13, \ldots, 50\} \backslash E^{\prime \prime}\right\} \\
& \left(\text { resp. }\left\{s_{1}^{\prime}\left(v_{e}^{\prime}\right) \mid e \in\{1, \ldots, 50\} \backslash E\right\}\right. \text {) }
\end{aligned}
$$

form a fram of $R^{1} \pi_{*}^{\prime} T_{\pi^{\prime}}$ (resp. $P^{1} \pi_{*}^{\prime} S_{\pi^{1}}^{1}$). By using these frames, the morphism i^{\prime} in (2.17) can be represented by the matrix

Since

and $\operatorname{det} J^{\prime}\left(E^{\prime}\right)$ is non-vanishing at $u \in U$, we get our assertion.
Q.E.D.

3. Ramification locus of period map

We continue to use the notation in the previous section.
3.1. As in the beginning of $2.2, \pi: \mathscr{X} \rightarrow S$ is the Kuranishi family of the deformations of $X=X_{u_{0}}=X_{s_{0}}$ with $u_{0} \in U, s_{0} \in S$ and $p^{\prime}\left(u_{0}\right)=s_{0}$. Let $d \phi\left(s_{0}\right)$: $T_{S}\left(s_{0}\right) \rightarrow T_{D}\left(\phi\left(s_{0}\right)\right)$ be the differential of the period map ϕ in (2.1) at $s_{0} \in S$ and let $A\left(u_{0}\right)$ be the matrix obtained by evaluating A in (2.18) at $u_{0} \in U$. Let C be the canonical divisor on X as before.

Lemma (3.1) We have
$\operatorname{dim} \operatorname{Ker} d \phi\left(s_{0}\right)=\operatorname{corank} A\left(u_{0}\right)=\operatorname{dim} H^{0}\left(C, \Omega_{X}^{1} \otimes \mathcal{O}_{C}\right) \leqq 2$.

In particular, the fibre of the period map ϕ in (2.1) through s_{0} is at most 2dimensional.

Proof. Restricting (2.2) to $X=X_{u_{0}}$ and taking the cohomology diagram, we get an exact diagram

Since $i\left(u_{0}\right)$ in (3.2) can be identified with $d \phi\left(s_{0}\right)$ in the same sense as in the beginning of 2.4 and since $j_{2}\left(u_{0}\right)$ in (3.2) is represented by the matrix $J_{11}\left(u_{0}\right)$ obtained from J_{11} in (2.15) by evaluating at u_{0}, we have

$$
\operatorname{dim} \operatorname{Ker} d \phi\left(s_{0}\right)=\operatorname{corank} A\left(u_{0}\right)=\operatorname{dim} H^{0}\left(C, \Omega_{X}^{1} \otimes \mathcal{O}_{C}\right),
$$

where we used the natural identification $T_{X} \otimes K_{X} \simeq \Omega_{X}^{1}$. Now the assertion follows from (1.6).
Q.E.D.

Set

$$
\begin{array}{ll}
U_{i}=\{u \in U \mid \operatorname{corank} A(u)=i\} & \text { and } \tag{3.3}\\
S_{i}=\{s \in S \mid \operatorname{dim} \operatorname{Ker} d \phi(s)=i\} & (i=0,1,2)
\end{array}
$$

Then, $U_{i}(i=0,1,2)\left(\right.$ resp. $\left.S_{i}(i=0,1,2)\right)$ form a stratification of U (resp. S).
We also use the following notation:

$$
\begin{align*}
& \Delta^{\prime}=U_{1} \cup U_{2} . \\
& \Delta_{0}^{\prime}=\left\{u \in \Delta^{\prime} \mid f_{1}=f_{2}=g_{1}=g_{2}=0 \text { at } u\right\} . \\
& \Delta_{1}^{\prime}=\left\{u \in \Delta^{\prime}: \begin{array}{lll}
\text { not } f_{1}=f_{2}=0 & \text { but } g_{1}=g_{2}=0, & \text { or } \\
f_{1}=f_{2}=0 & \text { but not } g_{1}=g_{2}=0 & \text { at } u
\end{array}\right\} . \\
& \Delta_{11}^{\prime}=\left\{u \in \Delta^{\prime}\left(\begin{array}{ll}
\operatorname{rank}\left(\begin{array}{ll}
f_{1} & f_{2} \\
g_{1} & g_{2}
\end{array}\right)=1, \text { and neither } \\
f_{1}=f_{2}=0 & \text { nor } \\
g_{1}=g_{2}=0 & \text { at } u
\end{array}\right\} .\right. \tag{3.4}
\end{align*}
$$

$$
\begin{aligned}
\Delta_{2}^{\prime} & =\left\{u \in \Delta^{\prime} \left\lvert\, \operatorname{rank}\left(\begin{array}{ll}
f_{1} & f_{2} \\
g_{1} & g_{2}
\end{array}\right)=2\right. \text { at } u\right\} . \\
\Delta & =S_{1} \cup S_{2} . \\
\Delta_{i} & =p^{\prime}\left(\Delta_{i}^{\prime}\right) \quad(i=0,1,11,2) .
\end{aligned}
$$

Lemma (3.5) $\quad \Delta_{0}^{\prime}, \Delta_{1}^{\prime}, \Delta_{11}^{\prime}$ and Δ_{2}^{\prime} are G-stable.
Proof. The assertion follows immediately from the obserbation of the induced action of G on f_{1}, f_{2}, g_{1} and g_{2}.
Q.E.D.

Note that $\Delta_{i}^{\prime}\left(\right.$ resp. $\left.\Delta_{i}\right)(i=0,1,11,2)$ form a stratification of $\Delta^{\prime}($ resp. $\Delta)$.
We normalize, further, the defining equations of X_{u} according to $u \in \Delta_{i}^{\prime}$ ($i=0,1,11,2$) as follows:

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
f=z_{3}^{2}+f_{0} z_{4} x_{0}^{3}+f^{(3)} \\
g=z_{4}^{2}+g_{0} z_{3} x_{0}^{3}+g^{(3)},
\end{array} \text { for } u \in \Delta_{0}^{\prime} .\right. \\
\left\{\begin{array}{l}
f=z_{3}^{2}+z_{4} x_{0} y_{1}+f^{(3)}, \\
g=z_{4}^{2}+g_{0} z_{3} x_{0}^{3}+g^{(3)},
\end{array} \text { for } u \in \Delta_{1}^{\prime} .\right.
\end{array}\right\} \begin{aligned}
& f=z_{3}^{2}+z_{4} x_{0} y_{1}+f^{(3)}, \\
& g=z_{4}^{2}+z_{3} x_{0} y_{1}+g_{0} z_{3} x_{0}^{3}+g^{(3)}, \\
& \left\{\begin{array}{l}
f=z_{3}^{2}+z_{4} x_{0} y_{1}+f^{(3)}, \\
g=z_{4}^{2}+z_{3} x_{0} y_{2}+g^{(3)},
\end{array} \text { for } u \in \Delta_{11}^{\prime} .\right. \tag{3.8}
\end{aligned}
$$

3.2. For simplicity of notation, we use the following:
(f) (resp. $(g))=$ the matrix $\left(\begin{array}{cc}3 f_{111} & f_{112} \\ 2 f_{112} & 2 f_{122} \\ f_{122} & 3 f_{222}\end{array}\right)$ (resp. $\left(\begin{array}{cc}3 g_{111} & g_{112} \\ 2 g_{112} & 2 g_{122} \\ g_{122} & 3 g_{222}\end{array}\right)$.
$|f(i, j)| \quad(r e s p .|g(i, j)|)=$ the 2×2 minor determinant of the matrix
(f) (resp. (g)) with the i-th and the j-th rows.

Lemma (3.10) Set

$$
\Delta^{\prime \prime}=\left\{u \in \Delta_{11}^{\prime} \cup \Delta_{2}^{\prime} \mid \operatorname{rank}(f)=\operatorname{rank}(g)=1 \quad \text { at } \quad u\right\} .
$$

Then, we have:
(i) $U_{2}=\Delta_{0}^{\prime} \cup \Delta^{\prime \prime}$ (disjoint union).
Δ_{0}^{\prime} and $\Delta^{\prime \prime}$ are both G-stable and of codimension 4 in U.
(ii) $S_{2}=\Delta_{0} \cup p^{\prime}\left(\Delta^{\prime \prime}\right)$ (disjoint union).
Δ_{0} and $p^{\prime}\left(\Delta^{\prime \prime}\right)$ are both of codimension 4 in S.
Proof. It is enough to prove (i), since (ii) follows immediately from (i).
The inclusion $U_{2} \supset \Delta_{0}^{\prime} \cup \Delta^{\prime \prime}$ is obvious. We will prove the other inclusion by dividing cases according to $u \in \Delta_{i}^{\prime}(i=0,1,11,2)$.

In case $u \in \Delta_{1}^{\prime}$, we use the normalized form (3.6) of the defining equations of X_{u}. Then the matrix A in (2.18) is evaluated at u as

$A(u)=$| 1 | 0 | $3 f_{111}$ | f_{112} | |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | $2 f_{112}$ | $2 f_{122}$ | 0 |
| 0 | 0 | f_{122} | $3 f_{222}$ | |
| | | | $3 g_{111}$ | g_{112} |
| 0 | 0 | $2 g_{112}$ | $2 g_{122}$ | |
| | | | g_{122} | $3 g_{222}$ |.

If $f_{122}=f_{222}=0$, the points on X_{u} with $x_{0}=y_{1}=z_{3}=0$ become singular points of X_{u}. Hence

$$
\begin{equation*}
f_{122} \neq 0 \text { or } f_{222} \neq 0 . \tag{3.12}
\end{equation*}
$$

If rank $(g) \neq 2, g^{(3)}\left(0, y_{1}, y_{2}\right)=0$ has a triple root, say $y_{i}=a_{i}(i=1,2)$, and hence the points on X_{u} with $x_{0}=z_{4}=0$ and $y_{i}=a_{i}(i=1,2)$ become singular points of X_{u}. Therefore we have

$$
\begin{equation*}
\operatorname{rank}(g)=2 \tag{3.13}
\end{equation*}
$$

By (3.11), (3.12) and (3.13), we see that corank $A=1$.
In case $u \in \Delta_{11}^{\prime}$, we use the normalized form (3.7) of the defining equations of X_{u}. We assume

$$
\text { not } \quad \operatorname{rank}(f)=\operatorname{rank}(g)=1 \quad \text { at } \quad u
$$

This is equivalent to assume

$$
\begin{equation*}
\text { not }|f(1,3)|=|f(2,3)|=|g(1,3)|=|g(2,3)|=0 \quad \text { at } \quad u \tag{3.14}
\end{equation*}
$$

The matrix A is evaluated at u as

$A(u)=$| 1 | 0 | $3 f_{111}$ | f_{112} | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | $2 f_{112}$ | $2 f_{122}$ | 0 | |
| 0 | 0 | f_{122} | $3 f_{222}$ | | |
| 1 | 0 | | $3 g_{111}$ | g_{112} | |
| 0 | 1 | 0 | $2 g_{112}$ | $2 g_{122}$ | |
| 0 | 0 | | g_{122} | $3 g_{222}$ | |

As in the above case, we see that

$$
\begin{array}{lll}
f_{122} \neq 0 & \text { or } & f_{222} \neq 0, \\
g_{122} \neq 0 & \text { or } & g_{222} \neq 0 . \tag{3.17}
\end{array}
$$

By (3.14), (3.16) and (3.17), we can observe that at least one of the following 5×5 minor determinants of $A(u)$ does not vanish:

$$
\begin{array}{ll}
|2 ; 6|= \pm g_{122}|f(1,3)|, & |1 ; 6|= \pm g_{122}|f(2,3)|, \\
|2 ; 5|= \pm 3 g_{222}|f(1,3)|, & |1 ; 5|= \pm 3 g_{222}|f(2,3)|, \\
|5 ; 4|= \pm f_{122}|g(1,3)|, & |4 ; 4|= \pm f_{122}|g(2,3)|, \\
|5 ; 3|= \pm 3 f_{222}|g(1,3)|, & |4 ; 3|= \pm 3 f_{222}|g(2,3)|,
\end{array}
$$

where
$|i ; j|=$ the 5×5 minor determinant of $A(u)$ omtting the i-th row and the j-th column.

In case $u \in \Delta_{2}^{\prime}$, we use the normalized form (3.8). The matrix A becomes

$A(u)=$| 1 | 0 | $3 f_{111}$ | f_{112} | |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | $2 f_{112}$ | $2 f_{222}$ | 0 |
| 0 | 0 | f_{122} | $3 f_{222}$ | |
| 0 | 0 | | | $3 g_{111}$ |g_{112}.

Observing the following 5×5 minor determinants of $A(u)$

$$
\begin{array}{ll}
|2 ; 6|= \pm 3 g_{111}|f(1,3)|, & |6 ; 6|= \pm 3 g_{11}|f(2,3)| \\
|2 ; 5|= \pm g_{112}|f(1,3)|, & |1 ; 5|= \pm g_{112}|f(2,3)| \\
|5 ; 3|= \pm 3 f_{222}|g(1,3)|, & |6 ; 3|= \pm 3 f_{222}|g(1,2)| \\
|5 ; 4|= \pm f_{122}|g(1,3)|, & |6 ; 4|= \pm f_{122}|g(1,2)|
\end{array}
$$

we can find a non-vanishing one in the same manner as in the case $u \in \Delta_{11}^{\prime}$.
Thus we have proven $U_{2}=\Delta_{0}^{\prime} \cup \Delta^{\prime \prime}$.
It is easy to see that the condition rank $(f)=1$ (resp. $\operatorname{rank}(g)=1)$ is equivalent to the condition that, in \mathbf{P}^{2} with homogeneous coordinates y_{0}, y_{1} and y_{2}, the cubic curve $f^{(3)}=0\left(\operatorname{resp} . g^{(3)}=0\right)$ and the line $y_{0}=0$ intersects at only one point. From this, it follows that $\Delta^{\prime \prime}$ is G-stable.

The other assertions are easy to verify and we omit their proof.
Q.E.D.
3.3. We investigate in the next lemma the singular loci of Δ^{\prime} and Δ in (3.4).

Lemma (3.18) Set

$$
\begin{aligned}
\Delta^{\prime \prime \prime}=\left\{u \in \Delta_{1}^{\prime} \mid\right. & (|f(1,3)||f(1,3)|-|f(1,2)||f(2,3)|) \\
& \times(|g(1,3)||g(1,3)|-|g(1,2)||g(2,3)|)=0 \quad \text { and } \\
& \left(f_{1}(|f(2,3)||g(1,3)|-|f(1,3)||g(1,3)|)\right. \\
& \left.-f_{2}(|f(1,3)||g(1,3)|-|f(1,2)||g(2,3)|)\right) \\
& \times\left(g_{1}(|g(2,3)||f(1,3)|-|g(1,3)||f(1,3)|)\right. \\
& \left.\left.-g_{2}(|g(1,3)||f(1,3)|-|g(1,2)||f(2,3)|)\right)=0 \quad \text { at } \quad u\right\} .
\end{aligned}
$$

Then we have:
(i) $\operatorname{Sing}\left(\Delta^{\prime}\right)=U_{2} \cup \Delta^{\prime \prime \prime}$.
(ii) $\operatorname{Sing}(\Delta)=S_{2} \cup p^{\prime}\left(\Delta^{\prime \prime \prime}\right)$.

Proof. Since Δ^{\prime} is smooth over Δ, (ii) follows from (i). Hence it is enough to prove (i).

We use the new affine coordinates $\xi_{i}, \zeta_{i j k}, \eta_{i}$ and $\eta_{i j k}$ of U obtained from the old ones $f_{i}, f_{i j k}, g_{i}$ and $g_{i j k}$ by translating the origin to u, i.e.

$$
\begin{array}{ll}
\check{\zeta}_{i}=f_{i}-f_{i}(u), \quad \eta_{i}=g_{i}-g_{i}(u) & (0 \leqq i \leqq 2), \\
\eta_{i j k}=f_{i j k}-f_{i j k}(u), \quad \eta_{i j k}=g_{i j k}(u) & (0 \leqq i \leqq j \leqq k \leqq 2) . \tag{3.19}
\end{array}
$$

With these new coordinates, the determinant
$\operatorname{det}\left[\begin{array}{cc|cc|c|}\hline \xi_{1}+f_{1}(u) & 0 & 3\left(\xi_{111}+f_{111}(u)\right) & \xi_{112}+f_{112}(u) & \\ \xi_{2}+f_{2}(u) & \xi_{1}+f_{1}(u) & 2\left(\xi_{112}+f_{112}(u)\right) & 2\left(\xi_{122}+f_{122}(u)\right) & \\ 0 & \xi_{2}+f_{2}(u) & \xi_{122}+f_{122}(u) & 3\left(\xi_{222}+f_{222}(u)\right) & \\ \hdashline \eta_{1}+g_{1}(u) & 0 & & 0 \\ \eta_{2}+g_{2}(u) & \eta_{1}+g_{1}(u) & 0 & 3\left(\eta_{111}+g_{111}(u)\right) & \eta_{112}+g_{112}(u) \\ 0 & \eta_{2}+g_{2}(u) & & 2\left(\eta_{112}+g_{112}(u)\right) & 2\left(\eta_{122}+g_{122}(u)\right) \\ \hline\end{array}\right.$
gives the Taylor expansion of $\operatorname{det} A$ at u.
We will prove (i) in dividing cases with respect to the stratification $\Delta_{i}^{\prime}(i=$ $0,1,11,2)$ of Δ^{\prime}.

In case $u \in \Delta_{1}^{\prime}$. We observe first the subcase

$$
\text { not } f_{1}=f_{2}=0 \quad \text { but } \quad g_{1}=g_{2}=0 \quad \text { at } \quad u \text {. }
$$

In this subcase, the linear term of (3.20) is

$$
\begin{aligned}
& \eta_{1}\left(f_{1}(|f(2,3)||g(1,3)|-|f(1,3)||g(2,3)|)\right. \\
& \left.\quad-f_{2}(|f(1,3)||g(1,3)|-|f(1,2)||g(2,3)|)\right)(u) \\
& \quad-\eta_{2}\left(f_{1}(|f(2,3)||g(1,2)|-|f(1,3)||g(1,3)|)\right. \\
& \left.\quad-f_{2}(|f(1,3)||g(1,2)|-|f(1,2)||g(1,3)|)\right)(u)
\end{aligned}
$$

Since f_{1} or $f_{2} \neq 0$ at $u, u \in \operatorname{Sing}\left(\Delta^{\prime}\right)$ is equivalent to

$$
\begin{align*}
\operatorname{det} & {\left[\begin{array}{ll}
|f(2,3)||g(1,3)|-|f(1,3)||g(2,3)| & |f(1,3)||g(1,3)|-|f(1,2)||g(2,3)| \\
|f(2,3)||g(1,2)|-|f(1,3)||g(1,3)| & |f(1,3)||g(1,2)|-|f(1,2)||g(1,3)|
\end{array}\right] } \tag{3.21}\\
& =(|f(1,3)||f(1,3)|-|f(1,2)||f(2,3)|)(|g(1,3)||g(1,3)|-|g(1,2)||g(2,3)|) \\
& =0 \text { at } u
\end{align*}
$$

and

$$
\begin{align*}
& f_{1}(|f(2,3)||g(1,3)|-|f(1,3)||g(2,3)|) \tag{3.22}\\
& \quad-f_{2}(|f(1,3)||g(1,3)|-|f(1,2)||g(2,3)|)=0 \quad \text { at } \quad u .
\end{align*}
$$

Similarly, we see, in the subcase $f_{1}=f_{2}=0$ but not $g_{1}=g_{2}=0$ at u, that $u \in \operatorname{Sing}\left(\Delta^{\prime}\right)$ is equivalent to (3.21) and

$$
\begin{align*}
& g_{1}(|g(2,3)||f(1,3)|-|g(1,3)||f(2,3)|) \tag{3.23}\\
& \quad-g_{2}(|g(1,3)||f(1,3)|-|g(1,2)||f(2,3)|)=0 \quad \text { at } \quad u .
\end{align*}
$$

Combining (3.21), (3.22) and (3.23), we see that

$$
\operatorname{Sing}\left(\Delta^{\prime}\right) \cap \Delta_{1}^{\prime}=\Delta^{\prime \prime \prime}
$$

In case $u \in \Delta_{11}^{\prime}$, we will first prove the assertion for such u that the defining
equations of X_{u} is normalized as (3.7). At such point u, the linear term of (3.20) becomes

$$
\begin{align*}
\xi_{1}(& -|f(2,3)||g(1,3)|+|f(1,3)||g(2,3)|)(u) \tag{3.24}\\
& +\xi_{2}(|f(1,3)||g(1,3)|-|f(1,2)||g(2,3)|)(u) \\
& +\eta_{1}(|f(1,3)||g(2,3)|-|f(2,3)||g(1,3)|)(u) \\
& +\eta_{2}(-|f(1,3)||g(1,3)|+|f(2,3)||g(1,2)|)(u) \\
& +\xi_{111}\left(3 \cdot 3 f_{222}|g(2,3)|\right)(u) \\
& +\xi_{112}\left(-f_{122}|g(2,3)|-2 \cdot 3 f_{222}|g(1,3)|\right)(u) \\
& +\xi_{122}\left(-f_{112}|g(2,3)|+2 \cdot 2 f_{122}|g(1,3)|\right)(u) \\
& +\xi_{222}\left(3 \cdot 3 f_{111}|g(2,3)|-3 \cdot 2 f_{112}|g(1,3)|\right)(u) \\
& +\eta_{111}\left(-3 \cdot 3 g_{222}|f(2,3)|\right)(u) \\
& +\eta_{112}\left(g_{122}|f(2,3)|+2 \cdot 3 g_{222}|f(1,3)|\right)(u) \\
& +\eta_{122}\left(g_{112}|f(2,3)|-2 \cdot 2 g_{122}|f(1,3)|\right)(u) \\
& +\eta_{222}\left(-3 \cdot 3 g_{111}|f(2,3)|+3 \cdot 2 g_{112}|f(1,3)|\right)(u) .
\end{align*}
$$

We claim that every coefficient of (3.24) is zero if and only if

$$
\begin{equation*}
|f(1,3)|=|f(2,3)|=|g(1,3)|=|g(2,3)|=0 \quad \text { at } \quad u . \tag{3.25}
\end{equation*}
$$

It is evident that (3.25) is a sufficient condition. Assume now that $|g(2,3)| \neq 0$ at u. This implies that $f_{222}=f_{122}=f_{112}=f_{111}=0$ at u. But if $f_{222}=f_{122}=0$ at u, the points with $x_{0}=y_{1}=z_{3}=0$ become singular points of X_{u}. Hence $|g(2,3)|$ $=0$ and also $|g(1,3)|=0$ at u. The same reasoning assures that $|f(2,3)|=$ $|f(1,3)|=0$ at u.

By using the fact $\left(f_{1}, f_{2}\right) \neq(0,0)$ and $\left(g_{1}, g_{2}\right) \neq(0,0)$ at u once more, we see that (3.25) is equivalent to

$$
\begin{equation*}
\operatorname{rank}(f)=\operatorname{rank}(g)=1 \tag{3.26}
\end{equation*}
$$

As we have shown at the final stage of the proof of Lemma (3.10), the condition (3.26) is invariant under the action of G. Thus the assertion in case $u \in \Delta_{11}^{\prime}$ is proven.

In case $u \in \Delta_{2}^{\prime}$, by using the normalized form (3.8), we can get the condition (3.26) with a similar argument as in the previous case $u \in \Delta_{11}^{\prime}$.
Q.E.D.

Remark (3.27) We remark here that $\Delta^{\prime \prime}$ in (3.10) and $\Delta^{\prime \prime \prime}$ in (3.18) are not empty sets.
$\Delta^{\prime \prime}$ contain such point u with

$$
X_{u}:\left\{\begin{array}{l}
f=z_{3}^{2}+z_{4} x_{0} y_{1}+y_{2}^{3} \\
g=z_{4}^{2}+y_{1}\left(y_{1}^{2}-y_{2}^{2}\right)+x_{0}^{6} .
\end{array}\right.
$$

$\Delta^{\prime \prime \prime} \cap \Delta_{11}^{\prime}$ contain such point u with

$$
X_{u}:\left\{\begin{array}{l}
f=z_{3}^{2}+z_{4} x_{0}\left(y_{1}-y_{2}\right)+y_{1}^{3} \\
g=z_{4}^{2}+z_{3} x_{0}\left(y_{1}-y_{2}\right)+y_{2}^{3}+x_{0}^{6}
\end{array}\right.
$$

$\Delta^{\prime \prime \prime} \cap \Delta_{2}^{\prime}$ contain such point u with

$$
X_{u}:\left\{\begin{array}{l}
f=z_{3}^{2}+z_{4} x_{0} y_{1}+y_{2}^{3} \\
g=z_{4}^{2}+z_{3} x_{0} y_{2}+y_{1}^{3}+x_{0}^{6}
\end{array}\right.
$$

4. Explicit calculation of Ker $\boldsymbol{d} \boldsymbol{\phi}(\boldsymbol{s})$

Let $u_{0} \in U$. Let $\pi: \mathscr{X} \rightarrow S$ be the Kuranishi family of the deformations of $X_{u_{0}}=X_{s_{0}}\left(s_{0} \in S\right)$ and let $p^{\prime}: U \rightarrow S$ be the morphism (in the sense of germs) sending u_{0} to s_{0} as in the beginning of 2.2. Take $u \in U$ and set $s=p^{\prime}(u) \in S$. In this section, we will calculate explicitly a lifting $\in T_{U}(u)$ of the kernel of the differential $d \phi(s): T_{S}(s) \rightarrow T_{D}(\phi(s))$ of the period map ϕ at s in terms of the coordinates of $u \in U$.

We use the notation in the previous sections.
4.1. Taking the fibers at $u \in U$ of the diagram (2.17), we have a commutative, exact diagram:

where $X=X_{u}$ and $C=C_{u}$.
Lemma (4.2) By using the notation in (4.1), we see that

$$
\operatorname{Ker} j_{2}(u) \longrightarrow \operatorname{Ker} i^{\prime}(u)=\operatorname{Ker} d \phi(s)
$$

via $s^{\prime}(u) \circ i_{1}^{\prime}(u)^{-1} \circ j_{1}^{\prime}(u) \circ r_{2}^{\prime}(u)^{-1}$.
Proof. This follows immediately from the diagram (4.1) and (2.16). (cf. also the proof of Lemma (3.1).)
Q.E.D.
4.2. Let

$$
\begin{aligned}
& w_{1}^{\prime}, \ldots, w_{12}^{\prime} ; w_{13}^{\prime}, \ldots, w_{32}^{\prime} \\
& \left(\text { resp. } v_{1}^{\prime}, \ldots, v_{12}^{\prime} ; v_{13}^{\prime}, \ldots, v_{24}^{\prime} ; v_{25}^{\prime}, \ldots, v_{50}^{\prime}\right)
\end{aligned}
$$

be the basis of $T^{\prime}(u)$ (resp. $\left.N^{\prime}(u)\right)$ induced from the frame (2.12) (resp. (2.13)). Let

$$
\begin{aligned}
& w_{13}, \ldots, w_{32} \\
& \left(\operatorname{resp} . v_{13}, \ldots, v_{24} ; v_{25}, \ldots, v_{50}\right)
\end{aligned}
$$

be the basis of $T(u)$ (resp. $N(u)$) defined by

$$
\begin{aligned}
& i_{2}^{\prime}(u)\left(w_{e}\right)=w_{e}^{\prime} \quad(13 \leqq e \leqq 32) \\
& \left(\text { resp. } i_{1}^{\prime}(u)\left(v_{e}\right)=v_{e}^{\prime} \quad(13 \leqq e \leqq 50)\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& r_{2}^{\prime}(u)\left(w_{e}^{\prime}\right) \quad(1 \leqq e \leqq 12) \\
& \text { (resp. } \quad r_{1}^{\prime}(u)\left(v_{e}^{\prime}\right) \quad(1 \leqq e \leqq 12) \text {) }
\end{aligned}
$$

form a basis of $H^{0}\left(C, T_{\mathbf{p}} \otimes K_{X} \otimes \mathcal{O}_{C}\right) \quad$ (resp. $\quad H^{0}\left(C, N_{X / \mathbf{P}} \otimes K_{X} \otimes \mathcal{O}_{C}\right)$).
By using these bases the morphisms

$$
j^{\prime}(u), j_{1}^{\prime}(u) \quad \text { and } \quad j_{2}^{\prime}(u)
$$

are represented by the evaluation of the matrices

$$
J^{\prime \prime} \text { in (2.20), } J \text { in (2.14) and } J_{11} \text { in (2.15) at } u \text { respectively. }
$$

4.3. Using the affine coordinates (3.19) of $U, T_{U}(u)$ is identified with a subspace of $N(u)$ in the sense that

$$
\frac{\partial}{\partial \xi_{i}}=\left(z_{4} x_{0} y_{i} / x_{0}^{6}\right) \frac{\partial}{\partial\left(f(u) / x_{0}^{6}\right)},
$$

$$
\begin{aligned}
\frac{\partial}{\partial \eta_{i}} & =\left(z_{3} x_{0} y_{i} / x_{0}^{6}\right) \frac{\partial}{\partial\left(g(u) / x_{0}^{6}\right)}, \\
\frac{\partial}{\partial \xi_{i j k}} & =\left(y_{i} y_{j} y_{k} / x_{0}^{6}\right) \frac{\partial}{\partial\left(f(u) / x_{0}^{6}\right)}, \\
\frac{\partial}{\partial \eta_{i j k}} & =\left(y_{i} y_{j} y_{k} / x_{0}^{6}\right) \frac{\partial}{\partial\left(g(u) / x_{0}^{6}\right)} .
\end{aligned}
$$

This means that $T_{U}(u)$ is considered to be the subspace of $N(u)$ spanned by v_{c} ($25 \leqq e \leqq 50$).
4.4. Now we caluculate a lifting of $\operatorname{Ker} d \phi(s)$ to $T_{U}(u)$ by tracing each step of the morphism in (4.2). We use the notation above.

Lemma (4.3) A lifting of every vector in $\operatorname{Ker} d \phi(s)$ to $T_{U}(u)$ is obtained by

$$
\left(v_{25}, \ldots, v_{50}\right) B\left(\begin{array}{c}
a_{1} \tag{4.4}\\
\vdots \\
a_{6}
\end{array}\right)
$$

where $a_{e}(1 \leqq e \leqq 6)$ is a solution of the linear equation

$$
A\left(\begin{array}{c}
a_{1} \tag{4.5}\\
\vdots \\
a_{6}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

(A is the matrix in (2.18)) and B is the 26×6 matrix (4.6) in the next pages.
The converse is also true, i.e. every vector in $T_{U}(u)$ of the form (4.4) is a lifting of some vector in $\operatorname{Ker} d \phi(s)$.

Proof. Take $\gamma=\sum_{1 \leqq i \leq 12} a_{i} r_{2}^{\prime}\left(w_{i}^{\prime}\right) \in \operatorname{Ker} j_{2}(u)$. By the remark in 4.2, this is equivalent to finding coefficients $a_{e}(1 \leqq e \leqq 12)$ satisfying

$$
J_{11}\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{12}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

By the form of the matrix J_{11}, this is also equivalent to finding $a_{e}(1 \leqq e \leqq 6)$ with

$$
A\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{6}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

since $a_{e}(7 \leqq e \leqq 12)$ are given by

$$
\left(\begin{array}{c}
a_{7} \tag{4.7}\\
\vdots \\
a_{12}
\end{array}\right)=-\frac{1}{2} A^{\prime}\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{6}
\end{array}\right),
$$

$$
\begin{equation*}
B= \tag{4.6}
\end{equation*}
$$

$\begin{gathered} 3 f_{0} \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 3 f_{0} \\ 0 \end{gathered}$	$\begin{array}{r} 2 f_{011} \\ f_{012} \\ f_{001} \end{array}$	$\begin{array}{r} f_{012} \\ 2 f_{022} \\ f_{002} \end{array}$
(*)		0	
$2 f_{011}$	0	$-\frac{5}{2} f_{1} g_{111}$	$-\frac{1}{2} f_{1} g_{112}-f_{2} g_{111}$
$2 f_{012}$	$2 f_{011}$	$-2 f_{1} g_{112}-\frac{3}{2} f_{2} g_{111}$	$-f_{1} g_{122}-\frac{3}{2} f_{2} g_{112}$
$2 f_{022}$	$2 f_{012}$	$-\frac{3}{2} f_{1} g_{122}-f_{2} g_{112}$	$-\frac{3}{2} f_{1} g_{222}-2 f_{2} g_{122}$
0	$2 f_{022}$	$-f_{1} g_{222}-\frac{1}{2} f_{2} g_{122}$	$-\frac{5}{2} f_{2} g_{222}$
$4 f_{001}$	0	$-\frac{3}{2} f_{0} g_{111}-2 f_{1} g_{011}$	$-\frac{1}{2} f_{0} g_{112}-\frac{1}{2} f_{1} g_{012}-f_{2} g_{011}$
$4 f_{002}$	$4 f_{001}$	$-f_{0} g_{112}-\frac{3}{2} f_{1} g_{012}-f_{2} g_{011}$	$-f_{0} g_{122}-f_{1} g_{022}-\frac{3}{2} f_{2} g_{012}$
0	$4 f_{002}$	$-\frac{1}{2} f_{0} g_{122}-f_{1} g_{022}-\frac{1}{2} f_{2} g_{012}$	$-\frac{3}{2} f_{0} g_{222} \quad-2 f_{2} g_{022}$
$6 f_{000}$	0	$-f_{0} g_{011}-\frac{3}{2} f_{1} g_{001}$	$-\frac{1}{2} f_{0} g_{012}-\frac{1}{2} f_{1} g_{002}-f_{2} g_{001}$
0	$6 f_{000}$	$-\frac{1}{2} f_{0} g_{012}-f_{1} g_{002}-\frac{1}{2} f_{2} g_{001}$	$-f_{0} g_{022} \quad-\frac{3}{2} f_{2} g_{002}$
0	0	$-\frac{1}{2} f_{0} g_{001}-f_{1} g_{000}$	$-\frac{1}{2} f_{0} g_{002} \quad-f_{2} g_{000}$
(**)		obtained from (3, 3)-block by replacing f and g respectively	

(*) (resp. (**)) is obtained from (1, 1)-block (resp. (1, 3)-block) by repracing f and g

respectively.
where A^{\prime} is the 6×6 matrix in (2.18).
Set

$$
\begin{aligned}
& \gamma_{1}=\sum_{1 \leqq i \leqq 12} a_{i} w_{i}^{\prime} \in r_{2}^{\prime}(u)^{-1}(\gamma) \subset T^{\prime}(u) \text { and } \\
& \gamma_{2}=j_{1}^{\prime}(u)\left(\gamma_{1}\right) \in N^{\prime}(u) .
\end{aligned}
$$

Then, by the remark in 4.2 again, we see that

$$
\gamma_{2}=\left(v_{1}^{\prime}, \cdots, v_{50}^{\prime}\right) J\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{12} \\
0 \\
\vdots \\
0
\end{array}\right)=\left(v_{13}^{\prime}, \ldots, v_{50}^{\prime}\right)\binom{J_{21}}{J_{31}}\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{12}
\end{array}\right)
$$

Set

$$
\gamma_{3}=\left(v_{13}, \ldots, v_{50}\right)\binom{J_{21}}{J_{31}}\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{12}
\end{array}\right) .
$$

By the form of the matrix J_{22}, we can find a vector

$$
\gamma^{\prime}=\left(v_{13}, \ldots, v_{50}\right) J^{\prime \prime}\left(\begin{array}{c}
a_{13} \\
\vdots \\
a_{32}
\end{array}\right) \in \operatorname{Im} j^{\prime}(u)
$$

so that

$$
\begin{equation*}
a_{13}=a_{19}=a_{23}=a_{24}=a_{25}=a_{26}=a_{27}=a_{28}=a_{29}=a_{32}=0 \tag{4.8}
\end{equation*}
$$

and

$$
\gamma_{3}+\gamma^{\prime}=\left(v_{13}, \ldots, v_{50}\right)\left(\begin{array}{cc}
J_{21} & J_{22} \tag{4.9}\\
J_{31} & J_{32}
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{12} \\
a_{13} \\
\vdots \\
a_{32}
\end{array}\right)=\left(v_{25}, \ldots, v_{50}\right)\left(J_{31} J_{32}\right)\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{32}
\end{array}\right)
$$

i.e. $\gamma_{3}+\gamma^{\prime} \in T_{U}(u)$.

Set $\gamma_{4}=\gamma_{3}+\gamma^{\prime}$. Then, by the construction, γ_{4} is a lifting to $T_{v}(u)$ of the vector in $\operatorname{Ker} d \phi(s)$ corresponding to $\gamma \in \operatorname{Ker} j_{2}(u)$ under the isomorphism in (4.2).

From (4.7), (4.8) and (4.9), $a_{e}(7 \leqq e \leqq 32)$ can be expressed as linear combinations of $a_{e}(1 \leqq e \leqq 6)$. Thus we can calculate the matrix B so that γ_{4} is the form (4.4).
Q.E.D.

The following lemma can be obtained elementarily and we omit the proof.

		a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}
	Δ_{0}	t_{1}	t_{2}	0	0	0	0
	Δ_{1}	$\|f(1,3)\|$	$\|f(2,3)\|$	$-3 f_{222}$	f_{122}	0	0
Δ_{11}	$\begin{aligned} & \text { not }\|f(1,3)\| \\ & \quad=\|g(1,3)\|=0 \end{aligned}$	$\begin{aligned} & \|f(1,3)\| \\ & \times\|g(1,3)\| \end{aligned}$	$\begin{aligned} & \|f(1,3)\| \\ & \quad \times\|g(2,3)\| \end{aligned}$	$\begin{aligned} & -3 f_{222} \\ & \times\|g(1,3)\| \end{aligned}$	$\stackrel{f_{122}}{\times\|g(1,3)\|}$	$\begin{array}{r} -\|f(1,3)\| \\ \times 3 g_{222} \end{array}$	$\begin{gathered} \|f(1,3)\| \\ \times g_{122} \end{gathered}$
	$\begin{aligned} & \text { not }\|f(2,3)\| \\ & =\|g(2,3)\|=0 \end{aligned}$	$\begin{aligned} & \|f(2,3)\| \\ & \times \mid g(1,3) \end{aligned}$	$\begin{aligned} & \|f(2,3)\| \\ & \times\|g(2,3)\| \end{aligned}$	$\begin{aligned} & -3 f_{222} \\ & \times\|g(2,3)\| \end{aligned}$	$\stackrel{f_{122}}{\times\|g(2,3)\|}$	$\begin{array}{r} -\|f(2,3)\| \\ \times 3 g_{222} \end{array}$	$\begin{gathered} \|f(2,3)\| \\ \times g_{122} \end{gathered}$
	$\begin{aligned} & \operatorname{rank}(f)= \\ & \operatorname{rank}(g)=1 \end{aligned}$	0	0	$-3 f_{222}{ }^{t_{1}}$	$f_{122}{ }^{t_{1}}$	$-3 g_{222} t_{2}$	$g_{122}{ }^{t_{2}}$
Δ_{2}	$\begin{aligned} & \text { not }\|f(1,3)\| \\ & \quad=\|g(1,2)\|=0 \end{aligned}$	$\begin{aligned} & \|f(1,3)\| \\ & \times\|g(1,2)\| \end{aligned}$	$\begin{aligned} & \|f(2,3)\| \\ & \times\|g(1,2)\| \end{aligned}$	$\begin{aligned} & -3 f_{222} \\ & \quad \times\|g(1,2)\| \end{aligned}$	$\stackrel{f_{122}}{\times\|g(1,2)\|}$	$\begin{gathered} \|f(1,3)\| \\ \times g_{112} \end{gathered}$	$\begin{array}{r} -\|f(1,3)\| \\ \times 3 g_{111} \end{array}$
	$\begin{aligned} & \text { not }\|f(2,3)\| \\ & \quad=\|g(1,3)\|=0 \end{aligned}$	$\begin{aligned} & \|f(1,3)\| \\ & \quad \times\|g(1,3)\| \end{aligned}$	$\begin{aligned} & \|f(2,3)\| \\ & \times\|g(1,3)\| \end{aligned}$	$\begin{aligned} & -3 f_{222} \\ & \times\|g(1,3)\| \end{aligned}$	$\mid \underset{\times\|g(1,3)\|}{f_{122}}$	$\begin{gathered} \|f(2,3)\| \\ \times g_{112} \end{gathered}$	$\begin{gathered} -\|f(2,3)\| \\ \times 3 g_{111} \end{gathered}$
	$\begin{aligned} & \operatorname{rank}(f)= \\ & \quad \operatorname{rank}(g)=1 \end{aligned}$	0	0	$-3 f_{222}{ }^{t_{1}}$	$f_{122}{ }^{t_{1}}$	$g_{112}{ }^{t_{2}}$	$-3 g_{111}{ }^{\text {t }}$

where t_{1} and t_{2} are independent parameters, and we have relations $|f(1,3)||g(2,3)|-|f(2,3)||g(1,3)|=0 \quad$ in case $u \in \Delta_{11}$ and $|f(1,3)||g(1,3)|$ $-|f(2,3)||g(1,2)|=0$ in case $u \in \Delta_{2}$.

5. Fibres of the period map

Let $u_{0} \in U$, let $\pi: \mathscr{X} \rightarrow S$ be the Kuranishi family of the deformations of $X_{u_{0}} \simeq X_{s_{0}}\left(s_{0} \in S\right)$ and let $p^{\prime}: U \rightarrow S$ be the morphism (in the sense of germs) sending u_{0} to s_{0}. For $u \in U$, we set $s=p^{\prime}(u) \in S$.

We will investigate, in this section, the fibres of the period map $\phi: S \rightarrow D$ in (2.1).

We use the notation in the previous sections.
Theorem (5.1) With the above notation, we get the following assertions for the fibres of the period map ϕ.
(5.1.1) In case $u_{0} \in \Delta_{0}^{\prime}$, using the normalized form (3.5), we have:
$f_{0}=g_{0}=0$ at u_{0} if and only if the period map ϕ has 2-dimensional fibre through s_{0}.

If $f_{0}=0$ and $g_{0} \neq 0$ at u_{0}, the period map ϕ has 1-dimensional fibre through s_{0}.

If $f_{0} \neq 0$ and $g_{0}=0$ at u_{0}, the period map ϕ has 1-dimensional fibre through s_{0}.

If $f_{0} g_{0} \neq 0$ at u_{0} and if the period map ϕ has positive dimensional fibre through s_{0}, it must be 1-diemnsional and the point $s \in S$, which starts from s_{0} and moves along this fibre, will go into Δ_{11}.
(5.1.2) In case $u_{0} \in \Delta_{1}^{\prime}$, using the normalized form (3.6), we have:

If $g_{0}=0$ at u_{0}, the period map ϕ has 1 -dimensional fibre through s_{0}.
If $g_{0} \neq 0$ at u_{0} and if the period map ϕ has positive dimensional fibre through s_{0}, the point $s \in S$, which starts from s_{0} and moves along this fibre, will go into Δ_{2}.
(5.1.3) In case $u_{0} \in \Delta_{11}^{\prime}$, using the normalized form (3.7), we get the following:

If $f_{112}=f_{122}=f_{012}=f_{022}=f_{002}=g_{112}=g_{122}=g_{012}=g_{022}=g_{002}=0$ at u_{0}, the period map ϕ has 1-dimensional fibre through s_{0}.

If $\operatorname{rank}(f)=\operatorname{rank}(g)=1$ at u_{0}, i.e. $u_{0} \in \Delta^{\prime \prime}(s e e(3.10))$, and if the period map ϕ has positive dimensional fibre through s_{0}, it must be 1-dimensional and the point $s \in S$, which starts from s_{0} and moves along this fibre, will leave from $p^{\prime}\left(\Delta^{\prime \prime}\right)$.
(5.1.4) In case $u_{0} \in \Delta_{2}^{\prime}$, using the normalized form (3.8), we have the following:

If $\operatorname{rank}(f)=\operatorname{rank}(g)=1$ at u_{0}, i.e. $u_{0} \in \Delta^{\prime \prime}$, and if the period map ϕ has
positive dimensional fibre through s_{0}, the point $s \in S$, which stars from s_{0} and moves along this fibre, will leave from $p^{\prime}\left(\Delta^{\prime \prime}\right)$.

Proof. Set

$$
\begin{aligned}
& Z_{1}^{\prime}=\left\{u \in U \mid g_{1}=g_{2}=g_{0}=0 \quad \text { at } u\right\}, \\
& Z_{2}^{\prime}=\left\{u \in U \mid f_{1}=f_{2}=f_{0}=g_{1}=g_{2}=g_{0}=0 \text { at } u\right\} \text { and } \\
& Z_{3}^{\prime}=\left\{u \in U \left\lvert\, \begin{array}{l}
f_{2}=f_{112}=f_{122}=f_{012}=f_{022}=f_{002}=g_{2} \\
=g_{112}=g_{122}=g_{012}=g_{022}=g_{002}=0 \text { at } u
\end{array}\right.\right\},
\end{aligned}
$$

and set also $Z_{i}=p^{\prime}\left(Z_{i}^{\prime}\right)(i=1,2,3)$. Then $Z_{i}^{\prime}(i=1,2,3)$ are "linear" subvarieties of U and $Z_{i}(i=1,2,3)$ are analytic submanifolds of S (see, for detail, [7]).

It is easy to see that $Z_{3}^{\prime} \cap \Delta^{\prime \prime}=\phi$, where we use the notation $\Delta^{\prime \prime}$ in (3.10). Hence we see from (3.10), that

$$
\begin{array}{lll}
\operatorname{dim} \operatorname{Ker} d \phi(s)=2 & \text { for } & s \in Z_{2} \quad \text { and } \\
\operatorname{dim} \operatorname{Ker} d \phi(s)=1 & \text { for } & s \in Z_{i} \backslash Z_{2} \quad(i=1,3) . \tag{5.2}
\end{array}
$$

In case $u \in Z_{1}^{\prime}$, we know, from (4.3) and (4.10), that the coefficients of the liftings $\in T_{v^{\prime}}(u)$ of $\operatorname{Ker} d \phi(s)$ corresponding to the part $v_{28}=\frac{\partial}{\partial \eta_{1}}, v_{29}=\frac{\partial}{\partial \eta_{2}}$ and $v_{30}=\frac{\partial}{\partial \eta_{0}}$ of the basis $v_{e}(25 \leqq e \leqq 50)$ of $T_{U}(u)$ are all zero. This implies that

$$
\begin{equation*}
\text { Ker } d \phi(s) \subset T_{Z_{1}}(s) \quad \text { at any point } \quad s \in Z_{1} \tag{5.3}
\end{equation*}
$$

Combining (5.2) and (5.3), we can conclude that, in case $u_{0} \in Z_{1}^{\prime} \backslash Z_{2}^{\prime}$, the period map ϕ has smooth, 1-dimensional fibre through s_{0}.

In a similar manner, we get also that the period map ϕ has smooth, 2-dimensional (resp. 1-dimensional) fibre through s_{0} in case $u_{0} \in Z_{2}^{\prime}$ (resp. $u_{0} \in Z_{3}^{\prime} \backslash Z_{2}^{\prime}$).

For the other assertion, we will prove them case by case.
First of all, we identify $T_{U}\left(u_{0}\right)$ with the ambiant space \mathbf{A}^{26} of U by means of the affine coordinates $\xi_{i}, \eta_{i}, \xi_{i j k}$ and $\eta_{i j k}$ in (3.19).

Case $f_{1}=f_{2}=g_{1}=g_{2}=0$ and $f_{0} g_{0} \neq 0$ at u_{0} : From (4.3) and (4.10), we see that the coefficients of the liftings $T_{U}\left(u_{0}\right)$ of $\operatorname{Ker} d \phi\left(s_{0}\right)$ corresponding to the part $v_{25}=\frac{\partial}{\partial \xi_{1}}, v_{26}=\frac{\partial}{\partial \xi_{2}}, v_{27}=\frac{\partial}{\partial \xi_{0}}, v_{28}=\frac{\partial}{\partial \eta_{1}}, v_{29}=\frac{\partial}{\partial \eta_{2}}$ and $v_{30}=\frac{\partial}{\partial \eta_{0}}$ of the basis $v_{e}(25 \leqq e \leqq 50)$ of $T_{U}\left(u_{0}\right)$ are as follows.

$$
\begin{array}{lll}
\check{\zeta}_{1}=3 f_{0} t_{1}, & \check{\zeta}_{2}=3 f_{0} t_{2}, & \xi_{0}=0, \tag{5.4}\\
\eta_{1}=3 g_{0} t_{1}, & \eta_{2}=3 g_{0} t_{2}, & \eta_{0}=0,
\end{array}
$$

where $t_{i}(i=1,2)$ are independent parameters.
If the period map ϕ has positive dimensional fibre through s_{0}, starting from $s=s_{0}$ and moving along this fibre, the point s, by (5.4), will go into $\Delta_{11} \backslash p^{\prime}\left(\Delta^{\prime \prime}\right)$. In particular, the fibre of the period map ϕ through s_{0} is at most 1 -dimensional.

In a similar way, we get the last half of (5.1.2).
Case $u_{0} \in \Delta_{11}^{\prime} \cap \Delta^{\prime \prime}$: We use the normalized form (3.7). It is easy to see that $f_{222} g_{222} \neq 0$ at u_{0}, unless otherwise $X_{u_{0}}$ has singular points. Hence the condition

$$
\operatorname{rank}(f)=\operatorname{rank}(g)=1
$$

is equivalent to

$$
\cdot|f(1,3)|=|f(2,3)|=|g(1,3)|=|g(2,3)|=0
$$

and also equivalent to

$$
\begin{array}{lll}
f_{111}=a^{3} f_{222}, & f_{112}=3 a^{2} f_{222}, & f_{122}=3 a f_{222}, \tag{5.5}\\
g_{111}=b^{3} g_{222}, & g_{112}=3 b^{2} g_{222}, & g_{122}=3 b g_{222},
\end{array}
$$

for some $a, b \in \mathbf{C}$. Note that (5.5) means

$$
\begin{aligned}
& f^{(3)}\left(0, y_{1}, y_{2}\right)=f_{222}\left(a y_{1}+y_{2}\right)^{3} \quad \text { and } \\
& g^{(3)}\left(0, y_{1}, y_{2}\right)=g_{222}\left(b y_{1}+y_{2}\right)^{3},
\end{aligned}
$$

and hence we see that $a \neq b$, unless otherwise $X_{u_{0}}$ is not contained in $\mathbf{P}(1,2,2,3,3)$.

From (4.3), (4.10) and (5.5), we see that the coefficients of the liftings $T_{U}\left(u_{0}\right)$ of $\operatorname{Ker} d \phi\left(s_{0}\right)$ corresponding to the part

$$
v_{32}=\frac{\partial}{\partial \xi_{112}}, \quad v_{33}=\frac{\partial}{\partial \xi_{122}}, \quad v_{34}=\frac{\partial}{\partial \xi_{222}}, \quad v_{42}=\frac{\partial}{\partial \eta_{112}}, \quad v_{43}=\frac{\partial}{\partial \eta_{122}}
$$

and $v_{44}=\frac{\partial}{\partial \eta_{222}}$ of the basis $v_{e}(25 \leqq e \leqq 50)$ of $T_{U}\left(u_{0}\right)$ are as follows.

$$
\begin{align*}
& \zeta_{112}=3^{2} f_{222} g_{222} t_{1}\left(2 b^{2}-a b\right), \quad \check{\zeta}_{122}=\frac{3^{2}}{2} f_{222} g_{222} t_{1}(3 b-a), \\
& \xi_{222}=3 f_{222} g_{222} t_{1}, \quad \eta_{112}=3^{2} f_{222} g_{222} t_{2}\left(2 a^{2}-a b\right), \tag{5.6}\\
& \eta_{122}=\frac{3^{2}}{2} f_{222} g_{222} t_{2}(3 a-b), \quad \eta_{222}=3 f_{222} g_{222} t_{2},
\end{align*}
$$

where $t_{i}(i=1,2)$ are independent parameters.
The equations of the tangent spaces $|f(2,3)|=0$ and $|g(2,3)|=0$ in A^{26} are

$$
\begin{align*}
& \left|\begin{array}{rr}
2 \xi_{112} & 2 f_{122} \\
\xi_{122} & 3 f_{222}
\end{array}\right|+\left|\begin{array}{rr}
2 f_{112} & 2 \xi_{122} \\
f_{122} & 3 \xi_{222}
\end{array}\right| \text { and } \tag{5.7}\\
& \left|\begin{array}{rr}
2 \eta_{112} & 2 g_{122} \\
\eta_{122} & 3 g_{222}
\end{array}\right|+\left|\begin{array}{cc}
2 g_{112} & 2 \eta_{122} \\
g_{112} & 3 \eta_{222}
\end{array}\right| \text { respectively. }
\end{align*}
$$

Substituting (5.5) and (5.6) into (5.7), we get

$$
\begin{array}{ll}
2^{2} \cdot 3^{3} f_{222}^{2} g_{222}(a-b)^{2} t_{1} & \text { and } \tag{5.8}\\
2^{2} \cdot 3^{3} f_{222} g_{222}^{2}(a-b)^{2} t_{2} & \text { respectively. }
\end{array}
$$

If the period map ϕ has positive dimensional fibre through s_{0}, we see from (5.8) that, starting from $s=s_{0}$ and moving along this fibre, the point s will leave from $p^{\prime}\left(\Delta^{\prime \prime}\right)$. Thus, we get the desired assertion in this case.

In a similar way, we get (5.1.4).
Q.E.D.

Remark (5.9) In the cases (5.1.3) and (5.1.4), our results in Theorem (5.1) are imperfect.

In these cases, we know a rough idea of the algorithm to determine what kind of fibre the period map ϕ has through a given point $s_{0} \in S$:

1) Given a point $u_{0} \in U$. Set

$$
\begin{aligned}
h_{1}= & \text { the pull-back of the Jacobian } \operatorname{det} A \text { of } d \phi \\
& \text { by the morphism } p^{\prime}: U \rightarrow S .
\end{aligned}
$$

In case $h_{1}\left(u_{0}\right) \neq 0$, we stop the process at this stage.
2) In case $h_{1}\left(u_{0}\right)=0$: For $u \in U$ with $h_{1}(u)=0$, we can calculate explicitly, by (4.3) and (4.10), the liftings $\tau(u) \in T_{U}(u)$ of $\operatorname{Ker} d \phi(s)$. Calculate also the equation $h_{1}^{\prime}(u)$ of the tangent cone to $\left\{u \in U \mid h_{1}(u)=0\right\}$ at u and set

$$
h_{2}(u)=h_{1}^{\prime}(\tau(u)) .
$$

In case $h_{2}\left(u_{0}\right) \neq 0$, we stop the process at this stage.
3) In case $h_{2}\left(u_{0}\right)=0$: Calculate the equation $h_{2}^{\prime}(u)$ of the tangent cone to $\left\{u \in U \mid h_{2}(u)=0\right\}$ at u and set

$$
h_{3}(u)=h_{2}^{\prime}(\tau(u)) .
$$

In case $h_{3}\left(u_{0}\right) \neq 0$, we stop the process at this stage. In case $h_{3}\left(u_{0}\right)=0$, continue the process and get the equations h_{4}, h_{5}, \ldots.
4) We can conclude the period map ϕ has positive dimensional fibre through s_{0} if and only if

$$
\operatorname{dim}_{u_{0}}\left\{u \in U \mid h_{i}(u)=0 \quad(i \neq 1,2 ; \ldots)\right\}>0 .
$$

Unfortunately, the above algorithm is too complicated to perform at present.

6. Some properties on $\boldsymbol{S}_{\mathbf{2}}=\{\boldsymbol{s} \in S \mid \operatorname{dim} \operatorname{Ker} \boldsymbol{d} \phi(u)=\mathbf{2}\}$

We will investigate, in this section, some properties on S_{2} in (3.3) and their relations. We use the notation in the previous sections.

Theorem (6.1) Let $u_{0} \in U$ and set $X=X_{u_{0}}$ Consider the following properties:
(a) The bi-canonical map $\Phi_{|2 K|}: X \rightarrow \mathbf{P}^{2}$ is a Galois covering with the group $(\mathbf{Z} / 2 \mathbf{Z})^{\oplus 2}$.
($\left.\mathrm{a}^{\prime}\right) \quad f^{(1)}=g^{(1)}=0$ at u_{0}.
(a") The period map ϕ has 2-dimensional fibre through $s_{0}=p^{\prime}\left(u_{0}\right)$.
(b) The canonical divisor C of X is smooth and the exact sequence

$$
0 \longrightarrow \check{N}_{C / X} \longrightarrow \Omega_{X}^{1} \otimes \mathcal{O}_{C} \longrightarrow \Omega_{C}^{1} \longrightarrow 0
$$

splits.
(b') $f_{1}=f_{2}=g_{1}=g_{2}=0$ at u_{0}.
(c) $\operatorname{dim} \operatorname{Ker} d \phi\left(s_{0}\right)=2$.
(c') $f_{1}=f_{2}=g_{1}=g_{2}=0$ or $\operatorname{rank}(f)=\operatorname{rank}(g)=1$ at u_{0}.
Then, among the above properties, we have the following equivalences and implications:

$$
(a) \Longleftrightarrow\left(a^{\prime}\right) \Longleftrightarrow\left(a^{\prime \prime}\right) \Longrightarrow(b) \Longleftrightarrow\left(b^{\prime}\right) \Longrightarrow(c) \Longleftrightarrow\left(c^{\prime \prime}\right) .
$$

We kow also that the subvarieties of S satisfying the property (a) (resp.(b), (c)) is of codimension 6 (resp. 4, 4) in S and irreducible (resp. irreducible, of disjoint union of two irreduclble components).

Proof. The implication $\left(\mathrm{a}^{\prime}\right) \Rightarrow(\mathrm{a})$ is immediatly verified by observing that the involusions $z_{3} \mapsto-z_{3}$ and $z_{4} \mapsto-z_{4}$ form a system of generators of the covering transformation group of $\Phi_{|2 K|}: X \rightarrow \mathbf{P}^{2}$. The converse is an exercise in the Galois theory (for detail, see [2]).

The equivalence between (a^{\prime}) and ($\mathrm{a}^{\prime \prime}$) is the first part in (5.1.1) and we have already proven.

The implication $(a) \Rightarrow(b)$ follows from the observation of the induced action of the involution $x_{0} \mapsto-x_{0}$ (for detail, see [2]).

The implication (b) \Rightarrow (c) is easy (see [4] and also [2]).
The equivalence between (c) and (c') has already stated in Lemma (3.10).
We have known that the subvariety of S satisfying the property (b) is of codimension $\leqq 4$ in S (see [6]). It is easy to see that the subvariety of S satisfying the property (c^{\prime}) is of codimension 4 in S. Note also that the canonical divisor
of $X_{u_{0}}$ has singularity if rank $(f)=\operatorname{rank}(g)=1$ at u_{0}. Combining the above three facts and the implication $(\mathrm{b}) \Rightarrow\left(\mathrm{c}^{\prime}\right)$, which has been already proven, we get the equivalence between (b) and (b^{\prime}).

The last assertion is an immediate consequence of the characterizations (a^{\prime}), (b^{\prime}) and (c^{\prime}) of (a), (b) and (c) respectively.
Q.E.D.

References

[1] Bănică, C. and Stănăçilă, O., Metode algebrice in teoria golbală a spatiilor complexe, Editura Academici Republicii România, Bucureşti 1974.
[2] Catanese, F., Surfaces with $K^{2}=p_{g}=1$ and their period mapping, Proc. Summer Meeting, Copenhagen 1978, Springer Lecture Notes 732.
[3] Griffiths, P., Periods of integrals on algebraic manifolds III, Publ. Math. I.H.E.S. 38 (1970).
[4] Kinnev, F. I., A simply connected surface of general type for which the local Torelli theorem does not hold, C. R. Acad. Bulgare des Sci. 30-3 (1977) (Russian).
[5] Mori, S., On a generalization of complete intersections, J. Math. Kyoto Univ. 15-3 (1975).
[6] Usui, S., Note on the example of Kinev, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 1 (1980).
[7] Usui, S., Effect of automorphisms on variation of Hodge structure, to appear in Japanese J. of Math.

Kochi University
Department of Mathematics
Fuculty of Science
Kochi, 780 Japan

[^0]: Research partially supported by the Grant-in-Aid for Encouragement of Young Scientist (A)-474031.

[^1]: ${ }^{1)}$ In the paper [7], we constructs the fine moduli $\approx: \tilde{X} \rightarrow \tilde{M}$ of marked surfaces with $p_{q}=c_{1}^{2}=1$ and K ample, whose parameter space \tilde{M} is finite over the course moduli space M of surfaces with $p_{0}=c_{1}^{2}=1$ and K ample. By the universality of the fine moduli, we get the morphism $\tilde{p}: U \rightarrow \tilde{M}$ whose germ at the point in question coincides with the morphism $p^{\prime}: U \rightarrow S$, and we can prove that the morphism $\tilde{p}: U \rightarrow \tilde{M}$ is smooth by its construction.

