|

) <

The University of Osaka
Institutional Knowledge Archive

Period map of surfaces with pg=1; ¢c’2 1 =2

[ and & 1 = =27

Author(s) |Usui, Sampei

Memoirs of the Faculty of Science, Kochi
Citation |[University. Ser. A, Mathematics. 1984, 5, p. 15-
26

Version Type|VoR

URL https://hdl. handle.net/11094/73381

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Mem. Fac. Sci.
Kochi Univ. (Math.)
5 (1984), 15-26

PERIOD MAP OF SURFACES WITH
p,=1, ¢2=2 AND =,=Z[2Z

Dedicated to Professor Kazo Tsusi on the occasion of his sixties birthday

Sampei Usur®
(Received August 1, 1983)

Introduction

Certain surfaces of general type with p,=ci{=1 were first constructed as a
counter-example of the infinitesimal Torelli theorem ([Ki]). All those surfaces
with these numerical invariants are descrived as weighted complete intersections
([C.1]), and for the period map of these surfaces the followings are known:

(0.1) The generic infinitesimal Torelli theorem holds ([C.1]).

(0.2) The period map has some positive dimensional fibres ([T.1], (U.1]).

(0.3) The phenomenon (0.2) is explained as an effect of an automorphism
on the variation of Hodge structure ([U.2]).

(0.4) The infinitesimal Torelli theorem by means of the mixed Hodge
structures on the complements of the canonical curves holds under the assumption
that the canonical curves are ample and smooth ([U.3]).

For the period map of the surfaces with p,=1 and ¢}=2, we encounter a
similar situation. Todorov constructed certain simply connected surfaces with
these numerical invariants through which the period map has positive dimensional
fibres ([T.2]). Catanese and Debarre described all those surfaces with these
numerical invariants ([C.D]). The moduli space of these surfaces has two
connected components according to n,={1} and Z/2Z. Oliverio and Catanese
proved the generic infinitesimal Torelli theorem for the cases n, =Z/2Z and n, =
{1} respectively ([O], [C.2]).

In this paper, we examine a general viewpoint of an effect of an automorphism
on a period map in [U.2] in some surfaces with p,=1, c¢}=2 and n, =Z/2Z(§2).
We also prove the infinitesimal Torelli theorem by means of the mixed Hodge
structures on the complements of the canonical curves for those surfaces with
these numerical invariants under the assumption that the canonical curves are
ample and smooth. The argument is analogous to that in [U.3] (§3). §1 is
the preliminary of the following sections.

*) Partially supported by CNR in Italy and Grant-in-Aid for Scientific Research C-58540084
from the Ministry of Education of Japan.
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We wish to remark here a general theory of period maps by means of the
mixed Hodge structures on the complements X ~ Y of normal crossing divisors Y.
In this generalization, we can go on to some extent along the same way as
“ordinary”’ period maps of [Gri]. Especially, we proved that the differential
of the “generalized’’ period map coincides (up to @ (— 1)?) with the map

P

(0.5) HYTy(—logY)) — o  Hom (Hr(Q4(log Y)), HP~}(Q%"'(log Y)))

induced from contractions ([U.3]). Moreover, last April, a great advance was
made by Griffiths in this direction. That is that he proved the injectivity of the
map (0.5) for a sufficiently ample, smooth divisor Y in an arbitrary smooth,
projective variety X. Combining this with a general result in [U.3], we can prove
the “ordinary”’ infinitesimal Torelli theorem for the above Y. The last assertion
was also proved indipendeuntly by Green ([Gre]).

This work was done during the author’s stay in University of Pisa (I-11 ’83).
He wishes to express his gratitude to the mathematicians there especially to Pro-
fessor Catanese for their hospitality.

1. Surfaces with p,=1, c§=2 and &, =Z/27

Catanese and Debarre ([C.D]) gave a description of the surfaces with p,=1
and c3=2. In particular, they showed that (Theorem 2.8 in [C.D]):

(1.1) Any canonical model of a surface X with p,=1, ¢3=2 and n,=Z[2Z
occurs as the quotient X[{(%) of a weighted complete intersection X cP=P(1, 1,
1,2, 2) with only rational double points as singularities, given by a pair of
partially normalized equations:

S =23 + wz fO(xy, Xp) + wi O 4 w2 @)(x,, x2) + [ ®xy, x,)
g = 2z} + wz390(x |, x3) + wg® + w2gP(xy,x,) + gH(xy, X5)
where
degw =degx, =degx, =1, degz; =degz, =2,
S (x,, x5) and g@(xy, x,) are hk;mogeneous polynomials of degree i
(i=0, 1, 23 4)7 o . o V
S® and g do not have common factors,

O and g are not both zero,
7 is the involution on X, which induces a projectivity

(W, Xy, X2, 23, 24) f— (wa =Xy =Xp, —Z3, _24)

through the induced action on the canonical ring of X.
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Moreover two such pairs of equations (f;, g1) and (f,, g,) give rise to isomorphic
surfaces if and only if there exists a projectivity h: P—P such that
D h(w, xq, X3, 23, 24) = (€W, €1X; + €13X5, €21X1 + €3X3, €323, C424)
ii) either ¢3fy=f1oh, c3g,=g,°h
or ¢3fy=g;ohei, cig, =fohei,
where i: P—P is the involution permuting z5 with z,.

Let X and X be as in (1.1). We assume throughout this paper that the
unique canonical curve C of X is ample and smooth. Then, in particular, the
canonical model of X is smooth and we can identify X with its canonical model.
Denote by C the pull-back of C by the projection

(1.2) pX—X.

Let LePic(X) be the 2-torsion corresponding to the double cover (1.2).
Then we have:

p*Q4(log C) = Q4(log C). Qg = Q%.
(1.3) P*Ty(—log C) = Tg(—log&).  p*Ty = Ty
PxO0x=0y@®L™.

Lemma 2.1 in [C.D] yields, in our case, that:
(1.4) The canonical curve C of X is a smooth hyperelliptic curve of genus 3.
Lemma (1.5) H%(Ty)=0. H?*(Ty)=0. dim H(Ty)=16.

Proof. Since Ty=Q}®K3! and K, is ample, we have H%(Ty)=0 by the
Kodaira-Nakano vanishing theorem. We get

(1.6) HX(Tg) =0

by a standard calculation of cohomology groups for a weighted complete inter-
section (cf. [M]), by using an exact diagram:

0

a~

.7 0— Ty — Tp|lX — Ngp— 0

@‘_3@,?(9;)

I

Og

T

0
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where ep=e,=e,=1 and e;=¢,=2. (1.6) implies H*}(Ty)=0 by (1.3). The
above results yield, by the Riemann-Roch theorem, that

dim HY(Ty) = — x(Ty) = 10x(05) — 2¢} = 16. Q.E.D.
Lemma (1.5) asserts that the Kuranishi family
(1.8) n:&— S with 1 X5 X =77 (sg) (sg€8)

of the deformations of X is universal with a smooth parameter space S of di-
mension 16.

2. Effect of authomorphism

We continue to use the notations X, X, p, 7 etc in the previous section.

(2.1) With the aid of the universal cover ¥ of weighted complete inter-
section, Oliverio ([O]) showed that the infinitesimal Torelli theorem holds for a
general member X of the surfaces with p,=1, ¢2=2 and ny =Z/2Z, i.e.

HY(Ty)

» Hom (H%(Q3), H'(Q})
is injective.

(2.2) On the other hand, the period map has 3-dimensional fibres through
the surfaces X obtained from X with f(x,, x,)=g"(x,, x;)=0 (see (1.1)).
We can prove this by an analogous argument of Todorov ([T.2]). That is, in this
case, the bicanonical map of X

ffle X

is a Galois cover with Galois group (Z/2Z)®? generated by the automorphisms
o, and o, of X come from

> I = flag(X) = P?

G1(w, Xy, X2, 23, 24} = (W, Xy, X2, —23, Z4) and
6a(w, Xy, X3, Z3, 24) = (W, Xy, X2, Z3, —Z4)

respectively. Between X and X we have a quotient X' = X/{o,), where 6,=0,0,,
which is a K3 surface with 10 rational double points of type 4,. X is a double
cover of X’ whose branch locus is the pull-back of a hypersurface section on X
plus 10 A,’s. The period map distinguishes K3 surfaces X’ but does not distin-
guish the branch loci which contribute 3-dimension in the moduli space and
appear as a fibre of the period map. (For a more precise description, see Remark
2.10in [C.D].)

(2.3) We can explain the phenomenon (2.2) by a general viewpoint of an
effect of an automorphism on a period map which we pointed out in [U.2].
This is the purpose in this section.
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Let X, 05 and X’ be as in (2.2). Set o=0, for simplicity. Note that in this
case the canonical curve C is smooth because C is a fixed part by the invloution o.

Lemma (2.4) (2.4.1) dim HYQ}|C)? =dim HY(Q}|C)=3
(2.4.2) dim HY{Q}|C)y’ =1
where HY(2%|C)® means (1)-eigen subspace by the induced action of o.

Proof. Since ¢|C=id, the exact sequence

0— Ny — Q4IC

> QL— 0

splits and
N¢x is (—1)-eigen subbundle, and
QL is (1)-eigen subbundle.

Hence
Hi(Q}|Cy == H(Q¢)  (i=0, ).
This proves the lemma because HO(N'C/X)=0. QED.

Lemma (2.5) (2.5.1) dim H3(X, Q)=20.
(2.5.2) dim HX(X, Q) =12.

Proof. (2.5.1) follows from
Trop (X) = 12x(0x) — ¢§ = 12.2 — 2 =22,
For (2.5.2), we use the following diagram:

X 2 X where p is the blowing-up of 10
(2.6) | l" isolated fixed points by o which
¥ correspond to 10 4;’s on X', and
& is the induced involution on X.

X':=X/(a‘)<~—§’:=)?/(&)
Then we have
PPHAX, Q7@ ( @ QLED = H¥(X, Q° == H(X', Q),
where [E;] (1<i<10) are the classes of exceptional curves with respect to p.
Since X’ is a minimal K3 surface, we have
dim H3(X, Q) =22 — 10 = 12. Q.E.D.

Lemma (2.7) (2.7.1) dim P%9%(X)?=dim HY(Q%})=1.

2.7.2) dim PLY{(X)* =9
where PP3(X) is the primitive part of H»4X) with respect to the polarization
by Ky.
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Proof. In the diagram (2.6), the holomorphic 2-form on X comes from that
on the K3-surface X'. This proves (2.7.1). (2.7.2) follows from (2.5.2) and
(2.7.1) since the polarization (1, 1)-form is o-invariant. Q.E.D.

Lemma (2.8) dim HY{(Ty)°=12.
Proof. From the exact sequence

0— Ty > 0

> Q%

> Qy1C

and (1.5), we have
» 0.

(2.9) 0 — HYQL|C) — HYTy) 2 HY(QY) — HY(QL|C)

By virtue of (2.7.1), the homomorphisms in (2.9) are compatible with the induced
actions of . Hence the restriction to the o-invariant parts of (2.9) is also exact.
Thus the lemma follows from (2.4) and (2.7.2). Q.E.D.

(2.10) Now we are ready to explain the phenomenon (2.2) as the effect of the
automorphism ¢ on the period map. '

Let X and o be as above, and let (%, =, S, sq, ¢) be the Kuranishi family
(1.8) of the deformations of X. The universality of this family means

Aut(Z, 7, S, so) % Aut (X), a l— ¢~ lo(a| X, )ot.

Denote
H,=P*X, Z)=the 2" primitive cohomology proup of X with respect to
the polarization by K.
D= {Fll-dimensional subspace of Ho=H,®C satisfying XX FAF=0 and
S FA F>0}
X
¢: S—D the period map of Griffiths ([Gri]).
Aut (X) acts on the Griffiths domain D through

Aut(X) — Aut(H,), ol— o«*~ 1.

It is easy to see that the period map ¢ is Aut(X)-equivariant with these induced
actions on S and D. in particular, for o =03 € Aut (X), we have the restriction of
¢ to the o-fixed points:

(2.11) ¢’ 8% — D",
Since o is of finite order, S° and D? are smooth. Therefore
dim,, ¢ = dim H(Ty)°

dim, sy D? = dim T p(¢(s0))* = dim Hom (P%-%(X), P1-1(X))°
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Hence from (2.8) and (2.7), we have
dim,, §¢ = 12
dimyy D° = 9.
This implies
(2.12) dimg, (¢?)~1¢%(se) = 12 — 9 = 3.

On the other hand, the morphism ¥ in (2.9) is essentially the same as the
differential of the period map ¢ at s, and hence

(2.13) dim,, ¢~ 1¢(so) < dim HY(QL|C) = 3

by (2.4.1). Thus from (2.12) and (2.1:3) we can conclude that (2.11) is a smooth
morphism of relative dimension 3. Q.E.D.

Remark (2.14) With the aid of the universal cover X, which is a weighted
complete intersection, we can classify all the automorphisms of the surfaces X
with p,=1, ¢¢=2 and n,=Z/2Z and Ky ample following the program in [U.2],
and can examine the effect of each automorphism on the period map in the same
way. (c¢f. Addendum of the present paper.)

Remark (2.15) We can also explain a similar phenomenon like (2.2) as an
effect of an automorphism on the period map for the surfaces X with p,=1, ¢3=2
and ny={1} and the bicanonical map

f{zx|5 X—Z =f|zx|(X) cp?

is a double cover of a quadric surface ¥ in P3. These are surfaces studied in
[T.2].

3. Infinitesimal Torelli theorem by means of mixed Hodge structures

We continue to use the notations X, C, X, C, p and 7 in the section 1.
By a similar method in [U.3], we can prove for X the infinitesimal Torelli
theorem by means of the mixed Hodge structure on X —C:

Theorem (3.1) Let X be a surface with p,=1, ci=2 and n;=Z[2Z. Assume
that the canonical cuve C is smooth and ample. Then the map

@: HY(Tx(—log C)) — Hom (H%(2%(log C)), H!(2x(log C)))
defined by the contraction is surjective.

Proof. From the exact sequences
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0— Ty(—C) — Ty(—logC)— Ty —— 0 and
0— Q8 — Q%(log C) —> Q&1 — 0
(cf. [Ka], [D], [U.3]), we get the cohomology sequences:
0 — HY{(Tx(—C)) — HY(Ty(—1log C)) L HY(Ty).
(3.2) 0—— HO(Q3) —2» H(Q%(log C)) > HY(QL) > 0.
0 — PYQ}) — HY{(Q}(log C)) £ HY(0g) — 0.

Set
T, = Im {y: H(Tx(—log C)) — HX(TL)},
T' = {# e Hom (H%(Q%(log C)), H(2}(log C))}| f0x = 0} and
T, ={0eT'|f6=0}.

Then, from (3.2), we get a commutative exact diagram:

0— HY(Ix(-C)) — HY(Tx(—log C)) — T; — 0
3.3 1:91 ltp lwz

0 , T » T' —— Hom (H°(Q}), HY(0c)) — 0.

The injectivity of ¢ follows from the injectivity of ¢, and ¢, which we will prove
in a sequence of lemmas.

Lemma (3.4) o} : H{Ty(—C)) — Hom (H(Q%(log C)), HY{(2}))
is injective.

Proof. Step 1. Under the identification
HO(Q}) = H%0x(1) = CLw, x,, X3, 23, 241,
the induced action of the involution 7 is
T(w, Xy, X2, 23, Z4) = (W, —X;, —X5, —23, —24) (see (1.1)).
Set

(3.5) W= HQ%)D = the (— 1)-eigen subspace of H%(Q%) under #-action
= Cx; ® Cx,,

and consider the Koszul complex K defined by
(Te(~0), 02(1), W) (resp. (T, 0x(1), W))
in [L.W.P], ie.
Kr = (Te(—O)@,0()PP)Q@c APW™  (resp. = (Tx®, 0x()®P@c AP W)
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and the spectral sequence of hypercohomology of this complex:
EPT = HY(K?).

Step 2. Since x,, x, is a regular sequence in the canonical ring C[w, x,, X,,
z3, 24)/(f, g9), the Koszul complex K" is exact in both cases. Hence, in paraticular,
we have, in both cases,

(3.6) E' = H(K") = 0.
Step 3. On the other hand,
E0 = HOK?) = HYQL)® AW (resp. = HY(QE@0(1)® A2W™),

where we use the identification Ty®Q%=0%. Since X is simply connected, we
have H(Q3)=0. The vanishing of HY(Q}®0g(1)) follows from the exact dia-
gram:

0

1

0— Ngjp ® Og(1) — Qb ® 0g(1) — 2} @ 0g(1) — 0,

@D Og(—e)D0x(1)
O<i=4

1

Ox(1)

|

0

where ep=e;=e,=1 and e;=¢,=2. In fact, since @HY(® Og(l—¢e))>=
HO@(1)), we see that HY(Qi®Ce(1))=0. Since Nx,,z(px( —4)82 we sec that
HYN 2p®0x(1))=0 (see [M]). Hence we get HO(Q;®0x(1))=0. Therefore,
we have in both cases,

(3.7 E20 = H(K?) = 0.

Step 4. From (3.6), (3.7) and the well-known exact sequence:

0— E}%®— E! — E' — E30 — E2,
we get, in both cases,
E}! =Ker {H(K%) — HY(KY)} =0, ie.
HYTg(—C)) — HY(Tx) @W~

are injective.
HY(Tg) — HNQ}) @W~
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This implies the injectivity of the map
(3.8) HY(Tg(—C)) — HY(Q}) ® (W32,

Step 5. Since the induced action of ¥ is the identity on (W")®2, (3.8) implies the
injectivity of the map @, in the following commutative diagram:

H\(Ty(~C)) -5 Hom (H°(Q3 (log C)), H'(2}))

(3.9) ]
HY(Tg(~C)) -2 Hom (H°(Q% (log ©))%, H'(23))

where HO(Q%(log C)) stands for Z-invariant subspace. Obviously, by (1.3), the
virtical maps in (3.9) are injective. Thus ¢{ is injective. Q.E.D.

Lemma (3.10) ¢, : HY(Ty(—C))— T = Hom (H%(Q%(log C)), H(2}(log C)))
is injective.

Proof. By the last exact sequence in (3.2), it is enough to show that
Im {H(Ty(— C)) ® H%L% (log C)) — H'(Q})} = PY(25).

Let we HY1(X) be the class of the canonical curve C. For 8 e H(Ty(—C)) and
¢ € HY(Q3% (log C)), we have the formula of contraction:

G- (onl)=O0-w)Aé+wA(0-&.

Since wA€=0 and 0-w=0 (in H2(0x(~C)), we see wA(0-&)=0 (in H>*(X)),
ie. 0.¢ePYQY). Q.E.D.

Lemma (3.11) Let Y be a smooth hyperelliptic curve of genus g >2. Denote
by T the subspace of HMTy) consisting of the first order infinitesimal defor-
mations of Y which are hyperelliptic. Then, the restriction to T of the initesimal
period map is injective.

Proof. This lemma must be well-known (e.g. an easy consequence of a
great work [O.S]). But we will give a proof for the readers’ convenience. Recall
that a hyperelliptic curve Y of genus g can be represented as a double cover Y—P!
ramified over 2g 42 points, say Py,..., Pyj4,. Set M =0,(g+1) and denote by
s€ H%(M?) a global equation of the divisor 3 P;. Then s gives an Opi-algebra

7

structure on Op @M1 by

M2 85 0y,
with which

Y= 150/366131 {Opt (‘B“M—l).
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It is easy to derive the following relations of cohomology groups (cf. [V]):
HY(Ty) == H(Tpi (—10g (X P)) @ H (Tp: @ M)

(3.12) HO(Q}) == HY(Qp:) @ HY(Qp(log (X P @ M~1)
HYOy) 2 HY(Op) @ HY(M ™)

The first (resp. second) terms in the right hand sides of (3.12) are (1)-(resp. (— 1))
eigen subspaces by the covering transformation. Hence

T = HY(Tp: (—log(Z Py)))
and our map is
(3.13) HY(Tpi(—log(Z Py)))
The dual of this map, i.e. the codifferential, is

HO(Qp: ® M)®2) —— H(Q} @ M)®2.

> Hom (H(Q}: (log (3 P)) @ M), HY(M™Y)).

This is obviously surjective, since Q@M 20pi(g—1). Therefore (3.13) is
injective. Q.E.D.

Lemma (3.11) together with (1.4) yields the injectivity of ¢,. This together
with Lemma (3.10) completes the proof of Theorem (3.1).
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