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Period maps and their extensions

SAMPEI UsUI

§0. Introduction

In this survey, we shall explain the works of Griffiths, Deligne, Schmid,
Clemens, Mumford, Cattani, Kaplan, Steenbrink, Zucker et.al., concerning period
maps and their extensions.

As an introduction to our topic, we review here the outline of a proof of the
generic Torelli theorem for curves via degeneration.

Let {X:}ica be a degeneration of compact complex smooth curves X; of
genus g over a punctured disk ¢ € A* to a curve X with one node over the origin

0 € A as in the following figure:
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Let ay(t), ..., ag(t), Bi(t), ..., By(t) be a flat symplectic basis of Hy(Xy,Z),
t € A*, where (t) is a vanishing cycle, and let wi(t),...,wy(t) € H°(X;, Q) be
the basis of differential forms of the first kind, normalized by fa‘_( 9 w;(t) = 6;;. We
denote by () = (¢i;(t)) = (fﬁ.'(t) wj(t)) the period matrix. Then, by the Dehn

twist, we have the Picard-Lefschetz formula for the action of the local monodromy +:
vB1(t) = Bi(t) + a1(t), the other a;(t), Bi(t) are invariant.

(0.1) ve11(t) = p11(t) +1 hence ¢11(t) = (logt)/2xv/—1 + s(t),

where s(t) as well as the other ¢;;(t) are single-valued.

By the hyperbolicity of the Siegel upperhalf space, f;(t) for i # 1, s(t), @i;(t) for
(,7) # (1,1) extend over the puncture. This is the most primitive form of the more
general fact: the ‘Nilpotent Orbit Theorem’ of Schmid in §2.

Let X, be the normalzation of Xg. Let p,q and B; (¢ # 1) be the inverse
images on Xo of the double point of Xo and the 1-cycles §;(0) on Xy, respectively.
Moreover, let &) and w; (j # 1) be the induced differential forms of the third kind

and the first kind on )/Z(], respectively. Then, as t — 0, we have from (0.1) that

0 fqug fqug
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(0.2) (1) mod y ( o
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From this, we can observe the following:

(i) There are the following correspondences:
modulus of X 0
 (2,2)-block ©'(0) of the last matrix in (0.2)
o ‘graded piece gr'”¥ of the limiting mixed Hodge structure’

— point of the Satake-Baily-Borel compactification
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It follows that we can recover Xg from ©!(0) by the induction hypothesis.

The differential of !(¢) by ¢t at ¢ = 0 is dual to the multiplication map
Ri ® Ry — Ry of the canonical ring R = @ Ry, of )?0 which is surjective if )’ZO is non-
hyperelliptic (Noether’s theorem). This means that the infinitesimal Torelli theorem
holds in the directién of the moduli space of the normalizations Xo.

(ii) There are the following correspondences:

position of p,q € Xo

& (1,2)-block of the last matrix in (0.2)

> (2,1)-block of the last matrix in (0.2), by reciprocity

— ‘extension data of the limiting mixed Hodge structure’

— point on a fiber from the smooth toroidal compactification

to the Satake-Baily-Borel compactification
The Abel-Jacobi map Xo X Xo — (diagonal) — J(Xp) is given by the (1,2)-
“block of the last matrix in (0.2), which is injective, and hence we can recover the
position of p,q € 550.

The partial differential of this block by p as well as by ¢ is the canonical
map Xo — P91 which is injective if X, is non-hyperelliptic. This means that the
infinitesimal Torelli theorem holds in the direction of the moduli space of the positions
of p,q € 5(:0.

(iii) Since t = 0 is a local equation of the boundary component of the com-
pactification of the moduli space of curves, we get from the (1,1)-block of the middle
matrix in (0.2) the infinitesimal Torelli theorem in the direction normal to the moduli

space of the singular curves Xj.

Thus the induction on the genus g proceeds and we get the generic Torelli

theorem for curves.
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§1. Linear-algebraic generalizations of Hodge Structure

We recall here the notions of ( Cohdmological) (Filtered) (Mixed) Hodge Com-
plex introduced by Deligne and generalized by El Zein, which yield more flexible
frame-works whose axioms are easier to check. We first list up series of definitions

and then explain their relationship and the fundamental results.

(1.1) Definition ([D2], [E]). A Hodge Structure (HS for short) of
weight w defined over Q is (Hq, (Hc, F')) such that

(0) Hq is a Q-module of finite type and F is a decreasing filtration on
Hc =CQ®Hgqg.

(i) F and F are w-opposed, i.e., gr’}‘ grqp—, = 0 unless p + ¢ = w.

A Mixed HS (MHS for short) defined over Q is ((Hq,W),(Hc,F)) =:
(H,W) such that

(0) H is as above (HS.0) and W is an increasing filtration on Hq.

(i) gry is an HS of weight k.

A Filtered MHS (FMHS for short) defined over Q is ((Hq, W, G),(Hc, F))
=: (H,G) such that

(0) H is as above (MHS.0) and G is an increasing filtration on Hq.

(i) gr¥ is an MHS.

A Hodge Complex (HC for short) of weight k defined over Q is (Kq,
(Kc, F'), ) such that

(0) Kq € DT(Q), (K¢,F) € DTF(C), a: CQ® Kq ~ K¢ in D*(C), i.e,
quasi-isomorphism.

(1) E1 = Ey for (K¢, F).

(i) H™(K) is an HS of weight k + n for all n.

A Mixed HC (MHC for short) defined over Q is ((Kq, W), (Kc,W, F),a)
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=: (K, W) such that

(0) (Kq,W) € DYF(Q), (Kc,W,F) € DYF,(C), a : C ® (Kq,W) =~
(K, W) in DYF(C), i.e., filtered quasi-isomorphism. H"(Kgq) is a Q-module of
finite type for all n.

(i) grf (K) is an HC of weight k for all k.

A Filtered MHC (FMHC for short) defined over Q is (Kq, W, G), (K¢, W,
G, F),a) =: (K, G) such that |

(0) For A = Q and C, there exists (K4,G, L) € DY Fy(A) which satisfies
a: CQ®(Kq,G, L) ~ (Kg,G,L) in DYF5(C), ie., bifiltered quasi-isomorphism,
and (K4, W) =~ (K4,G * L) in D¥F(A). (Kc,W,G, F) € D¥Fy(C). H*(Kq) is a
Q-module of finite type for all n.

(i) grf(K) is an MHC for all s.

(i) By = Eo for (Kq,G).

A Cohomological HC (CHC for short) of weight k defined over Q on a
topological space X is (Kq, (K¢, F), ) such that

(0) Kq € D¥(Qyx), (Kc,F) € D*F(Cyx), a: C®Kq ~ K¢ in D*(Cx).

(1) RI(K) is an HC of weight k.

A Cohomological MHC (CMHC for short) defined over Q on a topological
space X is (Kq, W), (Kc, W, F), a) =: (K, W) such that

(0) (Kq,W) € DTF(Qx), (Kc,W,F) € DYF(Cx), a: CQ (Kq,W) ~
(Kc,W) in DYF(Cyx). H"(X, Kq) is a Q-module of finite type for all n.

(i) gl (K) is a CHC of weight k for all k.

‘A Cohomological FMHC (CFMHC for short) defined over Q on a topo-
logical space X is (Kq, W, G), (K¢, W,G,F),a) =: (K,G) such that

(0) For A= Q and C, there exists (K4,G,L) € DY F5(Ax) which satisfies
a: C®(Kq,G, L) ~ (Kc,G,L) in DYFy(Cx) and (K4, W) ~ (K4,G L) in
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DTF(Ax). (Kc,W,G,F) € DYF3(Cx). H*(X,Kq) is a Q-module of finite type
for all n.
(i) grf(K) is an CMHC for all 5.

(ii) E3 = E for hypercohomology of (Kq, G).

In the above definition of (C)FMHC, G * L means the convolution of two
filtrations, which is defined by (G * L) := Z'i+j=k Gi N Lj.

The second remark is that, for three filtrations F, G, Hon K, ingry grggrr K
gry and grg commute but grg and grr do not commute. Hence, besides gry grg grr K
and gry grg grrK' being quasi-isomorphic, we need the following additional axiom
for trifiltered quasi-isomorphism (i.e., isomorphism in Dt F3):

gry grgK and gry grgK' are quasi-isomorphic.
Then, for biregular filtrations, if (K, F,G, H) and (K', F,G, H) are trifiltered quasi-
isomorphic, K and K' applied by any 0, 1 or 2 of grp, grg and gryg are quasi-

isomorphic.

(1.2)  The following diagram indicates the relationship among the nine

notions defined in (1.1).

w G
HS E  MmMHS & FMHS

7@ T T
HC <~ MHC (@b) FMHC
R T T

CHC <= CMHC <((-b—7 CFMHC

where < and 1} stand for Definitions in (1.1) whereas T stands for Theorem in (1.3)
below. The conditions F1(F) = Ex(F) and E2(G) = Ex(G) are assumed at (a) and

(b), respectively.



(1.3) Fundamental Results. (i) [D2, I} For a MHC (K, W), we
have
(a) E1(K,W) is a complex in (HS), Eo( K,W) = Exo(K, W), E1(K, F) =
Eow(K,F), Ex(grp K, W) = Exo(grp K, W).
(b) AIll the filtrations on E.(K, W) induced from F in various ways coin-
side for any r (actually for r = 2).
(c) (H™(Kq),W[n]),(H"(Kc),F)) is a MHS for all n.
(ii) [E,I] For a FMHC (K,W), we have, moreover, that
(b') All the filtrations on E.(K,Q) induced from W (resp. F') in various
ways coinside for any r (actually for r = 2).

(¢) ((H*(Kq),W[n],Gn),(H"(Kc),F)) is a FMHS for all n.

Remark. Our definition of (C)FMHC is slightly more restrictive (but more
natural) than the one in [E]. In fact, it can be easily verified that

(i) (G *L)RT = RT(G * L) (by using canonical resolution of Godement).

(ii) (K, W) S (K,Gx*L) implies grlV G; K & Orsi griV gr$ K for all 4, k.
Hence, by [E, I] or [SZ, (6.8)], we see that Dec W and gr® commute.

§2. Limit of Variation of Hodge Structure

In this section, we shall review two main theorems of Schmid [S], i.e., the
Nilpotent Orbit and SLo Orbit Theorems, and then explain their applications. For
simplicity, we shall restrict ourselves to one variable case, i.e., Variation of Hodge
Structure (VHS for short) over one dimensional parameter space, through out this
article except explicitely stated to the contrary.

As a good brief introduction to the theory of Griffiths on VHS [G1], we
recommend the readers an exposition by Deligne in Bourbaki Seminar [Dl] We use

the notion there such as ‘polarized Hodge structure defined over Z’ freely (cf. (1.1)).



(2.1) Let F, = {FF} be a reference Hodge filtration of weight w on Hg =
C ® Hgz polarized by a quadratic form S. We denote f? := dimcF? and set f =

(f% ..., fF). Then the classifying space D and its ‘compact dual’ D are defined by

D = {F € Flag(Hc, f) | S(FP,F?) =0 for p+q=w +1},
D := {F € D|S(Crz,%) >0 for 0 # = € Hc}

= {HS on Hc of weight w with type f polarized by S}.

Here C; is the Weil operator which is defined by C,z := (=1)?~9z for z € H?? :=
F? N F{. The orthogonal groups G¢ := O(S,C), Gr := O(S,R) act transitively on
D, D with isotropy subgroups B, V, respectively. It is important that V is compact
but not necessarily maximal. Let I is a subgroup of Gz := O(S, Z). It is known that

I' acts on D properly discontinuously.

A period map (= polarized VHS)
®:A*— D/T

is defined as a holomorphic map with horizontal local liftings, where ‘horizontal’
means that the Gauss-Manin connection V and the Hodge filtration F', which are the
pull-backs by local liftings of ®, satisfy VF? C Qlly ® FP~1 for all p.

Now we pose

Naive Question. Does ® extend over the puncture? Where is ®(t)

going, ast — 07

This is our leading question in the present article.
Let 7 : U — A*, ¢t = 7(z) := exp 2m/—1(z), be the universal covering and
consider a lifting ® of ®:
®:U - D.
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Take v € T’ such that d(z+1) = v®(z), called the local monodromy. It is known
by Borel that all eigenvalues of v are roots of unity. Let m be the smallest positive

integer such that 4™ is unipotent, and denote

1 1 1
N = —logy™ = = S (~1)M1(y™ — 1)
— logy m;( ) k(v )"

U(z) := exp(—mzN)a(mz) :U — D,

then ¥(z + 1) = ¥(z) and hence it drops to
U(t) := U(r(t): A* - D

Nilpotent Orbit Theorem [Sc]. ¥ extends to ¥ : A — D, and Fy, =
U (0) defines a nilpotent orbit Do (z) := exp(2N)Fw, i, O : {Imz>a} = Disa

period map for a > 0, and Deo approximates the original &. More precisely,
d(Poo(2), ®(2)) < (Im z)?/ exp(2rIm z/m) for some £ >0 (Imz>0),

where d( , ) is a Gr-invariant metric on D.

Remark. In the situation of §0, according to (0.1), the local monodromy

~ is represented by the matrix

(1, M 1
’)/ = 5 N1 =
0 1, 0

with respect to the basis of H!(Xy, Z) dual to (81(2),---,By(t),ea(t), .-, agy(t)), and

its action on the period matrix o(t) is

(19 Nl) (‘P(t)) _ (‘P(t)-l-Nl) ' hence ~o(t) = o(t) + Mo
o 1,/ \ 1, 1,



We denote by (t) the g X g -matrix whose entries are defined by

s(t)  for (i,5) = (1,1),
Yij(t) = {

@ij(t) otherwise.

Then, by an affine coordinates induced by the Pliicker coordinates of Grass(Hc, g),
we have the following correspondences between the period maps in this subsection

and the period matrices in §0 and their modifications:
®(t) = ¢(t) mod v, U(t) = (1), Foo = ¥(0) = %(0), Boo(z) = %(0) + zN1.

(2.2) We take the standard generators of the Lie algebras s{(2,R) and

su(1,1) which are related by the Cayley transformation ad c1, where

o a [0 1 1 1 2
€l := €Xp — == ’
4 \1 0 V2 \i 1
as follows:

1 0 0 1 0 0
5[(2,R) 5 y:= , Ny 1= R n_ = ,
0 -1 0 0 1 0

adep | 1 ! !
o 0 —i L =i 1 L1
511(, ) 2 z:i= (z 0), $+—§(1 Z),x_—é-(l —_Z>

Note that the generators {y,n4,n_} and {z,z4,z_} are closely related to the ‘N-

filtration’ (= ‘monodromy weight filtration’) and the Hodge filtration, respectively.

Definition. A representation p : SL(2,R) — Gr is horizontal at a base
point r € D if pi(z4) € gal’l ={X € gc|XHM C HP Y for all p, q}, where

gc = LieGc.

35
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Remark. A horizontal SLy-representation p induces an equivariant hori-

zontal map p:

SL(2,C) —— Gc

! !

p

PL — D
W \UJ
1 — T

This is a generalization into the present context of the notion of ‘(H; )-homomorphism’

in the case of symmetric domains of Hermitian type (cf. e.g. [Sa]).
The following result was first obtained by Deligne:

TxSLy-Decomposition Theorem [Sc|. A (polarized) Hodge structure
over R with horizontal SLa-action decomposes into an (orthogonal) direct sum of

irreducible factors. The irreducible ones are classified, up to isomorphism, as

H (k1) ® S(k3) or E(p,q) ® S(kz) for (k2 2 0) (for the notation, see [Sc]).

The idea of proof is as follows: Let T' := RC/R(Gm) be the restriction
of defining field of one-dimensional algebraic torus G, i.e., ‘Weil’s restriction of
scalars’. Then a real Hodge structure is equivalent to a real T-module (cf. [D.1]). By
the horizontality, 7 and SLy commute and we get a real T'x SLp-module, which is
complete reducible because T'x SLy is reductive.

SL,-Orbit Theorem can be roughly stated as

SL,-Orbit Theorem [Sc|.  Any nilpotent orbit (N, F) can be asymptoti-
cally approximated by the orbit of a horizontal SLo-representation p, i.e., exp (zN)F

= g(—i2)p(z), where g : (a neighborhood of co € P') — Gc such that p,ny = N, ...
For more precise statement, see [Sc].

(2.3) The following are corollaries of Nilpotent+SLg-Orbit Theorems:



Norm Estimate of N-filtration [Sc]. In the situation of (2.1), there
exists unique filtration L = L(N), called N-filtration, which satisfies the condition (i)
below. L is also characterized by (ii). ‘

(i) NL; CLj—g, N’:gi} 5 gl forall j.

(ii) L; = {r € Hq|S(Ciz,z) = O((log ]%[)7) as |t| — 0}, where C; is the
Weil operator defined by Fy = ®(t).

This estimate (ii) is important and, in fact, SLo-Orbit Theorem was prepared

so as to prove it.

Nilpotent Orbit and Limiting MHS [Sc].  For (N, F) € gq x D with
NFP C FP~1, the following are equivalent:

(i) (N, F) is a nilpotent orbit, i.e., exp(zN)F € D for Imz > 0.

(i) (L[w], F) is a polarized Mixed Hodge Structure (MHS, for short), on
Hq, where polarized means that Pj(N) := Ker{N/*! : grf — grfj_2}, the primitive
part, is polarized by S(;)(z,y) = S(z,N'y) (z,y € Pj(N)) for all j > 0.

The outline of a proof is as follows. (i) = (ii): By SL-Orbit Theorem, the
filtration F' and the reference filtration F, coincide on grl, hence we can replace
F by F,. By TxSLs-Decomposition Theorem, the problem can be reduced to an
irreducible case, where the assertion is directly verified. The converse can be found

in [KK, Prop.1.2.2].

(2.4) Let X — A be a semistable degeneration with X C P™ x A closed
and of relative dimension d. We denote by X; and X, the fiber f71(¢) over t € A
and the fiber of the induced family via the base extension to the universal covering
U — A*, respectively.

The MHS on X and the limiting MHS on X, are related by

37
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Clemens-Schmid Sequence [C]]. The following sequence of (co)homo-

logy groups with coefficients in Q is an exact sequence in (MHS):

HY(Xy) — H'(Xoo) 5 HYXoo) — Hagn(Xo) — H™(Xy).

! 1 1
Hn+1(x*) - Hn+2(X, X*) _ Hn+2(x)

(
{
{
L
The most important part in the above sequence is the exactness at the first

H™(X.), which is proved by looking at gr’.

Corollary (Monodromy Criteria). (i) py(Xi) = > pg(Xi), where Xo =
(J X is the decomposition into irreducible components of the central fiber.

(ii) N =0on H4X,) = equality holds in (i) = N% 1 =0o0n H}(Xs).

(iii) N® =0 on H"(X) < H"(dual gragh of Xo) =0 forn=1,2.

(2.5) Now we can answer our Naive Question in (2.1) to some extent.

First we recall the classical case when the classifying space D is a symmetric
domain of hermitian type. Note that, in our context, D is of hermitain type if and
only if it is a classifying space of the Hodge structures of type Hg = H™»" "1 @ H" 1"
for odd weight or Hc = H**Lr—1 @ ™" @ H* L™+ with dim H*t1"—1 = 1 for
even weight.

As a consequence of (2.1) and (2.2), we have

Proposition [Sc].  In the situation of (2.1), if D is a hermitian symmetric
domain, then

(i) (L[w], F,) is a MHS for Im z 3> 0, where F, := ®(z) € D.

(ii) F,griv] 5 F, grlt] as Imz — 0 in the Satake topology, where Fo, :=
v(0) e D.

This is a version of extension of period map in the case of one-parameter by

using the Satake compactification. But, in the hermitian case, we have also a version



for several parameters or, even more, if we use a toroidal compactification, we can

catch up with extension data of the limiting MHS.

Extension to S.B.B. Compactification [Bo]. In the case of several
parameters, every holomorphic map ® : A x A"k D /T extends to a holomorphic

map ®° : A" — (D/T)® into the Satake-Baily-Borel compactification.

In the situation of the above theorem, let B be the boundary component

containing 55(@, 0). Then Im ®5 ¢ Us~p B

Extension to Toroidal Compactification [AMRT]. In the above sit-
uation of several parameters, we see that every local Vmonodromy v € C(B)NU(B)g,
hence ® induces &' : A** x A"* — D/U(B)gz, and the following are equivalent:

(1) There exists a cone 04 C C(B) such that ; € o4 for all 5.

(ii) 9’ extends holomorphically to oM. A (D/U(B)z){s.}-

(iii) @ extends holomorphically to ® : A® — (D/T)M into a toroidal
compactification. |

(For the notaion such as C(B),U(B)z, 0, etc., see [AMRT] where they use

F in stead of B for a boundary component.)

In the case of non-hermitian type, there is a speculation by Griffiths [G2].
Cattani and Kaplan obtained the following result from (2.1) and (2.2):

Extension in Case of Weight 2 [CK]|.  In the case of Hodge structures of
weight 2, there is a partial compactification (D/T)C of Satake type, which is obtained
by adding up all limit points of extensions of period maps over a punctured disk, ie.,

(i) Any period map ® : A* — D/T extends continuously to ¢ : A —
(D/T)°.

39
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(ii) For any point b € (D/T)C, there exists a period map ® : A* — D/T

which extends continuously over the puncture and ®(0) = b.

They constructed their partial compactification (D/T')C in the following way.
For any pair (p,0) of a horizontal SLo-representation and a base point 0 € D, set N :=
p(ny), L := L(N), the N-filtration, and define the associated boundary component
B(p) and boundary bundle B(L) by

B(p) := classifying space of

(S(0)-polarized HS on Py C gry) x (S(_)-polarized HS on grL}),
B(L) := | J{B(p) |only L is fixed},
p¢:= |J B(p) c D:= |J BU).

p: rational (dense) L:rational

Then the normalizer N(B(L)) becomes a parabolic subgroup of Gr and one can

construct a Satake topology on D*, so that I' acts on it properly discontinuously.

Remark. As far as the author knows the following problems are still open:
(i) Theory of ‘automorphic forms’ on (D/T')C.
(ii) A partial compactification which comprizes the extension data of lim-

iting MIHS.

§3. Limit of Variation of Mixed Hodge Structure
In this section, after [SZ] we shall see mixed versions of §2, which are gen-
eralizations of the theory of Steenbrink on the limit of VHS in geometric origin [St],

and of Hodge theory of Zucker with degenerating coeflicients {Z].

(3.1) Analogously to (2.1), we can formulate a mized period map ® : A* —
D/T over a punctured disk, or equivalently, a gradedly polarized Variation of Mized
Hodge Structure (VMHS for short) (V,G, F, S) over A*, where V is the local system -‘



of free Z-modules, G the weight filtration, F' the Hodge filtration and S = {S;} a set
of polarizations on the gréV (cf. [U1], [SSU)). Let ¥ : A* — D be the modification
of ® by monodromy as in (2.1) and let ¥ be the canonical extension of V = Ops @ V
over the puncture.

In the mixed case, ‘Nilpotent Orbit Theorem’ does not hold in general. So

we need

Definition [SZ)]. A gradedly polarized VMHS (V,G, F,S) over A* is
admissible if

(i)  There exists the G-relative N-filtraton M, i.e., an increasing filtration
M on V(0) which is characterized by NMy, C My_o and N* : gt o1& = grM, o:G.

(ii) ¥ extends over the puncture. We set Fi, := ¥(0). (For ¥, cf (2.1).)

Note that if a gradedly polarized VMHS (V,G, F, S) over A* is admissible
then one can prove that (M, Fi,) induces an MHS on each leﬁj(O) and the monodromy

logarithm N becomes a morphism of MHS of type (—1, —1).

(3.2) Let (X,)Y) — A be a semistable degeneration of pairs of relative
dimension d, i.e., X — A is a semistable degeneration and Y is a divisor of X
flat over A such that Y + X is reduced and with simmple normal crossings. We
assume that X C P™ x A is closed. We denote by X3, Y; and X, Yoo the fibers

f7H®), f7Y#) NY over t € A and the fibers of the induced families via the base

o
extension to the universal covering U — A*, respectively. We also denote X :=
(o]

X -), )%t =Xy — Y, )o(oo = Xoo — Yoo, ./%* :=./'ot'—)%0,f:/°Y — A. Then it can
be seen that (V,G, F,S) = (R"]OC*Q({“, W(Y)[n], F, S) is a gradedly polarized VMHS
over A* defined over Q (cf. [U1], [SSU]).

Admissibility of VMHS in Geometric Origin [SZ]. A gradedly po-
larized VMHS (V,G, F,S) = (R"f*Qi_*,W(y)[n],F, S) is admissible.

41



42

Outline of Proof. ~We consider here only the C-structure because of the
restriction of the space (for the Q-structure, see [N] as well as [SZ]). It can be seen
that (V, G, V) = (B"£,Q;(log(Y + Xo)), W(Y)[n], connecting homomorphism) gives
the canonical extension of (Vg, G) = (V, G, V). The limiting FMHS (Hc, W, G, F) =
(H"(Xoo), M[n], G[n], Foo) and the monodromy logarithm N is induced by a CFMHC
(Kc,W,G,F) = (Ag, M,G, F) and its endomorphism v which are defined by

A = (Qy(log(Y + X0))/Wy(Xo))lg +1] for p, >0, 0 otherwise,
d' = (=1)71(exterior differential), d" := (f*dlogt/2xi)A,

v:AZ — AJ’(’;I’Q+1 projection,

Gi=W()i, L;j:=W(Xo)js2g41 00 AG, M:=GxL,

FPAg =Y AY,

P'2p
Ag : single complex associated to Ag, d:=(—1)%d’' +d" on AY.

Then we see that
Res
gr;chAC = Z grzG grfA'C = Z Z G*Q§(i)n§éj+2q+1)[_k—QQ](“k—Q),
t+j=k 1+y=k ¢>max {0,—k}
where a : jv)(i) N )A(’(gj_'_zqﬂ) — Xy is the projection from the normalization of the
reduced subvariety of X consisting of those points whose multiplicity in Y is > 1
and multiplicity in X is > j + 2¢ + 1. It follows from the definition that the above
isomorphism is a filtered quasi-isomorphism with respect to F, and one can verify
the axiom of CFMHC. One can also prove that the filtration M on Ag induced the

G-relative N-filtration on H"(Xo, Ag) (see [St, (5.9)], also [U2, Appendix to §1]).

Remark. The monodromy logarithm N is related with the residue of the
extension of Gauss-Manin connection V in the following way:
o lo o
H™(X oo) = H™(Xoo)
(247 J’ l o l )

—27iRes

) L dlogt®@V(0) = Y(0),
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where a; depends on the choice of the coordinate ¢t on A. This diagram also indicates

the relationship between the Q-structure and the C-structure.

(3.3) Let j: C* — C be a Zariski open subset of a compact smooth curve
and set X := C — C*.

The following theorem gives the starting point of (Mixed) Hodge Modules of
Morihiko Saito.

(Mixed) Hodge Theory with Degenerating Coeflicients ([Z], [SZ]).
In the above situation, let (V,G, F,S) be an admissible gradedly polarized VMHS
over C*. Then the Leray spectral sequence of V for j becomes a spectral sequence
in (MHS), which is functorial in V and C*. Moreover, if the weight filtration G is
trivial, then (H*(C, < V), F) is a pure HS.

Idea of Proof. Since0 — Vg — YV AAYo)) .®V — 01is a j4-acyclic resolution,

we have an exact sequence (see Remark in (3.2)):
. 5 VoAl 353 5
0—jVc—=V—=Q:(logE)®V = V/NV -0, where V:= @ V(o).
oEL

For any subspace NV C A C V, we denote by (V, A) the subcomplex of
VRA Qé(ldg %) ® V, whose cokernel is A/NV. The weight and the Hodge filtrations
are defined by

Mi(V,V) = (GiV, @oex(N(0)Gi(0) + My-1(0)Gr(0)))

FP(V,V) = (F*V % QL(log ) ® FP~1D).
(V, NV) inherites the filtrations as a subcomplex of (V, V). Then one can observe

gt (V. V) = (& V, (griN)(eri V) @ grly (Gro1 /N Gr-1)[-1](-1),

gt (V,NV) = (grf' V, (g1 V) (grf V) @ gLy (NV N Go1) /N Groa)[=1](=1).



As we shall see below in the pure case, the first terms in the right hand side of the
above formulae together with F' become CHC of weight k, and the second terms
together with F' are also CHC of weight k by virtue of the Admissibility. Hence
(V,V),M,F) and ((V,NV), M, F') are CMHC on C.

The Leray spectral sequence of V for j is nothing but the long exact sequence

of hypercohomology groups of the exact sequence
0—(V,NV) = (V,V) - Q —0,

where @) is the cokernel with the induced weight and Hodge filtrations.
In the pure case, by Norm Estimate of N-filtration in (2.3), we can take the
following L2-resolution of j, V¢ with respect to a metric on C' which coinsides to the

Poincaré metric %(% near the punctures X:

(V) : LoV > Qb (log B) ® L2V,

which carries the Hodge filtration induced from the one on V. One can show that
the inclusion (V) ) — (V, NV), together with the filtrations F, is a filtered quasi-
isomorphism. Then, by L2-harmonic theory, one can prove that H"(C,j,Vg) =

H™(C,(V)(g)) carries a pure HS. One can observe also that

Res
gM(V,NV) 5 @Pk__w_l(a)[-—l](—l), where Pj(o) : primitive part (see (2.3)).
oEL

From this one can show that H"®(C,.V) is the intersection cohomology.

(3.4) We conclude this survey by adding miscellaneous remarks from [U2].
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Remark (Mixed Version of C.S. Sequence). There is a sequence in (MHS),
analogous to the one in (2.4) ,arising from a semistable degeneration of pairs f :
(X,Y) — A. In this case, we can verify the exactness of the part of the 1st and the
2nd cohomology groups under the assumptions: ) is smooth, Gysin map H°(Yo,) —
H?*(Xoo) is injective and Haq—1(Xp) = 0.

But we do not know the exactness in general.

Remark (Z-Structure, Partial Weight Filtration). Z-structure and partial
weight filtrations are important for the applications to geometry. We see some ex-
amples here. There are series of semistable degenerations of pairs f : (X,)) — A
arising from series of degenerations of pairs of a K3 surface with g+ 7 dorinary double

points and a smooth curve of genus g (g < 9). The central fiber (Xo,Ys) consists of

Xo=V+ W, V: a K3 surface, W ~ ¥, : rational ruled surface of degree —2,
D:=XyNYy : (—2)-curve on X and (2)-section on X
Yo=YonV+YnW,
By + Ey :=Yy NV = (curve of genus g — 1) + (g + 6) ((—2)-curves),

Bw + Ew := Yo N W = ((2)-section) + ((—2)-section).

W=z,

)

In this situation, we can observe the following:

(i) The local monodromy + on Hz(;(oo,Z)/tor splits and N2 = 0.
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filtrations G and L. But (G % L)y C My with index 2 on the first term, whereas
(G * L)o = My on the second term (before the shifting [2]).

(iii) By the Mayer-Vietoris sequence, the isomorphism in (ii) is transformed
to (H2(‘(;'0,Z)/Z[lo)])/tor® HZ(I/({/O,Z) 5 grOL(HZ()%OO,Z)/tor), where the assertion

similar to the last one in (ii) can be also verified.
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