

Title	Generic Torelli theorem for quintic-mirror family
Author(s)	Usui, Sampei
Citation	Proceedings of the Japan Academy, Series A, Mathematical Sciences. 2008, 84(8), p. 143-146
Version Type	VoR
URL	https://hdl.handle.net/11094/73387
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Generic Torelli theorem for quintic-mirror family

By Sampei Usui

Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

(Communicated by Masaki Kashiwara, M.J.A., Sept. 12, 2008)

Abstract: This article is a geometric application of polarized logarithmic Hodge theory of Kazuya Kato and Sampei Usui. We prove generic Torelli theorem for the well-known quintic-mirror family in two ways by using different logarithmic points at the boundary of the fine moduli of polarized logarithmic Hodge structures.

Key words: Quintic-mirror family; logarithmic Hodge theory; moduli; Torelli theorem.

1. Review of quntic-mirror family. We review the construction of the mirror family of the pencil joining the quintic hypersurface of Fermat type and the union of the coordinate hyperplanes in a 4-dimensional complex projective space after [M1].

Let $\psi \in \mathbf{P}^1$, and let

(1)
$$Q_{\psi} = \left\{ \sum_{j=1}^{5} x_j^5 - 5\psi \prod_{j=1}^{5} x_j = 0 \right\} \subset \mathbf{P}^4.$$

Let $\mu_5 = \{ \alpha \in \mathbf{C} \mid \alpha^5 = 1 \}.$

The singular members of the pencil (1) are listed as follows:

- (2) Over each point $\psi \in \mu_5 \subset \mathbf{C} \subset \mathbf{P}^1$, Q_{ψ} contains $5^3 = 125$ ordinary double points $(\alpha_1, \dots, \alpha_5) \in (\mu_5)^5/\mu_5 \subset \mathbf{P}^4$ with $\psi\alpha_1 \cdots \alpha_5 = 1$.
- (3) Over $\infty \in \mathbf{P}^1$, $Q_{\infty} = \bigcup_j \{x_j = 0\}$. The union of coordinate hyperplanes.

Let $G = {\{\alpha \in (\mu_5)^5 \mid \alpha_1 \cdots \alpha_5 = 1\}}/{\mu_5}$. By multiplication, this becomes a group which acts on \mathbf{P}^4 coordinate-wise. This action of G preserves Q_{ψ} . Taking the quotient Q_{ψ}/G , the following canonical singularities appear:

- (4) For each pair of distinct indices j, k, a compound du Val singularity cA_4 appears as the quotient of the curve $Q_{\psi} \cap \{x_j = x_k = 0\} \setminus (\bigcup_{m \neq j,k} \{x_m = 0\})$.
- (5) For each triple of distinct indices j, k, l, the point which is the quotient of the five points $Q_{\psi} \cap \{x_j = x_k = x_l = 0\}$ belongs to the closure of three curves in (4).

Moreover, we see that holomorphic 3-forms on Q_{ψ} are G-invariant for every $\psi \in \mathbf{C}$ by adjunc-

2000 Mathematics Subject Classification. Primary 14C30; Secondary 14D07, 32G20.

Dedicated to Professor Phillip A. Griffiths on his seventieth birthday.

tion formula.

For $\psi \in \mathbf{C}$, it is known that there is a simultaneous minimal desingularization W_{ψ} of these quotient singularities, and that holomorphic 3-forms extend to nowhere vanishing forms on W_{ψ} .

We thus have a pencil $(W_{\psi})_{\psi \in \mathbf{P}^1}$ whose singular fibers are listed as follows:

- (6) Over each point $\psi \in \mu_5 \subset \mathbf{C} \subset \mathbf{P}^1$, W_{ψ} has one ordinary double point.
- (7) Over $\psi = \infty \in \mathbf{P}^1$, W_{ψ} is a normal crossing divisor in the total space, whose components are all rational.

The other members W_{ψ} are smooth with Hodge numbers $h^{p,q}=1$ for p+q=3.

By the action of $\alpha \in \mu_5$, $(x_1, \ldots, x_5) \mapsto (\alpha^{-1}x_1, x_2, \ldots, x_5)$, we have $W_{\alpha\psi} \simeq W_{\psi}$. Let $\lambda = \psi^5$, and let

$$(W_{\lambda})_{\lambda} = ((W_{\psi})_{\psi})/\mu_{5}$$

$$\downarrow \qquad \qquad \downarrow$$

$$(\lambda\text{-plan}) = (\psi\text{-plan})/\mu_{5}.$$

This pencil $(W_{\lambda})_{{\lambda}\in\mathbf{P}^1}$ is the mirror of the original pencil (1). (For more details of the above construction, see e.g. [M1].)

2. Review of fine moduli space $\Gamma \setminus D_{\Xi}$. We review some facts in [KU] that are necessary in the present article.

Let w = 3, and $h^{p,q} = 1$ $(p + q = 3, p, q \ge 0)$. Let $H_0 = \bigoplus_{j=1}^4 \mathbf{Z} e_j$, and $\langle e_3, e_1 \rangle_0 = \langle e_4, e_2 \rangle_0 = 1$. Let D be the corresponding classifying space of polarized Hodge structures, and \check{D} the compact dual.

Let S= (square free positive integers), and let $m\in S$. Define $N_{\alpha},N_{\beta},N_{m}\in \mathrm{End}(H_{0},\langle\,,\,\rangle_{0})$ as follows:

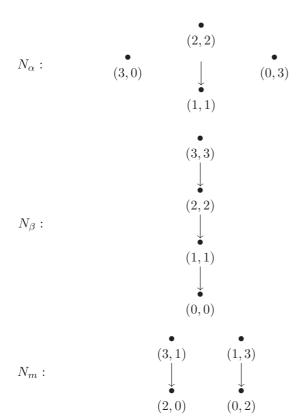
$$N_{\alpha}(e_3) = e_1, \quad N_{\alpha}(e_j) = 0 \quad (j \neq 3);$$

$$N_{\beta}(e_4) = e_3, \quad N_{\beta}(e_3) = -e_1,$$

 $N_{\beta}(e_1) = -e_2, \quad N_{\beta}(e_2) = 0;$
 $N_m(e_1) = e_3, \quad N_m(e_4) = -me_2,$
 $N_m(e_2) = N_m(e_3) = 0.$

Then the respective Hodge diamonds are

$$0:$$
 $(3,0)$ $(2,1)$ $(1,2)$ $(0,3)$



Let $\sigma_{\alpha} = \mathbf{R}_{\geq 0} N_{\alpha}$, $\sigma_{\beta} = \mathbf{R}_{\geq 0} N_{\beta}$, and $\sigma_{m} = \mathbf{R}_{\geq 0} N_{m}$ $(m \in S)$.

Proposition [KU, §12.3]. Let $\Xi = (rational nilpotent cones in <math>\mathfrak{g}_{\mathbf{R}}$ of $rank \leq 1$). Then $\Xi = \{ \operatorname{Ad}(g)\sigma \mid \sigma = \{0\}, \sigma_{\alpha}, \sigma_{\beta}, \sigma_{m} \ (m \in S), g \in G_{\mathbf{Q}} \}$. This is a complete fan, i.e., if there exists $Z \subset \check{D}$ such that (σ, Z) is a nilpotent orbit, then $\sigma \in \Xi$.

Here a pair (σ, Z) is a nilpotent orbit if $Z = \exp(\mathbf{C}N)F$, $NF^p \subset F^{p-1}$ $(\forall p)$ and $\exp(iyN)F \in D$ $(y \gg 0)$ hold for $\mathbf{R}_{>0}N = \sigma$ and $F \in Z$.

In [KU], the fine moduli space $\Gamma \backslash D_{\Xi}$ of polarized logarithmic Hodge structures is constructed. We briefly explain this according to the present case. Let Γ be a neat subgroup of $G_{\mathbf{Z}} := \operatorname{Aut}(H_0, \langle \ , \rangle_0)$ of finite index. As a set, $D_{\Xi} = \{(\sigma, Z) : \text{nilpotent orbit} \mid \sigma \in \Xi, Z \subset \check{D}\}$. Let $\sigma \in \Xi$,

and let $\Gamma(\sigma) = \Gamma \cap \exp(\sigma)$. If $\sigma = \{0\}$, then $D \simeq \{(\{0\}, F) \mid F \in D\} \subset D_{\Xi}$. If $\sigma \neq \{0\}$, then $\Gamma(\sigma) \simeq \mathbb{N}$. Let γ be its generator and let $N = \log \gamma$. Define

$$E_{\sigma} = \left\{ (q, F) \in \mathbf{C} \times \check{\mathbf{D}} \middle| \\ \exp((2\pi i)^{-1} \log(q) N) F \in D \text{ if } q \neq 0, \text{ and} \\ \exp(\mathbf{C}N) F \text{ is a } \sigma\text{-nilpotent orbit if } q = 0 \right\},$$

and the map

(1)
$$E_{\sigma} \to \Gamma(\sigma)^{\mathrm{gp}} \backslash D_{\sigma}$$
, $(q, F) \mapsto$

$$\begin{cases} \exp((2\pi i)^{-1} \log(q) N) F \mod \Gamma(\sigma)^{\mathrm{gp}} & \text{if } q \neq 0, \\ (\sigma, \exp(\mathbf{C}N) F) \mod \Gamma(\sigma)^{\mathrm{gp}} & \text{if } q = 0. \end{cases}$$

Here $\Gamma(\sigma)^{gp}$ is the subgroup of Γ generated by $\Gamma(\sigma)$. $\mathbf{C} \times D$ is obviously an analytic manifold. We endow this with the logarithmic structure M associated to the divisor $\{0\} \times \check{D}$. The strong topology of E_{σ} in $\mathbf{C} \times \check{D}$ is defined as follows: A subset U of E_{σ} is open if, for any analytic space Y and any analytic morphsm $f: Y \to \mathbf{C} \times \check{D}$ such that $f(Y) \subset E_{\sigma}$, $f^{-1}(U)$ is open in Y. By (1), the quotient topology, the sheaf \mathcal{O} of local rings over \mathbf{C} , and the logarithmic structure M are introduced on $\Gamma(\sigma)^{gp}\backslash D_{\sigma}$. Introduce the corresponding structures $\mathcal{O}, M \text{ on } \Gamma \backslash D_{\Xi} \text{ so that } \Gamma(\sigma)^{\mathrm{gp}} \backslash D_{\sigma} \to \Gamma \backslash D_{\Xi} \ (\sigma \in \Xi)$ are local isomorphisms and form an open covering. Then, the resulting $\Gamma \backslash D_{\Xi}$ is a "logarithmic manifold", which is nearly a logarithmic analytic space but has "slits" at the boundaries. In fact, in the present case, we have in [KU, §12.3] that $\dim_{\mathbf{C}} D = 4$, but $\dim_{\mathbf{C}} \Gamma(\sigma_{\alpha})^{gp} \setminus (D_{\sigma_{\alpha}} - D) = 2$, $\dim_{\mathbf{C}} \Gamma(\sigma_{\beta})^{\mathrm{gp}} \setminus (D_{\sigma_{\beta}} - D) = 1$ and $\dim_{\mathbf{C}} \Gamma(\sigma_{m})^{\mathrm{gp}} \setminus$ $(D_{\sigma_m}-D)=1.$

3. Period map. Let Δ be a unit disc, $\Delta^* = \Delta - \{0\}$, and $\mathfrak{h} \to \Delta^*$, $z \mapsto q = e^{2\pi i z}$, the universal covering. Let $\varphi : \Delta^* \to \langle \gamma \rangle \backslash D$ be a period map, where $\langle \gamma \rangle$ is the monodromy group generated by a unipotent element γ , and $\tilde{\varphi} : \mathfrak{h} \to D$ a lifting. Let $N = \log \gamma$. The map $\exp(-zN)\tilde{\varphi}(z)$ from \mathfrak{h} to D drops down to the map $\psi : \Delta^* \to D$.

Then the nilpotent orbit theorem of Schmid asserts that there exists the limit $\psi(0)$, denoted by F, and that $\tilde{\varphi}(z)$ and $\exp(zN)F$ are closing as $\operatorname{Im} z \to \infty$.

Let $\sigma = \mathbf{R}_{\geq 0}N$. In our space $\langle \gamma \rangle \backslash D_{\sigma}$ we have, moreover, $\exp(zN)F \to ((\sigma, \exp(\sigma_{\mathbf{C}})F) \mod \langle \gamma \rangle)$ as $\operatorname{Im} z \to \infty$. Hence $\varphi(q) \to ((\sigma, \exp(\sigma_{\mathbf{C}})F) \mod \langle \gamma \rangle)$ as $q \to 0$ in $\langle \gamma \rangle \backslash D_{\sigma}$. (For details, see [KU].)

Fix a point $b \in \mathbf{P}^1 - \{0, 1, \infty\}$ on the λ -plane, identify $H^3(W_b, \mathbf{Z}) = H_0$, and let

(1)
$$\Gamma = \operatorname{Image}(\pi_1(\mathbf{P}^1 - \{0, 1, \infty\}) \to G_{\mathbf{Z}}).$$

This Γ is not neat. In fact, the local monodromy around 0 is of order 5. Let

(2)
$$\mathbf{P}^1 - \{0, 1, \infty\} \to \Gamma \backslash D$$

be the period map. Since $K_{W_{\lambda}}$ is trivial, the differential of (2) is injective everywhere. Endow \mathbf{P}^1 with the logarithmic structure associated to the divisor $\{1,\infty\}$. Then, by §1, §2 and [KU], (2) extends to a morphism

(3)
$$\varphi: \mathbf{P}^1 \to \Gamma \backslash D_\Xi$$
,
 $0 \mapsto (\text{point}) \mod \Gamma \in \Gamma \backslash D$,
 $1 \mapsto (\text{Ad}(g)(\sigma_\alpha)\text{-nilpotent orbit}$
for some $g \in G_{\mathbf{Q}}) \mod \Gamma$,
 $\infty \mapsto (\text{Ad}(g)(\sigma_\beta)\text{-nilpotent orbit}$
for some $g \in G_{\mathbf{Q}}) \mod \Gamma$.

of logarithmic ringed spaces (cf. [KU, 4.3.1 (i)]). The image of the extended period map φ is an analytic curve, which is not affected by the slits of the space $\Gamma \backslash D_{\Xi}$.

Let $X = \Gamma \backslash D_{\Xi}$. Let $P_1 = 1, P_{\infty} = \infty \in \mathbf{P}^1$, and let $Q_1 = \varphi(P_1), Q_{\infty} = \varphi(P_{\infty}) \in X$. Then, by the observation of local monodromy and holomorphic 3-form basing on the descriptions in §1 and §2, we have

(4)
$$\varphi^{-1}(Q_{\lambda}) = \{P_{\lambda}\} \text{ for } \lambda = 1, \infty.$$

4. Generic Torelli theorem. We use the notation in the previous sections.

Theorem. The period map φ in §3 (3) is the normalization of analytic spaces over its image.

Proof. We use the fs logarithmic point P_1 and its image Q_1 at the boundaries (§3). Since $\varphi^{-1}(Q_1) = \{P_1\}$ (§3 (4)), it is enough to show that the local ramification index at Q_1 is one, i.e.,

Claim. $(M_X/\mathcal{O}_X^{\times})_{Q_1} \to (M_{\mathbf{P}^1}/\mathcal{O}_{\mathbf{P}^1}^{\times})_{P_1}$ is surjective.

Let $N := N_{\alpha}$ be the nilpotent endomorphism introduced in §2.

Let \tilde{q} be a local coordinate on a neighborhood U of $P_1 = 1$ in \mathbf{P}^1 , and let $z = (2\pi i)^{-1} \log \tilde{q}$ be a branch over $U - \{P_1\}$. Then $\exp(-zN)e_3 = e_3 - ze_1$ is single-valued. Let $\omega(\tilde{q})$ be a local frame of the locally free $\mathcal{O}_{\mathbf{P}^1}$ -module F^3 . Write $\omega(\tilde{q}) = \sum_{j=1}^4 a_j(\tilde{q})e_j$, and define $t = -a_1(\tilde{q})/a_3(\tilde{q})$. Then

$$t = \frac{\langle e_3, \omega(\tilde{q}) \rangle_0}{\langle e_1, \omega(\tilde{q}) \rangle_0} = \frac{\langle \exp(-zN)e_3, \omega(\tilde{q}) \rangle_0 + z \langle e_1, \omega(\tilde{q}) \rangle_0}{\langle e_1, \omega(\tilde{q}) \rangle_0}$$

 $= z + (\text{single-valued holomorphic function in } \tilde{q}).$

Let $q = e^{2\pi i t}$. Then $q = u \tilde{q}$ for some $u \in \mathcal{O}_{\mathbf{P}^1, P_1}^{\times}$. Let V be a neighborhood of Q_1 in $X = \Gamma \backslash D_{\Xi}$. We have a composite morphism of fs logarithmic local ringed spaces

$$U \to V \to \mathbf{C}, \quad \tilde{\mathbf{q}} \mapsto \mathbf{q} = e^{2\pi i(-a_1/a_3)} \ (= u\tilde{\mathbf{q}}).$$

Hence the composite morphism $(M_{\mathbf{P}^1}/\mathcal{O}_{\mathbf{P}^1}^{\times})_{P_1} \leftarrow (M_X/\mathcal{O}_X^{\times})_{Q_1} \leftarrow (M_{\mathbf{C}}/\mathcal{O}_{\mathbf{C}}^{\times})_0$ of reduced logarithmic structures is an isomorphism. The claim follows. In fact, that is an isomorphism since the rank of $(M_X/\mathcal{O}_X^{\times})_{Q_1}$ is one in the present case.

5. The second proof, and logarithmic generic Torelli theorem. In this section, we give another proof of the generic Torelli theorem in $\S 4$ by using the fs logarithmic points P_{∞} and Q_{∞} at the boundaries.

Since $\varphi^{-1}(Q_{\infty}) = \{P_{\infty}\}$ (§3 (4)), it is enough to show the following

Claim. $(M_X/\mathcal{O}_X^{\times})_{Q_{\infty}} \to (M_{\mathbf{P}^1}/\mathcal{O}_{\mathbf{P}^1}^{\times})_{P_{\infty}}$ is surjective.

Proof. Let N be the logarithm of the local monodromy at $\lambda = \infty$. Let β^1 , β^2 , α_1 , α_2 be the integral symplectic basis of H_0 given in [M1, Appendix C], and let

$$g_0 = \alpha_2, \quad g_1 = 2\alpha_1 + \beta^1, \quad g_2 = \beta^2, \quad g_3 = \alpha_1 + \beta^1.$$

Then g_3 , g_2 , g_1 , g_0 is another integral symplectic basis such that g_0 , g_1 is a good integral basis of Image(N^2) in the sense of [M1, 2, Appendix C]. Using the result there, we have

$$(N(g_3), N(g_2), N(g_1), N(g_0))$$

$$= (g_3, g_2, g_1, g_0) \begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -5 & -9/2 & 0 & 0 \\ -9/2 & 25/6 & 1 & 0 \end{pmatrix}.$$

Let \tilde{q} be a local coordinate on a neighborhood U of $P_{\infty} = \infty$ in \mathbf{P}^1 , and let $z = (2\pi i)^{-1} \log \tilde{q}$ be a branch over $U - \{P_{\infty}\}$. Then $\exp(-zN)g_1 = g_1 - zg_0$ is single-valued. Let $\omega(\tilde{q})$ be a local frame of the locally free $\mathcal{O}_{\mathbf{P}^1}$ -module F^3 . Write $\omega(\tilde{q}) = \sum_{j=0}^3 b_j(\tilde{q})g_j$, and define $t = b_3(\tilde{q})/b_2(\tilde{q})$ and $q = e^{2\pi i t}$. Then, as in §4, we see $q = u\tilde{q}$ for some $u \in \mathcal{O}_{\mathbf{P}^1,P_{\infty}}^{\times}$, and the claim follows.

Combining the results in §4 and §5, we have the following refinement.

Theorem. The period map φ in §3 (3) is the normalization of fs logarithmic analytic spaces over its image. Here the normalization of the image of φ is endowed with the pull-back logarithmic structure.

Note. Canonical coordinates in [M1,M2], like q in the proofs of Claims in $\S 4$ and $\S 5$, can be understood more naturally in the context of PLH.

Problem 1. Eliminate the possibility that the image $\varphi(\mathbf{P}^1)$ would have singularities in Theorems in §4 and §5.

Problem 2. Describe the global monodromy group Γ explicitly. Generators of Γ are computed [COGP], [M1, Appendix C], and Γ is known to be Zariski dense in $G_{\mathbf{Z}} = \mathrm{Sp}(4,\mathbf{Z})$ [COGP], [D, 13].

Acknowledgements. The author is grateful to Kazuya Kato and Chikara Nakayama. The author is also grateful to the referee for the useful comments together with the references [S], [V].

Partly supported by the Grant-in-Aid for Scientific Research (B) No. 19340008, Japan Society for the Promotion of Science.

References

- [COGP] P. Candelas, C. de la Ossa, P. S. Green and L. Parks, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991), no. 1, 21–74.
- D P. Deligne, Local behavior of Hodge structures at infinity, in *Mirror symmetry*, II, 683–699, Amer. Math. Soc., Providence, RI, 1997.
- [KU] K. Kato and S. Usui, Classifying spaces of degenerating polarized Hodge structures, Ann. Math. Studies, Princeton Univ. Press, 2009.
- [M1] D. R. Morrison, Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians, J. Amer. Math. Soc. 6 (1993), no. 1, 223–247.
- [M2] D. R. Morrison, Compactifications of moduli spaces inspired by mirror symmetry, Astérisque No. 218 (1993), 243–271.
- S] B. Szendröi, Calabi-Yau threefolds with a curve of singularities and counterexamples to the Torelli problem, Internat. J. Math. 11 (2000), no. 3, 449–459.
- V] C. Voisin, A generic Torelli theorem for the quintic threefold, in *New trends in algebraic geometry (Warwick*, 1996), 425–463, Cambridge Univ. Press, Cambridge.