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0. Introduction and Statements

This is a summary of [Ul4p].

We correct the definitions and descriptions of the integral structures in our previ-
ous paper [Ul4]. We use I-integral structure of Iritani in [I11] for A-model. Using
the corrected version, we study open mirror symmetry for quintic threefolds through
log mixed Hodge theory, especially the recent result on Néron models for admissible
normal functions with non-torsion extensions in the joint work [KNU14] with K. Kato
and C. Nakayama. We positively use integral structures of local systems with graded
polarizations over the boundary points.

In a series of joint works with Kato and Nakayama, we are constructing a fundamental
diagram which consists of various kind of partial compactifications of classifying space

2010 Mathematics Subject Classification. Primary 14C30; Secondary 14D07, 32G20.
!Partially supported by JSPS. KAKENHI (B) No. 23340008.

Typeset by ApS-TEX

161



162

of mixed Hodge structures and their relations. We try to understand Hodge theoretic
aspects of mirror symmetry in this framework of the fundamental diagram.

Fundamental Diagram
For a classifying space D of Hodge structures of specified type, we have

Ds1,(2),vat — DBs val

! |

IMN\Dgyal «—— D?;;,val ——  Dgpp) Dgs

l !

r\Ds «——— D!

in pure case: [KU99], [KU02], [KU09]. For mixed case, we should extend to an amplified
diagram: [KNUO08], [KNU09], [KNU11], [KNU13], continuing.

Mirror symmetry for quintic threefolds

Mirror symmetry for the A-model of quintic threefold V' and the B-model of its mirror
V° was predicted in the famous paper [CDGP91]. We recall two styles of the theorem
(1) and (2) below. Every statement in the present paper is near the large radius point qo
of the complexified Kéahler moduli XM (V') and the maximally unipotent monodromy
point pp of the complex moduli M(V°).

Let t := y;/yo, u := t/2mi be the canonical parameters and g := e* = e*™** be the
canonical coordinate from 2.2 below and the respective ones in 2.3 below.
The following theorem is due to Lian-Liu-Yau [LLuY97].

(1) (Potential). The potentials of the two models coincide: @&y (t) = ®&ps(t)-

The following theorem is formulated by Morrison [M97] and proved by Iritani [I11].
(2) (Variation of Hodge structure). The isomorphism (go € KM(V)) < (po € M(V?°))
of neighborhoods of the compactifications, by the canonical coordinate g = exp(2wiu),
lifts to an isomorphism, over the punctured neighborhoods KM(V) & M(V®), of
polarized Z-variations of Hodge structure with a specified section

(HY, S, vever Y Fi1) & (HY',Q,VeM, 1Y, F; Q).

Our (3) below is equivalent to (1) and (2) by a log version [KU09, 2.5.14] of the
nilpotent orbit theorem of Schmid [S73] (this part of [U14] is valid).

(3) (Log Hodge structure, Log period map). The isomorphism (go € KM(V)) < (po €
M(V°)) of neighborhoods: of the compactifications uniquely lifts to an isomorphism
of B-model log variation of polarized Hodge structure with a specified section Q for
V° and A-model log variation of polarized Hodge structure with a specified section



1 for V, whose restriction over the punctured XM(V) <~ M(V°) coincides with the
isomorphism of variations of polarized Hodge structure with specified sections in (2).
This rephrases as follows. Let o be the common monodromy cone, transformed by
a level structure into End of a reference fiber of the local system, for the A-model and
for the B-model. Then, we have a commutative diagram of horizontal log period maps

(g0 € EM(V)) & (po € M(V®))
N\ e
([0, exp(oc)Fo] € T'(0)#P\D,)

with extensions of specified sections in (2), where (o, exp(oc)Fp) is the nilpotent orbit,
regarded as a boundary point, and I'(c)8P\ D, is the fine moduli of log Hodge structures
of specified type. (For fine moduli I'(0)8P\ D,,, or more generally '\ Ds;, see [KU09].)

Open mirror symmetry for quintic threefolds
The following theorem is due to Walcher [W07] and Morrison-Walcher [MW09)].

(4) (Inhomogenous solutions).
Let £ be the Picard-Fuchs differential operator for quintic mirror (cf. 2.2). Let

_ u 1 1 d/2)
Ta=5+ (4 t o d%;d"dq

be the A-model domainwall tension in [MW09], and

Cy
Tp = Q
C_

be the B-model domainwall tension, where Cy C V° are the disjoint smooth curves
coming from the two conics in {z; + 23 = z3 + 24 = 0} N V;, C P*(C) [ibid).
Then

LnAITAE) = LT3 (= 522vE) (2= o).

Concerning this, we have the following observations.

(5) (Log mized Hodge structure, Log normal function). We describe for B-model. The
same holds for A-model by (1)—(3) and the correspondence table in 2.5 below.

Put H :=H"" and T := T5. We use e® € 190, ¢! € I which are a part of a basis
of Hoos respecting the Deligne decomposition at py (see 2.5 (3B)) and a flat sections
s =€ s' =e' —uel (see 2.5 (5B)). To make the local monodromy of 7" unipotent,
we take a double cover 21/2 — 2. Let Lq be the translated local system from the
trivial extension Q ® Hq by —(7 /y0)s° in £2t'(Q, Hq). Let Jr, be the Néron model

on a neighborhood S of py in the z'/2-plane which lies over Lq in [KNU14]. Then,
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Jrg = Exti /5(Z, H) (extension group of log mixed Hodge structures over S) in the
present case (J[KNU13, III, Corollary 6.1.6], cf. 1.4 below), and we have the following
(56.1)—(5.3).

(5.1) The normalized tension 7 /yo is understood as a truncated normal function by
(T /y0)s°. This extends as a truncated log normal function over the puncture. Then
it lifts uniquely to a log normal function § — Jr, so that the corresponding exact
sequence 0 — H — H — Z — 0 of log mixed Hodge structures over S is given
by the liftings 1z and 1r in H of 1 € Z ~ (gr'¥)z respecting the lattice and the
Hodge filtration, respectively, which are defined as follows: 1z := 1 — (7 /yo)s® with
(T /y0)s® € Howe = (gr¥ )ores, and 1r — 1z := —(6(7 /yo))e' + (T /yo)€.

(5.2) A splitting of the weight filtration W of the local system Hgz, i.e., a splitting
compatible with the monodromy of the local system Hz, is given by 1SZpl =1z +s1/2,
and the log normal function over it is given by 152" — 1" = —((7 /yo))e* + (T /yo)e°.

(5.3) (4) says that the inverse of the truncated normal function in (5.1) from its image
is given by 1672 /15 times the Picard-Fuchs differential operator L.

Some geometric backgrounds of (5) are explained in Section 3.
We treat Tate twists case by case in this article.

Acknowledgments. The author thanks to Kazuya Kato and Chikara Nakayama for
series of joint works on log Hodge theory, from which he learns a lot and enjoys exciting
studies. He thanks to Hiroshi Iritani for pointing out insufficient parts in the previous
paper [U14]. He also thanks Yukiko Konishi and Satoshi Minabe, together with Iritani,
for a stimulating seminar on the present topic from which Section 3 grew up.

1. Log mixed Hodge theory

In this section, we recall some notions and results of log mixed Hodge theory from
[KU09], [KNU13] and [KNU14] adapting to the present context.

1.1. Category B(log)

Let S be a subset of an analytic space Z. The strong topology of S in Z is the
strongest one among those topologies on S in which, for any analytic space A and any
morphism f: A — Z with f(A) C S as sets, f: A — S is continuous. S is regarded as
a local ringed space by the pullback sheaf of Oz.

Let B be the category of local ringed spaces S over C which have an open covering
(Ux)a satisfying the following condition: For each A, there exist an analytic space Zj,
and a subset Sy of Z, such that, as local ringed space over C, U, is isomorphic to Sy
which is endowed with the strong topology in Z, and the inverse image of Oz, .

A log structure on a local ringed space S is a sheaf of monoids M on S together
with a homomorphisim o : M — Og such that o705 = OF. fs log structure means,
locally on the underlying space, the log structure has a chart which is finitely generated,
integral and saturated.
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Let B(log) be the category of objects of B endowed with an fs log structure (more
precisely, cf. [KU09)).

1.2. Ringed space (598, O\0%)

Let S € B(log). As a set define

S'8 :={(s,h)|s € S, h : M — S! homomorphism s.t. h(u) = u/|u| (u € 05,)}.
Endow S'°8 with the weakest topology such that the following two maps are continuous.

(1) 7: 5% — S, (s,h) — s.

(2) For any open set U C S and any f € [\U, M®), +=1(U) — S, (s, h) — h(fs).

Then, 7 is proper and surjective with fiber 771(s) = (S!)"(*), where r(s) is the rank
of (M®& /OF), which varies with s € S.

For s € S and t € 5'°8 lying over s, let ¢; € M8 (1 < j < 7(s)) be elements such
that their images in (M®P/Og), form a basis. Let t; := log(g;) and define (’)L?,% to be
a polynomial ring Og[t; (1 < j < r(s)] over Og . Thus 7 : (S'°8, Olg)g) — (5,05) is a
morphism of ringed spaces over C (more precisely, cf. [KU09]).

1.3. Graded polarized log mixed Hodge structure

Let S € B(log). A pre-graded polarized log mized Hodge structure on S is a tuple
H = (Hz,W,((, )w)w, Ho) consisting of a local system of Z-free modules Hy of finite
rank on S'°8, an increasing filtration W of Hq := Q ® Hgz, a nondegenerate (—1)“-
symmetric Q-bilinear form (, ),, on gr!¥, a locally free Os-module Hp on S, a specified -
isomorphism (’)gog ®z Hz ~ (”)fs?g ®os Ho (log Riemann-Hilbert correspondence), and a
specified decreasing filtration FHp of Hp such that FPHe and Heo /FPHgp are locally
free. Put FP := Og’g ®os FPHp. Then 7,FP = FPHp. For each integer w, the
orthogonality condition (F?(gr¥), F4(gr¥)),, =0 (p + ¢ > w) is imposed.

A pre-graded polarized log mixed Hodge structure on S is a graded polarized log
mized Hodge structure on S if its pullback to each s € S is a graded polarized log mixed
Hodge structure on s in the following sense.

Let (Hz, W, ({, )w)w, Ho) be a pre-graded polarized log mixed Hodge structure on a
log point s. It is a graded polarized log mized Hodge structure if it satisfies the following
three conditions.

(1) (Admissibility). For each logarithm N of the local monodromy of the local system
(Hr, W, ((, )w)w), there exists a W-relative N-filtration M (N, W).

(2) (Griffiths transversality). For any integer p, VF? C wllog @ FP~1 ig satisfied,
where w;!°8 is the sheaf of O'°8-module of log differential 1-forms on (s'°8, O'°¢), and
V=d®1ly, : OF8 ® Hy — w18 @ Hy is the log Gauss-Manin connection.

(3) (Positivity). For a point t € s'°8 and a C-algebra homomorphism a : (9;?? — C,
define a filtration F(a) := C B oo Fy on Hcy. Then, (Hz (gt%),(, )uw, F(a)) is a
polarized Hodge structure of weight w in the usual sense if a is sufficiently twisted, i.e.,
for (¢;)1<j<n C M; inducing generators of M,/OX, |exp(a(logg;))| < 1 for any j.

1.4. Néron model for admissible normal function
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We review some results from [KNU14, Theorem 1.3], [KNU13, III, Section 6.1] and
[KNU10, Section 8] adapted to the situation (5) in Introduction.

For a pure case h»? =1 (p+q = 3, p,q > 0) and h?? = 0 otherwise, a complete fan
is constructed in [KU09, Section 12.3]. For a mixed case h?'9 = 1 (the above (p, q), plus
(p,q) = (2,2)) and h?? = 0 otherwise, over the above fan, a weak fan of Néron model
for given admissible normal function is constructed in [KNU14, Theorem 3.1}, and we
have a Néron model in the following sense.

Let S € B(log), U := Siiv C S (consisting of those points with trivial log structure),
H(_,) be a polarized variation of Hodge structure of weight —1 (Tate-twisted by 2 from
H in Introduction (5)) on U and Lq be a local system of Q-vector spaces which is an
extension of Q by H(_1) q: An admissible normal function over U for H(_;) underlain
by the local system Lq can be regarded as an admissible variation of mixed Hodge
structure which is an extension of Z by H(_,) and lies over local system Lq.

For any given unipotent admissible normal function over U as above, H(_;) and
Lq extend to a polarized log mixed Hodge structure on S and a local system on S'°g,
respectively, denoted by the same symbols, and there is a relative log manifold Jrq
over S (cf. [KUQ9]) which is strict over S (i.e., endowed with the pullback log structure
from S) and which represents the following functor on B/S° (S° € B is the underlying
space of S):

S’ — {LMH H on ' satisfying H(grly ) = H(y)ls' (w = —1,0) and (*) below} /isom.

(*) Locally on S’, there is an isomorphism Hq ~ Lq on (S’)!°8 preserving W.

Here H(,)|s' is the pullback of H(,) by the structure morphism S’ — S°, and S’ is
endowed with the pullback log structure from S.

Put H' := H(_;). In the present case, we have Jy o = ExtiMH/S(Z, H') by [KNU13,
Corollary 6.1.6]. This is the subgroup of 7.(Hjy., /(F°+ Hy)) restricted by admissibility
condition and log-point-wise Griffiths transversality condition ([KNU10, Section §], cf.
1.3). Define J1q as the image of the composite map Jrq — Tu(Hpuog/(F® + Hf)) —
Te(Hpog /(F~' + Hz). By using the polarization, we have a commutative diagram:

Jg = Extlyus(ZH) C Tu(Hpu/(F+Hp) 25 5((F°)/Hy)
Jiq C Te(Hog/(F~1 +Hz) 25 o ((FY)*/Hp).

~

2. Quintic threefolds

In this section, we give a correspondence table of A-model for quintic thregfold and
B-model for its mirror. This is a correction of our previous [U14, 3] by using I'-integral
structure of Iritani [I11].

2.1. Quintic threefold and its mirror

Let V be a general quintic threefold in P*.
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Let Vy : f:= 2 Z] L Z2 1/)]_[] 1Z; = 0 (¢ € P1) be a pencil of quintics in P4.
Let us be the group consisting of the fifth roots of the unity in C. Then the group
G = {(a;) € (us)°|a1...a5s = 1} acts on Vy, by z; — ajz;. Let V,) be a crepant
resolution of quotient singularity of V,,/G (cf. [MW09]). Divide further by the action
(Z1,...,25) — (@™ lzy, 20,. .., x5) (a € ps).

2.2. Picard-Fuchs equation on the mirror V°

Let Q be a 3-form on V., with a log pole over 1) = co induced from

() me (5

Let z := 1/(5¢)° and 0 := 2d/dz. Let

l)j—lxjdxl/\.../\E;;;/\/\---/\da:g,).

~|e
II'MU‘

L= 6" —52(50 + 1)(50 + 2)(560 + 3)(50 + 4)

be the Picard-Fuchs differential operator for Q, i.e., £ = 0 via the Gauss-Manin
connection V.

At z = 0, the Picard-Fuchs differential equation £y = 0 has the indicial equation
ot =0 (pis indeterminate), i.e., maximally unipotent. By the Frobenius method, we
have a basis of solutions y;(z) (O < j £ 3) as follows. Let

Y T

be a solution of L(§(—=z;p)) = p*(—2)?, and let

18§(—2p)
b op

U(=z0) =y0(2) + 11(2)p+ 12(2)0° + y3(2)p> + -+, w;(2) := lo=0

be the Taylor expansion at p = 0. Then, y; (0 < j < 3) form a basis of solutions for
the equation Ly = 0. We have

n=0
5n
5n 1
w=wlogz+5Y TE( 3 D)o
1 j=n+1

Define the canonical parameters by t := y; /yo, u := t/27i, and the canonical coordi-
nate by ¢ := e® = e2™* which is a specific chart of the log structure given by the divisor
(z =0) of P! and gives a mirror map.
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Yo is holomorphic in z and invertible at z = 0. Write z = z(q) which is holomorphic
in g. Then we have

PP TR < ¥ 0L R S N AT
log z = 2miu yo(z(q)); (n!)5(j:§n;1j> (9)".

The Gauss-Manin potential of V? is

o 5 (’yl Y2 Y3 )
YolYo Yo
Let Q:=Q /yo. Then, the Yukawa coupling at z =0 is

)
(1+ 552)yo(2)?

Y = —/ Q/\VaVeVoQ =

2.3. A-model of quintic V

Let V be a general quintic hypersurface in P. Let 72 = H be the cohomology class
of a hyperplane section of V in P4, K(V) = R+T? be the Kahler cone of V, and u be
the coordinate of CT2. Put t := 2miu. A complexified Kihler moduli is defined as

KM(V):= (H*(V,R) +iK(V))/H*(V,Z) 5 A*, uT?— q:= e,

Let C € H,(V,Z) be the homology class of a line on V, and T® € H*(V,Z) be the
cohomology class Poincaré duality isomorphic to C.

For 8 = dC € Hy(V,Z), define ¢° := qfﬁ T _ g%. The Gromov-Witten potential of
V is defined as

1 5t3
Phw = —/ (tT?)% + E Nag? = — + E Nag®.
6 Jy 6
0#£B€H2(V,Z) d>0
‘Here the Gromov-Witten invariant Ny is

—MO,O(P47 d) & MO,I(P4a d) i’ P45

Nd = /_ C5d+1(_7r1*e’{0p4 (5))
Mo, o(P4,d)

Note that Ny =0if d < 0. Let Ng = Ek]d nd/kk“3. Then ng/;, is the instanton number.

2.4. Integral structure

Let S* be KM(V) for A-model of V and M(V*°) for B-model for V°, and let S be
KM(V) for A-model and M(V°) for B-model (see 2.2, 2.3). Endow S with the log
structure associated to the divisor S\ S*.



The B-model variation of Hodge structure HY" is the usual variation of Hodge struc-
ture arising from the smooth projective family f : X — S* of the quintic mirrors over a
punctured neighborhood of the maximally unipotent monodromy point pg. Its integral
structure is the usual one H‘Z/o = R3f,Z. This is compatible with the monodromy
weight filtration M around pg. Define My z := M N H‘Z/O for all k.

For the A-model HY on S*, the locally free sheaf on S*, the Hodge filtration, and
the monodromy weight filtration M around the large radius point go are given by
HG = 05+ ® (Bocpes HP(V)), FP := Og. @ HS2B-P)(V), and My, := HZ2GP)(V),
respectively. Iritani defined f‘-integral structure in more general setting in [I11, Def-
inition 3.6]. In the present case, it is characterized as follows. Let H and C be a
hyperplane section and a line on V, respectively. Then, in the present case, a basis of
the D-integral structure is given by {s(€)|€ is Ov, On, Oc, Opt} [ibid, Example 6.18],
where s(€) is a unique V°V*"-flat section satisfying

$(E) ~ (2mi) e 2 H L P(Ty,) - (2m0)38 /2 ch(E)

at the large radius point go. Here, for the Chern roots ¢(Ty) = Hjﬂ (1 + 4;), the
Gamma class I'(Ty) is defined by

<Tv>—HF 1+6;) = exp(—vyer (V) + Y _(=1)F(k — 1)I¢(k) che (T)

=1 k>2
= exp(<(2) chy (TV) — QC('?)) chs (TV))

where 7 is the Euler constant, and deg|y2r(vy := 2p. The important point is that
this class I' (Tv) plays the role of a “square root” of the Todd class in Hirzebruch-

Riemann-Roch ([109, 1], [I11, 1, (13)]). Denote this I-integral structure by Hy. This is
compatible with the monodromy weight filtration M and we define My z := M N 'Hg
for all k. For a direct definition of I-integral structure, see [I11, Definition 3.6].

In both A-model case and B-model case, the integral structures M} and H} on S*
extend to the local systems of Z-modules over S'°¢ (O03], [KU09, Proposition 2.3.5]),
still denoted Hy and HY ", respectively.

Consider a diagram:

Slog .= (R x (0, 00])" D §* := (R x (0,0))"
| |
Slog » S*
|
g

The coordinate u of S* extends over §1°%. Fix base points as ug = 0 + ico € S'°8 —
b:=0+ic0 € S8 - g =0 € S, where ¢ = 0 corresponds to go for A-model and py

169
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for B-model. Note that fixing a base point u = ug on S8 is equivalent to fixing a base
point b on S'°8 and also a branch of (27i)~! log q.
Let B := Hy (ug) = HY, (b) for A-model and B := H}, " (uo) = Hy (b) for B-model.
2.5. Correspondence table

In this section, we complete the approximation in the previous paper [U14]. These
results will be used in Section 3.
We use (1) and (2) in Introduction. Put & := ®¥ = @&y

(1A) Polarization of A-model of V.

S(a, B) = (~1)P /V QUB (€ HPP(V),B € HEP3=P(V)).

(1B) Polarization of B-model of V°.

Qe ) = (—1)3(3_1)/2/0auﬁ= —/oauﬁ (a, B € H3(V®)).

(2A) Z-basis compatible with monodromy weight filtration.
Let B := HY (up) = Hy (b). Then we have a basis b°,b!, b2, % of B compatible with
the monodromy weight filtration M [I11, Example 6.18].

(2B) Z-basis compatible with monodromy weight filtration.
Let B := My (uo) = My (b). Then we have a basis 6°,b!,b%, 6% of B compatible
with the monodromy weight filtration M [ibid].

For both cases (2A) and (2B), we regard B as a constant sheaf endowed with M on
S'°8 and also on S.

(3A) Specified sections inducing Z-basis of g™ for A-model of V.

T3:=1€ HYV,Z), T?:=H e H*V,Z),
T':=C e H V,Z), T°:=pt] € HY(V,Z),

where H is a hyperplane section of V and C is a line on V. Then S(T3,7T°) = 1 and
S(T?,T!) = —1. Hence T3, T?, —T°, T! form a symplectic base for S in (1A).

(3B) Specified sections inducing Z-basis of gr™ for B-model of V°.

We use Deligne decomposition [D97]. We consider B in (2B) as a constant sheaf
on S8, We have locally free Og-submodules Mo, =T, (O?g ®z M B) and FP of
7.(O8 ®z B) = Os ®z B. The mixed Hodge structure of Hodge-Tate type (M, F) has
decomposition:

Os®z B=@DI"?, IPP:=MynFP 5 grpt.
p



171

Transporting the basis b (0 < p < 3) of B in (2B), regarded as sections of the constant
sheaf B on S'°8 via isomorphism

PP = Os Rz gr%B
we define sections e? € IPP (0 < p < 3). Then €2, €2,—¢?, ¢! form a symplectic basis
for @ in (1B).
Note that e3 = (.
(4A) A-model connection V = Veven of V.
VoT? :=0, VoI':=T1°

1 &,

VoT? := T! = (5 +

~(27i)3 dud
VeT? .= T2
V is flat, i.e., V2 = 0.
(4B) B-model connection V = VM of e
Voe’ =0, Vge! =¢€°,

1 d®®y 1
@ri)? du? )7

1 d3® 5 qdz\3
2 1 1 1
= — = Y = - ——-) s
Vee (27i)3 dud ¢ © (14 5%)yo(2)? (z dq ¢
Ve = 2.
(5A) V-flat Z-basis for HY .
s =10
st=11 - uT®,
1 0% 11 1 09 11 25
2 2 1 0
1 (e B (- B B
y ((27T2')3 ou? 2 (2mi)3 Ou 2 YT 1

1/ 8% 8Dy 25\,
@ (a7~ 5) )T
1, 0% 25 95 .
- ((271'2')3 (55 —22) - v - @)1
Then 53, s2,~s% s' form a symplectic basis for § in (1A).
(5B) V-flat Z-basis for HY" .

s3 :=T3—uT2+(

1 8 11 1 8% 11 25

= (mpar ~2)  (@pa 7 1)
1 820 9Dy 25\ ,

T o ) ~ 1)

s3 :=e3—ue2+(
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Then s3, s2,—s%, s! form a symplectic basis for Q in (1B).

(6A) Ezpression of the TP by the sP.
It is computed that TP are written by the V-flat Z-basis sP of H}, as follows.

1 8% 11\ , 1 9%  9dy 25\ ,

(27ri)3_6?-_7)8 ((27ri)3 (UW—%> E)S
1 8% 11 25\ ,

m—m%‘?“*ﬁ)s

T2::52+(

T3=s3+u32+(

Note that the section 1 = T3 varies with respect to the the lattice H‘Z/ as above while
the section [pt] = T? = s° does not.

(6B) Expression of the eP by the sP.
It is computed that eP are written by the V-flat Z-basis s of Hy  as follows.

el = ¢! +usO,

g (L PR N1 o omy 2

¢ =3 +((27ri)3 ou? 2)8 +<(27ri)3 (“au2 8u)+ 12)3’
1 8% 11 25y,

ripou 27" 5)°

e3=33+u52+(

3

Note that the normalized holomorphic 3-form Q = /yo = e varies with respect to the

lattice 'H‘Z/o as above, while the section e® = s° does not.

Idea of proof of (4A) and ({B). We prove (4B). (4A) follows by mirror symmetry
theorems (1) and (2) in Introduction.

We improve the proof of [CoK99, Prop. 5.6.1] carefully by a log Hodge theoretic
understanding of the relation among a constant sheaf and a local system on Slog of the
canonical extension of Deligne on S, and of the Deligne decomposition.

Idea of proofs of (54), (5B), (6A) and (6B). In [I11, Introduction] (cf. 2.4), the
asymptotic condition in the large radius limit is stated for the flat integral section cor-
responding to £ = Oy € K (V) in the situation (5A). Up to Tate twists, this condition
coincides with the one in [CDGP91, (5.5)] stated in the situation (6A). By the mirror
symmetry in [I11] (cf. (2) in Introduction), this condition is interpreted in the situa-
tion (6B). Our previous results in [U14, Sections 3.5-3.6] are insufficient (see Remark



below). In order to complete them, we compute here higher approximations in the
situation (6B). The result in the situation (5B) is a linear algebraic solution of this.

Remark. The author was pointed out by Hiroshi Iritani that the definitions and the
descriptions of integral structures in [U14, 3.5, 3.6] are insufficient. Actually, they were
the first approximations of integral structures by means of gr™, and the second proof
in [ibid, 3.9] works well even in this approximation.

3. Discussions on geometries for (5) in Introduction

We discuss here the relation with geometries and local systems considered in [W07]
and [MWO09]. Forgetting Hodge structures, we consider only local systems corresponding
to the monodromy of integral periods and tensions.

Let Vi, and V;j be a quintic threefold and its mirror from 2.1. Let S be a small
neighborhood in the z-plane (z in 2.2) of the maximal unipotent monodromy point pg
endowed with the log structure associated to the divisor py.

We first consider B-model. Let the setting be as in [MW09, 4]. For z # 0 near
0, i.e., near po, let V;? be the mirror quintic and C; , U C_ , be the disjoint union of
smooth rational curves on V;? coming from the two conics contained in Von{z1+z2 =
z3 + 74 = 0} C P*(C). From the relative homology sequence for (V,°, (Cy , UC_,)),
we have

(1) 0= H3(V3Z) — Hy(Vy,(Cy UC_ ) 2) 5 Z([Cy.] — [C-,.]) — 0,

where Z([Cy ;] — [C_.]) is Ker(H2(C4 , UC- ,); Z) — Hy(V?);Z). The monodromy
T around pg interchanges Cy , and C_ .

Respecting the sequence (1), we take a family of cycles Poincaré duality isomorphic to
the flat integral basis s? (0 < p < 3) in 2.5 (5B) and a family of chains joining from C_ ,
to C4 . (a choice up to integral cycles and up to half twists), and over them integrate the
family of 3-forms Q(z) with log pole over z = 0 (z in the punctured disc in the z-plan)
in 2.2, then we have a family of vectors (n9,71,72,73,7) consisting of periods and a
tension. This corresponds to the data in [W07], [MWO09]. Since T, (7) = —(7 +114+m0)
by [W07, (3.14)], we find T + 2n; + o = 137 is an eigenvector of the monodromy T,
with eigenvalue —1.

The family of sequences (1) (2 # 0) forms an exact sequence of local systems of
‘Z-modules. To make the monodromy of this system unipotent, we take a double cover
z1/2 + z. Let S be a neighborhood disc of py in the 2/ 2_plane endowed with log
structure associated to the divisor py in S, and let S8 be as in 1.2. Let S* be the
punctured disc S \ {po}. Pull back the above local system to S* and then extend it
over S'°g,

Applying Tate twist (—3) and Poincaré duality isomorphism to the left and the right
ends of this exact sequence, we have a local system L’ over S'°8 which is an extension
of Z(-2) by Hz:

(2) 0 — Hz— L' — Z(-2) — 0.
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Let 1 € Z ~ gr}¥ Z(-2), take a lifting 1z := 1 — (T /no)s® in L’ of 1, and extend V on
Hz over L' by V(1z) = 0. We look for a T2 -invariant V-flat element associated to 1z.
This is computed as lszpl := 1z — (s1/2), and we know that L’ coincides with Hz in (5)
in Introduction.

For the relative monodromy weight filtration M = M (N, W), we see that 1z € M,
and s' € M, are the smallest filters containing the elements in question. Taking the
graded quotients by M of the sequence (2), we have

(3) grg’ Hz = grg’ L',
0—grMHy —» gL — Z(-2) -0,
0 —grM Hz — grM L' — (2-torsion) — 0,

gré’f Hyz — gré\"’ L.

The 2-torsion in the third sequence of (3) corresponds to a half twist of chains from C_
to Cy. Standing on a half integral point and looking at the integral points nearby, we
have two orientations. These correspond to the two orientations of a half twist of the
chains, and also correspond to 7 := +(157 — 2) — I in [W07]. 7_ is different from
—7, by the complémentary half twist, i.e., 7, + 7_ = —n;.

For A-model, we consider the setting in (W07, 2.1]. Let V = V,, with ¢ = 0 from
2.1 be a Fermat quintic threefold in P4(C) and Lg := V N P*(R) be a Lagrangian
submanifold of its real locus. From the exact sequence of relative homology for (V, Lg),
we have

(4) Hg(V;Z) = He(V, Lg; Z),
0 —Hy(V;Z) — Hy(V,Lg;Z) — H3(Lg;Z) — 0,
0 —Hy(V;Z) — Hy(V,Lg; Z) — Hy(Lg; Z) — 0,

Ho(V;Z) = Ho(V, Lg; Z).

Let H' = H,(V), H = Hy(V, Lg) and H” = H,(Lg), and let

Heven(V) = @ (H,)2p’ Heven(V) Lg) = @ H2pa Hodd(Lg) = @ (H”)2p+1-

0<p<3 0<p<3 0<p<1
Then we have an exact sequence
(5) 0 — Heven(V) - even(V’ Lg) - odd‘(Lg) - 0

The weight filtration W is given by WaHeven(V, Lg) := Heven(V), WyHeven(V, Lg) =
Heven(V, Lg), and the relative monodromy weight filtration M = M (N, W) is given by
MQPHGVGH(Va Lg) = HS2P(V’ Lg) (0 <p< 3)

In the above setting, the projection from P4(R) to the real hyperplane {z; = 0} =
P3(R) with center .(0,0,0,0,1) induces a homeomorphism Lg ~ P3(R). Therefore
there are two choices of flat U(1) connections on Lg. Denote Lg endowed with these



structures by Lg+. Morrison-Walcher [MWO09, 3] explain the relation between Lgy for
A-model of V' and C4 for B-model of V°.

After pulling back to the double cover 21/2 i z (z # 0) and extending over S'°8, the
sequence for A-model (5) and the sequence for B-model (2), and the set of sequences for
A-model (4) and the set of sequences for B-model (3), respectively, seem to correspond
in mirror symmetry. By Poincaré duality isomorphisms, H®V*» (V) = Heven(V)(=3) and
H®"(Lg) >~ Hoad(Lg).
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