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Abstract. In this article, we shall generalize a theorem of Cattani and Kaplan on
horizontal representations of SL(2). Their theorem plays an important role in the
construction of their partial compactifications of the classifying spaces D modulo an
arithmetic subgroup of Hodge structures of weight 2.

Introduction. A horizontal SL,-representation is a generalization of the notion
of “(H,)-homomorphism” of SL, in the case of the classical theory of Hermitian
symmetric domains (cf., e.g., [Sa, III]). More precisely, let G=Gg:=Aut(Hg, S) be the
automorphism group of the classifying space D of Hodge structures of weight w (see
§1). A representation p: SL,(R)—G is said to be horizontal at re D if the morphism
Py Sl,(R)—g of the Lie algebras is a morphism of Hodge structures of type (0, 0) with
respect to the Hodge structures on sl,(C) and g induced by ie U:=(upper-half plane)
and re D respectively (see Definition (2.1)). In this case, the pair (p, r) is uniquely
determined by the pair (Y, r)eg x D with

1
©.1) Y:=p*<0 _01>

Conversely, a pair (Y, r) € g x Dis said to be admissible if there exists a representation
p: SL,(R)— G horizontal at r and satisfying (0.1). The main result in the present article
is a numerical criterion for admissibility of a pair (Y, r) in the case of general weight.

Given a pair (p, r) as above, one can refine the Hodge decomposition Ho= @ H?4,
corresponding to r € D, under the horizontal action of sl,(C) at r, called a Hodge-(Z, X )
decomposition (see (2.7)). Our proof of the main result is based on an elementary but
useful observation (Corollary (2.11), see also Remark (2.12)), which says that the
transformation of the Hodge-(Z, X ;) decomposition by the inverse ¢~ ! of the Cayley
element
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yields a split mixed Hodge structure, called a mixed Hodge-(Y, N ) decomposition, which
is nothing but the limiting mixed Hodge structure of the associated SL,-orbit g: U-D
defined by p(gi):=p(g)r for ge SL,(R) (cf. [Sc, Theorem (6.16)] and its proof). By
virtue of this observation, we can view the relationship between the pairs (p, r) and
(Y, r) from a better perspective, and generalize a numerical criterion [CK, Theorem
(2.22)] for admissiblity of (Y, r) in the case of weight 2 to the case of general weight.

The author is grateful to all the participants of a special seminar at Osaka University
in February—March, 1992, especially to Professors Masaru Takeuchi and Toshiyuki
Tanisaki for stimulating discussions. The author is also grateful to the referee for his
valuable suggestions.

1. Preliminaries. We recall first the definition of a (polarized) Hodge structure
of weight w. Fix a free Z-module H of finite rank. Set Hy: = Q® Hz, H=Hg:=RQ® H,
and H;:=C® H,z, whose complex conjugation is denoted by o. Let w be an integer.
A Hodge structure of weight w on H is a decomposition

(1.1) He= @ HP  with oHPI=HP

pta=w
The integers
(1.2) hP1:=dim H?4

are called the Hodge numbers.

A polarization S for a Hodge structure (1.1) of weight w is a non-degenerate bilinear
form on Hy, symmetric if w is even and skew-symmetric if w is odd, such that its
C-bilinear extension, denoted also by S, satisfies

S(H™, cH"*)=0 unless (p,q)=(p',q"),

(1.3)
iP7948(v, ov) >0 for all O0#ve HP4.

ReMARK (1.4). In the geometric case, i.e.,, the Hodge structure on the w-th
cohomology group H*(X, Q) of a smooth projective variety X < PV of dimension d over
C, we take as a polarization

S(u, v):=(—1)“""’“”/2j unvant"
X

for primitive classes u, ve Hjin(X, CO)~ H}pin(X, Q%) where ne H'(X, Q%) is the co-
homology class of a hyperplane section of X.

For fixed S and {h??}, the classifying space D for Hodge structures and its “‘compact
dual” D are defined by
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D :={{H"}|Hodge structure on H with dim H??=hP",

19 satisfying the first condition in (1.3)},
1.5
D:={{H"} e D|satisfying also the second condition in (1.3)} .

These are homogeneous spaces under the natural actions of the groups
(1.6) Gc:=Aut(Hc, S), G=Ggr:={geGc|gHgp=Hpg},
respectively. Taking a reference point re D, one obtains identifications
1.7 D~G¢/B;, D=~G|V,

where B. and V are the isotropy subgroups of G, and of G at re D, respectively. It is
a direct consequence of the definition that

0Qh, k), U0 x - - x UK=Y x O™ if w=2t,
(18) G~ Ve
Sp(2h, R), UR*)x - - x U+ if w=2t+1,

where k:=) . . AT¥*7% and h:=(dim H—k)/2 if w=2¢, and h:=dimH/2 if
w=2t+1. It is an important observation that V is compact, but not maximal compact
in general. Hence D is a symmetric domain of Hermitian type if and only if

(t+1,t=1), (t) or (t—1,t+1),
(1.9)  hP1=0 unless (p,q)= and A*T1Ti=1 if w=2t,
(t+1,2) or (t,t+1) if w=2t+1.

A reference Hodge structure r={H?%} € D induces a Hodge structure of weight 0
on the Lie algebra g.:=Lie G by

(1.10) g¢ *:={Xegc| XHP "< H?**¢"* for all p, q} .

One can define the associated Cartan involution 6, on g, by
(1.11) 0.(X):= > (—1)yx>"s for X=) X Secgc=@®gi*.

This can be interpreted in the following way: Set

HY :=HMQH 2 @QH @ -,
(1.12)
H,_ :=H:v—1,1 @H:v—3,3®H'\.v—5,5® cee

It is clear by definition that the isotropy subgroup of the decomposition Hc=H,;' ® H,
induces the maximal compact subgroup

{0(2h)><0(k) if w=2t,
Uh) if w=2t+1,

of G which contains ¥V, and the Cartan involution 6, in (1.11) is the one associated to

(1.13) K~
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K. Define a C-linear automorphism

1 on H[,
(1.14) Er: HC—>HC by E’.:=

—1 on H_ .
Then the Cartan involution 6, in (1.11) can also be written as
(1.15) 0. X=(AdE)X for Xegc.

We recall now well-known results on SL,-representations. Let £,  be two variables,
and write

6"!

(1.16) <5>(m:= ML m=0,1,2, ).
" :
’1"1

A representation

(1.17) Pm: SLy(R)—> SL,,,(R) defined by pm(9)< ¢ )""’ ‘= <9 < : ))w
n n

is called a symmetric tensor representation of dimension m+ 1. It is known that the p,,
(m=0,1,2, ---) are absolutely irreducible and constitute a full set of representatives
for the equivalence classes of finite dimensional irreducible representations of SL,(R).

We take the standard generators for the Lie algebras sl,(R) and su(1, 1) which are
related by the Cayley transformation Ad c,, where

mi (0 1 1 /1 i
1.18 Cqi=€exp — - ,
(1.18) ! P <1 0) /> (i 1)

as follows:
1 0 01 00
I,(R = s = s _i=
L) = (0 —1) " <0 o) " (1 0)

(1.19)  Adeal ! l
su(l, 1) az:=<9 _’>, x+;=_1<—l 1) x_:=L<z 1.>.
i 0 2\1 i 2 \1 —i

The following lemma can be verified directly by using the monomial basis (1.16)
and the definition (1.19), and so we omit the proof.

LeMMA (1.20). (i) Intheabovenotation, Y, :=p,. (¥)and N, :=p,.(n.)satisfy
Y (& ind) = (m—2))em i,
N (Emindy=(m—j)Em=i= 1y *1,
N, (™ Iply=jem=i*1gi=1,
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(ii) For the Cayley element c,,:=p,(c,)€SL,, . (C),
oc,=c, o, where o is the complex conjugation.
e 2(Em ) = (2 iy,
(&M Iy =(=1)"Em iy,
ReEMARK (1.21). The Hodge structure on g, : =sl,(C) induced by ie U : = (upper-
half plane)~ SL,(R)/U(1) coincides with the canonical decomposition by the standard
“H-element” (n, —n_)/2 (cf., e.g., [Sa, II. §7]):

8ic=81c '+aiC+ard " =p_+lc+pi={x_}ct+{z}c+{X+}c-

2. Horizontal SL,-representations. From now on, we assume that w>0 and all
Hodge structures of weight w satisfy H”2=0 unless p, ¢ >0.

DEerFINITION (2.1) (cf. [Sc, p. 258]). An SL,-representation p: SL,(R)—G is said
10 be horizontal at r={HP} €D if p,(x,)egc" ! :={Xegc| XHP = H?~ 1" for all

P, q}
REMARK (2.2). It is clear that an SL,-representation p is horizontal if and only
if p,. : sl,(R)—g is a morphism of Hodge structures of type (0, 0) with respect to the

Hodge structures induced by ieU and reD, respectively. A horizontal SL,-
representation p induces an equivariant horizontal map g : P'—D with jg(i)=r:

p
SL(C) — G¢

.

v

P! — D.

This is a generalization to the present context of the notion of ‘(H,)-homomorphism’
in the case of symmetric domains of Hermitian type (cf., e.g., [Sa, II. (8.5), III. §17]).

.. Let p: SL,(R)—G be a representation horizontal at re {H??} e D, and set

23) Yi=p(¥), Nii=pu(ny); Z:=p,(2), Xi:i=pulxs).
Notice that by (1.19) these are related under the Cayley transformation:
2.9 Z=(Ado)Y, X,.=(Ado)N., c:=p(c,).

(Y,N,) and (Z, X,) define direct sum decompositions of H and H, whose
summands are

2.5) P}+20 .= N* (H(Y; A+2k)nKerN,),
(2.6) 03+ = Y* (HU(Z; A+2k)nKer X,),

for all eigenvalues A€{0, +1, +2,..., +w} of Y and Z and for k>max{—4,0},
respectively. Here we denote by H(Y; A+ 2k) etc. the eigenspace of an endomorphism
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Y of H with eigenvalue A+ 2k. Since p is horizontal at r={H?4}, (2.6) is compatible
with this Hodge structure and we set

(27) Q(;_;'+2k)a+k’b+l+k:=Q(f+2k)nHra+k’b+l+k (a’ bZO) X

These form a refined direct sum decomposition which we call the Hodge-(Z, X )
decomposition of (p, r) (cf. Remark (2.12) below). Transforming this by the inverse ¢!
of the Cayley element, we define

A+2k)a+kb+k.__ ,—1 A+2k)atkb+Ai+k
2.8) P2k c=cT1QG+20a .

LEMMA (29) (1) GQ(},l+ 2k)a+k,b+).+k=Q(_—AA+2().+k))b+l+k,a+k.
(11) CQ(l}.-é- 2k)atkb+A+k _ CZPa}.+ 2k)a+k,b+k _ P(——l).+2(i.+k))a+ ).+k,b+).+k.

—1p@A+20a+kb+k _ ~20)(A+2ka+kb+Ai+k _ )(—A+2(A+k)a+Ai+kb+k
¢ PY =c Q7 =07 .

PrOOF. It is easy to see, by definition, that cP{*2Y = Q¢ +2%_ Hence, by the first
equality in (1.20.ii), we have

O.Q(l}.+2k)=o.cP£l}.+2k)=c—IO.P(A}.+2k)=c—IP(A}.+2k)=c—2Q()').+2k) i

On the other hand, by the second equality in (1.20.ii), the third and the second equalities
in (1.20.i), we see that on P¢+20

(—i)“z"—kL—N’l if >0,
2 (A+k)!
- ]

(—i)““&;kizv;l if 2<0.

Taking their Cayley transforms, we see that on Q¢ *2%

(—i)“z"Tk—!k—'X‘_ if >0,
2.10) 2= (;k);
(—i)““(—’;—)'x;l if 1<0.

Thus, by the definition of the Q¢ *2%, we have in both cases that
GQPH W= 2@+ = Y EAQUA _ G20 _ (=34 20+k)
This together with gH2* b4k b+ a+ka+k yields the assertion (i).

By horizontality, X_eg¢ ™" and X, eg¢ ™', hence X $*e g ~* This together with
(2.10) shows that

-2/ (A+2Ka+kb+Ai+k _ yEAn(A+2ka+kb+i+k _ o (—A+2(A+k)a+A+kb+k
c Q7 =Xz"Q7 =07 .

Thus we obtain the second equality in (ii). The first equality in (ii) follows from the
second. |
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COROLLARY (2.11). Let (p, r) be as above. For each eigenvalue A of Y and for
k>max{— A, 0}, we see that

A+ 2k A+2k)a+k,b+k
CRPG M= @  py+ave

a+b+2k=w—24
ab>0

is a Hodge structure of weight w— A. Moreover, in the case A=k=0, this is S-polarized.

Proor. We should observe the behavior under the complex conjugation o

(A+2k)a+k,b+k __ -1 (A+2k)a+kb+A+k __ —A+2(A+k)b+Aitk,at+k
P =0c 10Y =cQ T} +2a+h)

=cZP(_—A).+2(l+k))b+).+k,a+).+k=P(A}.+2k)b+k,a+k .

This shows the first assertion.
The representation p is trivial on Qf, hence PPO*b=c~1QM*b=Q™a? and so
the second assertion trivially holds. [ |

We call a direct sum decomposition in (2.11) the mixed Hodge-(Y, N ) decomposition

of (p, 7).

REMARK (2.12). We remark here some observations which are verified easily by
(1.20.i), their Cayley transforms and horizontality of p at r. A Hodge-(Z, X)
decomposition and a mixed Hodge-(Y, N,) decomposition form “nests of diamonds”,
respectively. For example, in the case of weight w=3, these nests of diamonds are
illustrated respectively as in Figures 1 and 2.

Q)30
2)3,0 2)2,1
0%; 0%
Q30 Q21 QW2 QW21
0)3,0 2)2,1 2)1,2 0)0,3 0)2,1 0)1,2
¢ of of 09, 0f o
1)2,1 3)1,2 1)0,3 1)1,2
Q5 o7 o oy
2)1,2 2)0,3
0% oy
Q{03
3
FIGURE 1.
peR:3
P32 p@2:3 .
pw31 P22 pWL3 pw22
, 0)0,3 0)2,1 0)1,2
P30 P@21 P12 P03 p(o) P§ .
1)2,0 3)1,1 1)0,2 (11,1
Py Py P{Y Py
PO PO
3)0,0
P§

FIGURE 2.
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On these nests of diamonds, the complex conjugation by ¢ sends respectively a sum-
mand Q@+ 2katkb+ itk 14 3 summand QT2+ 2Atb+Atkatk which are symmetric with
respect to the origin of the diamonds, and a summand P@*2ke*kb*k {45 3 summand
P{}*2bthatk which are symmetric with respect to the vertical axis. The operator X,
(resp. X_) sends a summand Q{}*2Wa*kb+i+k gne step down (resp. up) to a summand
Qa1:22+2(k— 1)a+k—1,b+A+2+k—1 (resp. Qal_—22+2(k+1))a+k+ Lb+a=2+k+1y  anq X, are
inverse to each other up to non-zero constant between these summands whenever both
summands actually appear in the nest of diamonds. Similarly, the operator N, (resp.
N_) sends a summand P{}*2Watkb+k gpne step down (resp. up) to a summand
Paa++22 +2(k—1))a+k—1,b+k—1 (resp. Paz_—22+2(k+ 1)a+k+1,b+k+ 1), and N, are inverse to each
other up to non-zero constant between these summands whenever both summands
actually appear in the nest of diamonds. The Cayley element ¢ transforms the second”
nest of diamonds together with the action of the operators Y, N, to the first nest of
diamonds together with the action of the operators Z, X,: cP@tZhatkbrk_
Q(l}.+2k)a+k,b+).+k i

By using these operators, we can explain why the summands outside the nests of
diamonds vanish in the following way. We claim first that Q*20e*kb+i+k—( for 1 >0
and b<0. Indeed, X*** is injective on this summand by the Cayley transform of the
third equality in (1.20.i). On the other hand, looking at the Hodge type, we see that
XArkQQ+2lathb+itk - o(~A-2k+2A+2ka+i+2kb — () by horizontality. Thus we get our
claim. It follows by symmetry under the complex conjugation o that Q{*2katkb*i+k _(
for A<0 and a<0. Finally, by the inverse of the Cayley transformation, we have
Pirakatkbrk=( for >0 and b<0, and for A<0 and a<O0.

We call the length of the side of the biggest diamond in a nest the size of the nest
of diamonds.

Another remark is that a mixed Hodge-(Y, N.) decomposition is nothing but
the limiting split mixed Hodge structure of the associated SL,-orbit jg: U—-D,
p(gi):=p(g)r (ge SL,(R)), and the monodromy weight filtration L is described as
Li=@®,_,®, P (cf. [Sc, (6.16)] and its proof, [CK, pp. 13-14]).

In the above notation, for all 4, a and b, put

n,:=dimgH(Y; A)=dimcH(Z; ) ,
(2.13)
pa,b c= dich(l).laZ-l’—‘k,b+k =d1ch (l).la;;‘k,b+). -k .
Notice that, by construction, the middle terms and the terms on the extreme right hand
side of the second equality in (2.13) are independent of &k (cf. Remark (2.12)).

LEMMA (2.14). For (p, r) as above, the following hold:

(1) Y aipowsPit=n—n;., for all 0<A<w.

(ii) p%*=p%® for all A, a, b with 0<i<w, a>0, b>0 and a+b=w—A.

(lll) ha,b=ha+l,b—1_(pt(z)+l,b—1+pal+1,b—2+ .. +pgti,0)+(pa(z),b+pal—1,b+ et
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p2?) for all a, b with a>0, b>0 and a+b=w.

Proor. We first observe that there is an exact sequence
N,
0— PP —S H(Y; ) —> H(Y; A+2)— 0

for every A>0 (and N_ yields a right splitting). (i) and (ii) follow from this and (2.11).
In order to show (iii), we look at the morphism X, : H**1*~1 H*? and its kernel
and cokernel:

Ker= Q%O)a*' 1,b—1 ('B Q(ll)a+ 1,b—-1 @ e @ ng_—ll)a+ 1,b—1
(_£_P(00)a+ Lb-1 gy p(latib-2gy ... @ pP-pa+ Lo
Coker~QP** @ Q@ --- @ Q92*
:Q(OO)a,b® Q(ll)a—l,b+1 @ e @ an)o,b+a
[4
‘:Pgo)a,b(_BP(ll)a—l,b@ .. @Pga)o,b .
Looking at the dimension, we get (iii). |
DEFINITION (2.15).  We call a set of integers {p%"}, which satisfies the conditions
(1), (ii) and (ii) of (2.14), a set of primitive Hodge numbers belonging to {h™, n,}.
3. Admissible R-semi-simple elements. We continue to use the notation in the
previous sections.

PropoSITION (3.1). Given a pair (Y,r)egx D, there exists at most one repre-
sentation p: SL,(R)—G which is horizontal at r and p (y)=7Y.

Proor. Since y and z generate sl,(C), it is enough to show that if such a re-
presentation p exists then the eigenspaces of Z, and hence Z itself, are determined
by the pair (Y, r). Actually, we shall show by induction on the size w of the nest of
diamonds of the Hodge-(Z, X ;) decomposition (2.7) (cf. Remark (2.12)) that this nest
of diamonds is completely determined by (7, r).

First notice that

(3.2) ‘ Y=i(X,—-X_).
For a subspace M of H., we put, throughout this proof,
M*:={veH¢|S(,ou)=0 for all ue M} ,

projection {M——)Hf"’} :=Im {Mc H,= D Hf”q'—be"‘} .

p'tqg'=w

Then we see that
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Q¥ =projection { Y"H"°—» H?"} ,

QW ~k = projection { Y*Q{M0% - H&w~k} O<k<w),

O  QUrO=HYOn(QWro)",

0<isw-—1

QG- L= 1—pro'iection{Y‘"”( ® Q‘f’l‘”"’)—»H}’W—‘},

O0<i<w-—1

Q- irkw=1-k=projection { Y*QW V1wl gltkw 1kl (0<k<w—1),

@ Q(l)w ,0 Hw ,0 n< @ Q(f);.w’())l ,

0<isw-—2 w—1<isw

QG- 2—projection{Y"”( ® Q‘f’,{”"’)—»H,z’W"z},

O0<i<w-—2
QG P2t kw=2"k=projection { Y*\QW~P2w 25 g2 tkw-2-K  (0<k<w-2),

Thus Q% **%47%(0<A<w, 0 <k <) are determined. Taking the complex conjugation
by o of these, we get QW kw-Atk=gQ@w itki-k (0 <] <w, 0<k<J). Applying the
induction hypothesis to the nest of diamonds of size <w—2 in

< @ (Q(l)w Atk,A— k@Q(l)l k,w— 2.+k))l

0<isw
0<k<i

(cf. Remark (2.12)), we get our assertion. [ |

DEFINITION (3.3). A pair (Y, r)eg x D is admissible if there exists a representation
p: SL,(R)—G which is horizontal at r and p,(y)=7Y.

The set of primitive Hodge numbers {p%*} belonging to {h?9, n,} is called the type
of an admissible pair (Y, r).

Yeg is said to be admissible if (Y, r) is an admissible pair for some re D.

Now we prove the following numerical criterion for admissibility:

THEOREM (3.4). Yeg is admissible if and only if Y is semi-simple over R whose
eigenvalues are contained in {0, +1, +2,..., +w} and there exists a set of primitive
Hodge numbers {p%"®} belonging to {h™4, n,}, where n,:=dim H(Y; ) (cf. Definition
(2.15)).

PrOOF. Since Y is semi-simple over R, the eigenspaces H(Y; A) are defined over
R and H(Y; A) and H(Y; u) are S-orthogonal unless 4+ u=0. Therefore H(Y; 1) and
H(Y, — 1) are S-dual.

Since n; —n; ., >0 for ’>0 by the condition (2.14.i), we can take a direct sum
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decomposition
(3.5) HY; )=PP@ PP 2@ P¢ Y@ - -- for A>0,

with dim P$¢* 29 =n, , ,. —n; 4 5+ ,. Moreover, in the case =0, the decomposition (3.5)
can be taken to be S-orthogonal. We denote the S-dual decomposition by
(3.6) H(Y; —)=PP,@ P4 PQP 90 - (120),

ie., P*f20 and P{**2™ are S-orthogonal unless k=m.
By the conditions (i) and (ii) of (2.14), we can choose a Hodge decomposition

(37) C@ P(;_/H'Zk): (__B Pal+2k)a+k,b+k for /120 , kZO ,

a+b+2k=w—21
a,b>0

with dim P{}*2hetkbtk— pab  Moreover, in the case A=k=0, the Hodge structure
(3.7) can be chosen to be S-polarized. We denote the S(-, o-)-orthogonal decomposition
by

(38) C® P(:A;'+2(;'+k”= G_) P(_—AA+2(l+k))a+i.+k,b+l+k (AZO, kZO) s

a+b+2i+2k=w+2i
a,b>0

ie., S(PCAY2A+Inatitkbtitk 5pQA+2ka’+kb +ky_ () ynless (a, b)=(a’, b’). Notice that
P(-)’l+2(l+k))n+).+k,b+l+k=P(}.A+2k)a+}.+k,b+).+k

Now we consider the cases >0 and 1<0 altogether. For k>max{—4, 0} and
a>b, let

(3.9 (ol ekt 1 <j<pat )

be a C-basis of P{*20atkb+k guch that

k

In the case a=b, we can moreover take the above basis (3.9) to consist of real elements.
Put

(311) v(}f}-Zk)b+k,a+k=O.U(A}:;2k)a+k,b+k (aZb) .

A+2k
(3.10)  S(p(iFROvRetirkbrATk GGt atkbihy 5 (_ l)aiw—1/< + > .

Define now C-linear endomorphisms N, of H. by

(A+2k)a+kb+k. __ ((A+2)+2(k—1))a+k—1,b+k—1
Nivy; i=kv3i37) R

(3.12)

N_U().;:;Zk)a+k’b+k . =(l+k)va(‘:_2,2}+2(k+ 1)a+k+1,b+k+1 s

for all 4, non-negative a, b and k>max{—A4, 0}. By construction, it is easy to see
that N, commute with the complex conjugation o and satisfy the commutation rela-
tions: [N,,N_]=7Y, and [Y, N,]= £2N,, respectively. It is also easy to verify that
S(N;+, 9)+S(-, N;+)=0, respectively. Indeed, for example, one can compute as
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(—A+2(A+K)a+i+kb+i+k o ((A=2)+2(k+1)a+k+1,b+k+1
SN 075 PR N )

—A+2(+k)a+Ai+kb+a+k A=2)+2(k+1)a+k+1,b+k+1
+S(v(—}.,j > ,N+UU£1(—2,}' k+ e )

, A+R)A+k—1)(k+1)! 18, Ty (k+DEIG+R)!
(A+2k)! (A+2k)!

— 6””(_ l)aiw—l+

Thus we see that N, eg and hence there exists a unique representation

(3.13) p: SL,(R)—»G suchthat p,(y)=Y and p,(n.)=N,, respectively.

By using the Cayley element c:=p(c,) € G¢, we define

(314) Q&l+2k)a+k,b+).+k:=CP(;.).+2k)a+k,b+k Hp,q:z 6_) Q(ll+2k)a+k,b+}.+k
at+k=p

b+i+k=g

where, on the right hand side of the second equality, the summation is taken over all
the eigenvalues A of Y, all integers k>max{— 4, 0} and all non-negative integers a, b
with a+ b+ 1+ 2k=w. This defines a Hodge structure. Indeed, by using (1.20.ii), one
sees that

+k,b+ -
O.Qal+2k)a kb }.+k=0.cpal+2k)a+k,b+k=c IO'P(;_)'+2k)"+k’b+k
=c—1P(A).+2k)b+k,a+k____CP(_—;';.+2().+k))b+l+k,a+).+k___Q(_—ll+2(l+k))b+z+k,a+k ,

and hence c H??= H??. One can moreover verify that (3.14) is S-polarized. Indeed, the
direct sum in (3.14) is S-orthogonal by construction and, for

(A+2k)at+k,b+k (A+2k)a+k,b+k A+2k)a+kb+i+k R
cv'] , cvls e Qb cHP,

one can compute as
l.p_qS(CU(;_}:;Zk)a+k’b+k, acva{;’llk)a+k,b+k)
a—b—24 (A+2k)a+kb+tk ,—1 (A+2k)a+k,b+k
S(cvy; , ¢ tovg )

=1

ca—b— +
—ja~b ’IS(CZUS{Ej 2k)a+k,b+k, O.v(li:}-le)a+k,b+k)

=1

. vrwes [(AF2K A+2k
=5jj’l b+2k+2a+ A/( . >=6jj’/< . >

Thus we have {H”?} e D.
Finally, we claim that the representation p in (3.13) is horizontal at {H"} e D.
Indeed, since Z=(Adc¢)Y, X, =(Adc)N,, one can compute, by (1.20), as

A+2k)a+k,b+i+k __ A+2k)atkb+k _ A+2k)a+kb+Ai+k
ZQy+ =CYPY etk ko (20 :

.a—b—l+l+2ks(v(_—l}:}-2(l+k))a+l+k,b+).+k, 6v(}i.;2k)a+k,b+k)

XiQ(ll+2k)a+k,b+}.+k___cNiP(l}.+2k)a+k,b+k
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__cP((l.:tZ)+2(k¢ 1)a+kF1b+k¥F1 _ n((AL2)+2(kF1)a+kF1,b+A+kt1
- At2 —Xait2 .

This completes the proof of the theorem. [ ]

We remark that the condition on {#,} in Theorem (3.4) coincides with the one in
[CK, (2.20)] in the case of weight 2.

Fix identifications D~G/V and R~ G/K, where K is a maximal compact subgroup
of G containing V and R is the associated Riemannian symmetric domain, and let 0
be the associated Cartan involution. We denote the projection by

(3.15) n: D~G/V-G/K~R.

PrROPOSITION (3.16). We use the notation in Theorem (3.4). Let Yeg be an ad-
missible element.

(i) Ifthereexistsren™ *([K]) such that (Y, r) is an admissible pair, then 0,Y = — Y,
where 0, is the Cartan involution on g induced from (1.11).

(ii) If 0xY= —Y, then there exists ren” *([K]) such that (Y, r) is an admissible
pair.

(ili) For each set of primitive Hodge numbers {p%®} belonging to {h™9 n,},
Gy:={geG|(Adg)Y=Y} acts transitively on the set {re D|(Y, r) is an admissible pair
of type {p5*}}.

Proor. (i) follows from (3.2) and (1.11).

(ii): Assume 0,Y= —Y. Take a point '€ D at which Y is admissible and let K’
be the maximal compact subgroup of G associated to the Cartan involution 6,.. By the
result in (i) for (Y, ') and the assumption, Y can be viewed as a tangent vector to R
at [K'] as well as at [K]: Ye Tx([K']), Y€ Tr([K]). By the transitivity of tangent spaces
of a Riemannian symmetric domain, there exists ge G such that (Intg)K’=K and
(Adg)Y=Y. Hence the admissibility of (Y, r") implies that of ((Adg)Y, gr)=(Y, gr’),
where gr'en” '([K]).

(iii): Suppose that r, r’e D are points at which Y is admissible of the same type
{p%*}. Let p, p’: SL,(R)—G be the corresponding representations. It is enough to show
that there exists geG such that p’'=(Intg)p. Indeed, if this is the case, then
(Adg)Y=(Adg)(p, () =pW(y)=Y and gr=gp(i)=p'(i)=r".

We can construct such a geG elementarily by using bases of H¢ according
to the S-polarized Hodge-(Z, X,) decompositions, where (Z, X)=(p,(2), p.(x1)),
(p(2), pi(x4)). Thus we get our assertion. [ |
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