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Chapter Zero

Overview

In this chapter, we introduce the main ideas and results of this book.

In Section 0.1, we review the basic idea of Hodge theory. In Section 0.2, we
introduce the basic idea of logarithmic Hodge theory. In Section 0.3, we review
classifying spaces D of Griffiths (i.e., Griffiths domains) as the moduli spaces of
polarized Hodge structures. In Section 0.4, we describe our toroidal partial compact-
ifications of the classifying spaces of Griffiths and our result that they are the fine
moduli spaces of polarized logarithmic Hodge structures. In Section 0.5, we describe
the other seven enlargements of D in the fundamental diagram (3) in Introduction
and state our results on these spaces.

In this chapter, we explain the above subjects by presenting examples. Hodge
theory (Section 0.1) and logarithmic Hodge theory (Section 0.2) are explained by
using the example of the Hodge structure on H'(E, Z) of an elliptic curve E and its
degeneration arising from the degeneration of E. This example appears first in 0.1.3
and then continues to appear as an example of each subject. The classifying space
D (Section 0.3) and its various enlargements (Sections 0.4 and 0.5) are explained
by using the following three examples: (i) D = h, the upper half plane; (ii) D = b,
Siegel’s upper half space ((i) is a special case of (ii). In the case (ii), we mainly
consider the case g = 2.); (iii) an example of weight 2 for which D is not a symmetric
Hermitian domain. These examples appear first in 0.3.2 and then continue to appear
as examples of each subject.

In this chapter, we do not generally give proofs.

0.1 HODGE THEORY

0.1.1

First we recall the basic idea of Hodge theory.

For a topological space X, the homology groups H,,(X, Z) and the cohomology
groups H" (X, Z) are important invariants of X.

If X is a projective complex analytic manifold, the cohomology groups H" (X, Z))
have finer structures: C®z H"(X,Z) = H" (X, C) is endowed with a decreasing
filtration F = (F”) ez, called Hodge filtration. '

The cohomology group H" (X, Z) remembers X merely as a topological space,
but, with this Hodge filtration, the pair (H" (X, Z), F) becomes a finer invariant of
X which remembers the analytic structure of X (not just the topological structure
of X) often very well.
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0.1.2

For example, in the case m = 1, the Hodge filtration F on H'(X, C) is given
by FI' = H'(X,C) for p <0, F' =0 for p> 2, and F! is the image of the
injective map

HY(X,Q}) - H'(X,C). (1)

Here HO(X, Q)) is the space of holomorphic differential forms on X, and (1)
is the map that sends a differential form o € HO(X, Q'X) to its cohomology
class in H'(X, C): Under the identification H'(X, C) = Hom(H,(X.Z), C), the
cohomology class of wis givenby ¥y — [ o (v € H((X, Z)).

For the definition of F” of H" (X, C) for general p, m, see 0.1.7.

0.1.3

Elliptic curves.  An elliptic curve X over C is isomorphic to C/(Zt + Z) for some
T € Ij, where b is the upper half plane. For X = C/(Zt + Z) witht € b, H|(X, Z)
is identified with Zt +Z, H'(X, Z) is identified with Hom(Zt +Z, Z), and the
Hodge filtration on H'(X.C) = Hom(Zt +Z, C) is described as follows. The
space HO(X, Q}() is a one-dimensional C-vector space with the basis dz, where
z is the coordinate function of C, and where we regard dz as a differential form on
the quotient space X = C/(Z1 + Z) of C. Let (y;) j=1.2 be the Z-basis of H,(X, Z)
that is identified with the Z-basis (t, 1) of Zt +Z, and let (e;)j= > be the dual
Z-basis of H'(X, Z). Since [, dz =7 and [, dz = I, the cohomology class of dz
coincides with te; + 3, and hence F'H'(X, C) is the C-subspace of H'(X, C)
gencrated by te| + ¢;.

0.14

Elliptic curves (continued). If X is an elliptic curve, we cannot recover X merely
from H'(X,Z). In fact, H'(X,Z) ~ Z? for any elliptic curve X over C, and we
cannot distinguish different elliptic curves from this information. However, if we
consider the Hodge filtration, we can recover X from (H'(X,Z), F) as

X ~ Hom¢(F', C)/H(X,Z) = Hom¢e(F',C)/Hom(H" (X, Z),Z). (1)

Here H,(X, Z) is embedded in Hom¢(F', C) via the map y > (o > fy w) (y €
H(X.Z), we I'(X, Q})), and the isomorphism X >~ Homc¢(F', C)/H\(X,Z)
sends x € X (o the class of the homomorphism F' — C, w fy w, where y is
a path in X from the origin 0 of X to x (the choice of y is not unique, but the
class of the map w +— fy w modulo H|(X, Z) is independent of the choice of y).
In (1), the middle group is identified with the right one in which Hom(H'(X, Z), Z)
is embedded in Homc(F', C) via the composition Hom(H'(X,Z),Z) —
Homc(H'(X, C), C) = Homc¢(F', C), which is injective.

If X = C/(Zt + Z) with T € |, this isomorphism X ~ Homc(F', C)/H,(X,Z)
is nothing but the original presentation X = C/(Zt +Z) where Hom¢(F', C) is
identified with C by the evaluation at dz.
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0.1.5

Now we discuss Hodge structures.

A Hodge structure of weight w is a pair (Hgz, F) consisting of a free Z-module Hz
of finite rank and of a decreasing filtration F on Hc := C ®z Hgz (that is, a family
(F?)pez of C-subspaces of Hc such that F” D F P+! for all p), which satisfies the
following condition (1):

& H", where HM = FPNF9. (1)

prg=w

Here F¢ denotes the image of F¢ under the complex conjugation Hc — Hc, a ®
x> a®x(aeC, x e Hy).
We have

F/) — @ H/’,‘m_l’,’ Fp/FI)+I ~ HpPw-r, (2)
P'=zp
We say (Hgz, F) is of Hodge type (h”?), 4ez, where h?4 = dimc H”? if p 4
q = w,and h?? = 0 otherwise (these numbers 474 are called the Hodge numbers).

0.1.6

For a projective analytic manifold X and for m € Z, the pair (Hz, F) with
Hz = H" (X, Z)/(torsion) and F the Hodge filtration becomes a Hodge structure
of weight m.

For example, if X is the elliptic curve C/(Zt +Z) with T € b, then H'? =
C(te, +e,), H*! = C(Te; +e;),and H'(X,C) = H'°@® H®' since T # 7.

The theory of homology groups and cohomology groups is important in the study
of topological spaces. Similarly, Hodge theory (the theory of Hodge structures) is
important for the study of analytic spaces.

0.1.7

For a projective analytic manifold X, the Hodge filtration F” on H" (X, C) is defined
as follows. Let

2 (l

Q;(—(OX—>QX—>Q )

be the de Rham complex of X where Q% = /\Ox Q}( is the sheaf of holomorphic
p-forms on X (Oy is set in degree 0). Let Q,Z(” be the degree > p part of Q2%. Then
FP? is defined as

FP:=H"(X, Q") — H"(X,Q%) ~ H"(X,C).

Here H" (X, sz) and H™ (X, 2%) denote the mth hypercohomology groups of
complexes of sheaves. The canonical homomorphism H" (X, Q3") — H™(X, Q%)
is known to be injective. The isomorphism H™ (X, €2 %) =~ H"(X, C) comes from
the exact sequence of Dolbeault

0—>C—>(9x—>QX—>S22 ‘
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We have isomorphisms
HPm=r ~ F/)/Fp+l ~ H"’_I’(X, Qﬁ)v

where the second isomorphism is obtained by applying H" (X, ) to the exact
sequence of complexes of sheaves 0 — Q3”1 — Q3" — Qh[—p] — 0.

0.1.8

It is often important to consider a polarized Hodge structure, that is, a Hodge
structure endowed with a polarization.

A polarization on a Hodge structure (Hg, F) of weight w is a nondegenerate
bilinear form (, ) : Ho x Hg — Q (Hq := Q ®z Hz) which is symmetric if w is
even and is antisymmetric if w is odd, satisfying the following conditions (1) and (2).

(1) (FP,F9) =0for p+q > w.

(2) Let Cg : Hc — Hc be the C-linear map defined by Cr(x) = i’ 9x for x €

H?"-9. Then the Hermitian form ( , )r : Hc x Hc — C,definedby(x, y)r =
(Cr(x), y), is positive definite.

Here, in (2), (, ) is regarded as the natural extension to the C-bilinear form. The
Hermitian form ( ,)r in (2) is called the Hodge metric associated with F. The
condition (1) (resp. (2)) is called the Riemann-Hodge first (resp. second) bilinear
relation.

0.1.9
For a projective analytic manifold X, we have the intersection form
(., ) H"(X,Q x H"(X,Q) — Q

induced by an ample line bundle on X (see [G1],[GH]). The triple (H"(X.Z),
(, ). F) becomes a polarized Hodge structure.

Elliptic curves (continued)

For the elliptic curve X = C/(Zt 4+ Z) (t € b), the standard polarization of X gives
the antisymmetric pairing (., ): H'(X, Q) x H'(X, Q) — Q characterized by
(2. ;) = 1. This pairing is nothing but the cup product H'(X, Q) x H'(X, Q) —
H%(X, Q) ~ Q. It satisfies

(te) +ey, e +e3) =0,

l—0<

(tey+ey, tey+e)rp =i te)+e,Te +e)=i(T—1)=2Im(r) > 0.

Hence (H'(X,Z), (, ), F) is indeed a polarized Hodge structure.

0.1.10

It is often very useful to consider analytic families of Hodge structures and of
polarized Hodge structures.
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Let X be an analytic manifold.

After Griffiths ([G3], also [D2], [Sc]), a variation of Hodge structure (VH) on
X of weight w is a pair (Hgz, F) consisting of a locally constant sheaf Hz of free
Z-modules of finite rank on X and of a decreasing filtration F of Hp := Ox ®z Hyz
by Ox-submodules which satisfy the following three conditions:

(1) FP = Hp for p <0, F? =0 for p > 0, and gry = F?/FP*! is a locally
free O x-module for any p.

(2) For any x € X, the fiber (Hz ., F(x)) is a Hodge structure of weight w.

(3) ([d® 1) (FP) C Q4 ®p, F'~! forall p.

Here (3) is called the Griffiths transversality.

A polarization of a variation of Hodge structure (Hg, F) of weight w on X is
a bilinear form (, ) : Hg x Hg — Q which yields for each x € X a polarization
{, )x on the fiber (Hz ., F(x)). In this case, the triple (Hgz, {, ), F) is called a
variation of polarized Hodge structure (VPH).

0.1.11

Let X and Y be analytic manifolds and f : ¥ — X be a projective, smooth mor-
phism. Then for each m € Z, we obtain a VH (variation of Hodge structure) of
weight m on X:

Hz = R"™ f,Z/(torsion),
FP — Rmf*(Qi/px) N R”’f*(Q;’/X) ~ Ox ®z Hy.

Indeed, on ecach fiber Y, := f~'(x) (x € X), Hz, = H"(Y,, Z)/(torsion) and
FP(x) = H"(Y,, Qi") form the Hodge structure.

If we fix a polarization of ¥ over X, this VH becomes a VPH (variation of
polarized Hodge structure) on X ([G3]; cf. also [Sc], [GH]).

0.2 LOGARITHMIC HODGE THEORY

From now on, we discuss degeneration of Hodge structures by the method of log-
arithmic Hodge theory. The logarithmic Hodge theory uses the magic of the theory
of logarithmic structures introduced by Fontaine-Illusie. It has a strong connection
with the theory of nilpotent orbits as discussed in Section 0.4.

In the story of Beauty and the Beast, the Beast becomes a nice man because of the
love of the heroine. Similarly, a degenerate object becomes a nice object because of
the magic of LOG.

Love Of Girl

(Beast) ————— (anice man),
(degenerate object) Log (a nice object).

The authors learned this mysterious coincidence of letters from Takeshi Saito.
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0.2.1

Elliptic curves (continued). We observe what happens for the Hodge structure on
H' of an elliptic curve when the elliptic curve degenerates. In this section, the idea
of logarithmic Hodge theory is explained by use of this example.

Let A ={q € C| |q| < 1} be the unit disc. Then we have a standard family of

degenerating elliptic curve
f . E— A,

which is a morphism of analytic manifolds, having the following property.

(1) For g € A with g #0, f~'(q) = C*/q”. This is an elliptic curve. In fact,
taking T € C with g = exp(2mit), we have t €  (since |g| < ), and

C/(Zr+17Z)> C*/q%, (zmod (Z1+1Z)) — (exp(2miz) mod qZ).
) £7'(0) =P"(C)/(0 ~ 00).

The definition of E will be given in 0.2.10 below. E is a two-dimensional analytic
manifold and f~'(0) is a divisor with normal crossings on E. These look like the
left-hand side of Figure 1. This family degenerates at ¢ = 0 as is described on
the left-hand side of Figure 1. All the fibers f~'(q) for g € A* are homeomorphic
to the surface of adoughnut, whereas the central fiber £ ~'(0) has a degenerate shape.

However, as we will see below, the central fiber recovers its lost body as in the
right-hand side of Figure 1 by the magic of its logarithmic structure. We will explain
this magical process in the following.

T
@ )

E log

1
A*E

(zlizz)=(r1u|’rz“z) €« (rnrz’ul’uz)
I I

9=z, =SV & (S'v)= (rlrl’uluz)

Figure |
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0.2.2

Elliptic curves (continued). Let A* = A — {0}, let E* = f~1(A*) C E, and let
f': E* —> A* be the restriction of f to E*. Since f' : E* — A* is projective and
smooth, the polarized Hodge structures on H' of the elliptic curves C* /g% (g € A*)
form a variation of polarized Hodge structure (Hz, F'). Here, H; = R! fiZis a
locally constant sheaf on A* of Z-modules of rank 2, and the filtration F' on O+ ®z

! ! ° 7/ d : : np
Hy = R' f}(Q%./a+) = R' f{(Opr = Q. 4s) is given by (F')? = Oa+ ®z Hy
for p <0, (F')? = 0for p > 2,and (F')' = /(R pe) C Op+ ®g Hy.

0.2.3

Elliptic curves (continued). This variation of Hodge structure on A* does not extend
toaVHon A. First of all, the local system H; on A* does not extend to alocal system
on A. Hi extends to the sheaf R’ J+«Z on A, but this sheaf is not locally constant.
The stalk (R' f,Z)o = H'(f~'(0), Z) of this sheaf at 0 € A is of rank 1, not 2.
In fact, e; € H'(C/(Zt+2Z),Z) =~ H'(C* /q%, Z) for g € A* (0.1.3) extends to
a global section of R' f,Z on A, but e, is defined only locally on A*, depending on
the choice of T with ¢ = exp(2rit). There is no element of (R' f,Z), that gives e,
in H(C/(Zt +1Z),Z) ~ H'(C*/q%,Z) for g € A* near to 0.

We show that by a magic of the theory of logarithmic structure, H, does extend
over the origin as a local system in the logarithmic world (0.2.4-0.2.10), and the
variation of polarized Hodge structure (Hy, F') also extends over the origin as a
logarithmic variation of polarized Hodge structure (0.2.15-0.2.20).

0.24

By a monoid, we mean a commutative semigroup with a neutral element 1. A
homomorphism of monoids is assumed to preserve 1.

A logarithmic structure on a local ringed space (X, Oy) is a sheaf of monoids
My on X endowed with a homomorphism « : My — Oy, where Oy is regarded as
a sheaf of monoids with respect to the multiplication, such thate : & ~'(O%) — O}
is an isomorphism.

We regard O as a subsheaf of My viaa™".

0.2.5

Example. A standard example of a logarithmic structure is given as follows. Let
X be an analytic manifold, let D be a divisor on X with normal crossings, and
let U = X — D. (That is, locally, X = A" a polydisc with coordinates q, ..., ¢,
D={q---q, =0} (0<r <n),and U = (A*)" x A"".) Then

My = {f € Ox | f is invertible on U} <> Oy

is a logarithmic structure on X. This is called the logarithmic structure on X
associated with D.
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0.2.6

Elliptic curves (continued). Let f : E — A be as in 0.2.1. Define the logarithmic
structure M on A'by taking X = A and D = {0} in 0.2.5, and define a logarithmic
structure Mg on E by taking X = E and D = f~'(0).

Then the stalk of M, is given by My, = (’)Z.q if g e A*, and Mpo=
L,>0 Ox o-q" where the last g denotes the coordinate function of A.

0.2.7
For a complex analytic space X endowed with a logarithmic structure My, let
X" ={(x,h) |x € X:hisa homomorphism My , — S! satisfying (1) below}.
Here
S'={zeC*|lzl=1)
is regarded as a multiplicative group.

h(u) = IZEiL forany u € Oy .. (1

We have a canonical map
. ylog
T:X% > X, (x,h)— x.

The space X'°¢ has a natural topology, the weakest topology for which the map t
and the maps t="(U) — S', (x, h) — h(f), given for each open set U of X and
for each f € I'(U, My), are continuous.

0.2.8

Elliptic curves (continued). For A with the logarithmic structure M,, the shape of
A"t is as in Figure 2. Here, in A2, {0} C A isreplaced by S' since h : Mp g — S
can send g € M, o to any element of S'. Thus, roughly speaking, A'°2 has a shape
like A* (A is an extension of A* over the origin without a change of shape).

A Alog

Figure 2
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Precisely speaking, the inclusion map A* — A!°2 is a homotopy equivalence. From
this, we see that H7 on A* extends to a local system on A8 of rank 2.

We will see in 0.2.10 below, for the continuous map f'°¢ : E'%8 — Al%¢ induced
by f : E — A, all the fibers (f'°¢)~!(p) of any p € A!°8 are homeomorphic to the
surface of a doughnut even if p lies over 0 € A, as described on the right-hand side
of Figure 1. The above local system of rank 2 on A% is in fact the sheaf R' £, (Z).

0.2.9

Example. In 0.2.5, consider the case X = A", D = {q, - - - ¢, = 0}. Then X'"°8 =
(IA] x 8" x A"’ where |A| = {t € R | 0 <t < 1}, which has the natural topol-
ogy. The map 7 : X8 — X is given by ((rj,uj)i<j<r, (Xj)r<j<n) = (Xji<j<n
where x; = r;ju;for1 < j <r.Forx € X, the inverse image =l (x)is isomorphic
to (S")" where m is the number of j such that 1 < j <rand x; = 0.

0.2.10

Elliptic curves (continued). Let f : E — A be the family of degenerating elliptic
curves in 0.2.1. Explicitly, this E is defined as X/ ~, where X = {(#;, ;) € C? |
|tit] < 1} and ~ is the following equivalence relation. Let g : X — A, (t;, 1)
tit,.Fora,b € X,ifa ~ b,then g(a) = g(b). The restriction of ~ to g~ (q) for each
g € Aisdefined as follows. Assume firstg # 0. Consider the map g~'(q) ~ C* —
C* /q? where the first isomorphism is (¢, t,) > t;. Fora, b € g~'(q),a ~ b ifand
only if the images of a, b in CX/qZ coincide, i.e., (b, b;) = (¢"a;, g7 "a,) for some
n € Z. Next assume g = 0. Consider g~'(0) = {(#;, t2) | tt, = 0} — P'(C)/(0 ~
00), where the arrow sends (¢, 0) to ¢; and (0, #;) to 12_1. Then, fora, b € g"'(O),
a ~ b if and only if the images of a, b in P! (C)/(0 ~ 0o) coincide, i.e., a = b or
{a, b} = {(¢, 0), (0, t~")} for some t € C*.

The projection X — E is alocal homeomorphism. The analytic structure and the
logarithmic structure of E are the unique ones for which this projection is locally
an isomorphism of analytic spaces with logarithmic structures.

We have
X" = {(ry, r2, u1, u2) € (Rxg) X (Rx0) xS' x8' | ryry < 1},
A2 = |A| x S

(JAl is as in 0.2.9) and the projection X8 — A€ is (r|,r, u;, us) —
(riry, uyus). The projection X'°8 — E'°2 js a local homeomorphism. For a =
(ri,ra, up,up), @' = (r{,ry, u}, us) € X'"°2_in the case rir, # 0, the images of a
and a’ in E'2 coincide if and only if there exists n € Z such that

ri=ri(nr)", ry=rmr)™, u=uwu)",  uy = u(uu)™".

In the case ryr, = 0, the images of a and a’ in E'°® coincide if and only if either
a=aor

{a,a’} = {(c,0,ur,u3), (0, c™", uy(uyuz), up(ujuz)™")} for some c € Ryo.
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For example, if p = (0,1) € |[A| xS' = A°®, we have a homeomorphism
(f2)="(p) ~ [0, 00]/(0 ~ 00) x S' which sends the image of (c, 0, u;, u;) € X'"¢
in E" (0 (¢, u), and the image of (0, ¢, u,, us) to (¢~', u,). Hence we have a
homeomorphism (f'°8)~!(p) ~ §' x §'.

We show that, for each p € A'°2, there are an open neighborhood V of p and a
homeomorphism

(f®)~"(V)~ v xS' xS

over V. This shows that any fiber of £'°2 : E'2 — Al°2 jshomeomorphictoS' x S'.

Let B := (the complement of (1, 1) in [0, 1] x [0, 1]) C (R>0) x (R>p), and let
A = B xS' xS' C X" Then the projection A — E'"2 is surjective, and we have
a homeomorphism

A/ r\/:) Ek)g,
where for a,a’ € A, a ~ a’ if and only if either a = a’ or
{a. 'Y ={(1,r,uy,u2), (r, 1, u,(uu2), uz(eyuz)™"))

for some r € |A| and for some u;, 1, € S_I . Note that this equivalence relation ~ in
A comes from the equivalence relation associated with the local homeomorphism
X'z — Eloe,

Take a continuous map s : B — [0, 1] such that we have a homeomorphism

B > |AIx[0, 11, (r1,r2) &> (rira, s(r1, ),
and such that
s(r,.rz)::0<:}r2:l, S(h,l"z):]@ﬁ:l.

For example, the function s(ry,ry) = (1—r2)/((1 —ry)+ (1 —ry)) has this
property.

Let p = (rg. ug) € A2 (rg € |A|, up € S') and take an open neighborhood V'
of g in S' and a continuous map k : V' x [0, 11 — S' such that k(u, 1) = k(u, Q)u
for any u € V'. For example, if ug = ¢'” with & € R, we can take V' = {¢/* | a <
A < b} forany fixeda, b € Rsuchthata <8 <band b —a < 27 and k(e'*, 1) =
eMa<i<b 0<t<l).Let

V=[0,D)xV CA® V' ={(u;,u) |y € V'}cS' x8".
Then we have a homeomorphism
BxV"5 Vx[01]x8S',
(rivry, uy, uz) > (ryry, wyng, s(ry, ra), wik(uyug, s(ri, r2))).

The subset B x V" of A is stable for the relation ~, and this homeomorphism induces
a homeomorphism

(Bx V")) ~5 Vx(0.11/(0~ 1)) xS'.
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Since (B x V)] ~ 5 (f'°&)~!(V), we have a homeomorphism
(f®)~'(V) > V x ([0,11/(0 ~ 1)) x §'

over V. Note that [0, 1]/(0 ~ 1) ~ S'.

See [U3] for a generalization of this local topological triviality of the family
E™2 — Al°2 gver the base.

Thus Figure 1 is completely explained.

0.2.11

The above magic for f : E — A is generalized in logarithmic complex analytic
geometry as follows. In logarithmic complex analytic geometry, we consider mainly
logarithmic structures called fs logarithmic structures. '

We say amonoid S is integralifab = acimplies b = cin S. An integral monoid S
is embedded in the group S% = {ab~' | a, b € S}. We say a monoid S is saturated
if it is integral and if a € S8 and a" € S for some integer n > 1 imply a € S. We
say a monoid is fs if it is finitely generated and saturated.

For an fs monoid S, S is a finitely generated abelian group, and S®P is torsion
free if S is torsion free.

Let X be a local ringed space.

Let S be an fs monoid which is considered as a constant sheaf on X, and let 4 :
S — Oy be a homomorphism of sheaves of monoids. The associated logarithmic
structure on X is defined as the push-out S of the diagram

(05 —— S

Ox
in the category of sheaves of monoids, which is endowed with the induced
homomorphism« : S — Oy (for an explicit description of the push-out, see 2.1.1).

A logarithmic structure on X is fs if it is locally isomorphic to the one above.

The logarithmic structure in 0.2.5 associated with a divisor with normal cross-
ings on an analytic manifold is an fs logarithmic structure. This can be checked
locally by the fact that the logarithmic structure on X = A" associated with the
divisor g ---q, =0 (0 < r < n) is induced from the homomorphism N" — Oy,
Mji<j<r — [_[;=I q;'j. Note that N” (the semigroup law is the addition) is an fs
monoid.

An fs logarithmic structure Mx on X is integral, and hence My is embedded in
the sheaf of commutative groups Mip. For an fs logarithmic structure Mx on X,
the stalk (Mx/O%). at x € X is a sharp fs monoid, and, in particular, torsion-free.
Here we say that a monoid S is sharp if S* = {1}, where S* denotes the set of all
invertible elements of S. Hence ((Mx/O%)x)® = (M i” /Ox)y is a free Z-module
of finite rank.

For instance, in the above example X = A", if x = (x;)1<j<» € X and if the
number of those j satisfying 1 < j <r and x; = 0 is m, then (Mx/Ox), ~ N"
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and this monoid is generated by (¢; mod O% ) for such j. (Note that g; € O% |
for the other j’s.) We have (Mip/O;)_\. ~ 7"

An analytic space with an fs logarithmic structure is called an fs logarithmic
analytic space.

For an fs logarithmic analytic space X, the canonical map 7 : X'°¢ — X is proper,
and 17" (x) = (8")" for x € X, where m is the rank of (M5 /O%),.

Here “proper” means “proper in the sense of Bourbaki [Bn] and separated” (see
0.7.5). We keep this terminology throughout this book.

0.2.12

Example: Toric varieties. Let S be an fs monoid, and X := Spec(C[S])an =
Hom(S, C™™") (here C™" denotes the set C regarded as a multiplicative monoid) be
the analytic toric variety. Then S C C[S] — Oy induces a canonical fs logarithmic
structure. We have

X" = Hom(S, RTg" x S')
(here Rg}g“ denotes the set R regarded as a multiplicative monoid).

Using this, we have a local presentation of X'°2 for any fs logarithmic analytic
space X. Let X be an analytic space, let S be an fs monoid, let S — Oy be a
homomorphism, and endow X with the induced logarithmic structure. Then

)(]0g =X XHOI“(S.C""'“) Hom (S, R;]Sh X SI ) (1)

(the fiber product as a topological space).

For a morphism f : ¥ — X of local ringed spaces and for a logarithmic struc-
ture M on X, the inverse image f*M of M, which is a logarithmic structure
on Y, is defined as in 2.1.3. If M is an fs logarithmic structure associated with
a homomorphism & — Oy with § an fs monoid, the inverse image f*M is the fs
logarithmic structure associated with the homomorphism & — Oy induced by f.
Hence the inverse image of an fs logarithmic structure is an fs logarithmic struc-
ture. If f : ¥ — X is amorphism of analytic spaces, for an fs logarithmic structure
M on X and for f*M on Y, we have Y'°¢ = ¥ x x X' as a topological space.
The description of X' in (1) is explained by this since, in that case, the loga-
rithmic structure of X is the inverse image of the canonical logarithmic structure
of Spec(C[SDan-

Example. Let x =0 € A, and define the logarithmic structure M, of x as the
inverse image of M. This logarithmic structure is induced from the homo-
morphism S =N — O, = C, n > (the image of ¢" in O;) = 0" (note 0° = I).
Hence M, = | |,.o(C*-¢") >~ C* xN with e : My > O, =C, ¢c-¢" > c-0"
(¢ € C*,n € N). Thus a one-point set can have a nontrivial logarithmic structure.
We have x'°¢ = §! for this logarithmic structure M,.

0.2.13

The morphism f : E — A in 0.2.1 is an easiest nontrivial example of logarithmi-
cally smooth morphisms (see 2.1.11 for the definition) of fs logarithmic analytic
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spaces. A logarithmically smooth morphism can have degeneration in the sense of
classical complex analytic geometry, but, with the magic of the logarithmic structure,
it can behave in logarithmic complex analytic geometry like a smooth morphism in
classical complex analytic geometry.

A wider example of a logarithmically smooth morphism is a morphism with
semistable degeneration f : ¥ — A (A is endowed with M), that is, a morphism
which, locally on Y, has the form A" — A, (g;)i1<j<n > [—[_',-=l q;j(1 <r < n)with
the logarithmic structure of A" in 0.2.9. Indeed, it is shown in [U3] that, if f is
proper (0.7.5), the associated continuous map f°8 : Y& — Al°g is topologically
trivial locally over the base.

Kajiwara and Nakayama [KjNc] proved the following:

Let f : Y — X be a proper logarithmically smooth morphism of fs logarithmic
analytic spaces. Then, for any m > O, the higher direct image functor R™ f.°
sends locally constant sheaves of abelian groups on Y'°8 to locally constant sheaves
on X8,

An fslogarithmic analytic space X is said to be logarithmically smooth if the struc-
tural morphism X — Spec(C) is logarithmically smooth. Here Spec(C) is endowed
with the trivial logarithmic structure C*. An fs logarithmic analytic space X is log-
arithmically smooth if and only if, locally on X, there is an open immersion of
analytic spaces i : X <> Z = Spec(C[S])ay with S an fs monoid such that the log-
arithmic structure of X is the inverse image of the canonical logarithmic structure
of Z (i.e., the logarithmic structure of X induced by the homomorphism § — Oy
defined by i).

0.2.14

Logarithmic differential forms. The name “logarithmic structure” comes. from its
relation to differential forms with logarithmic poles.

For an fs logarithmic analytic space X, the sheaves of logarithmic differential
g-forms w% on X (g € N) are defined as in 2.1.7. If X is an analytic manifold and D
is a divisor on X with normal crossings, and if X is endowed with the logarithmic
structure associated with D, % coincides with the sheaf Q% (log(D)), the sheaf of
differential g-forms on X which may have logarithmic poles along D. In general, %
is an Ox-module, there is a canonical homomorphism of Ox-modules Q% — %,
w% is the gth exterior power of ), and @ is generated over Oy by €2} and the image
of 2 homomorphism d log : M¥ — w). For a morphism ¥ — X of fs logarithmic
analytic spaces, the logarithmic version w},, y of 2} x is also defined (2.1.7).

Example. Let X = A" with the logarithmic structure as in 0.2.9. Then for x =
(xj)1<j<n € X, the stalk of a)}( at x is a free Ox ,-module with basis (w;)i<j<n
where w; = dlog(g;) if 1 < j <rand x; =0, and w; = dg; otherwise.

For alogarithmically smooth morphism ¥ — X of fs logarithmic analytic spaces,
the sheaf wy,,  is locally free although €2}, y may not be locally free if degeneration
occurs in Y — X. Consider the case n = r = 2 of the last example, and consider
the logarithmically smooth morphism X — A, (x|, x3) > x;x3. The sheaf Q;,/A is
generated by dg; and dg, which satisfy the relation q,dq; + g.dq, = d(q192) = 0.
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This indicates that Q}(/A is not locally free. However, w;{/A is generated by d log(g,)
and d log(q,), which satisty d log(g,) +d log(g2) = d log(q,1q2) = 0. This shows
that w;(/A is a free Ox-module of rank 1 generated by d log(q,).

Example. Let S be an fs monoid and let X = Spec(C[S)), endowed with the
canonical logarithmic structure. Then we have an isomorphism

Ox ®z S 5 a);(, f®g— fdlog(g).

Example. Let x =0 € A and endow x with the inverse image of M,. Then

w! is the one-dimensional C-vector space generated by the image of d log(q) €

T(A, w} ). Thus a one point set can have a nontrivial logarithmic differential form.

Now we talk about Hodge filtration and logarithmic Hodge theory. The key point
is that, for an fs logarithmic analytic space X, we define a sheaf of rings O'c® on X',
Roughly speaking, Ol)?’g is the ring generated over Oy by log(M#P). First, by con-
sidering the example f : E — A of0.2.1, we will see why such a ring is necessary.

0.2.15

Elliptic curves (continued). Let f': E* — A* be as in 0.2.2. Let H, = R' f(Z)
and let M" = R' f(Q%.50)-
We have seen that H;, extends to the focal system Hz = R' £°%(Z)on A%2 (0.2.8).
On the other hand, the Oa+-module M’ with a decreasing filtration F’ (0.2.2)
extends to a locally free Oa-module M = R'f*(a)'E/A) = R' f.(Of LN a)'E/A) of
rank 2 with the decreasing filtration defined by M® = M, M' = f,(of ) — M,
M? = 0. We have

MZOAEIQOA(L)DMI:OA(U, (1)

where we denote by the same letter e, the image of the global section ¢; of
R' f,Z under R' f,Z — R' fu(w},4), and we denote by w the differential form
(2ri)~"dt, /1, on E with logarithmic poles along f~!(0) (where 1, is the coordinate
function of X in 0.2.10).

Although the relation between Hy and M is simply M’ = Oa+ @z Hy, the rela-
tion between Hz and M is not so direct. They are related only after being tensored
by a sheaf of rings Olzg defined below.

Let g be the coordinate function of A. Then on A*, via the identification M’ =
Oa= ®z Hy, we have

w = (27i)~" log(g)es + e (2)

where e, is taken by fixing a branch of the multivalued function (27i)~' log(g),
and the same branch of this function is used in the formula (2). This formula (2)
follows from the fact that the restriction of  to each fiber C* /q% ~ C/(Z1 +Z)
(g € A*, T = Q2ni) 'log(q))isdz = te; + e, on C/(ZT + Z).

Locally on A'°2, ¢, extends to a local section of Hz, and we have

Hy =7Ze\ @D Ze,. 3)
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When we compare (1), (2), and (3), since log(q) in (2) does not extend over the origin
in the classical sense, we do not find a simple relation between Hz and M. However,
log(g) exists on A% locally as a local section of j,8 (O a+) where j'°¢ is the inclusion
map A* < A"%8 In fact, if y = (0, /) € Al°2 = |A| x S' (6 € R), where |A| is
as in 0.2.9, if we take a,b € R such that a <6 < b and b —a < 2, and if we
denote by U the open neighborhood {(r, e*) | r € |A|,a < x < b} of y in Al°®, the
holomorphic map re! +— log(r) +i6 defined on A*NU = {(r,e) |0 <r < 1,
a <0 < b}isanelementof T(A*NU, (’)A*) = T (U, j°8(Oa+)), which is a branch
of log(g). All branches of log(q) in ]* 8((Oa+) are congruent modulo 2miZ. Let
O'°° C jI%(O+) be the sheaf of subrings of ji°%(Ox+) on Al generated over

" (O,) by log(q). Here 77! () is the inverse image of a sheaf. Then from (1), (2),
and (3), we have

Oleg ®r-1(04) t—l(M) = Olgg ®z Hz.

0.2.16

The sheaf of rings Ol;g. For an fs logarithmic analytic space X, we have a sheaf of
rings Olf(’g, which generalizes the above (’)lzg.

First we consider the case X = Spec(C[S])an for an fs monoid S. Let U be the
open subspace Spec(C[S8]), of X, and let j'°8 : U — X'°8 be the canonical map.
Then we define O?g as a sheaf of subrings of ji’(Oy) generated over t~' (Ox) by

the logarithms of local sections of M ,g}p (these logarithms exist in jlog((’)u) and are
determined mod 27iZ just as in the case of A).

The definition of Ol,?g for a general fs logarithmic analytic space X is given
in2.2.4. If the logarithmic structure of X is induced from ahomomorphism S — Oy
with § an fs monoid, we have

O = Ox ®0, OF with Z = Spec(C[S])an

(note that (’)'Zog is explained just above), where we denote the inverse images on X'
of the sheaves Oy, Oz, and O]Z(’g, by Ox, Oz, and Olzog, respectively, for simplicity.
We have a homomorphism log : M® — O'%8/27iZ, and O}® is generated over
t1(Ox) by log(M¥). For an fs logarithmic analytic space X and x € X, if the free
Z-module (MY /O%), is of rank r with basis (f; mod O )i<j< (fj € M¥)),

then for any point y of X'°8 lying over x, the stalk O')?i. of O% i isomorphic to the
polynomial ring in r variables over Ox , by

OxulTiy ..., T, > O, T, > log(f))

(log(f;) is defined only modulo 27iZ but we choose a branch (a representative) for
each j). Let

g.log _ log
0} = O3 @10y T (@)

Then we have the de Rham complex @} °® on X'°¢ with the differential d : %' —
w%t"%8 defined as in 2.2.6.
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Example. LetX = A" endowed with the logarithmic structurein0.2.9. Letx € A"
and let y be a point of X'°¢ lying over x. Let m be the numberof j suchthatl < j <r
andx; = 0. Then the stalk (’)l;)i isapolynomial ring over Oy , inm variables log(g;)
for such j. '

Example. Let x = Spec(C) endowed with an fs logarithmic structure (we will
call such x anfs logarithmic point). Then M, = C* x S for some fs monoid S with
no invertible element other than 1, where o : M, — Csends (c,t) € M, (c € C*,
teS)to0ift#1,and to c if t = 1. Let r be the rank of S which is a free
Z-module of finite rank. We have

x'og ~ (S"y, wA{. ~C', (’)'\"% ~C[T,,....T,] (ye x'g).

0.2.17

Let X be an fs logarithmic analytic space, let x € X, and let y be a point of X'°8
lying over x. The stalk (9',??‘_‘_ is not necessarily a local ring, and has a global ring-

theoretic nature. Let sp(y) be the set of all ring homomorphisms s : O')?g‘ — Csuch
that s(f) = f(x) forany f € Oy_,.If we fix 5o € sp(y), we have a bijection

sp(y) — Hom((M§/0%),, C9), (1
s> (f > s(log(f)) —so(log(f))) for feMP..

Here C™ is C regarded as an additive group.

Let (Hz, F) be a pair of a local system Hy of free Z-modules of finite rank on
X'°¢ and of a decreasing filtration F on the O'g8-module O ®7 Hy such that F”
and (OI;()g ®z Hz)/F" are locally free as Ol)?g—modules for all p. Then, for each
s € sp(y), we have a decreasing filtration F(s) on Hc, = C®z Hz, (called the
specialization of F at s) defined by F’(s) = C®O;)gv F!. Here (’)';()g‘ — Ciss.
We will see later that a nilpotent orbit can be regardea as the family (F(s))sesp(r)
associated with such (Hz, F). The reason why an orbit of Hodge filtrations, called a
nilpotent orbit (not a single Hodge filtration), appears in the degeneration of Hodge
structures is, from the point of view of logarithmic Hodge theory, that the stalk O',?g‘
is still a global ring and we have many specializations at a point y.

0.2.18

Elliptic curves (continued). Let f : E — A be as in 0.2.1, and consider Hz =
R fl%(Z), M = R f.(Of — g, )» and the filtration (M?),, as in 0.2.15. Define
a filtration F on O]Xg ®z Hy by

F''=OF®, 10T (M) COZE®, 10, T (M) = OXE ®7 Hy.

Take y € Al°® lying over 0 € A. We consider the specializations F(s) for s €
sp(y). Take a branch of e, € Hz at y and take the corresponding branch of log(q)
at y. Then F! is a frce O'X"i.-module of rank 1 generated by (27i)~" log(q)e, + e»

y
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(0.2.15 (2)). Since OIX?'.‘, is a polynomial ring in one variable log(q) over O, o, an
element s € sp(y) is determined by s(log(g)) € C. The filtration F(s) is described
as: F(s) = Hc.y, F?(s) = 0,and F'(s) is the one-dimensional C-subspace of Hc y
generated by s((27i)~" log(q))e; + es.

If the imaginary part of s (27i) ™' log(q)) is > O(thatis, if | exp(s(log(q)))| < 1),
then (Hz.,, F(s)) is a Hodge structure of weight 1, and for the antisymmetric pair-
ing (, ): Hg x Hy — Q defined as (e;,e;) =1, (Hzy, (, )y, F(s)) becomes a
polarized Hodge structure.

0.2.19

The observation in 0.2.18 leads us to the notion of “logarithmic variation of polarized
Hodge structure.”

Let X be a logarithmically smooth fs logarithmic analytic space. A logarith-
mic variation of polarized Hodge structure (LVPH) on X of weight w is a triple
(Hz, (, ), F) consisting of a locally constant sheaf Hz of free Z-modules of finite
rank on X'°¢, a bilinear form ( , ) : Ho x Hg — Q, and a decreasing filtration F of

O'%® ® Hy, by O',?g-submodules which satisfy the following three conditions (1)—(3).

(1) There exist alocally free Ox-module M and a decreasing filtration (M?) ez
by Ox-submodules of M such that Ol)?g ®z Hz = (’)l;()g ®-1(0y) T~ (M) and
FP = Ol,?g ®.-1(0y) T (MP) for all p, and such that MP = M for p KO0,
MP =0 for p > 0, and M?/MP*! are locally free for all p.

(2) Let x € X, and let (fj)i<j<n be elements of My , that are not contained
in Oy , such that (f; mod O% ,)i<j<, generates the monoid (Mx/Oy),. Let y €
7= (x) C X'°8. Then if s € sp(y) and if exp(s(log(f;))) are sufficiently near to 0
forall j, (Hzy,(, )y, F(s)) is a polarized Hodge structure of weight w.

() d®z 14,)(F”) C g8 ® e F'~' forall p.
X

0.2.20

Elliptic curve (continued). The pair (Hz, F) in 0.2.18 arising from E — A is an
LVPH on A. (The Griffiths transversality (3) in 0.2.19 is satisfied automatically.)
At a point of A*, the fiber of (Hz, F) is a polarized Hodge structure. However, at
0 € A, the fiber of (Hz, F) should be understood as a family (F(s))sesp(y) for some
fixed y € ~!(0) and for varying s. As is explained in Section 0.4, this family is the
so-called nilpotent orbit. This is expressed in the schema (2) in Introduction.

0.2.21

LVPH arising from geometry. By the weakly semistable reduction theorem of
Abramovich and Karu [AK], any projective fiber space is modified, by alteration and
birational modification, to a projective, toroidal morphism f : ¥ — X without hor-
izontal divisor, which is equivalent to a projective, vertical, logarithmically smooth
morphism (2.1.11; see also 0.2.13) with Coker (M5 /O%) st = (M5 /05),)
being torsion-free at any y € Y.
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Then by Kato-Matsubara-Nakayama [KMN], forany m € Z, a variation of polar-
ized logarithmic Hodge structure (Hz, {, ), F) of weight m on X is obtained in the
following way.

Hz = R"(f'"°®),Z/(torsion),

(, ): Hg x Hy — Q induced from an ample line bundle,

M = R" fu(wyx),

MP = R" f(@7]y) = M

FP=0%®, 110, T (M) > OF® 10, T (M) = O%E @ Hy.

There are many other contributors: [F], [Kf2], [Mal], [Ma2}, [U3], etc.
This is a generalization of work of Steenbrink [St].

0.2.22

The nilpotent orbit theorem of Schmid [Sc] is interpreted as follows (see Theorem
2.5.14).

Let X be a logarithmically smooth, fs logarithmic analytic space, and let
U={xeX|Mx,=05%)betheopen set of X consisting of all points at which
the logarithmic structure is trivial. Let H be a VPH on U with unipotent local
monodromy along X — U. Then H extends to a LVPH on X.

0.2.23

The theory of logarithmic structure was started in p-adic Hodge theory to con-
struct the logarithmic crystalline cohomology theory for varieties with semistable
reduction ([I1], [HK], etc.).

Usually, the theory over p-adic fields begins by following its analogue over C. But
in the theory of logarithmic structure, applications appeared first in p-adic Hodge
theory. We hope that the theory of logarithmic structure will also be useful in Hodge
theory.

0.3 GRIFFITHS DOMAINS AND MODULI OF PH

In [Gl], Griffiths defined and studied classifying spaces D of polarized Hodge

structures. We review the definition of D. We regard D as moduli of polarized

Hodge structures by discarding the Griffiths transversality from VPH (0.3.5-0.3.7).
Fix

(w, (I'llul)p.qel, Hy. (, }o)

where w is an integer, (h”?), ,cz is a family of non-negative integers such that
h?9 =0 unless p+qg = w, h"? # 0 for only finitely many (p, g), and such that
h?4 = h?" for all p,q, Hy is a free Z-module of rank ZM hP9 and (, )ois a
nondegenerate bilinear form Hy g x Hyp. g — Q, which is symmetric if w is even
and antisymmetric if w is odd.
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DEFINITION 0.3.1 The classifying space D of polarized Hodge structures of type
Oy = (w, (h?9)p, 4, Ho, {, )0) is the set of all decreasing filtrations F on Hyc =
C ®gz Hy such that the triple (Hy, ( , )o, F) is a polarized Hodge structure of weight
w and of Hodge type (h"?), 4.

The “compact dual” D of D is defined to be the set of all decreasing filtrations F on
Ho.c such that dimc(F? /FP*'y = h?-*=P for all p that satisfy the Riemann-Hodge
first bilinear relation 0.1.8 (1).

The spaces D and l:) have natural structures of analytic manifolds, and D is an
open submanifold of D.
The space D is called the Griffiths domain and also the period domain.

0.3.2

Examples. (i) Upper half plane. Consider the case w = 1, h''® = h%! =1 and
h?”9 = 0 for other (p, q). Let Hy be a free Z-module of rank 2 with basis e, e,, and
define an antisymmetric Z-bilinear form (, )o : Hy x Hy — Z by (ez, e1)o = 1.
Then D =~ b, the upper half plane, where we identify a point Tt € h with F(r) € D
defined by

FO%t) = Hoc, F'(r)=C(re;+e), F*(1)={0}.
In this case, D is identified with P! (C).

(i) Upper half space (a generalization of Example (i)). Let g > 1 and consider
the case w = 1, k"0 = h%! = g and h”9 = 0O for other (p, q). Let H, be a free
Z-module with basis (ej)i<j<2, and define a Z-bilinear form (, )o: Ho x

Ho—)Zby
0 -1
(e}, ex)o)y, =( ﬂ).
J kO_]k lg 0

Then D = b, the Siegel upper half space of degree g. Recall that |, is the space
of all symmetric matrices over C of degree g whose imaginary parts are positive
definite. We identify a matrix T € h, with F(t) € D as follows:

0/~ | __ (subspace of Hy c spanned ( T 2, N
F(t) = Hoe, F(1) = (by the column vectors of \1,/ )’ F(@) = {0}.

(The symmetry of t corresponds to the Riemann-Hodge first bilinear relation
for F(t) and the positivity of Im(t) corresponds to the second bilinear relation
(cf. 0.1.8).)

(iii) Example withw = 2, h*>? = h%2 = 2, h!'! = 1 (aspecial case of the example
investigated in Section 12.2 where the weight w is shifted to 0). Let Hj be a free
Z-module of rank 5 with basis (e;)i<j<s, and let {, )o : Ho.q x Ho,q — Q be the
bilinear form defined by

I<j=<5 I<j=<5

/ ’ ’ / ’ ’ /
< E cjej, E c_,-ej> = —C1C) — €205 — 3¢5+ cacs +cscy (¢, ¢ € Q).
0
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Let
Q:={(z1:22:23) e PXO) | 2] + 25+ 23 = O},
X = {(Z =(z:1z22:23) € Q, aG(Z, 1Ce)/C(z1e) + 2262 + 23€3),
a ¢ Image(Re; + Re; + Res)

For z € Q, define a decreasing filtration F(z) of Hoc by F/(z) = Hoc for p <
0, F’(z) =0 for p > 3; F%(z) is the two-dimensional C-subspace generated by
z1e1 +z2€3 + z3e3 and es, and F'(z) is the annihilator of F? with respect to { , )o.
Fora € Z?:I Ce;, let N, : Hy.c — Hy.c be the nilpotent C-linear map defined by

3
Ny(es)=a, Ny(b)=—(a,b)oesforbe Y Cej, Ny(es) =0

J=1

Then a + N, is C-linear, and N,N;, = NN, for any a, b. Fora, b € Z , Ce;
andz € Q.exp(N,) F(z) = exp(Np)F(z)ifandonlyifa = b mod C(z¢, —}—2262 +
z3¢3). We have

XS D, z,a) — exp(N,)F(2).

The complex dimension of D is 3.
In this example, D is not a symmelric Hermitian domain.

0.3.3

Let Gz = Aut(Hy, {, )o), and for R = Q, R, C let Ggp = Autg(Ho g, {, )o) and
gr = Lie Gp = {A € Endg(Ho.gr) | (A(x), y)o+ (x, A()))o =0 (Vx,y € Hor)}-

Then D is a homogeneous space under the natural action of Gg. For r € D, let
K, be the maximal compact subgroup of Gg consisting of all elements that preserve
the Hodge metric (, ), associated with r (0.1.8). The isotropy subgroup K| of Gg
atr € D is contained in K, but they need not coincide for general D (cf. [G1], and
also [Sc]). The following conditions (1) and (2) are equivalent for any r € D:

(1) D is a symmetric Hermitian domain.
(2) dim(K,) = dim(K).

034
Examples. Upper half space (continued). In this case, we have, for R = Q, R, C,
Gr=Sp(g. R)={h € GL(2g. R) | 'hJ,h = J,},

where J, = ( ,(l 'OI"' ). The matrix (2 8) € Sp(g. R) acts on D by

F(t) > F(r), T =(At+BX{Ct+D)".
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Letr = F(il,) € D. Then K, = K/, and this group is isomorphic to the unitary
group U(g) by A+iB > (/5 §) € Ke C Sp(g, R).

Example with h*° = %2 =2, B! =1 (continued). As in 0.3.2 (iii), let Q =
{(z) : 72 : 23) € PX(C) | 22 + 23 + 23 = 0}. We have a homeomorphism

3
6:0>8 = {ijej € Hor | xj eR, X7 +x3+x7 = 1}
i=1

characterized as follows. Let z = (a, +iby : ay +iby : a3 +ib3) € Q (a;,b; € R).
Then (a;); and (b;); are orthogonal in R? and have the same length. The charac-

terization of @ is that for 8(z) = Z'jz] cje; €S2, (c;); is orthogonal to (a;); and
(bj)j’ and det((aj)_,-, (bj)j, (Cj)j) > 0.

For v € S%, write
r(v) = exp(iN,)F(6~' (v)) € D.

If we take a basis (f;)i<j<s of Ho g givenby f; :=¢; (j =1,2,3), fa :=e5—
Les, fs = es+ 3es, then ((fj, fi)o)ju = (75*?), and hence Gg ~ O(1,4,R).

2
2 . _ p.g
Furthermore, for v € 8%, for the Hodge decomposition Hyc = @p' ¢ Hew) cor-

responding to r(v), (fj)i<j<4 is a C-basis of H:‘('l?) eaHrO('UZ), fs is a C-basis of
Hrl(‘v'), and ((f;, fi)rwy)jx = 1s. Hence the maximal compact subgroup K, is
04, R) x O(1, R) for the basis (f;)i<j<s5 and is independent of v. For this basis,

the isotropy subgroup K/ . is the image of

r(ez)
A B 0
UQR)xO(l,R) > 04, R)x O(1,R), (A+iB)x(xl)»|—-B A O
0 0 =1

We have dimg (Ky(y)) = 6 > dimg (K ,,) = 4. (This shows, following 0.3.3, that D

r(v)
is not a symmetric Hermititan domain.)

0.3.5

Now we consider the moduli of polarized Hodge structures. We consider what
functors D and I'\ D, for torsion-free subgroups I' of Gz, represent as analytic
spaces. That is, we ask what are Mor 4( , D) and Mor 4( , '\ D) for the category
A of analytic spaces.

We consider Mor 4( , D) first.

For an analytic space X, a morphism X — D is identified with a decreasing fil-
tration F = (F7")pez on the Ox-module Ox ®z Hy having the following properties
(1) and (2).

(1) FP =0Ox®z Hy for p <0, FP =0 for p > 0, and the Ox-modules
F?/FP*! are locally free for all p € Z.
(2) Forany x € X, the fiber (Hyp, {, )o, F(x))is a PH of weight w and of Hodge

type (h"1) 4.
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Here the object (Ox ®z Hp, F) need not satisfy the Griffiths transversality (3) in
Section 0.1.10. Corresponding to the identity morphism D — D, there is a universal
Hodge filtration F on Op ®z Hy, but this F need not satisfy the Griffiths transveral-
ity. Hence, for an analytic space X, we will consider an object (Hgz, (, ), F) which
satisfies all conditions of variation of polarized Hodge structure in 0.1.10 except the
Griffiths transversality (3). The correct name of such an object mightbe “the analytic
family of polarized Hodge structures parametrized by X without the assumption of
Griffiths transversality,” but in this book, for simplicity, we will call this object just
a polarized Hodge structure on X, or, simply, a PH on X.

For an analytic space X, by a PH on X of type ®9 = (w, (h”7),, 4, Ho. ( , )o), we
mean a PH on X of weight w and of Hodge type (h/-9),, , endowed with an isomor-
phism (Hz, (, )) =~ (Hop, { . )o) of local systems on X. Here (Hp, {, )o) is consid-
ered as a constant sheaf on X. Let PH,, (X) be the set of all isomorphism classes of
PH on X of type &q. The above interpretation of Mor 4( , D) isrewritten as follows.

LEMMA 0.3.6 We have an isomorphism PHy, = Mor a( , D) of functors from A
to (Sets).

If H= (Hgz,(, ), F)isaPHon X of type ®yand ¢ : X — D is the correspond-
ing morphism, ¢(x) € D for x € X is nothing but the fiber F(x) of F at x regarded
as a filtration of Hy ¢ via the endowed isomorphism (Hz ., (, )) = (Ho, (. )o).

Let I be a torsion-free subgroup of Gz. Then I'\ D is an analytic manifold. Let X
be an analytic space and let H = (Hyz, (, ), F)beaPHon X. By aTl -level structure
of H, we mean a global section of the sheaf

M\ Isom((Hz. (. ). (Ho. (. )o)),

on X, where (Hy, {, )o) is considered as a constant sheaf on X.

A level structure appears as follows. Let X be a connected analytic space and let
H = (Hz.(, ), F)beaPHon X of weight w and of Hodge type (h”), letx € X,
and define (Hy, (, )o) to be the stalk (Hz . {, )x)- Assume I" contains the image
of m (X, x) = Ggz.Then H has a unique I"-level structure p such that the germ g,
is the germ of the identity map of Hy modulo I'.

Let®, = (w. (h*9) 4, Ho, (. )o, l"). For an analytic space X, by a PH on X of
type @, we mean a PH on X of weight w and of Hodge type (h"9), , endowed
with a T-level structure. Let PHy, (X) be the set of all isomorphism classes of PH
on X of type ®,.

LEMMA 0.3.7 We have an isomorphism PHq, =~ Mor o( . I'\D) of functors from
A to (Sets).

This is deduced from Lemma 0.3.6 as follows. The isomorphism PH, =
Mor 4( , D) in0.3.6 preserves the actions of I'. The functor Mor 4( ,T'\D) : A —
(Sets) is identified with the quotient I'\ Mor 4( , D) in the category of sheaf func-
tors, that is, for each object X of A, Mor 4(X, I'\ D) coincides with the set of global
sections of the sheaf on X associated with the presheaf U +— '\ Mor 4(U, D) on X
(here U is an open set of X). Similarly, PH,, is identified with the quotient '\ PHg,
in the category of sheaf functors. Hence PH, >~ Moru( . T\D). O
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There is a torsion-free subgroup of Gz of finite index. More strongly, there is a
neat subgroup of Gz of finite index (see 0.4.1 below).

0.3.8

We emphasize again here that the moduli conditions for PH,, and PH, do not
contain the Griffiths transversality on X (0.1.10 (3)). Griffiths transversality should
be understood as an important property of the period map, which is satisfied by
period maps coming from geometry. Let X be an analytic manifold, let H be a PH
on X of type ®¢, and let ¢ : X — D be the morphism corrsponding to H (the period
map of H). Then the following two conditions (1) and (2) are equivalent.

(1) H satisfies the Griffths transversality.
(2) The image of the morphism of tangent bundles d¢ : Ty — Tp induced by ¢
is contained in the horizontal tangent bundle T} C Tp.

Here the horizontal tangent bundle is defined by
Tp = F~'(€nd ,(Hp))/F°(End, ,(Ho))
C Tp = End( \(Ho)/F°(End ,(Ho))

where End y(Ho) ={A € Endo(Hp) | (Ax,y)+(x, Ay) =0 (Vx,y € Hp)}
and F(End y(Hp))isthefiltrationon &nd ) (He) induced by the universal Hodge
filtration on Hp = Op ®z Hy ([G2]; also [Sc]).

In particular, by applying this equivalence to the identity morphism of D, we see
that the universal PH on D satisfies the Griffiths transversality if and only if the
tangent bundle of D coincides with the horizontal tangent bundle. These equivalent
conditions are satisfied by Example (ii) (and hence by Example (i)) but not by
Example (iii) in 0.3.2. In Example (iii) in 0.3.2, Tg is a vector bundle of rank 2
whereas Tp is of rank 3.

0.3.9

Let f:Y — X be a projective, smooth morphism of analytic manifolds. Fix a
polarization of Y over X. Let (Hg, {, ), F) be the associated VPH (0.1.11). Assume
that X is connected, fix abase pointx € X,and let (Hp, {, )o) := (Hz.x, {, )x),and
assume that I' := Image(m; (X, x) — Aut(Hy, (, )o) is torsion-free. Let ¢ : X —
'\ D be the associated period map (0.3.7). For the differential dg of the period map
@, Griffiths obtained the following commutative diagram:

d -
Tx LN O Th , = gr7' End ) (Ho)

| |

via coupling -1
R' f.Ty,x

B Homo, (R™ £,920, 4, "7 £,Q071)

P

where T,f'\ p is the horizontal tangent bundle in the tangent bundle Tr\p, K-S on the
left vertical arrow means the Kodaira-Spencer map, and the right vertical arrow is
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the canonical map (for details, see [G2]). The bottom horizontal arrow is often more
computable than the top horizontal arrow. This gives a geometric presentation of
the differential of the period map.

0.4 TOROIDAL PARTIAL COMPACTIFICATIONS
OF I'\D AND MODULI OF PLH

We discuss how to add points at infinity to D to construct a kind of toroidal partial
compactification '\ Dy, of I'\ D. Since “nilpotent orbits” appear in degenerations
of Hodge structures, it is natural to add “nilpotent orbits” as points at infinity. We do
this in 0.4.1-0.4.12. We describe the space '\ Dy, in 0.4.13-0.4.19. We then explain
in 0.4.20-0.4.34 that this enlarged classifying space is a moduli space of “polarized
logarithmic Hodge structures.”

We fix (w, (h"9), 4ez, Ho. {, )o) as in Section 0.3.

0.4.1

We say a subgroup I' of Gz is neat if, for each y € T', the subgroup of C* generated
by all the eigenvalues of y is torsion-free. It is known that there exists a neat
subgroup of Gz of finite index (cf. [B]). A neat subgroup of Gz is, in particular,
torsion-free.

Let " be a neat subgroup of Gz. We will construct some toroidal partial
compactifications of I'\ D by adding “nilpotent orbits” as points at infinity.

DEFINITION 0.4.2 A subset o of gr = Lie Gr (0.3.3) is called a nilpotent cone if
the following conditions (1)—(3) are satisfied.

(1) 0 =(R50)N;+---+ Rxo)N, for some n>1 and for some Ni,...,
N, €o.

(2) Any element of o is nilpotent as an endomorphism of Ho R.

(3) NN’ = N’'N forany N, N’ € o as endomorphisms of Hy g.

A nilpotent cone is said to be rational if we can take Ny, ..., N, € gq in(1)above.

04.3

For a nilpotent cone o, a face of ¢ is a nonempty subset T of o satisfying the
following two conditions.

(1) Ifx,y e tanda € Rsp, then x + y, ax € 7.
2) Ifx,ycoandx+yert,thenx,yer.

One can show that a face of a nilpotent cone (resp. rational nilpotent cone) is
a nilpotent cone (resp. rational nilpotent cone), and that a nilpotent cone has only
finitely many faces.

For example, let N; € gr (1 < j < n) be mutually commutative nilpotent ele-
ments that are linearly independent over R. Then o := }_, (R50) N; is a nilpotent
cone, and the faces of o are ;. ,(Rx0)N; for finite subsets J of {1, ..., n}. '
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DEFINITION 0.4.4 A fan in gq is a nonempty set T of rational nilpotent cones in
gr satisfying the following three conditions:

(1) Ifo € X, any face of o belongs to X.
(2) Ifo,0' € £, 0 N0’ is aface of o and of 0.
(3) Any o € X is sharp. That is, o N (—0o) = {0}.

0.4.5
Examples. (i) Let

& := {(R>0)N | N is a nilpotent element of gq}.
Then E is a fan in gq.

(ii) Let o € gr be a sharp rational nilpotent cone. Then the set of all faces of o is
a fan in gq.

0.4.6
Nilpotent orbits. Let o be a nilpotent cone in gg = Lie Gg. For R =R, C, we

denote by oy the R-linear span of ¢ in gg.

DEFINITION 0.4.7 Let 0 = Zlfjsr(RZO)Ni be a nilpotent cone. A subset Z of D

is called a o-nilpotent orbit if there is F € D which satisfies Z = exp(oc)F and
satisfies the following two conditions.

(1) NFP C FP~1 (¥Yp, YN € o).
(2) exp(}1<j<, 2iN))F € D ifzj € Cand Im(z;) > 0.

In this case, the pair (o, Z) is called a nilpotent orbit.
DEFINITION 0.4.8 Let X be a fan in gq. We define the space Dy of nilpotent orbits
in the directions in by

Dy :={(0,Z)|c€X, ZCD is a o -nilpotent orbit}.

Note that we have the inclusion map

D — Dz, F ({0} {F}.

For a sharp rational nilpotent cone o in gg, we denote Digee of 5} by D, Then,
for a fan X in gq, we have Dy = U,ex D,

0.4.9

Upper half plane (continued). Let E be as in 0.4.5. Then Dz = D UP'(Q). This is
explained as follows. For a € P'(Q), let V, be the one-dimensional R-vector sub-
space of Hy g correspondingtoa, thatis, V, = R(ae; + e;)ifa € Q,and V, = Re;.
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For a € P'(Q), define a sharp rational nilpotent cone o, € E by

os={N €gr | N(HoRr) C Vo, N(V,) = {0},
(x, N(x))o = 0 forany x € Hyr}.

We identify a € P'(Q) with the nilpotent orbit (o, Z,) € Dz where Z, = {F €
D | F' # V, c). For example,

(0 Ry _ | X
Um—(O 0), Zo=CcCP(C)=D.

DEFINITION 0.4.10 Let X be a fan in g and let T" be a subgroup of Gz.
(i) We say I is compatible with T if the following condition (1) is satisfied.

(1) Ify eTando € %, then Ad(y)(c) € . Here, Ad(y)(0) = yoy~.
Note that, if T is compatible with ¥, T" acts on Dy, by

y:(0,Z)— (Ad(y)(0).yZ) (yel).

(it) We say T is strongly compatible with X if it is compatible with & and the
following condition (2) is also satisfied. For o € %, define

(o) ;=T Nexp(o).

(2) The cone o is generated by log ' (o), that is, any element of o can be written
as a sum of alog(y) (a € Rxq, ¥y € I'(0)).

Note that T' (o) is a sharp fs monoid and T (0 )8 = T" Nexp(oR).

0.4.11

Example. If £ = & in 0.4.5 and T is of finite index in Gz, then T is strongly
compatible with . If ¥ = E and T is just a subgroup of Gz, it is compatible with
% but is not necessarily strongly compatible with .

0.4.12

Assume that " and X are strongly compatible.

In Chapter 3, we will define a topology of I'\ Dy, for which '\ D is a dense open
subset of I'\ Dy and which has the following property. Let (o, Z) € Dx, F € D,
and N; € gr (1 < j <n),and assume o = Zf;zl (R>0)N;. Then

n
exp Zz_,-Nj FmodI'
j=1

— ((0,Z)mod T") ifz; € Cand Im(z;) — oo (V j).

Furthermore, in Chapter 3, we will introduce on I'\ Dy, astructure of a local ringed
space over C and also a logarithmic structure. In 0.4.13 (resp. 0.4.18), we describe
what this local ringed structure looks like in the cases of Examples (i) and (ii)
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(resp. Example (iii)) in 0.3.2. If T is neat, the logarithmic structure M of I'\ Dy
is an fs logarithmic structure and has the form M = {f € O | f is invertible on

r\D} <% O for the structure sheaf of rings O of I'\ Dg.

0.4.13
Examples. Upper half plane (continued). For

F-(O l)CSL(Z,Z), a—aoo_<0 O)’

we have a commutative diagram of analytic spaces

A* ~ T\D
N N
A =~ T\D,.

Here the upper isomorphism sends e?*'* € A* (1 € h = D)to (r mod I'); the lower
isomorphism extends the upper isomorphism by sending 0 € A to the class of the
nilpotent orbit ((0y, C) mod I).

Next we consider a subgroup I' of Gz of finite index. Let 0 = 0. Letn > | and
let I' = I'(n) be the kernel of SL(2, Z) — SL(2,Z/nZ). Then

T(o) = ((1) ”F) T@)® =TnN <(') ?) - (é ”]Z>

[ is neat if and only if n > 3. For n > 3, as is well known in the theory of modular
curves, we have the following local description of '\ Dz at the boundary point
(co mod T) in T\ Dz = I'\(HUP'(Q)). We have

local isom

A 5 T'(0)®\Dy —5 '\ Dz,

where the first arrow is an isomorphism of analytic spaces which sends g € A*
to (t mod I'(0)#P) with ¢ = ¢*'*/", and sends 0 € A to ((0s, C) mod I'(c)2P),
and the second arrow is the canonical projection and is locally an isomorphism of
analytic spaces.

Upper half space (continued). We consider the case g = 2, i.e., D = hj. Let U
be the open set of C* defined by

U={(qi,qa) € A*xC|ifqg, #0,
then log(lg: 1) log(lg21) > (27 Im(a))*}.
Let Ny, N; € gr = sp(2, R) be the nilpotent elements defined by
Ni(e3) =€), Ni(e;) =0for j #3, Nay(es) = ez, No(ej) =0 for j #4.
Then

a b\ a4tz b
exp(Z|N|+ZzN2)F<b c)_F( b C+Zz)

for any z|, z2,a, b, c € C. Let

o = (R>0)N1 + (Rx>0)N> C gr.



No part of this book may be reproduced in any form by digital or mechanical means
without prior written permission of the publisher.

34 CHAPTER O

For ' = exp(ZN; +ZN;) = 1 +ZN, +ZN,, T is strongly compatible with the
fan {{0}, (R>0)N;, (R>0)N>, o} of all faces of o, and we have the following
isomorphism of analytic spaces. For g; = ¢*"'",

A’ x C DU ~T\D,,

(91,92, a) = F (2‘ ;12) mod I' (q192 # 0),

C
0, g2, a) > ((Rzow., F (a ;‘2

)) mod ' (g # 0),

(1,0, a) — (RzoNz. F (2’ g)) mod [ (g # 0).

0,0,a) — <a, F (S é)) mod T'.

More generally, for any strongly compatible pair (I", £) such that ¢ € £ and
I" is neat and such that I'(0)® = exp(ZN, + ZN,), the above isomorphism U >~
I"(0)8\ D, induces a morphism of analytic spaces U — I'\ Dy which is locally an
isomorphism.

0.4.14

We say that we are in the classical situation if D is a symmetric Hermitian domain
and the tangent bundle of D coincides with the horizontal tangent bundle. Example
(i) (and hence Example (i)) in 0.3.2 belongs to the classical situation, but Example
(ii1) does not.

In the classical situation, I'\ Dx is a toroidal partial compactification as con-
structed by Mumford et al. [AMRT]. Under the assumption D # §, the classical
situation is listed as follows.

Case (1) w =2t + 1, A"t = o'+ > 0, k4 = 0 for other (p, q).
Case (2) w = 2t, k' =1 = p'=t1+1 < | "' > 0, h”9 = 0 for other (p. q).

For general D, the space I'\ Dy is not necessarily a complex analytic space
because it may have “slits” caused by “Griffiths transversality at the boundary”.
But still it has a kind of complex structure, period maps can be extended to I'\ Dy,
and infinitesimal calculus can be performed nicely. This was first observed by the
simplest example in [U2].

In the terminology of this book, '\ Dy is a “logarithmic manifold,” as explained
in 0.4.15-0.4.17 below.

0.4.15

Strong topology. The underlying local ringed space over C of I'\Dyx is not
necessarily an analytic space in general. Sometimes, it can be something like

(1) S:={(x,y) e C*| x #0}U{(0.0)} = {(x, y) € C? | if x =0, then y = 0}
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endowed with a topology that is stronger than the topology as a subspace of C2,
called the “strong topology.”

Let Z be an analytic space and S be a subset of Z. A subset U of S is open in the
strong topology of S in Z if and only if, for any analytic space ¥ and any morphism
A:Y — Zsuchthat A(Y) C S, A" (U) isopenon Y.

If S is a locally closed analytic subspace of Z, the strong topology coincides with
the topology as a subspace of Z. However the strong topology of the set S in (1) is
stronger than the topology as a subspace of C2. For example,

(2) Let f : R,o — R, be a map such that for each integer n > 1, there exists
g, > 0 for which f(s) <s"if 0 < s < &,. (An example of f(s) is e~'/*.) Then, if
s > 0ands — 0, (f(s), s) converges to (0, 0) for the topology of S as a subspace of
C?, but it does not converge for the strong topology (see 3.1.3). (Roughly speaking,
(f(s), s) runs too near to the “bad line” {0} x C.)

0.4.16
Categories A, A(log), B, B(log). We define the categories
AcC B, A(log) C B(log)

as follows (cf. 3.2.4).
We denote by

A,  A(log),

the category of analytic spaces and the category of fs logarithmic analytic spaces,
respectively.

Let B be the category of local ringed spaces X over C (over C means that Oy
is a C-algebra) having the following property: X has an open covering (U, ), such
that, for each A, there exists an isomorphism U, 2 S, of local ringed spaces over
C for some subset S, of an analytic space Z,, where S, is endowed with the strong
topology in Z, and with the inverse image of O, .

Let B(log) be the category of objects of B endowed with an fs logarithmic
structure.

0.4.17

Logarithmic manifolds. Our space I'\ Dy is a very special object in B(log), called
a “logarithmic manifold” (cf. Section 3.5).

We first describe the idea of the logarithmic manifold by using the example
S C C?in 0.4.15 (1). Let Z = C? with coordinate functions x, y, and endow Z
with the logarithmic structure Mz associated with the divisor “x = 0.” Then the
sheaf w}, of logarithmic differential forms on Z (= the sheaf of differential forms
with logarithmic poles along x = 0) is a free Oz-module with basis (d log(x), dy).
For each z € Z, let w! be the module of logarithmic differential forms on the point
z which is regarded as an fs logarithmic analytic space endowed with the ring C and
with the inverse image of Mz. Then, if z does not belong to the part x = 0 of Z, z is
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just the usual point Spec(C) with the trivial logarithmic structure C*, and ! = 0.
If z is in the part x = 0, z is a point Spec(C) with the induced logarithmic structure
M. =|],.oC*x" =~ C* x N, and hence a)' is a one-dimensional C-vector space
generated by d log(x). Thus w! is not equal to the fiber of w}, at z which is a two-
dimensional C-vector space with basis (d log(x), dy). Now the above set S has a

presentation
S = {z € Z | the image of yd log(x) in wZ' is zero}. (N

Recall that zeros of a holomorphic function on Z form a closed analytic subset of Z.
Here we discovered that S is the set of “zeros” of the differential form yd log(x)
on Z, but the meaning of “zero” is not that the image of yd log(x) in the fiber of
w'Z is zero (the latter “zeros” form the closed analytic subset y = 0 of Z). The set
“zeros in the new sense” of a difterential form with logarithmic poles is the idea of
a “logarithmic manifold.”

The precise definition is as follows (cf. 3.5.7). By a logarithmic manifold, we
mean a local ringed space over C endowed with an {s logarithmic structure which
has an open covering (U,), with the following property: For each A, there exist
a logarithmically smooth fs logarithmic analytic-space Z,, a finite subset I, of
I'(Z,, w'zx), and an isomorphism of local ringed spaces over C with logarithmic
structures between U, and an open subset of

Sy = {z € Z, | the image of I, in w' is zero}, )

where Sy is endowed with the strong topology in Z, and with the inverse images of
OZ,\ and MZA .

0.4.18

Example with h*>° = h%2 =2, k"' = | (continued). Let " be a neat subgroup of
Gy of finite index. We give a local description of the space I'\ Dz and observe that
this space has a slit.

Fixv e §*N (Z‘;zl Qe;) and fix a nonzero element v’ on‘;:, Re; which is lin-
early independent ofvover R. Define ¢ € Q. byI'N exp(QN,',) = exp(¢ZN,). Let

U=1{(g.,a,z)e C’x Q| (q.a, 2) satisfies (1) and (2) below}.

(1) If g #0 and g = *™*, then (Im(t)v +Im(a)v’, 6(z))o < O (for 8, see
0.3.4).
(2) If g =0, then 6(z) = v.

Endow U with the strong topology in Z := C? x Q, with the sheaf of rings Oy,
and with the inverse image of the logarithmic structure of Z associated to the divisor
g = 0. By the above condition (2), U has a slit and it is not an analytic space. But
U is a logarithmic manifold.

Let 0 = (R>0)N,. We have morphisms of local ringed spaces over C with
logarithmic structures

U - TI'(0)*\D, - I'\Dz
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which are locally isomorphisms, and the left of which sends (g, @, z) € U totheclass
ofexp(tN, +aN,)F(z) = exp(tN,) exp(aN,)F(z)ifq # Oand g = ¢**'*/¢, and
to the class of (o, exp(oc) exp(aNy)F(z)) if g =0and 6(z) = v.

The above local description of I'\ Dz is obtained from Proposition 12.2.5. Note
that ey, e, in Section 12.2 are e, s here, respectively. The slit in I'\ Dz correspond-
ing to the slit in U appears by “small Griffiths transversality,” as explained in 0.4.29
below.

THEOREM 0.4.19 (cf. Theorem A in Section 4.1) Let X be a fan in gg and let T" be
a neat subgroup of Gz which is strongly compatible with X.

(i) Then I'\Dy, is a logarithmic manifold. It is a Hausdorff space.
(i) Forany o € X, the canonical projection " (0)8\D, — I'\Dy is locally an
isomorphism of logarithmic manifolds.

The Hausdorff property of I'\ Dy is by virtue of the strong topology. Proposition
12.3.6 gives an example such that I"\ Dy, is not Hausdorff if we use a naive topology
that is weaker than the strong topology.

Now we consider a polarized logarithmic Hodge structure and its moduli.

0.4.20

For an object X of B(log), a ringed space (X'°¢, O'8) is defined just as in the case
of fs logarithmic analytic spaces (see Section 2.2). It is described locally as follows.
Assume that the logarithmic structure of X is induced from a homomorphism & —
Ox with S an fs monoid. Let Z = Spec(C[S1)an- Then

X‘Og - X Xz Z'Og = X .xHom(S.C'“‘-‘“) HOm(S, Rggh X Sl), Ol;)g - OX ®OZ Olgg

0.4.21

Let X be an object of B(log). A prepolarized logarithmic Hodge structure ( pre-PLH)
on X of weight w is a triple (Hg, ( , ), F) consisting of a locally constant sheaf Hz
of free Z-modules of finite rank on X8, a bilinear form (, ) : Hg x Hg — Q,

and a decreasing filtration F on Ol,z’g ®z Hz by O',?gAsubmodules which satisfy the
following condition (1).

(1) There exist a locally free Ox-module M and a decreasing filtration (M?) ez
by Ox-submodules of M such that M? = M for p < 0, M?” =0 for
p > 0,and MP / MP*! are locally free for all p, and such that Ol,?g ®z Hz =
OE ®.-1(og) T (M)and FP = o' ®.-1(0y) T (MP) forall p. Further-
more, the annihilator of F7 with respect to (, ) coincides with Fw+1=p for
any p.

We give two remarks concerning pfe-PLH.
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(i) If H = (Hz.(, ), F)is a pre-PLH on X, the Ox-modules M and M?” in
(1) above are determined by H as

M = 1,(ON @z Hz), M?" = 1.(FP).

This follows from Proposition 2.2.10.
(i1) (Proposition2.3.3 (ii))If (Hz, (, ), F)isapre-PLHon X, thenforanyx € X
and for any y € X'°¢ lying over x, the action of 7, (x'¢) on Hgz_, is unipotent.

0.4.22

Let X be an object of B(log) and let H = (Hg, (, ), F) be a pre-PLH on X. We
call H a polarized logarithmic Hodge structure (PLH) on X if for each x € X, it
satisfies the following two conditions.

Positivity on x. Let y be any element of X'°¢ lying over x. Take a finite family f;
(I < j <n) of elements of My , which do not belong to O% . such that the
monoid (Myx/Ox), is generated by the images of f;. Then, if s € sp(y) and
if exp(s(log( f;))) are sufficiently near to O, (Hz y, {, )y, F(s)) is a polarized
Hodge structure.

Griffiths transversality on x. (d @ 111,)(F”|10e) C w_{flog ® ol (Fr! [ loe) for
any p.

Here O and ! are those of the point x = Spec(C) endowed with the inverse
image of My, and F|,i., denotes the module-theoretic inverse image of F under the
morphism of ringed spaces (x'°¢, O'%) — (X'o¢, O';’g).

In other words, PLH is a pre-PLH whose pullback to the fs logarithmic point x for
any x € X satisfies the conditions in 0.2.19 for an LVPH (we take x as X in 0.2.19
here). Although x is not logarithmically smooth unless the logarithmic structue of
x is trivial, the conditions in 0.2.19 make sense when we replace X there by x.

In the case that X is a logarithmically smooth, fs logarithmic analytic space, the
validity of the above Griffiths transversality on x for all x € X (we call this the
small Griffiths transversality) is much weaker than the Griffiths transversality (3)
in 0.2.19 (we call this the big Griffiths transversality). In fact if the logarithmic
structure of X is trivial (that is, My = O%), wy'°® = 0 for any point x € X, and
hence the small Griffiths transversality is an empty condition. Hence an LVPH on
X isaPLH on X, but a PLH on X is not necessarily an LVPH on X.

0.4.23

In 0.4.23-0.4.25, we will see that the notion of a “nilpotent orbit” is nothing but a
“PLH on an fs logarithmic point”.

Let x be an fs logarithmic point. Then x'°¢ ~ Hom(M$*/O*,S") and hence
7 (x'°8) > Hom(M$* /O, Z). Let 7} (x'°¢) C 7, (x'°¢) be the part corresponding
to the part Hom(M, /O, N) C Hom(M{" /O, Z). Then 7r;" (x'°¢) is an fs monoid.
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PrOPOSITION 0.4.24 (cf. Propositions 2.5.1, and 2.5.5) Let x be an fs logarithmic
pointand let H = (Hz, (, ), F) be apre-PLH on x. Let y € x'og,

(i) Let hj e Hom(M/OX,Z) (1 < j < n), let y; € 7, (x'8) be the element
corresponding to hj, and let N; : Ho , — Hgq,, be the logarithm of the (unipotent)
action of yj on Hg y. Let 7; € C (1 < j < n), 5o € sp(y), and let s be the element
of sp(y) characterized by

s(@ri) ™" log(f)) —so(2ri)" log(f) = Y _z;h;(f) forany f e M

j=1

(see 0.2.17). Then

F(s) = exp ZZij F(s0)-

j=1

(ii) Let (yj)i1<j<n be a finite family of generators of the monoid JT|+ (x'°8) and
let Nj : Ho.y — Hq,y be the logarithm of the action of y; on Hq y. Fix s € sp(y).
Then H satisfies the positivity on x in 0.4.22 if and only if the following condition
is satisfied:

n
Hz ., (, )y,exp szNj F(s) | isa PHifIm(z;) >» 0 (Vj).
j=1

(iii) Let N; (1 < j <n) be as in (ii) and let s € sp(y). Then H satisfies the
Griffiths transversality on x in 0.4.22 if and only if

N,;F’(s) C F'~"(s) for any j and p.

0.4.25

With the notation in (ii) in 0.4.24, let o0 = Z_';ZI(REO)Nj. By (i) of 0.4.24,
{F (s)}sesp(yy 15 an exp(oc)-orbit. By (ii) and (iii) of 0.4.24, this exp(oc)-orbit is
a o -nilpotent orbit if and only if H is a PLH on x. In other words,

(a PLH on an fs logarithmic point) = (a nilpotent orbit).

Hence if H is a PLH on an object X of B(log), for each x € X, the pullback H (x) of
H to the fs logarithmic point x is regarded as a nilpotent orbit. This fact is presented
in schema (2) in Introduction.

0.4.26

We generalize the functor PH,,, : /A — (Sets) in 0.3.7 to the logarithmic case.

Let I' be a neat subgroup of Gz and let ¥ be a fan in gg. Assume that I" and X
are strongly compatible (0.4.10). Let ® = (w, (A"9), 4, Ho, {, )o, T, ).

Fora PLH H = (Hz, (, ), F) on X, by a I'-level structure on H, we mean a
global section of the sheaf I'\ Isom((Hz, { , )), (Ho, {, )g)) on X'"&.
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We define a functor PLH,, : B(log) — (Sets) as follows. For X € B(log), let
PLH,, (X) be the set of all isomorphism classes of PLH on X of type (w, (h*9) ), 4ez)
endowed with a I'-level structure u satisfying the following condition:

For any x € X, any y € x'°¢ and a lifting /i, : (Hz.y, (. )y) > (Ho, (, )o) of
the germ of u at y, we have the following (1) and (2).

(1) There exists ¢ € X such that

by itv
Image (7;} (x'¢) — Aut(Hz.,) 20 Aut(Hp)) C exp(0).

(2) For the smallest such 0 € X and for s € sp(y), exp(oc)it,(F(s)) isa o-
nilpotent orbit.

Note that the Griffiths transversality that is required for PLH is only the
Griffiths transversality. But this definition fits well the moduli problem.
Now the precise form of Theorem for Subject I in Introduction is stated as follows.

THEOREM 0.4.27 (cf. Theorem B in Section 4.2) Let I" be a neat subgroup of G
and let T be a fan in gg. Assume that " and T are strongly compatible.

(i) The logarithmic manifold T\ Dy represents the functor PLH,, : B(log) —
(Sets), that is, there exists an isomorphism ¢ : PLH,, 5 Mor( ,T"'\Dxy).

(ii) Forany local ringed space Z over C with a logarithmic structure (which need
not be fs) and for any morphism of functors h : PLHg, | agog) = Mor( , Z)| q0g)
(where | oq0g) denotes the restrictions to A(log)), there exists a unique morphism
f :T\Ds —Z such that h = (f o ¢)| Aqog), Where f is regarded as a morphism
Mor( ,I'\Dg) — Mor( , Z).

0.4.28

For X € B(log) and for H = (Hz, (. ), F, u) € PLH4(X), the morphism ¢y :
X — I'\Dg corresponding to H is called the associated period map, which is set-
theoretically given by sending x € X to the I'-equivalence class of the nilpotent orbit
(0, exp(oc)ii, (F(s))) atx (which is independent of the choices of y, ji,, and s) in
0.4.26 (2). Note that this map is an extension of the classical period map. If U is an
open set on which the logarithmic structure of X is trivial (that is, Mx|y = o),
then the restriction (Hz, (, ), F, n)|y is a PH on U with a I'-level structure, and
the period map of H is an extension of the period map U — '\ D.

Theorem 0.4.27 (ii) characterizes I'\ Dg as the universal object among the tar-
gets of period maps from objects of A(log) into local ringed spaces over C with
logarithmic structures. This indicates that the topology of I'\ Dy, its ringed space
structure, and the logarithmic structure, that we define in this book are in fact intrinsic
structures (not artificial ones) determined by this universality.

0.4.29

The reason that the moduli space I'\ Dy, of PLH is not necessarily an analytic space
but a logarithmic manifold is as follows. We also explain why slits and the strong
topology naturally appear.
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Any PLH of type ® on an fs logarithmic analytic space X (2.5.8) comes, locally
on X, from a universal pre-PLH H, on some logarithmically smooth, fs logarithmic
analytic space E, (3.3.2) for some o € X by pulling back via a morphism X — E,
(cf. Sections 3.3 and 8.2). Let

Ea ={x € EV(7 | the inverse image of H, on x satisfies Griffiths transversality},

DE,={xe€e E,, | the inverse image of H, on x is a PLH}.

Locally on E,, E, is the zeros in the new sense (0.4.17) of a finite family of
differential forms on E,, (see Proposition 3.5.10). Hence E, can haveslits. (Note that
the Griffiths transversality of the inverse image of H, onx € E,, is the small Griffiths
transversality (0.4.22).) Furthermore, as in Theorem A (i) stated in Section 4.1, we
have

E, is open in E, for the strong topology of E, in E,.

This openness is not true in general if we use the topology of E, as a subset of E,
(12.3.10). Consequently, E, is a logarithmic manifold.

For a neat subgroup I' of Gz and a fan ¥ in gq that are strongly compati-
ble, the local shape of I'\ Dy is similar to that of E,. More precisely, I'\Dyx is
covered by the images of morphisms I'(0)8P\D, — I'\Dyx (0 € X) which are
locally isomorphisms, and E, is a oc-torsor over I'(0)8\D,, where oc is the
C-vector space spanned by o (Theorem A (iii) and (iv) in Section 4.1). Thus,
slits, the strong topology, and logarithmic manifolds naturally appear in the moduli
of PLH.

In the nonlogarlthmlc case where X consists of one element {0} and I = {1},
Eq = D with the universal H, and we have Eq = D and Ejg = D.

Example with h>0 = k%2 = 2, h'"! = [ (continued). In this example, the fact that
the slit “if ¢ = 0 then v = 6(z)” appears from the small Griffiths transversality is
explained as follows. Let U C C? x Q be as in 0.4.18. The pullback on U of the
universal PLH on I'\ Dz extends to a pre-PLH H = (Hgz, (, ), F) on the fs loga-
rithmic analytic space C? x Q whose logarithmic structure is defined by the divisor
{(g,a,2) € C* x Q | g =0}. For x = (0, a, z) € C? x Q, the inverse image of H
on x satisfies Griffiths transversality if and only if v = £6(z).

One of the motivations of the dream of Griffiths to enlarge D was the hope of
extending the period map of VPH to the boundary. Concerning this, we have the
following result.

THEOREM 0.4.30 (Theorem 4.3.1) Let X be a connected, logarithmically smooth,
fs logarithmic analytic space and let U = Xyiy = {x € X | Mx , = O% .} be the
open subspace of X consisting of all points of X at which the logarithmic structure
of X is trivial. Let H be a variation of polarized Hodge structure on U with unipo-
tent local monodromy along X — U. Fix a base point u € U and let (Hp, {, o) =
(Hz., {, Yu)- Let T be a subgroup of Gz which contains the global monodromy
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group Image(m| (U, u) — Ggz) and assume T is neat. Let ¢ : U — T'\D be the
associated period map.

(i) Assume that X — U is a smooth divisor. Then the period map ¢ extends to
a morphism X — T'\Dx. of logarithmic manifolds for some fan X in gq that is
strongly compatible with T.

(i) For any x € X, there exist an open neighborhood W of x, a logarithmic
modification W' of W, a commutative subgroup I'' of T', and a fan T in gq that is
strongly compatible with T’ such that the period map ¢|ynw lifts to a morphism U N
W — I\ D and extends to a morphism W' — I\ Dx. of logarithmic manifolds.

Here in (ii) a logarithmic modification is a special kind of proper morphism
W’ — W which is an isomorphism over U N W (3.6.12). This theorem can be
deduced from the nilpotent orbit theorem of Schmid and some results for fans.

Note that (i) can be applied to X = A. '

Elliptic curves (continued). In theorem 0.4.30, consider the case where X = A,
U = A*, and H is the LVPH on A in 0.2.18. Fix a branch of ¢, in Hz , = Hy =
Ze| + Ze;. The image I' of 7, (U, u) — Gz is isomorphic to Z and is generated
by the element y such that y(e|) = e, y(e2) = e; + 2. The classical period map
A* — I'\D = I'\h extends to the period map A — '\ D, where 0 = 0, (0.4.13),
which coincides with the isomorphism A >~ I'\D,, in 0.4.13.

0.4.31

Infinitesimal period maps. Let f : Y — X be a projective, logarithmically smooth
(2.1.11), vertical morphism of logarithmically smooth fs logarithmic analytic
spaces with connected X. Assume, for any y € Y, that Coker (M5 /O%) r(v) —
(M’ /05),) is torsion-free. Let (Hz, (, ), F) be the associated LVPH of weight
mon X asin 0.2.21.

Let I" and X be a strongly compatible pair (0.4.10). Assume that I" is neat and
contains Image( (X"°2) — Gy), and assume that we have the associated period
map ¢ : X — '\ Dy (0.4.28). Note that, by Theorem 0.4.30 (ii), these assumptions
will be fulfilled locally on X, if we allow a logarithmic modification of it.

Then as a generalization of 0.3.9, for the differential dg of the period map ¢, we
have the following commutative diagram:

Ox LN tp*H]'l\DE =g~ End; (M)

| |

| - via coupling _ P —p+1 p—1
R' f,6y)x ——— @D Homoy (R"™" fuwy, . R""*' fuwly)
P

where 8y, x 1= Homo, (@, . Oy),and 8, ,_ is the horizontal logarithmic tangent
bundle of the logarithmic tangent bundle 6r\ p , K-S on the left vertical arrow means
the logarithmic version of the Kodaira-Spencer map, and the right vertical arrow is
the canonical map (Section 4.4).
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0.4.32

Note that the classifying space D for polarized Hodge structures on H? of surfaces
of general type with p, > 2, or on H? of Calabi-Yau threefolds, is not classical in
the sense of 0.4.14. By the construction in the present book, we can now talk about
the extended period maps and their differentials associated with degenerations of
all complex projective manifolds.

0.4.33

Moduli of PLH with coefficients. We can generalize the above theorems of the
moduli of PLH to the moduli of PLH with coefficients (see Chapter 11). Let A be
a finite-dimensional semisimple Q-algebra endowed with amap A — A, a > a°,
satisfying

(a+b)°=a°+b°, (ab)°=>b°a"° (a,beA).

By a polarized logarithmic Hodge structure with coefficients in A (A-PLH) we
mean a PLH (Hz, ( , ), F) endowed with a ring homomorphism A — Endq(Hq)
satisfying

(ax,y) = (x,a°y) (a€ A, x,ye€ Hg).

The theorems 0.4.19 and 0.4.27 can be generalized to the moduli '\ D$ of A-PLH
(11.1.7, 11.3.1).

0.4.34

In the classical situation 0.4.14, in the work [AMRT], they constructed a fan
which is strongly compatible with Gz such that Gz\ Dy is compact. In our general
situation, it can often happen that I'\ Dy is not locally compact for any X such
that Dy # D. However, we can define the notion of a complete fan (a sufficiently
big fan, roughly speaking) such that, in the classical situation, ¥ is complete if
and only if Gz\ Dy is compact (see Section 12.6). If X is complete and is strongly
compatible with I", the classical period map U — I'\D in 0.4.30 always extends
globally to amorphism X’ — I'\ Dy of logarithmic manifolds for some logarithmic
modification X’ — X (Theorem 12.6.6).

One problem which we cannot solve in this book is that of finding a complete fan
in general.*

In Example 0.3.2 (iii) (see also 0.3.4, 0.4.18, and 0.4.29), the fan E in 0.4.5 is
complete. But I'\ Dz is not compact, not even locally compact, since it has slits.

0.5 FUNDAMENTAL DIAGRAM AND OTHER

ENLARGEMENTS OF D

We fix (w, (h”), 4ez, Ho, {, )o) as in Section 0.3. Let D be the classifying space
of polarized Hodge structures, i.e., a Griffiths domain, as in 0.3.1.

*See the end of section 12.7.
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To prove the main theorems 0.4.19 and 0.4.27, as already mentioned in the Intro-
duction, we need to construct the fundamental diagram (3) in Introduction and to
study all the spaces and their relations there. Roughly speaking, in this fundamen-
tal diagram, the construction of the four spaces in the right-hand side is based on
arithmetic theory of algebraic groups, and that of the four spaces in the left-hand
side is based on Hodge theory. They are joined by the central continuous map
D;ml — Dsy 2y, which is a geometric interpretation of the SL(2)-orbit theorem of
Cattan-Kaplan-Schmid [CKS]. We give an overview of our results concerning these
spaces.

The organization of Section 0.5 is as follows. In 0.5.1, we describe the rough
ideas of all the enlargements of D in the fundamental diagram. In 0.5.2, in the
case of Example (i) in 0.3.2 (the case of the upper half plane), we give the com-
plete descriptions of all the enlargements of D, other than Dy which was already
described in Section 0.4. After that we explain each of these enlargements (other
than Dy) one by one in the general case; Di: in 0.5.3-0.5.6, Dgs in 0.5.7-0.5.10,
Dg) 2y in 0.5.11-0.5.18, and the “valuative spaces” completing the fundamental
diagram in 0.5.19-0.5.29. In particular, explicit descriptions of the central bridge
D;Va, — Dgy(2) in Examples (ii) and (iii) in 0.3.2 are given in 0.5.26 and 0.5.27,
respectively. In 0.5.30, we overview b-spaces, related to the work of Cattani and
Kaplan [CK1].

0.5.1

First we give some general observations.
Recall that Dy, (¥ is afan in ggq) is the set of nilpotent orbits (o, Z), where o €
and Z is an exp(oc)-orbit in D satisfying a certain condition (0.4.7).

(i) Space D}: The space D;- (X is a fan in gq) is a set of pairs (o, Z) where
o€ X and Z is an t_:xp(iaR)-orbil in D satisfying a certain condition (see_: 053
below). The space D3, has a natural topology, D is a dense open subset of Dy, and,
roughly speaking, the element (o, Z) € Di: is the limit point of clements of Z which
“run in the direction of degeneration conducted by o.” The space Di- is covered by
open subsets D> = {(¢”, Z) € Di: | o' C o}, where o runs over elements of .

(i1) Space Dgs. The space Dgs is a set of pairs (P, Z) where P is a Q-parabolic
subgroup of Gr and Z is a subset of D satisfying a certain condition (see 0.5.7
below). The set Z is a torus orbit in the following sense. For (P, Z) € Dgs, there is
an associated homomorphism of algebraic groups s : (R*)" — P over R such that
Z is an s(RY)-orbit in D. The space Dgs has a natural topology, D is a dense open
subsct of Dgg, and, roughly speaking, the element (P, Z) € Dgg is the limit point
of elements of Z which “run in the direction of degeneration conducted by P.” The
space Dgs is covered by open subsets Dgs(P) = {(P’, Z) € Dgs | P’ D P}, where
P runs over all Q-parabolic subgroups of G.

(iii) Space Dsy(2). The space Ds) (2) is a set of pairs (W, Z) where W is a com-
patible family (W), ; ., (i.e., distributive families in [K]; see 5.2.12) of rational
weight filtrations W) = (W;”)kez on Hyog and Z is a subset of D satisfying a
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certain condition (see 0.5.11-0.5.13 below). The set Z is a torus orbit in the follow-
ing sense. For (W, Z) € Dsy(2), there is an associated homomorphism of algebraic
groups over R

s:(R*) > Gwr={geGr|gW’ =w forall j, k)

such that Z is an s(R.o)"-orbit in D. The space Dsi 2y has a natural topol-
ogy, D is a dense open subset of Dsy(z), and, roughly speaking, the element
(W, Z) € Dsy is the limit point of elements of Z which “run in the direction
of degeneration conducted by W.” The space Dsy (2 is covered by open subsets
DsL2y(W) = {(W', Z) € Dsi ) | W' is a “subfamily” of W}, where W runs over
all compatible families of rational weight filtrations of Hy g.

(iv) The other four spaces. The other four spaces are spaces of “valuative” orbits
which are located over Dy, Dﬁz, Dgs (2), and Dgs, respectively. These upper spaces
in the fundamental diagram (3) in Introduction are obtained from the lower spaces
as the limits when the directions of degenerations are divided into narrower and
narrower directions. We can say also that the vertical arrows in that diagaram are
projective limits of kinds of blow-ups.

0.5.2

Upper half plane (continued). In the easiest case D = b, the sets Dé, Dsy 2y, and
Dgs are described as follows.
First we describe DﬁE. Recall that & = {{0}, 0, (a € P'(Q))} (0.4.9). Recall that

_ (0 Rx
9e=\g o )

The space DﬁS is covered by open sets D! for o € E. The space D? for o = {0}
is identified with D (F € D is identified with the pair (o, Z) with o = {0} and
Z = {F}). The complement D?,oc — D is the set of all pairs (0, Z) Where Z is a
subset of C C D = P!(C) of the form x + iR for some x € R. This is a set of all
exp(io.r)-orbits in C. We have a homeomorphism

D! ~{x+iy|xeR,0<y=<o00}, (doo,X+iR)>x+io0,

which extends the identity map of D. Hence (0o, x + iR) is the limitof x + iy € D
(y > 0) for y = oo. Let a € P'(Q) and let g be any element of SL(2, Q) such
that a = g - 0o. Then D?,” — D is the set of all pairs (o,, Z) where Z is a subset of
D = P!(C) such that (64, g~'(2)) € D:_ . We have a homeomorphism D} 5
D!, (0c0: Z) > (04, 8(Z)).

We describe Dgs. A Q-parabolic subgroup of Gg = SL(2, R) is either G itself
or P, (a € P'(Q)) defined by

P, ={g € SL(2,R) | ga =a} = {g € SL(2,R) | gV, = V,}

where V, is as in 0.4.9. For example,

=16 4)

a,b,d eR, ad:ll.
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The space Dgs is covered by open sets Dgs(P) for P = Gg, P, (a € P'(Q)). The
space Dgs(GR) is identified with D (F € D is identified with the pair (Gg, Z)
with Z = {F}). The complement Dgg(Ps) — D is the set of all pairs (Py, Z)
where Z is a subset of h = D of the form x + iR, for some x € R. We have a
homeomorphism

Dps(Poo) ~{x+iy|x € R,0< y <00}, (Poo,x+IiRsp) > x+ioo,

which extends the identity map of D. Hence (Py.x +iR.) is the limit of x +
iy e D (y > 0)for y - oo. Let a € P'(Q) and let g be any element of SL(2, Q)
such that a = g - 0o. Then Dgs(P,) — D is the set of all pairs (P,, Z) where Z is
a subset of D such that (Py, g7'(Z)) € Dps(Ps). We have a homeomorphism
Dps(Poo) = Dps(Py), (Poo, Z) > (Py, 8(2)).

We describe Dgy (2). For a € P'(Q), let W (a) be the increasing filtration on Ho g
defined by

Wi(a) = Hyr. Wo(a) =W_i(a) =V,. W_3(a)=0.
For example,
Wi(o0) = Hor D Wo(o0) = W_;(00) = Re; D W_3(oc0) = 0.

The space Dgy 2y is covered by the open subsets Dgy 2)(W(a)) where W(a) now
denotes the family of weight filtrations consisting of the single member W (a). The
space Dgj,2)(#) for the empty family @ is identified with D (F € D is identified
with the pair (4, Z) with Z = {F}). The complement Dg) 2)(W (00)) — D is the set
of all pairs (W (o0), Z) where Z is asubset of ) = D of the form x + iR, for some
x € R. We have a homeomorphism

Dgi.2)(W(00)) >~ {x+iy| x € R,0 <y <00}, (W(00), x+iRs0) > x+io0,

which extends the identity map of D. Hence (W(o0), x +iR.g) is the limit
of x+iy €D (y>0) for y > oo. Let @ € P'(Q) and let g be any element
of SL(2, Q) such that a = g-o00. Then Dgi2)(W(a)) — D is the set of all pairs
(W(a), Z) where Z is a subset of D such that (W (00), g7'(Z)) € Dsi2)(W(00)).
We have a homeomorphism Dy )(W(00)) 5 Ds y(W(a)), (W(00), Z) —>
(W(a), (2)).

The valuative spaces in this case are naturally identified with the spaces under
them respectively in the fundamental diagram. That is, the canonical maps D7 ., —
DZE, Dgs.vat = Dgs, Dsi(2).vat = Dsi(2) are homeomorphisms and the canonical
map Dz v — Dz is bijective.

The identity map of D extends to Gq-equivariant homeomorphisms Di ~
Dy 2y =~ Dgs, which induce homeomorphisms Df,” 2~ Dg1.2)(W(a)) ~ Dgs(P,)
for each a € P'(Q) described as

(04.2Z') < (W(a), Z) < (P(a), Z), Z =exp(io,r)Z, Z=ZND.

Thus the fundamental diagram in this case becomes like (4) in Introduction.
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0.5.3

Space D%. In 0.5.3-0.5.6, we consider the space D which is on the left-hand side
(the Hodge side) of the fundamental diagram, next to the space Dy of nilpotent
orbits considered in Section 0.4.

A nilpotent i-orbit is a pair (o, Z) consisting of a nilpotent cone o =
leis,,(Rzo)Nj and a subset Z C D which satisfy, for some F € Z,

Z = exp(ior)F,
NF? c FP~! (¥p, YN € o),
exp (Z,Sjs,.iyij) FeD (Vy;>0).

Let X be a fan in gq. As a set, we define
D?E := {(o, Z) nilpotent i-orbit | ¢ € £, Z C b}.

Note that we have the inclusion map D — Dﬁz, F — ({0}, {F}). There is a canon-
ical surjection Di: — Dgy, (0, Z) — (o, exp(oc)Z). For a rational nilpotent cone
‘ by D!. Then, for a fan T in gg, we have DL =

o in gr, we denote Dig, . or )

Uaez Dri

0.5.4

In Chapter 3, we will define a topology of Dﬁz that has the following property. Let
(0,2) € DL, let Niego( <j<n), FeZ, and assume o = Z','.=,(R20)Nj.
Then ‘

n
exp Ziyij F— (0,Z) ify;€eRandy; > oo.
j=1

THEOREM 0.5.5 (Theorem A in Section 4.1)

(1) The space D; is Hausdorff.
(ii) Assume that T is strongly compatible with ¥. Then F\D;': is Hausdorff.
(iii) Assume that T is strongly compatible with ¥ and is neat. Then the canonical
projection DE‘E - I"\Dg: is a local homeomorphism.
(iv) Assume that I is strongly compatible with ¥ and is neat. Then we have a
canonical homeomorphism

T\D% ~ (I'\Dg)"®
which is compatible with the projections to T'\ Dy.

By (iv), for " as in (iv), the canonical map F\Df\: — I'\ Dy is proper, and the
fibers are products of finite copies of S'.
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0.5.6

Here we give local descriptions of Df,: —> F\Di: — I'\Dyx for Example (i),
Example (ii) (g = 2), and Example (iii) in 0.3.2 (for some choices of £ and I').

Upper half plane (continued). Let I' = ((') %) 0 = 0. Then we have a commu-
tative diagram of topological spaces:

{x+iy|xeR, 0<y<oo} ~ D;

¥ b
Ale ~ I'\D;
l l
A >~ T'\D,.

Here the lower horizontal isomorphism is that in 0.4.13, the upper horizontal isomor-
phism is the one described in 0.5.2, and the upper left vertical arrow sends T = x + iy
(0<y<oo)toe? ™ e A* C A and x +iocoto (0, e¥™*) € A2 = |A| x S'.

Upper half space (continued). Let g =2 and D = b,. Let U be the open set of
A? x C defined in 0.4.13, and let T' = exp(ZN; +ZN,) = | +ZN, +ZN,, 0 =
(R>0)N| + (R50)N,. We describe DZ and I'\ D>. We have a commutative diagram
of topological spaces:

(Al xR)2xC > Ut ~ D

) ) !

(1Al xS8")? xC > U ~ I'\D;
l ) \:

A?x C > U =~ T\D,.

Here the upper left vertical arrow is induced by R — S', x > ¥, the lower
left vertical arrow is induced by |A| xS' — A, (r.u) — ru, and U™ is the
inverse image of U in (JA| x R)? x C. The space U'*¢ is identified with the inverse
image of U in (JA| x S')? x C. The inclusions D in this diagram are open immer-
sions. Let r; = e~>™i. The upper horizontal isomorphism of this diagram sends

((r1.x1). (r2. x2), a) € U to

F (.’CI 21')% xz-ﬁih) T
((Rzo)M, F (x' J;iR xziiyz)) ifr, = 0and ry # 0,
<(R30)N2, F ("‘ +ai"‘ xziik)) if r, £ 0and ry = 0,
(0, F (x| _ZiR xzziR)) ifry=r,=0.
Example with h*>° = h%? =2, h'!' = | (continued). Let the notation be as in

0.4.18. Let T be a neat subgroup of Gz of finite index. We have a commutative
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diagram of topological spaces

(Rs0) xR)xCxQ > U — DI

\ { \

(Rs0) x8)xCxQ > U — TI\Di
\ \ )
CxCxQ > U — TI\Dg

in which the three horizontal arrows are local homeomorphisms. Here the upper left
vertical arrow is induced by R — S', x > 2%, the lower left vertical arrow is
induced from (Rxg) x S!' > C, (r,u) — ru,and U"¢ is the inverse image of U in
((R>0) x R) x C x Q. The space U'™s is identified with the inverse image of U
in (Rxp) xS') x Cx Q. Recall that U is endowed with the strong topology.
The spaces U'2 and U'°¢ are endowed here with the topologies as fiber prod-
ucts by left squares. The upper horizontal arrow sends (r, x, a, z) € U (r # 0) to
exp((x +iy)N, +aN,)F(z), where r = e~2"/¢ with £, v, and v’ as in 0.4.18, and
0, x,a,67"'(v)) to (Rso) Ny, exp(iRN,) exp(x N, +aN,)F (@~ (v))).

0.5.7

Space Dgs. In 0.5.7-0.5.10, we consider the space Dgs which is on the right-hand
side (algebraic group side) of the fundamental diagram.

Dgg is a real manifold with corners.

The definition of Dgs will be reviewed in Section 5.1. Here we give an explicit
presentation of the open set Dgs(P) of Dgs, for simplicity, under the assumptions
that the Q-parabolic subgroup P of Gr is an R-minimal parabolic subgroup of
GRr and that the largest R-split torus in the center of P/P, (P, is the unipotent
radical of P) is Q-split. In this case, Dgs(P) is described by using the Iwasawa
decomposition of Gg.

Upper half plane (continued). We first observe the easiest case D = . In this
case, we have a homeomorphism

((1) l}) x (R50) x SO(2,R) >~ Gr = SL(2,R),

(g, t, k) — gs(t)k, where s(t) = (lét ?) )

This is an Iwasawa decomposition of SL(2, R). By SL(2, R)/SO(2, R) 5 h,g—
g - i, this Iwasawa decomposition induces a homeomorphism

RXR>0:>h=D, (’xir)'_)<é T)S(t)i:x—{—[—zl

This homeomorphism extends to a homeomorphism

R x RzO =~ DBS(POO)s (x, O) = (POOs X +iR>0)-
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In general, let K be a maximal compact subgroup of Gr and let P be an R-
minimal parabolic subgroup of Gg. Denote by P, the unipotent radical of P. Then
we have a homeomorphism (Iwasawa decomposition)

P, x (RLy) x K ~ Ggr, (g, t.k)— gs(t)k,

for aunique pair (n, s) where n > Ois an integer and s is ahomomorphism (R*)" —
P of R-algebraic groups satisfying the following conditions (1)—(3).

(1) The composition (R*)" 5P P/ P, induces an isomorphism from (R*)"
onto the largest R-split torus in the center of P/ P,.

(2) The Cartan involution Gg — Gp associated with K (see below) sends s(f)
tos(t)™".

(3) Fort = (tj)i<j<n € R*)", |t;| < | for any j if and only if all eigenvalues
of Ad(s(t)) on Lie(P,) have absolute values > 1.

Here the Cartan involution associated with a maximal compact subgroup K of
GR is the unique homomorphism ¢ : Gg — Gr of R-algebraic groups such that
> = id and such that K = {g € Gg | t(g) = g}. For r € D, the Cartan involution
of G associated with K, coincides with the map g — C,gC;”' where C, is the
operator in 0.1.8 (2).

Now let P be a Q-parabolic subgroup of Gg which is an R-minimal parabolic
subgroup of Ggr such that the largest R-split torus in the center of P/P, is
Q-split. Let r € D, let K, be the maximal compact subgroup of Gr corresponding
to r (0.3.3), and consider the Iwasawa decomposition P, x (RL;) x K, >~ Gg with
respect to (P, K,) satisfying (1)—(3) as above. It induces a homeomorphism

P, x (RLy)) x (K;/K]) >~ D, (g.t,k)— gs(t)k-r.
This extends to a homeomorphism
P, x (Rg) x (K¢/K}) = Dgs(P).

The element of Dgg(P) corresponding to (g,0, k) € P, x (RL,) x (K:/K}) (g €
P,.k € K;) coincides with the pair (P, Z) where Z = {gs(t)kfr | t € RL,}. More
generally, the element of Dgg(P) corresponding to (g, t,k) (g € P,.t € RL,
k € KRr) coincides with the element (Q, Z) of Dgs(P) where Q is the Q-paraboTic
subgroup of Gg containing P which corresponds to the subset J = {j | 1 < j <
n, tj #0} of the set {I...., n} (there is a bijection between the set of all subsets
of {I,...,n} and the set of all Q-parabolic subgroups of Ggr containing P), and
Z =({gs(thk-r|t' e RY,, ’,;' =t;if jeJ}CD.

Thus Dpgs is understood by the theory of algebraic groups, rather than by Hodge
theory.

THEOREM (.5.8

(1) Dgs is a real manifold with corners. For any p € Dgs, there are an open
neighborhood U of p in Dgs, integers m, n > 0, and a homeomorphism

U ~R" xR},
which sends p to (0, 0). The point p belongs to D if and only ifn = 0.
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(i) For any subgroup T" of Gz, '\ Dgs is Hausdorff.

(iii) IfT is of finite index in Gz, I'\ Dgs is compact.

(iv) If T is a neat subgroup of Gz, the projection Dgs — I'\Dgs is a local
homeomorphism.

The definition of Dgs and the proof of this theorem were given in [KU2] and
[BI] independently. The definition of Dgs is a modification of the definition in [BS]
of the original Borel-Serre space Ags, which is an enlargement of the symmetric
Hermitian space X of all maximal compact subgroups of Gg. There is a canonical
surjection Dgs — Aps which sends F € D to Kr € X. The proof of the above
theorem is a reduction to the similar properties of the original Borel-Serre space
proved in [BS].

In 0.5.9 and 0.5.10 below, we give local descriptions of Dgs for Example (ii)
(g = 2) and Example (iii) in 0.3.2, respectively.

0.5.9

Upper half space (continued). Let g =2 and D = b,. Let P be the Q-parabolic
subgroup of Gy consisting of elements that preserve the R-subspaces Re|, Re; +
Re,, and Re| + Re; + Reyg of Hp r. This is an R-minimal parabolic subgroup of
Gr. There is a homeomorphism R* =~ P, (not an isomorphism of groups, for P, is
noncommutative). Let s : (R*)2 — P be the homomorphism of algebraic groups
given by

s(t)e; = tl'ltz_'e|, s(t)e, = tz_'ez, s(t)es = hey, s(t)es =tites.

Putr = F(}?). Then we have K; = K| = Sp(2, R)N O (4, R) ~ U(2). We have
a homeomorphism P, x (R*)?2 ~ P, (g,t) — gs(t). We have a homeomorphism
(Iwasawa decomposition)

P, x (R%)) x K, ~ Gg, (g, t,k) — gs(t)k,
which satisfies the conditions (1)—(3) in 0.5.7. This induces a homeomorphism
P, xR2,~D, (g,t)+> gs(t)-r,
which extends to a homeomorphism

P, x Rz, ~ Dgg(P).

0.5.10

Example with h>° = h%? =2, h""! = 1 (continued). We use the notation in 0.3.4.
Let Gy be the kernel of the determinant map Ggr — {%1} (for the action on
HpRr), and let P be the Q-parabolic subgroup of Gr consisting of all elements
of G which preserve the subspaces Re,s and Zj‘:l Re; of Hog. This is an R-
minimal parabolic subgroup of Gg. We have an isomorphism of R-algebraic groups
RS P ar exp(N,). Let s : R* — P be the homomorphism of R-algebraic
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groups defined by
s(te; =ej (1 <j<3), s(t)es= t7'eq, s(t)es = tes.

Then we have a homeomorphism P, x R* 5 P,(g.t) — gs(t).
Let v € S§%. We have a homeomorphism (Iwasawa decomposition)

P, x (Rsg) X Kywy — Gr., (8.1, k) — gs(t)k
which satisfies the conditions (1)—(3) in 0.5.7. We have a homeomorphism
(£1} xS* 5 Key -r(0), (1, 0) > s(E1) -r(v).
Hence this Iwasawa decomposition induces a homeomorphism
R x (Rug) x {1} xS 5 D, (a.t.£1,v) > exp(N,)s(£t) - r(v),
which extends to a homeomorphism
R* x (Ry0) x {£1} x S 5 Dgg(P).

In this example, all Q-parabolic subgroups of Gr other than Gy are conjugate
to P under G, and hence Dgg is covered by open sets DBS(ng") (g € Gg)
cach of which is homeomorphic to Dgs(P) via the homeomorphism that extends
g':D— D.

0.5.11

The space Dy 2). In general, Dy and Dgg are still far from each other in nature.
We find an intermediate existence Dg) () to connect them. We consider this space
Dy (2)in 0.5.11-0.5.18. Hodge theory and algebraic group theory are unified on this
space. This unification is based on a fundamental property of the SL(2)-action on
the upper half plane b:

e (i5(0 o)) 0= (% 1, 05) O

When y > 0 varies, the left-hand side produces a nilpotent i-orbit, while the right-
hand side produces a torus orbit in the Borel-Serre space.

We define Dyg (2) as follows.

A pair (p, @), consisting of a homomorphism p : SL(2, C)" — G of algebraic
groups which is defined over R and a holomorphic map ¢ : P'(C)" — D, is called
an SL(2)-orbit of rank r if it satisfies the following conditions (1)-(4) ([CKS,
Chapter 4], [KU2, Chapter 3]):

(1) o(gz) = p(g)e(z) forall g € SL(2,C)" and all z € P'(C)".

(2) The Lie algebra homomorphism p, : sI(2, C)® — gc is injective.

(3) (h") C D.

(4) Letz € b, let F2(s1(2, C)®") be the Hodge filtration of s{(2, C)®" induced
by the Hodge filtration of (C?)®" corresponding to z, and let F;(gc) be the
Hodge filtration of g¢ induced by the Hodge filtration ¢(z) of Hyc. Then
0y 1 51(2,0)®" — gc sends F/(sl(2, C)®") into F;’(z)(gc) for any p.
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Here in (4), for F € D, the Hodge filtration on gc¢ induced by F is defined as
Fl(gc) = {h € gc | h(F*) C F**7 (¥5)}.

The Hodge filtration of (C?)®" = @;zl (Ceyj @ Ce,;) corresponding to z is defined

as FO(z) = (C)®, F'(z) = @, C(zje1; +e2)), and F*(z) = 0.
Leti=(i,...,i) € b". Then, if the condition (1) is satisfied, (3) is satisfied if

and only if ¢(i) € D, and (4) is satisfied if and only if p, sends Fi”(5[(2, C)®") into

F})(gc) for any p.

0.5.12

For an SL(2)-orbit (p, ¢) of rank r, let N; € gr be the image under p, of (J1) €
s[(2, R) in the jth factor. Let

WD = W(Ni+---+N;) (1<j<r),

where W(N) for a nilpotent linear operator N denotes the monodromy weight
filtration associated with N (Deligne [D5]; see 5.2.4). The family W = (W), ., <,
is called the family of weight filtrations associated with (p, ¢).

DEFINITION 0.5.13 ([KU2, 3.6], 5.2.6) Two SL(2)-orbits (p1, ¢1) and (02, ¢2) of
rank r are equivalent if there exists (t, ..., t.) € R, such that

(o (5 9)-(3 )
(G

Here Int(g) means the inner automorphism by g.

Define Dsy (2)., to be the set of all equivalence classes of SL(2)-orbits (p, ¢) of
rank r whose associated family of weight filtrations is defined over Q.

Deﬁne DSL(Z) = I_Irzo DSL(Z).r where DSL(Z).O = D.

For an SL(2)-orbit (o, ¢) of rank r, the family W of weight filtrations associated
with (p, @) and the set Z = {p(iy,, ..., iy,) | yj > 0 (1 < j <r)} are determined
by the class [p, ¢] of (p, ¢) in Dsy (). Conversely, [p, ¢] is determined by the pair
(W, Z) (see [KU2, 3.10]). We will denote [p, ¢] € Ds(2) also by (W, Z).

0.5.14

If the condition (2) in 0.5.11 is omitted, a pair (p, ¢) is called an SL(2)-orbit in r
variables.

For an SL(2)-orbit (o, @) in n variables, there exists a unique SL(2)-orbit (o', ¢’)
such that for some J C {1, ..., n}, (p, ¢) = (0, ¢') o7y, where r; : (SL(2, C) x
P'(C))" — (SL(2, C) x P'(C))" is the projection to the J-factor and such that
(o', ¢') is an SL(2)-orbit of rank r := #{(J). We denote the point [p’, ¢’] of Dgi (2
also by [p, ¢].
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The notion of the SL(2)-orbit generalizes the (H;)-homomorphism in the context
of equivariant holomorphic maps of symmetric domains (cf. [Sa2, IT § 8]).

In the classical situation (0.4.14), the Satake-Baily-Borel compactification of
'\D for a subgroup I of Gz of finite index is a quotient of I'\ Dgy(2), and is
philosophically close to I'\ Dgy (2).

0.5.15

In 5.2.13, we will review the definition of the topology of Dg; () given in [KU2J.
In this topology, for [p, ¢] € Dgj(2), we have

@Gy, ... iyn) = [p, 9] ify; € Rogand y;/yjr1 — 00 (yu41 denotes 1).

THEOREM 0.5.16 (5.2.16, 5.2.15)

(i) Let p € Dsy 2y be an element of rank r. Then there are an open neighborhood
U of p in DsL (2, a finite dimensional vector space V over R, R-vector subspaces
V; of V given for each subset J of the set {1, ..., r}, satisfying V; DV, if J C
J'c{l,..., r}yand Vy =V, and a homeomorphism

U=x~{(a,t)e VxRy|aeV,whereJ ={j|t; =0}}

which sends p to (0. 0).

(i) For any subgroup T of Gz, I'\ Dsy(2) is Hausdorff.

(iii) If T is a neat subgroup of Gy, the projection Dgy 2y — '\ Ds2) is a local
homeomorphism.

0.5.17

We consider the relation between Dgg and Dy ().

In Dgg, the direction of degeneration is determined by a parabolic subgroup of Gg.
On the other hand, in Dg| (3, it is determined by a family of weight filtrations.

Let [p. ¢] € Dsy2) be an element of rank r and let W = (W) _;., be the
family of weight filtrations associated with (o, ¢).

Let Gy be the kernel of the determinant map Gr — {£1}, and let G, g be the
subgroup of Gy consisting of all elements which preserve W,f‘” for any j, k. If
r = 1,i.e., if W consists of one weight filtration, G}, g is a Q-parabolic subgroup of
GRr. Let Dgy (2. <1 be the part of Dg 2 consisting of all elements of rank < 1. Then
Dy (2).<1 is an open set of Dsy (2. The identity map of D is extended to a continuous
map Dgy (). <) — Dgs which has the form (W, Z) — (P, Z'), where P = G}, ¢
and Z' is a certain subset of D containing Z (5.1.5).

Even for r > 2, in the case h”Y = 0 for any (p, q) # (1,0), (0, 1) (the case
D =1,), the associated family W = (W), ., of weight filtrations is so simple
that all filters in this family are linearly ordered,

0=wDcw...cwcw?c...cw cw"” = Hy,
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for any j, i.e., they form a single long filtration. With one exception below, the same
is true for other classical situations in 0.4.14. Hence W and P are related directly by
P = G}, g,and we have Dg 2)(W) = Dgs(GY g)> DsL2) = Dss (which also coin-
cides with the classical Borel-Serre space Aps) as in (5) in Introduction (cf. 12.1.2,
[KU2, 6.7]).

Exceptional Case ([KU2, 6.7]). The weight w is even, rank Hy = 4, and there
exists a Q-basis (e;)1<j<4 of Hy g such that (ej,ex)o=1if j+k=5,and =0
otherwise.

In general, we have the following criterion.
CRITERION ([KU2, 6.3]). The following are equivalent.

(i) The identity map of D extends to a continuous map Dsy 2y — Dgs.
(ii) At any point of Dsy(2), the filters W,:" ) which appear in the associated family
W = (W), of weight filtrations are linearly ordered by inclusion.

For examples with no continuous extension Dsy 2y — Dgs of the identity map
of D, see [KU2, 6.10] and 12.4.7.

0.5.18
We have the following criterion for the local compactness of Dsy ().

CRITERION (Theorem 10.1.6). Let p = [p, 9] € Dsi(2). The following (i) and (ii)
are equivalent.

(i) There exists a compact neighborhood of p in Dsy (3.
(i1) The following conditions (1) and (2) hold.

(1) All filters W appeared in the associated compatible family W = (W) ;
of weight filtrations at p are linearly ordered by inclusion.

(2) Lie(K,) C Lie(Gwr) +Lie(K;), where r = ¢(i) and Gwr = {g € Gr |
gW =W (], Vk)).

By this criterion, Dsy () for the example with 120 = h%2 =2, h"! = 1in0.3.2
(iii) is locally compact, and hence has no slit. We have Dsj 2y = Dsi(2).<i 5 Dgs

in this case. But even for the examples of similar kind in 12.2.10, Dgy (2 can have
slits in general.

0.5.19

Valuative spaces. In the general case, the family W of weight filtrations associated
with p € Dsy(2) becomes more complicated and we do not have a direct relation
between the W and the parabolic subgroups P (Criterion in 0.5.17). We have to
introduce the valuative spaces Dsgj (2).va1 and Dgg vq to relate the spaces Dsy (2) and
Dgs. These are the projective limits of certain kinds of blow-ups of the respective
spaces.
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To relate the spaces Dy and Dsy (2, we also have to introduce the valuative space
D;:.m, of D;:. This is the projective limit of a kind of blow-up of D; corresponding
to rational subdivisions of the fan . We have a continuous map D;_va, — Dgi 2
which is a geometric interpretation of the SL(2)-orbit theorem [CKS] as in 0.5.24
below.

In all cases, the valuative spaces are projective limits over the corresponding
original spaces so as to divide the directions of degenerations into narrower and
narrower.

THEOREM 0.5.20 Let X be one of D;_val. Dsi2y.val, Dis.val- Then

(1) X is Hausdorff.

(i1) Let T be a subgroup of Gz. In the case X is Df\:_va,, assume T is strongly
compatible with . Then T\X is Hausdorff. If furthermore T is neat, the
canonical projection X — I'\X is a local homeomorphism.

The definitions of the four valuative spaces in the fundamental diagram are given
in Chapter 5. Here we just give in 0.5.22-0.5.23 explicit local descriptions of them
in the case of Example (ii) with g = 2 in 0.3.2. (The cases of Examples (i) and (iii)
are not interesting concerning valuative spaces, for, in these cases, the valuative
spaces are identified with the spaces under them in the fundamental diagram.)

0.5.21

Example (C?) vy and (R%,)va1. In 0.5.22 and 0.5.23, we give explicit descriptions of
some valuative spaces in the case D = . For this, we introduce here the spaces
(C?)yar and (R2 ),y obtained as projective limits of blow-ups from C? and R2,
respectively. In general, for any object X of B(log), we will define in Section 3.6
(see 3.6.18 and 3.6.23) a space X, obtained from X by taking blow-ups along the
logarithmic structure. The space (C?)yq is Xy for X = C? which is endowed with
the logarithmic structure associated with the normal crossing divisor C2 — (C*)2.

Let X = Xo = C?, and let X, be the blow-up of X at the origin (0, 0). Then
(C*)? C X, and the complement X | — (C*)? is the union of three irreducible divi-
sors Cp, Cy, Coo Where Cy is the closure of {0} x C*, Co is the closure of C* x {0},
and C, is the inverse image of (0, 0). Nextlet X, be the blow-up of X at two points, .
the intersection of Cy and C; and the interscction of C; and Co. Then (C*)? C X»,
and the complement X, — (C*)? is the union of five irreducible divisors Co, Cij2,
Ci, Cy, and C. Here C); is the inverse image of the intersection of Cy and C,
in X, C; is the inverse image of the intersection of C; and C,, and we denote
the proper transformations of Cy, C}, and C in X; simply by Cy, C, and Co,
respectively. In this way, we have a sequence of blow-ups

'——>X3—)X2—>X|—>X0:X,

where X, is obtained from X, by blow-up the intersections of different irreducible
components of X, — (C*)?. We define

(Cz)vnl = l]ﬂ vXn-

n
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This (C?),a is obtained also as the inverse limit of the toric varieties [KKMS, Od]
corresponding to finite rational subdivisions of the cone R2, in R2. For example,
the above X is the toric variety corresponding to the finite subdivision of Rzo
consisting of the subcones {0}, o, 00.1/2, 01,2, O1/2.1, O1, 01,2, 02, 02,00, and Oco
of Rio. Here o, (s =0, 1/2, 1, 2)is the half line {(x, sx) | x € Rx¢} of slope s,
0w is the half line {0} x R>p, and oy, is the cone generated by o, and o,. The
open subvariety of X, corresponding to the cone oy is X, — Uy 2, Cyr, and the open
subvariety of X, corresponding to the cone o5 ; is X2 — Uy 4., Cy. Let g; and g2
be the coordinate functions of C2. Then for a finite rational subdivision of Rio, the
corresponding toric variety is the union of the open subvarieties Spec(C[P(0)])an
for cones o in this subdivision, where

P(o)=1{q{'q3 | (m,n) € Z, am+bn >0 V(a,b) € o}.

The projection f : (C2)y — C?is proper and surjective, and f induces ahomeo-
morphism f~'(C? —{(0,0)}) = C2 —{(0, 0)}. We regard C? — {(0, 0)} as an open
subspace of (C?), via f~'. The complement f~'((0, 0)) is described as

£7'(0,0)) = {(0,0) | s € [0,00], 5 ¢ Qs0}
U{(0,0);. | s € Qso, z € P'(C)}.

Here if s € Q. and z € C* and if 5 is expressed as m/n withm,n € Z,m > 0,
n > 0and GCD(m, n) = 1, then (0, 0), , is the unique point of 7710, 0)) at which
both g{"g," and g, ™g; are holomorphic and the value of ¢{"g," is z. For any
finite rational subdivision of Rio containing the half line o = {(x, sx) | x € Rx}
of slope s, the map from (C?),, to the toric variety corresponding to this subdivision
induces a bijection from {(s, z) | z € C*} onto the fiber over (0, 0) € C? of the open
subvariety corresponding to o. For s € Q., (0, 0); ¢ (resp. (0, 0).0) is the limit of
(0, 0);.; (z € C*)forz — O (resp. z — 00). The point (0, 0)¢ (resp. (0, 0)s) is the
limit of (0, z) € C? (resp. (z,0) € C?)(z € C*) for z — 0. Finally, (0, 0), fors €

—hn

R.o — Q- is the unique point of £71((0, 0)) at which q7'q," (m,ne€Z,m >0,
n > 0) is holomorphic if and only if m/n > s and g, "¢} is holomorphic if and only
if s > m/n. A point of £~'((0, 0)) has the form (0, 0); (s € [0, c0] — Q.) if and
only if for any n > 0, its image in X, is the intersection of two different irreducible
components of the divisor X, — (C*)2.

These points of f~'((0,0)) are characterized as the limits of points of
(C*)? C (C?)ya as follows. If s € [0, 00] — Q-0, (g1, 42) € (C*)? converges to
(0,0); if and only if (g1, g2) = (0, 0) and log(|g2])/log(lgi]) — s. If s € Qs
and z € P'(C), and if s is expressed as m/n with m,n € Z,m > 0,n > 0 and
GCD(m, n) = 1, (g1, g2) € (C*)? converges to (0, 0), , if and only if (q;, g2) —
(0,0), log(lg21)/ log(lg: 1) — s, and g7" /g5 — z.

Let (R2g)vai C (C?)val be the closure of the subset Ry — {(0, 0)} (regarded as a
subset of C — {(0, 0)} C (C?)va). That is, (R2;)val is the union of R, —{(0, 0)}
and the part of f~'((0, 0)) consisting of elements (0, 0); for s € [0, 0o] such that
s ¢ Q.o, and elements (0, 0), , with s € Q.9 and with z € R5oU {oo} C P'(C).
The canonical projection (Rio)val — Rgo is proper and surjective. The inverse

image of (0, 0) in (R;O)Val is regarded as a very long totally ordered set by the
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following rule: (0, 0); < (0,0)y . < (0,0)y . < (0,0) if0 <5 <5 <s5" <00,
s ¢ Q.0.5 €Q.p, 5" ¢ Q50,0 <z <7 <o00. Closed intervals form a base of
closed sets in this totally ordered set.

0.5.22

Upper half space (continued). Let g =2 and D = ;. We have the following
commutative diagrams of topological spaces in which all inclusions are open
immersions.

_(AZ)VH]XC o Uval =~ l—‘\Da.val

! ) l ()
A’xC > U =~ T\D,.

(AP xR2xC > Ugf =~ D

val
b } ) )
IAPxR2xC > Ut ~ D=,

Pn X (Rio)val = DBS.val(P)
\ \ 3)
P, x R;O ~ Dgs(P).

Herein (1), (A%)ya C (C?)yq is the inverse image of A% under (C?),q — C2, U and
I"arcasin 0.4.13, and U,y denotes the inverse image of U C A? x Cin (A?),y x C.

In(2), JA]P)va C (R;O)ml is the inverse image of | A|? under (R»0)2,, — R;O, U'os

isasin0.5.6,and Ulilg denotes the inverse image of U'2 in (AP va x R?2 x C.In(3),
P is asin 0.5.9, and Dgs v (P) denotes the inverse image of Dgs(P) in Dgs_yai-

The lower rows of these diagrams are those obtained in 0.4.13, 0.5.6, and 0.5.9,
respectively.

The first diagram is obtained as follows. We identify o with the cone R2, via
Rio >~ o, (a;, ay) = a;N| + a; N,. For arational subdivision § ofRiO, we have the
corresponding subdivision of o. If B(S) denotes the toric variety corresponding to
S with a proper birational morphism B(S) — C?, we have an isomorphism U (S) ~
'\ D, (S), where U(S) is the inverse image of U in B(S) x C and " \ D, (S) is
a blow-up of I \ D, corresponding to this subdivision of ¢. The upper row of the
diagram (1) is obtained as the projective limit of B(S) x C D U(S) ~ I'\D, (S).

Roughly speaking, in the first diagram, we are dividing the direction of degen-
eration exp(z; Ny 4+ za2N») with Im(z;), Im(z2) — 0o into narrower and narrower
directions. A narrow direction that appears here is the direction exp(z (N, + sNz) +
22(Ny 4+ s'Np)) with Im(z;), Im(z2) — oo for some s,s’ € Q¢ or the direction
exp(z) (N +sN,) 4+ zoNy) withIm(z;), Im(z;) — oo forsome s € Q.. When the
directions become infinitely narrow, we obtain points at infinity in I'\ D, yq.

The second diagram is obtained in a similar manner. For the third diagram, see
[KU2, 2.14]. Note that Dsg) (2).va1 = Dgs.va in this case [KU2, 6.7].
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0.5.23

Upper half space (continued). Let the notation be as in 0.5.22 and consider
exp(iyiN| +iyaN2)F(0) € D for y;, y2 € R.o. We observe how this point con-
verges or diverges when y; and y2 move in special ways. This point corre-
sponds to (e721, 722 0,0, 0) € UVal in the diagram (2), and to (1, (y2/y1)'/?,
(1/y)"?) € P, x (Rxo)? in the diagram (3). From this, we have

(1) When t — o0, exp(it(2+sin(¢)) N, +itN2)F(O) converges in Df; to the
image of (0, 0,0, 0,0) € U, but diverges in D® __, Dgs, Dps.val-

o.val®

We show here the divergence in Dgs. The corresponding point is p(t) := (1, 2+
sin(1))™"/2,1712) € P, x R, and

(1,272,712 5 (1,272 0) e P, x Rgo
whent=nn,n=1,2,3,...,
(1,1,t7% - (1,1,0) € P, xRi0
whent =2nrn—n/2,n = ],_23

p(t) =

Hence p(t) diverges in Dgs.

This (i) shows that the image of (0, 0,0, 0,0) € U2 in D% has no neighborhood
V such that the inclusion map VN D — D extends to a continuous map V —
Dsy(2) = Dsgs.

We also see at the end of 0.5.26, concerning a map in the converse direction,
that the image of (1,0, 0) € P, x Rio in Dgg has no neighborhood V such that the
inclusion map V N D — D extends to a continuous map V — DE,, and even that
it has no neighborhood V such that the canonical map V N D — '\ D extends to a
continuous map V — T'\D,.

Thus, to connect the world of D, and Dg to the world of Dgy 2y = Dgs, we have
to climb to the valuative space Dry val*

Similarly, by using the topological natures of |A|2, and (R2)va explained in
0.5.21, we can show

(i) Whent — oo, exp(it<?+sn) N, +itN2)F(0) forafixedc > I convergesin
D’ " val t0 the image of ((0, 0)o, 0,0, 0) € U8 but diverges in Dgg v5- Hence
the image of ((0, 0)¢, 0,0, 0) in Da a1 has no neighborhood V such that
the inclusion map VN D — D extends to a continuous map V — Dgg vy
When t — oo, exp(i{t + sin(¢)) N, + it N,) F (0) converges in Dgs va(P) to
the image of(l 0,0),1) e P, x (R o)vala but diverges in D val* Hence the
image of (1, (0,0), ) in Dgs o (P) has no neighborhood V such that the

inclusion map V. N D — D extends to a continuous map V — D’

val ’

o.val’

Thus, the views of the infinity of various enlargements of D in the fundamental
diagram are rather different from each other.

(iit) When y; — oo and y;/y; — oo, exp(ile] +iy,N,)F(0) converges in
D!  to the image of ((0, 0)p, 0,0, 0) € '8 and also converges in Dgg(P)

o.va val ?
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to the image of (1,0,0) € P, x R§0~ As is explained in 0.5.26 below, these
two limit points at infinity are related by the following continuous map
v D g DSL(Z).

o.val

0.5.24

SL(2)-orbit Theorem and continuous map D;_Va] — Dgy ). The SL(2)-orbit the-
orem in several variables in [CKS] is interpreted as the relation between D;_va]

and DSL(Z)-
Let Ni,...,N, € gr be mutually commutative nilpotent elements, and
F € D. Assume that (N, ..., N,. F) generates a nilpotent orbit, i.e., for o =

Z]g,‘gu(REO)N,i’ exp(oc)F is a o-nilpotent orbit (0.4.7, 1.3.7). Cattani, Kaplan,
and Schmid [CKS] defined an SL(2)-orbit (p, ¢) in n variables associated to the
family (N, ..., Ny, F) (cf. Section 6.1). Here the order of Ny, ..., N, is important.
They showed that two maps exp(Z']’.=l iy;Nj)Fand ¢(iy,...,iy,) into D behave
asymptotically when y;/y;;1 — 00 (yu41 means 1). Qur geometric interpretation
of the SL(2)-orbit Theorem is as follows.

There is a unique continuous map y : D;:.vﬂ] — Dy 2y which extends the identity
map of D (we will prove this in Chapter 6), exp(Z';=I iyjN;)F converges in D;:.val
when y;i/yiv1 — 0o (I < j < n) (we saw this in 0.5.23 (iii) in a special case), and
Y sends this limit point to [p. ¢].

This continuous map ¥ : D;ml — Ds; 2 is the most important bridge in the
fundamental diagram (3) in Introduction, which joins the four spaces Dy, Dy yq,
D%, and D;.Val of orbits under nilpotent groups in the left-hand side and the four
spaces Dgi2), Dsi.@y.val» Dis, and Dgs.yvar Of orbits under tort in the right-hand
side.

0.5.25

Fundamental Diagram. We thus have the diagram that relates Dy and Dgs ((3) in
Introduction; see also 5.0.1):

Dsiyva <> Dags.val
) d
MDsya <« Dy, — Dsuo Dgs

) l
M\Ds <« D;

where all maps are continuous, and all vertical maps are proper surjective.

The theorems on these spaces introduced in this Section 0.5 are proved by starting
at Dgs and moving in this diagram from the right to the left. The spaces Dgs, Dgs_val»
Ds12y.val, and Dgy 2y were already studied in [KU2]. By using the results on these
spaces (which are reviewed in Chapter 5), in this book, we prove the results on the
other spaces.



No part of this book may be reproduced in any form by digital or mechanical means
without prior written permission of the publisher.

OVERVIEW 61

We now give explicit descriptions of ¥ : D}: val —> DsL2) in some examples. In
the case of Example (i) (the case D = h) in 0.3.2, for any fan ¥ in gg, ¥ is just the
canonical map D;‘lval = D?E C Dé 5 Dsj (2 in 0.5.2. In the following 0.5.26 and
0.5.27, we consider the cases of Example (ii) with g = 2 and Example (iii) in 0.3.2,
respectively.

0.5.26

Upper half space (continued). Let g =2 and D = b,. In this case, Dsy () = Dpgs.
Let Ny, N2, and o be as before (0.4.13). The triple (N, N2, F(0)) generates a o-
nilpotent orbit, and the associated SL(2)-orbit in two variables (p, @) is given (see

6.1.4) by
a b e fY) _ _ z 0
((0)-G 1)- e =r (G ).
— Dsi2) sends the limit of exp(iy; Ny +

That is, the continuous map ¥ : D(r val
iy,N2)F(0) for y1/y2, y» = 00 in Da‘Vle (see 0.5.23) to [p, ¢] € Dsy (2. Further-
more, (o, @) is of rank 2, and “the N| and N, of p” defined in 0.5.12 coincide with N,
and N, here, respectively. Let W = (W1, W®) be the family of weight filtrations
associated with [p, @] € Ds ), that is, W) = W(N,) and WP = W (N, + N,).
Then

S 6 O8
R O O
SRR O
> O O

0= Wi'z) C Wf') Re; C W() Re; +Rey+Rey C W( ) = Hyg,
0=W2 cwW?=Re +Re; = W® c W? = Hyp.

We have Gwr = P, Ds (W) = Dgs(P). The element [p, ¢] € Dsi(p is also

written as (W, Z) € Dsp ) with Z = F("RO>0 ,.RO . ), and is also written as (P, Z) €

Dgs with the same Z.
In the homeomorphism U8 ~ p* ; in 0.5.22, the above limit point of

val — To,va

Di +a1 18 the image of ((0, 0)o, 0,0, 0) € U8 ¢ (|A*)va x R? x C. In the home-

val
omorphism P, X R>0 =~ Dgs(P), the above [p, ¢] € Dsi 2y = Dgs is the image
of (1,0, 0).

We give an explicit description of ¥ : D* 1 = DsL(2) for some open neighbor-

o,va
hood of the above limit point of D? ar Let (U'%%) be the open set of U8 consisting
of all points (p, x|, x2,a) (p € (AP)var, X1, x2 € R, a € C) such that p # (0,0)0
and such that p # (r, 0) for any r € |A|— {0}. Then (U'°8)’ contains the point

val
((0, 0)o, 0, 0, 0) of U'°. Define N3, N4 € Lie(P,) by

val *

0 0 0 1 0 -1 0 O
0 01 0 0O 0 0 0
N3 :=en+ey = 000 ol Ny =ey3—ep = 0 0 0 0
0 0 0O 0O 0 1 0
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We have a homeomorphism
~ 3
R*S P, (xj)i<j<a F> €xp (Zj=| X; N,-) exp(xaNg).

The restriction of ¥ : D° . — Dgy 2y(W) = Dgs(P) to (ljlz,g " is explicitly

o.val
described by the commutative diagram

(1A xR2xC D (U%) — D

val o.val

;
l Dgi (W)
l
P, xR > Dps(P).
Here the left vertical arrow sends p = (r, xy, X2, X3 +iy3) € (Ulgf
(IA1*)var and x1, X2, x3, y3 € R to the following element of P, x R,

)" with r €

(1) When the image of r in |A|? is not (0, 0), if we write r = (e~ 2™, ¢~272)
with0 < y; <ocoand 0 < y; < 0o, p is sent to

-1
3 ¥3 Y2 » ) ! 2
ex xiNjJexp| —=Ns ), =1 —-—=2 ,— | € P, xRZ,.
( b (Zj=| s ) p( »2 4) Y ( Yiy2 »2 toEe

(2) When the image of r in |A|? is (0, 0) and r has the form (0, 0); or (0. 0); ,
p 1s sent to

3
exp ZXV,N',' , 5,0 eP,,ngo.
i=I

Note that, when p € (lez,g)’ as in (1) converges to a point of (0V'z;g)' as in (2) whose

r has the form (0, 0), or (0, 0), ., then x|, x5, x3, and y; converge, y;, y» = 00, and
v2/¥ — s, and hence the terms y3/y, and 1/y, in (1) converge to 0 and the term

2\ -1
:—f(l - %) in (1) converges to s.

Let I' = exp(ZN, +ZN;,) = | +ZN, + ZN,. We show that, for any neighbor-
hood V of [p, ¢] € Dsi (W) = Dgs(P), there is no continuous map V — I'\D,,
that extends the projection VN D — I'\D. In fact, for any c € R, the image

pe € D, of ((0,0),0,0,ic) € (U%) is sent by ¥ to [p, ¢] € Dsi(2y which

val
is independent of c¢. On the other hand, the image p.. of p. in '\ D, is the class of

the nilpotent orbit
(0, exp(oc)F (1(1 z(;‘))

modulo I, and we have p, # p), if c,d € R and ¢ # d. Hence there is no V with
V — I'\D, as above.
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0.5.27
Example with h*® = h%2 = 2, h""! = 1 (continued). In this example, the fundamen-

tal diagram becomes (see Criteria in 0.5.17 and in 0.5.18, and Theorem 10.1.6).

Ds 0).vai = Dgs.val

zva — Dsuey = Dss.

Let W be the Q-rational increasing filtration of Hy g defined by W, = 0 (k < —1),
Wo = Wi = Rey, Wo = W3 = Y5 Re;, W, = Hog (k > 4). On the other hand,
let the Q-parabolic subgroup P of Gg be as in 0.5.10. Then, we have Dgj 2)(W) =
Dgs(P) (cf. 0.5.10), and the map ¥ : Dé = Déva] — DSL@) is injective.

Let veS?N(Y}_Qe;) and let o = (Rxo)N,. Then ¥ : D% — Dsipy
sends D into Dsi () (W). We consider the map v : D% = D} | — Ds)(W) =
Dgs(P).

Consider the exterior product x in ZLI Rej, i.e., the bilinear map (ZL] Re;) x
(Z;zl Re;) — Z;zl Re; characterized by

€ Xep=e3, €)Xe3=¢€, e3 X ey = e, €j X e = —€ Xej.

Forze Qandu € Z:;:, Ce; such that u is not contained in Cz+Z;=] Re;,
we have exp(N,)F(z) = exp(Np)s(t) -r(0(z)) with b = Re(u) —Im(u) x 6(z),
t = (—({Im(u), 0(z))o)~'/? (cf. Section 12.2).

Fix v' € 8§? which is orthogonal to v. From 0.5.6, 0.5.10, and 0.5.18, we have a
commutative diagram

((Rzo) X R) x C x 0 D 0]°g — Dg
lw
l Ds12y(W)

l
(Z;:l Re;) x (Rxo) X {£1} x §? > Dgs(P).

The left vertical arrow sends (7, x, a, z) € U8 with r # 0 to (b, 1, 1, 6(z)) where
b = xv +Re(@)v' — (yv +Im(@)v) x 0(2),t = (—{(yv+Im(a)v’, 8(z))o)~'/? with
y € R defined by r = e=27/¢ (¢ is as in 0.4.18), and sends (0, x, a, 0~ (v)) € U8
to (xv+ Re(a)v' +Im(a)v x V', 0, 1, v).

We show the following two results.

(i) If we embed DﬁE in Dgy(2) by the injection ¥, the topology of DﬁE does not
coincide with the topology as a subspace of Dg 3.
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(i) Let us call the topology of U'"¢ as a subspace of ((Rzo) x R) x C x Q the

I
naive topology. Then the composition U'e — D = Dgi (2 (W) = Dgs(P)
is not continuous for the naive topology.

Let p € D: be the image of (0,0,0,6~'(v)) € U"e. Take ¢ > 0 and con-
sider the elements f(s) = (exp(—21/(£5)), 0,0,67'((1 —s2)'2v +5v")) € U'ee
(s > 0,5 = 0). In U8, when s — 0, f(s) converges to (0,0,0,6 ' (v)) for
the naive topology. However, in U with the strong topology, the image
(exp(—2m/(€5)), 0,071 ((1 —s»)?v+5v")) of f(s) does not converge to the
image (0, 0,67 (v)) of (0,0,0,07'(v)) (0.4.15 (2)). Hence the image of f(s) in
D: does not converge to p (0.5.6).

The image of f(s) in (Y1_; Re;) x (Rs) x {1} x 8% is

(' x v, s (1 =sH7V4 1, (1 =sH" 2+ sv)).

This converges to (0,0, 1,v) if ¢ < I, but does not converge if ¢ > | (by the
existence of the term s' ).

For ¢ < 1, this proves (i) because the image of f(s) in DZ does not converge to
p but the image of f(s) in Dgy(2) converges to ¥ (p).

For ¢ > 1, this proves (ii} because f(s) converges to (0,0, 0, A~ (v)) for the
naive (opology but the image of f(s) in Dgj (2 does not converge to the image
Y(p)of (0.0,0,07"(v)).

0.5.28

For an object X of B(log), we will define a logarithmic local ringed space Xyq
over X in 3.6.18 and 3.6.23, by using the projective limit of blow-ups along the
logarithmic structure. Though X, need not belono to B(log), we can define the
lopoloomal space (X,q)'°® (we denote it as qul) in the same way as before. If
X = C? with the logarithmic structure associated with the normal crossing divisor
C? — (C*)?, then

Xva = (C)V-,l 1,(’)]7 = (R>0)v1| x (S )2

Fora fan X in gq and for a neat subgroup I' of Gz which is strongly compatible
with , we have

(T\Ds)val = T\Ds i, (T\Dg)'% =T\DL ..

(See 8.4.3))

In the classical situation 0.4.14, except for the unique exceptional case 0.5.17,
the fundamental diagram and the fact that Dg; (3y = Dgg in this situation show that
there is a unique continuous map

(T\D5)%® — T\ Dgs

which extends the identity map of D. Chikara Nakayama (unpublished) proved that
in the classical situation 0.4.14, if we take X and I" such that '\ Dy is a toroidal
compactification of '\ D, then I'\ Dy 4 coincides with the projective limit of all
toroidal compactifications of '\ D.
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In the general situation, we have

THEOREM 0.5.29 Let X be a connected, logarithmically smooth, fs logarithmic
analytic space, and let U = Xy, = {x € X | Mx . = O% .} be the open subspace
of X consisting of all points of X at which the logarithmic structure of X is trivial. Let
H be avariation of polarized Hodge structure on U with unipotent local monodromy
along X — U. Fixabase pointu € U and let (Hy, {, o) = (Hzu, {, )u). LetT be
a subgroup of Gz which contains the global monodromy group Image (| (U, u) —
Gz) and assume T is neat. Then the associated period map ¢ : U — '\ D extends
to a continuous map
Xlov b F\DSL(Q).

val

Here Xyq is the projective limit of certain blow-ups of X at the boundary (see
Section 3.6).

As is explained in Section 8.4, this theorem 0.5.29 is obtained from the period
maps in 0.4.30 (ii) and the map ¥ : Dé'val —> Dsy ). (The period map in 0.4.30 (ii)
is obtained only locally on X, but the composition globalizes.)

0.5.30

b-spaces. Cattani and Kaplan [CK 1] generalized Satake-Baily-Borel compactifica-
tions of I'\ D for a symmetric Hermitian domain D, to the case where D is a Griffiths
domain of weight 2 under certain assumptions, and showed that period maps from a
punctured disc A* extend over the unit disc A. This was the first successful attempt
to enlarge D beyond the classical situation 0.4.14. In Chapter 9 and Section 10.4,
we consider the relationship between our theory and their theory and discuss related
subjects.

We define the quotient topological spaces D ss ‘= Dgs/ ~ BS val := DBs,val/ ™~
divided by the action of the unipotent radical of the parabohc subgroup of Gg
associated to each point (9.1.1).

In the case of D being symmetric Hermitian domain, D',;S was studied by Zucker
in [Z1,Z4], and is called the “reductive Borel-Serre space” by him.

Similarly we have the quotient space DEL(Z).sl of the part Dgj (2. < of Dsi ) of
points of rank < 1 by the unipotent part Gw r ., of Gw r associated to each point
of Dsy(2).<1 (cf. 5.2.6). The space D* of Cattani and Kaplan in [CK 1] (defined for
special D) is essentially this D[S)L(Z),fl (9.1.5).

Let X be an analytic manifold and U be the complement of a smooth divisor
on X. Assume that we are given a variation of polarized Hodge structure H on U
with unipotent local monodromy which has a I"-level structure for a neat subgroup
I of Gz of finite index, then the associated period map U — '\ D extends to a
continuous map X — F\Dsuz) < (see Section 9.4).

This is obtained as the composmon of X - I'\Dg (0.4.30 (1)) and the con-
tinuous map I'\Dg — F\DSL(Z) <1 Which is induced from ¥ : DH = D, val =
Dsi2),<1 C DsLe2y.-
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0.6 PLAN OF THIS BOOK

The plan of this book is as follows.

Chapters 1-3 are preliminaries to state the main results of the present book, Theo-
rems A and B in Chapter 4. In Chapter 1, we define the sets Dy, and DEE. In Chapter 2,
we describe the theory of polarized logarithmic Hodge structures. In Chapter 3, we
discuss the strong topology, logarithmic manifolds, the spaces E,, E,. E,, the cat-
egories B, B(log), and other enlargements of the category of analytic spaces. In
Chapter 4, we state Theorems A and B without proofs. Theorems 0.4.19 and 0.5.5
are contained in Theorem A, and Theorem 0.4.27 is contained in Theorem B. The-
orem 0.5.8 is contained in 5.1.10 and Theorem 5.1.14, Theorem 0.5.16 is contained
in Theorem 5.2.15 and Proposition 5.2.16, and Theorem 0.5.20 is contained in
Theorems 7.3,2, 7.4.2, 5.1.14, and 5.2.15. We also discuss, in Chapter 4, exten-
sions of period maps over boundaries, and infinitesimal properties of extended
period maps.

In Chapters 5-8, we prove Theorems A and B by moving from the right to the
left in fundamental diagram (3) in Introduction (also in 0.5.25). In Chapter 5, we
review the spaces Dsy 2y, Dis, Dsi(2).val, and Dgs_va defined in [KU2], and then we
define Dy o and DEE.vaI' By using the work [CKS] of Cattani, Kaplan, and Schmid
on SL(2)-orbits in several variables, in Chapters 5 and 6 we connect the spaces
Di:_ml and Dg; (7) as in Fundamental diagram (3) in Introduction (also in 0.5.25). In
Chapter 7, we prove Theorem A, and in Chapter 8, Theorem B.

In Chapters 9-12, we give complements, examples, generalizations, and open
problems. In Chapter 9, we consider the relationship of the present work with the
enlargements of D studied by Cattani and Kaplan {CK1]. In Chapter 10, we describe
local structures of Dg; (2). In Chapter 11, we consider the moduli of PLHs with coef-
ficients. Although the case with coefficients is more general than the case without
coefficients, we have chosen not to show the coefficients everywhere in this book
(which would make the notation too complicated), but to describe the theory without
coelficients except in Chapter 11, where we show that the results with coefficients
can be simply deduced from those without. In Chapter [2, we give examples and
discuss open problems.

Corrections to Previous Work
We indicate three mistakes in our previous work [KUI, KU2J.

(i) In[KUI, (5.2)], there is a mistake in the definition of the notion of polarized
logarithmic Hodge structures of type ®. This mistake and its correction are explained
in2.5.16.

(i) In [KU2, Lemma 4.7], the definition of B(U, U’, U") is written as {gp(t)k -
r | - -}, which is wrong. The correct definition is {p(t)gk - r | - - - }. This point will
be explained in 5.2.17.

(iii) In [KU2, Remarks 3.15, and 3.16], we indicated that we would consider a
space DlS)l..(Z) in this book. However, we actually consider only a part Dgl,(Z)_fl of

ng) (Chapter 9). We realized that D.ls)'uz) is not necessarily Hausdorff and seems
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not to be a good ollaject to consider, but that the part ng)vsl is Haussdorff and is
certainly a nice object.

The present work was announced in [KU1] under the title “Logarithmic Hodge
Structures and Classifying Spaces” and in [KU2] under the title “Logarithmic Hodge
Structures and Their Moduli,” but we have changed the title.

0.7 NOTATION AND CONVENTION

Throughout this book, we use the following notation and terminology.

0.7.1

As usual, N, Z, Q, R, and C mean the set of natural numbers {0, 1,2, 3, ...}, the
set of integers, the set of rational numbers, the set of real numbers, and the set of
complex numbers, respectively.

0.7.2

In this book, a ring is assumed to have the unit element 1, a subring shares 1, and a
ring homomorphism respects 1.

0.7.3
Let L be a Z-module. For R = Q, R, C, we denote Lz := R®z L.
We fix a 4-tuple
¢0 = (w’ (hl)'q)[),qez’ HO! < ’ )0)

where w is an integer, (h”9), ,c7 is a set of non-negative integers satisfying

h?4 = 0 for almost all p, q,
h4 =0if p+q # w,
h?9 = h9-? for any p, q,

Hjy is a free Z-module of rank le h?9 and (, )¢ is a Q-rational nondegenerate
C-bilinear form on Hy ¢ which is symmetric if w is even and antisymmetric if w
is odd. '

It is easily checked that the associated classifying space D of Griffiths (1.2.1)
is nonempty if and only if either w is odd or w = 2¢ and the signature (a, b) of
(Hor, {, )o) satisfies

a (resp. by= Y h'*+i,
J

where j ranges over all even (resp. odd) integers.
Let

Gz := Aut(Hy, (, )o),
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and for R = Q, R, C, let

Gp = Aut(Hpr. (, )o),
gr :=LieGp
={N € Endg(Ho.r) | {Nx, y)o+(x, Ny)o=0(Vx,Vy € Hor)}

Following [BS], a parabolic subgroup of Gr means a parabolic subgroup of
(G°)Rr, where G° denotes the connected component of G in the Zariski topology
containing the unity. (Note that G° = G if wisodd,and G° = {g € G | det(g) = 1}
if w is even.)

0.7.4

We refer to a complex analytic space as an analytic space for brevity. We use the
definition of analytic space (due to Grothendieck) in which the structure sheaf Oy
of an analytic space X can have nonzero nilpotent sections. Precisely speaking, in
this definition, an analytic space means a local ringed space over C which is locally

isomorphic to the ringed space (V, Oy /(fi, ..., fu))s where_ U is an open set of
C" for some n >0, fi,..., f are elements of T'(U, Oy) for some m > 0, and
V= {P el | fl(p) == fm(p) :0}-

We denote by
A, A(log)

the category of analytic spaces and the category of fs logarithmic analytic spaces,
i.e., analytic spaces endowed with an fs logarithmic structure, respectively.

0.7.5

Throughout this book, compact spaces and locally compact spaces are already
Hausdorff as in Bourbaki [Bn].

Throughout this book, proper means “proper in the sense of Bourbaki [Bn] and
separated.” Here, for a continuous map f : X — Y, f is proper in the sense of
Bourbaki [Bn] if and only if for any topological space Z the map X xy Z — Z
induced by f is closed. (For example, if X and Y are locally compact, f is proper if
and only if for any compact subset K of Y, the inverse image f~'(K) is compact.)
On the other hand, f is separated if and only if the diagonal map X — X xy X is
closed. Thatis, f is separated if and only if, forany a, b € X suchthat f(a) = f(b),
there arec open sets U and V of X suchthata e U, b e V,andU NV =@.

In particular, in this book, atopological space X is compact if and only if the map
from X to the one point set is proper.

0.7.6

For a continuous map f : X — Y and a sheaf F on Y, we denote the inverse image
of Fon X by f~'(F), not by f*(F). This is to avoid confusion with the module-
theoretic inverse image. For f a morphism of ringed spaces (X, Ox) — (Y, Oy)
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and a sheaf 7 of Oy-modules on Y, we denote by f*(F) the module-theoretic
inverse image Ox ® (-1, FF)onX.

0.7.7

Concerning monoids and cones, we use the following concise terminology in this
book, for simplicity.

We call a commutative monoid just a monoid. A monoid is assumed (as usual) to
have the neutral element 1. A submonoid is assumed to share 1, and a homomorphism
of monoids is assumed to respect 1.

Concerning cones, as explained in Section 1.3, a convex cone in the sense of
[Od] is called just a cone in this book. A convex polyhedral cone in [Od] is called a
finitely generated cone. A strongly convex cone in [Od] is called a sharp cone.

In [Od], for a finitely generated cone o (in our sense), the topological interior of
o in the vector space oy is called the relative interior of o. (Here or denotes the
R-vector space generated by o.) We call the relative interior of o just the interior of
o. The interior of o coincides with the complement of the union of all proper faces
of o. (Here a proper face of o is a face of o that is different from o.)

For an fs monoid S (0.2.11 and 2.1.4), similarly, we call the complement of the
union of all proper faces of S the interior of S.
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