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Introduction. 

After the systematic investigation by Griffiths on the period maps [3], 

several researches have been made on the problem of their injectivity (Torelli

type problem) and of their surjectivity (for K3 surfaces, cf. [17], [lOJ; for 

Enriques surfaces, cf. (11); for surfaces of general type, cf, II in (3J, 

0-5], (16J, r20J, (21), [12) etc.). 

The purpose of this paper is to show the following: Let X' be a smooth 

projective surface of general type obtained by the normalization of a hypersurface 

X in a projective 3-space P only with ordinary singularities. Let D be the 

singular locus of X with reduced structure and let n be the degree of X in 

P, Then the period map is unramified at the origin of the parameter space of the 

Kuranishi family of the deformations of X' in one of the following cases: 

(1) D is a complete intersection in P. (In this case we have few exceptions. 

For detail, see the theorem (3,5).) 

(2) n is sufficiently large enough comparing to D. (See the theorem (5.8),) 



The result ln case (1) contains some t,,:amples of minimal surfaces of gil:meral 

type wlth non-ample canonical divisor, for which the local Torelli theorem holds. 

The result in case (2) gives some evidence that if there would be sufficiently 

many 2-forms on a given surface, their periods of integrals should determine the 

surface itself (cf. the remark (5,9)). 

We recall here the definitj_on of a surface X in a projective 3-space P 

only w:i,th ordinary singularities: Taking a suitable local coordinate system 

(x, y, z) at each point in P, the local equation of X in P is one of the 

following forms: 

( i) 1, 

(ii) z. 

(iii) yz, 

(iv) xyz, 

(v) 
2 2 

xy - z 

These surfaces are attractive because every smooth projective surface can be 

obtained as the normalization of such a surface X More precisely, in character-

istic O, via generic projection, every smooth projective surface can be projected 

onto such a surface X These surfaces, especially their deformations, are inten-

sively studed by Kodaira in (13] and, when their singular loci are smooth curves 

of complete intersections in the ambiant space, by Horikawa in [ 9 J and by Tsuboi 

in r19J. 

We also recall that, given a smooth projective surface Y, the morphism 

--)'..i- Ii1«)_l)@HO(,Q2)v 
y y 

induced from the contraction Ty@D~ • n~ is called the infinitesimal period map 

nt Y in the second cohomology (for the background, cf. [3], [20]). 

This work was started on the joint research with Professor S. Tsuboi at the 

Research Institute for Mathematical Sciences in l<yoto previous year, The author 

expressE•s his hearty thanks to Professor S. Tsuboi and Professor K. MiyaJ ima and 

the other professors at Kagoshima University who received him warmly in the 

previous summer. 

March 10, 1978. 



Notatios and conventions. 

The category, which we treat, is schemes over the field (: of complex numbE>rs . 

for a coherent QX-module F. 

V 
F=Hom0 (F, QX) for a coherent Qx-module F. 

-x 
V 

V=Homt(V, C) for a t:-vector space V. 

I LI denotes the complete linear system associated to an invertible QX-modulf! 

L. 

BsfLI denotes the set of the base points of ILi. 

S and M denote the set of homogeneous elements of degree a of a graded 
a a 

ring S and that of a graded module M respectively_ (a~ Z). 

ilf denotes the sheaf of relative KIDller differentials for a morphism f of 

schemes. 

I'\ - n where 
.i "x- .. "f, f: X ~ Spec C is the structure morphism . 

WX denotes the dualizing QX-module of a scheme X 

C(a)• {
(a+3) (a-+2) (a+l) 

6 

0 

if a is a non-negative integer, 

if a is a negative integer. 



1. Qreliminaries. 

In this section we summarize the preparatory results for the later use. 

(1.1) Let P denote the projective 3-space. Let X be a hypersurface in 

P only with ordinary singularities, D be its double curve, that is, D s Sing(X) 

and T be the triple points of X, namely, T:Sing(D). Let f : X'----+- X be 

the normalization. We set D'=f-1 (D), g=res(f) : D'-__.,,... D, T'- f-1 (T) and 

n, d and t being the degrees of X, of D and of T respectively. 

(1.2) We also use the following notations. 

W W W th d li i h f X Of D and Of X , respectively. X' D' X' : e ua z ng s eaves o , 

1 
Note that wx=Ext0 (Q.x, WP):,;:Qx(n-4). 

-p 

(a, bf- :l and b )0), where JD 

denotes the QP-ideal of D. 

Q.x ,(a)= f*Qx (a) 

QD , ( a ) = lt*'Q.D ( a ) 

(a" :I). 

(at! Z). 

(a, bE:Z). 

The following lemma can be found in (18]. 

Lemma (1.3) (Roberts). 

(1.3.1) D is locally Cohen-Macauley and of pure codimension 1 in X 

(1.3.2) 

Lemma (1.4) (Kodaira). 

(1.4.1) 

(1.4.2) 

Wx ,o: Q.x ,( (n-4 )-D'). 

f*Q.X, ( a-bD ')+: QX (a-bD) 

--~· 0 exact. 

(a, b f Z and b ;, 0) • 

~- (1.4.1) is just the adjunction formula. (1.4.2) is obtained by a 

direct computation by using the local coordinates mentioned in the introduction. 

More precisely see Kodaira (13]. QED. 

(1.5) Let ~JP be the coherent 0 ,-module introduced by Horikawa (in -x [9)' 

his notation is 1'xJP), which is defined for making the following sequence exact: 

(l.~.l) 0 ~ TX, -- f*(TpdJ QX) __,.?lXJP ~ O. 

Let j X be the QP-ideal of X Since JX ;J! ~ QX (-n) , we have the exact 



sequence 

(1,5,2) o __. o (-n) ~ () ~o ~ {l - o. -X .. ..,, -X X 

Dualizing (1,5,2), we get the exact sequence 

~ 1 o ~ Tx ~ TPODQ.x ~ Q.x(n) ~ Ext0 <llx, Q.x) 
-x 

_ ___,,,,,. o, 

where we denote Hom0 fClx, QX) by TX' We define nX/P=Im{Tp8Q.X ~ 'QX(n)}, 
-x 

which is nothing but the coherent Q.X-module introduced by Kodaira (in [131, he 

uses the notation if). Similarly we denote Hom0 <n,0 , ~) by T0 and Coker{T0 
-D 

--+ T Pdll ~} by ~/P' nD/P is just the sheaf N in Kodaira [13]. In case 

that D is smooth, we also use the notation ND/P for nD/P' 

The following results can be found in ( 9 J and in [13 J, 

~ (1,6). 

f*'Ylx JP z.11x /P (Hor ikawa) . 0,6,1) 

(1,6,2) 0 > Qx (n-2D) exact (Kodaira). 

The following formulae are calculated in [22) (cf. also (~)): 

~ (1,7). X' has the following numerical characters: 

(1,7,1) 

(1,7,2) 

(1,8) 

2 2 
c 1 = n(n-4) -( 5n-24 )d-4 l(Q.0 )+t. 

2 
c 2 =n(n -4n-6)-(7n-24)d-8X(Q.0 )-t. 

We summarize here the results concerning the spectral sequence of the 

Koszul complex introduced by Lieberman-Wilsker-Peters in fl4), 

Let y be a complete smooth scheme. Let M be an invertible Q.X-module, 

be a subspace of HO(M) and E be a locally free QY-module, Choose a basis 

... ' 
f of V and let el' ... ' 

e be the dual basis, For the triple (M, 
m m 

E) we denote by K' (M, V, E) the Koszul complex consisting of the Q.Y-modules 
p 

Kp(M, v, E): (E ~ M~p) ca /\ V 
Q.y C 

together with the coboundary maps defined by 

d(x) = L (L(-1 )jf1 
11 < ... < ip+-1 j j 

for X•L x 1 ie A·••/\ei~Kp(M,V,E). 
i 1 < .•. < ip 1' '• p il p 

V 

fl' 

v, 

The E 2 terms of the spectral sequenpe of the hypercohomology of this complex 



K' (M, V, E) with respect to the first filtlation are given by 

P v ( 1) p+lv 
Ker{Hq(E~ M~p) ® /\ v ~ Hq(E0 M8 p- ® /\ v} 

E)= ., 
Im {Hq(E e M•< p-l)) 8 pAl V ~ Hq(E 19 pPPJ 4D Jl. V} 

Since 'E~'q(M,V,E)=O (p<O or q<O) bydefinition,wehavethe 

following well-known exact sequence: 

(1,8.1) O ~ El,O --+l{l ---J- EO,l ---J- E2,0 __ 9 Ji2, 
2 2 2 

Lemma (1. 9) (Lieberman-Wilsker-Peters). If codilny BsfMI ~ 2, then we have 

JH\M, V, E):O. 

Proof. This lemma is proved easily by observing the E2 terms of the spectral 

sequence with respect to the second filtration (for detail, cf, [14)). QED. 

We conclude this section by adding one more lemma which is easy to prove and 

is rather useful. 

Lemma (1.10), Let p be an integer with p =f m, If ho(Eerf'.l')~l, then we 

Have 'E~• 0 (M, V' E)= o. 

Proof. In case h 0ce ® MtJJP) = o, it is trivial. We assume h 0c Ii c& M•P) = l. 

Let t be a basis of H0 (E •M~P) and let f be the map making the following 

diagram commutative: 

Explicitly f is given by 

('(y):'i, O:C-l)jyi 'i' i t•fi )ei A •··l\ei 
i < i · 1 .. • j • . . P+l j 1 pH 

l ... < p+l J 

(y i,c:>. 
11··· p 

Since M t• • EeMe(p+l) is injective, tt 0 (M) t, • Ho(EeM•Cp+l)) is injective, 

and hence t.f1 (l'-i,m) are linearly independent in HO(EeMe(p+l)). Therefore 

f<y)=O implies y=O. This completes the proof. QED. 

2. deformations. 

In this section we study the small deformations of the surface X' in (1.1) 

is a smooth curve of complete intersection in P.t> when D 



(2.1) If D is a curve of complete intersection in P, then the homogeneous 

equation of the hypersurface X in P is the following form: 

AF 2 + 2BFG + CG 2 , 

where F, G, A, B and C are also homogeneous polynomials in cCx 0 , ••. , X3]. 

In th•is. case D is given by F = G = O 

Let I be the homogeneous ~cx 0 , ••• , x3J- ideal generated by F and G, 

We set n1 • deg F and n 2 = deg G. We may assume n1 ~ n 2 because of symmetry. 

Note that 

From now on, except explicitly indicating the contrary, we assume that the 

surface X' is the normalization of a surface X just mentioned above, 

( 2. 2) Let P' --•) P be the blowing-up of P along D and let E' be the 

exceptional divisor. Then we have the following diagram: 

Since D is smooth, 
,,.,,, , _v 
g : E = ProJ(ND/P) ~ D is a 

1 
P -bundle. We denote by 

L = 0 , ( -E ' ) e O , 
-p -E 

1 
the tautological invertible sheaf of the P -bundle -g_ Note 

that (a~ Z), where s'\ ) denotes the a-th symmetric tensor 

product. 

Lemma (2.3). The surface X' has the following numerical characters, 

q=O. 

pg= C(n-n1 -4) t C(n-n -4) - C(n-n -n -4) 
2 1 2 ' 

2 2 
c 1 = n(n-4) + n1n 2 {2(n1 +n 2 ) + 16 - 5nJ. 

We obtain the following table: 

n 3 4 4 5 5 5 6 6 7 

nl 1 1 2 1 2 2 2 3 3 otherwise 

n2 1 1 1 1 1 2 2 2 3 

pg 0 2 1 0 2 1 2 4~ 

2 + 0 -f" cl 0 -1 + 0 + 
X' not general type general type 



Proof. From (1,3,2), we have an exact sequence 

1 1 1 V 
H (QX) ---+ H ( f*QX,) ---+ H (<c10 C9 ~) 

Since 
1 

H (Q.x)=O and the dual map of ~ is surjective, we see that 

that is, q:O. By (1.4.1) and (1.4,2), we obtain that 

Ho~,)+: Ho(Q.x ((n-4 )-D) ~ In-4. 

From this, we get the formula for The formula for is the direct 

consequence of (1.7.1). As for the last line of the table we will check them 

case by case. In case n=2n1 , it is easy to see that wx,=2x,(n-4-n 2 ) and 

hence X' is of general type if and only if n-4-n2 > o. In case (n, n1 , n 2 ) 

= (3, 1, 1), (4, 1, 1) or (5, 2, 2), the direct calculation shows that the 2-ple 

genus of X' is zero and hence X' is not of general type by the criterion of 

Kodaira. In case (n, n1 , n 2)= (5, 1, 1), (6, 2, 2) or (7, 3, 3), we have, by 

( ) ( ') ' -l( ) ' and D2'• f-l(GaO) - D' 1.4.1 , Wx•~Q.X, n1 -D and hence D1 = f F•O - D 

form a basis of the complete linear system l~,f. If there would exist an 

exceptional curve of the first kind on X' 
' 

say c' 
' 

(C' • D' ) = (C '• D' ) = -1 
1 2 

hence C'C D' D' 
1" 2· 

This is a contradiction, since it is easy to see that 

and 

4: ~ imposes the existence of a point x in P satisfying A(x) • B(x) =C(x)- F(x) 

= G(x) = O and hence the existence of a point on X with its multiplicity ~3. 

Thus, in the considering case, x' is relatively minimal and its 
2 

c 1 :s O whence 

X' is not of general type by the criterion of Kodaira. In case (n, n1 , n 2) 

= (5, 2, 1), l~,I has only one element, namely, 
, -1 

D2= f (G= 0) - D', which is 

isomorphic to the line A =G =o in P via res(f) and hence D' 
2 

is the 

exceptional curve of the first kind. Contracting o;, we get the relatively 

minimal model whose canonical invertible sheaf is trivial. The last assertion in 

the table, corresponding to "otherwise", can be easily verified. 

Lemma ( 2. 4 ) • 

<2.4.n 

(2.4,2) 

H1 (Qx,(a-bD') =O 

H2 (Q.?{, (a-2D') • 0 

( a E Z, b = 1 o~ 2) • 

f!:.2.g1. We use the following exact sequences: 

., 0. 

QED. 



o----+ Q.x(a-D) > Qx(a) ~ 9.0 (a)--,. o. 

3ince tt 0 (Q.x(a-D)) ---+ tt 0 (N0 /Pe Q0 (a)) and tt 0 (QX(a)) ---+ tt 0 (Q0 (a)) are 

surjective and since H1 (Q.X(a))=O, we obtain (2.4,U. By (2,4,1), we get that 

2 2 1 1 V 
h <Qx(a-2D))sh (Q.x(a)) + h (Q.D(a)) + h (ND/P8Q.D(a)) 

0 0 0 
::rh (QX(n-4-a)) th (Q.0 (n1 +n 2-4-a)) + h (Q.0 (2n1 +n 2-4-a)) 

0 + h (QX (n1 +2n 2-4-a)) 

fhis proves (2,4,2). 

Lemma (2,5). Let ~ be the connecting homomorphism 

f; : H0(1°ZxfP) ---> Hl (TX,) 

obtained from the exact sequence (1.5,1). We have the following table: 

n 5 6 7 5 6 6 7 7 8 8 8 

nl 1 2 3 2 3 2 3 3 4 4 4 otherwise 

(2,5,1) n2 1 2 3 1 2 1 1 2 1 2 3 

h l ( f* (T p Qt Q.X) ) 2 1 0 

hl(~JP) 0 1 

i not sur jective surjective 

~- By the duality theorem and by (1.4), we get that 

1 1 1 
h < f* < T P e Q.x )) = h < f* <Op® Qx ) ® Wx , ) = h <Jlp ca Q.x « n-4 > -D ) ) • 

Now we use the following exact sequence: 

0 ~fipeQX((n-4)-D)---+ Q.X((n-5)-Df 4 ----+ QX((n-4)-D)--+ 0, 

By using (2.4,1), we get that 

tt1 [}.p~QX((n-4)-D)) ~ Coker{I~5 --+ ln-4}. 

QED, 

From this, we can fill up the table concerning h1 (f*(TP8Q.X)), by an elementary 

calculation. By (1,6) and by (2,4), we have, in the cases in the table 

( 2. 5. 1) that 

1( ) ,..., 1 ) ,.., 1 ) 
H 'nxJP ., H (~/P ~ H (ND /P • 

From this we can complete the table concerning As for the surjectivity 

of b, Horikawa proved it in case n = 2n1 and n-n2-4 > 0 in [9]. QED. 

(2,6) Let R denote the localization of t[T1 , ... , Tm] by the maximal 



ideal 1#,:(Tl' ..• , Tm)' where 

Put S::cSpec R, Let 
,.,,..,,..,,.,8 
F, G, A, and C be the first order perturbations of 

of G, of A, of B and of C respectively, namely, 1 = F + F 1 , where F 1 

= L M.T. 
l. 1 

1,i$C(n1 ) 

t:tx 0 , ... , x3J) 

( Ml , • . • ' 

etc. Let 

MC( ) are the monomials of degree n1 
nl 

I and 1J be the subschemes in P x S 

in 

defined by 

F, 

A1 2 + 2BFG + cn2• o 
,., .-

and by F = G = 0 respectively and let J.' be the blowing-up of 

J along .() (or equivalently the normalization of l). Then we have the natural 

morphism: 

(2,6,1) ~'--• s. 

Theorem (2,7), Let X' be a surface of general type which is the normalizatio 

of such a hypersurface X as in (2,1). Except the cases 

n 6 7 7 

(2.7.1) nl 2 3 3 

n2 1 1 2 

(2.6.1) gives a complete family of the deformations of X'. In particular, except 

the cases in the table (2,7.1), the parameter space of the Kuranishi family of 

the deformations of X' is smooth at the origin, l) 

!!:2,Q!. The map 1;': T8 8 k(fll,,) ----+ tt 0 (1Zx/P) is given by 

AF 2 + 2BFG + CG 2 mod -rl, 
that is, for sf T8 e k<,n..)c:J\m, 

t'(s) :(AlF2 + 2B1FG +clG2 + 2AFF1 + 2BF1G+ 2BFG1 + 2CGGl)c3k6#) mod (AF 2+ 2BFG +cG2 ), 

and it is easily verified that 't' is surjective. 

gives an injective morphism 

0 > H <nx,) • Since q = o by ( 2. 3) , 

0 
Tensoring non-zero w ~ H ('41x,) 

and hence an injection 

0 0 
we see H (Tx,>= H (Q_x,>=- o. The 

other assertions in the theorem are the consequences of 

by the general theory of deformations, 

( 2. 5) and of HO(T )= 0 
X' 

QED. 

Remark (2.B). The argument in this section also holds in the case that D is 

globally Cohen-Macauley, that is, 



tt 0 <Qu(a)) e::: (CCXO' , X ] /I) 
3 a 

(a f Z), 

0 
where I= EB H cJ0 (a)). Hence, in this case, the last statement of ( 2. 7) is 

M2 
valid (several cases occur according to the degrees of the generators of I). 

3. _local Torelli theorem. 

In this section we assume that X' is a surface of general type which is the 

normalization of such a surface X as in ( 2.1). We give a proof of the local 

Torelli theorem for such a surface X' 

Put 

~ (3.1). 

(3 .1 .u 

(3.1.2) 

f QX, (1)1 is fixed points free. 

3) 
is fixed components free. 

ruQ!. (3.1.1) is obvious. By (1.4.2), we have 

Ho(Q.x,<n1-D')) ~ Ho(Q.x(nl-D)) = In 
1 

D ' - f* ( F = 0) - D' and D' = f* ( G = 0) - D ' Then 1- 2 ' 

1Qx,(n1-D')I ={c'+o;I C'= f*(C), c EIQx<n1-n2 >1J+ {D{}. 

Since "(C't n;)•D; and since f*(F=O)l'\f*(G=O)•D', we get the assertion 
c' 

(3.1.2). QED. 

Remark (3. 2). In case n = 2n1 , it is easy to see that 

Wx ,~ Qx ,(n-n2-4). 

On the other hand, in case n+ 2n1 , CJX, is not a non-trivial power of an inver

tible sheaf. 

The next lemma is the essential part in the proof of the local Torelli theorem. 

The proof of the lemma willbe found in the next section, 

Lemma (3,3), 

0 {~ 1 c 3 • 3 .1 > h Cfl.x , e Qx , < 1 > > :: 
0 otherwise, 

(3,3,2) In case n • 2n1 , except the case n = 2n1 + 1 and n 2 = 1, we have 

Ho(Tx ,S Q.x ,(2n1-20'))= o. 

Lemma ( 3 • 4 ) . In case n1 > n 2 + 1, the map 

Im(~) 
1 . 

> H (Tx,~Q.x,<n 2-D')) 



is injective, where S is the map in (2.5) . 

.E!:..QQ!. By ( 1. 6. 1), it is easy to see that 

(3 .4. U f* (nXJPdJ QX, (n 2-D') )~ nX/P •Qx (n 2-U), 

where ?'l.X/P ·Qx (n2-D) = Im{1ZX/Pc, Qx (n 2-D) -~ n.X/P• QX (n 2 ) J. By (1. 5 .U, 0 ,6 .1) 

and (3.4.1), we have a commutative diagram: 

Since ')' is injective, it is enough to show that yr is inje_ctive. The injectivity 

of 1/f follows from the following assertion: 

(3,4.2) Put ~=AF2+ 2BFG+cG 2 . If we assume that, for a given ig" in 

~[x0 , .•. , x3Jn, there exist Pi in 

.)~ 
• 2'. Pi°""ix modf, then there exist 

o,H3 i 

,, f 
that j" = L Q. "ix""" mod I. 

O~U3 1 i 

such 

The assertion (3.4.2) 

by the assumption n1 ) n 2 + 1 

is trivially valid, because In
2
+1 • GC(X 0 , ..• , X3) 1 

and because G is a regular element modulo i . QEU. 

.. 
Theorem (3.5). If X' is a surface of general type which is the normalization 

of a hypersurface X defined in (2,1), then the local Torelli theorem holds for 

X' except the case (n, n 1 , n 2 )=(7, 3, 1). As for this exception, still the map 

lm(f) 
1 0 V' 

,. H <fix , ) ® H (Wx , ) 

is injective, where S is the map in (2.5). 

Proof. We use the notations in (1,8). By (3,3.1) and (1.10), we get 

and by (3.1,1) and (1.9), we have 

1l<Qx,<l), tt0 <Q.x,(l)), Tx,GtQ.x,<i-D'))= o 

and hence by (1.8.U we see that 

'E~'o<Q.x,(1), tt 0 <Q.x,<U), Tx,O.Q.x,(i-D'))ao 

Namely 

( i< n-4), 

(i(n-4), 



(3,5.U 

is injective (i(n-4). In case n=t:2n1 , except n:2nitl and n 2=1, a similar 

argument applied for (M, v, E)=(Q_X,(n1 -LJ'), H0 (Q.X,(n1-D')), TX,) deduce~, by 

using (3.3,2), 0.10), (3.1.2) and (1.9), that 

(3.5.2) H1 (Tx,) • H1 (Tx,®Q.x,(nl-D'))a. H0 (Q_x,(nl-D'))v 

is injective. In case n= n 2+1, the map 

(3,5,3) Im(b) • H1 (Tx,8Q.x,<n 2-D'))®H 0 <Q.x,<n 2-D'))v 

is injective, which is an immediate consequence of (3,4), and, by (2.5), we 

see that 
1 

lm(S):H (TX,) except the case (n, n1 , n 2 ):(7, 3, 1), 

Combining the above results, we conclude the proof of the theorem as follows. 

In case n:2n1 , by a successive use of (3,5.1) and by the remark (3.2), we 

have the following commutative diagram: 

where 'f is the infinitesimal period map. In case n::f: 2n1 , except n s 2n 1 + l 
and n 2=1, by a successive use of (3,5,1) and by (3,5,2) we get the following 

diagram: 

In case n 1 =n2+ 1, by (3,5,3) and (3,5,1), we obtain 

Im(~) C :,, H1 (Tx,CIQ.x,(n-4-D'))&H0(Q_x,(n2-D'))""8 {H 0 (Q_x,(1)}""] 8 <n-n2-1 > 

~ l 
H1 <Tx -~ Q.x, (n-4-D ')) 8 Ho(Q.x, (n-4-D') )v. 

Hence we get the injectivity of the infinitesimal period map 'f in every case, 

QED. 

4, proof of the lemma (3,3), 

We use the following well-known facts: 



V 
( 4 .1 ) 0 ~ NX JP , --. np, a, QX , ~ !lX , ~ 0 exact . 

( 4 • 2) 0 > f* c.ap 9 Qx) ~ .o.p, " Qx , ~ ng 8 % , ---+ 0 

(4.3) !lg~L•<-2 >9g*(det ND/P). 

By (4.1) and (4.2), we have the following diagram: 

In order to prove (3,3.1), it is enough to show the following: 

(4 .4) 

(4. 5) 
0 { !-dimensional 

H (fl .... @ QD , ( 1) ) ::r 
g O otherwise. 

(4 .6) 
1 v {1-dimensional 

H ( NX JP , 8 QX , ( 1 ) ) = 
0 otherwise. 

By (1.3,2), we have an exact sequence 

--.. ) o. 

From this, (4,4) can be verified by an easy calculation. 

Tensoring Og~~Q.0 (1) to the exact sequence 

(4.7) -->~ 0 

and taking the direct image, we get, by using the relative duality theorem, the 

exact sequence 

£ 
--~""'0, 

and hence we obtain 

Note that. the map 6, considered as a homomorphism of graded modules, is as follows: 

where A, B and C are the polynomials in (2.1). In case n) 2n1+1, obviously 

0 
H ((lg•Q.0 ,(U)=O. In case n=2ni+l, the map E is injective and hence 

0 
H qigctQ.0 ,(1))=0. In case n=2n1 and n1 >n2+1, the same assertion holds. In 



(4. 9) 

(4.10) 

Ho <.og@ QX, ( 2nif-4 -n-D')) = o. 

1 ., , 
H ( Nx JP ,O,Qx, ( 2n1-t-4-n-D ) ) - o. 

From the exact sequence 

we have 

) 0 (2n1+4-n-D) -x 

O --> H0((lp4PQv(2n1+4-n-D)) --+ 11M ~ I 
ro. 2nt 3-n 2n1+ 4-n · 

----')• o, 

Since we assume that X' is of general type and n 4: 2n1 , the case 2n1+ 3-n~ n 1 

is decluded. Hence we have 

1 2n+3-nzat:[XO' ··· 'X3J2n-t-3-n-n · 
1 1 2 

On the other hand, from the in~quality 2n1+3-n-n 2 ~o, one of the following three 

cases occurs: 

(4 .11) n = 2n1+1 and n 2= 1. 

(4.12) n =2n1+1 and n 2= 2. 

(4.13) n :2n1+2 and n 2: 1. 

In cases (4. 12) and (4.13), the map (f' is injective. In case (4.11), the 

map O" has 6-dimensional kernel consisting of the Koszul relations. Hence (4.8) 

is verified. 

Tensor ing Qg e g"'Q0 ( 2n1 +4-n) 8 L to the exact sequence ( 4 . 7) and taking the 

direct image, we obtain 

, 1 -1 
g*<Jlg~QX,(2ni""4-n-D ))~ R g*(llgt,L eg""Q0 (2nt4-2n)):: N0 /PeQ0 (2ni+4-2n). 

Since X' is of general type with n=t=2n1 , we can declude the case 3ni+4-2n~O 

and hence This proves the assertion (4. 9). 

(4,10) follows from (2.4,1) by taking its dual. This completes the proof of 

(3.3.2). 

5. appendix. 

In this appendix, we prove that, in the situation in (1.1), the period map 

is unramified at the origin of the parameter space of the Kuranishi family of the 

deform~tions of X' provided that n ts sufficiently large enough comparing to 

D. We use the notations at the end of the introduction and in the section 1. 



case n :z: 2n1 and n1-:: n 2-tl, the map £ has the I-dimensional kernel. 

the assertion (4,5) is verified, 

Hence~ 

In order to prove (4,6), we may consider H1 (QX,(2n-5-3D')) by the duality 

theorem. By the exact sequence 

o > Qx,(2n-5-3D') ~ Qx,(2n-5-2D') ~ Qx,(2n-5-2D'>•Q.0 , ~ o, 

and by (2.4.1), we get 

H1 (Qx, ( 2n-5-3D '))~ Coker{H0 (Qx ,( 2n-5-2D ')) --> tt 0 <Q.x ,( 2n-5-2D') 8 Q.0 ,) j. 

Note that Tensoring to the 

exact sequence (4.7), and taking the direct image, we get the exact sequence 

0 ) Q0 (n-5) ), s 2(*D/P)dDQ0 (2n-5) ----+ g*(L112 eQ0 ,(2n-5)) > o. 

Since H0(QX(2n-5-2D))--+ H0(s 2(ND/P)atQ0 (2n-5)) is surjective, we have 

1 ,.,, 0 2 ..,,, __ ,. 0 •2 } 
H (QX, (2n-5-3D) )4- Coker{H (S (ND/P) 8Q0 ( 2n-5 )) ),. H (g* (L ~ Q0 ,( 2n-5))) 

{ 1 1 2 V 1 • Ker H <2o(n-5)) --).H (S (ND/P)8~(2n-5)), 

and hencf: 1 by the duality theorem, H1 (QX,(2n-5-3D')) is dual to 

f O £ 0 
Coker H (Q.1/3n1+n2tl-2n)$~(2n1t-2n2-t-l-2n)~Q0 (n1+3n2+1-2n)) ~ H (Q.0 (n1+n 2+1-n»}. 

In case n>n1+n2+1, it is obvious that H1 (Q.X,(2n-5-3D'))=- o. In case n•2n1 

and 2 is sur ject i ve. and E has the 

I-dimensional cokernel. This proves the assertion (4,6), and hence completes the 

proof of (3,3.1). 

The proof of (3,3,2) is similar to that of (3,3,1), First note that 

TX,«> QX, ( 2n1 -2D ')~.fix ,Qt Q.X, ( 2ni+ 4-n-D '). We use the following exact diagram 

obtained from (4.1) and (4.2): 

HO <fig~ QX, ( 2n1+4-n-D ')) 

i 
0 Q 1 V 

H rlp,8Q.x,(2nl4-n-D')) ~ H nx'"Q.x,(2nl,t4-n-D')) ~ H (NxJp'eQX,(2nt4-n-D')). 

·i 
Ho( f* <np• Qx )9 Qx ,( 2nl4-n-D')) 

We will show the following (assuming X' of general type with n+2n1 ): 

(4. 8) HO(f*(flpllQ.x>•Q.x,( 2ni+ 4 -n-D')) = {6-dimensional if n=2n/1 & n2sl, 
o otherwise • 



(5 .u Let q1 : P1 -----+ P be the blowing-up of P with the center T, 

let E 
1 

be the exceptional divisor and set ~ ~T. hl : El Xl and Dl denote 

the proper transforms of X and of D respectively and set f 1 = res(q1 ) 

I 

T1=f-1 (T) Xl -----+ X and g1 = res(q1 ) : D ~D Set and h1 •res(f1 ) 1 • 

Tl >T 

Let q2 : p2 > pl be the blowing-up of pl along I} 
1' 

let E2 be the 

exceptional divisor of and set - E2 ---+ Dl • x2, T2 and E' denote q2 g2 : 1 

the proper transformations of x1 , of T1 and of E1 respectively and set 

> x 1 , h 2-cres(q2 ) : T 2 ,. T1 and p 2 =res(q2 ) 

E' 
1 

> E1 . Set 
-1 

D 2=f 2 (D1 ) and g 2=res( f 2 ) D2 ---+ D1 • 

It is easy to see that D1 , x2 and o2 are smooth and that T2 consists of 

the exceptional curves of the first kind on x2 . The surface contracted T 2 on 

x 2 coincides with the normalization X' of X by virtue of the Zariski's Main 

Theorem. Set f 3 : X2 > X', g3 : D 2 ~ D'. 

The above things form the following commutative diagram: 

E" ~.1 
E1 1~ 

h.1 ~ 
T..z. ,; 

Ez 
u 
D~ Df 

(' X1. ~a 
,, 

• X1 

C' P,. 'h ') 
(S.1. 1) ,. pt 

,.3 t3 1,1 
"'· 

i, ~ 
,.., 
k1 

p 

l -J 
X' X 

~ 

' 
'J 

D' D 
v ~ 

T' T 



~ Note that g1 : D1 > o· is the normalization, h 1 : E1 

bundle, namely, a disjoint union of projective 2-spaces, f 2 : x2 __. x1 is 

the normalization, is a ramified double covering, 

E ---=>D 
l 

E' ~ E is a P -bundle, P2 is the blowing-up of the three 2 · 1 1 1 

points on p2 the component of El' f3 : x2 • x' is the blowing-up of X' 

with the center T' and T 2 is its exceptional divisor, g3 D ---+o' is 
2 

the norm,tlizat ion and that T' are the nodes on D' and by g each three nodes 

go down to a triple point of X 

In the neighborhood of a triple point of X, the figure of the above const

ruction is as follows: 

i 1i Ji, 
I D/ 

T~ 
f 

T~ <:J • 

_,~-

Remark (5.2) Let D be a curve in P:P3 only with singularities like 

coordinate axes in 3-space, that is, D yz:zx=xy=O for a suitable local 

coordinates (x, y, z) in P Given such a curve D, there exists an integer 

so that, for each integer n~ n 0 , there exist hypersurfaces X in P of degree 

n only wi~h ordinary singularities and with Sing(X):D. 

Actually, we can construct the following diagram as before in (5,1): 

E' 
1 

p 
2,. E 

'g. 1 
2> D 

1 

q " 2.>- p 
1 

't{ 
l>T 

gl I\ 
--....,~~o 

ql rt 
---.p 

n 
0 



The composite morphism q 1oq 2 can be also obtained by once blowing-up (cf, (2,3,7) 

in (7)) and its exceptional divisor can be easily calculated as E2t2E{. Thus we 

see that 0 (-E ) & q* 0 (- 2E ) 
-p 2 · 2-p 1 

is (qf q 2 )-very ample and hence there exists an 
2 1 

integer n 0 such that, for n ~ n 0 , 

very ample. Set 

Mn: Qp (-2E2) ~q~Qp (-4El) a. (ql •q2)*Q,p(n) and 
2 1 

Nn:a. Qp (-2E 2 ) 8q~Qp (-3E1 ) 8 (q1 oq 2 )*Qp(n). 
2 1 

We will compute BslN I. Tensoring N to the exact sequence 
n n 

0 -+ 0 (-E') ~ 0 --> .. 0 ~ 0 -E , 
-p 1 -p 

2 2 1 
and using the Kodaira's vanishing theorem, we get the exact sequence 

0 --> tt 0 (M ) ---+ tt 0 (N ) 
n n 

-..--;•• HO(N ~ 0 , ) ~ 0 
n -E 

1 

is 

Since M is very ample, the maximal fixed component of 
n 

jim(M ----:,.N >I is E'. 
n n I 

Recall that E1 is the disjoint union of P 2 and set E =ll E(i) (E(i) 11,/~), 

1 1,1,t 1 l 
E'= Ll E,(i) 

1 l~Ut 1 

where 

and 

which is the uniquely determined three lines on 

Note that 

and hence IN ®Q (i)I n E, 
l 

consists of only one memoer, say which is the proper transform of 
T ( 1 ) 

l 

the above reasoning shows that Bs IN n I = T 2 • Hence IN I n 

defines a birational morphism p -T 
2 2 

Let be the closure in p 
2 

of the pull-back of a generic hyperplane by this morphism, then, since T 2 is of 

codimension 2 in P 2 , we see that and that is smooth outside 

It is easily seen that the image X of x2 in P is just what we want, 

(5,3) 

(5,3,1) 

(5,3,2) 

(5,3,4) 

From now on we assume the following conditions: 

1 
H (Ju~ Qp ( n-4) ) = 0. 

H1 (fip 9 J0 8 Qp ( n-4)) = 0. 

0 
H (fip4J WiJ9 Q0 (5-n) )=O. 

tt 0 (s 2 (N1) /P )$QD (4E1•D1}8g!Qo(l-n))=o. 
l 1 1 

E' 1 • 



(5.3.5) tt 0 (_Qp ® WD OD QI) ( 2El ·I\)~ g!QD (5-n) )= o. .. 
1 1 1 ~ 

(5.3.6) QP (-2E 2 )@q~QP (-4E1 )® (q1 q 2 )*Qp(n-l) is ample. 
2 1 

(5.3,7) There exists an integer m satisfying the following conditions: 

(5.3,7.1) 

(5.3,7,2) 

(5,3,7.3) 

m, n-4. 

IQx,(m-D')f is fixed components free. 

tt°CQX, (n-2m-3¥J ')) = o. 

Note that these conditions are fulfilled by the Serre's theorem provided that 

the degree n of X is sufficiently large enough comparing to D, 

Proposition (5,4). Under the conditions in (5.3), the parameter space of 

the Kuranishi family of the deformations of X' is smooth at the origin. 

Proof. The conditions (5.3,1) and (5.3,2) imply H1 (J 0 eQ.P(n-5))= o. from 

this and from (5,3,2), it follows 1/(f*(TPCDQ.x))=O by the same argument in the 

proof of (2.7) ((5,3.7.1) and (5.3.7.2) assure the existence of non-zero 

element in 
0 

H (Lox,)}. The rest is the consequence of the general theorey of defor-

mat ions. QED. 

The following lemma can be proved in the same way as 0.3.2): 

Lemma ( 5 , 5 ) • 0 exact, 

Since f 3 : x 2 ~- X' is the blowing-up of the smooth scheme X' with the 

smooth center 

lemma: 

T' 
' 

Lemma (5 6) --- .. 
(5.u.l) 

(5.6.2) 

and T 2 is its exceptional divisor, we have the following 

(a~ 0). 

(a~l). 

Lemma. ( 5. 7). Un.der the conditions in ( 5. 3), we have 

( 5 . 7 • 1) HO~ , 9 Qx , ( 1) ) = o and 

( 5 • 7 • 2) HO (TX , f!> Q.x , ( 2m- 2U ' ) ) = 0. 

Proof. Taking the direct image of the exact sequence 

0 ~- f;n_X,otQX,~l))~QX (T2) -+fix 9 (f1•f2)*Q.x(l)6'QX (T2) 
2 2 2 



II" ·:---J> -D.r at (f1•f 2)*Qx<1)e9 Qx (T 2 ) --+ o, 
3 2 

we get that, by (5,6,U, 

.!lx-~Qx,<U~f3*<.flx t (f1.r2>*Q.x<U01Qx (T2)). 
2 2 

Hence to prove (5.7.1) is equivalent to prove 

(5.7.3) 

By the exact sequence 

o -~> Nx /P a (f1• f2)*Qx<U ® Qx (T 2> 
2 2 2 

~ !l,c f ( f 1 • f 2)*Q.x (1) di QX (T 2 ) --:I- 0, 
2 2 

to prove (5.7.3) it is enough to show the following: 

(5,7,4) 

(5.7,5) 

HO(Qp @QX (T2)(1}(fl.,f2)*Q.x(l))s O. 
2 2 

1..., 
H (Nx /PS Qx (T2)9(f1•f2)*Q.x(l))::&0. 

2 2 2 

Sirice Nx /P eQx (T 2 )& (f1 .. r 2 >*Q.x<U~Qx (o 2+zr 2)• 2e (f1.f2 )*Q.xO-n>, (5,7,5) 
2 2 2 2 

follows the condition (5.3,6) by virtue of the Kodaira vanishing theorem, 

Next we will prove (5.7.4). By the exact sequence 

0 ~ f~(jlp ®f!Qx(l))8Qx (T2) ~4 liQX (T2)dD(f1•f2)*Q./l) 
1 2 2 2 

---+.!lq 8Qx (T2)4'Cf1•f2>*Q.x(l)--+ o, 
2 2 

it is enough to show the following: 

tt°Cf~<Clp • f!QxCU)8Qx CT 2>)=o. 
1 2 

(5.7,6) 

0 
H ~ B Qx (T 2) 6 (fl• f 2)*Q.x(l) )= o. 

2 2 
(5,7.7) 

We first prove (5,7,7). Tensoring Qq ~QX (T 2 ) l(f1•f 2 )*Q.x(l) 
2 2 

0 ~ QE (-D2) ---+ QE 
2 2 

~ 0 
-D 

2 
-+o 

and taking the direct image, we have the exact sequence 

---+ QD (El ,Dl) ~~QD(l) 
1 

--•PQ 

by the same argument. as in the proof of (4.5), Hence (5,7,7) follows the 

condition (5.3.4), since is a finite morphism, 



To prove ( 5. 7. 6), by using the exact sequence 

o --)fiP ® Qx (T1>&fiQx<o---,. f2'1'Qx enp •Qx (T1>~f!Qx<u 
1 1 2 1 1 

~ WD GD wx e.ap Iii' Qx (Tl) f.>f!Qx (1) ---+ 0 
1 1 1 1 

obtained from 

(5,7.8) 

(5.5), it suffices to show the following: 

H0 {np 8 Qx (Tl) CIHiQx(l))= 0, 
1 1 

Q v 
H <~ fiwx e.QP 3 Qx <T1 > ®f!QxO»• o. 

1 1 1 1 

To prove ( 5. 7. 8) , we use the exact sequence 

0 --• fifilp8QX(l))8QX (T1 ) ----+Qp 8 QX (T 1 ) 8fiQX(l) 
1 1 1 

~ Qq 8 QX (T 1) eftQx(l) --I> O. 
1 1 

Since f 3*f2Cf! <1lp8 Qx (1)) ~ Qx (T 1 )) :QC r 3* < f;f* qip • Qx(l)) • Qx (T 2»~ f* (lP •2x (1) > 
1 2 

by (5.6.0, H0 <fi<!l.pflQx(l))tjQX (T 1 ))= o follows tt 0 (f*(!}p8 Q.x(l)))= o, and 
1 

the latter follows the exact sequence 

obtained from (1.3.2) and the condition (5.3,3). On the other hand, E1 is a 

disjoint union of P 2 and since T1 appears as three lines on each P 2 , setting 

disjoint union of n 2 eQ. 2(-1)19Q (') (l~i~t) and hence we can get 
p p T 1 

1 

tt 0 9'.l,q 8 QX (T 1 ) 8 fi2x (1)) = o. Thus we have proven (5. 7 .B). 
1 1 

is the 

(5.7,9) follows the condition (5.3.5), since an easy computation shows that 

""x C:: fiQx(n-4)8QX (-T1 ). This completes the proof of (5,7,1). 
1 1 

Tensoring a non-zero element in tt 0 (QX,(n-2m-3~D') (such an element exists by 

the condition (5.3,7,3)) gives an injection 

~ X , 8 Q.X , ( 2m- 2D ' ) ---,. TX , GD Q.X , ( n-3-D ' ) = QX , 9 QX , ( 1 ) 

and hence (5.7.2) follows (5.7.1). QED. 

Theorem (5.B). In the case that the degree n of X in P is sufficiently 

large enough comparing to the singular locus D of X in the sense that the 

conditions in (5.3) are fulfilled, the local Torelli theorem holds for the 



normalization X' of X 

Proof, We can derive this theorem from (5.3.7.1), (5.3.7.2) and (5.7) 

just in the same way as in proving (3.5). QED. 

Remark (5.9). The moduli space of Gieseker (t6J) is divided by the Hilbert 

polynomial of "'x'• that is, 

es 1 2 1 2 <w.x' >= 2 cl s - 2 cl 

(1.7) says that, fixing D and increasing n, 
2 

c 1 is increasing and (1.4.1) 

says that "x' is getting "ampler and ampler". Hence (5.8) gives some evidevce 

to the naive feeling that if X' would have sufficiently many 2-forms, their 

periods of integrals should determine X' itself. (Note that the KYnef's example 

(12] has 

Notes 

1) If X has only ordinary singularities and its singular locus D is a 

complete intersection in P, D becomes automatically smooth. Actually, blowing

up P along D, the fact that D is a complete intersection imposes that the 

exceptional divisor becomes a P1 -bundle. On the other hand, if X would have· 

triple points, the fibres over such points are 2-dimensional. 

2) By using the result (3.3.2) 

(7, 3, 2) we see that 
2 

H (TX,) _.0 

below, in cases 

by duality and also 

(n, n1 , n 2 >=(6, 2, 1), 

0 
H (TX,)= 0 and hence the 

parameter space of the Kuranishi family of deformations of X' is smooth at the 

origin. On the contrary, in case (n, n1 , n2)s(7, 3, 1) we see that 
2 

dim H (TX,) 

=6 by (3.3.2) and so the smoothness of the parameter space is still unknown, 

3) Actually JQx,(n1 -D')f is fixed points free, but (3.1.2) is enough for 

our latPr use. Note also that, by (3.1.2), l~,I is fixed components free and 

hence X' is minimal. 
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