

Title	Supplement to "Variation of mixed Hodge structure arising from family of logarithmic deformationsII: Classifying space"
Author(s)	Saito, Masahiko; Shimizu, Yuji; Usui, Sampei
Citation	Duke Mathematical Journal. 1985, 52(2), p. 529- 534
Version Type	АМ
URL	https://hdl.handle.net/11094/73419
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

by Masahiko SAITO, Yuji SHIMIZU, Sampei USUI

In this note, we will define a graded polarization (abbreviated as GP) of the mixed Hodge structure (abbreviated as MHS) on $H^{n}(X-Y,Q)$, where X is a smooth projective variety over C and Y a smooth normal crossing divisor (abbreviated as SNCD) on X, and give some supplements to [U.2]. This note is based on the small meeting of the three authors at RIMS 1-6 X '84.

1. Graded polarization on $H^{n}(X-Y,Q)$: Let X and Y be as above and set $r := \dim X$. Choose a polarization $\omega \in H^{1,1}(X,Z)$ (i.e. the cohomology class of a very ample invertible sheaf) on X. Let

$$Y = \bigcup_{i \in I} Y_i$$

be the decomposition into irreducible components. We fix once for all an order of these components. We use the following notations:

$$\begin{split} & \mathbb{Y}_J := \bigcap_{j \in J} \mathbb{Y}_j \quad \text{for a subset } J \subset I. \\ & \tilde{\mathbb{Y}}^S := \coprod_J \mathbb{Y}_J \quad \text{where the } J \quad \text{run the subsets of } I \quad \text{with } \#J = s \quad \text{and} \\ & \tilde{\mathbb{Y}}^0 = \mathbb{X}. \end{split}$$

$$\begin{split} & \omega_{J} \in H^{1,1}(Y_{J},Z) : \text{ the induced polarization on } Y_{J} \text{ from } \omega \,. \\ & \omega_{s} := \bigoplus_{\#J=s} \omega_{J} \in H^{1,1}(\tilde{Y}^{s},Z) \\ & \nu_{J} : H^{2(r-s)}(Y_{J},Z) \xrightarrow{\longrightarrow} Z \text{ with } \nu_{J}(\omega_{J}^{r-s}) = 1, \text{ where } \#J = s \,. \\ & \nu_{s} := \sum_{\#J=s}^{\Sigma} \nu_{J} : H^{2(r-s)}(\tilde{Y}^{s},Z) \longrightarrow Z \,. \end{split}$$

L : the multiplication operator on the cohomology groups of $\,\tilde{\textbf{Y}}^{\text{s}}$

induced by the polarization ω_{s} .

$$P^{m}(\tilde{Y}^{s},Q) := Ker(L^{(r-s)-m+1} : H^{m}(\tilde{Y}^{s},Q) \longrightarrow H^{2(r-s)-m+2}(\tilde{Y}^{s},Q)) \text{ the}$$

primitive cohomology $(m \leq r - s)$.

Then, by the Lefschetz decomposition

$$(1.1) \qquad H^{m}(\tilde{Y}^{s},Q) = \bigoplus_{a \ge 0} L^{a} P^{m-2a}(\tilde{Y}^{s},Q),$$

we can define a polarization $\, {\rm Q}^{\, \prime}_{_{\rm S}} \,$ of HS on $\, {\rm H}^{\rm m}(\, {\tilde {\rm Y}}^{\, \rm s}\, , {\rm Q}) \,$ by

(1.2)
$$Q'_{s}(u,v) := \sum_{\#J=s}^{\infty} \sum_{a}^{(-1)} (m-2a)(m-2a+1)/2 v_{s}(u_{m-2a} v_{m-2a} v_{m-2a} v_{m-2a})$$

for
$$u = \Sigma L^{a}u_{m-2a}$$
, $v = \Sigma L^{a}v_{m-2a} \in H^{m}(\tilde{Y}^{s}, Q)$. Note that

$$\frac{(m - 2a)(m - 2a + 1)}{2} = \frac{m(m + 1)}{2} + a \mod(2).$$

Recall that the weight spectral sequence

is nothing but the Leray spectral sequence for X-Y \hookrightarrow X under the change of indices ${}_{W}E_{k}^{-s,n+s} = E_{k+1}^{n-s,s}$ of Leray ((3.2.4) in [D]), degenerates in ${}_{W}E_{2} = {}_{W}E_{\infty}$ ((3.2.10) in [D]), and the d₁ are alternating sums of Gysin maps hence morphisms of HS of type (1,1) ((3.2.8) in [D], (5.21) in [G.S]). Set B := Im(H^{n-s-2}(\tilde{Y}^{s+1}) $\xrightarrow{d_1}$ H^{n-s}(\tilde{Y}^{s})) and Z := Ker(H^{n-s}(\tilde{Y}^{s}) $\xrightarrow{d_1}$ H^{n-s+2}(\tilde{Y}^{s-1})),

and define

$$(1.4) \quad C := \{u \in Z \mid Q'_{S}(u,v) = 0 \quad (\forall v \in B)\}.$$

Then it is easy to verify:

(1.5)
$$C \stackrel{*}{\rightarrow} W_{2}^{-s,n+s} = W_{\infty}^{-s,n+s} = Gr_{n+s}^{W[n]}H^{n}(X-Y) \text{ as HS over } Q.$$
The polarization Q'_{s} in (1.2) induces one on C over Q .

Thus, shifting the indices $Q_k := Q'_{k-n}$, we get:

Proposition(1.6). Let X be a smooth projective variety and Y a SNCD on X. Then a polarization ω on X induces a grades polarization $Q = \{Q_k\}$ of the MHS on $H^n(X-Y,Q)$.

2. Variation of GPMHS arizing from family of logarithmic deformations: The construction in §1 can be easily generalized to the relative case (cf. (3.4), (3.5) in [U.1]. There is a misprint in the latter, i.e. the constant $1/2\pi\sqrt{-1}$ should be omitted), and, instead of Theorem (1.7) in [U.2], we have:

Theorem (2.1). Let $f: \mathfrak{X} \longrightarrow S$ be a smooth, projective morphism of complex manifolds and \mathfrak{Y} be a SNCD on \mathfrak{X} , flat over S. Then we have a VGPMHS (S, $\mathbb{R}^n_Z(\mathbf{\hat{f}})$, W[n], F, Q) in the sense of Definition (1.1) in [U.2], where $\mathbf{\hat{f}} :=$ $f|(\mathfrak{X}-\mathfrak{Y})$ and $\mathbb{R}^n_Z(\mathbf{\hat{f}}) := \mathbb{R}^n \mathbf{\hat{f}}_* \mathbb{Z}$ modulo torsion.

3. Classifying space and period map of GPMHS: Let $(H_Z, W, F(0), Q)$ be a reference GPMHS. Recall the following notations in [U.2]:

$$\begin{split} f^{p} &:= \dim F(0)^{p} H_{C}, \\ f^{p}_{k} &:= \dim F(0)^{p} Gr^{W}_{k} H_{C}, \\ \breve{\mathfrak{f}}_{k}^{p} &:= (F \cdot) \in \operatorname{Flag}(H_{C}; \dots, f^{p}, \dots) \mid \dim F^{p} Gr^{W}_{k} H_{C} = f^{p}_{k} \quad (\breve{\Psi}_{p}, \breve{\Psi}_{k}) \}, \\ GL_{W}(H_{C}) &:= \{g \in GL(H_{C}) \mid gW_{k} = W_{k} \quad (\breve{\Psi}_{k}) \}, \\ \breve{\mathfrak{m}}_{k} &: \breve{\mathfrak{f}} \longrightarrow \breve{\mathfrak{f}}_{k} := \operatorname{Flag}(Gr^{W}_{k} H_{C}; \dots, f^{p}_{k}, \dots), \\ \breve{\mathfrak{b}}_{k} &:= \{F \in \breve{\mathfrak{f}}_{k} \mid Q_{k}(F^{p}, F^{k-p+1}) = 0 \quad (\breve{\Psi}_{p}) \}, \\ D_{k} &:= \{F \in \breve{\mathfrak{b}}_{k} \mid i^{2p-k} Q_{k}(u, \bar{u}) > 0 \quad (0 \neq u \in F^{p} \cap \bar{F}^{k-p}, \breve{\Psi}_{p}) \}, \\ \breve{\mathfrak{b}} &:= \bigcap_{k} \pi^{-1}_{k}(\breve{\mathfrak{b}}_{k}) \subset \breve{\mathfrak{f}}, \\ D &:= \bigcap_{k} \pi^{-1}_{k}(D_{k}) \subset \breve{\mathfrak{f}}, \\ \breve{\mathfrak{m}} &: \breve{\mathfrak{b}} \longrightarrow \prod_{k} \breve{\mathfrak{b}}_{k} \quad \text{the projection}. \end{split}$$

$$\pi : D \longrightarrow \prod_{k} D_{k} \quad \text{the projection.}$$

$$G_{k,C} := \{g \in GL(Gr_{k}^{W}H_{C}) \mid Q_{k}(gu,gv) = Q_{k}(u,v) \quad (\forall_{u}, \forall_{v} \in Gr_{k}^{W}H_{C})\}.$$

$$G_{k,R} := \{g \in G_{k,C} \mid gGr_{k}^{W}H_{R} = Gr_{k}^{W}H_{R}\}.$$

$$G_{k,Z} := \{g \in G_{k,R} \mid gGr_{k}^{W}H_{Z} = Gr_{k}^{W}H_{Z}\}.$$

$$G_{C} := \{g \in GL_{W}(H_{C}) \mid Gr_{k}^{W}(g) \in G_{k,C} \quad (\forall_{k})\}.$$

$$G_{R} := \{g \in G_{C} \mid gH_{R} = H_{R}\}.$$

$$G_{Z} := \{g \in G_{R} \mid gH_{Z} = H_{Z}\}.$$

In case length ≥ 2 , G_R acts on D nontransitively (see (3.3) in [U.2]). Let $G_C = G'_C \cdot G''_C$ be **a** Levi decomposition with $G'_C =$ the unipotent radical of G_C and $G''_C = a$ semi-simple part of G_C . Instead of our previous G_R , Carlson in [C] takes

$$G := G_{C}^{\prime} \cdot (G_{R} \cap G_{C}^{\prime \prime}).$$

Then, it is obvious to see that G acts transitively on D. The isotropy subgroup of G at 0 ϵ D is not compact. Nevertheless he proved in [C] that G_Z acts on D properly discontituously.

Combining (2.10) in [U.1], (2.11), (2.16), (3.5), (3.6) and (4.2) in [U.2], and the result of $\S4$ in [C], we get:

Theorem (3.1). (3.1.1) $\check{\pi} : \check{D} \longrightarrow \Pi \check{D}_k$ is an algebraic homogeneous vector bundle with respect to the group G_c .

(3.1.2) G acts transitively on D.

(3.1.3) $G_{\overline{Z}}$ acts properly discontinuously on D.

respect to Tel and compatible with

(3.1.4) There is an extended horizontal subbundle $T_{\tilde{D}}^{eh}$ on \tilde{D} which is compatible with the horizontal subbundle $\oplus T_{\tilde{D}_k}^{h}$ on $\Pi \check{D}_k$ via $\check{\pi}$.

(3.1.5) The period map associated to the VGPMHS (S, $R_Z^n(\mathbf{f})$, W[n], F, Q) arising from geometry in (2.1) above has extended horizontal local liftings with

the period maps of Griffiths associated to the VPMHS (S, $\operatorname{Gr}_{k}^{W[n]} \operatorname{R}_{Z}^{n}(\mathbf{\hat{f}})$, F $Q_{k}^{}) = (S, \operatorname{R}_{Z}^{2n-k}(\tilde{g}^{k-n}), F, Q_{k}^{})$, where $\tilde{g}^{S} : \tilde{\mathbf{y}}^{S} \longrightarrow S$ is induced from f and $\tilde{\mathbf{y}}^{S}$ is a relative version of \tilde{Y}^{S} in §1.

4. Degeneration of VGPMHS associated to semi-stable degeneration of family of logarithmic deformations: We want to interpret the results in II.II of [E] and in §5 of [S.Z] into our language for our future use.

Consider a situation:

 \boldsymbol{X} : a complex manifold.

 Δ : the unit open disc in $\ C.$

f: $\mathfrak{X} \longrightarrow \Delta$ a projective morphism, smooth over the punctured disc Δ^* . (4.1) $\mathcal{Y} = \mathcal{V}\mathcal{Y}_i$: a divisor on \mathfrak{X} , the \mathcal{Y}_i are irreducible components. $X_0 := f^{-1}(0)$ is reduced. $\mathcal{Y} \smile X_0$ is NCD on \mathfrak{X} . $\mathcal{Y}_{i_1} \frown \cdots \frown \mathcal{Y}_{i_p}$ (p ≥ 1) are flat over Δ and smooth over Δ^* . In this situation, Elzein and Steenbrink-Zucker deal a trifiltered complex (sA^{\cdot}, W, M, F) constructed as follows (II.II in [E], (5.5) in [S.Z]):

$$\begin{split} & \mathbb{W}(\mathcal{Y})_{k} \Omega_{\mathcal{X}}^{p}(\log(\mathcal{Y}+X_{0})) := \Omega_{\mathcal{X}}^{k}(\log(\mathcal{Y}+X_{0})) \wedge \Omega_{\mathcal{X}}^{p-k}(\log X_{0}). \\ & \mathbb{W}(X_{0})_{\ell} \Omega_{\mathcal{X}}^{p}(\log(\mathcal{Y}+X_{0})) := \Omega_{\mathcal{X}}^{\ell}(\log(\mathcal{Y}+X_{0})) \wedge \Omega_{\mathcal{X}}^{p-\ell}(\log\mathcal{Y}). \\ & \mathbb{W}(\mathcal{Y}+X_{0})_{m} \Omega_{\mathcal{X}}^{p}(\log(\mathcal{Y}+X_{0})) := \Omega_{\mathcal{X}}^{m}(\log(\mathcal{Y}+X_{0})) \wedge \Omega_{\mathcal{X}}^{p-m}. \\ & \mathbb{A}^{p,q} := \Omega_{\mathcal{X}}^{p+q+1}(\log(\mathcal{Y}+X_{0}))/\mathbb{W}(X_{0})_{q} \quad (p, q \ge 0). \\ & \mathbb{W}_{k} \mathbb{A}^{p,q} := \text{the image of } \mathbb{W}(\mathcal{Y})_{k} \Omega_{\mathcal{X}}^{p+q+1}(\log(\mathcal{Y}+X_{0})) \text{ in } \mathbb{A}^{p,q}. \\ & \mathbb{W}_{k}^{p,q} := \text{the image of } \mathbb{W}(\mathcal{Y}+X_{0})_{2q+k+1} \Omega^{p+q+1}(\log(\mathcal{Y}+X_{0})) \text{ in } \mathbb{A}^{p,q}. \\ & \mathbb{P}^{p} \mathbb{A}^{n} := \bigoplus_{p' \ge p} \mathbb{A}^{p',n}. \\ & \mathbb{P}^{p} \mathbb{P}^{n} := \text{the associated simple complex of } \mathbb{A}^{n}. \end{split}$$

Note that there is a bifiltered quasi-isomorphism (cf. (4.16) in [St]):

$$\theta : (\Omega_{\boldsymbol{X}/\Delta}^{\boldsymbol{\cdot}}(\log(\boldsymbol{Y}+\boldsymbol{X}_{0}))\otimes_{\boldsymbol{X}_{0}}, W(\boldsymbol{Y}), F) \longrightarrow (sA^{\boldsymbol{\cdot}}, W, F).$$

Let

 $\Phi : \Delta * \longrightarrow <_T>D$

be the period map associated to the VGPMHS $(\Delta^*, R_Z^n(\mathbf{\hat{f'}}), W(\mathbf{\mathcal{Y}}-\mathbf{X}_0)[n], F)$, where $\mathbf{\hat{f'}} := \operatorname{res}(\mathbf{f}) : \mathbf{\mathcal{X}} - \mathbf{\mathcal{Y}} - \mathbf{X}_0 \longrightarrow \Delta^*$ and T is the local monodromy. Since \mathbf{X}_0 is reduced, T is unipotent. Set

(4.2)
$$N := \log T.$$

 $\Psi(t) := \exp(-\log t/2\pi i.N)\Phi(t)$ (t $\epsilon \Delta^*$).

Then (4.1) in [E] and (3.13) in [S.Z] can be interpreted as:

Theorem (4.3) (Elzein and Steenbrink-Zucker). Assume the situation (4.1). (4.3.1) The map Ψ in (4.2) extends to a holomorphic map $\tilde{\Psi} : \Delta \longrightarrow D$

compatible with the extensions of Ψ_k associated to the period maps of Griffiths via $\pi : D \longrightarrow \prod D_k$.

(4.3.2) For each k, $(W[n]_k, M, \tilde{\Psi}(0))$ is a MHS, N gives a morphism of type (-1,-1) with respect to this MHS.

(4.3.3) For each k, M induces the usual monodromy weight filtration on $\operatorname{Gr}_{k}^{\mathbb{W}[n]}$, and the GP \mathbb{Q}_{k} in (2.1) induces the monodromy polarization on $(\operatorname{Gr}_{k}^{\mathbb{W}[n]}, \mathbb{M}, \tilde{\Psi}(0))$ (cf. (6.16) in [Sc]).

- [C] Carlson, J.A., The obstruction of splitting a mixed Hodge structure over the integers I. preprint received 23 V 1984.
- [D] Deligne, P., Théorie de Hodge II, Publ. I.H.E.S. 40 (1971) 5-58.
- [E] Elzein, F., Dégénérescence diagonale I; II, C.R. Acad. Sci. Paris 296 (1983) 51-54; 199-202.
- [G.S] Griffiths, P. & W. Schmid, Recent developments in Hodge theory: A discussion of techniques and results, Proc. Internat. Coll., Bombay, Oxford Press (1971) 31-127.
- [Sc] Schmid, W., Wariation of Hodge structure: The singularities of period mapping, Inv. Math. 22 (1973) 211-319.
- [St] Steenbrink, J., Limits of Hodge structures, Inv. Math. 31 (1976) 229-257.
- [S.Z] Steenbrink, J. & S. Zucker, Variations of mixed Hodge structure I, preprint received 24 III 1984.
- [U.1] Usui, S., Variation of mixed Hodge structure arizing from family of logarithmic deformations, Ann. sci. Éc. Norm. Sup. 4-16 (1983) 91-107.
- [U.2] Usui, S., Variation of mixed Hodge structure arizing from family of logarithmic deformations II: Classifying space, to appear in Duke Math. J.

Yuji SHIMIZU	Masahiko SAITO	Sampei USUI
Department of Mathmatics	Department of Mathematics	Departmaent of Mathematics
Faculty of Sciences	Faculty of Sciences	Faculty of Sciences
University of Tokyo	Kyoto University	Kochi University
Tokyo,113 Japan	Kyoto,606 Japan	Kochi,780 Japan

7