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Abstract

This article is a generalization of the author’s work [U] to the case of several
variables. We first construct compatible actions of monoid S on a “several-variables-
version of semi-stable degeneration of pairs”and on the associated log topological
spaces introduced by K. Kato and C. Nakayama in [KN]. Here S is the product of the
unit interval and the unit circle. Then we show that the associated log topological
family is locally piecewise C∞ trivial over the base, i.e., the associated log topo-
logical family recovers the vanishing cycles, in the most naive sense, of the original
degeneration. Using this result together with the theory of canonical extensions by
Deligne [D], we introduce two types of integral structure of the variation of mixed
Hodge structure associated to “several-variables-version of semi-stable degeneration
of pairs”. We only sketch the proof here. The complete proof will appear soon
somewhere.

1 Log Structures

In this section, we prepare some notations concerning about log structures for our later
use. For general theory of log structures, see, for example, [K].

Let X ⊃ D be a d-dimensional complex manifold and a divisor with normal cross-
ings. The associated fine saturated log structure (cf. [K]) is defined by

MX := {f ∈ OX | f is invertible outside D} α
↪→ OX .
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Let T be a point SpecC with a log structure

R≥0 ×C1 → C, (r, u) 7→ ru,

where C1 ⊂ C is the unit circle. Notice that this log structure is not fine saturated.
K. Kato and C. Nakayama introduced in [KN] a log topological space X log as the set of
T -valued points in the category of log schemes:

X log := Hom(T,X)
τX−→ X, forgetting morphism.

Let x̃ ∈ X log and x := τX(x̃). Choose a local coordinates z1, . . . , zd at x ∈ X such that D

has a local equation
∏

1≤i≤s(x) z
m(i)
i , m(i) ≥ 1. Then we see that

MX,x =
⨿{
O×

X,x

∏
1≤i≤s(x)

z
b(i)
i

∣∣∣ b ∈ Ns(x)
}
≃ O×

X,x ⊕Ns(x), where N := Z≥0.

X log locally
≃ (R≥0)

s(x) × (C1)
s(x) ×Cd−s(x) τX−→ X

locally
≃ Cd,

τX((ri, ui)1≤i≤s(x), (zj)s(x)+1≤j≤d) = ((riui)1≤i≤s(x), (zj)s(x)+1≤j≤d),

where ri := |zi| and riui := zi. This induces a topology on the setX log, and τX : X log → X
can be regarded as a real blowing-up (cf. [M]) and X log as a manifold with corners (cf.
[AMRT]).

Example (1.1) Let ∆ be the open unit disc in the complex plane, and H the upper
half plane. Let exp 2π

√
−1( ) : H → ∆∗ be the universal cover of the punctured disc.

Then the pair (∆, {0}) induces the following diagram:

H ⊂ Ĥ := R+
√
−1(R>0

⨿{∞})
↓y ∆log ≃ Ĥ/Z

↓
∆∗ ⊂ ∆.

2 Recovery of vanishing cycles

Let n ≥ 1 and a(k) (−1 ≤ k ≤ n) be integers such that

0 = a(−1) ≤ a(0) < a(1) < · · · < a(n).(2.1)

Set
A := {1, 2, . . . a(n)}, A(k) := {a(k − 1) + 1, . . . , a(k)} (0 ≤ k ≤ n).(2.2)

Let
f : X → P(2.3)

be a proper, flat morphism of a d-dimensional complex manifold X to a polydisc P := ∆n

with coordinates t1, . . . , tn. Let Bk be the divisor on P defined by tk = 0, and set
B :=

∑
1≤k≤n Bk. Set D := f ∗B and let

f ∗Bk =:
∑

i∈A(k)

m(i)Di (1 ≤ k ≤ n)(2.4)
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be the irreducible decomposition. Let Y =
∑

i∈A(0)Di be a divisor on X, flat with respect
to f . We assume that f is smooth over P ∗ := P −B and that

Y +D =
∑

i∈A(0)

Di +
∑

1≤k≤n

∑
i∈A(k)

m(i)Di(2.5)

is a divisor with simple normal crossings whose distinct prime divisors are Di (i ∈ A).
The fine saturated log structures associated to the pairs X ⊃ D, Y ⊃ D ∩ Y and P ⊃ B
induce a commutative diagram:

(X ⊃ Y )
τX←−−− (X log ⊃ Y log)yf

yf log(2.6)

P
τP←−−− P log.

Let [0, 1] ⊂ R be the unit interval regarded as a monoid by multiplication. The monoid

S := ([0, 1]×C1)
n(2.7)

has natural actions on the polydisc P and on P log. These actions can be lifted to the
diagram (2.6), and we have

Theorem 1 We use the above notation. Assume that the divisor D in (2.5) is reduced.
Then, the family of open spaces

◦
f log: (X log − Y log)→ P log

is locally piecewise C∞ trivial over the base P log. This means that
◦
f log recovers the van-

ishing cycles, in the most naive sense, of the degenerating family

◦
f : (X − Y )→ P.

We will sketch the construction of the liftings of S-actions to the diagram (2.6) and
the proof of Theorem 1 in Section 4 below.

3 Integral structure of degenerate VMHS

In the famous pioneer work [St1], Steenbrink constructed the limiting mixed Hodge struc-
ture associated to a semi-stable degeneration of algebraic varieties. In that paper, people
found some parts which are not clear. One of them is the part of integral structures and
later the original author himself rewrote that part correctly in [St2] by using a fine satu-
rated log structure. But he used fractions there and hence he obtained rational structures
rather than integral ones. In this section, we introduce integral structures on degenerating
variations of mixed Hodge structures as an application of canonical extensions of Deligne
in [D] and our Theorem 1.

We use the notation in Section 2. Then, it can be verified that

V := Rqf∗Ω
•
X/P (log(Y +D))(3.1)
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is the canonical extension of Deligne [D, (II.5.2)] of V|P ∗, whose Gauss-Manin connection
∇ is obtained as the differential d1 : E

0,q
1 = V → E1,q

1 = Ω1
P (logB)⊗OP

V of the spectral
sequence of hypercohomology of the complex Ω•

X(log(Y +D)) with respect to a filtration
Gk := f ∗Ωk

P (logB) ∧ Ω•
X(log(Y +D))[−k].

The locally constant sheaf of C-modules Ker(∇|P ∗) lifts to τ−1
P (P ∗) and extends

one on P log. We denote the latter by L′
C. On the other hand, by Theorem 1, we have

locally constant sheaf of Z-modules on P log:

LZ := Rq(
◦
f log)∗Z.(3.2)

By construction, L′
C and C⊗ZLZ coincide on τ−1

P (P ∗), hence they coincide on whole P log

because they are locally constant.
Let Ni := log γi (1 ≤ i ≤ n) be the monodromy logarithms of LZ induced by the

action of the group (C1)
n on P log. Let ϖ : Ĥn → P log be the universal covering (cf.

Example (1.1)) and let l1, . . . , ln be coordinates on Ĥn with exp(2π
√
−1li) = ti. Choose

a flat frame e1, . . . , er of ϖ
−1LZ and modify

ẽj := exp
(
−

∑
1≤i≤n

liNi

)
· ej (1 ≤ j ≤ r).(3.3)

Then, this drops to a single-valued frame of Olog
P ⊗Z LZ on P log, where (Olog

P )t̃ :=
OP,t[l1, . . . , ln] for t̃ ∈ P log and t = τP (t̃) ∈ P . Hence this still drops to a frame of V
on P . We also denote this frame of V by the same symbol ẽ1, . . . , ẽr.

It is easy to see, by the definition (3.2), that under the identification

C⊗Z (ϖ−1LZ)(h) →̃ V(O), ẽj(h) 7→ ẽj(O),(3.4)

where h ∈ Ĥn and O ∈ P the origin, we have

Ni = −2π
√
−1Res(ti = 0)(∇) (cf. [D, (II.1.17), (II.5.2)]).(3.5)

Thus we have

Theorem 2 We use the notation of Sections 2 and 3. Assume that the divisor D in (2.4)
is reduced. Then, V has two types of integral structure:

(i) Olog
P ⊗Z LZ ≃ (τP )

∗V on P log.

The local monodromies are induced by (C1)
n-action on P log.

(ii) OP ⊗Z (τP )∗R
q(

◦
f log)∗(

◦
f log)−1Z[l1, . . . , ln] ≃ V on P.

The monodromy logarithms are given by −2π
√
−1Res(ti = 0)(∇) (1 ≤ i ≤ n).

Note that the integral structure (i) is a generalization of Schmid’s type, and (ii) is
a generalization of Steenbrink’s type.

Remark (3.6) (i) C ⊗Z LZ and (V ,∇) correspond under the log Riemann-Hilbert
correspondence in [KN], by using the monodromy weight filtration in [CK] in case Y = ∅
and in general case the convolution of the relative monodromy weight filtrations in [SZ]
or the weight filtration constructed in [F].
(ii) The author was communicated by Morihiko Saito, on May 24, 1996, that there is a
correction of [St, (5.9)] in [Sa, 4.2].
(iii) Fujisawa, in [F], has generalized the result in [St2] into the case of several variables
in a similar method as in [St2], and he has introduced a ‘rational structure’ on V .
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4 Outline of Proof of Theorem 1

The proof is analogous to the argument of Clemens [C], but there are some points in the
proof of [C, Theorem 5.7] which are not clear. The readers can find a complete proof in
the case of dimP = 1 in [U].

We use the notation in Section 2. For I ⊂ A, we denote

DI :=
∩
i∈I

Di, I(k) := I ∩ A(k) (0 ≤ k ≤ n).

The following proposition plays a key role.

Propositon 3 In the above notation, shrinking the polydisc P , we have the following:
(a) There exist a family {UI}I⊂A of open neighborhoods UI of DI and a family {πI : UI →
DI}I⊂A of C∞ projections which satisfy

(i) UI ∩ UJ = UI∪J ,

(ii) πI ◦ πJ |UI = πI for I ⊃ J.

(b) There exists a family {zi}i∈A of multi-valued C∞ global equations zi of Di in X which
has the following properties:

(iii) Let J ⊂ A − A(0), x ∈ DJ and F := π−1
J (x). Then, choosing branches of the

multi-valued functions, {zj|F}j∈J form a system of holomorphic coordinates on F and∏
j∈J(k)

z
m(j)
j = (constant) tk ◦ f on F (1 ≤ k ≤ n),

where the (constant) depends on F and on the choices of the zj, of their branches and of
the tk.

(iv) For i, j ∈ A with i ̸= j, any branch of zi is constant on each fiber of πj : Uj →
Dj.

We omit here the proof of this proposition, because it is rather complicated though
elementary and also the argument is essentially the same as in the case of dimP = 1 (see
[U, §3, §4], in this case). In order to lift the action of monoid S = ([0, 1] × C1)

n to the
whole diagram (2.6), we should prepare two more things.

For each integer 1 ≤ k ≤ n and a number 0 ≤ δ < 1, let

C(k) := [0, 1]a(k)−a(k−1) unit cube in Ra(k)−a(k−1),

C(k)δ :=
{
(ri)i∈A(k) ∈ C(k)

∣∣∣ ∏
i∈A(k)

r
m(i)
i = δ

}
,(4.1)

E(k)δ :=
∪

δ′∈[0,δ]
C(k)δ′ .

For each i ∈ A− A(0), we choose a number

0 < εi < 1.(4.2)

In the following, we assume that all the cuboids contained in C(k) are parallel to the
cube C(k). Let D(k) be the cuboid in C(k) with the two points B(k) := (εi)i∈A(k) and
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(1, . . . , 1) as the extreme vertices. We construct a family of projections from each face of
D(k) passing through the vertex B(k) to the union of the faces of C(k) passing through
the origin O in the following way:
For I ⊂ A(k), we denote by B(I) the vertex of the cuboid D(k) whose i-th coordinate
is 1 (i ∈ I) and the other coordinate is εj (j ∈ A(k) − I). Let D(I) be the face of D(k)
with the two points B(k) and B(I) as the extreme vertices, and let C(I) be the face of
C(k) passing through O, parallel to D(I) and with the same dimension as D(I). For each
point Q ∈ D(I), let D(I)⊥+Q be the affine subspace which is the orthoginal complement
of D(I) passing through Q, and let pQ be the projection in D(I)⊥ +Q from the point Q
whose rays are in the cuboid in D(I)⊥+Q with the two points Q and (D(I)⊥+Q)∩C(I)
as the extreme vertices. We denote by pI the collection of the projections pQ (Q ∈ D(I)).
We thus have a family {pI}I⊂A(k) of projections.
Then, for a fixed non-negative number δ ≤ δ0 and any fixed point (ri)i∈A(k) ∈ C(k)δ0 ,
the hypersurface C(k)δ and the unique ray of the family of projections {pI}I⊂A(k) passing
through the point (ri)i∈A(k) intersect at one point and, moreover, they are transversal
except at the points of the singular locus of C(k)0. Denote this intersection point by

⟨r, (ri)i∈A(k)⟩, where r := δ/δ0,(4.3)

and call this the hyperbolic polar coordinates of the point in E(k)δ0 . Define

R(k) : [0, 1]× E(k)δ0 → E(k)δ0 by R(k)(s, ⟨r, (ri)i∈A(k)⟩) := ⟨sr, (ri)i∈A(k)⟩.(4.4)

Here we may assume that the above number δ0 is chosen so small that, for every
1 ≤ k ≤ n,

(ri)i∈A(k) ∈ E(k)δ0 implies ri < εi/2 for some i ∈ A(k).(4.5)

Then, for each 1 ≤ k ≤ n,

{(ri)i∈A(k) ∈ C(k)δ0 | rj < εj/2}j∈A(k)(4.6)

forms an open covering of C(k)δ0 . Take a C∞ partition of unity

{λj}j∈A(k)(4.7)

on C(k)δ0 which is subordinate to the covering (4.6), and extend this over E(k)δ0 by

λj(⟨r, (ri)i∈A(k)⟩) := λj((ri)i∈A(k)) for all r ∈ [0, 1].

Let ri (i ∈ A−A(0)) be as in Proposition 3 (b). We choose the positive numbers εi in
(4.2) so small that {y ∈ X | ri(y) ≤ εi} is contained in the neighborhood Ui in Proposition
3 (i ∈ A−A(0)), and we shrink the polydisc P = ∆n so that X ⊂ ∪

i∈A−A(0) Ui, ri(y) ≤ 1
(y ∈ X, i ∈ A− A(0)) and the radius of each factor ∆ is less than or equal to δ0.

Now an action of the monoid S on X log is defined in the following way. For y ∈ X,
let

I := {i ∈ A− A(0) |Ui ∋ y}, x := πI(y), F := π−1
I (x),(4.8)

F log : the closure of τ−1
X (F − F ∩D) in X log
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Let zi (i ∈ I) be as in Proposition 3 (b) and let

zi(y) =: ri(y)ui(y), y ∈ X,(4.9)

be the decompositions into the absolute values and the arguments. Notice that the ri(y)
are single-valued, whereas the ui(y) aremulti-valued. For each ui, we choose abranch and
regard ui as a single-valued function on F log. We thus have coordinates ((ri( ), ui( ))i∈I
on F log. We define an action S × F log → F log by(

ri((s, v) · ỹ)
)
i∈A(k)

:= R(k)
(
s(k), (rj(ỹ))j∈A(k)

)
,(4.10)

ui((s, v) · ỹ) := v(k)λi(ỹ)/m(i)ui(ỹ) (i ∈ A(k))

for 1 ≤ k ≤ n, where

(s, v) = (s(k), v(k))1≤k≤n ∈ S = ([0, 1]×C1)
n, λi(ỹ) := λi((rj(ỹ))j∈A(k)) (i ∈ A(k)).

Here in the left side of the second equation in (4.10), the complex power is understood as
one determined by a choice of a branch of log v(k).

Then we can verify the following claim:

Claim (4.11) The monoid action (4.10) is compatible with the restricted morphism
f log : F log → P log, and these actions on the fibers F log fit together to give a piecewise C∞

action on X log.

The S-action on X log preserves the subspace Y log by Proposition 3 (iv), and they
drop down to induce S-actions onX and on Y . We see that these S-actions are compatible
with the natural ones on P and on P log. Let O ∈ P be the origin. We denote

(4.12) Olog := τ−1
P (O) ≃ (C1)

n, X log
Olog := (f log)−1(Olog).

For (0,1) = ((0, . . . , 0), (1, . . . , 1)) ∈ S, we define a piecewise C∞ map

(4.13) π̃ : X log → X log
Olog by π̃(ỹ) := (0,1) · ỹ.

By Proposition 3 (iv), π̃ is compatible with the inclusion Y log ⊂ X log. Let t̃ ∈ P log and
t̃0 := (0,1) · t̃ ∈ Olog, and let X log

t̃
and X log

t̃0
be the fibers of f log over t̃ and t̃0, respectively.

Then we can verify the following claim:

Claim (4.14) Assume that the divisor D in (2.5) is reduced. Then, the restricted
map π̃ : X log

t̃
→ X log

t̃0
is piecewise C∞ isomorphic.

From this, we see that the map π̃ in (4.13) yields a horizontal projection of the family
f log : X log → P log, compatible with the inclusion Y log ⊂ X log. Thus we get Theorem 1.

The above argument is essentially the same as in the case of the dimP = 1 and the
details in this case can be found in [U, §5].
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