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LOGARITHMIC HODGE STRUCTURES AND CLASSIFYING SPACES

Kazuya Kato, Sampei Usui

Introduction

This work is an attempt to add ‘points at infinity’ to the classifying space of polarized Hodge structures
(PH, for short) of arbitrary weight. It is based on the following two ideas:

(0.1) We introduce the notion of polarized logarithmic Hodge structures (PLH, for short) (§5). Polarized
logarithmic Hodge structures are defined by using the theory of logarithmic structures of Fontaine-Illusie
(cf. [I], [K1]), and they work well in the analysis of degenerations of polarized Hodge structures. Our
principle is that we enlarge the classifying space of polarized Hodge structures in the following way (for
precise definitions, see Definitions in (2.1), (5.2)):

D := (Classifying space of PH) ⊂
DΣ := (Space of nilpotent orbits in directions in Σ),

Γ\DΣ = (Classifying space of PLH with local monodromies

in directions in Σ and with global monodromy Γ).

Here Γ is a discrete subgroup of Aut(D) satisfying certain conditions.

(0.2) We introduce the notions of generalized analytic spaces and generalized fs logarithmic analytic
spaces (see (4.2)). Our extended space Γ\DΣ ⊃ Γ\D is not in general an analytic space. For instace, it
can be something like

S := {(x, y) ∈ C2 ; x ̸= 0} ∪ {(0, 0)}.

The space Γ\DΣ and the above space S admit the structure of generalized analytic space or even gen-
eralized fs logarithmic analytic space. In order to give S the structure of generalized analytic space, the
essential point is to endow it with the so-called strong topology (see (4.1)), which is strictly stronger than
the topology as a subspace of C2.

Our main result says that the generalized fs logarithmic analytic space Γ\DΣ is a fine moduli space of
polarized logarithmic Hodge structures (§6). In a way, this realizes one of the dreams of Griffiths in [G].

We would like to add a remark. D is always a homogeneous complex manifold. Assume that the
horizontal tangent bundle of D is not trivial. Then, it is a Hermitian symmetric domain if and only if
the set of Hodge numbers is one of the following three cases:

(i) w = 2t+ 1, hp,q = 0 unless p = t+ 1, t.
(ii) w = 2t, hp,q = 1 for p = t+ 1, t− 1, ht,t is arbitrary, hp,q = 0 otherwise.
(iii) w = 2t, hp,q = 1 for p = t+ a, t+ a− 1, t− a+ 1, t− a for some a ≥ 2, hp,q = 0 otherwise.

Familiar (analytic) compactifications of Γ\D such as the Satake-Baily-Borel, the Borel-Serre, and toroidal
are constructed only for those D which are Hermitian symmetric domains. The only partially successful
attempts to go beyond the symmetric case are the work [CK] of Cattani-Kaplan and the work [U2].
By the construction of the present article, we can talk about, for example, the extended period mapping
associated to a degeneration of surfaces of general type, or of Calabi-Yau manifolds. One of the remaining
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2 KAZUYA KATO, SAMPEI USUI

open problems is to find ‘big fans’ Σ so that the spaces Γ\DΣ contain all possible boundary points. This
work is a continuation of the study [U2], which treats the part of Γ\DΣ, and is also a continuation of the
study [KkNc] on logarithmic complex geometry.

This article is an abbreviated account. A paper [KU] with complete proofs will appear elsewhere.
The authors are grateful to Professor Kazuhiro Fujiwara for stimulating discussions. They are grateful

to Professor Steven Zucker for his careful reading of the earlier versions of this paper, and for his valuable
suggestions and comments on presentation. They are also grateful to the organizers of NATO ASI/1998
CRM Summer School at Banff, Canada.
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§1. Preliminaries

(1.1) Classifying spaces of Hodge structures.
Let (hp,q)p+q=w, with hp,q = hq,p, be a set of Hodge numbers of weight w. Let H0 be a free Z-module

of rank
∑

hp,q and let ⟨ , ⟩0 be a non-degenerate Q-bilinear form on H0,Q := Q⊗H0 which is symmetric
if w is even and anti-symmetric if w is odd. We denote by D the set of all decreasing filtrations F on
H0,C := C ⊗ H0 such that (H0, ⟨ , ⟩0, F ) is a polarized Hodge structure of Hodge type (hp,q)p+q=w.

We denote by Ď the set of all decreasing filtrations F on H0,C such that dimF p =
∑

r≥p h
r,w−r and

⟨F p, F q⟩0 = 0 for p+ q > w.
Let GZ := Aut(H0, ⟨ , ⟩0). For A = Q,R,C, we denote GA := Aut(H0,A, ⟨ , ⟩0) and gA := LieGA,

Then Ď is a compact homogeneous space under GC, D is an open subset of Ď that is homogeneous under
GR. Let Γ be a subgroup of GZ. Then Γ\D is the classifying space of polarized Hodge structures on H0

with the given Hodge numbers (hp,q)p+q=w and with the given global monodromy Γ.

(1.2) Fans.

Definitions. (1.2.1) A subset σ ⊂ gQ is a nilpotent cone if it satisfies the following two conditions:
(i) σ is a finitely generated cone in gQ consisiting of mutually commuting nilpotent elements.
(ii) σ ∩ (−σ) = {0}.

(1.2.2) A fan in gQ is a non-empty set Σ of nilpotent cones in gQ satisfying the following two conditions:
(i) If σ ∈ Σ then any face of σ belongs to Σ.
(ii) If σ, σ′ ∈ Σ then σ ∩ σ′ is a face of σ and of σ′.

(1.2.3) A subgroup Γ ⊂ GZ is strongly compatible with a fan Σ in gQ if it satisfies the following two
conditions:

(i) If γ ∈ Γ and σ ∈ Σ then γσγ−1 ∈ Σ.
(ii) If σ ∈ Σ and if we define

Γ(σ) := {γ ∈ Γ ; γ : unipotent, logγ ∈ σ},

then logΓ(σ) generates the cone σ.

Example. Let
Ξ := {σ ; σ is a nilpotent cone in gQ, rank(σ) ≤ 1}.

Then Ξ is a fan. For any subgroup Γ of GZ with finite index, Γ is automatically strongly compatible with
Ξ. Whereas, Γ = {1} is not strongly compatible with Ξ, i.e., the condition (1.2.3) (ii) is not fulfiled.

(1.3) Nilpotent orbits and nilpotent i-orbits.
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Definition. Let σ be a nilpotent cone in gQ. For A = R,C, we denote by σA the A-linear span of σ in

gA. A subset Z of Ď is a σ-nilpotent orbit (resp. σ-nilpotent i-orbit) if it satisfies the following three
conditions for some F ∈ Z.

(i) Z = exp(σC)F (resp. Z = exp(iσR)F ).
(ii) NF p ⊂ F p−1 (∀p, ∀N ∈ σ), (Griffiths transversality).
(iii) exp(

∑
1≤j≤r iyjNj)F ∈ D (∀yj ≫ 0), (positivity). Here (Nj)1≤j≤r is a system of generators of σ.

(1.4) Logarithmic structures.
Let X be a ringed space over C with structure sheaf OX . We recall briefly the notion of logarithmic

structures on X of Fontaine-Illusie (for details, cf. [I], [K1]).
A pre-logarithmic structure on X is a sheaf of commutative monoids MX together with a homomor-

phism α : MX → OX of monoids, where OX is regarded as a sheaf of monoids by multiplication. A
logarithmic structure on X is a pre-logarithmic structure (MX , α) on X which satisfies α−1(O×

X) →̃O×
X .

Let (MX , α) be a pre-logarithmic structure on X. The associated logarithmic structure (M̃X , α̃) is

defined as the push-forward M̃X of O×
X ← α−1(O×

X)→MX , namely the diagram

α−1(O×
X) −−−−→ MXy y

O×
X −−−−→ M̃X .

is co-cartesian, together with the homomorphism α̃ : M̃X → OX induced by α : MX → OX and the
inclusion O×

X ↪→ OX .
Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces and (M,α) be a logarithmic structure

on Y . Then the sheaf-theoretic inverse image f−1M together with the composite morphism f−1M →
f−1OY → OX form a pre-logarithmic structure on X. The inverse image f∗(M,α) of (M,α) is defined
as the logarithmic structure on X associated to the above pre-logarithmic structure.

A monoid S is fs (= finitely-generated, integral and saturated) if it satisfies the following three condi-
tions.

(i) S is finitely generated.
(ii) If a, b, c ∈ S and ab = ac, then b = c.
(iii) If a ∈ Sgp and an ∈ S for some positive integer n, then a ∈ S.

Here Sgp is the group generated by S. A logarithmic structure (MX , α) on X is fs if there exists an open
covering (Uλ)λ of X such that each restriction (MX , α)|Uλ

is the logarithmic structure associated to a
pre-logarithmic structure of the form (SUλ

, αλ) where SUλ
is a constant sheaf of monoids on Uλ induced

by an fs monoid S. In this case, (SUλ
, αλ) is called a chart of (MX , α) on Uλ.

(1.5) The ringed space (X log,Olog
X ).

Let X be an fs logarithmic local ringed space (= a local ringed space endowed with an fs logarithmic
structure) over C which satisfies the following two conditions:

(i) OX,x/mx = C.
(ii) For any open set U ⊂ X and any f ∈ OX(U), the evaluation map U → C, x 7→ f(x), is continuous.

We recall briefly the associated ringed space (X log,Olog
X ) introduced in [KkNc] (cf. also [KyNy]).

As a set, X log is the set of all pairs (x, h), consisting of a point x ∈ X and a homomorphism h :
MX,x → S1 whose restriction to O×

X is u 7→ u(x)/|u(x)|. Here S1 := {t ∈ C ; |t| = 1}.
The topology of X log is defined as follows. We work locally on X. Take a chart S → MX , then we

have an injective map

X log ↪→ X ×Hom(Sgp,S1), (x, h) 7→ (x, hS),

where hS denotes the composite map Sgp →Mgp
X,x → S1. We endow X log with the topology as a subset

of X × Hom(Sgp,S1). It can be seen that this topology is independent of the choice of chart and hence
is globally well-defined, and that the canonical map τ : X log → X, (x, h) 7→ x is surjective, continuous
and proper.
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The sheaf of C-algebras Olog
X is defined as follows. Let L be the fiber product of

τ−1(Mgp
X )y

Cont( , iR)
exp−−−−→ Cont( ,S1),

where Cont( , T ), for a topological space T , denotes the sheaf on X log of continuous maps to T , and
τ−1(Mgp

X )→ Cont( ,S1) comes from the definition of X log. We define

Olog
X := (τ−1(OX)⊗Z SymZ(L))/a,

where SymZ(L) denotes the symmetric algebra of L over Z, and a is the ideal of τ−1(OX)⊗Z SymZ(L)
generated by the image of

τ−1(OX)→ τ−1(OX)⊗Z SymZ(L), f 7→ f ⊗ 1− 1⊗ ι(f).

Here the map ι : τ−1(OX)→ L is the one induced by

τ−1(OX)→ Cont( , iR), f 7→ 1
2 (f − f̄), and

τ−1(OX)
exp−→ τ−1(O×

X) ⊂ τ−1(Mgp
X ).

Let y ∈ X log and x := τ(y) ∈ X. There exist a family (ℓj)1≤j≤n of elements of Ly, whose images in
(Mgp

X /O×
X)x form a system of free generators, and which are algebraically independent over OX,x and

generate the stalk Olog
X,y = τ−1(OX,x)[ℓ1, . . . , ℓn]. Note that this is not a local ring if (Mgp

X /O×
X)x ̸= {1}.

Example. Let X := C be the complex plane and let z be the coordinate of X. The fs logarithmic
structure on X associated to the divisor {0} is defined by

MX := {f ∈ OX ; f is invertible outside {0}} ↪→ OX .

We can take a chart N→MX =
⊔

n≥0 z
nO×

X , n 7→ zn. We have an isomorphism

X log →̃R≥0 × S1, (x, h) 7→ (|z(x)|, h(z)).

Let ℓ := logz, then we have Olog
X = τ−1(OX)[ℓ].

§2. Spaces of nilpotent orbits

Let Σ be a fan in gQ and let Γ be a subgroup of GZ which is strongly compatible with Σ.

(2.1) The set DΣ.

Definition. As a set, we define the space DΣ of nilpotent orbits in the directions in Σ by

DΣ := {(σ,Z) ; σ ∈ Σ, Z ⊂ Ď is a σ-nilpotent orbit}.

Remark. Note that the set D is contained in DΣ by F 7→ ({0}, {F}).
Let σ be a nilpotent cone in gQ. Then, {faces of σ} is a fan, and we denote

Dσ := D{faces of σ}.

(2.2) The toric variety toric(Γ(σ)).
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In order to fix notations, we review here toric varieties (cf. [AMRT]). For σ ∈ Σ, we see that Γ(σ) is
an fs monoid with Γ(σ)× = {1}. The associated toric variety is defined by

toric(Γ(σ)) := Spec(C[Γ(σ)∨])an.

Here Γ(σ)∨ := Hom(Γ(σ),N). Note that the set of complex points of toric(Γ(σ)) can be identified with
Hom(Γ(σ)∨,Cmult). Here Cmult means the set C of complex numbers with multiplication.

We have bijections

(2.2.1) toric(Γ(σ))
α
←̃

⊔
τ≺σ

(Γ(σ)gp/Γ(τ)gp)⊗C×
β

→̃
⊔
τ≺σ

exp(σC)/(exp(τC)Γ(σ)
gp)

Here τ ≺ σ means that τ is a face of σ, and α is defined as follows: For a ∈ (Γ(σ)gp/Γ(τ)gp) ⊗C× and
h ∈ Γ(σ)∨,

α(τ, a)(h) :=

{
0 if h(Γ(τ)) ̸= 0,

h(a) if h(Γ(τ)) = 0.

In the second case in the above, we regard h as the induced homomorphism h : (Γ(σ)gp/Γ(τ)gp)⊗C× →
Z⊗C× = C×.

And β is defined by

β(γ ⊗ exp(2πiz)) := exp(zlogγ) (γ ∈ Γ(σ)gp, z ∈ C).

(2.3) The subset Eσ ⊂ toric(Γ(σ))× Ď.

Definition. For σ ∈ Σ, we define the set Eσ by

Eσ := {(θ, F ) ∈ toric(Γ(σ))× Ď ; exp(τC)gF is a τ -nilpotent orbit}

Here (τ, gmod exp(τC)Γ(σ)
gp) denotes the pair corresponding to θ under the composite map (2.2.1).

Define the map Eσ → Γ(σ)gp\Dσ by (θ, F ) 7→ (τ, exp(τC)gF ).

Define the action of σC on Eσ over Γ(σ)gp\Dσ by

a · (θ, F ) := (exp(2πia)θ, exp(−a)F ) (a ∈ σC).

Here, for b ∈ σC, exp(b)θ is the element of HomC-alg(C[Γ(σ)∨],C) defined by

(exp(b)θ)(h) := exp(h(exp(b)))θ(h) (h ∈ Γ(σ)∨).

Then, Eσ → Γ(σ)gp\Dσ is surjective (more precisely, a σC-torsor, see (6.1.1) below).

Example. In the case rank(σ) = 1, we have toric(Γ(σ)) ≃ C. Let γ be the generator of Γ(σ) and let
N := log(γ). Then we have

Eσ := {(θ, F ) ∈ C× Ď ; If θ ̸= 0, exp((log(θ)/2πi)N)F ∈ D.

If θ = 0, exp(σC)F is a σ-nilpotent orbit.}.

Here the cases θ ̸= 0, θ = 0 correspond τ = 0, τ = σ, respectively. σC ≃ C ∋ a acts on Eσ over
Γ(σ)gp\Dσ by

a · (θ, F ) = (exp(2πia)θ, exp(−aN)F ).
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§3. Spaces of nilpotent i-orbits

Let Σ be a fan in gQ and let Γ be a subgroup of GZ which is strongly compatible with Σ as before.

(3.1) The set D♯
Σ.

Definition. As a set, we define the space D♯
Σ of nilpotent i-orbits in the directions in Σ by

D♯
Σ := {(σ,Z) ; σ ∈ Σ, Z ⊂ Ď is a σ-nilpotent i-orbit}.

Define the map

D♯
Σ → DΣ, (σ,Z) 7→ (σ, exp(σC)Z).

Remark. Note that the set D is contained in D♯
Σ by F 7→ ({0}, {F}).

For a nilpotent cone σ in gQ, we denote

D♯
σ := D♯

{faces of σ}.

(3.2) The real toric variety |toric|(σ).
In order to fix notations, we review here real toric varieties (for details, see [AMRT, I §1], [HZ, 2.1]).

For σ ∈ Σ, we define

|toric|(σ) := Hom(σ∨, (R ∪ {∞})add) ⊃ σR = Hom(σ∨,Radd).

Here σ∨ := Hom(σ,Qadd
≥0 ). We have the bijection

(3.2.1) |toric|(σ)
α
←̃

⊔
τ≺σ

σR/τR,

defined by

α(τ,Hmod τR)(h) :=

{
h(H) if h(τ) = 0,

∞ if h(τ) ̸= 0,
(h ∈ σ∨).

By using the isomorphism
(R ∪ {∞})add →̃Rmult

≥0 , y 7→ e−2πy,

we have
|toric|(σ) ≃ Hom(σ∨,Rmult

≥0 ) ≃ Hom(Γ(σ)∨,Rmult
≥0 ).

If we identify toric(Γ(σ)) with Hom(Γ(σ)∨,Cmult), we see that the maps

Cmult → Rmult
≥0 , q 7→ |q|, and Rmult

≥0 → Cmult, r 7→ r,

induce the maps

(3.2.2) toric(Γ(σ)) ⇄ |toric|(σ).
(3.3) The subset E♯

Σ ⊂ |toric|(σ)× Ď.

Definition. For σ ∈ Σ, we define the set E♯
σ by

E♯
σ := {(b, F ) ∈ |toric|(σ)× Ď ; exp(iτR)exp(iH)F is a τ -nilpotent i-orbit}.

Here (τ,Hmod τR) is the point in
⊔

τ≺σ σR/τR corresponding to b in |toric|(σ) under the bijection (3.2.1).

Define the map E♯
σ → D♯

σ by (b, F ) 7→ exp(iτR)exp(iH)F .
Define the action of σR on E♯

σ over D♯
σ by

a ·
(
(τ,Hmod τR), F

)
:=

(
(τ, (H + a)mod τR), exp(−ia)F

)
(a ∈ σR).

Then, E♯
σ → D♯

σ is surjective (more precisely, a σR-torsor, see (6.1.1) below). The maps in (3.2.2)
induce the maps

(3.3.1) Eσ ⇄ E♯
σ,

whose composite E♯
σ → Eσ → E♯

σ is the identity.
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§4. Topology, Generalized fs logarithmic analytic spaces

(4.1) The strong topology.

Definition. Let X be an analytic space and S be a subset on X. The strong topology on S is the
strongest topology on S for which the map λ : Y → S is continuous for any analytic space Y and for any
analytic morphism λ : Y → X with λ(Y ) ⊂ S.

Remark. In the notation of the above definition, if S is an analytic subspace of X then the strong topology
on S coincides with the usual topology, i.e., the topology as a subspace of X.

Example. Let X := C2 be the complex two-dimensional plane and let S := C2−{0}×C+ {(0, 0)} ⊂ X.
For the strong topology on S and the usual topology on S as a subspace of X, we can observe the
following:

If k ∈ Z≥1 and z ∈ C converges to 0 then (zk, z) converges to (0, 0) in the strong topology on S.
If a ∈ R>1 and s ∈ R, s→∞, then (1/as, 1/s) does not converge to (0, 0) in the strong topology on

S, whereas (1/as, 1/s) converges to (0, 0) in the usual topology on S as a subspace of X.

(4.2) Generalized (fs logarithmic) analytic spaces.

Definitions. (4.2.1) Let C be a category and let A be a full subcategory of C. For an object S of C, let
hS
A be the contravariant functor

A → Sets, Y 7→ hS
A(Y ) := Mor(Y, S).

Denote by Ā ⊃ A the full subcategory of C consisting of all objects S satisfying

Mor(S,Z) →̃ Mor(hS
A, h

Z
A) for any object Z of C.

(4.2.2) For
C := (local ringed spaces over C) ⊃ A := (analytic spaces),

we call an object of Ā a generalized analytic space.

(4.2.3) For

C := (fs logarithmic local ringed spaces over C)

⊃ A := (fs logarithmic analytic spaces),

we call an object of Ā a generalized fs logarithmic analytic space.

It can be proved that, if we forget logarithmic structures, generalized fs logarithmic analytic spaces
become generalized analytic spaces. Generalized analytic spaces satisfy the conditions (1.5) (i), (ii).

Remark. In the example of (4.1), S, endowed with the strong topology and the pull-back sheaf of rings
O, is a generalized analytic space. S, endowed moreover with the pull-back fs logarithmic structure M
from those on X, is a generalized fs logarithmic analytic space. Here the fs logarithmic structure on X
is the one associated to the divisor {0} ×C ⊂ X.

§5. Polarized logarithmic Hodge structures

(5.1) Polarized logarithmic Hodge structures.

Definition. (5.1.1) Let X be a generalized fs logarithmic analytic space. A pre-polarized logarithmic
Hodge structure (pre-PLH for short) on X, of weight w and of Hodge type (hp,q)p+q=w is a triple
(HZ, ⟨ , ⟩, F ) consisting of a locally constant sheaf of free Z-modules HZ on X log, of a non-degenerate
bilinear form ⟨ , ⟩ : HQ × HQ → Q, symmetric for even w and anti-symmetric for odd w and of a

decreasing filtration F of the Olog
X -module Olog

X ⊗HZ, which satisfy the following three conditions.

(i) Each F p is the pull-back under τ : (X log,Olog
X ) → (X,OX) of a locally free OX-module of rank∑

r≥p h
r,w−r.
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(ii) Each F p is, locally on X log, an Olog
X -direct summand of Olog

X ⊗HZ.
(iii) ⟨F p, F q⟩ = 0 if p+ q > w.

Let X be an fs logarithmic analytic space. Let Ω1
X be the sheaf of Kähler differentials on X. The

sheaf of logarithmic differential forms on X is defined by

ω1
X := (Ω1

X ⊕Mgp
X )/N,

whereN is the OX -submodule generated by {(−dα(x), α(x)⊗x) ; x ∈MX}. The derivation d : OX → Ω1
X

induces the one d : OX → ω1
X via the map ΩX → ω1

X . The sheaf ω1,log
X on X log is defined by

ω1,log
X := τ∗(ω1

X) = Olog
X ⊗τ−1(OX) τ

−1(ω1
X).

The derivation
d : Olog

X → ω1,log
X

is induced by d : OX → ω1
X and by L exp−→ τ−1(Mgp

X )
dlog−→ τ−1(ω1

X), where dlog : x 7→ (0, 1⊗ x).
Let now x be an fs logarithmic analytic space whose underlying analytic space is Spec(C) and let

r := rankZ(M
gp
x /O×

x ). Then xlog = (S1)r. Let y ∈ xlog. We define

sp(y) := HomC-alg(Olog
x,y,C),

sp(x) := {t ∈ Hom(Mx,C
mult) ; t|C× = id}, and

sp(y)→ sp(x), s 7→ t :=
(
Mx ∋ a 7→ exp(s(log(a))) ∈ C× ⊂ C

)
.

Note that the structure homomorphism α : Mx → C of the logarithmic structure of x is an element of
sp(x), which does not belong to the image of the canonical map sp(y) → sp(x) if r > 0. Note also that
sp(x) ≃ Cr, whereas sp(y) (y ∈ xlog) form a C⊗Z π1(x

log)-torsor over xlog (cf. (5.2) below).
For a pre-PLH (HZ, ⟨ , ⟩, F ) on x, for y ∈ xlog and for s ∈ sp(y), we have a decreasing filtration

F (s) :=
(
C⊗Olog

x,y
F p
y

)
p∈Z

, where s : Olog
x,y → C,

on the C-vector space HC,y := C⊗Z HZ,y.

Definition. (5.1.2) Let x be an fs logarithmic analytic space whose underlying analytic space is Spec(C).
A pre-PLH (HZ, ⟨ , ⟩, F ) on x is called a polarized logarithmic Hodge structure (PLH for short) on x if
it satisfies the following two conditions.

(i) (d⊗ 1)(F p) ⊂ ω1,log
x ⊗Olog

x
F p−1 for all p.

Here d⊗ 1 means d⊗ 1HZ
: Olog

x ⊗Z HZ → ω1,log
x ⊗Z HZ.

(ii) For y ∈ xlog and for s ∈ sp(y) whose image in sp(x) is sufficiently near to the structure homomor-
phism α ∈ sp(x), (HZ,y, ⟨ , ⟩y, F (s)) is a polarized Hodge structure in the usual sense.

Note that the validity of the condition (5.1.2) (ii) is independent of the choice of y.

Definition. (5.1.3) Let X be a generalized fs logarithmic analytic space. A pre-PLH (HZ, ⟨ , ⟩, F ) on X
is called a polarized logarithmic Hodge structure (PLH for short) on X if, for any x ∈ X, the inverse
image of (HZ, ⟨ , ⟩, F ) on x is a PLH. Here we regard x as an fs logarithmic analytic space with ring C
and with the inverse image of the logarithmic structure of X.

(5.2) Polarized logarithmic Hodge structures of type Φ.
Let x be an fs logarithmic analytic space whose underlying analytic space is Spec(C). Then xlog ≃

(S1)r, where r = rank(Mgp
x /O×

x ), as before. Let y ∈ xlog. We define an action of C⊗ π1(x
log) on sp(y)

as follows. Let L be the sheaf constructed in (1.5). The exact sequence

0→ Z
2πi−→ L exp−→ τ−1(Mgp

x )→ 1
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on xlog induces an exact sequence of cohomology groups

Ox
exp−→Mgp

x ↠ H1(xlog,Z) ≃ Hom(π1(x
log),Z).

Hence we have
π1(x

log) ≃ Hom(Mgp
x /O×

x ,Z) ←̃ Hom(Ly/Oadd
x ,Z),

where the last isomorphism is induced by exp. On the other hand, the restriction of s ∈ sp(y) to Ly

yields a bijection

sp(y) →̃ (splittings of the group homomorphism ι : Cadd = Oadd
x → Ly).

Now we define the action of φ ∈ C⊗Z π1(x
log)

ν
→̃ Hom(Ly/Oadd

x ,Cadd) on s ∈ sp(y) by

(φs)|Ly
:= (φ− id) + s|Ly

.

Note that (φ−id) : Ly → Cadd is the lifting of ν(φ). Then, the sp(y) (y ∈ xlog) form aC⊗Zπ1(x
log)-torsor

over xlog ≃ (S1)r under this action.
The following proposition gives a connection between a PLH and nilpotent orbits.

Proposition. For x ∈ X, y ∈ xlog, s ∈ sp(y) and φ =
∑

1≤j≤n zj ⊗ γj ∈ C⊗ π1(x
log), we have

F (φs) = exp
(
−

∑
1≤j≤n

zj log(γj)
)
F (s).

Let

(5.2.1) Φ := (w, (hp,q)p+q=w,H0, ⟨ , ⟩0,Γ,Σ)

be a 6-tuple consisting of a weight, a set of Hodge numbers, a free Z-module H0 of rank
∑

hp,q, a
Q-bilinear form ⟨ , ⟩0 on H0,Q as in (1.1), a subgroup of GZ and a fan with which the subgroup Γ is
strongly compatible.

Definition. Let X be a generalized fs logarithmic analytic space. A PLH of type Φ on X is a 4-tuple
(HZ, ⟨ , ⟩, F, µ) consisting of a pre-PLH (HZ, ⟨ , ⟩, F ) on X of weight w and of Hodge type (hp,q)p,q, and
of a global section µ of the sheaf

Γ\ Isom((HZ, ⟨ , ⟩), (H0, ⟨ , ⟩0))

on X log which satisfy condition (i) below. Here H0 with ⟨ , ⟩0 is regarded as a constant sheaf on X log,
Isom is the sheaf of isomorphisms, and γ ∈ Γ acts on Isom(· · · ) by h 7→ γ ◦ h.

(i) For any x ∈ X and any y ∈ xlog = τ−1(x), if

µ̃y : (HZ,y, ⟨ , ⟩y) →̃ (H0, ⟨ , ⟩0)

denotes a representative of the stalk of µ at y, then there exists σ ∈ Σ such that the image of the composite
map

Hom(MX,x/O×
X,x,Z≤0) ↪→ π1(x

log)→ AutZ(HZ,y, ⟨ , ⟩y)
by µ̃y≃ AutZ(H0, ⟨ , ⟩0)

is contained in Γ(σ) and that the filtrations µ̃y(F |xlog(s)) (s ∈ sp(y)) on H0,C form a σ-nilpotent orbit
(cf. Definition in (1.3)).

Remark. Using the above Proposition, we can prove that the conditions (i), (ii) in Definition (5.1.2)
follow from the conditions (ii) (Griffiths transversality), (iii) (positivity) in Definition (1.3), respectively.
Hence if (HZ, ⟨ , ⟩, F, µ) is a PLH on X of type Φ in the above definition, then (HZ, ⟨ , ⟩, F ) is actually
a PLH on X in the sense of (5.1.2).
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§6. Main result

(6.1) Let Φ := (w, (hp,q)p+q=w,H0, ⟨ , ⟩0,Γ,Σ) be as in (5.2.1) and let σ ∈ Σ.

We endow Eσ ⊂ Ěσ := toric(Γ(σ)) × Ď with the strong topology, the pull-back sheaf of rings O and
the pull-back fs logarithmic structure M from those on Ěσ. Here the fs logarithmic structure on Ěσ is the
pull-back of the one on toric(Γ(σ)) associated to the normal crossing divisor toric(Γ(σ))− Γ(σ)gp ⊗C×.

Via πσ : Eσ → Γ(σ)gp\Dσ → Γ\DΣ, we endow Γ(σ)gp\Dσ with the quotient topology, and Γ\DΣ

with the strongest topology for which πσ is continuous for all σ ∈ Σ. For any open set U of Γ\DΣ, let
Uσ := π−1

σ (U) and define

O(U) (resp. M(U)) := {map f : U → C ; f ◦ πσ ∈ O(Uσ) (resp. ∈M(Uσ)) (∀σ ∈ Σ)}.

Here we regard M(Uσ) as a subset of O(Uσ) via α : M(Uσ)→ O(Uσ) which is injective.
We introduce the quotient topology on E♯

σ via the surjection Eσ → E♯
σ in (3.3.1). Via π♯

σ : E♯
σ →

D♯
σ → Γ\D♯

Σ, we endow D♯
σ with the quotient topology, and D♯

Σ with the strongest topology for which
π♯
σ is continuous for all σ ∈ Σ.
A subgroup Γ of GZ is called neat if the subgroup of C×, generated by all the eigenvalues of all γ ∈ Γ,

is torsion free. It is known that there exist neat subgroups of GZ with finite index.

Proposition. Assume Γ is neat. Then, in the above notation, we have

(6.1.1) Eσ → Γ(σ)gp\Dσ (resp. E♯
σ → D♯

σ) is a σC-torsor (resp. σR-torsor) in the category of topological
spaces.

(6.1.2) The maps Γ(σ)gp\Dσ → Γ\DΣ and D♯
σ → Γ\D♯

Σ are open.

(6.2) Our main result is

Theorem. Let Φ := (w, (hp,q)p+q=w,H0, ⟨ , ⟩0,Γ,Σ) be as in (5.2.1). We assume Γ is neat. Then we
have

(6.2.1) Γ\DΣ is a generalized fs logarithmic analytic space, which is Hausdorff, but not locally compact in

general. There is a homeomorphism of the topological spaces (Γ\DΣ)
log and Γ\D♯

Σ, which is compatible

with the canonical map τ : (Γ\DΣ)
log → Γ\DΣ and the map Γ\D♯

Σ → Γ\DΣ induced by D♯
Σ → DΣ in

(3.1).

(6.2.2) Let Ā := (generalized fs logarithmic analytic spaces) and define the contravariant functor PLHΦ :
Ā → Sets by

PLHΦ(X) := (isomorphism classes of PLH on X of type Φ).

Then this functor PLHΦ is represented by Γ\DΣ.

Remark. In the case where D is a Hermitian symmetric domain, the strong topology on Eσ ⊂ Ěσ

coincides with the usual topology on Eσ as a subspace of Ěσ, and hence they coincide on Γ\DΣ. Thus
our space Γ\DΣ becomes an fs logarithmic analytic space whose underlying analytic space is nothing but
a toroidal compactification of Mumford et al. for a ‘big fan’ Σ. Even in this case, our construction has
the advantage that it carries the universal family of PLH.

§7. Examples

(7.1) Example of weight 3.
In the case of Hodge structures of wight 2, Cattani and Kaplan constructed a partial compactification

Γ\DCK (Γ\D̄ in their notation in [CK]) as a topological space, which is a generalization of the Satake
type. For the example of weight 3 below, their argument is applicable to obtain Γ\DCK . Consider the
case of weight 2, or weight 3 of the type below. Let Ξ be the fan in Example in (1.2) and let Γ be a
subgroup of GZ with finite index. Then, there is the standard map Γ\DΞ → Γ\DCK from our space to
the Cattani-Kaplan, which is continuous.

In the following, we give an example which shows that the strong topology is needed. Let w = 3 and
hp,q = 1 (p+ q = 3, p, q ≥ 0), hp,q = 0 otherwise. Let e1, e2, f1, f2 be a free Z-basis of H0 and let ⟨ , ⟩0
be an anti-symmetric bilinear form on H0 defined by

⟨e1, e2⟩0 = ⟨f1, f2⟩0 = 1, ⟨ej , ek⟩0 = 0 (∀j, ∀k).
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Let N be a nilpotent endomorphism of H0 defined by

Nf1 = f2, Nf2 = Nej = 0 (∀j).
For s ∈ C, we define a family of Hodge filtrations Fs ∈ Ď by

F 3
s := {sf1 + e1 − ie2}C ⊂ F 2

s := {f1, e1 − ie2}C
⊂ F 1

s := {f1, e1 − ie2, se2 − f2}C ⊂ F 0
s := H0,C,

where {. . . }C means the C-linear span. Using this family, we can prove

Proposition. (7.1.1) The following are equivalent:
(a) (N,Fs) generates a nilpotent orbit.
(b) (N,Fs) satisfies Griffiths transversality.
(c) s = 0.

(7.1.2) We use the notation in (7.1.1). For y ∈ R, we see eiyNFs ∈ D if and only if 0 < y < |s|−2. (Here
we understand |s|−2 =∞ for s = 0).

(7.1.3) Let Ξ be the fan in Example in (1.2). If we endow Eσ (σ ∈ Ξ) with the usual topology as a subset
of Ěσ and endow Γ\DΞ with the quotient topology via

⊔
σ∈Ξ Eσ → Γ\DΞ, then Γ\DΞ is not Hausdorff

and the standard map Γ\DΞ → Γ\DCK is not continuous.

The example in this subsection is a degeneration of the Hodge structures of weight 3 of the mirrors of
quintic hypersurfaces in P4 (cf., for example, [M]).

(7.2) Example of weight 2.
Let Ξ be the fan in Example in (1.2). In this subsection, we give an example of Γ\DΞ which is locally

isomorphic to C×
(
C2 − {0} ×C+ {(0, 0)}

)
(cf. Example in (4.1)).

Put

S := C×C− {0} ×C+ {(0, 0)},

S̃ := R≥0 ×C− {0} ×C+ {(0, 0)}.

We define a topology T (resp. T̃ ) on S (resp. on S̃) as follow. On S − {(0, 0)} (resp. on S̃ − {(0, 0)}),
T (resp. T̃ ) coincides with the usual topology, and, at the point (0, 0), a fundamental system of neigh-
borhoods is given by

W (ε) :=
∪
n≥1

{(v, z) ; |v| < εn, |z| < εn, |z|n < |v|}.

(
resp. W̃ (ε) :=

∪
n≥1

{(r, z) ; r < εn, |z| < εn, |z|n < r}.
)

Here ε = (εn)n≥1 runs over all families of positive real numbers. Then, T coincides with the strong
topology of S ⊂ C2 considered in Example in (4.1).

Let w = 2, h2,0 = h0,2 = 2, h1,1 = 1 and hp,q = 0 otherwise. Let ej (1 ≤ j ≤ 5) be a free Z-basis of
H0 and let ⟨ , ⟩0 be a symmetric bilinear form on H0 defined by

⟨ej , ej⟩0 = 1 (1 ≤ j ≤ 3), ⟨e4, e5⟩0 = ⟨e5, e4⟩0 = 1, ⟨ej , ek⟩0 = 0 otherwise.

Then dimCD = 3 and we can prove

Proposition. In the above notation, we have the following.
(i) DΞ contains all nilpotent orbits.

(ii) Let p ∈ Γ\DΞ − Γ\D. Then, there exist an open neighborhood U of p in Γ\DΞ and an open set Ũ

in D♯
Ξ, in the topologies introduced in (6.1), which fit in the following commutative diagram:

Γ\DΞ ⊃ U
α
↪→ C× S

↑ ↑ β ↑
D♯

Ξ ⊃ Ũ ↪→ C×R× S̃

Here α : p 7→ (0, 0, 0), β : (w, a, r, z) 7→ (w, reai, z). If we endow C×S (resp. C×R× S̃) with the product

topology of the usual topology of C (resp. C×R) and T (resp. T̃ ), then both ↪→ are open immersions.
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[U2] , Complex structures on partial compactifications of arithmetic quotients of classifying spaces of Hodge
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