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TORELLI-TYPE PROBLEMS

Sampei Usui

Department of Mathematics
Graduate School of Science

Osaka University

Abstract. Recently Log Geometry is used in Hodge Theory and there is a little progress

in Torelli-type Problems by using Degenerations. This is an English translation of the
survey appeared in Sugaku, Mathematical Society of Japan, 49-3 (1997) 235–252.

§1. Case of Elliptic Curves

As an introduction, let us consider the case of elliptic curves. This is the story in the
19-th century. Contrary to the history, we are starting with Weierstrass’ p-functions.
Let L = τZ+ Z, Im τ > 0, be a lattice in the complex plane C and let z be a complex
variable. Then the power series

p(z) := z−2 +
∑
ω∈L′

((z − ω)−2 − ω−2), ここで L′ := L− {0}

converges absolutely, uniformly on any compact subset of C to a meromorphic function
with double periods. Hence its differential p′(z) can be obtained term-wisely. Compar-
ing the terms of Laurent series with non-positive degrees, we get a relation:

p′(z)2 = 4p(z)3 − g2p(z)− g3, g2 := 60
∑
ω∈L′

ω−4, g3 := 140
∑
ω∈L′

ω−6.

Moreover, since p(z) is a doubly periodic, even function, we see that the zeros of p′(z) are
{τ/2, 1/2, (τ+1)/2} and the poles are {3 ·0}. Put∞ = p(0), e1 := p(τ/2), e2 := p(1/2),
e3 := p((τ + 1)/2), and consider their cross ratio λ and its function J :

λ(τ) := (∞, e1; e2, e3) =
e1 − e3
e1 − e2

, J(τ) :=
4

27

(1− λ+ λ2)3

(λ(1− λ))2
.

1991 Mathematics Subject Classification. Primary 14C30; Secondary 14D07, 32G20. Partly sup-

ported by the Grants-in-Aid for Scientific Research (1) (B): 08304002, the Ministry of Education,
Science and Culture, Japan

Typeset by AMS-TEX
1



2 SAMPEI USUI

Putting x := p(z) and differentiating, we have ψ := ±(4x3 − g2x − g3)−1/2dx = dz.
From this together with the above results, we know that p : C → P1, z 7→ x, is a
branched covering which factorizing via the cubic curve C := {4x3 − g2x − g3 − y2 =
0} ⊂ P2, that (p, p′) : C → C is the universal covering and that prx : C → P1 is the
double covering branched over the four points {e1, e2, e3,∞}.

The domain of definition of an integral
∫ x

∞ ψ should be C rather than P1 and its
multi-valuedness occurs from the ambiguity of the choices of the paths, which are 1-
cycles on C. Therefore, taking a symplectic basis α, β of H1(C,Z), taking the ratio
τ :=

∫
β
ψ/
∫
α
ψ and dividing by L := τZ+ Z, we obtain an isomorphism:

∫ ( )

∞
ψ : C →̃C/L, its inverse is (p, p′).

Moreover, since

C mod PGL(2,C) ⇔ τ mod SL(2,Z)

⇔ unordered set {∞, e1, e2, e3} mod PGL(1,C)

⇔ λ(τ) mod (permutation group of the ordered set {e1, e2, e3})
⇔ J(τ),

the moduli of smooth cubic curves and its compactification are given by

h/SL(2,Z)
J
→̃ C

∩ ∩(
h ⊔ (Q ⊔ {∞})

)
/SL(2,Z)

J
→̃ C ⊔ {∞} = P1(C).

Here, Q ⊔ {∞} is the easiest case of the rational boundary components of a Hermitian
symmetric domain and the basis of the open neighborhoods of 0 ∈ h⊔{Q⊔{∞}} in the
Satake topology are the family of {0} ∪ (open disc in h tangent to the real line at 0).
As e1 →∞, we see λ→ 1 therefore J →∞. This means that a rational curve with one
node sits over the point ∞ added in the compactification.

(For more details for this section, see, e.g., [HC].)

§2. Five approaches to Torelli-type problems

(2.1) Via theta divisors. The set F := H0(C,Ω1
C) of holomorphic 1-forms on a

smooth algebraic curve C form a g-dimensional complex vector space. Here the number
g is called the genus of C. Taking a base point p0 ∈ C and a basis ω1, . . . , ωg ∈ F , we
consider an integral

α(p) :=
(∫ p

p0

ω1, . . . ,

∫ p

p0

ωg

)
, p ∈ C.
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This is multi-valued. Dividing the period of the integrals over the 1-cycles on C, we get
a single-valued holomorphic map

α : C → J(C) := F ∗/H1(C,Z).

J(C) is a g-dimensional complex torus which is called the Jacobian variety associated
to C, and α is called the Abel-Jacobi map. For a divisor D =

∑
1≤i≤d pi ∈ Sd(C) of

degree d, we extend α by α(D) :=
∑

1≤i≤d α(pi). Then

Θ := Im
(
α : Sg−1(C)→ J(C)

)
is the theta divisor of Riemann, which yields a principal polarization of J(C). It is
known that α is injective on the complement of α−1(SingΘ).

Torelli Theorem. Let (J(C),Θ) and (J(C ′),Θ′) be the the principally polarized Jaco-
bian varieties associated to smooth algebraic curves C and C ′, respectively. If (J(C),Θ)
and (J(C ′),Θ′) are isomorphic, then C and C ′ are isomorphic.

Several proofs are known for this theorem. Many of them use theta divisors. Let
us see the idea of the proof given by Andreotti in the case of g = 3 because we can
understand the geometric image in this case. Let Pg−1 be the Proj of the symmetric
algebra of F over C. The canonical map of C is defined by

f : C → Pg−1, f(p) := (ω1(p) : · · · : ωg(p)).

The Gauss map of the theta divisor Θ ⊂ J(C) is defined by

γ : Θ→ (Pg−1)∗, γ := (接空間 TΘ(a) ⊂ TJ(C)(a) ≃ F ∗).

Considering the geometric meaning of each definition, we obtain the following:

(2.1.1) The ratio of the entries of the differential of the Abel-Jacobi map α is the
canonical map f .
(2.1.2) γ ◦ α

(∑
1≤i≤g−1 pi

)
=
(
space spanned by {f(pi) | 1 ≤ i ≤ g − 1}

)
.

Case : C is a canonical curve. The canonical map f is an embedding and, in the case
g = 3, we have degΩ1

C = 2 ·3−2 = 4. Hence C can be identified with the plane quartic
curve f(C). If a line L on P2 is not tangent to C then L intersects with C at different
four points. If L is tangent to C then the intersection of L and C consists of three or
less points. Considering L as a point of (P2)∗ and using (2.1.2), we can compute the
number of points of the inverse by γ ◦ α as follows:

♯(γ ◦ α)−1(L)

{
=
(
4
2

)
= 6 if L is not tangent to C,

≤
(
3
2

)
= 3 if L is tangent to C.

From this we can recover the set of tangent lines of C as the branch locus of the Gauss
map γ. This is nothing but the dual curve C∗ ⊂ (P2)∗ of C and hence we can recover
C = C∗∗.



4 SAMPEI USUI

Case : C is a hyperelliptic curve. In the case g = 3, via the canonical map f , C is
a double covering over a plane conic C0 branched at eight points pi, 1 ≤ i ≤ 8. In a
similar argument as above, we can recover C∗

0 + p∗1 + · · · p∗8 as the branch locus of the
Gauss map γ. Hence we can recover C0 = C∗∗

0 and the eight points pi = p∗∗i on it and
finally the double cover f : C → C0 branched at

∑
pi.

(For more details in this subsection, see [A] or [ACGH].)

(2.2) Via degenerations. The Jacobian variety J(C) of a smooth algebraic curve
C is an equivalent data of the Hodge structure (H1(C,Z),H1(C,C) = H1,0(C) ⊕
H0,1(C)) of weight 1 over Z of C. Moreover, the theta divisor Θ up to translation is

uniquely determined by the cohomology class c1[Θ] ∈ H2(J(C),Z) ≃
∧2

H1(J(C),Z) ≃∧2
H1(C,Z), which corresponds to the cup product S on H1(C,Z) by the Poincaré

duality. This yields a polarization of the Hodge structure, that is, the Riemann bilinear
relations: For ω, ω′ ∈ H1,0(C),

S(ω, ω′) =

∫
C

ω ∧ ω′ = 0,
√
−1S(ω, ω̄) =

√
−1
∫
C

ω ∧ ω̄ > 0 (ω ̸= 0).

Taking a symplectic basis α1, . . . , αg, β1, . . . , βg ∈ H1(C,Z) and a basis ω1, . . . , ωg

of F = H0(C,Ω1
C) ≃ H1,0(C) with

∫
αi
ωj = δij , the Riemann bilinear relations can be

interpreted as the period matrix

Ω :=

(∫
βi

ωj

)
1≤i, j≤g

is symmetric and its imaginary part is positive-definite, that is, a point of the Siegel
upper-half space Hg.

Thus the correspondence C 7→ (J(C),Θ) is regarded as the period mapping

(2.2.1) Φ :Mg → Hg/Γ, Γ := Sp(2g,Z)

from the moduli space Mg of curves of genus g, and Torelli Theorem asserts that Φ is
injective. Here dividing by Γ corresponds to the choice of symplectic bases. Mg has

the compactification Mg of Deligne-Mumford ([DM]) added by the equivalence classes
of stable curves. Hg/Γ has the Satake compactification (Hg/Γ)

S ([Sa1]), which carries
an algebraic structure introduced by using automorphic forms by Baily-Borel ([BB]),
and also has toroidal compactifications by Mumford et al. ([AMRT]). We denote here

by Hg/Γ the Volonoi compactification by Yukihiko Namikawa which is one of toroidal
compactifications. Then Φ can be extended as

(2.2.2) Φ :Mg → Hg/Γ.

Taking a general point on the boundary component of Mg corresponding to those
curves of geometric genus g − 1 with one node and taking a neighborhood B ≃ ∆3g−3,
B∗ := B ∩Mg = ∆∗ ×∆3g−4, of that point, and consider the family of curves {Ct}t∈B
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over it. Taking a locally constant symplectic frame α1(t), . . . , αg(t), β1(t), . . . , βg(t) ∈
H1(Ct,Z), t ∈ B∗, so that α1(t) is a vanishing cycle and taking a holomorphic frame
ω1(t), . . . , ωg(t) ∈ F (Ct) with

∫
αi(t)

ωj(t) = δij , and consider a period mapping φ(t) :=

(φi,j(t)) :=
(∫

βi(t)
ωj(t)

)
. Then the Picard-Lefschetz formula for the local monodromy

T becomes

Tβ1(t) = β1(t) + α1(t), other αi(t), βi(t) are invariant.

Tφ11(t) = φ11(t) + 1 hence φ11(t) = (2π
√
−1)−1 log t1 + s(t),

where t = (t1, t
′), and s(t) and the other φij(t) are invariant.

By the hyperbolicity of Hg, φij(t), (i, j) ̸= (1, 1), can be extended over B. (This has
been generalized into the nilpotent orbit theorem by Schmid.)

Let C̃0 be the normalization of C0, let p, q and βi be the pull-back to C̃0 of the
double point and the cycle βi(0), respectively, and let ω̃1, ωj , j ̸= 1, be the differential

of the third kind and the differentials of the first kind on C̃0 come from ωj(0). Then
the limit of the period matrix as t′ = 0 and t1 → 0 becomes
(2.2.3)

φ(t) mod T =

(
t1 exp 2π

√
−1s(t) ...

... ...

)
→


0

∫ p

q
ω2 ...

∫ p

q
ωg∫

β2
ω̃1

... φ1(0)∫
βg
ω̃1


By using (2.2.3), we can prove Generic Torelli Theorem, i.e., the assertion of the

mapping degree of Φ over its image being 1, by an induction on the genus g of the curve
C. The outline of the proof is as follows. For the blocks of (2.2.3), we can observe
(2.2.4)–(2.2.6) below.

modulus of C̃0 ⇔ φ1(0)

(2.2.4)

⇔ grW of limit Hodge structure by monodromy weight filtration W

⇔ (point on Hg/Γ)
S .

Hence, by the induction assumption on g, C̃0 can be recovered by φ1(0). Moreover,
the dual of the differential of the (2, 2)-block of the extremely right matrix in (2.2.3)
can be interpreted as the multiplication mapping R1 × R1 → R2 of the canonical
ring R :=

⊕
H0(C̃0, (Ω

1
C)

⊗n) and this mapping is injective provided that C̃0 is non-
hyperelliptic by the M. Neother theorem. This shows the injectivity of the differential
of the period mapping in the directions of the moduli of C̃0.

(2.2.5) places of p, q ∈ C̃0

⇔ (1.2)-block of the extremely right matrix in (2.2.3)

⇔ (2.1)-block of the right matrix in (2.2.3) (by reciprocity)

⇔ extension data of the filtration W of the limit mixed Hodge structure

⇔ point on the fiber of Hg/Γ→ (Hg/Γ)
S .
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The (1.2)-block of the extremely right matrix in (2.2.3) yields the Abel-Jacobi mapping

and two points p, q ∈ C̃0 can be recovered if C̃0 is non-hyperelliptic. Moreover, the
differential of this (1.2)-block by p or q yields the canonical mapping f : C̃0 → Pg−2,

which is injective if C̃0 is a canonical curve. This shows the injectivity of the differential
of the period mapping in the directions of the places of p, q ∈ C̃0.

(2.2.6) Since t1 = 0 is a local equation of the boundary component of Mg containing
C0, (1.1)-entry of the middle matrix in (2.2.3) shows the injectivity of the differential
of the period mapping in the direction normal to this boundary component.

Thus we see that the period mapping Φ is proper, that Φ−1Φ(C0) consists of one
point and that the local mapping degree of Φ is 1. This proves Generic Torelli Theorem.

Problem. Taking the higher-order differentials into account, make the image ImΦ
of the period mapping to be normal and prove the injectivity of Φ by using the results
in this subsection and Zariski Main Theorem. More generally, taking the higher-order
differentials into account, make the image of the ‘extended period mapping’ to be nor-
mal.

(For more details in this subsection, see [N1], [CCK], the article of Friedman in [Get])

(2.3) Via special locus in moduli. We first formulate a period mapping and
its differential after Griffiths ([G1], cf. also [Dl2]).

Let HZ be a free Z-module and set HC := C ⊗Z HZ. A direct sum decomposition
HC =

⊕
p+q=wH

p,q with Hq,p = Hp,q is called a Hodge decomposition or a Hodge
structure of weight w. This is an equivalent data of a w-opposed decreasing filtration
F , i.e., grpF grq

F̄
= 0 if p+q ̸= w. Their correspondence is as follows: F p =

∑
p′≥pH

p′,q′ ,

Hp,q = F p ∩ F q. Let S be a (−1)w-symmetric bilinear form on HQ := Q⊗Z HZ. S is
called a polarization of the Hodge structure if

S(ω, ω′) = 0 (ω ∈ Hp,q, ω′ ∈ Hp′,q′) if p+ p′ ̸= w,(2.3.1)

(
√
−1)p−qS(ω, ω) > 0 (0 ̸= ω ∈ Hp,q).(2.3.2)

In the geometric case, we can take as HZ a summand in the Lefschetz decomposition
of the cohomology group with coefficients in Z of a smooth projective variety. Then
(2.3.1), (2.3.2) are fulfilled and called the Riemann-Hodge bilinear relations.

Put fp := dimF p and f := (f0, . . . , fw). The classifying space D and its ‘compact
dual’ Ď are defined by

Ď := {F ∈ Flag(HC, f) | satisfies (2.3.1)}, D := {F ∈ Ď | also satisfies (2.3.2)}.

Let Γ be a subgroup of Aut(HZ, S). Then it can be proved that Γ acts on D properly
discontinuously. A holomorphic mapping

Φ :M → D/Γ

from an analytic manifoldM is called a period mapping if at any point ofM there exists
a suitable neighborhood U and a local lifting Φ̃ : U → D which satisfies the Griffiths
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transversality dΦ̃TU ⊂
⊕

pHom (grpF , gr
p−1
F ). It is known that the differential of the

period mapping associated to a smooth deformation f : X →M factorizes as dΦ̃ = κ◦ρ.
Here ρ is the Kodaira-Spenser mapping and κ is the mapping, up to non-zero constant,
induced from the cup product R1f∗TX ⊗Rqf∗Ω

p
X → Rq+1Ωp−1

X .

The following is Torelli Theorem for K3 surfaces proved by Piateckii-Shapiro &
Shafarevich ([PS]) et al.:

(2.3.3) Theorem. Let X, X ′ be Kähler K3 surfaces. Given an isomorphism ψ :
H2(X ′,Z) → H2(X,Z) preserving the cup products, the Hodge structures and the
Kähler cones, there exists uniquely an isomorphism f : X→̃X ′ with f∗ = ψ. Here
the Kähler cone is the cone in H2(X,R) consisting of Kähler classes on X.

In the proof of this theorem, the key role is played by special K3 surfaces called
Kummer surfaces, which are obtained as the minimal resolution of singularities of the
quotients of Abelian surfaces divided by the involution ±1. We shall see here an outline
of the proof. Five facts (2.3.4)–(2.3.8) below are proved first:

(2.3.4) Local Torelli Theorem for the Kuranishi family of K3 surfaces.

(2.3.5) ‘Preserving the Kähler cones’ is an open condition.

(2.3.6) Density in D of the image by the period mapping of the points corresponding
to projective Kummer surfaces.

(2.3.7) Torelli Theorem of type (2.3.3) for a projective Kummer surface X and a K3
surface X ′.

(2.3.8) Continuity of isomorphisms between Kähler K3 surfaces.

By using these facts the argument goes as follows. Let p : Y → S and p′ : Y ′ → S′

be the Kuranishi families of X = Y0, X
′ = Y ′

0 respectively. Extend the given ψ to the
isomorphism of the constant sheaves Ψ : R2p′∗ZY ′ → R2p∗ZY . Let L be the K3 lattice
H2(X,Z) together with the cup product. Choose a marking α : R2p∗ZY →̃L× S and
put α′ := α ◦Ψ. By these markings, we have period mappings Φ : S → D, Φ′ : S′ → D.
By the construction and the condition in the theorem, we see Φ(0) = Φ′(0). By Local
Torelli Theorem (2.3.4), there exists an isomorphism q : S →̃S′ such that Φ′ ◦ q = Φ.
Replacing the Kuranishi family p′ by Y ′ ×S′ S → S, we may assume that S′ = S,
q = (identity) and Φ′ = Φ. By the construction, Ψ(s) : H2(Y ′

s ,Z) → H2(Ys,Z)
preserves the Hodge structures at any point s ∈ S. Shrinking S if necessary, we may
assume that Ψ(s) preserves the Kähler cones. By Density (2.3.6), there exists a series
of points {sn} in S converging 0 such that each Φ(sn) is the period of a projective
Kummer surface. By Torelli Theorem for projective Kummer surfaces (2.3.7), there
exist isomorphisms fn : YSn

→ Y ′
Sn

with f∗n = Ψ(sn). From this, by Continuity (2.3.8),
we obtain an isomorphism f : X →̃X ′ with f∗ = ψ and the proof is finished.

Notice that Kummer surfaces are constructed from Abelian surfaces, which are char-
acterized as K3 surfaces with mutually disjoint sixteen (−2)-curves among all K3 sur-
faces and that they have the density property (2.3.6) even if their moduli has only
dimension 3 (the moduli of all K3 surfaces has dimension 20). The above proof is
based on this lucky situation.

(For more details, see, e.g., [BPV])
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(2.4) Via Jacobian rings. The following theorem was prepared by Griffiths and
proved by Donagi.

(2.4.1) Theorem. Generic Torelli Theorem cf. (2.2) holds for hypersurfaces of degree
d in Pn+1 except the following four cases:
d = 3, n = 2; d |n+ 2; d = 4, n = 4m (m ≥ 1); d = 6, n = 6m+ 1 (m ≥ 1).

Let f ∈ S := C[x0, . . . , xn+1] be a homogeneous equation of a non-singular hyper-
surface of degree d and let J(f) := (∂f/∂x0, . . . , ∂f/∂xn+1). R := S/J(f) is called the
Jacobian ring of X which plays the key role in the proof of the theorem. Here is an
outline of the proof.

(2.4.2) Put t(p) := (n− p+1)d− (n+2). We have isomorphisms of C-vector spaces

λp : Rt(p) →̃Hn−p(X,Ωp
X), λp(A) := Res(AΩf−(n−p+1)),

where Ω :=
∑

0≤i≤n+1

(−1)ixidx0 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn+1.

(2.4.3) The differential of the period mapping Φ at the point corresponding to X can
be interpreted as

H1(X,TX)×Hn−p(X,Ωp
X) −−−−→ Hn−p+1(X,Ωp−1

X )

λd×λt(p)

x≀ λt(p)+d

x≀

Rd ×Rt(p) −−−−→ Rt(p)+d

Here the bottom arrow is the multiplication mapping of the ring R and the diagram is
commutative up to non-zero constant.

(2.4.4) Put σ := (d−2)(n+2). We see that the multiplication mapping Ra×Rσ−a →
Rσ ≃ C is a perfect pairing.

(2.4.5) For a bilinear mapping of vector spaces B : U × V → W , the pair (T,B−)
defined below is called its symmetrizer:

T := {P ∈ Hom(U, V ) |B(u, P (u′)) = B(u′, P (u)) (u, u′ ∈ U)}
B− : T × U → V, B−(P, u) := P (u).

If (d−2)(n−1) ≥ 3, a ≤ d−1 and b ≤ d, the symmetrizer of the multiplication mapping
Ba,b : Ra × Rb → Ra+b is the multiplication mapping Bb−a,a : Rb−a × Ra → Rb for a
general f (Symmetrizer Lemma).

(2.4.6) If f, g ∈ Sd and f is general, then J(f) = J(g) implies f = cg (∃c ̸= 0).

By using these facts, the theorem can be proved in a purely algebraic argument.
(For more details, see [Dn] and also the article of Donagi in [Get].)

(2.5) Via mixed Hodge structures on open varieties. Surfaces of general
type X with pg = (c1)

2 = 1 appeared as the first example for which the differential of
the period mapping Φ is not injective, i.e., Infinitesimal Torelli Theorem does not hold
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([Kn]). The fibers of the period mapping of such surfaces has dimension 0, 1, or 2 ([T],
[U1]). This phenomenon can be explained by an effect of automorphisms of X ([U1]).
In particular, we see the following:

Surface X corresponding to a point on a 2-dimensional fiber of Φ

⇔ X has an automorphism σ of order 2 such that X/⟨σ⟩ is a K3 surface.

Such a surface is called a Kunev surface. In order to rescue this situation, the author
generalized the period mapping as the one assigning the mixed Hodge structure on
the complement of the unique canonical divisor in X and proved the injectivity of the
differential of this generalized period mapping, i.e., Infinitesimal Mixed Torelli Theorem
([U3]). Moreover, we have Generic Mixed Torelli Theorem as (2.5.1) below.

We state the theorem also for surfaces of general type X with pg = 1, (c1)
2 = 2,

π = Z/(2), which have an automorphism σ of order 2 such that X/⟨σ⟩ is a K3 surface,
since we can deal with such surfaces in a similar way. The bi-canonical mapping f2K
of such surfaces X yields a branched double covering of P2 and a complete weighted
projective space Q(2, 1, 1) respectively, and X can be recovered from the branch locus
([Ct], [CD]). Let T(j), j = 1, 2, be the parameter spaces of such branch loci respectively.

(2.5.1) Theorem ([SSU]). Let T := T(j), j = 1, 2. Denote by Xi, Ci the surface
of general type with pg = 1 and its canonical curve corresponding to a point ti ∈ T ,
i = 1, 2, respectively. Assume that the point t1 is general and that a path γ from t1 to
t2 in T induces an isomorphism γ∗ of mixed Hodge structures on the σ-invariant parts
H2(Xi − Ci,Z)

σ. Then there exists an isomorphism g : X1 →̃X2 such that g∗ = γ∗.
Such g is unique up to composition with an element of the group ⟨σ⟩.

(For the proof of the theorem, see [SSU]. For this subsection, see also [Mr].)
We have surveyed the five approaches to Torelli-type Problems. There are some

results in the approaches (2.3), (2.4) (cf. [Ref]). But, when we consider Torelli-type
Problems for surfaces of general type for example, it seems possible to generalize the
approach (2.2) and approach (2.5) which makes a good use, in some sense, of the
idea to use theta divisor instead of merely cup product in the approach (2.1). In
the remaining of this article, we shall survey those things related to the approach to
Torelli-type Problem via mixed Hodge structures on the complements of divisors and
via degenerations.

§3. Limits of Hodge structures

Here we survey the limits of Hodge structures after Cattani-Kaplan-Schmid ([CKS]),
which generalized the results of Schmid ([Sm]).

We recall first the definitions of mixed Hodge structures etc. by Deligne et.al.

(3.1) Definition ([D2], [E]). A Hodge Structure (HS for short) of weight w
defined over Q is (HQ, (HC, F )) such that

(0) HQ is a Q-module of finite type and F is a decreasing filtration on HC :=
C⊗HQ.

(i) F and F̄ are w-opposed, i.e., grpF grq
F̄
= 0 unless p+ q = w.
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A Mixed HS (MHS for short) defined over Q is ((HQ,W ), (HC, F )) =: (H,W )
such that

(0) H is as above (HS.0) and W is an increasing filtration on HQ.

(i) grWk is an HS of weight k.

A Filtered MHS (FMHS for short) defined over Q is ((HQ,W,G), (HC, F )) =:
(H,G) such that

(0) H is as above (MHS.0) and G is an increasing filtration on HQ.

(i) GiH is an MHS for all i.

Let D be the classifying space of Hodge structures on HC = C⊗ZHZ of weight w, of
Hodge numbers {hp,q} and polarized by S, and let Ď be its ‘compact dual’. Put GC :=
Aut(HC, S), and denote by GR the subgroup preserving HR and by gC, gR their Lie
algebras respectively. For mutually commutative nilpotent elements N1, . . . , Nm ∈ gR,
Cm :=

∑
i≤j≤m R>0Nj is called a monodromy cone. For a nilpotent element N ∈ gR,

there exists a unique increasing filtration W = W (N) of HR satisfying the following
two conditions:

NWk ⊂Wk−2, Nk : grWk →̃ grW−k .

BY [CK2],W (N) is independent of the choice ofN ∈ Cm and hence denoted byW (Cm).

(3.2) Definition. . (1) A pair (Cm, F ), F ∈ Ď, is called a nilpotent orbit if it satisfies
the following two conditions:

(i) NF p ⊂ F p−1 (∀N ∈ Cm,∀p).
(ii) There exists a real number α such that exp(

√
−1yN)F ∈ D if y > α.

(2) A pair (ρ, F ) of a homomorphism of groups ρ : SL(2,R)m → GR and F ∈ Ď is
called an SL(2)m-orbit if it satisfies the following condition:

Putting Ñm := ρ(n−, . . . , n−) ∈ gR for n− :=

(
0 1
0 0

)
∈ sl(2,R), we have that

exp(
√
−1Ñm)F ∈ D and that ρ∗ : sl(2,C)⊕m → gC is a morphism of Hodge struc-

tures of type (0, 0) with respect to the Hodge structures induced by
√
−1 ∈ h and by

exp(
√
−1Ñm)F respectively.

(3) A pair (Cm, F ) in (1) is called a polarized mixed Hodge of weight w if it satisfies
for each N ∈ Cm the following four conditions:

(i) Nw+1 = 0.

(ii) (W,F ) is a mixed Hodge structure. Here W :=W (N)[−w].
(iii) NF p ⊂ F p−1.

(iv) The Hodge structure on the primitive part Pw+j := Ker(N j+1 : grWw+j →
grWw−j−2) is polarized by S(j) := S( · , N j · ).

(4) A mixed Hodge structure (W,F ) is R-split if HC = ⊕(F p ∩ F q ∩Wp+q).

(3.3) Remark. An SL(2)-orbit induces a horizontal mapping ρ̃ which commutes with
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the group action:

SL(2,C)
ρ−−−−→ GCy y

P1 ρ̃−−−−→ Ď
√
−1 −−−−→ exp(

√
−1N)F

This is a generalization of ‘(H1)-homomorphism’ (see e.g. [Sa2]) in the present context.

For a mixed Hodge structure (W,F ), define La,b by

La,b := {X ∈ End(HC) |XWk ⊂Wk+a+b (∀k), XF p ⊂ F p+a (∀p), XF q ⊂ F q+b
(∀q)}.

The following proposition on R-splitness plays an important role in the proofs of The-
orems (3.5) below.

(3.4) Proposition. Given a mixed Hodge structure (W,F ) of weight w, we can find

a unique δ ∈ L−1,−1 ∩ End(HR) such that (W, F̃ ), F̃ := e−
√
−1δF , is an R-split mixed

Hodge structure. We also have
End(W,F ) = {f ∈ End(W, F̃ ) | [δ, f ] = 0}

Moreover, if (N,F ) is a polarized mixed Hodge structure, we see that δ ∈ gR and that

F̃ is also polarized with respect to N .

Let (W,F ), (W, F̃ ) be as in Proposition (3.4). We assume that W =W (N)[−w] for
a nilpotent element N ∈ gR. Define a semi-simple element Ỹ ∈ gR corresponding to

the direct sum decomposition HC = ⊕
(
F̃ p ∩ F̃

q
∩Wp+q

)
whose eigenvalue is p+ q−w

on F̃ p ∩ F̃
q
∩Wp+q. Then SL(2)-orbit Theorem in one variable ([CKS, (3.25)]) asserts

that there exists uniquely a real analytic, GR-valued function g̃(y) having a convergent
Taylor expansion in y−1 around y =∞ with the following three properties:

exp(
√
−1yN)F = g̃(y) exp(

√
−1yN)F̃ ,

h̃(y)−1h̃′(y) ⊥ Lie
(
Isotropy at (eiN )F̃

)
,

g̃(∞) ∈ exp
(
L−1,−1 ∩ ker adN

)
.

Here h̃(y) := g̃(y) exp
(
−(1/2) log yỸ

)
. Since g̃(∞) is a unipotent element, we can take

ζ := log g̃(∞). Put F̃0 := g(∞)F̃ = eζ−
√
−1δF . Then it is known that (W, F̃0) is

canonically determined by (W,F ), i.e., independent of the choice of N ([CKS, (3.31)]).
We call this the R-split mixed Hodge structure associated to (W,F ).

Given a polarized mixed Hodge structure (Cm, F ) of weight w and an ordered set of
generators N1, . . . , Nm of the cone Cm. Put

Cr :=
∑

1≤j≤r

R>0Nj , W r :=W (Cr)[−w].
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Define descending-inductively the associated Hodge filtrations F̃r, m ≥ r ≥ 1, by

(W r, F̃r) is the R-split mixed Hodge structure associated to
(
W r, e

√
−1Nr+1 F̃r+1

)
.

Here we understand e
√
−1Nm+1 F̃m+1 := F . Let Ỹr be the semi-simple element in gR

defined by (W r, F̃r), and Ñr be the component in the subspace ∩r>j≥1 ker ad Ỹj relative

to the decomposition of gR into the eigenspaces of the commuting set of semi-simple
endmorphisms {ad Ỹj}r>j≥1. Denote

Ỹr := Ỹr − Ỹr−1, Ñr :=
∑

r>j≥1

Ñj .

A rough description of the main results in [Sm] and [CKS] is as follow.

(3.5) Theorem. We use the above notation.
(i) For a pair (Cm, F ) of a monodromy cone and a filtration F ∈ Ď, we have the

equivalence:
a nilpotent orbit ⇔ a polarized mixed Hodge structure.

In the case of m = 1, we have moreover the equivalence:
an SL(2)-orbit ⇔ a polarized R-split mixed Hodge structure.

(ii) A lifting of a period mapping φ̃ : hm → D is approximated by the nilpotent orbit

φ̃(z) ∼ exp

( ∑
1≤j≤m

zjNj

)
F as z →

(√
−1∞, . . . ,

√
−1∞

)
.

Here F := ψ(0), ψ : ∆m → Ď is a map induced by ψ̃ := exp
(
−
∑

1≤j≤m µjzjNj

)
φ̃(µz).

The nilpotent imaginary orbit is approximated by the SL(2)m imaginary orbit

exp

(√
−1

∑
1≤j≤m

yjNj

)
F ∼ exp

(√
−1

∑
1≤j≤m

yjÑj

)
F̃m

as yj/yj+1 →∞ (m ≥ j ≥ 1, ym+1 := 1).

(For more details, see [Sm], [CKS].)
For a nilpotent element N ∈ gR compatible with an increasing filtrationW of HR, an

increasing filtration M := W (N,W ) is uniquely determined, if exists, by the following
two conditions:

NMk ⊂Mk−2, Nk : grMj+k gr
W
j →̃ grMj−k gr

W
j .

M :=W (N,W ) is called a W -relative N -filtration.

(3.6) Corollary. For subsets I, J ⊂ {1, · · · ,m}, we have W (CI∪J) =W (CI ,W (CJ)).

(3.7) Remark. As a corollary of Theorem (3.4), one can describe the asymptotic
behavior of the Hodge metric S(CF · , ·̄ ) near the boundary with respect to the flat
frame and also to the frame of the canonical extension, i.e., norm estimates ([CKS, §5]).
Kashiwara also obtained the norm estimates in the method of distributive family of
filtrations ([Ks]).
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§4. Compactifications of D/Γ

We survey in this section some compactifications of the quotientsD/Γ and extensions
of period mappings.

(4.1) We first give an elementary remark. Let D be the classifying space of Hodge
structures of weight w of Hodge type {hp,q} and polarized by S. D is then a homoge-
neous space under the automorphism group GR = Aut(HR, S), and GR and its isotropy
subgroup I at some point of D are described as follows:

GR ≃
{
O(k, 2h),

Sp(2h,R),
I ≃

{
U(hw,0)× · · · × U(ht+1,t−1)×O(ht,t) if w = 2t,

U(hw,0)× · · · × U(ht+1,t) if w = 2t+ 1.

Here k :=
∑

j h
t+2j,t−2j , h := (dimCHC − k)/2 if w = 2t, and h := dimCHC/2 if

w = 2t+1. Hence I is a compact subgroup of GR but not maximal compact in general.
Notice that I is maximal compact if and only if D ≃ GR/I is a Hermitian symmetric
domain. In the case that the horizontal subbundle Th

X is not 0, I is maximal compact
only in the following three cases:

w = 2t+ 1, and hp,q = 0 unless p = t+ 1, t;

w = 2t, hp,q = 1 for p = t± 1, ht,t is arbitrary, and hp,q = 0 otherwise;

w = 2t, hp,q = 1 for p = t± (a− 1), t± a for some a ≥ 2, and hp,q = 0 otherwise.

(4.2) Case: D is a Hermitian symmetric domain. In this case, as we men-
tioned in §2, we have the Satake compactifications (D/Γ)S ([Sa1]), which have algebraic
structures induced via automorphic forms by Baily-Borel ([BB]), toroidal compactifica-
tions (D/Γ)M by Mumford et.al ([AMRT]) ·
(4.2.1) Extensions to the Satake-Baily-Borel compactifications ([B]).
Any holomorphic mapping Φ : (∆∗)k × ∆n−k → D/Γ can be extended over ∆n to the
Satake-Baily-Borel compactification ΦS : ∆n → (D/Γ)S.

Under the condition in the above theorem, let Φ̃S : hk×∆(n−k) → D be a lifting of ΦS

and B be the boundary component containing Φ̃S
(√
−1∞, 0

)
, then Im Φ̃S ⊂

∪
B̄′⊃B B

′.

(4.2.2) Extensions to the toroidal compactifications ([AMRT]).
In the above notation, let C(B), U(B) be the cone and the unipotent subgroup corre-
sponding to the boundary component B. Then every local monodromy Ti belongs to
C(B) ∩ U(B)Z. Hence Φ can be lifted to Φ′ : (∆∗)k × ∆n−k → D/U(B)Z and it is
proved that the following three conditions are equivalent:

(i) There exists a cone σα ⊂ C(B) which contains all the Ti.

(ii) Φ′ can be extended holomorphically to Φ′M : ∆n → (D/U(B)Z){σα}.

(iii) Φ can be extended holomorphically to ΦM : ∆n → (D/Γ)M .
(For more details, see [AMRT]).

(4.3) Case: D is general. There is a speculation of Griffiths in [G2]. We survey
some experimental results obtained since then.

Cattani and Kaplan obtained the following theorem from the Schmid theory in one-
variable case which we have seen in §3.
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(4.3.1) Case of weight 2 [CK1]). In the case of Hodge structures of weight 2, we can
construct a partial compactification (D/Γ)C of Satake type, which is a topological space
having the following properties:

(i) Any period mapping Φ : ∆∗ → D/Γ from a punctured disc can be extended
continuously to ΦC : ∆→ (D/Γ)C .

(ii) Conversely, for any point b ∈ (D/Γ)C , there exists a period mapping Φ : ∆∗ →
D/Γ with ΦC(0) = b.

The partial compactification (D/Γ)C is constructed in the following way:
For an SL(2)-orbit (ρ, F ) in one-variable case, let N := ρ(n−), W := W (N)[−2]. The
corresponding boundary component B(ρ), the boundary bundle B(W ), and their unions
DC , D∗ are defined by

B(ρ) := classifying space of

(S(0)-polarized HS on P0 ⊂ grW0 ) × (S(−1)-polarized HS on grW−1),

B(L) :=
∪
{B(ρ) | preserving only W},

DC :=
∪

ρ: rational

B(ρ) ⊂
dense

D∗ :=
∪

W : rational

B(L).

Then the normalizerN(B(L)) is a parabolic subgroup ofGR, and we can induce a Satake
topology on D∗ on which Γ acts properly discontinuously. Now we define (D/Γ)C :=
DC/Γ.

In the approach of Torelli-type Problems via degenerations, a desirable partial com-
pactification of D/Γ should be one of type of a toroidal copmactificaiton with complex
structure, whose boundary points contain extension data of the limit Hodge structures
(cf. (2.2.5)). In this direction, the author obtained the following experimental result.

We restrict the monodromy weight filtrations of the following type:

(∗) 0 =Ww−2 ⊂Ww−1 ⊂Ww ⊂Ww+1 := HQ, dimWw−1 =

{
1 (w is odd),

2 (w is even).

A nilpotent orbit (C,F ), C := R>0N , is rational if the C-filtration W (C) is defined
over Q.

(4.3.2) Theorem ([U7]). There exists a partial compactification D/Γ with the follow-
ing three properties:

(i) As point sets, |D/Γ| = |D/Γ|∪{rational nilpotent orbits (C,F ) satisfying (∗)}/Γ.
(ii) D/Γ is a Hausdorff space with at most finite quotient singularities which may

not be locally compact but carries a ‘complex structure’.
(iii) Any period mapping Φ : ∆∗ → D/Γ from a punctured disc with the property (∗)

can be extended to Φ : ∆ → D/Γ. Conversely, for any point ξ ∈ D/Γ, there exists a
period mapping Φ : ∆∗ → D/Γ with the property (∗) such that Φ(0) = ξ.
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(4.3.3) Problem. D/Γ in Theorem (4.3.2) is a partial compactification added the
boundary components with one-dimensional monodromy cone. Add boundary compo-
nents with higher dimensional monodromy cone.

(4.4) Mild degenerations of surfaces of general type on Noether lines.
Surfaces of general type on the Noether lines are divided into two types according to
(c1)

2 being even or odd: Type (I) (c1)
2 = 2pg−4; Type (II) (c1)

2 = 2pg−3. These two
series of surfaces are deeply studied by Horikawa ([H]) and the author observed moreover
that these surfaces are joined by smooth deformations and mild degenerations:

(II) : (4, 5) (5, 7) · · · (p, 2p− 3) (p+ 1, 2p− 1) · · ·
↓ ↖ ↓ ↖ · · · ↖ ↓ ↖ ↓ ↖ · · ·

(I) : (4, 4) (5, 6) · · · (p, 2p− 4) (p+ 1, 2p− 2) · · ·

Here the pairs of numbers indicate (pg, (c1)
2), ↓ means a degeneration of a surface

collapsing a rational curve with self-intersection −4, and ↖ means a degeneration of a
surface with one simple elliptic singular point of type Ẽ8.

We can apply Theorem (4.3.2) to these degenerations by using the Gysin exact
sequence and the Clemens-Schmid exact sequence (5.4) below for their semi-stable re-
ductions. For more details, see [U7].

We remark here that Ashikaga and Konno have observed that the mild degenerations
as above occur widely in the geography of surfaces of general type ([AK]).

(4.4.1) Problem. Classify the degenerations of surfaces of general type with finite
local monodromy. (This problem is solved for surfaces with pg = (c1)

2 = 1 in [U4].
See also [Fr2].) Adding the points corresponding to these degenerations, we can make
the period mapping proper (cf. Monodromy Criteria in (5.4.3) below). Classify also
those mild degenerations which we have seen in this subsection. Or, more modestly,
classify the degenerations of the varieties corresponding to the boundary points of D/Γ
in Theorem (4.3.2).

§5. Log Geometry

We restrict ourselves mainly to the log structures associated to pairs of compact
complex manifolds and their divisors with normal crossings.

(5.1) Log Riemann-Hilbert Correspondence. We survey here Log Riemann-
Hilbert Correspondence by K. Kato and C. Nakayama ([KtNk]) only in our present case.

A commutative semi-group with unity is called a monoid. Let X be a d-dimensional
complex manifold and D a divisor with normal crossings on it. Regarding OX as a
monoid by multiplication, we call a subsheaf of monoids

MX := {f ∈ OX | f is invertible outside D} α
↪→ OX

the fs (= fine saturated) log structure associated to the pair (X,D)
A morphism of log complex manifolds (f, φ) : (Y,MY ) → (Z,MZ) is a pair of a

morphism of complex manifolds f : Y → Z and a morphism of monoids φ : f−1MZ →
MY satisfying αY ◦ φ = f∗ ◦ αZ .
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Let T be a log point defined by

T := (SpecC,R≥0 ×C1), α : R≥0 ×C1 → C, α(r, u) := ru.

Here C1 := {u ∈ C | |u| = 1}. For a log complex manifold (X,MX), we consider the
set X log of T -valued points in the category of log complex manifolds and the projection
τX :

X log := Hom(T, (X,MX))
τX−→ X, forgetting the log structure.

Let x̃ ∈ X log, x := τX(x̃), and let
∏

1≤i≤r(x) z
m(i)
i , m(i) ≥ 1, be a local equation of D

in OX,x. Then we have

MX,x =
∪{
O×

X,x

∏
1≤i≤r

z
m(i)a(i)
i

∣∣ a ∈ Nr(x)
}
≃ O×

X,x ⊕Nr(x), N := Z≥0,

X log locally
≃ {(zi, ui)1≤i≤r(x) ∈ Cr(x) × (C1)

r(x) | zi = |zi|ui, (∀i)} ×Cd−r(x)

→̃ (R≥0)
r(x) × (C1)

r(x) ×Cd−r(x),(
(zi, ui)1≤i≤r(x), (zj)r(x)+1≤j≤d

)
7→
(
(|zi|, ui)1≤i≤r(x), (zj)r(x)+1≤j≤d

)
.

Hence X log can be regarded as a real blowing-up along D (cf. [Mj]), and it can be also
regarded as a product of a real analytic manifold with corners, real compact torus and

a complex manifold (cf. [AMRT]). Define a sheaf of rings Olog
X on the topological space

X log by

(Olog
X )x̃ := OX,x[l1, . . . , lr(x)], li := (2π

√
−1)−1 log zi.

This is not a local ring.

(5.1.1) Theorem ([KtNk]). The following two categories Lunip(X
log) and Dnilp(X)

are equivalent.

Lunip(X
log) : The category of locally constant sheaves L on X log of finite dimen-

sional C-vector spaces with the following property. There exists locally on X log an
increasing filtration 0 = L0 ⊂ L1 ⊂ · · · ⊂ Ln = L consisting of locally constant C-
subsheaves of L such that each Li/Li−1 is a pull-back of a locally constant sheaf on X
of C-vector spaces.

Dnilp(X) : A category of locally free OX-modules V of finite rank on X endowed
with an integrable connection ∇ : V → ω1

X ⊗ V with the following property. Locally
on X, there exists a finite filtration 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V consisting of OX-
submodules of V such that ∇Vi ⊂ ω1

X ⊗ Vi, Vi/Vi−1 is locally free and ∇ has no poles
for all i.

The equivalence Lunip(X
log)→ Dnilp(X), L 7→ V, and its inverse V 7→ L are defined

as follows:

V := τ∗(Olog
X ⊗C L),

L := Ker(τ∗V ∇→ ω1,log
X ⊗Olog

X
τ∗V).
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Here τ∗( ) := Olog
X ⊗τ−1OX

τ−1( ), ω1,log
X := τ∗(Ω1

X(logD))

(5.2) Recovering of vanishing cycles. Consider now a relative case. Let
f : X → ∆ be a proper analytic morphism from a complex manifold to an open disc of
relative dimension d. Assume that f is smooth over the punctured disc ∆∗ := ∆−{0},
that the central fiber X0 := f−1(0) is a divisor with simple normal crossings, that Y is a
divisor on X flat with respect to f and that X0+Y is also a divisor with simple normal
crossings. Then, as in (5.1), we can construct a continuous map f log : X log → ∆log and
a subspace Y log of X log over the given ones and we have the following commutative
diagram:

(5.2.1)

(X log, Y log)
τX−−−−→ (X,Y )

f log

y f

y
∆log τ∆−−−−→ ∆.

The following theorem is a generalization of the local differentiable triviality of a
smooth deformation of compact complex manifolds.

(5.2.2) Theorem ([U8]). In the above notation, the family of open spaces
◦
f log : (X log − Y log)→ ∆log

is locally piecewise C∞ trivial over its base. In particular, this is a family which recovers
the vanishing cycles of the family f : (X − Y )→ ∆.

In the classical case of proper smooth family, the local triviality is proved by using
the existence and uniqueness of the solutions of linear differential equations. In the
proof of Theorem (5.2.2), we use an argument which generalizes the one by Clemens
([Cl]). We construct a family of C∞ global defining equations of X0+Y , with which we
define an action of the monoid S := [0, 1]×C1 on the diagram (5.2.1) so that [0, 1] acts
as shrinking and C1 acts rounding. (We have to rescue and generalize the argument in
[Cl], because there is a gap there. For more details, see [U8].)

(5.3) Limits of Hodge structures in geometric origin. Given a diagram
(5.2.1). Assume moreover that X ⊂ Pm ×∆ and f is the second projection and that

X0 is reduced. By Theorem (5.2.2), LC := Rq(
◦
f log)∗C is a locally constant sheaf on

∆log of C-vector spaces. On the other hand, by the result of Steenbrink and Zucker
([SZ]) V := Rqf∗Ω

•
X/∆(log(X0 + Y )) is a locally free O∆-module with Gauss-Manin

connection ∇ and with W (Y )-relative monodromy filtration M . Hence, by Theorem
(5.1.1), it corresponds to a locally constant sheaf on ∆log of C-vector spaces. By
construction, this locally constant sheaf coincides with LC on ∆∗ and hence on the
whole ∆log. Thus we have

LC ≃ Ker
(
∇ : (τ∆)

∗V → ω1,log
∆ ⊗Olog

X
(τ∆)

∗V
)

on ∆log,

V ≃ (τ∆)∗
(
Olog

∆ ⊗C LC

)
on ∆.

From this, we have the Z-structure of the degenerate variation of mixed Hodge structure
in [SZ] as in the following theorem. Let F be the Hodge filtration of V coming from the
stupid filtration of Ω•

X/∆(log(X0 + Y )).
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(5.3.1) Theorem. (V,M,W (Y ), F ) is a degenerate variation of mixed Hodge structure
on ∆ and its Z-structure is given in the following two ways:

(τ∆)
∗V ≃ Olog

∆ ⊗Z R
q(

◦
f log)∗Z on ∆log.(i)

V ≃ O∆ ⊗Z (τ∆)∗R
q(

◦
f log)∗(

◦
f log)−1

(
Z[(2π

√
−1)−1 log t]

)
on ∆.(ii)

In (i), the local monodromy is induced by the action of C1 on ∆log. In (ii), the mon-
odromy logarithm coincides with −2π

√
−1Res0(∇).

Take a point η ∈ ∆log lying over the origin 0 ∈ ∆. As the limit of variation of mixed
Hodge structure, Hq((X log − Y log)η,Z) carries a W (Y )-filtered mixed Hodge structure
(M,F ). Notice that there are examples of variations of mixed Hodge structure not
arising from geometry, which do not have limits (cf. [SZ]).
(For the Z-structures in Theorem (5.3.1), see [U8]. See also [St2], [Fj], [Mt]).

(5.3.2) Remark. The author was communicated by Morihiko Saito that there is a
correction of the proof of [St1, (5.9)] in [SM1, 4.2].

(5.4) Clemens-Schmid sequences. We use the notation in (5.3).

(5.4.1) Theorem. ([Cl]) Assume that Y = ∅. The following diagram of (co)homology
groups with coefficients in Q is a commutative diagram of mixed Hodge structures with
exact rows.

Hq(X0) → Hq(X log
η )

N→ Hq(X log
η ) → H2d−q(X0) → Hq+2(X0)
↓ ↓ ≀ ↓ ≀

Hq+1(X∗) → Hq+2(X,X∗) → Hq+2(X)

(5.4.2) Remark. In the above theorem, the assertions other than the exactness are
valid even in the case of Y ̸= ∅. Moreover, under a suitable condition, the exactness
also holds for q ≤ 2 ([U5]). The exactness is not known for general q.

(5.4.3) Corollary (Monodromy Criteria). (i) Let X0 =
∪
Xi be the irreducible de-

composition of the central fiber. Then pg(Xt) ≥
∑

i pg(Xi), t ̸= 0.
(ii) N = 0 on Hd(X log

η ) ⇒ the equality holds in (i) ⇒ Nd−1 = 0 on Hd(X log
η ).

(iii) For q = 1, 2, Nq = 0 on Hq(X log
η ) ⇔ Hq(dual graph of X0) = 0.

(For this corollary, see the article of Morrison in [Get].)

(5.5) Log smooth deformations. The results in this subsection were obtained
by Kawamata and Yoshinori Namikawa ([KwNm]) and arranged by F. Kato ([KtF1],
[KtF2]).

We survey first a Log Geometric characterization of the notion of Friedman’s d-semi-
stability. (SpecC,C× ⊕N), C× ⊕N ∋ (c, n) 7→ c · 0n ∈ C, is called a canonical log
point. Let X be a normal crossing variety. A log structure of semi-stable type on X is
an fs log structureMs

X on X which makes the following diagram commutative: .

(5.5.1)

Ms
X,x = O×

X,x ⊕Nr(x) αs
X−−−−→ OX,x = C{z1, . . . , zd}/(z1 · · · zr(x))

φs

x x
C× ⊕N −−−−→ C
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Here αs
X(ei) := zi, 1 ≤ i ≤ r(x), and N → Nr(x) in φs is the diagonal map. T 1

X :=

Ext1OX
(Ω1

X ,OX) ≃ (IX/I2X)∨ ⊗ OD, D := Sing(X), is called an infinitesimal normal

bundle of X, and X is called d-semi-stable if T 1
X ≃ OD ([Fr1]).

(5.5.2) Theorem ([KwNm]). For a normal crossing variety X, we have the equiva-
lence:
X has a log structure of semi-stable type ⇔ X is d-semi-stable.

In the remaining of this subsection, we survey the existence of versal deformations
for log analytic spaces associated to d-semi-stable normal crossing varieties. It will be
obtained in the manner of the Schlessinger theory ([Sl]) as follows.

Let X be a d-semi-stable compact normal crossing variety. Let D =
⊔

1≤i≤mDi

be the decomposition of the singular locus of X into connected components. For each
i, X −

⊔
j ̸=iDj is d-semi-stable with connected singular locus and hence, by (5.5.2),

there exists a log structure of semi-stable type uniquely up to isomorphism. Let φi :
C× ⊕N →Mi be the morphism as in (5.5.1) of this log structure of semi-stable type
extended trivially over

⊔
j ̸=iDi. The log structure defined by the following diagram is

called the canonical log structure of d-semi-stable compact normal crossing variety X:

(5.5.3)

Mc
X :=

⊕1≤i≤m

O×
X

Mi −−−−→ OX

φc:=(φ1,... ,φm)

x x
C× ⊕Nm ≃

⊕m
C×(C× ⊕N) −−−−→ C

Here M ⊕G N is the co-fiber product, i.e., push-out, of M
µ← G

ν→ N . This means
the quotient of M ⊕ N by the equivalence relation ∼: (m,n) ∼ (m′, n′) ⇔ mµ(g) =
m′µ(g′), nν(g′) = n′ν(g) (∃g, g′ ∈ G)

(5.5.4) Definition ([KtK1]). A morphism f : X → Y of fine log analytic spaces is
called log smooth if it satisfies the following two conditions:

(i) As a morphism of analytic spaces, it is locally finitely generated.
(ii) Let i : S0 → S be a thickening of order 1, i.e., as a morphism of analytic spaces,

it is a closed embedding with I2 = 0 for the ideal I of S0 in S and their log structures
are related as f−1MS =MS0 . For a given commutative diagram:

S0 −−−−→ X

i

y f

y
S −−−−→ Y,

There exists a morphism g : S → X of log analytic spaces which makes the resulting
diagram commutative.

Let AΛ(m) be the category of local Artinian algebras over the formal power series

ring Λ(m) := C[[t1, . . . , tm]]. Let f : (X,Mc
X)→ (SpecC,C×⊕Nm) be the morphism

of fs log analytic spaces corresponding to the canonical log structure (5.5.3), which is
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known to be log smooth. For this f , we consider a functor LDf : AΛ(m) → (Sets)
defined by

LDf (A) := {isomorphism class of a lifting of f to (SpecA,A× ⊕Nm)}

for A ∈ Obj(AΛ(m)).

(5.5.5) Theorem ([KwNm]). Let X be a semi-stable compact normal crossing variety.
In the above notation, LDf has a hull in the sense of [Sl].

(For the proof of this theorem, see [KtF1], and also [KtF2].)

(5.5.6) Theorem ([KwNm]). Under the same condition as in Theorem (5.5.5), if
moreover H2(X,TX(− logX)) = 0, then X is smoothable by flat deformation.

(5.5.7) Problem. For a semi-stable degeneration f : X → ∆, formulate the differential
of an extended period mapping. Does it become as follows?

H1(X0, TX0
(− logX0))→

⊕
p+q=d

Hom(Hq(X0,Ω
p
X0

(logX0)),H
q+1(X0,Ω

p−1
X0

(logX0)))

(For more details in this subsection, see [KtK1], [KwNm], [KtF1], [KtF2] etc.)

(5.6) Remark. Kazuya Kato introduces a notion of ‘log Hodge structure’ in order
to generalize Hodge structures so as to include their limits and is trying to construct
partial compactifications of D/Γ ([KtK3]).

Supplement

Although the author knows well that the following topics are closely related to the
present article, he decided to omit them because of space.

(1) (Mixed) Hodge modules ([SM1], [SM2]). The author expects that Dr. Morihiko
Saito himself will write a survey in this journal.

(2) L2 cohomology theory. There is a survey by Dr. Takeo Ohsawa [O] in this
journal.

(3) Singularity theory.
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of Hodge structures, Tôhoku Math. J. 47-3 (1995), 405–429.

[U8], ——, Recovery of vanishing cycles by log geometry, Perprint, 1996.

Toyonaka Osaka, 560, Japan
E-mail address: usui@math.wani.osaka-u.ac.jp


