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SL(2)-ORBIT THEOREM FOR DEGENERATION

OF MIXED HODGE STRUCTURE

Kazuya Kato, Chikara Nakayama, Sampei Usui

(April 9, 2007)

Abstract. In [CKS], Cattani, Kaplan and Schmid established the SL(2)-orbit theorem

in several variables for degeneration of polarized Hodge structure. The aim of the present
paper is to generalize it for degeneration of mixed Hodge structure whose graded quotients

by the weight filtration are polarized. As an application, we obtain a mixed Hodge version

of the estimate of the Hodge metric for degeneration of polarized Hodge structure in [Sc],
[CKS], [K1].
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§0. Introduction

Let ∆ = {q ∈ C | |q| < 1}, and let f : X → ∆ be a projective morphism of complex
analytic manifolds which is smooth over ∆∗ = ∆ \ {0} and which is of semi-stable
degeneration at 0. Let q ∈ ∆∗ and Xq = f−1(q). Then for m ≥ 0, Hm(Xq,Z) carries
a Hodge structure pure of weight m depending on q. Let F (q) be its Hodge filtration.
It is a basic problem in Hodge theory to describe the asymptotic behavior of such a
variation of F (q) when q tends to 0.

In general, there are two steps in analyzing this kind of asymptotic behaviors, which
are summed up by the following picture:

degeneration of

Hodge structure
⇒ a nilpotent orbit

appears
⇒ an SL(2)-orbit

appears

In this picture, the first ⇒ shows that nilpotent orbits often appear when variations
of polarized Hodge structure degenerate ([Sc], [St], [Fs], [KMN], etc.). This is illustrated
in the above situation as follows. As is shown by Schmid [Sc] and Steenbrink [St], we
have so called limit Hodge filtration F := limq→0 exp(−zN)F (q), where q = exp(2πiz)
and N is the logarithm of the monodromy. The pair (N,F ) generates a nilpotent orbit
z 7→ exp(zN)F (z ∈ C, Im(z)→∞), and F (q) and exp(zN)F are near. (See 0.1 below
for the precise definition of a nilpotent orbit.)

The second ⇒ is called SL(2)-orbit theorem of Cattani, Kaplan and Schmid ([Sc],
[CKS]). In 0.1 below, we explain this step in detail. In the above situation, it gives
another Hodge filtration r and a real multiplicative operator t(y) such that exp(iyN)F
and t(y)r are near for y > 0, y →∞. Since t(y) is real, it preserves real structures.

In conclusion, F (q) is approximated by more understandable exp(xN)t(y)r (z =
x + iy, x, y ∈ R), and this fact has many applications, for example, the estimates of
the Hodge metric for degeneration of polarized Hodge structure in [Sc], [CKS], [K1].

Next we proceed to the mixed situation, that is, the situation where we allow a
horizontal divisor E ⊂ X, and consider the variation of mixed Hodge structure on
Hm((X \ E)q,Z). Then we can consider the mixed version of the above picture:

degeneration of

mixed Hodge structure
⇒ a mixed nilpotent orbit

appears
⇒ a mixed SL(2)-orbit

appears

The first ⇒ in this picture shows that mixed nilpotent orbits (or IMHM in the
sense of Kashiwara’s [K2]) often appear when variations of mixed Hodge structure with
polarized graded quotients degenerate ([SZ], [K2], [Sa], [P2], etc.). See 12.10 for a review
of this step. (See 0.2 below for the precise definition of a mixed nilpotent orbit.)

The present work fits into this picture as the second ⇒, that is, our aim is to gener-
alize the SL(2)-orbit theorem (in several variables) on degeneration of polarized Hodge
structure to the mixed version for degeneration of mixed Hodge structure whose graded
quotients for the weight filtration are polarized. In 0.2 below, we explain the details.
As an application, we generalize the estimate of the Hodge metric for degeneration of
polarized Hodge structure mentioned above, to a mixed Hodge version.

A work in this direction was also done by G. Pearlstein in [P3] by a different method.

0.1. We review the SL(2)-orbit theorem in [CKS] shortly.
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Let V be a finite dimensional R-vector space, let w be an integer, and let ⟨ , ⟩ :
V × V → R be a non-degenerate R-bilinear form which is symmetric if w is even and
anti-symmetric if w is odd.

We denote by D the set of all decreasing filtrations F = (F p)p∈Z on VC = C⊗R V
such that (F, ⟨ , ⟩) is a polarized R-Hodge structure of weight w. This D is a disjoint
union of classifying spaces of polarized Hodge structures defined by Griffiths [G] where
Hodge numbers hp,w−p = dimC(F

p/F p+1) are fixed. Let D∨ be the set of all decreasing
filtrations F on VC such that the annihilator of F p with respect to ⟨ , ⟩ is Fw+1−p for
any p. Then D∨ is a complex analytic manifold and D is an open set of D∨.

Let GR be the algebraic group over R of all automorphisms of the R-vector space
V preserving ⟨ , ⟩, and let gR = Lie(GR) which we identify with the set of all R-linear
operators N : V → V satisfying ⟨N(x), y⟩+ ⟨x,N(y)⟩ = 0 for all x, y ∈ V .

Consider an (n + 1)-ple (N1, . . . , Nn, F ), where Nj ∈ gR (1 ≤ j ≤ n) and F ∈ D∨,
satisfying the following conditions (i)–(iii).

(i) The operators Nj : V → V are nilpotent for all j, and NjNk = NkNj for all j, k.

(ii) If yj ≫ 0 (1 ≤ j ≤ n), then exp(
∑n

j=1 iyjNj)F ∈ D.

(iii) NjF
p ⊂ F p−1 for all j and p. (Griffiths transversality.)

Then the map

Cn → D∨; (z1, . . . , zn) 7→ exp(
∑n

j=1 zjNj)F

is usually called a nilpotent orbit. To avoid the confusions with the mixed case explained
in 0.2 below, we call it in the present paper a pure nilpotent orbit, and we say that
(N1, . . . , Nn, F ) (or (V,w, ⟨ , ⟩, N1, . . . , Nn, F )) generates a pure nilpotent orbit.

Pure nilpotent orbits often appear when variations of polarized Hodge structure
degenerate. In the situation at the beginning of this §0, (V,w, ⟨ , ⟩, N1, . . . , Nn, F ) =
(Hm(Xq,R),m, ⟨ , ⟩, N, F ) (with n = 1 and with ⟨ , ⟩ induced from a polarization
of X) generates a pure nilpotent orbit. Many Nj appear when variations of polarized
Hodge structure on ∆n (n ≥ 2) degenerate, as the logarithms of monodromy operators.

Assume that (N1, . . . , Nn, F ) generates a pure nilpotent orbit. Then the theory of
SL(2)-orbit in several variables in [CKS] shows that an SL(2)-orbit in n variables (ρ, φ)

ρ : SL(2,C)n → GC, φ : P1(C)n → D∨

(cf. 2.1) is associated to (N1, . . . , Nn, F ). Here ρ is a homomorphism of algebraic groups,
which is defined over R, and φ is a holomorphic map satisfying

φ(gz) = ρ(g)φ(z) for any g ∈ SL(2,C)n and z ∈ P1(C)n,

φ(hn) ⊂ D, where h is the upper half plane {z ∈ C | Im(z) > 0}.

Let i = (i, . . . , i) ∈ hn and r = φ(i) ∈ D, and for y = (y1, . . . , yn) (yj > 0), let

t(y) = ρ

((√
y1 0
0 1/

√
y1

)
, . . . ,

(√
yn 0
0 1/

√
yn

))
∈ GR.
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Then Theorem 4.20 of [CKS] (the SL(2)-orbit theorem in n variables) shows that
there exist c > 0 and am, bm ∈ gR (m ∈ Nn) such that a0 = b0 = 0, that∑

m∈Nn am
∏n

j=1 λ
m(j)
j ,

∑
m∈Nn bm

∏n
j=1 λ

m(j)/2
j

absolutely converge when 0 ≤ λj < c for 1 ≤ j ≤ n, and such that whenever yj+1/yj < c
for 1 ≤ j ≤ n (yn+1 denotes 1), if we put

g(y) = exp(
∑

m∈Nn am
∏n

j=1(
yj+1

yj
)m(j)),

eg(y) = exp(
∑

m∈Nn bm
∏n

j=1(
yj+1

yj
)m(j)/2),

then we have eg(y) = t(y)−1g(y)t(y) and the following presentation of exp(
∑
iyjNj)F :

exp(
∑n

j=1 iyjNj)F = g(y)φ(iy1, . . . , iyn) = g(y)t(y)r = t(y) · eg(y)r.

0.2. Now let V be a finite dimensional R-vector space endowed with an increasing
filtration W = (Ww)w∈Z such that Ww = V for w ≫ 0 and such that Ww = 0 for
w ≪ 0. Assume that for each w ∈ Z, we are given a non-degenerate R-bilinear form
⟨ , ⟩w : grWw (V ) × grWw (V ) → R which is symmetric if w is even and anti-symmetric if
w is odd.

For each w ∈ Z, let Dw, D
∨

w, Gw,R, gw,R be the “D”, “D∨”, “GR”, “gR” in 0.1 for
(grWw (V ), w, ⟨ , ⟩w), respectively.

We denote by D (resp. D∨) the set of all decreasing filtrations F = (F p)p∈Z on VC
such that F (grWw ) ∈ Dw (resp. D

∨

w) for all w. Here F (grWw ) denotes the decreasing
filtration on grWw (VC) induced by F . Then D∨ is a complex analytic manifold and D is
an open subset of D∨. This D is a disjoint union of classifying spaces of mixed Hodge
structures with polarized graded quotients defined in [U] where the Hodge numbers
hp,w−p = dimC(F

p(grWw )/F p+1(grWw )) of the graded quotients F (grWw ) are fixed. (See
also [SSU], [P1] for this classifying space.) Let GR be the algebraic group over R of all
automorphisms g of V preserving W such that grWw (g) ∈ Gw,R for all w ∈ Z, and let
gR = Lie(GR) which we identify with the set of all R-linear operators N : V → V such
that N(Ww) ⊂Ww for all w and such that grWw (N) ∈ gw,R for all w.

Consider an (n + 1)-ple (N1, ..., Nn, F ), where Nj ∈ gR (1 ≤ j ≤ n) and F ∈ D∨,
satisfying the following conditions (i)–(iv).

(i) The operators Nj : V → V are nilpotent for all j, and NjNk = NkNj for all j, k.

(ii) If yj ≫ 0 (1 ≤ j ≤ n), then exp(
∑n

j=1 iyjNj)F ∈ D.

(iii) NjF
p ⊂ F p−1 for all j and p. (Griffiths transversality.)

(iv) Let J be any subset of {1, . . . , n}. Then for yj ∈ R>0 (j ∈ J), the relative
monodromy filtration M(

∑
j∈J yjNj ,W ) exists. Furthermore, this filtration is inde-

pendent of the choice of yj ∈ R>0. (The definition of the relative monodromy filtration
is reviewed in 5.1.)

Then we call the map (z1, . . . , zn) 7→ exp(
∑n

j=1 zjNj)F a mixed nilpotent orbit,

and we say that (N1 . . . , Nn, F ) (or (V,W, (⟨ , ⟩w)w, N1, . . . , Nn, F )) generates a mixed
nilpotent orbit.
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In the terminology in Kashiwara [K2] 4.3, (V ;WC;F, F ;N1, . . . , Nn), with F the
complex conjugate of F , is an infinitesimal mixed Hodge module (IMHM).

Mixed nilpotent orbits (or IMHM) often appear when variations of mixed Hodge
structure with polarized graded quotients degenerate. In this case, similarly as in the
pure situation, N1, . . . , Nn are the logarithms of the monodormy operators, and F is
the limit Hodge filtration. See 12.10 for a review of this appearance.

For such (N1, . . . , Nn, F ), the mixed Hodge version of the associated SL(2)-orbit
(ρ, φ) in 0.1 is, in the formulation of the present paper, the pair

(the collection of SL(2)-orbits (ρw, φw) for w ∈ Z, s),

where (ρw, φw) is the SL(2)-orbit in n variables associated to (grWw (N1), . . . , gr
W
w (Nn),

F (grWw )) for each w ∈ Z, and s is a certain splitting of W , i.e., an isomorphism s :

grW (V ) =
⊕

w∈Z grWw (V )
∼→ V such that (s(x) modWw−1) = x for any w ∈ Z and

x ∈ grWw (V ), explained in Theorem 0.5 (1) below.

0.3. Before we state our Main Theorem 0.5 for the situation 0.2, we review shortly
the canonical R-splitting of the weight filtration associated to a mixed Hodge structure
defined in [CKS] (see §1 of the present paper for details). In fact, there are a few ways of
associating an R-splitting to a given mixed Hodge structure. But, in the present paper,
one of them is more important than the others, and we call it the canonical splitting.

Let V be a finite dimensionalR-vector space with an increasing filtrationW such that
Ww = V for w ≫ 0 and such that Ww = 0 for w ≪ 0. Let F be a decreasing filtration
on VC such that (W,F ) is a mixed R-Hodge structure, that is, F (grWw ) is an R-Hodge

structure of weight w for all w ∈ Z. Then an associated splitting s : grW (V )
∼→ V of

W , R-linear maps δ(W,F ), ζ(W,F ) : V → V , and a C-linear map ε(W,F ) : VC → VC
are defined so as to satisfy

δ(W,F )(Ww) ⊂Ww−2, ζ(W,F )(Ww) ⊂Ww−2, ε(W,F )(Ww,C) ⊂Ww−2,C (∀w),
exp(ε(W,F )) = exp(iδ(W,F )) exp(−ζ(W,F )),
F = exp(ε(W,F ))s(F (grW )),

where s(F (grW )) is the image under s : grW (VC)
∼→ VC of the filtration F (grW ) on

grW (VC) induced by F . This s(F (grW )) is denoted by F̃0 in [CKS] (3.31). We denote

it by F̂ in the present paper, and call it the canonical R-split mixed Hodge structure
associated to (W,F ). We have

ε(gW, gF ) = gε(W,F )g−1 for g ∈ AutR(V ).

See §1 for the precise definitions of δ(W,F ), ζ(W,F ), ε(W,F ) and s.

0.4. To state Theorem 0.5, we introduce some notation. Let (N1, . . . , Nn, F ) gener-
ate a mixed nilpotent orbit as in 0.2.

For each w ∈ Z, let (ρw, φw) be the SL(2)-orbit in n variables associated to
(grWw (N1), . . . , gr

W
w (Nn), F (gr

W
w )). Let

exp(
∑n

j=1 iyj gr
W
w (Nj))F (gr

W
w ) = gw(y)φw(iy1, . . . , iyn) = gw(y)tw(y)rw
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be a presentation of exp(
∑n

j=1 iyj gr
W
w (Nj))F (gr

W
w ) (yj/yj+1 ≫ 0) introduced in 0.1.

In fact, g(y) in 0.1 is not unique, and so gw(y) for each w is not unique here. However
Theorem 0.5 holds for any gw(y) which appears in the result on (grWw (N1), . . . , gr

W
w (Nn),

F (grWw )) introduced in 0.1.

Our main result is the following theorem.

Theorem 0.5. Assume that (V,W, (⟨ , ⟩w)w, N1, . . . , Nn, F ) generates a mixed nilpo-
tent orbit as in 0.2. For y = (yj)1≤j≤n with yj ≫ 0 (1 ≤ j ≤ n), let s(y) :

grW (V )
∼→ V be the canonical splitting of W associated to the mixed R-Hodge structure

(W, exp(
∑n

j=1 iyjNj)F ).

(1) If yj > 0 (1 ≤ j ≤ n) and yj/yj+1 tends to ∞ for 1 ≤ j ≤ n (yn+1 denotes 1),
then s(y) converges to a splitting s of W .

(2) More precisely, there exist c > 0 and um ∈ Ker(gR →
∏

w gw,R) (m ∈ Nn)
satisfying the following conditions (i)–(iv).

(i) u0 = 0.

(ii) umM(N1 + · · ·+Nj ,W )k ⊂M(N1 + · · ·+Nj ,W )k+m(j)

for any m ∈ Nn, 1 ≤ j ≤ n and k ∈ Z.

(iii)
∑

m∈Nn um
∏n

j=1 λ
m(j)
j absolutely converges when 0 ≤ λj < c for 1 ≤ j ≤ n.

(iv) Whenever yj+1/yj < c for 1 ≤ j ≤ n (yn+1 means 1), we have

s(y) = u(y)s with u(y) = exp(
∑

m∈Nn um
∏n

j=1(
yj+1

yj
)m(j)).

(3) Define

g(y), eg(y) ∈ GR (yj/yj+1 ≫ 0), t(y) ∈ Aut(V,W ) (yj > 0), r ∈ D

by

g(y) = u(y)s(
⊕

w gw(y))s
−1, t(y) = s(

⊕
w y

−w/2
1 tw(y))s

−1,

eg(y) = t(y)−1g(y)t(y), r = s(
⊕

w∈Z rw).

Then the R-split mixed Hodge structures associated to (W, exp(
∑n

j=1 iyjNj)F ) and to

(W, t(y)−1g(y)−1 exp(
∑n

j=1 iyjNj)F ) for yj/yj+1 ≫ 0 are

g(y)t(y)r = t(y) · eg(y)r and r, respectively.

Furthermore, there exist c > 0 and bm ∈ gR (m ∈ Nn) such that b0 = 0, that∑
m∈Nn bm

∏n
j=1 λ

m(j)/2
j absolutely converges when 0 ≤ λj < c for 1 ≤ j ≤ n, and that

whenever yj+1/yj < c for 1 ≤ j ≤ n, we have

eg(y) = exp(
∑

m∈Nn bm
∏n

j=1(
yj+1

yj
)m(j)/2).
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(4) For yj/yj+1 ≫ 0, let

ε(y) = ε(W, t(y)−1g(y)−1 exp(
∑n

j=1 iyjNj)F ),

so that

exp(
∑n

j=1 iyjNj)F = g(y)t(y) exp(ε(y))r = t(y) · eg(y) exp(ε(y))r.

Then there exist c > 0 and εm ∈ gC = C⊗R gR (m ∈ Nn) such that when 0 ≤ λj < c

for 1 ≤ j ≤ n,
∑

m∈Nn εm
∏n

j=1 λ
m(j)/2
j absolutely converges, and such that whenever

yj+1/yj < c for 1 ≤ j ≤ n, we have

ε(y) =
∑

m∈Nn εm
∏n

j=1(
yj+1

yj
)m(j)/2.

(Here ε0 need not be 0.)

As an application of Theorem 0.5, we will generalize the norm estimates in [Sc],
[CKS], [K1], which are the results on the asymptotic behavior of the Hodge metric in
degeneration of polarized Hodge structure, to degeneration of mixed Hodge structure
with polarized graded quotients (Theorem 12.4).

0.6. The key of our proof of Theorem 0.5 is the idea that any mixed nilpotent orbit
in 0.2 can be regarded as a quotient of (and also a part of) a pure nilpotent orbit in
0.1 whose number of the operators Nj is increased by one. By this, we can reduce our
theorem for the mixed nilpotent orbit to the theorem in [CKS] for the pure nilpotent
orbit.

It may sound rather strange that a mixed object is a quotient or a part of a pure
object. But, in algebraic geometry, a mixed object is often found to be embedded into
a pure object, for example, in the following way. Let f :X → ∆, m, F (q), and (N,F )
be as at the beginning of this §0. Let V = Hm(Xq,R) as in 0.1. As explained there,
with the intersection form ⟨ , ⟩ coming from a polarization of X, (V,m, ⟨ , ⟩, N, F )
generates a pure nilpotent orbit of weight m. On the other hand, let X0 = f−1(0).
Then V ′ = Hm(X0,R) carries a mixed Hodge structure, and there is a homomorphism
V ′ → V .

Now the image of V ′ → V coincides with Ker(N : V → V ) by the local invariant
cycle theorem. If the homomorphism V ′ → V is injective (this happens for example in
the case m = 1), the Hodge filtration of V ′ coincides with the restriction of F on V , the
weight filtration of V ′ coincides with the restriction of (the −m shift of) the monodromy
filtration on V defined by N , and so we have a situation that a mixed Hodge structure
is a part of a pure nilpotent orbit as in 0.1 with one N .

In fact, we can show that a mixed Hodge structure is always a part of a pure nilpotent
orbit as in 0.1 with one N . See 3.5.

(Pure objects live inside mixed objects as subquotients, but thus conversely a mixed
object lives inside a pure object. The authors like to compare this fact with a phrase in
a poem “Nostalgia” by a Japanese poet Tatsuji Miyoshi, which says that the Chinese
character representing “sea” contains as its part the Chinese character representing
“mother” and conversely the French word mère contains the French word mer.)
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0.7. In [P3] Theorem 4.2, Pearlstein proved the SL(2)-orbit theorem for degenera-
tion of mixed Hodge structure in the case n = 1 assuming either one of the following
conditions (I), (II) is satisfied.

(I) There is k ∈ Z such that grWw (V ) = 0 if w ̸= k, k − 1.

(II) There is k ∈ Z such that the Hodge numbers hp,q of F are zero unless p + q =
2k − 1, or (p, q) = (k, k), (k − 1, k − 1).

His SL(2)-orbit theorem has slightly different form from ours. Also our method differs
from his. In §11, we reprove a part of his SL(2)-orbit theorem by using our Theorem
0.5. In [P3] Theorem 4.7, in these cases, he studied also the asymptotic behavior of the
Hodge metric in the degeneration of mixed Hodge structure by a method different from
ours.

0.8. In our forthcoming paper, we will use the results of the present paper for the
construction of the moduli space of mixed log Hodge structures whose graded quotients
for the weight filtration are polarized. There we add points at infinity to the space D
in 0.2 corresponding to degenerations. The role played by our results there is the same
as the role played by the results of [CKS] in the construction in [KU2] of the moduli of
polarized pure log Hodge structures.

0.9. We give here one example to show how the convergence of the canonical splitting
in Theorem 0.5 (1) is delicate and how the condition (iv) in 0.2 is important.

Let V be a 3 dimensional R-vector space with basis (e1, e2, e3), let W be the in-
creasing filtration on V defined by W0 = V , W−1 = Re1 +Re2 and W−2 = 0. Hence
grWw = 0 unless w = 0,−1. Define ⟨ , ⟩w by ⟨e3, e3⟩0 = 1, ⟨e2, e1⟩−1 = 1. Take a, b ∈ R,
and let N be the element defined by N(e3) = ae1 + be2, N(e2) = e1, N(e1) = 0. Define
F−1 = VC, F

0 = Ce2 + Ce3, F
1 = 0. Then (N,F ) always satisfies the conditions

(i)–(iii) in 0.2, but satisfies (iv) if and only if b = 0.
On the other hand, we have

exp(iyN)F 0 = C(e2 + iye1) +C(e3 + iyae1 + iybe2 − y2

2 be1)

= C(e2 + iye1) +C(e3 − ae2 + by2

2 e1).

Note that e3 − ae2 + by2

2 e1 is real. By this (see §1), the canonical splitting s(y) of W
associated to the mixed Hodge structure (W, exp(iyN)F ) for y ≫ 0 is given by

s(y)(e3 modW−1) = e3 − ae2 + by2

2 e1.

Therefore s(y) converges if and only if b = 0.

See §13 for various examples of s(y), u(y), ε(y) in Theorem 0.5.

0.10. The plan of the present paper is as follows.
After preliminary sections §1–§3, we prove Theorem 0.5 in §4 assuming two propo-

sitions 4.1 and 4.2. Proposition 4.1 shows that an object (N1, . . . , Nn, F ) in 0.2 which
generates a mixed nilpotent orbit is regarded as a quotient of an object (N ′

0, . . . , N
′
n, F

′)
in 0.1 which generates a pure nilpotent orbit. Proposition 4.2 is a result complementary
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to the SL(2)-orbit theorem of Cattani-Kaplan-Schmid. In §4, using Proposition 4.1, we
deduce Theorem 0.5 for (N1, . . . , Nn, F ) from the SL(2)-orbit theorem and Proposition
4.2 for (N ′

0, . . . , N
′
n, F

′), by passing to the quotient. We prove Proposition 4.1 in §5–§7,
and we prove Proposition 4.2 in §8 and §9. For the proof of Proposition 4.2, we use
the relation (8.4) of the SL(2)-orbit theorem in [CKS] and the theory of Borel-Serre
in [BS], which is obtained in [KU1]. In §10, we give complementary results to Theo-
rem 0.5, such as more detail information about ε, δ, ζ (10.4, 10.6, 10.7), real analytic
dependence of constructions in 0.5 on parameters (10.8), etc. In §11, we explain the
relationship between the present work and the work [P3] of Pearlstein. In §12, we
generalize norm estimates in [Sc], [CKS] and [K1] for degeneration of polarized Hodge
structure to degeneration of mixed Hodge structure. In §13, we give examples.

Some parts of this work were done when the authors were visitors of the Johns
Hopkins University in the activity of JAMI. We are grateful for the hospitality. We are
also thankful to Masaki Kashiwara and Steven Zucker for helpful discussions, and to
the referee for valuable comments.

§1. Review of canonical splitting of weight
filtration of mixed Hodge structure

In the present paper, by a mixed Hodge structure, we mean an R-mixed Hodge
structure (we do not consider Z-structure nor Q-structure), except in the beginning of
the introduction and in the last paragraph of 13.2.

In this section, we review the canonical splitting of the weight filtration of a mixed
Hodge structure constructed in [CKS].

1.1. R-split mixed Hodge structure. Let V be a finite dimensional R-vector space.
Let (W,F ) be a mixed Hodge structure on V . A splitting of (W,F ) is a bigrading
VC := C⊗R V =

⊕
Jp,q such that Wk,C =

⊕
p+q≤k J

p,q and F p =
⊕

r≥p,q∈Z J
r,q.

We say (W,F ) is R-split if it admits a splitting (Jp,q) satisfying Jp,q = Jq,p (called
an R-splitting). Note that an R-splitting is unique if it exists and is given by Jp,q =
F p ∩ F q ∩Wp+q,C. If (W,F ) is R-split with the R-splitting (Jp,q), each Jp,q is called
the (p, q)-Hodge component of (W,F ).

For a fixed increasing filtration W of V , an R-split mixed Hodge structure (W,F ) is
equivalent to a pair ((F (grWw ))w, s) of a family of Hodge structures F (grWw ) on grWw of

weight w for all w and a splitting s : grW (V )
∼→ V of W . In fact, given (W,F ), we have

the induced Hodge structures F (grWw ) on grWw for all w, and R-linear isomorphisms

grWw
∼→
⊕

p+q=w(F
p ∩ F q ∩Wp+q) for all w which give a splitting s of W . Conversely,

given ((F (grWw ))w, s), we have F = s(
⊕

w F (gr
W
w )).

For any mixed Hodge structure (W,F ), there is a unique splitting (Ip,q) satisfying
Ip,q ≡ Iq,p mod(

⊕
r<p,s<q I

r,s) for any p, q ∈ Z ([CKS] (2.13)), which we call Deligne’s
splitting. This is defined explicitly by

Ip,q := (F p ∩Wp+q,C) ∩ (F q ∩Wp+q,C +
∑

j≥0 F
q−1−j ∩Wp+q−2−j,C).

Clearly, (W,F ) is R-split if and only if its Deligne’s splitting satisfies Ip,q = Iq,p.
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1.2. Canonical splitting of W associated to F . Let (W,F ) be a mixed Hodge struc-

ture on V . Then an R-split mixed Hodge structure (W, F̂ ) on V is associated to (W,F ).

We call the splitting s : grW (V )
∼→ V of W by F̂ the canonical splitting of W associated

to F . This F̂ is F̃0 in [CKS] (3.31). It is defined by F̂ = exp(−ε)F , where ε = ε(W,F )
is the unique nilpotent linear map VC → VC such that exp(ε) = exp(iδ) exp(−ζ), and
δ = δ(W,F ) and ζ = ζ(W,F ) are R-linear maps V → V defined in 1.3 and 1.4 below,
respectively. By the Campbell-Hausdorff formula exp(x) exp(y) = exp(H(x, y)) with
Hausdorff series H(x, y) = x+ y+ 1

2 [x, y] + · · · , ε is written explicitly as ε = H(iδ,−ζ).
On the other hand, δ and ζ are recovered from ε as

(1) δ = (2i)−1H(ε,−ε̄), ζ = −H(−iδ, ε),

where ε̄ is the complex conjugate of ε.

1.3. δ. There is a unique (F̃ , δ) with F̃ being a decreasing filtration on VC and δ

being an R-linear map V → V such that (W, F̃ ) is an R-split mixed Hodge structure,

F = exp(iδ)F̃ , and for each p, q, the homomorphism δ : VC → VC sends the (p, q)-Hodge

component Jp,q of F̃ into the sum of (p′, q′)-Hodge components with p′ < p, q′ < q.
See [CKS] (2.20).

In terms of Deligne’s splitting (Ip,q), the R-linear map δ is characterized by the
following two properties.

(i) For any (p, q), δ sends Ip,q into the sum of Ip
′,q′ with p′ < p, q′ < q.

(ii) For any (p, q), exp(−2iδ)Ip,q = Iq,p.

1.4. ζ. ζ is determined by δ as follows. Let (Ĩp,q) be the R-splitting of F̃ , and let

δp,q be the (p, q)-Hodge component of δ with respect to (Ĩp,q), that is, δ =
∑

p,q∈Z δp,q,

δp,q(Ĩ
r,s) ⊂ Ĩr+p,s+q for any r, s. Then, ζ is defined as the universal Lie polynomial in

the δp,q with coefficients in Q(i) in [CKS] (6.60).
For example (see also Appendix), some Hodge components of ζ are

ζ−1,−1 = 0, ζ−1,−2 = − i
2δ−1,−2, ζ−2,−3 = − 3i

8 δ−2,−3 − 1
8 [δ−1,−1, δ−1,−2].

We review here the definition of this universal Lie polynomial.
Let blp,q (p, q, l ∈ Z, p, q, l ≥ 0) be the integers determined by (1 − x)p(1 + x)q =∑
l b

l
p,qx

l, so that blp,q = 0 unless p+ q ≥ l.
Define non-commutative polynomials Pk = Pk(X2, . . . , Xk+1) over Q by P0 = 1,

Pk = − 1
k

∑k
j=1 Pk−jXj+1 (k ≥ 1). (So P1 = −X2, P2 = 1

2X
2
2 − 1

2X3, P3 = − 1
6X

3
2 +

1
6X3X2 +

1
3X2X3 − 1

3X4, etc.)
Let A be the ring of non-commutative polynomials in variables δ−p,−q (p ≥ 1, q ≥ 1)

over Q(i). For p, q ≥ 1, let S−p,−q be the part of A consisting of linear combinations
over Q(i) of products of the form δ−p1,−q1 · · · δ−pk,−qk with p =

∑
j pj , q =

∑
j qj . Then

A is the direct sum of the S−p,−q and Q(i) as a Q(i)-module.
In [CKS] (6.60), it is proved that there exist a unique family of elements ζ−p,−q and

η−p,−q of S−p,−q (p, q ≥ 1) satisfying the following conditions (i) and (ii).
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(i) Let Â be the formal completion lim←−k A/I
k, where Ik denotes the sum of S−p,−q

such that p + q ≥ k. Let ζ =
∑

p,q ζ−p,−q, η =
∑

p,q η−p,−q ∈ Â. Then we have an

identity in Â
exp(−ζ) exp(iδ) =

∑
k≥0 Pk(C2, . . . , Ck+1),

where Cl+1 = i
∑

p,q≥1

bl−1
p−1,q−1η−p,−q.

(ii) By the unique ring homomorphism A → A which sends i to −i and δ−p,−q to
δ−q,−p, ζ−p,−q is sent to ζ−q,−p, and η−p,−q is sent to η−q,−p.

This is the definition of ζ.
For example, the identity in (i) shows −ζ−1,−1+ iδ−1,−1 = −iη−1,−1. By this and by

(ii), we have −ζ−1,−1−iδ−1,−1 = iη−1,−1. From these two equalities, we have ζ−1,−1 = 0
and η−1,−1 = −δ−1,−1.

For the fact that the ζ−p,−q are Lie polynomials and for some further computations
of the ζ−p,−q, see Appendix.

Example 1.5. Let (W,F ) be a mixed Hodge structure, and assume that there is
k ∈ Z such that Wk = V and Wk−2 = 0. Then δ = ζ = 0 since δ−p,−q = 0 unless

p > 0, q > 0. Hence F̂ = F and F is R-split.
Assume further that k = 0 and grW0 is of one dimensional. We fix an isomorphism

grW0
∼= R. Then the associated R-splitting is described as follows. There is a unique

element v ∈ F 0 ∩V which lifts 1 ∈ R = grW0 , and the R-splitting of W is characterized
by the property that this v is pure of weight 0. The element v is obtained as follows.
Take a lifting e ∈ V of 1 ∈ R. Since F (grW0 ) is of type (0, 0), there is a ∈ W−1,C such
that F 0 is generated by F 0 ∩W−1,C and e+ a. Since the restriction of F to W−1,C is
pure of weight −1, we have W−1,C = W−1 ⊕ (F 0 ∩W−1,C) as R-vector spaces. Hence
we can write a = b+ c with b ∈W−1 and c ∈ F 0∩W−1,C. Then v = e+ b is the desired
element. The uniqueness reduces to that of b.

The following lemmas will be used later.

Lemma 1.6. Let f : (V,W,F ) → (V ′,W ′, F ′) be a homomorphism of mixed Hodge
structures.

(1) The canonical splittings s: grW ∼= V and s′: grW
′ ∼= V ′ commute with f , that is,

f ◦ s = s′ ◦ gr(f).

(2) f ◦ δp,q = δ′p,q ◦ f , f ◦ ζp,q = ζ ′p,q ◦ f , f ◦ εp,q = ε′p,q ◦ f for any p, q, where δp,q,
ζp,q, εp,q are the (p, q)-parts of δ, ζ, ε for (W,F ), respectively, and δ′p,q, ζ

′
p,q, ε

′
p,q are

those for (W ′, F ′).

Proof. We may assume that f is surjective or injective. We prove the lemma assuming
that f is surjective. The proof for an injective f is similar and omitted.

First, by the explicit construction of Deligne’s splitting in 1.1, we have

(3) f(Ip,q(W,F )) = Ip,q(W ′,F ′) for any p, q.

Next we show

(4) f ◦ δ = δ′ ◦ f ,
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where δ′ = δ(W ′, F ′). For this, it is sufficient to prove exp(−2iδ′) ◦ f = f ◦ exp(−2iδ)
because δ and δ′ are nilpotent. Let x ∈ Ip,q(W,F ) and let y = exp(−2iδ)x. Then the char-

acterization of δ by (i) and (ii) in 1.3 shows that y is the unique element of Iq,p(W,F ) such

that x ≡ y mod Wp+q−1,C. Since f(x) ≡ f(y) mod W ′
p+q−1,C and f(x) ∈ Ip,q(W ′,F ′),

f(y) ∈ Iq,p(W ′,F ′) by (3), the characterization of δ′ by (i) and (ii) in 1.3 shows that

exp(−2iδ′)f(x) = f(y). Hence exp(−2iδ′) ◦ f = f ◦ exp(−2iδ).
Now, (3) and (4) imply

(5) f ◦ δp,q = δ′p,q ◦ f for any p, q.

Since ζ is defined by the universal Lie polynomial of the δp,q, (5) implies

(6) f ◦ ζp,q = ζ ′p,q ◦ f and f ◦ εp,q = ε′p,q ◦ f for any p, q.

This proves (2).

Hence f(F̂ ) = F̂ ′, which proves (1). □

The following 1.7 is proved for δ in [CKS] §2, and the results for ζ, ε follow from it.

Lemma 1.7. Let (W,F ) be a mixed Hodge structure on a finite dimensional R-vector
space V , let r ∈ Z, and let f : V → V be a linear map satisfying f(F p) ⊂ F p+r and
f(Wk) ⊂Wk+2r for all p, k ∈ Z. Then:

f ◦ δp,q = δp,q ◦ f, f ◦ ζp,q = ζp,q ◦ f, f ◦ εp,q = εp,q ◦ f for any p, q.

§2. Review of SL(2)-orbit theorem in pure case

Fix (V,w, ⟨ , ⟩) as in 0.1. Let D, D∨, GR, gR be as in 0.1.

In this section, we review the theory of SL(2)-orbits in [Sc] and [CKS].

2.1. SL(2)-orbits. An SL(2)-orbit in n variables is a pair (ρ, φ) of a homomorphism
of algebraic groups SL(2,C)n → GC, which is defined over R, and a holomorphic map
P1(C)n → D∨ satisfying the following conditions 2.1.1–2.1.3.

2.1.1. φ(gz) = ρ(g)φ(z) for any g ∈ SL(2,C)n, z ∈ P1(C)n.

2.1.2. φ(hn) ⊂ D. Here h is the upper half plane.

2.1.3. The homomorphism of Lie algebras sl(2,C)n → gC induced by ρ sends
F p
z (sl(2,C)n) into F p

φ(z)gC for any z ∈ P1(C)n and p ∈ Z, where Fz(sl(2,C)n) and

Fφ(z)gC are the decreasing filtrations defined as follows.

For α ∈ P1(C), let Fα be the decreasing filtration on C2 defined by : F−1
α = C2,

F 1
α = 0, and F 0

α is the one dimensional C-subspace of C2 corresponding to α (α ∈ C ⊂
P1(C) corresponds to C(αe1 + e2) and ∞ ∈ P1(C) corresponds to Ce1). Define

F p
z (sl(2,C)n) = {X = (Xj)j ∈ sl(2,C)n | XjF

q
zj ⊂ F

q+p
zj (q ∈ Z, 1 ≤ j ≤ n)},

F p
φ(z)(gC) = {X ∈ gC | Xφ(z)q ⊂ φ(z)q+p (q ∈ Z)}.
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In the present paper, we use the condition 2.1.3 only implicitly, but, for example, it
is used in the proof of a result in 8.4 which plays an important role in the present paper
(the proof of 8.4 was given in [KU1]).

2.2. We introduce some notation concerning SL(2)-orbits. We first review some
basic facts about representations of Gm and of SL(2). Let U be a finite dimensional
vector space over a field K.

2.2.1. A homomorphism h : Gm → Aut(U) of algebraic groups over K corresponds
in one to one manner to a direct sum decomposition U =

⊕
µ∈Z U

[µ], by the following

rule: For µ ∈ Z, U [µ] is the part of U on which h(λ) for λ ∈ Gm acts as the multiplication
by λµ.

2.2.2. Assume that K is of characteristic 0. Then a homomorphism ρ : SL(2) →
Aut(U) of algebraic groups overK corresponds in one to one manner to a pair of a direct
sum decomposition U =

⊕
µ∈Z U

[µ] and a linear map N : U → U such that N(U [µ]) ⊂
U [µ−2] for any µ ∈ Z and such that Nµ induces an isomorphism Nµ : U [µ] ∼→ U [−µ] for
any µ ≥ 0. In fact, the direct sum decomposition of U corresponding to ρ is given by

Gm → Aut(U);λ 7→ ρ

((
1/λ 0
0 λ

))
as in 2.2.1, and the corresponding N is the image

of

(
0 1
0 0

)
under the homomorphism of Lie algebras sl(2)→ End(U) induced by ρ.

If U ′ is another finite dimensional vector space over K and ρ′ : SL(2) → Aut(U ′) is

a homomorphism of algebraic groups over K corresponding to U ′ =
⊕

µ U
′[µ] and N ′,

and if f : U → U ′ is a linear map, then ρ and ρ′ are compatible via f if and only if

f(U [µ]) ⊂ U ′[µ] for any µ ∈ Z and N ′f = fN .

2.2.3. For a nilpotent linear map N : U → U , let W (N) be the monodormy filtra-
tion on U associated to N , which is characterized by the two properties; NW (N)k ⊂
W (N)k−2 for all k ∈ Z, and Nk : gr

W (N)
k

∼→ gr
W (N)
−k for all k ≥ 0 (Deligne [D2] 1.6).

2.2.4. Assume that K is of characteristic 0, let ρ : SL(2)→ Aut(U) be a homomor-
phism of algebraic groups over K, and consider the corresponding U =

⊕
µ∈Z U

[µ] and

N . Then W (N)k =
⊕

µ≤k U
[µ], and (U [µ])µ gives a splitting of W (N).

Let

∆ : Gn
m → SL(2)n ; (λ1, . . . , λn) 7→

((
1/λ1 0
0 λ1

)
, . . . ,

(
1/λn 0
0 λn

))
,

∆(j) : Gm → SL(2)n ; ∆(j)(λ) = ∆({λ}j × {1}n−j) for 1 ≤ j ≤ n.

2.2.5. Now let (ρ, φ) be an SL(2)-orbit in n variables.

For 1 ≤ j ≤ n, let N̂j ∈ gR be the image of the j-th

(
0 1
0 0

)
in sl(2,R)n under the

homomorphism of Lie algebras sl(2,R)n → gR induced by ρ. Then N̂j are nilpotent

and N̂jN̂k = N̂kN̂j for any j, k. Let

W (j) =W (N̂1 + · · ·+ N̂j)[−w] for 1 ≤ j ≤ n.
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(That is, W
(j)
k = W (N̂1 + · · · + N̂j)k−w for k ∈ Z). By 2.2.4 applied to SL(2) →

SL(2)n
ρ−→ Aut(V ), where the first arrow is the diagonal embedding into the first j

factors of SL(2)n, we have a splitting s(j) of W (j) characterized by the property that

ρ(∆(j)(λ)) acts on s(j)(grW
(j)

k ) as the multiplication by λk−w for any λ ∈ R× and k ∈ Z.

We call s(j) the splitting of W (j) associated to ρ.
By 2.2.2, the homomorphism ρ : SL(2,C)n → GC is determined by N̂j and s(j)

(1 ≤ j ≤ n). Note that once the homomorphism ρ is determined, a holomorphic map
φ satisfying 2.1.1 is determined by φ(0n), where 0n = (0, . . . , 0) ∈ P1(C)n.

We have a direct sum decomposition gR =
⊕

µ∈Zn g
[µ]
R , where g

[µ]
R is the part of gR

on which Ad(ρ(∆(j)(λ))) (λ ∈ R×) acts as the multiplication by λµ(j) for any 1 ≤ j ≤ n.
We will use the following notation. For y = (y1, . . . , yn) with yj > 0, let

t(y) = ρ

((√
y1 0
0 1/

√
y1

)
, . . . ,

(√
yn 0
0 1/

√
yn

))
= ρ(∆(

√
y1, . . . ,

√
yn))

−1,

For 1 ≤ j ≤ n and λ > 0, let

t(j)(λ) = t({λ}j × {1}n−j) = ρ(∆(j)(
√
λ))−1.

We have
t(y) =

∏n
j=1 t

(j)(yj/yj+1) (yn+1 denotes 1).

2.3. The associated SL(2)-orbit in one variable. Let N ∈ gR, F ∈ D∨, and assume
that (V,w, ⟨ , ⟩, N, F ) generates a pure nilpotent orbit. Let W = W (N)[−w]. Then
(W,F ) is a mixed Hodge structure by [Sc].

The SL(2)-orbit (ρ, φ) in one variable associated to (N,F ) is the SL(2)-orbit char-
acterized by the following properties 2.3.1–2.3.3. (The existence of the SL(2)-orbit
satisfying 2.3.1–2.3.3 is shown in [Sc] §5 and [CKS] §3. The uniqueness is shown easily
(cf. 2.2).)

2.3.1. The homomorphism of Lie algebras sl(2,R) → gR induced by ρ sends(
0 1
0 0

)
to N .

2.3.2. The splitting ofW associated to ρ in 2.2 coincides with the canonical splitting
of W associated to the mixed Hodge structure (W,F ).

2.3.3. φ(0) = F̂ , where (W, F̂ ) is the R-split mixed Hodge structure associated to
(W,F ).

In this case, δ(W,F ) and ζ(W,F ) belong to the Lie algebra gR (cf. the last paragraph
of Section 2 in [CKS]), so that ε(W,F ) belongs to gC, and they commute with N (1.7).

2.4. The associated SL(2)-orbit in one variable in 2.3 is the SL(2)-orbit characterized
also by the properties 2.3.1 and the following 2.4.1.

2.4.1. There exist c > 0 and am ∈ gR (m ≥ 1) such that
∑

m≥1 amλ
m absolutely

converges when 0 ≤ λ < c, that

exp(iyN)F = exp
(∑

m≥1 amy
−m
)
φ(iy),
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when y−1 < c, and that amW (N)k ⊂W (N)k+m−1 for any m and k.

The fact that the associated SL(2)-orbit (ρ, φ) has the above property 2.4.1 is shown
in [Sc] Theorem 5.13.

The uniqueness of the SL(2)-orbit (ρ, φ) satisfying 2.3.1 and 2.4.1 is not explicitly
stated in [Sc] nor in [CKS]. In 9.10, we will give a proof of the uniqueness.

2.5. The associated SL(2)-orbit in several variables. (See [CKS] (4.20).)
Let N1, . . . , Nn ∈ gR, F ∈ D∨, and assume that (V,w, ⟨ , ⟩, N1, . . . , Nn, F ) generates

a pure nilpotent orbit.
Then by Cattani-Kaplan [CK], W (

∑n
j=1 ajNj) for aj ≥ 0 depends only on the set

{j | aj > 0}. (This implies that (N1, . . . , Nn, F ) generates a mixed nilpotent orbit for
the trivial filtration W defined by Wk = V for k ≥ w and Wk = 0 for k < w and with
respect to the intersection form ⟨ , ⟩ on grWw = V .)

Let

W (j) =W (N1 + · · ·+Nj)[−w] for 1 ≤ j ≤ n.

The SL(2)-orbit in n variables associated to (N1, . . . , Nn, F ) is as follows.

First (W (n), F ) is a mixed Hodge structure. Let (W (n), F̂(n)) be the R-split mixed

Hodge structure associated to it. Then (W (n−1), exp(iNn)F̂(n)) is a mixed Hodge struc-

ture. Let (W (n−1), F̂(n−1)) be the R-split mixed Hodge structure associated to it. Then

(W (n−2), exp(iNn−1)F̂(n−1)) is a mixed Hodge structure, and so on. This process con-

tinues until we obtain the R-split mixed Hodge structure (W (1), F̂(1)).

The SL(2)-orbit (ρ, φ) associated to (N1, . . . , Nn, F ) is the SL(2)-orbit characterized
by the following properties 2.5.1–2.5.4. (The existence of the SL(2)-orbit satisfying
2.5.1–2.5.4 is shown in [CKS] §4. The uniqueness is shown easily (cf. 2.2).)

For 1 ≤ j ≤ n, let N̂j ∈ gR be the element associated to ρ as in 2.2.

2.5.1. For 1 ≤ j ≤ n, W (j) of (ρ, φ) (2.2) coincides with the above W (j).

2.5.2. For 1 ≤ j ≤ n, s(j) coincides with the splitting of W (j) by the R-split mixed
Hodge structure (W (j), F̂(j)).

2.5.3. Let 1 ≤ j ≤ n and write Nj =
∑

µ∈Zn N
[µ]
j with N

[µ]
j ∈ g

[µ]
R (2.2). Then N̂j is

the sum of N
[µ]
j for all µ such that µ(k) = 0 for any 1 ≤ k < j. In particular, N̂1 = N1.

2.5.4. φ(0n) = F̂(n).

Furthermore, the following 2.5.5 and 2.5.6 hold.

2.5.5. φ(0j , in−j) = F̂(j) for 1 ≤ j ≤ n. Here 0j := (0, . . . , 0) ∈ Cj and ik :=

(i, . . . , i) ∈ hk ⊂ Ck.

2.5.6. For 1 ≤ j ≤ n, (N1, . . . , Nj , F̂(j)) generates a pure nilpotent orbit, and

exp(
∑j

k=1 iykNk)F̂(j) belong to D for all yk > 0 (1 ≤ k ≤ j).

We add two lemmas to this review, which are used later.
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Lemma 2.6. Assume that (V,w, ⟨ , ⟩, N1, . . . , Nn, F ) and (V ′, w, ⟨ , ⟩′, N ′
1, . . . , N

′
n, F

′)
generate pure nilpotent orbits (they have the common w and n), and let f : V → V ′ be
a linear map such that N ′

jf = fNj for any 1 ≤ j ≤ n and such that f(F p) ⊂ (F ′)p for
any p ∈ Z. (We do not put any assumption on the relation between ⟨ , ⟩ and ⟨ , ⟩′.)
Let (ρ, φ) and (ρ′, φ′) be the associated SL(2)-orbits in n variables, respectively. Then:

(1) ρ′(g)f = fρ(g) for any g ∈ SL(2,C)n.

(2) For any z ∈ P1(C)n and p ∈ Z, we have f(φ(z)p) ⊂ φ′(z)p.

Proof. Since N ′
jf = fNj for 1 ≤ j ≤ n, we have f(W

(j)
k ) ⊂ W ′(j)

k for any j, k. We

have a morphism of mixed Hodge structures f : (W (n), F ) → (W ′(n), F ′). By Lemma

1.6, we have s′
(n)

gr(f) = fs(n), and f(F̂ p
(n)) ⊂ F̂ ′p

(n) for any p with the notation in

2.5. We have a morphism of mixed Hodge structures f : (W (n−1), exp(iNn)F̂(n)) →
(W ′(n−1)

, exp(iN ′
n)F̂

′
(n)). Again by Lemma 1.6, we have s′

(n−1)
gr(f) = fs(n−1). In

this way, we obtain inductively s′
(j)

gr(f) = fs(j) for 1 ≤ j ≤ n. By this and by 2.5.3,

we have N̂ ′
jf = fN̂j for 1 ≤ j ≤ n. These prove ρ′(g)f = fρ(g) for g ∈ SL(2,C)n.

This and f(φ(0n)
p) ⊂ φ′(0n)

p (p ∈ Z) show f(φ(z)p) ⊂ φ′(z)p for any z ∈ P1(C)n by
2.1.1. □

Lemma 2.7. Assume that (V,w, ⟨ , ⟩, N1, . . . , Nn, F ) generates a pure nilpotent orbit,
and let (ρ, φ) be the associated SL(2)-orbit in n variables. Then with the notation in
2.2, we have

Ad(t(j)(λ))(Nk) = λNk for 1 ≤ k ≤ j ≤ n, λ > 0.

Proof. In the case n = j = 1, this follows from 2.3.1 and

Ad

(√
λ 0
0 1/

√
λ

)(
0 1
0 0

)
= λ

(
0 1
0 0

)
.

We consider the general case. Let W (j) and F̂(j) be as in 2.5. For y = (y1, . . . , yj)

(yk > 0), let Ny = y1N1 + · · ·+ yjNj . Then (Ny, F̂(j)) generates a pure nilpotent orbit

by 2.5.6. Let (ρ′, φ′) be the SL(2)-orbit in one variable associated to (Ny, F̂(j)), and

let t′(λ) = ρ′(∆(
√
λ))−1. Then Ad(t′(λ))(Ny) = λNy by the case n = j = 1. Since

the mixed Hodge structure (W (j), F̂(j)) is R-split and W (j) = W (Ny)[−w] ([CK]), we

have φ′(0) = F̂(j) and from this we have t′(λ) = t(j)(λ). Hence Ad(t(j)(λ))(Ny) = λNy.

Since y is arbitrary, this proves Ad(t(j)(λ))(Nk) = λNk for k = 1, . . . , j. □

§3. Mixed object is quotient (and also part) of pure object: Idea

3.1. As in 2.3, if a mixed Hodge structure is of the form (W (N)[−w], F ) for some
(V,w, ⟨ , ⟩, N, F ) generating a pure nilpotent orbit, then the associated R-split Hodge

structure F̂ is given as φ(0) for the associated SL(2)-orbit (ρ, φ).

In this §3, we explain how the definition of the associated R-split Hodge filtration F̂
for an arbitrary mixed Hodge structure (W,F ) (which need not come from an (N,F )
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generating a pure nilpotent orbit) is still given in terms of SL(2)-orbit without using
the universal Lie polynomial.

The point is that a mixed Hodge structure can be regarded as a quotient (and also
as a part) of a pure object in 0.1 with n = 1 which generates a pure nilpotent orbit.
See 0.6 for an explanation of this statement by a geometric example.

In fact, this idea “a mixed situation is a quotient of a pure situation” is the key idea
of the present paper, and the constructions in the proof of 3.2 below will be repeatedly
used in the rest of the present paper.

Lemma 3.2. Let (W,F ) be an R-split mixed Hodge structure on a finite dimensional
R-vector space V whose graded quotient F (grWw ) for each w ∈ Z is polarized by a non-
degenerate (−1)w-symmetric R-bilinear form ⟨ , ⟩w : grWw × grWw → R. Let k be an
integer such that all the weights of (W,F ) are not less than k.

(1) Then there are a finite dimensional R-vector space V ′, (−1)k-symmetric non-
degenerate R-bilinear form ⟨ , ⟩ on V ′, an element N of g′R = Lie(Aut(V ′, ⟨ , ⟩)),
a decreasing filtration F ′ on V ′

C, and an isomorphism V ∼= Coker(N) satisfying the
following conditions:

(i) (V ′, k, ⟨ , ⟩, N, F ′) generates a pure nilpotent orbit and the mixed Hodge structure
(W (N)[−k], F ′) is R-split.

(ii) W (N)[−k] induces W on V and F ′ induces F on VC.

(2) Furthermore, for any δ ∈ gR = Lie(Aut(V,W, (⟨ , ⟩w)w)) which sends the (p, q)-
Hodge component of (W,F ) to the sum of (p′, q′)-Hodge components with p′ < p, q′ < q
for any (p, q), there exists δ′ ∈ g′R such that

(i)′ δ′ sends the (p, q)-Hodge component of (W (N)[−k], F ′) to the sum of (p′, q′)-
Hodge components with p′ < p, q′ < q for any (p, q),

(ii)′ δ′ commutes with N , and

(iii)′ δ′ induces δ on V .

Proof. (1) For w ∈ Z, let Sw ⊂ V be the lifting of grWw with respect to the R-split
mixed Hodge structure (W,F ). We endow Sw with the Hodge structure of weight w
induced by F (grWw ).

Let V ′ :=
⊕

l≥0

⊕
0≤m≤l Sk+l(m), where (m) means the Tate twist. We define the

Hodge filtration F ′ on V ′
C as the evident direct sum using these twists.

We define N as follows. N sends x ∈ Sk+l(m) to x(1) ∈ Sk+l(m + 1) if 0 ≤ m < l,
and to 0 if m = l. We have an evident isomorphism V =

⊕
l≥0 Sk+l ≃ Coker(N):

V ′ =



Sk+2

N

y≃ Sk+1

· · · Sk+2(1) N

y≃ Sk

N

y≃ Sk+1(1)

Sk+2(2)


−→ V =



. . .

Sk+2

Sk+1

Sk


.
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We define a (−1)k-symmetric pairing ⟨ , ⟩ : V ′×V ′ → R as follows. For x ∈ Sk+l(m),
y ∈ Sk+l′(m

′), we define ⟨x, y⟩ = 0 unless l = l′ and m + m′ = l. For x ∈ Sk+l(m),
y ∈ Sk+l(l−m), we define ⟨x, y⟩ = (−1)m⟨x(−m), y(m− l)⟩k+l. (Note that this pairing
⟨ , ⟩ : V ′×V ′ → R is the direct sum of the pairings Sk×Sk → R, Sk+1×Sk+1(1)→ R,
Sk+2 × Sk+2(2)→ R, Sk+2(1)× Sk+2(1)→ R, . . . with suitable signs.)

Then we can easily check that N is in g′R, that (W (N)[−k], F ′) is an R-split mixed
Hodge structure, and that the condition (ii) in (1) is satisfied. It remains to prove that
(N,F ′) generates a pure nilpotent orbit. To see this, by [KK] proposition (1.2.2) or by
[CKS] (4.66), it is enough to show that the following (a), (b), and (c) are satisfied.

(a) (N,F ′) satisfies the Griffiths transversality.

(b) For l ≥ 0, the primitive part of gr
W (N)
l with the Hodge filtration induced by F ′

is polarized by ⟨•, N l•⟩.

(c) For any p ∈ Z, the annihilator of F ′p in V ′
C with respect to ⟨ , ⟩ coincides with

F ′k−p+1.

(a) is clear, (c) is easily checked, and (b) is seen once we note that the primitive part
coincides with Sk+l.

(2) Let δ′′ be the endomorphism on V ′ whose Hom(Sk+l(m), Sk+l−a(m))-component
is δ(m) (l ≥ a > 0), and whose other components are zero. Then, it is clear that δ′′

commutes with N and that δ′′ induces δ on V . Next, let tδ′′ be the transpose of δ′′ with
respect to ⟨ , ⟩. Then, since tδ′′ has only Hom(Sk+l(m), Sk+l+a(m + a))-components
for a > 0, it induces 0 on V . Further, it commutes with N because

tδ′′N = −tδ′′tN = −t(Nδ′′) = −t(δ′′N) = −tN tδ′′ = N tδ′′,

where we used the fact tN = −N . Hence δ′ := δ′′ − tδ′′ satisfies the desired proper-
ties. □

3.3. We explain the definition of F̂ mentioned in 3.1.
Let (W,F ) be any mixed Hodge structure.
As is well known, any R-Hodge structure is polarizable. Take polarizations on all

graded pieces of (W,F ). We can apply 3.2 (1) to the R-split mixed Hodge structure

(W, F̃ := exp(−iδ)F ) in 1.3, and we can apply 3.2 (2) to δ in 1.3.

Let (N, F̃ ′) and δ′ be the lifts which 3.2 gives. Let F ′ := exp(iδ′)F̃ ′. Then (N,F ′)
generates a pure nilpotent orbit by [CKS] (4.66), which induces (W,F ) on Coker(N) ∼=
V . Now let (ρ, φ) be the SL(2)-orbit which is associated to (N,F ′).

Proposition 3.4. F̂ in 1.2 is the image on VC of the filtration φ(0) on V ′
C.

This gives a characterization of F̂ in 1.2 without using the universal Lie polynomials.
(The associated SL(2)-orbit is characterized without using the universal Lie polynomials
as in 2.4, and also as in 8.7.)

Proof of Proposition 3.4. This is deduced from Lemma 1.6 as follows. Since F̃ ′ is R-
split and the (p, q)-Hodge components of δ′ is zero unless p, q < 0, the unique pair in

1.3 for (W (N)[−k], F ′) is nothing but (F̃ ′, δ′). Further, since ζ for F and ζ for F ′ are
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defined by the same universal Lie polynomial of (δp,q) and (δ′p,q) respectively, ζ for F ′

on V ′ (which we denote by ζ ′) induces ζ for F on V . Hence F̂ := exp(ζ)F̃ is the image

of exp(ζ ′)F̃ ′, which is φ(0). □
3.5. In the above we showed that a mixed Hodge structure is a quotient of a pure

nilpotent orbit as in 0.1 with one N . We can also show that a mixed Hodge structure is
a part of a pure nilpotent orbit as in 0.1 with one N . In fact, we can prove the variant
of Lemma 3.2 in which the part “not less than k” is replaced by “not bigger than k”,
and V ∼= Coker(N) is replaced by V ∼= Ker(N). The proof of this variant is the evident
modification of the above proof of 3.2.

§4. Reduction of Main Theorem to two propositions

In this section, we prove our main result Theorem 0.5 assuming the following two
propositions 4.1 and 4.2. These propositions will be proved in later sections.

In §3, we showed that any mixed Hodge structure is a quotient of (and also a part of)
a pure nilpotent orbit in 0.1 with one N . Proposition 4.1 says that a mixed nilpotent
orbit in 0.2 is a quotient of (and also a part of) a pure nilpotent orbit in 0.1 which has
one more N .

Proposition 4.1. Assume that (V,W, (⟨ , ⟩w)w, N1, . . . , Nn, F ) generates a mixed
nilpotent orbit. Then:

(1) There exist (V ′, w, ⟨ , ⟩, N ′
0, . . . , N

′
n, F

′) generating a pure nilpotent orbit, a sur-
jective R-linear map p : V ′ → V , and non-negative real numbers ajk (1 ≤ k ≤ j ≤ n)
with ajj = 1 such that W is the image of W (N ′

0)[−w], F is the image of F ′, p◦N ′
0 = 0,

p ◦N ′
j =

∑j
k=1 ajkNk ◦ p for 1 ≤ j ≤ n.

(2) There exist (V ′, w, ⟨ , ⟩, N ′
0, . . . , N

′
n, F

′) generating a pure nilpotent orbit, an
injective R-linear map q : V → V ′, and non-negative real numbers ajk (1 ≤ k ≤ j ≤ n)
with ajj = 1 such that W is the pull-back of W (N ′

0)[−w], F is the pull-back of F ′,

N ′
0 ◦ q = 0, N ′

j ◦ q = q ◦
∑j

k=1 ajkNk for 1 ≤ j ≤ n.

Here we do not put any relation between (⟨ , ⟩w)w and ⟨ , ⟩.
The proof of Proposition 4.1 will be given in §6 and §7 below.

Remark. The authors do not know whether we can take all the ajk in 4.1 to be
0 unless j = k, that is, whether we can put the stronger condition p ◦ N ′

j = Nj ◦ p
(resp. N ′

j ◦ q = q ◦Nj) for 1 ≤ j ≤ n in (1) (resp. (2)). See 5.9 for a comment on this
point.

The following proposition is a complementary result to the SL(2)-orbit theorem of
Cattani-Kaplan-Schmid [CKS] for pure nilpotent orbits as in 0.1.

Proposition 4.2. Assume that (V,w, ⟨ , ⟩, N1, . . . , Nn, F ) generates a pure nilpotent
orbit, and let (ρ, φ) be the associated SL(2)-orbit in n variables. For 1 ≤ j ≤ n, let
W (j) = W (N1 + · · · + Nj)[−w], and let s(j) be the splitting of W (j) associated to ρ
(2.2, 2.5.1). Fix k such that 1 ≤ k ≤ n. For y = (yk+1, . . . , yn) such that yj ≫ 0

(k < j ≤ n), let s(y) : grW
(k)

(V )
∼→ V be the canonical splitting of W (k) associated to

the mixed Hodge structure (W (k), exp(
∑n

j=k+1 iyjNj)F ). Then s(y) converges to s(k)
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as yj/yj+1 tends to ∞ for k < j ≤ n. Furthermore there are c > 0 and um ∈ gR

(m ∈ Nn−k) such that u0 = 0,
∑

m∈Nn−k um
∏n−k

j=1 λ
m(j)
j absolutely converges when

0 ≤ λj < c, and such that the following (i)–(iii) are satisfied.

(i) Whenever yj+1/yj < c (k < j ≤ n), we have

s(y) = u(y)s(k) with u(y) = exp(
∑

m∈Nn−k um
∏n

j=k+1(
yj+1

yj
)m(j−k)).

(ii) umW
(k)
l ⊂W (k)

l−1 for any m ∈ Nn−k and any l ∈ Z.

(iii) umW
(j)
l ⊂W (j)

l+m(j−k) (resp. umW
(j)
l ⊂W (j)

l ) for any m ∈ Nn−k and any l ∈ Z

if k < j ≤ n (resp. 1 ≤ j ≤ k).

The proof of Proposition 4.2 will be given in §8 and §9 below.

4.3. In the rest of this section, we assume 4.1 and 4.2.
Let (V,W, (⟨ , ⟩w)w, N1, . . . , Nn, F ) be as in the hypothesis of Theorem 0.5.
Let (V ′, w, ⟨ , ⟩, N ′

0, . . . , N
′
n, F

′) be as in 4.1.

For the proof of 0.5, we may replace Nj (1 ≤ j ≤ n) by
∑j

k=1 ajkNk, where the ajk
are as in 4.1. Hence we may assume Nj ◦ p = p ◦N ′

j for 1 ≤ j ≤ n. Note p ◦N ′
0 = 0.

Let (ρ′, φ′) be the SL(2)-orbit in n+ 1 variables associated to (N ′
0, . . . , N

′
n, F

′). For

0 ≤ j ≤ n, let W ′(j) = W (N ′
0 + · · · + N ′

j)[−w], and let s′
(j)

be the splitting of W ′(j)

associated to ρ′. We denote W ′(0) =W (N ′
0)[−w] simply by W ′, and s′

(0)
simply by s′.

Note that W is the image of W ′ on V .

By 4.2 applied to (V ′, w, ⟨ , ⟩, N ′
0, . . . , N

′
n, F

′) (we take W ′ =W ′(0) as W (k) of 4.2),
we have the following facts.

For y = (y1, . . . , yn) with yj ≫ 0 (1 ≤ j ≤ n), let s′(y) : grW ′
(V ′)

∼→ V ′ be the cano-
nical splitting ofW ′ associated to the mixed Hodge structure (W ′, exp(

∑n
j=1 iyjN

′
j)F

′).

Then s′(y) converges to s′ as yj/yj+1 tends to ∞ for 1 ≤ j ≤ n. Furthermore there are
c > 0 and u′m ∈ g′R (m ∈ Nn; here g′R is the gR in 0.1 defined for (V ′, w, ⟨ , ⟩)) such

that u′0 = 0,
∑

m∈Nn u′m
∏n

j=1 λ
m(j)
j absolutely converges when 0 ≤ λj < c, and such

that the following (i)–(iii) are satisfied.

(i) Whenever yj+1/yj < c (1 ≤ j ≤ n), we have

s′(y) = u′(y)s′ with u′(y) = exp(
∑

m∈Nn u′m
∏n

j=1(
yj+1

yj
)m(j)).

(ii) For any m ∈ Nn and any l ∈ Z, u′m sends W ′
l into W ′

l−1.

(iii) Let 1 ≤ j ≤ n. Then for any m ∈ Nn and l ∈ Z, u′m sends W
′(j)
l into W

′(j)
l+m(j).

Lemma 4.4. For g = (g1, . . . , gn) ∈ SL(2,C)n, define ρ′′(g) = ρ′(1, g1, . . . , gn). Then

ρ′′(g) preservesW ′
C. Let ρ

′′
k(g) for k ∈ Z be the automorphism of grW

′

k,C induced by ρ′′(g).

Then ρ′′k(g) (g ∈ SL(2,C)n) commutes with ρk(g) on grWk,C via grk(p) : gr
W ′

k,C → grWk,C.

Proof. We apply 2.6 by taking Φ′ = (grW
′

k (V ′), grW
′

k (N ′
1), . . . , gr

W ′

k (N ′
n), F

′(grW
′

k )) as
(V,N1, . . . , Nn, F ) in 2.6, and taking Φ = (grWk (V ), grWk (N1), . . . , gr

W
k (Nn), F (gr

W
k )) as
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(V ′, N ′
1, . . . , N

′
n, F

′) in 2.6. For this, we need to define an intersection form ⟨ , ⟩′k on

grW
′

k (V ′) for which Φ′ generates a pure nilpotent orbit. First assume k ≥ w. Then,

we have grW
′

k (V ′) =
⊕

l≥0Al, where Al is the intersection of the image of (N ′
0)

l :

grW
′

k+2l → grW
′

k and the kernel of (N ′
0)

l+(k−w)+1 : grW
′

k → grW
′

2w−k−2l−2 ([D2] 1.6). The

intersection form ⟨ , ⟩′k on grW
′

k (V ′) is defined to be ⟨•, N l•⟩ on Al for even l, and to
be −⟨•, N l•⟩ on Al for odd l. The intersection form ⟨ , ⟩′k in the case k ≤ w is induced

from ⟨ , ⟩′2w−k via (N ′
0)

w−k : grW
′

2w−k
∼→ grW

′

k . By [KK] (1.2.2) or by [CKS] (4.66), with
this intersection form, Φ′ generates a pure nilpotent orbit.

Hence 4.4 is deduced from 2.6. □
4.5. We prove (1) of 0.5, i.e., that s(y) converges to a splitting of W .
By Lemma 1.6 (1), we have ps′(y) = s(y) gr(p). By 4.3, ps′(y) converges to ps′.

Hence s(y) gr(p) converges to ps′. Let q : grW (V ) → grW
′
(V ′) be an R-linear map

such that gr(p)q is the identity. Then s(y) = s(y) gr(p)q and hence s(y) converges to
s := ps′q, which is a splitting of W since it is a limit of splittings of W . □

Lemma 4.6. Let s be as in 0.5 (1), and define t(y) = s(
⊕

k∈Z y
−k/2
1 tk(y))s

−1 for

y = (y1, . . . , yn), yj > 0 (1 ≤ j ≤ n). For 0 ≤ j ≤ n and λ > 0, let (t′)(j)(λ) =

ρ′(∆(a0, . . . , an))
−1 with al =

√
λ for 0 ≤ l ≤ j and al = 1 for j < l ≤ n. Then for

y = (y1, . . . , yn) (yj > 0), t(y) on V commutes with
∏n

j=1(t
′)(j)(yj/yj+1) on V

′.

Proof. In fact,
∏n

j=1(t
′)(j)(yj/yj+1) = ρ′(∆(a0, . . . , an))

−1, where a0 =
√
y1, aj =

√
yj

for 1 ≤ j ≤ n. Since ρ′(∆(1, a1, . . . , an)) is compatible with ρk(∆(a1, . . . , an)) by 4.4,
we have 4.6. □

4.7. Define u(y) = s(y)s−1:V → V . We have s gr(p) = ps′, pu′(y) = u(y)p.

4.8. We prove (2) of 0.5. Let q : grW (V ) → grW
′
(V ′) be as in 4.5. Then u(y) =

ps′(y)qs−1 = pu′(y)s′qs−1. Hence by the presentation of u′(y) in 4.3 (i), if we put
λj = yj+1/yj for 1 ≤ j ≤ n, the map λ = (λ1, . . . , λn) 7→ u(y) ∈ GR defined when
0 < λj < c (1 ≤ j ≤ n) is extended to a real analytic function in the λj (1 ≤ j ≤ n)
defined on the area −c < λj < c. Hence we have the presentation of u(y) of the form

u(y) = exp(
∑

m∈Nn um
∏n

j=1(
yj+1

yj
)m(j)) for yj+1/yj sufficiently small. Furthermore

u0 = 0 because u(y) converges to 1 as yj/yj+1 → ∞. By u(y)p = pu′(y), we have
ump = pu′m for any m. By 4.6, the property (ii) of um follows from 4.3 (iii). □

4.9. We prove (3) of 0.5. The statement for the R-splitting is shown as follows. The
R-split mixed Hodge structure associated to (W, exp(

∑n
j=1 iyjNj)F ) is

s(y)(exp(
∑n

j=1 iyj gr
W (Nj))F (gr

W ))

= u(y)s(
⊕

w gw(y)tw(y)rw) = g(y)s(
⊕

w tw(y))s
−1r.

Let c(y1) be the R-linear map V → V whose restriction to s(grWw ) is given by the multi-

plication by y
−w/2
1 for any w ∈ Z. Then c(y1)r = r. Since t(y) = s(

⊕
w tw(y))s

−1c(y1),
we have

g(y)s(
⊕

w tw(y))s
−1r = g(y)s(

⊕
w tw(y))s

−1c(y1)r = g(y)t(y)r.
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We prove the expression of eg(y) as the exponential of power series.

Since g(y) = u(y)s(
⊕

w gw(y))s
−1 and t(y) = s(

⊕
w y

−w/2
1 tw(y))s

−1, we have

eg(y) = t(y)−1g(y)t(y) = t(y)−1u(y)t(y)s(
⊕

w
egw(y))s

−1.

Hence it is sufficient to prove that t(y)−1u(y)t(y) is the exponential of a convergent
power series in yj+1/yj (1 ≤ j ≤ n) without constant term.

By (iii) in 4.3, if we write u′m as the sum of u
′[µ]
m , where Ad(t′

(j)
(λ)) (1 ≤ j ≤ n, λ > 0)

acts on u
′[µ]
m as the multiplication by λ−µ(j)/2, we have u

′[µ]
m = 0 unless µ ≤ m. Hence

by ump = pu′m and 4.6, we have:

Claim 1. Write um as the sum of u
[µ]
m for µ ∈ Zn, where Ad(t(y)) (y = (y1, . . . , yn),

yj > 0) acts on u
[µ]
m as the multiplication by

∏n
j=1(yj/yj+1)

µ(j)/2. Then u
[µ]
m = 0 unless

µ ≤ m.

We have

t(y)−1u(y)t(y) = exp(
∑

m∈Nn,µ∈Zn u
[µ]
m
∏n

j=1(
yj+1

yj
)m(j)−µ(j)/2).

Since m > µ/2 (that is, m ≥ µ/2 and m ̸= µ/2) for any m ∈ Nn \ {0} and µ ∈ Zn

satisfying m ≥ µ, Claim 1 shows that the infinite sum inside exp is a convergent power
series without the constant term. □

4.10. We prove (4) of 0.5. Let

t′(y0, . . . , yn) = ρ′(∆(
√
y0, . . . ,

√
yn))

−1 =
∏n

j=0 t
′(j)(

yj

yj+1
).

By applying the SL(2)-orbit theorem of Cattani-Kaplan-Schmid [CKS] (4.20) (see 0.1)
to (N ′

0, . . . , N
′
n, F

′), we see the following: As a function in the λj := (yj+1/yj)
1/2 (0 ≤

j ≤ n) with values in D′ = (“D” of (V ′, w, ⟨ , ⟩)), t′(y0, . . . , yn)−1 exp(
∑n

j=0 iyjN
′
j)F

′

(defined when the λj > 0 (0 ≤ j ≤ n) are small) is extended to a real analytic function
in the λj defined on the area −c < λj < c (0 ≤ j ≤ n) for some c > 0. Fix λ0 > 0 which
is smaller than c, and consider the image under p : V ′

C → VC. By 4.6, we see that as a
function in the λj (1 ≤ j ≤ n) with values in D, t(y1, . . . , yn)

−1 exp(
∑n

j=1 iyjNj)F

(defined when the λj > 0 (1 ≤ j ≤ n) are small) is extended to a real analytic
function with values in D defined on the area −c < λj < c (1 ≤ j ≤ n) for some
c > 0. By real analyticity of ε(W, ?) ([CKS] section 2), this shows that the function
ε(W, eg(y)−1t(y)−1 exp(

∑n
j=1 iyjNj)F ) in the λj (1 ≤ j ≤ n) with values in gC, where

y = (y1, . . . , yn), is extended to a real analytic function defined on the area −c < λj < c
(1 ≤ j ≤ n) for some c > 0. Hence, when the λj > 0 (1 ≤ j ≤ n) are sufficiently small,
ε(W, t(y)−1g(y)−1 exp(

∑n
j=1 iyjNj)F ) can be written as a convergent power series in

λ1, . . . , λn. □

§5. Review of mixed nilpotent orbit

In this section, we review some results by Kashiwara in [K1], [K2] on mixed nilpotent
orbits and discuss some related results.
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5.1. We first review the definition of relative monodromy filtration ([D2] 1.6).
Let V be a finite dimensional R-vector space, W an increasing filtration of V , and

N : V → V a nilpotent R-linear map such that NWw ⊂ Ww for any w ∈ Z. An
increasing filtration M on V is called a relative monodromy filtration of N with respect
to W if the following (i) and (ii) are satisfied.

(i) NMk ⊂Mk−2 for any k ∈ Z.

(ii) N l : grMk+l gr
W
k

∼→ grMk−l gr
W
k for all k ∈ Z and l ≥ 0.

A relative monodromy filtration need not exist, but it is unique if it exists. If it
exists, it is written as M(N,W ).

We recall that in the definition of mixed nilpotent orbit in 0.2, the condition (iv),
that is the existence of the relative monodromy filtration, is essential and controls the
convergence of the canonical splitting in our main theorem. See the example 0.9.

5.2. By a real infinitesimal mixed Hodge module (we abbreviate it as R-IMHM), we
mean (V,W,N1, . . . , Nn, F ) such that for some non-degenerate (−1)w-symmetric bilin-
ear forms ⟨ , ⟩w : grWw × grWw → R given for all w ∈ Z, (V,W, (⟨ , ⟩w)w, N1, . . . , Nn, F )
generates a mixed nilpotent orbit in the sense of 0.2. We do not review the defi-
nition of “infinitesimal mixed Hodge module (IMHM)” in [K2], but just tell that if
(V,W,N1, . . . , Nn, F ) is an R-IMHM, then (VC;WC;F, F̄ ;N1, . . . , Nn), where F̄ is the
complex conjugate of F , is an IMHM. (In the definition of IMHM, the real vector space
V does not appear; the complex vector space VC appears but the real structure V is
not fixed, and F̄ is taken independently of F (satisfying a certain condition). Roughly
speaking, an R-IMHM is an IMHM with an R-structure.)

Following the terminology in [K2] but adding R, by a pre-R-IMHM, we mean
(V,W,N1, . . . , Nn, F ) which satisfies all the conditions of R-IMHM except the condition
(iv) in 0.2.

The following results 5.3–5.6 on R-IMHM are deduced from results on IMHM in
[K1], [K2].

From now on we fix n in (V,W,N1, . . . , Nn, F ). The meaning of a homomorphism
(V,W,N1, . . . , Nn, F )→ (V ′,W ′, N ′

1, . . . , N
′
n, F

′) of R-IMHMs (resp. pre-R-IMHMs) is
clear.

5.3. The direct sums, the duals, and the tensor products are defined in the cate-
gory of R-IMHM and also in the category of pre-R-IMHM, in the natural way. For
example, the tensor product of (V,W,N1, . . . , Nn, F ) and (V ′,W ′, N ′

1, . . . , N
′
n, F

′) is
(V ′′,W ′′, N ′′

1 , . . . , N
′′
n , F

′′), where V ′′ = V ⊗ V ′, W ′′
w =

∑
k+l=wWk ⊗ W ′

l , N
′′
j =

Nj ⊗ 1 + 1⊗N ′
j , and F

′′p =
∑

k+l=p F
k ⊗ F ′l.

Furthermore ([K2] Proposition 5.2.6), the category of R-IMHM and the category of
pre-R-IMHM are abelian. In both categories, the kernel of a homomorphism

(V,W,N1, . . . , Nn, F )→ (V ′,W ′, N ′
1, . . . , N

′
n, F

′)

is (V ′′,W ′′, N ′′
1 , . . . , N

′′
n , F

′′) with V ′′ = Ker(V → V ′) and with the restrictions W ′′,
N ′′

j , F
′′ of W,Nj , F to V ′′, respectively. The description of the cokernel is similar. Any

homomorphism is strict for the filtrations. That is, if V ′′ denotes the image of V → V ′,
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the image of Wk (resp. F p) in V ′′ coincides with the restriction of W ′
k (resp. (F ′)p) to

V ′′ for any k (resp. p). Furthermore, a sequence is exact in this category if and only if
the sequence of the underlying vector spaces is exact. If the sequence is exact, then the
sequences of Wk of each object and the sequence of F p of each object are exact for any
k and p.

Theorem 5.4 ([K2] Theorem 4.4.1). Let H = (V,W,N1, . . . , Nn, F ) be a pre-R-
IMHM. Assume that there exists the relative monodromy weight filtration M(Nj ,W )
for each j = 1, . . . , n. Then H is an R-IMHM.

Proposition 5.5 ([K2] Proposition 5.2.4). Let (V,W,N1, . . . , Nn, F ) be an R-IMHM.
For 1 ≤ j ≤ n, let W (j) = M(N1 + · · · +Nj ,W ) (W (0) is defined to be W ). Then the

filtrations W
(0)
C , . . . ,W

(n)
C , F are distributive.

The distributivity here means that if Φ denotes the smallest set of C-subspaces of

VC containing W
(j)
C,k (0 ≤ j ≤ n, k ∈ Z) and F p (p ∈ Z) which is stable under the

operations (A,B) 7→ A+B and (A,B) 7→ A ∩B, then the distributive laws

(A∩B)+C = (A+C)∩(B+C), (A+B)∩C = (A∩C)+(B∩C) for all A,B,C ∈ Φ

hold. (See [K1].)

Proposition 5.6 ([K2] Proposition 5.2.5, Corollary 5.5.4). Let (V,W,N1, . . . , Nn, F )
be an R-IMHM. Then for 0 ≤ j ≤ n, (V,W (j), Nj+1, . . . , Nn, F ) is an R-IMHM. In

particular (for j = n), (W (n), F ) is a mixed Hodge structure.

The fact that (W (n), F ) is a mixed Hodge structure in Proposition 5.6 was proved
first by Deligne ([SZ], [K2] 5.2.1, 5.2.3).

Proposition 5.7. Assume that (V,W, (⟨ , ⟩w)w, N1, . . . , Nn, F ) generates a mixed

nilpotent orbit (0.2). Let (W (n), F̂ ) be the R-split mixed Hodge structure associated

to (W (n), F ) (5.6). Then (V,W, (⟨ , ⟩w)w, N1, . . . , Nn, F̂ ) also generates a mixed nilpo-
tent orbit.

Proof. By 1.7, Nj commutes with δ = δ(W (n), F ) and ζ = ζ(W (n), F ). Hence 0.2 (iii)
is satisfied. Further, in a similar way as in the proof of Lemma 1.6, it is straightforward
to show that Deligne’s splitting is compatible with taking grWj for each j. From this,
again as in the proof of Lemma 1.6, we know that δ and the δp,q preserve W and are
compatible with taking grWj . Since ζ is a Lie polynomial in the δp,q, it also preserves

W and is compatible with taking grWj . Thus we reduce 0.2 (ii) to the pure case, which
is a consequence of [CKS] (4.66). □
Lemma 5.8. Let H = (V,W,N1, . . . , Nn, F ) → H ′ = (V ′,W ′, N ′

1, . . . , N
′
n, F

′) be a
homomorphism of pre-R-IMHMs. Assume that V → V ′ is surjective. Assume that H
is an R-IMHM. Then H ′ is also an R-IMHM.

Proof. Recall that if H → H ′ is a surjective morphism of R-IMHMs then M(N ′
j ,W

′)
is the image of M(Nj ,W ) ([K2] 5.2.6 (ii)). Conversely, by Theorem 5.4, if M(N ′

j ,W
′)

exists then H ′ is an R-IMHM. Hence, it is necessary and sufficient to prove that the
image M ′ of M(N1,W ) is the relative monodromy filtration of N ′

1 with respect to W ′.



SL(2)-ORBIT THEOREM FOR DEGENERATION OF MIXED HODGE STRUCTURE 25

Since N ′
1(M

′
k) ⊂M ′

k−2 for any k, it suffices to show that M ′ induces W (grW
′

k (N ′
1))[−k]

on grW
′

k for any k. Since a homomorphism of the category of pre-R-IMHMs is strict
for the filtrations (5.3), W ′ is the image of W . Hence the filtration induced by M ′

on grW
′

k coincides with the image of that induced by M(N1,W ) on grWk , that is,
W (grWk (N1))[−k]. Thus the desired statement reduces to the statement in a pure

situation that W (grW
′

k (N ′
1))[−k] is the image of W (grWk (N1))[−k] by the surjection

grWk → grW
′

k of pure nilpotent orbits, which is a special case of the fact recalled at the
beginning of this proof. □

5.9. As remarked after 4.1, the authors do not know whether we can take all the
ajk in 4.1 to be 0 unless j = k. Assume that we can prove 4.1 (1) with this stronger
condition. Then by 5.6 and 5.8, we would have the following characterization of R-
IMHM without using relative monodromy filtrations:

A pre-R-IMHM (V,W,N1, . . . , Nn, F ) is an R-IMHM if and only if there exist a pure
nilpotent orbit (V ′, w, ⟨ , ⟩, N ′

0, . . . , N
′
n, F

′) and a surjective morphism

(V ′,W (N ′
0)[−w], N ′

1, . . . , N
′
n, F

′)→ (V,W,N1, . . . , Nn, F )

of pre-R-IMHMs.

§6. Mixed object is quotient (and also part) of pure object:
Proof of Proposition 4.1, in special case

In this section, we prove a special case of Proposition 4.1 (1).
Assume that (V,W, (⟨ , ⟩w)w, N1, . . . , Nn, F ) generates a mixed nilpotent orbit. In

this section, we assumeW0 = V,W−2 = 0, and dimR(grW0 ) = 1. We prove 4.1 (1) under
these assumptions.

Fix an isomorphism grW0 (V ) ∼= R.

LetW (j) be as in 5.5. Let (W (n), F̂ ) be the R-split mixed Hodge structure associated
to (W (n), F ).

Lemma 6.1. There is an element e of V which lifts 1 ∈ R such that e ∈W (j)
0 for any

1 ≤ j ≤ n and such that e belongs to the (0, 0)-Hodge component of the R-split mixed

Hodge structure (W (n), F̂ ).

Proof. First we prove

Claim 1. There exists an element a of
n∩

j=1

W
(j)
0,C ∩ F 0 whose image in grW0,C = C

coincides with 1.

Proof of Claim 1. Since W
(j)
0 +W−1 = V for any j and F 0 +W−1,C = VC, by the

distributive property (5.5), we have (
n∩

j=1

W
(j)
0,C ∩ F 0) +W−1,C =

n∩
j=1

(W
(j)
0,C +W−1,C) ∩

(F 0 + W−1,C) = VC. Hence
n∩

j=1

W
(j)
0,C ∩ F 0 → grW0,C is surjective, which shows the

existence of a. Thus Claim 1 is proved.
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Claim 2. There exists an element a of
n∩

j=1

W
(j)
0,C ∩ F̂ 0 whose image in grW0,C = C

coincides with 1.

Proof of Claim 2. By Proposition 5.7, we can replace F in Claim 1 by F̂ , which proves
Claim 2.

Let a be as in Claim 2. Let b be the (0, 0)-Hodge component of a with respect to

(W (n), F̂ ), and let e be the real part (b + b̄)/2 of b. We will prove that b and e have

the same properties as a, that is, they belong to
∩n

j=1W
(j)
0,C ∩ F̂ 0 and their images in

grW0,C = C coincide with 1. Note that b is furthermore of type (0, 0), and e is furthermore

of type (0, 0) and real. This e is the element which we are looking for.

Claim 3. If (p, q) ̸= (0, 0), the (p, q)-Hodge component of (W (n), F̂ ) is contained in
W−1,C.

Proof of Claim 3. We have the canonical homomorphism of mixed Hodge structures
(W (n), F̂ )→ (W (n)(grW0 ), F̂ (grW0 )) in which the latter is pure of weight 0 and of Hodge
type (0, 0). This proves Claim 3.

Claim 3 shows that the image of b in grW0,C coincides with that of a.

Next we have to prove that b belongs to W
(j)
0,C for all j.

Claim 4. If a ∈ W
(j)
k,C, then the (p, q)-Hodge component of a with respect to

(W (n), F̂ ) also belongs to W
(j)
k,C for any p and q.

Proof of Claim 4. For t = (t1, t2) ∈ (C×)2, let w(t) be the linear operator which

acts on the (p, q)-part with respect to (W (n), F̂ ) by the multiplication by tp1t
q
2. Then

Ad(w(t))Nj = t−1
1 t−1

2 Nj for any j. Let N = N1 + · · · + Nj . Then W (j) = M(N,W ).

Since w(t)WC =WC by Claim 3 and Ad(w(t))N = t−1
1 t−1

2 N , we have w(t)M(N,W )C =

M(Ad(w(t))N,w(t)W )C =M(t−1
1 t−1

2 N,W )C =M(N,W )C. This formula w(t)W
(j)
C =

W
(j)
C proves Claim 4.

Finally the property of e stated in 6.1 is now easily seen. □

We fix e as in Lemma 6.1. The following construction is a variant of what appeared
in §3.

6.2. Let V ′ be the direct sum of W−1 and a 2 dimensional R-vector space with basis
e0, e−2.

We consider the projection V ′ → V which is the identity on W−1, which kills e−2,
and which sends e0 to e.

We define an anti-symmetric R-bilinear form ⟨ , ⟩ : V ′ × V ′ → R as follows. On
W−1 it is ⟨ , ⟩−1; ⟨e2l,W−1⟩ = 0 for l = 0,−1; ⟨e0, e−2⟩ = 1.

6.3. We define N ′
j : V

′ → V ′ (0 ≤ j ≤ n) as follows.
N ′

0 kills W−1, sends e0 to e−2, and kills e−2.
Assume 1 ≤ j ≤ n. Then N ′

j kills e−2, N
′
j(e0) = Nj(e) ∈ W−1, the (W−1 → W−1)-

component of N ′
j is the restriction of Nj to W−1, the (W−1 → Re0)-component of N ′

j
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is zero, and the (W−1 → Re−2)-component of N ′
j is −1 times the transpose of the

(Re0 →W−1)-component of N ′
j with respect to ⟨ , ⟩ in 6.2.

6.4. Define F̂ ′ and F ′ as follows.
First, F̂ ′ is the direct sum of the restriction of F̂ to W−1,C and the Hodge filtration

of type (l, l) on Ce2l for l = 0,−1.
Let ε = ε(W (n), F ) (§1). We define a linear map ε′ : V ′

C → V ′
C as follows. ε′ kills

e−2, ε
′(e0) = ε(e) ∈ W−1,C, the (W−1,C → W−1,C)-component of ε′ is the restriction

of ε to W−1,C, the (W−1,C → Ce0)-component of ε′ is zero, and the (W−1,C → Ce−2)-
component of ε′ is −1 times the transpose of the (Ce0 →W−1,C)-component of ε′.

Finally let F ′ = exp(ε′)F̂ ′. Then, as is easily seen, F ′ belongs to D∨ of (V ′,−1, ⟨ , ⟩).

Lemma 6.5. (1) ⟨N ′
j(x), y⟩+ ⟨x,N ′

j(y)⟩ = 0 for any x, y ∈ V ′ and any j.

(2) N ′
jN

′
k = N ′

kN
′
j for any j, k.

(3) N ′
jε

′ = ε′N ′
j for any j.

Proof. (1) For j = 0, this is easy. For j > 0, the crucial is the case when x ∈ W−1

and y = e0. But, by the definition of N ′
j with the transpose, we have ⟨N ′

j(x), e0⟩ =
−⟨x,N ′

j(e0)⟩.
(2) Let j > 0. It is easy to see N ′

jN
′
0 = 0 = N ′

0N
′
j . Let j, k > 0 and we will prove

that N ′
j and N ′

k commute. By the commutativity of Nj and Nk, it is enough to show
⟨Nj(e), Nk(e)⟩−1 = ⟨Nk(e), Nj(e)⟩−1. Since e belongs to the (0, 0)-Hodge component

of (W (n), F̂ ), Nj(e) and Nk(e) belong to the (−1,−1)-Hodge component of (W (n), F̂ ).
Hence the both sides of the above equality in question are zero.

(3) Since the Nj and ε commute by [CKS, 3], as in (2), the desired commuta-
tivity reduces to ⟨Nj(e), ε(e)⟩−1 = ⟨ε(e), Nj(e)⟩−1. We write Nj as N in the rest.
Then N(V ) = N(M(N,W )0 + W−1) ⊂ M(N,W )−2 + N(W−1) = N(W−1). Take
v ∈ W−1 such that N(e) = N(v). Then we have ⟨N(e), ε(e)⟩−1 = ⟨N(v), ε(e)⟩−1 =
−⟨v,Nε(e)⟩−1 = −⟨v, εN(e)⟩−1 = −⟨v, εN(v)⟩−1 = 0. Here the last equality is by the
fact that ⟨ , ⟩−1 is anti-symmetric, together with ⟨v, εN(v)⟩−1 = ⟨εN(v), v⟩−1. We
have also ⟨ε(e), N(e)⟩−1 = −⟨N(e), ε(e)⟩−1 = 0. □

Thus, the special case of 4.1 (1) mentioned in the beginning of this section is verified
if the following proposition is proved. (Recall that N ′

0 induces 0 on V .)

Proposition 6.6. There exist ajk ∈ R (0 ≤ k ≤ j ≤ n) such that ajk ≥ 0, ajj = 1, and
such that if we put N ′′

j =
∑

0≤k≤j ajkN
′
k, then (V ′,−1, ⟨ , ⟩, N ′′

0 , . . . , N
′′
n , F

′) generates
a pure nilpotent orbit.

6.7. To prove this, we use the following lemma 6.8. For y = (y0, . . . , yn) (yj >

0), let t′(y) be the isomorphism V ′ ∼→ V ′ preserving the bilinear form ⟨ , ⟩ and the
grading V ′ = W−1 ⊕ Re−2 ⊕ Re0 defined as follows. Let (ρ−1, φ−1) be the SL(2)-
orbit in n variables associated to (grW−1(N1), . . . , gr

W
−1(Nn), F (gr

W
−1)), where ρ−1 is a

homomorphism of algebraic groups over R from SL(2)n to the automorphism group
G−1 of (grW−1, ⟨ , ⟩−1), and φ−1 is an holomorphic map P1(C)n → (D∨ of grW−1). On
W−1, the action of t′(y) is ρ−1(∆(

√
y1, . . . ,

√
yn))

−1 (2.2). The actions of t′(y) on e0,

e−2 are given by t′(y)e0 =
√
y0

−1e0, t
′(y)e−2 =

√
y0e−2.



28 KAZUYA KATO, CHIKARA NAKAYAMA, SAMPEI USUI

Lemma 6.8. If yj ∈ R>0 and yj/yj+1 tends to ∞ for 0 ≤ j ≤ n (yn+1 denotes 1),
then

(1) t′(y)−1 exp(
∑

0≤j≤n iyjN
′
j)F

′ (∈ D∨ of (V ′,−1, ⟨ , ⟩))

converges to a point of D of (V ′,−1, ⟨ , ⟩).

Proof. For 1 ≤ j ≤ n, let N̂j be the linear map V ′ → V ′ which coincides on W−1 with

the image of the element

(
0 1
0 0

)
of the j-th factor of sl(2,R)n under the homomor-

phism (ρ−1)∗: sl(2,R)n → g−1 associated to ρ−1, and which kills e0 and e−2.

On the other hand, let N̂0 = N ′
0. It is sufficient to prove the following Claim 1 and

Claim 2.

Claim 1. (1) converges to exp(
∑

0≤j≤n iN̂j)F̂
′.

Claim 2. exp(
∑

0≤j≤n iN̂j)F̂
′ is a polarized Hodge structure of weight −1 (with

respect to ⟨ , ⟩).

We prove Claim 1. Since

t′(y)−1 exp(
∑n

j=0 iyjN
′
j)F

′ = t′(y)−1 exp(
∑n

j=0 iyjN
′
j) exp(ε

′)F̂ ′

= exp(
∑n

j=0 iAd(t
′(y))−1(yjN

′
j)) exp(Ad(t′(y))−1(ε′))t′(y)−1F̂ ′,

it is sufficient to prove the following Claims 1.a, 1.b and 1.c.

Claim 1.a. Let 0 ≤ j ≤ n. Then Ad(t′(y))−1(yjN
′
j) converges to N̂j .

Proof of Claim 1.a. For j = 0, this is clear with Ad(t′(y))−1(y0N
′
0) = N ′

0 = N̂0. Assume
1 ≤ j ≤ n, and write N ′

j = Pj +Qj +Rj , where Pj is the (W−1 →W−1)-component of
N ′

j , Qj is the (Re0 →W−1)-component of N ′
j , and Rj is the (W−1 → Re−2)-component

of N ′
j . So Pj : W−1 → W−1 coincides with grW−1(Nj), and Rj is the transpose of −Qj .

It is sufficient to show that

(2) Ad(t′(y))−1(yjPj) converges to N̂j , and

(3) Ad(t′(y))−1(yjQj) and Ad(t′(y))−1(yjRj) converge to 0.

We prove (2). Consider the decomposition g−1,R =
⊕

µ∈Zn g
[µ]
−1,R (2.2), where

Ad(ρ−1(∆
(j)(λ))) (1 ≤ j ≤ n, λ ∈ R×) (2.2) acts on g

[µ]
−1,R as the multiplication by

λµ(j). Write Pj =
∑

µ∈Zn P
[µ]
j according to this decomposition. By Lemma 2.7 applied

to (grW−1(N1), . . . , gr
W
−1(Nn), F (gr

W
−1)), which generates a pure nilpotent orbit, P

[µ]
j = 0

unless µ(l) ≤ 0 for 1 ≤ l < j and µ(l) = −2 for j ≤ l ≤ n. Hence we have

Ad(t′(y))−1(yjPj) =
∑

µ∈Zn

∏j−1
l=1 (yl/yl+1)

µ(l)/2P
[µ]
j .

When yl/yl+1 → ∞ for 1 ≤ l < j, the µ-component of this converges to 0 (resp. is

constantly P
[µ]
j ) unless (resp. if) µ(l) = 0 for 1 ≤ l < j. Hence Ad(t′(y))−1(yjPj)

converges to N̂j by 2.5.3.
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We prove (3). The proof for Rj is similar to that for Qj and so we give here only
the proof for Qj .

Consider the decomposition W−1 =
⊕

µ∈Zn W
[µ]
−1 (2.2), where ρ−1(∆

(j)(λ)) (1 ≤ j ≤
n, λ ∈ R×) acts on W

[µ]
−1 as the multiplication by λµ(j). Qj(e0) = Nj(e) by definition.

Write this as Nj(e) =
∑

µ∈Zn Nj(e)
[µ] according to this decomposition. Since e ∈W (l)

0

for 1 ≤ l ≤ n, Nj(e) belongs to W
(l)
0 if 1 ≤ l < j, and to W

(l)
−2 if j ≤ l ≤ n. Hence

Nj(e)
[µ] = 0 unless µ(l) ≤ 0 for 1 ≤ l < j and µ(l) ≤ −2 for j ≤ l ≤ n. Since

t′(y)e0 = y
−1/2
0 e0, Ad(t

′(y))−1(yjQj) sends e0 to

∑
µ∈Zn y

−1/2
0

∏j−1
l=1 (

yl

yl+1
)µ(l)/2

∏n
l=j(

yl

yl+1
)(2+µ(l))/2Nj(e)

[µ].

This converges to 0.
Thus Claim 1.a is proved.

Claim 1.b. Ad(t′(y))−1(ε′) converges to 0.

Proof of Claim 1.b. Write ε′ = P+Q+R, where P is the (W−1,C →W−1,C)-component,
Q is the (Ce0 → W−1,C)-component, and R is the (W−1,C → Ce−2)-component of ε′.
Hence R is the transpose of −Q. It is sufficient to show that

(4) Ad(t′(y))−1(P ) converges to 0, and

(5) Ad(t′(y))−1(Q) and Ad(t′(y))−1(R) converge to 0.

We prove (4). We use the decomposition g−1,C =
⊕

µ∈Zn g
[µ]
−1,C. Write P =∑

µ∈Zn P [µ] according to this decomposition. Since ε preserves W
(l)
C for 1 ≤ l < n

and ε(W
(n)
k,C) ⊂ W

(n)
k−2,C for any k, P [µ] = 0 unless µ(l) ≤ 0 for 1 ≤ l ≤ n − 1 and

µ(n) ≤ −2. Hence

Ad(t′(y))−1(P ) =
∑

µ∈Zn

∏n
j=1(

yj

yj+1
)µ(j)/2P [µ]

converges to 0.
We prove (5). The proof for R is similar to that for Q and so we give here only

the proof for Q. We use the decomposition W−1,C =
⊕

µ∈Zn W
[µ]
−1,C. Q(e0) = ε(e) by

definition. Write this as ε(e) =
∑

µ∈Zn ε(e)[µ] according to this decomposition. By the

property of e, ε(e) belongs to W
(l)
0,C for 1 ≤ l ≤ n. Hence ε(e)[µ] = 0 unless µ(l) ≤ 0 for

1 ≤ l ≤ n. Since t′(y)e0 = y
−1/2
0 e0, Ad(t

′(y))−1(Q) sends e0 to

∑
µ∈Zn y

−1/2
0

∏n
j=1(

yj

yj+1
)µ(j)/2ε(e)[µ].

This converges to 0.
Thus Claim 1.b is proved.

Claim 1.c. F̂ ′ does not move under the action of t′(y).
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Proof of Claim 1.c. Since the restriction of F̂ to W−1 is φ−1(0n) (this follows from
2.5.4 and 1.6), the assertion is reduced to ρ(∆((R×)n))φ−1(0n) = φ−1(0n). Claim 1.c
is thus proved.

The proof of Claim 2 is also reduced to the fact in the pure situation that φ−1(in)
is a polarized Hodge structure.

This completes the proof of Lemma 6.8. □
6.9. Proof of Proposition 6.6. The Griffiths transversality (the condition 0.1 (iii)) is

reduced by Lemma 6.5 (3) to that for F̂ ′. We have to show that for each 0 ≤ j ≤ n and

each p ∈ Z, N ′
j(F̂

′)p ⊂ (F̂ ′)p−1. The case j = 0 is easy. Assume j > 0. It suffices to

prove Nj(e) ∈ F̂−1 and ⟨F̂ 1W−1, Nj(e)⟩−1 = 0. The former follows from e ∈ F̂ 0, and
the latter follows from the former.

We prove that the condition 0.1 (ii) is satisfied after replacing N ′
j with N ′′

j as in the
statement of 6.6. By Lemma 6.8 and by the fact that D of (V ′,−1, ⟨ , ⟩) is open in
D∨, t′(y)−1 exp(

∑n
j=0 iyjN

′
j)F

′ belongs to D if yj/yj+1 ≫ 0 for 0 ≤ j ≤ n. Since the

operator t′(y) is real, exp(
∑n

j=0 iyjN
′
j)F

′ belongs to D for such y0, . . . , yn. Take aj ≥ 0

(j = 0, . . . , n) such that exp(
∑n

j=0 iyjN
′
j)F

′ belongs to D for any y0, . . . , yn satisfying

yj > ajyj+1 (j = 0, . . . , n). For 0 ≤ k < j, let ajk = akak+1 · · · aj−1. Then 0.1 (ii) is
satisfied with respect to N ′′

j .
This completes the proof of 6.6. □

§7. Mixed object is quotient (and also part) of pure object:
Proof of Proposition 4.1, in general case

In this section, we complete the proof of 4.1. Since 4.1 (2) is proved in the same way
as 4.1 (1), we give here only the proof of 4.1 (1). We will reduce it to its special case
proved in the previous section.

7.1. First, we prove the case where there existsm ∈ Z such thatWm = V,Wm−2 = 0.
In this case, we show that we can find (V ′,m − 1, ⟨ , ⟩, N ′

0, . . . , N
′
n, F

′), a surjective
linear map V ′ → V , and real numbers ajk (1 ≤ k ≤ j ≤ n) satisfying the conditions in
4.1 (1) and the further conditions W (N ′

0)1 = V ′,W (N ′
0)−2 = 0.

First, we construct an object ((1)V, (1)W, ((1)⟨ , ⟩w)w, (1)N1, . . . ,
(1)Nn,

(1)F ) which
generates a mixed nilpotent orbit and which is of the type considered in §6, as fol-
lows. Let A = grWm (V ), B = grWm−1(V ). We regard A and B as R-IMHM of pure

weights m and m − 1, respectively, in the evident way. Define the R-IMHM (1)V =
((1)V, (1)W, (1)N1, . . . ,

(1)Nn,
(1)F ) as the fiber product of

A∗ ⊗ V → A∗ ⊗A← R

in the category of R-IMHM (5.3), where A∗ is the dual of A, R is regarded as an
R-IMHM of weight zero in the trivial way, ⊗ are the tensor product in the category of
R-IMHM (5.3), and R→ A∗⊗A is the evident map. We have a commutative diagram
with exact rows

0 → A∗ ⊗B → (1)V → R → 0
∥ ↓ ↓

0 → A∗ ⊗B → A∗ ⊗ V → A∗ ⊗A → 0,
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and we have (1)W0 = (1)V, (1)W−1 = A∗ ⊗ B, (1)W−2 = 0, and gr
(1)W
0 = R. We define

the intersection forms (1)⟨ , ⟩w on gr
(1)W
w as follows. For w = 0, this is R × R →

R; (x, y) 7→ xy. For w = −1, this is the tensor product ⟨ , ⟩∗m ⊗ ⟨ , ⟩m−1 on A∗ ⊗ B.
Then clearly ((1)V, (1)W, ((1)⟨ , ⟩w)w, (1)N1, . . . ,

(1)Nn,
(1)F ) generates a mixed nilpotent

orbit.
By §6, there exist ((2)V,−1, (2)⟨ , ⟩, (2)N0, . . . ,

(2)Nn,
(2)F ) which generates a pure

nilpotent orbit, a surjective linear map f : (2)V → (1)V , real numbers ajk ∈ R (1 ≤
k ≤ j ≤ n) such that (1)W is the image of W ((2)N0)[1],

(1)F is the image of (2)F ,

f ◦ (2)N0 = 0, f ◦ (2)Nj =
∑j

k=1 ajk
(1)Nk ◦ f for 1 ≤ j ≤ n, ajk ≥ 0, ajj = 1,

W ((2)N0)1 = (2)V , W ((2)N0)−2 = 0.
Now the desired object (V ′,m − 1, ⟨ , ⟩, N ′

0, . . . , N
′
n, F

′) is defined as follows; V ′ =

A ⊗ (2)V , ⟨ , ⟩ = ⟨ , ⟩m ⊗ (2)⟨ , ⟩, N ′
j = 1 ⊗ (2)Nj +

∑j
k=1 ajk gr

W
m (Nk) ⊗ 1, and

F is the tensor product of F (grWm ) and (2)F . Let p : V ′ → V be the composition
A⊗ (2)V → A⊗ (1)V → A⊗ A∗ ⊗ V → V . Then p is surjective as is easily seen. This
(V ′,m− 1, ⟨ , ⟩, N ′

0, . . . , N
′
n, F

′) is the tensor product of two pure polarized R-IMHM,
and hence generates a pure nilpotent orbit.

7.2. We consider the general case. We may assume that there exists m ≥ 2 such
that grWw (V ) is zero if w does not belong to the closed interval [0,m]. We prove that
we can find (V ′, 0, ⟨ , ⟩, N ′

0, . . . , N
′
n, F

′) of weight 0.
We prove by induction on m.
Let 1V = V/Wm−2,

1W the filtration on 1V induced by W , 1F the filtration on 1VC
induced by F , and 1Nj : 1V → 1V (1 ≤ j ≤ n) the homomorphism induced by Nj .
Then by 7.1, there exist an object (2V ,m−1, 2⟨ , ⟩, 2N0, . . . ,

2Nn,
2F ) generating a pure

nilpotent orbit, a surjective linear map 2V → 1V , and real numbers ajk (1 ≤ k ≤ j ≤ n)
such that 1W is the image of W (2N0)[1 − m], 1F is the image of 2F , 2Nj on 2V

(0 ≤ j ≤ n) commutes with 0 (resp.
∑j

k=1 ajk
1Nk) on 1V if j = 0 (resp. 1 ≤ j ≤ n),

ajk ≥ 0, ajj = 1, and W (2N0)1 = 2V , W (2N0)−2 = 0.

We may and do replace Nj by
∑j

k=1 ajkNk, and replace 1Nj by
∑j

k=1 ajk
1Nk.

Hence 2Nj now commutes with 1Nj for 1 ≤ j ≤ n.
Define (3V, 3N0,

3N1, . . . ,
3Nn,

3F ) as the fiber product of

(V, 0, N1, . . . , Nn, F )→ (1V, 0, 1N1, . . . ,
1Nn,

1F )← (2V, 2N0,
2N1, . . . ,

2Nn,
2F ).

Define the weight filtration 3W of 3V as follows.
3W k = 3V for k ≥ m− 1. 3W k is Wk × {0} on the fiber product for k ≤ m− 2.

Then gr
3W
m−1 = 2V .

7.3. Let 4N j =
3N j +

3N0.
4V = 3V , 4W = 3W , 4F = 3F . Define 4⟨ , ⟩w on gr

4W
w

for each w ∈ Z as follows. For w ≤ m − 2, 4⟨ , ⟩w is ⟨ , ⟩w of grWw . For w = m − 1,
4⟨ , ⟩m−1 is 2⟨ , ⟩ of 2V .

Lemma 7.4. (4V , 4W, (4⟨ , ⟩w)w, 4N0, . . . ,
4Nn,

4F ) generates a mixed nilpotent orbit.

Proof. By Theorem 5.4, it is enough to show that the relative monodromy filtration
M(4N j ,

4W ) exists for 0 ≤ j ≤ n.
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Assume first j = 0. Then we have M(4N0,
4W ) as the fiber product of

W → 1W ←W (2N0)[1−m].

In fact, let M be this fiber product. Then the condition (i) of the relative monodromy

filtration in 5.1 is clearly satisfied. We check (ii). On gr
4W
m−1 = 2V , M induces the

filtration W (2N0)[1 −m], and hence (ii) for the case k = m − 1 is clear. For k ≥ m,

gr
4W
k = 0. For k < m− 1, gr

4W
k = grWk and M induces there the trivial filtration (Mk

is the total space and Mk−1 vanishes there) and (ii) is satisfied since 4N0 induces the
zero map there.

Next assume 1 ≤ j ≤ n. We have M(4N j ,
4W ) as the fiber product of

M(Nj ,W )→M(1Nj ,
1W )←M(2Nj ,W (2N0)[1−m]).

In fact, let M be this fiber product. Then the condition (i) of the relative monodromy

filtration in 5.1 is clearly satisfied. We check (ii). On gr
4W
m−1 = 2V , M induces the

filtration M(2Nj ,W (2N0)[1−m]) which coincides with W (2N0 +
2Nj)[1−m] by [CK].

Since 4Nj induces 2N0 +
2Nj there, the condition (ii) for k = m − 1 is satisfied. For

k ≥ m, gr
4W
k = 0. For k < m− 1, the condition (ii) is satisfied because the restriction

of M to 4Wm−2 =Wm−2 coincides with the restriction of M(Nj ,W ) to Wm−2. □

7.5. Since the weights of (4V , 4W ) belong to the interval [0,m−1], by the hypothesis
of the induction on m, there exist(5V , 0, 5⟨ , ⟩, 5N−1,

5N0, . . . ,
5Nn,

5F ) generating a
pure nilpotent orbit, a surjective linear map f : 5V → 4V , real numbers bjk (0 ≤ k ≤
j ≤ n) such that 4W is the image of W (5N−1),

4F is the image of 5F , f ◦ 5N−1 = 0,

f ◦ 5Nj =
∑j

k=0 bjk
4Nk ◦ f for 0 ≤ j ≤ n, bjk ≥ 0, bjj = 1.

7.6. Finally, let V ′ = 5V , ⟨ , ⟩ = 5⟨ , ⟩, N ′
0 = 5N−1 +

5N0, and let N ′
j = 5N j for

1 ≤ j ≤ n, F ′ = 5F . Then (V ′, 0, ⟨ , ⟩, N ′
0, . . . , N

′
n, F

′) generates a pure nilpotent orbit.
Let p : V ′ → V be the composition V ′ = 5V → 4V = 3V → V .
It is evident that F is the image of F ′, and conditions on N ′

j (0 ≤ j ≤ n) stated in
4.1 (1) are satisfied. It remains to prove that W is the image of W (N ′

0).

For 1 ≤ j ≤ n, replace Nj by
∑j

k=1 bjkNk,
1Nj by

∑j
k=1 bjk

1Nk, and 4Nj by∑j
k=0 bjk

4Nk. Then for each 1 ≤ j ≤ n, N ′
j ,

4Nj , and Nj commute via projections.

Note thatW (N ′
0) =M(5N0,W (5N−1)) [CK]. By Proposition 5.6, (4V ,M(4N0,

4W ),
4N1, . . . ,

4Nn,
4F ) is an R-IMHM, and we have homomorphisms of R-IMHM

(V ′,W (N ′
0), N

′
1, . . . , N

′
n, F

′) = (5V,M(5N0,W (5N−1)),
5N1, . . . ,

5Nn,
5F )

→ (4V ,M(4N0,
4W ), 4N1, . . . ,

4Nn,
4F )→ (V,W,N1, . . . , Nn, F ).

Since V ′ → V is surjective, W coincides with the image of W (N ′
0) by 5.3.

§8. Borel-Serre theory and SL(2)-orbits

The goal of §8 and §9 is to prove Proposition 4.2. In fact, a shorter proof of 4.2 can
be given if we use [KU2] Proposition 6.2.2 (which is essentially the same as Proposition
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9.2 below). Since [KU2] is not yet published, we give here a self-contained proof of 4.2
including arguments in [KU2] which were used for the proof of [KU2] 6.2.2.

In this section, we present the relationship between Borel-Serre theory in [BS] and
the theory of SL(2)-orbit, studied in [KU1], [KU2].

8.1. Borel-Serre theory. In general, let G be a semi-simple algebraic group over R,
let P be a parabolic subgroup of G, and let K be a maximal compact subgroup of G.
Let Pu be the unipotent radical of P , and let T be the maximal R-split torus of the
center of P/Pu. Then by Borel-Serre [BS], there is a unique homomorphism of algebraic
groups over R

BSP,K : T → P

characterized by the following properties (i) and (ii).

(i) The composition T
BSP,K−−−−→ P → P/Pu coincides with the inclusion map T →

P/Pu.

(ii) Let θK : G→ G be the Cartan involution of G associated toK, that is, the unique
automorphism θK of G such that θ2K is the identity and K = {g ∈ G | θK(g) = g}.
Then θK(t) = t−1 for any t ∈ BSP,K(T ).

The following holds.

(iii) If g ∈ P , BSP,gKg−1 = Int(g)(BSP,K). Here Int(g) means the inner automor-
phism by g.

8.2. In the rest of §8, fix (V,w, ⟨ , ⟩) as in 0.1. Let D,D∨, GR, gR be as in 0.1.
The algebraic group GR over R is semi-simple except the case dim(V ) = 2 and w

is even. In this exceptional case, there is no non-zero nilpotent operator in gR. Since
we are going to consider pure nilpotent orbits in §8 and §9, we will assume in these
sections that we are not in this exceptional case. We apply 8.1 to the semi-simple
algebraic group GR.

Each F ∈ D determines a maximal compact subgroup of GR: For F ∈ D, let KF

be the maximal compact subgroup of GR consisting of all elements which preserve the
Hodge metric ( , )F on VC associated to F . Here ( , )F is the positive definite Hermitian
form VC × VC → C defined by

(x, y)F = i2p−w⟨x, ȳ⟩ for x ∈ F p ∩ F̄w−p and y ∈ VC.

Here y 7→ ȳ denotes the complex conjugation.

8.3. Let W = (Wk)k∈Z be an increasing filtration on V such that the annihilator of
Wk in V with respect to ⟨ , ⟩ coincides with W2w−1−k for any k ∈ Z.

For F ∈ D, we define a splitting BS(W,F ) of W , which we call the Borel-Serre
splitting of W associated to F , as follows.

Let P be the parabolic subgroup of GR associated toW . That is, P is the connected
component as an algebraic group of GW,R = {g ∈ GR | gW = W} containing the
unit element. Then Pu is identified with the kernel of the canonical homomorphism
P → Aut(grW (V )) and hence P/Pu acts on grW (V ). Let T be the maximal R-split
torus of the center of P/Pu, and a : Gm → T be the homomorphism of algebraic
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groups over R characterized by the property that for y ∈ R×, a(y) acts on grWk as
the multiplication by yk−w for any k ∈ Z. Let K = KF . Define BS(W,F ) to be the
splitting of W associated to BSP,K ◦a : Gm → P . That is, BS(W,F ) is the unique
splitting s of W satisfying BSP,K(a(λ)) = s ◦ a(λ) ◦ s−1 for any λ ∈ R×.

By 8.1 (iii), the following holds.

(i) If g ∈ P , BS(W, gF ) = gBS(W,F ).

8.4. The following relationship between SL(2)-orbits and Borel-Serre theory was
proved in [KU1] 3.9:

Let (ρ, φ) be an SL(2)-orbit in n variables (for (V,w, ⟨ , ⟩)), and let the filtration
W (j) and the splitting s(j) of W (j) (1 ≤ j ≤ n) for (ρ, φ) be as in 2.2. Then

BS(W (j), φ(z)) = s(j) for 1 ≤ j ≤ n and for z ∈ (iR>0)
n.

Proposition 8.5. Assume that (V,w, ⟨ , ⟩, N1, . . . , Nn, F ) generates a pure nilpotent
orbit, and let (ρ, φ) be the associated SL(2)-orbit in n variables. Fix k such that 1 ≤
k ≤ n, and let s(k) be the splitting of W (k) associated to ρ. Then there exist c > 0
and vm ∈ gR (m ∈ Nn) such that v0 = 0, the conditions (1)–(3) below are satisfied,∑

m∈Nn vm
∏n

j=1 λ
m(j)
j absolutely converges when 0 ≤ λj < c for 1 ≤ j ≤ n, and such

that whenever yj+1/yj < c for 1 ≤ j ≤ n, we have

exp(
∑n

j=1 iyjNj)F ∈ D and BS(W (k), exp(
∑n

j=1 iyjNj)F ) = v(y)s(k),

with v(y) = exp(
∑

m∈Nn vm
∏n

j=1(
yj+1

yj
)m(j)).

(1) vmW
(k)
l ⊂W (k)

l−1 for all m and l.

(2) vmW
(j)
l ⊂W (j)

l+m(j) for all m, j, l.

(3) vm = 0 if m(k) = 0 and there is j such that 1 ≤ j < k and m(j) ̸= 0.

8.6. Proposition 8.5 will be proved in §9 together with Proposition 4.2.

As we will see in §9, 8.5 and 4.2 are related as follows: the vm (m ∈ Nn) in 8.5 and
the um (m ∈ Nn−k) in 4.2 are related by um = vm′ (m ∈ Nn−k, m′ ∈ Nn), where
m′(j) = 0 if j ≤ k, and m′(j) = m(j − k) if k < j ≤ n.

8.7. A characterization of the associated SL(2)-orbit by Borel-Serre theory. Assume
that (N1, . . . , Nn, F ) generates a pure nilpotent orbit. Then 8.5 shows that the associ-
ated SL(2)-orbit (ρ, φ) in n variables is the SL(2)-orbit characterized by the properties
2.5.1, 2.5.3 and the following 8.7.1 and 8.7.2.

8.7.1. For 1 ≤ k ≤ n, the splitting s(k) of W (k) associated to ρ is the limit of
BS(W (k), exp(

∑n
j=1 iyjNj)F ) for yj/yj+1 →∞.

8.7.2. φ(0n) = s(n)(F (grW
(n)

)).
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§9. Proof of Proposition 4.2

In this section, we prove Proposition 4.2. We prove it and the propositions 8.5, 9.2,
and 9.3 together.

Let (V,w, ⟨ , ⟩), GR, gR be as in 0.1.

9.1. Recall 2.2 that for an SL(2)-orbit in n variables for (V,w, ⟨ , ⟩), we have a direct
sum decomposition

gR =
⊕

µ∈Zn g
[µ]
R .

The action of Ad(t(y)) (y = (y1, . . . , yn), t(y) = ρ(∆(
√
y1, . . . ,

√
yn))

−1 as in 2.2) on

g
[µ]
R coincides with the multiplication by

∏n
j=1(yj+1/yj)

µ(j)/2.
For 1 ≤ j ≤ n, we have

Lie(GW (j),R) =
⊕

µ∈Zn,µ(j)≤0 g
[µ]
R .

The following Propositions 9.2 and 9.3 are complementary results to the SL(2)-orbit
Theorem of Cattani-Kaplan-Schmid in [CKS].

Proposition 9.2. Assume that (N1, . . . , Nn, F ) generates a pure nilpotent orbit. Con-
sider the associated SL(2)-orbit (ρ, φ) in n variables.

Let A be an R-subspace of gR such that gR = A ⊕ Lie(Kr) and such that if x ∈ A,
then x[µ] + x[−µ] ∈ A for any µ ∈ Zn.

(1) There exist c > 0 and hm ∈ A, km ∈ Lie(Kr) (m ∈ Nn) such that h0 = k0 = 0,∑
m∈Nn hm

∏n
j=1 λ

m(j)/2
j and

∑
m∈Nn km

∏n
j=1 λ

m(j)/2
j

absolutely converge when 0 ≤ λj < c for 1 ≤ j ≤ n, h
[µ]
m = k

[µ]
m = 0 unless µ(j) ≡ m(j)

mod 2 for 1 ≤ j ≤ n, and such that whenever yj+1/yj < c for 1 ≤ j ≤ n, we have

exp(
∑

1≤j≤n iyjNj)F = t(y)h(y)k(y)r, with

h(y) = exp(
∑

m∈Nn hm
∏n

j=1(
yj+1

yj
)m(j)/2),

k(y) = exp(
∑

m∈Nn km
∏n

j=1(
yj+1

yj
)m(j)/2).

Here t(y) and r are for (ρ, φ).

(2) Let (hm) be as in (1). Write hm =
∑

µ∈Zn h
[µ]
m , where h

[µ]
m ∈ g

[µ]
R .

Then we have:

(2.1) h
[µ]
m = 0 unless |µ(j)| ≤ m(j) for all j.

(2.2) Let m ∈ Nn, m ̸= 0, and let k be the largest integer in {1, . . . , n} such that

m(k) ̸= 0. Let µ ∈ Zn and assume h
[µ]
m ̸= 0. Then |µ(k)| < m(k).

An example of A as in 9.2 is given as follows. Note that the Cartan involution

θKr : gR → gR associated to Kr sends g
[µ]
R to g

[−µ]
R for any µ ∈ Zn and satisfies

Lie(Kr) = {x ∈ gR | θKr(x) = x}. For example, we can take A = {x ∈ gR | θKr(x) =
−x}. For this A, Proposition 9.2 is identical with [KU2] Proposition 6.2.2.
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Proposition 9.3. Assume that (N1, . . . , Nn, F ) generates a pure nilpotent orbit. Con-
sider the associated SL(2)-orbit (ρ, φ) in n variables.

Fix an integer k such that 1 ≤ k ≤ n. Then there exist c > 0 and pm ∈ Lie(GW (k),R),
km ∈ Lie(Kr) (m ∈ Nn) such that p0 = k0 = 0,∑

m∈Nn pm
∏n

j=1 λ
m(j)
j and

∑
m∈Nn km

∏n
j=1 λ

m(j)/2
j

absolutely converge when 0 ≤ λj < c for 1 ≤ j ≤ n, k[µ]m = 0 unless µ(j) ≡ m(j) mod 2
for 1 ≤ j ≤ n, the conditions (1) and (2) below are satisfied, and such that whenever
yj+1/yj < c for 1 ≤ j ≤ n, we have

exp(
∑

1≤j≤n iyjNj)F = p(y)t(y)k(y)r, with

p(y) = exp(
∑

m∈Nn pm
∏n

j=1(
yj+1

yj
)m(j)),

k(y) = exp(
∑

m∈Nn km
∏n

j=1(
yj+1

yj
)m(j)/2).

Here t(y) and r are for (ρ, φ).

(1) p
[µ]
m = 0 unless µ ≤ m.

(2) p
[µ]
m = 0 if m(j) = 0 for k ≤ j ≤ n and µ(k) ̸= 0.

Lemma 9.4. Let C be a finite dimensional Lie algebra over a field K of characteristic
0, and assume that we have a direct sum decomposition C = A ⊕ B of C as a vector
space over K. Let R = K[[T1, . . . , Tn]] and let R+ = Ker(R→ K;Tj 7→ 0 for all j). Let
ψ = (ψ1, ψ2) : R+⊗KC → (R+⊗KA)×(R+⊗KB) be the bijection characterized by c =
H(ψ1(c), ψ2(c)), c ∈ R+ ⊗K C, where H is the Hausdorff series (for this terminology,
cf. 1.2). Assume that a direct sum decomposition C =

⊕
µ∈Zn C [µ] is given. Assume

that [C [µ], C [µ′]] ⊂ C [µ+µ′] for any µ, µ′ ∈ Zn. Assume that if a ∈ A, b ∈ B, then
a[µ]+a[−µ] ∈ A and b[µ]+b[−µ] ∈ B for any µ ∈ Zn. Let c =

∑
m∈Nn cmT

m ∈ R+⊗KC

(cm ∈ C, c0 = 0, Tm =
∏n

j=1 T
m(j)
j ) and let a = ψ1(c) =

∑
m∈Nn amT

m ∈ R+ ⊗K A,

b = ψ2(c) =
∑

m∈Nn bmT
m ∈ R+ ⊗K B (am ∈ A, bm ∈ B, a0 = b0 = 0).

Then we have:

(1) If c
[µ]
m = 0 for any (µ,m) which does not satisfy µ ≡ m mod 2, then a

[µ]
m = b

[µ]
m =

0 for any (µ,m) which does not satisfy µ ≡ m mod 2.

(2) Fix k such that 1 ≤ k ≤ n. If c
[µ]
m = 0 for any (µ,m) such that |µ(k)| > m(k),

then a
[µ]
m = b

[µ]
m = 0 for any (µ,m) such that |µ(k)| > m(k).

(3) Fix k such that 1 ≤ k ≤ n. If c
[µ]
m = 0 for any (µ,m) such that m(j) = 0 for

k < j ≤ n and such that |µ(k)| ≥ m(k), then a
[µ]
m = b

[µ]
m = 0 for any (µ,m) such that

m(j) = 0 for k < j ≤ n and such that |µ(k)| ≥ m(k).

(4) If K = R or C, ψ1, ψ2 send convergent series to convergent series.

Proof. (1)–(3) are proved by induction on
∑n

j=1m(j). (4) follows from the fact that
the Hausdorff series induces an analytic isomorphism from an open neighborhood of the
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origin in A × B to an open neighborhood of the origin in C, for the differential of the
Hausdorff series at the origin gives the isomorphism A×B → C ; (a, b) 7→ a+ b. □

In the rest of §9, we assume that (N1, . . . , Nn, F ) generates a pure nilpotent orbit.
For simplicity, when n = 1, we write N in place of N1. Let (ρ, φ) be the associated
SL(2)-orbit in n variables, and let t, t(j) be as in 2.2.

9.5. Assume n = 1. Then we have the following expression of exp(iyN)F :

There exist c > 0 and bm ∈ gR (m ≥ 1) such that
∑

m≥1 bmλ
m/2 absolutely converges

when 0 ≤ λ < c, that

exp(iyN)F = t(y) exp
(∑

m≥1 bmy
−m/2

)
r

when y−1 < c, and such that the component b
[µ]
m of bm in g

[µ]
R (µ ∈ Z) is zero unless

|µ| ≤ m− 1 and µ ≡ m mod 2.

Proof. Let am ∈ gR (m ≥ 1) be as in 2.4.1. Then

exp
(∑

m≥1 amy
−m
)
t(y) = t(y) exp

(∑
m≥1,µ∈Z a

[µ]
m y−(2m−µ)/2

)
= t(y) exp

(∑
m≥1 bmy

−m/2
)
,

where bm =
∑

k a
[2k−m]
k . We have a

[2k−m]
k = 0 unless 2k −m < k. Since k > 0, the

condition 2k −m < k is equivalent to the condition |2k −m| < m. □

9.6. We deduce the case n = 1 of 9.2.
Let bm (m ≥ 1) be as in 9.5. We apply the case n = 1 of 9.4 by taking B = Lie(Kr).

Let
∑

m≥1 hmT
m (resp.

∑
m≥1 kmT

m) be the image of
∑

m≥1 bmT
m under the map ψ1

(resp. ψ2) of 9.4. Let h(y) = exp(
∑

m≥1 hmy
−m/2) and k(y) = exp(

∑
m≥1 kmy

−m/2).
Then by the case n = 1 of 9.4, we obtain the case n = 1 of 9.2.

9.7. We prove the case n = 1 of 9.3. That is, there exist c > 0 and pm ∈
Lie(GW,R) with W = W (N)[−w], km ∈ Lie(Kr) (m ≥ 1) such that

∑
m≥1 pmλ

m

and
∑

m≥1 kmλ
m/2 absolutely converge when 0 ≤ λ < c, that k

[µ]
m = 0 (m ∈ N, µ ∈ Z)

unless µ ≡ m mod 2, that p
[µ]
m = 0 (m ∈ N, µ ∈ Z) unless µ ≤ m, and that

exp(iyN)F = p(y)t(y)k(y)r with

p(y) = exp(
∑

m≥1 pmy
−m), k(y) = exp(

∑
m≥1 kmy

−m/2)

when y−1 < c. (This result is almost the same as [Sc] 5.25.)
Take A and B = Lie(Kr) in 9.4 such that A ⊂ Lie(GW,R). Such A exists. In-

deed, take an R-subspace A0 of g
[0]
R such that g

[0]
R = A0 ⊕ (Lie(Kr) ∩ g

[0]
R ). Let

A = (
⊕

µ<0 g
[µ]
R )⊕A0. Then gR = A⊕B and A ⊂ Lie(GW,R).

Let h(y) be as in 9.6 with respect to the aboveA andB, and let p(y) = t(y)h(y)t(y)−1.

Then p(y) = exp(
∑

m∈Z pmy
−m), where pm =

∑
k≥1 h

[2m−k]
k . We prove pm = 0 for



38 KAZUYA KATO, CHIKARA NAKAYAMA, SAMPEI USUI

m ≤ 0. Assume m ≤ 0. Then since |2m − k| ≥ k for any k, we have h
[2m−k]
k = 0 for

any k by (2) of the case n = 1 of 9.2, and this proves pm = 0. The fact that p
[µ]
m = 0

(m ∈ N, µ ∈ Z) unless µ ≤ m is similarly proved by (2.1) of the case n = 1 of 9.2.

9.8. We prove the case n = 1 of 8.5.
Let p(y) be as in 9.7. Write p(y) = v(y)p′(y) with v(y), p′(y) ∈ GW,R (W =

W (N)[−w]), where p′(y) = s grW (p(y))s−1 with s the splitting of W associated to
ρ, and v(y) acts trivially on grW (V ). Then

BS(W, exp(iyN)F ) = BS(W, v(y)p′(y)t(y)k(y)r)

= v(y) BS(W,p′(y)t(y)r) = v(y) BS(W, r)

by 8.3 (i), 8.4, and p′(y)t(y)s(1) = s(1).

9.9. From 9.8, we obtain the case n = 1 of 8.7. That is, in the case n = 1,
the splitting of W = W (N)[−w] associated to ρ is the limit of BS(W, exp(iyN)F ) for
y →∞.

9.10. We prove the statement in 2.4 about the uniqueness of (ρ, φ) satisfying 2.3.1
and 2.4.1. In fact, the arguments in 9.5–9.9 show that an SL(2)-orbit (ρ, φ) in one
variable satisfying 2.3.1 and 2.4.1 has the characterizing property in 9.9 described by
Borel-Serre theory, and hence is unique.

9.11. We prove (1) of 9.2.
Let bm ∈ gR (m ∈ Nn) be as in 0.1 (bm appeared in the expression of eg(y)).
By using 9.4 with B = Lie(Kr), let

∑
m∈Nn hmT

m (resp.
∑

m∈Nn kmT
m) be the

image of
∑

m∈Nn bmT
m under ψ1 (resp. ψ2). Let

h(y) = exp(
∑

m∈Nn hm
∏n

j=1(yj+1/yj)
m(j)/2),

k(y) = exp(
∑

m∈Nn km
∏n

j=1(yj+1/yj)
m(j)/2).

Then we have

exp(
∑

1≤j≤n iyjNj)F = t(y) eg(y)r = t(y)h(y)k(y)r.

Since b
[µ]
m = 0 unless m ≡ µ mod 2 as is seen by the method in 9.5, h

[µ]
m = 0 and

k
[µ]
m = 0 unless m ≡ µ mod 2 by 9.4 (1).

9.12. We prove 9.2 (2.1).

We fix k such that 1 ≤ k ≤ n. We prove that h
[µ]
m = 0 unless |µ(k)| ≤ m(k).

First we show that the validity of 9.2 (2.1) is independent of the choice of A. Assume
that A′ satisfies the same condition as A, let ψ′ = (ψ′

1, ψ
′
2) be the map ψ = (ψ1, ψ2)

in 9.4 defined for the pair (A′,Lie(Kr)), and define
∑

m∈Nn h′mT
m and

∑
m∈Nn k′′mT

m

as the images of
∑

m∈Nn hmT
m under the maps ψ′

1 and ψ′
2, respectively. Let h′(y) =

exp(
∑

m∈Nn h′m
∏n

j=1(yj+1/yj)
m(j)/2), k′′(y) = exp(

∑
m∈Nn k′′m

∏n
j=1(yj+1/yj)

m(j)/2),

k′(y) = k′′(y)k(y). Then we have h(y)k(y) = h′(k)k′(y). Hence by 9.4 (2), if 9.2 (2.1)
is true for A, then it is true for A′.
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By this independence, we may and will assume A ⊂ Lie(GW (k),R). Let P be the
connected component as an algebraic group of GW (k),R containing the unit element.
Fix yj > 0 for 1 ≤ j ≤ n such that yj/yj+1 ≫ 0 (1 ≤ j ≤ n). Then the pair(∑

1≤j≤k yjNj , exp(
∑

k<j≤n iyjNj)F
)
generates a pure nilpotent orbit. Let (ρ′, φ′) be

the SL(2)-orbit in one variable associated to this pair.
By the case n = 1 of 9.3 proved in 9.7, we have fs ∈ Lie(P ) (s ≥ 1) such that∑
s≥1 fsλ

s absolutely converges for λ ≥ 0 sufficiently small, and such that

exp
(
iλ
(∑k

j=1 yjNj

)
+
∑n

j=k+1 iyjNj

)
F ∈ f(λ)t′(λ)Kr′ · r′(1)

with f(λ) = exp
(∑

s≥1 fsλ
−s
)

for λ≫ 0, where r′ := φ′(i) and t′ is the “t” for ρ′.
Since P is a parabolic subgroup of GR and Kr is a maximal compact subgroup of

GR, we have GR = PKr ([B] §11). That is, there exists g ∈ P such that r′ ∈ gKr · r.
We have Kr′ = Int(g)(Kr). Hence by 8.4 and 8.1 (iii), we have for λ > 0

t′(λ) = BSP,Kr′ (a) = Int(g)(BSP,Kr(a)) = Int(g)(t(k)(λ)),

where a :
⊕

k gr
W (k)

k (V )→
⊕

k gr
W (k)

k (V ) ; (xk)k 7→ (λ(w−k)/2xk)k.

This shows
f(λ)t′(λ)Kr′ · r′ = t(k)(λ) Int(t(k)(λ))−1(f(λ)g)Kr · r.

On the other hand, the left hand side of (1) belongs to

t(k)(λ)t(y)h(y, λ)Kr · r,

where h(y, λ) = exp
(∑

m∈Nn hm
∏

1≤j≤n(
yj+1

yj
)m(j)/2λ−m(k)/2

)
(hm ∈ A, h0 = 0). Hence

(2) h(y, λ)(P ∩Kr) = t(y)−1 Int(t(k)(λ))−1(f(λ)g)(P ∩Kr).

We can write g ∈ P as g = g′g0, g
′ = exp(

∑
s≥1 g−s), where g0 = s(k) grW

(k)

(g)(s(k))−1

∈ P and g−s is an element of Lie(P ) such that g
[µ]
−s for µ ∈ Zn is 0 unless µ(k) = −s.

Then g0 commutes with t(k)(λ). We have

(3) Int(t(k)(λ))−1(f(λ)g′) = exp
(∑

s≥1,µ∈Zn f
[µ]
s λ(µ(k)/2)−s

)
exp

(∑
s≥1 g−sλ

−s/2
)
.

Since fs ∈ Lie(P ), f
[µ]
s = 0 unless µ(k) ≤ 0. Hence (3) shows that Int(t(k)(λ))−1(f(λ)g)

converges to g0 as λ→∞. On the other hand, the left hand side of (2) converges to

h(y,∞)(P ∩Kr) = exp(
∑

m∈Nn,m(k)=0 hm
∏

1≤j≤n(
yj+1

yj
)m(j)/2)(P ∩Kr)

in P/(P ∩Kr). Hence the limit of (2) for λ→∞ shows g0 ∈ t(y)h(y,∞)(P ∩Kr). Hence
the right hand side of (2) is written as t(y)−1 Int(t(k)(λ))−1(f(λ)g′)t(y)h(y,∞)(P ∩Kr).
Note that
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(4) exp(a)Kr · r = exp(b)Kr · r implies a = b if a, b belong to a sufficiently small
neighborhood of 0 in A.

Since yj/yj+1 ≫ 0 (1 ≤ j ≤ n), t(y)−1 Int(t(k)(λ))−1(f(λ)g′)t(y)h(y,∞) for λ ≫ 0

is near to 1. By (3), this element has the form exp(
∑

s≥1 dsλ
−s/2) with ds ∈ Lie(P )

such that d
[µ]
s = 0 unless |µ(k)| ≤ s. Let

∑
s≥1 d

′
sT

s = ψ1(
∑

s≥1 dsT
s) in 9.4 with

B = Lie(Kr) and n = 1. Then by 9.4 (2), d′
[µ]
s = 0 unless |µ(k)| ≤ s. By (2) and (4),

we have ∑
m∈Nn hm

∏n
j=1(

yj+1

yj
)m(j)/2λ−m(k)/2 =

∑
s≥0 d

′
sλ

−s/2,

and this shows that h
[µ]
m = 0 unless |µ(k)| ≤ m(k). □

9.13. We prove 9.3 except the following parts: the part p0 = 0 and 9.3 (2).
We take A ⊂ Lie(GW (k),R).

Let p(y) = t(y)h(t)t(y)−1. Then

p(y) = exp(
∑

m∈Zn pm
∏n

j=1(yj+1/yj)
m(j)), p

[µ]
m = h

[µ]
2m−µ, h

[µ]
m = p

[µ]
(m+µ)/2.

By 9.2 (2.1) which we have already proved, h
[µ]
2m−µ = 0 unless |µ(j)| ≤ 2m(j)−µ(j) for

any j, that is, unless m(j) ≥ 0 and m(j) ≥ µ(j) for all j. Hence we have pm = 0 unless

m ≥ 0, and we have p
[µ]
m = 0 unless µ(j) ≤ m(j) for any j.

9.14. We prove 8.5 except the following parts: the part v0 = 0 and 8.5 (3).
Let p(y) be as in 9.13, and write p(y) = v(y)p′(y) with v(y), p′(y) ∈ GW (k),R, where

p′(y) = s(k) grW
(k)

(p(y))(s(k))−1 and v(y) acts trivially on grW
(k)

(V ). Then by 8.1 (iii)
and 8.4, we have

BS(W (k), exp(
∑n

j=1 iyjNj)F ) = BS(W (k), p(y)t(y)k(y)r)

= v(y) BS(W (k), r) = v(y)s(k).

Write v(y) = exp(
∑

m∈Nn vm
∏n

j=1(yj+1/yj)
m(j)). Then the property 8.5 (1) of vm is

clear and the property 8.5 (2) follows from the property 9.3 (1) of pm.

9.15. We prove 4.2 except the part u0 = 0, and prove also 8.5 (3).
Let v(y) and vm be as in 9.14. Then for λ > 0, we have

(1) BS(W (k), exp(
∑k

j=1 iλyjNj +
∑n

j=k+1 iyjNj)F ) = v(y′)s(k)

with y′ = (λy1, . . . , λyk, yk+1, . . . , yn). Note

v(y′) = exp(
∑

m∈Nn vm · (yk+1

λyk
)m(k) ·

∏
1≤j≤n,j ̸=k(

yj+1

yj
)m(j)).

By the case n = 1 of 8.5 proved in 9.8, when λ → ∞, the left hand side of (1)
converges to the canonical splitting of W (k) associated to the mixed Hodge structure
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(W (k), exp(
∑n

j=k+1 iyjNj)F ), which is independent of y1, . . . , yk. On the other hand,

the right hand side of (1) converges to

exp(
∑

m∈Nm,m(k)=0 vm
∏

1≤j≤n,j ̸=k(
yj+1

yj
)m(j))s(k).

Hence this is independent of y1, . . . , yk, and this proves 8.5 (3).
Let um = vm′ , wherem′ ∈ Nn is defined bym′(j) = 0 for j ≤ k andm′(j) = m(j−k)

for j > k. We have shown:

(2) The canonical splitting of W (k) associated to exp(
∑n

j=k+1 iyjNj)F is u(y)s(k)

with u(y) = exp(
∑

m∈Nn−k um
∏n

j=k+1(
yj+1

yj
)m(j−k)).

The property 4.2 (ii) of um (m ∈ Nn−k) is clear and the property 4.2 (iii) follows
from the property 8.5 (2) of vm (m ∈ Nn).

Lemma 9.16. Let k ≤ l ≤ n. Then the canonical splitting of W (k) associated to the
mixed Hodge structure (W (k), exp(

∑
k<j≤l iyjNj) exp(iNl+1)F̂(l+1)) is

exp(
∑′

m,µ u
[µ]
m · (

∏
k<j<l(

yj+1

yj
)m(j−k)) · ( 1

yl
)m(l−k)) · s(k),

where
∑′

m,µ is the sum for all m ∈ Nn−k and µ ∈ Zn such that m(j) = 0 for l − k <
j ≤ n− k and such that µ(j) = 0 for l < j ≤ n. Here in the case l = n, Nl+1 means 0

and F̂(l+1) means F .

Proof. We prove this by downward induction. In the case l = n, this is 9.15 (2). Write
the statement 9.16 for l as 9.16(l). Assume l < n and assume that 9.16(l+1) is true.
Consider the mixed Hodge structure

(1) (W (k), t(l+1)(λ)−1 exp(
∑

k<j≤l iλyjNj) exp(iλNl+1) exp(iNl+2)F̂(l+2)).

We have

t(l+1)(λ)−1 exp(
∑

k<j≤l iλyjNj) exp(iλNl+1) exp(iNl+2)F̂(l+2)

= exp(
∑

k<j≤l iyjNj) exp(iNl+1)t
(l+1)(λ)−1 exp(iNl+2)F̂(l+2)

by 2.7, and
t(l+1)(λ)−1 exp(iNl+2)F̂(l+2) → F̂(l+1) when λ→∞.

Hence we have:

(2) When λ→∞, the canonical splitting of W (k) associated to (1) converges to the
canonical splitting of W (k) associated to the mixed Hodge structure
(W (k), exp(

∑
k<j≤l iyjNj) exp(iNl+1)F̂(l+1)).

On the other hand, by 9.16(l+1), the canonical splitting of W (k) associated to (1)
coincides with

Int(t(l+1)(λ))−1
(
exp(

∑′′
m,µ u

[µ]
m (
∏

k<j<l(
yj+1

yj
)m(j−k))( 1

yl
)m(l−k)( 1λ )

m(l+1−k))
)
s(k)

= exp
(∑′′

m,µ u
[µ]
m (
∏

k<j<l(
yj+1

yj
)m(j−k))( 1

yl
)m(l−k)λ(µ(l+1)/2)−m(l+1−k)

)
s(k),
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where
∑′′

m,µ is the sum for all m ∈ Nn−k and µ ∈ Zn such that m(j) = 0 for l+1−k <
j ≤ n−k and such that µ(j) = 0 for l+1 < j ≤ n. By 4.2 (iii) which we have proved in

9.15, we have u
[µ]
m = 0 unless µ(l+1) ≤ m(l+1−k). Hence if (µ(l+1)/2)−m(l+1−k) ≥ 0

and u
[µ]
m ̸= 0, then m(l + 1− k) = µ(l + 1) = 0. From this, we have:

(3) When λ → ∞, the canonical splitting of W (k) associated to (1) converges to

exp(
∑′

m,µ u
[µ]
m
∏

k<j<l(
yj+1

yj
)m(j−k) · ( 1

yl
)m(l−k)) · s(k).

By (2) and (3), we have 9.16(l). □

9.17. Write the statement 9.2 (2.2) for a fixed k as 9.2 (2.2)k. By 9.4 (3), the
validity of 9.2 (2.2)k is independent of the choice of A as is seen by the argument at the
beginning of 9.12.

9.18. Denote by 9.3′ the part “9.3 without the statement p0 = 0” of 9.3. We
complete the proofs of 4.2, 8.5, 9.2, and 9.3′.

We prove 4.2, 8.5, 9.2 (2.2)k, and 9.3′ together, by downward induction on k.

Take A ⊂ Lie(GW (k),R). Let hm, pm, vm, um be as in 9.11–9.15. We first prove

Claim 1. p
[µ]
0 = v

[µ]
0 = u

[µ]
0 = 0 unless µ(j) = 0 for any j such that k < j ≤ n.

Note p0 =
∑

m∈Nn h
[−m]
m . By the hypothesis of our downward induction, h

[−m]
m = 0

unless m(j) = 0 for any j such that k < j ≤ n. This proves the statement for p0. The
statement for v0 follows from that for p0, and the statement for u0 follows from that
for v0.

Now by Claim 1, 9.16(k) is read as

s(k) = exp(u0)s
(k).

This proves

u0 = 0.

This proves 4.2.

We obtain v0 = 0 from u0 = 0. This proves 8.5.

By v0 = 0 and by 8.5 (3), we have vm = 0 if m(j) = 0 for any j such that k ≤ j ≤ n.
This proves 9.3 (2), and proves 9.3′.

We prove 9.2 (2.2)k. Assume h
[µ]
m ̸= 0 and assume m(j) = 0 for k < j ≤ n, and

m(k) ̸= 0. We have µ(j) = 0 for k < j ≤ n because |µ(j)| ≤ m(j) by 9.3 (2.1). If
|µ(k)| = m(k), then µ(k) = −m(k) since µ(k) ≤ 0 by hm ∈ Lie(GW (k),R). We have

h
[µ]
m = p

[µ]
(m+µ)/2 (9.13). Since (m(j) + µ(j))/2 = 0 for k ≤ j ≤ n, we have µ(k) = 0 by

9.3 (2). But this contradicts µ(k) = −m(k) ̸= 0.

9.19. Let pm and hm be as above. We complete the proof of 9.3 by showing p0 = 0.

We have p0 =
∑

m∈Nn h
[−m]
m . But h

[−m]
m = 0 by 9.2 (2.2).
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§10. Complements to Main Theorem

We give complementary results to the main theorem 0.5.

10.1. Let the notation be as in Theorem 0.5.
The following facts 10.1.1–10.1.3 are shown by the reduction to the pure situation

by 4.1, by using 2.5 and 1.6. In particular, we have a description of the limit splitting
s in Theorem 0.5 (1) by finite algebraic steps, not as a limit.

10.1.1. Let W (j) = M(N1 + · · · + Nj ,W ) for 0 ≤ j ≤ n (in particular, W (0) =

W ). Let (W (n), F̂(n)) be the R-split mixed Hodge structure associated to the mixed

Hodge structure (W (n), F ). Then (W (n−1), exp(iNn)F̂(n)) is a mixed Hodge structure.

Let (W (n−1), F̂(n−1)) be the R-split mixed Hodge structure associated to it. Then

(W (n−2), exp(iNn−1)F̂(n−1)) is a mixed Hodge structure, and so on. This process con-

tinues until we obtain the R-split mixed Hodge structure (W (0), F̂(0)).

10.1.2. F̂(0) = r (= s(
⊕

w rw)), and the splitting s of W in Theorem 0.5 (1) is the

splitting of W =W (0) given by the R-split mixed Hodge structure (W (0), F̂(0)).

10.1.3. For 1 ≤ j ≤ n, F̂(j) = s(
⊕

w φw(0j , in−j)).

Define a homomorphism ρ of algebraic groups, which is defined over R, and a holo-
morphic map φ

ρ : C× × SL(2,C)n → AutC(VC,WC), φ : P1(C)n → D∨,

by
ρ(λ, g) = s(

⊕
w∈Z λ

wρw(g))s
−1, φ(z) = s(

⊕
w∈Z φw(z))

(λ ∈ C×, g ∈ SL(2,C)n). Then 10.1.3 and the first part of 10.1.2 are written as

10.1.4. For 0 ≤ j ≤ n, F̂(j) = φ(0j , in−j).

We have:

10.1.5. ρ(λ, g)φ(z) = φ(gz) for λ ∈ C×, g ∈ SL(2,C)n, z ∈ P1(C)n.

10.1.6. φ(hn) ⊂ D.

Thus this (ρ, φ) is similar to the (ρ, φ) in the pure case (0.1).
We have

t(y1, . . . , yn) = ρ

(
1/
√
y1,

(√
y1 0
0 1/

√
y1

)
, . . . ,

(√
yn 0
0 1/

√
yn

))
,

φ(iy1, . . . , iyn) = t(y1, . . . , yn)r,

where t(y1, . . . , yn) is as in Theorem 0.5.
A difference from the pure case is that in the mixed case, in general, it is not possible

to have a result of the form as in 0.1

exp(
∑n

j=1 iyjNj)F = f(y)φ(iy1, . . . , iyn)
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(f(y) ∈ AutC(VC,WC), yj/yj+1 ≫ 0, yn+1 = 1) such that f(y)→ 1 when yj/yj+1 →∞
(1 ≤ j ≤ n). See Example 13.2.

10.2. Let the notation be as in Theorem 0.5.
Let s(j) (0 ≤ j ≤ n) be the splitting of W (j) given by the R-split mixed Hodge

structure (W (j), F̂(j)). In particular, s(0) is the splitting s of W in Theorem 0.5 (1).

Then by 10.1.3, for 0 ≤ j ≤ n and for w ∈ Z, s(j)(grW
(j)

w ) coincides with the part of
V on which

ρ

(
λ,

{(
1/λ 0
0 λ

)}j

× {1}n−j

)
(λ ∈ R×)

acts as the multiplication by λw. Here ρ is as in 10.1. From this, we have the following
facts.

For θ ∈ Z{0,...,n}, let

V [θ] =
∩n

j=0 s
(j)(grW

(j)

θ(j) ).

Then

V =
⊕

θ∈Z{0,...,n} V [θ], W
(j)
k =

⊕
θ∈Z{0,...,n},θ(j)≤k V

[θ] (0 ≤ j ≤ n, k ∈ Z).

This explains the distributive property of W (0), . . . ,W (n) (5.5).

For µ ∈ Zn, let

V [µ] =
∩n

j=1 s
(j)(grW

(j)

µ(j) ).

That is, V [µ] is the direct sum of V [θ] for all θ ∈ Z{0,...,n} such that θ(j) = µ(j) for
1 ≤ j ≤ n. Then

V =
⊕

µ∈Zn V [µ], W
(j)
k =

⊕
µ∈Zn,µ(j)≤k V

[µ] (1 ≤ j ≤ n, k ∈ Z),

and V [µ] coincides with the part of V on which t(y) acts as the multiplication by∏n
j=1(yj+1/yj)

µ(j)/2.

For θ ∈ Z{0,...,n} and for µ ∈ Zn, let

g
[θ]
R = {X ∈ gR | XV [θ′] ⊂ V [θ′+θ] for any θ′ ∈ Z{0,...,n}},

g
[µ]
R = {X ∈ gR | XV [µ′] ⊂ V [µ′+µ] for any µ′ ∈ Zn}.

Then

gR =
⊕

θ∈Z{0,...,n} g
[θ]
R =

⊕
µ∈Zn g

[µ]
R ,

Lie(GW (j),R) =
⊕

θ∈Z{0,...,n},θ(j)≤0 g
[θ]
R for 0 ≤ j ≤ n,

Lie(GW (j),R) =
⊕

µ∈Zn,µ(j)≤0 g
[µ]
R for 1 ≤ j ≤ n,

and g
[µ]
R for µ ∈ Zn coincides with the part of gR on which Ad(t(y)) acts as the

multiplication by
∏n

j=1(yj+1/yj)
µ(j)/2.
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For 1 ≤ j ≤ n, write Nj =
∑

θ∈Z{0,...,n} N
[θ]
j =

∑
µ∈Zn N

[µ]
j with N

[θ]
j ∈ g

[θ]
R and

N
[µ]
j ∈ g

[µ]
R . Define

N̂j =
∑′

θ∈Z{0,...,n} N
[θ]
j , N∆

j =
∑′

µ∈Zn N
[µ]
j ,

where
∑′

θ (resp.
∑′

µ) is the sum for all θ ∈ Z{0,...,n} (resp. µ ∈ Zn) such that θ(k) = 0

for 0 ≤ k < j (resp. µ(k) = 0 for 1 ≤ k < j). In particular, N∆
1 = N1. We have

N̂j = s(
⊕

w∈Z(N̂j of ρw))s
−1 (s = s(0) = the limit splitting of W in Theorem 0.5), and

N̂j coincides with the component of N∆
j purely of weight 0 with respect to the splitting

s of W .

10.3. Let the notation be as in Theorem 0.5. For 1 ≤ j ≤ n and λ > 0, let

t(j)(λ) = s(
⊕

w∈Z λ
−w/2t

(j)
w (λ))s−1.

So, t(y) =
∏n

j=1 t
(j)(yj/yj+1). We have

Ad(t(j)(λ))(Nk) = λNk for 1 ≤ k ≤ j.
This is shown by the reduction to the pure case 2.7 by 4.1, by using 4.4.

Proposition 10.4. Let the notation be as in Theorem 0.5.

(1) For 0 ≤ j ≤ n, we have F̂(j) = exp(
∑n

k=j+1 iN̂k)F̂(n).

In particular, exp(
∑n

j=1 iN̂j)F̂(n) = r.

(2) exp(
∑n

j=1 iN
∆
j )F̂(n) = exp(ε0)r.

Here ε0 is a member of (εm)m in Theorem 0.5.

Proof. (1) follows from 10.1.3.

We prove (2). Write ε(n) = ε(W (n), F ) so that F = exp(ε(n))F̂(n). Consider

t(y)−1 exp(
∑n

j=1 iyjNj)F

= exp(Ad(t(y))−1∑n
j=1 iyjNj) exp(Ad(t(y))−1ε(n))t(y)−1F̂(n).

Since N
[µ]
j = 0 unless µ(k) = −2 for j ≤ k ≤ n by 10.3, we have

Ad(t(y))−1(yjNj) =
∑

µ∈Zn

∏j−1
k=1(

yk

yk+1
)µ(k)/2N

[µ]
j .

This converges to N∆
j .

Next we have

Ad(t(y))−1ε(n) =
∑

µ∈Zn

∏n
k=1(

yk

yk+1
)µ(k)/2(ε(n))[µ].

Since (ε(n))[µ] = 0 unless µ(n) ≤ −2 and µ(k) ≤ 0 for any 1 ≤ k ≤ n, this converges to
0.

We have t(y)−1F̂(n) = F̂(n) by 10.1.3.
Hence

t(y)−1 exp(
∑n

j=1 iyjNj)F → exp(
∑n

j=1 iN
∆
j )F̂(n) as yj/yj+1 →∞ (1 ≤ j ≤ n).

On the other hand, t(y)−1 exp(
∑n

j=1 iyjNj)F = eg(y) exp(ε(y))r as in Theorem 0.5,

and this converges to exp(ε0)r. This proves (2). □
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Lemma 10.5. Let the notation be as in Theorem 0.5. We have

δ(W, exp(
∑n

j=1 iyjNj)F ), ζ(W, exp(
∑n

j=1 iyjNj)F ) ∈ R(y)⊗R gR,

ε(W, exp(
∑n

j=1 iyjNj)F ) ∈ C(y)⊗R gR.

Here R(y) denotes the rational function field R(y1, . . . , yn) in n variables y1, . . . , yn
over R, and C(y) = C(y1, . . . , yn).

Proof. Since Nj are nilpotent and commute with each other, exp(
∑n

j=1 iyjNj) belongs

to C[y1, . . . , yn] ⊗R gR ⊂ C(y) ⊗R gR. We can regard Deligne’s splitting (Ip,qy ) of

(W, exp(
∑n

j=1 iyjNj)F ) as a direct sum decomposition of the vector space C(y)⊗R V

over C(y). The proof in [CKS] of the unique existence of δ having the properties 1.3
(i) and (ii) shows that there is a unique δy ∈ R(y)⊗R gR having the properties 1.3 (i)
and (ii) for (Ip,qy ). We obtain elements δy,p,q ∈ R(y) ⊗R gR and they determine ζy ∈
R(y) ⊗R gR. We have δ(W, exp(

∑n
j=1 iyjNj)F ) = δy, ζ(W, exp(

∑n
j=1 iyjNj)F ) = ζy.

By the definition of ε (1.2), we have ε(W, exp(
∑n

j=1 iyjNj)F ) ∈ C(y)⊗R gR. □
Proposition 10.6. Let the notation be as in Theorem 0.5.

(1) ε
[µ]
m = 0 unless m ≡ µ mod 2.

(2) Let C{T1, . . . , Tn} ⊂ C[[T1, . . . , Tn]] be the ring of convergent series in n vari-

ables. As an element of C{(y2/y1)1/2, . . . , (yn+1/yn)
1/2}[y1/21 , . . . , y

1/2
n ]⊗R gR,

Ad(t(y))ε(y) belongs to C{y2/y1, . . . , yn+1/yn}[y1, . . . , yn]⊗R gR.

Proof. Since ε(y) = Ad(g(y)t(y))−1ε(W, exp(
∑n

j=1 iyjNj)F ) and g(y) is the exponen-

tial of an element of C{y2/y1, . . . , yn+1/yn} ⊗R gR, (1) follows from Lemma 10.5.
(2) follows from (1). □

Proposition 10.7. Let the notation be as in Theorem 0.5. For yj > 0 and yj+1/yj ≪ 1
(1 ≤ j ≤ n, yn+1 denotes 1), Ad(t(y))−1δ(W, exp(

∑n
j=1 iyjNj)F ),

Ad(t(y))−1ζ(W, exp(
∑n

j=1 iyjNj)F ), δ(W, t(y)
−1g(y)−1 exp(

∑n
j=1 iyjNj)F ), and

ζ(W, t(y)−1g(y)−1 exp(
∑n

j=1 iyjNj)F ) (resp. Ad(t(y))−1ε(W, exp(
∑n

j=1 iyjNj)F )) are

(resp. is) expressed as convergent series in (yj+1/yj)
1/2 (1 ≤ j ≤ n) with coefficients in

gR (resp. gC).

Proof. Since Ad(t(y))−1ε(W, exp(
∑n

j=1 iyjNj)F ) = Ad(eg(y))ε(y), the assertion for ε

is deduced from Theorem 0.5 (3), (4). By 1.2 (1), the assertions for δ and ζ follow from
the above result for Ad(t(y))−1ε(W, exp(

∑n
j=1 iyjNj)F ) and from Theorem 0.5 (4). □

For real analytic manifolds A,B and c > 0, and for a map

f : A× {λ ∈ Rn | 0 < λj < c for 1 ≤ j ≤ n} → B,

we say f is real analytic at λ = 0 if the following condition is satisfied: For each α ∈ A,
there are an open neighborhood U of α in A, a real number c′such that 0 < c′ < c, and
a real analytic map

f ′ : U × {λ ∈ Rn | − c′ < λj < c′ for 1 ≤ j ≤ n} → B

which coincides with f on U × {λ ∈ Rn | 0 < λj < c′ for 1 ≤ j ≤ n}.
The following is a generalization of [CKS] Remark (4.65) (ii) to the mixed case.
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Proposition 10.8. Let (V,W, (⟨ , ⟩w)w) and Gw,R, GR, gR, D∨ be as in 0.2. Let A
be a real analytic manifold, and let

A→ gR ; α 7→ Nj,α (1 ≤ j ≤ n), A→ D∨ ; α 7→ Fα

be real analytic maps satisfying the following conditions (i) and (ii).

(i) For any α ∈ A, (N1,α, . . . , Nn,α, Fα) generates a mixed nilpotent orbit.

(ii) For 1 ≤ j ≤ n, the relative monodromy filtration M(N1,α + · · ·+Nj,α,W ) is
independent of α ∈ A.

Then:

(1) Locally on A, the number c > 0 in Theorem 0.5 (2) for (N1,α, . . . , Nn,α, Fα) can
be taken to be common for any α ∈ A. Let um,α (m ∈ Nn, α ∈ A) be um in Theorem
0.5 (2) for (N1,α, . . . , Nn,α, Fα). Then the map α 7→ um,α is real analytic.

(2) Locally on A, let egw,α(y) (w ∈ Z, α ∈ A) be eg(y) in 0.1 for (grWw (N1,α), . . . ,
grWw (Nn,α), Fα(gr

W
w )) which we choose (note that eg(y) in 0.1 is not unique) in the way

that for any w, the function

A× {λ ∈ Rn | 0 < λj < c} → Gw,R ; (α, λ) 7→ egw,α(y), where λj =
√
yj+1/

√
yj

is real analytic at λ = 0 (this is possible by [CKS] Remark (4.65) (ii)). Then locally on
A, the numbers c > 0 in Theorem 0.5 (3) and (4) for (N1,α, . . . , Nn,α, Fα) can be taken
to be common for any α ∈ A. Let bm,α (resp. εm,α) (m ∈ Nn, α ∈ A) be bm (resp. εm)
in Theorem 0.5 (3) (resp. (4)) for (N1,α, . . . , Nn,α, Fα). Then the maps α 7→ bm,α,
α 7→ εm,α are real analytic.

Proof. For 0 ≤ j ≤ n, the map

A→ D∨;α 7→ F̂α,(j)

is real analytic. This is shown step by step, by downward induction on j using the real
analycity of ε(W (j),−).

Hence for 0 ≤ j ≤ n, the splitting s
(j)
α of W (j) defined by the R-split mixed Hodge

structure (W (j), F̂α,(j)) is real analytic in α.

Let gR =
⊕

µ∈Zn g
[µ,α]
R be the decomposition in 10.2 defined by (N1,α, . . . , Nn,α, Fα).

Since this decomposition is determined by s
(j)
α (1 ≤ j ≤ n) as in 10.2 and since the s

(j)
α

are real analytic in α, this decomposition of gR is real analytic in α.
Now as in the proof of 10.4, consider

tα(y)
−1 exp(

∑n
j=1 iyjNj,α)Fα

= exp(Ad(tα(y))
−1∑n

j=1 iyjNj,α) exp(Ad(tα(y))
−1ε

(n)
α )F̂α,(n),

where tα(y) is t(y) in Theorem 0.5 (3) for (N1,α, . . . , Nn,α, Fα) and ε
(n)
α = ε(W (n), Fα).

As functions in (α, λ),

Ad(tα(y))
−1(yjNj,α) =

∑
µ∈Zn

∏j−1
k=1(

yk

yk+1
)µ(k)/2N

[µ,α]
j,α ,

Ad(tα(y))
−1(ε(n)α ) =

∑
µ∈Zn

∏n
k=1(

yk

yk+1
)µ(k)/2(ε

(n)
α )[µ,α]
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are real analytic at λ = 0. Hence we have

Claim 1. As a function in (α, λ), tα(y)
−1 exp(

∑n
j=1 iyjNj,α)Fα is real analytic at

λ = 0.

We prove (1). Let uα(y) be u(y) in Theorem 0.5 (2) for (N1,α, . . . , Nn,α, Fα). Let
euα(y) = tα(y)

−1uα(y)tα(y). Then euα(y) = esα(y)s
−1
α , where esα(y) is the splitting

of W associated to the mixed Hodge structure (W, tα(y)
−1 exp(

∑n
j=1 iyjNj,α)Fα) (we

assume yj/yj+1 ≫ 0). By Claim 1, as a function in (α, λ), esα(y) is real analytic at
λ = 0. Hence we have

Claim 2. As a function in (α, λ), euα(y) is real analytic at λ = 0.

Hence we can write euα(y) = exp(
∑

m∈Nn
eum,α

∏n
j=1 λ

m(j)
j ), there is c > 0 locally

on A such that
∑

m∈Nn
eum,α

∏n
j=1 λ

m(j)
j absolutely converges for any α ∈ A and

0 ≤ λj < c (1 ≤ j ≤ n), and the map α 7→ eum,α is real analytic for any m ∈ Nn. Since

um,α =
∑

µ∈Zn(eu2m−µ,α)
[µ,α], the map α 7→ um,α is also real analytic.

For each µ ∈ Zn, by∑
m∈Nn(um,α)

[µ,α]
∏n

j=1 λ
2m(j)
j =

∏n
j=1 λ

µ(j)
j

∑
m∈Nn(eum,α)

[µ,α]
∏n

j=1 λ
m(j)
j ,

we see that
∑

m∈Nn(um,α)
[µ,α]

∏n
j=1 λ

2m(j)
j absolutely converges when 0 ≤ λj < c

(1 ≤ j ≤ n). Hence the function (α, λ) 7→ uα(y) is real analytic at λ = 0. This proves
(1).

We prove (2). Let egα(y) (resp. εα(y)) be eg(y) (resp. ε(y)) in Theorem 0.5 (3)
(resp. (4)) for (N1,α, . . . , Nn,α, Fα). Since egα(y) =

euα(y)sα(
⊕

w
egw,α(y))s

−1
α , egα(y)

is real analytic at λ = 0 as a function in (α, λ) by Claim 2. Hence by Claim 1,
εα(y) = ε(W, egα(y)

−1tα(y)
−1 exp(

∑n
j=1 iyjNj,α)Fα) is real analytic at λ = 0 as a

function in (α, λ). □

§11. Relationship with work of Pearlstein [P3]

11.1. Assume that (V,W, (⟨ , ⟩w)w, N, F ) generates a mixed nilpotent orbit with
n = 1.

Consider theR-split mixed Hodge structures F̂ = exp(ζ) exp(−iδ)F , F̃ = exp(−iδ)F
with respect to M(N,W ), where ζ = ζ(M(N,W ), F ), δ = δ(M(N,W ), F ).

11.2. In [P3], Pearlstein proved an SL(2)-orbit theorem for the cases (I), (II) in 0.7,
which contains the following result. Assume that we are either in the case (I) or in the
case (II). Then

exp(iyN)F = gP (y) exp(iyN)F̃ with gP (y) = exp(
∑∞

m=0 gmy
−m)

when y ≫ 0, for some gm ∈ gC (m ≥ 0) such that gm : Ww/Ww−2 → Ww/Ww−2 is
real for any w ∈ Z and such that

∑∞
m=0 gmTm is a convergent series. This result is the

part (a) and the first part of (b) in his Theorem 4.2. Note that the above formula for
exp(iyN)F is also written as

exp(iyN)F = gP (y) exp(−ζ) exp(iyN)F̂
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by using F̂ instead of F̃ , for N and ζ commute.
In this section, we will reprove this result by using our Theorem 0.5. The authors of

the present paper do not know whether their method would work well also to reprove
the rest (the latter half of (b), and (c)) of his Theorem 4.2.

In what follows, unless explicitly stated, we do not assume (I) nor (II).

Lemma 11.3. exp(iN)F̂ = exp(ε(∞))r.

Here r and ε(y) = exp(
∑

m≥0 εmy
−m/2) for y ≫ 0 is as in Theorem 0.5.

Proof. This is a special case of 10.4 (2). □

By Theorem 0.5 (4), Lemma 11.3 and t(y)Nt(y)−1 = yN (10.3), we have

exp(iyN)F = g(y)t(y) exp(ε(y)) exp(ε(∞))−1 exp(iN)F̂

= g(y)t(y) exp(ε(y)) exp(ε(∞))−1t(y)−1 exp(iyN)F̂ .

Hence we have

Proposition 11.4. Define

gP (y) := g(y)e(y) exp(ζ), with e(y) := t(y) exp(ε(y)) exp(ε(∞))−1t(y)−1,

where g(y) is as in Theorem 0.5 and ζ = ζ(M(N,W ), F ). Then gP (y) : Ww/Ww−2 →
Ww/Ww−2 is real for any w ∈ Z (cf. 1.5), and we have

exp(iyN)F = gP (y) exp(iyN)F̃ .

Lemma 11.5. When y →∞, gP (y) converges if and only if e(y) converges.

Proof. By Theorem 0.5 (2), u(y) converges to 1. By the result in the pure case
in one variable introduced in 0.1, gw(y) converges to 1 for each w. Hence g(y) =
u(y)s(

⊕
w gw(y))s

−1 converges to 1. This implies the lemma. □

Since ε(y) is a convergent series in y−1/2, e(y) and gP (y) are the exponentials of
elements of C{y−1/2}[y] ⊗R gR, where C{T} denotes the ring of convergent series in
one variable T .

Lemma 11.6. Let e(y) be as in 11.4. Then e(y) and gP (y) are the exponentials of
elements of C{y−1}[y]⊗R gR.

Proof. We have Ad(t(y))ε(y) ∈ C{y−1}[y] ⊗R gR by 10.6 (2), and Ad(t(y))ε(∞) ∈
C[y±]⊗R gR by 10.6 (1). These prove 11.6. □

By 11.6, to reprove the statements in 11.2 in the cases (I) and (II), it is sufficient to
prove that gP (y) defined in 11.4 converges when y →∞ in these cases.

11.7. Assume that we are in Case (I).
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We deduce the convergence of gP (y) from Theorem 0.5. In case (I), ε(y) = 0 (1.5)
and so e(y) = 1. Hence gP (y) = g(y) exp(ζ), and this converges to exp(ζ). □

In this case, we have

exp(iyN)F = g(y) exp(iyN)F̂

with g(y) in Theorem 0.5.

11.8. Assume that we are in Case (II).
We deduce the convergence of gP (y) from Theorem 0.5.
By twist, we assume that grWw are zero if w ̸= 0,−1,−2, and grW0 (resp. grW−2) is of

Hodge type (0, 0) (resp. (−1,−1)).
Write exp(ε(y)) exp(ε(∞))−1 = exp(

∑
m≥1 cmy

−m/2). Since W0 = V and W−3 = 0
and since cmWw ⊂Ww−2 for any w ∈ Z, we have cmV ⊂W−2 and cmW−1 = 0. By the
assumption of the Hodge numbers of grW0 and grW−2, we have tw(y) = 1 for w = 0,−2.
Hence e(y) = exp(

∑
m≥1 cmy

1−(m/2)). By Lemma 11.6, we have cm = 0 for any odd m.

Hence e(y) = exp(
∑

m≥0 c2m+2y
−m), which converges to exp(c2). By 11.5, gP (y) also

converges. □

11.9. In general, the gP (y) defined in 11.4 need not converge when y →∞. This is
explained in Example 13.4.

In that example, one can even verify that there is no f(y) ∈ AutC(VC,WC) (y ≫ 0)
satisfying the following conditions 11.9.1–11.9.3.

11.9.1. exp(iyN)F = f(y) exp(iyN)F̃ .

11.9.2. f(y) = exp(
∑∞

m=0 amy
−m) with am ∈ EndC(VC,WC), where the series

inside exp is a convergent series.

11.9.3. For each w ∈ Z, grWw (f(y)) is real and preserves ⟨ , ⟩w.

This is explained in 13.5.
However if we replace 11.9.3 by the following weaker condition 11.9.3′, then for that

example, we can find f(y) satisfying 11.9.1, 11.9.2, 11.9.3′. See 13.6.

11.9.3′. For each w ∈ Z, grWw (f(y)) is real and preserves ⟨ , ⟩w up to non-zero
multiples.

The authors wonder whether there is always f(y) satisfying 11.9.1, 11.9.2, 11.9.3′, or
at least 11.9.1, 11.9.2, 11.9.3′′, where

11.9.3′′. For each w ∈ Z, grWw (f(y)) is real.

Note that if we do not require 11.9.3′′, we always have the expression of exp(iyN)F

as exp(iyN)F = exp(iδ) exp(iyN)F̃ .

11.10. The above question in 11.9 has the following version for several variables.
Let (V,W, (⟨ , ⟩w)w, N1, · · · , Nn, F ) be as in Theorem 0.5. We wonder whether there is
h(y) ∈ AutC(VC,WC) which is exp of a convergent power series in yj+1/yj (1 ≤ j ≤ n)
with coefficients in gC such that, when yj > 0 and yj+1/yj ≪ 1, exp(

∑n
j=1 iyjNj)F =

h(y) exp(
∑n

j=1 iyjN
∆
j )F̂(n) and the action of h(y) on grWw is real for any w, where N∆

j
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and F̂(n) are as in 10.1–10.2. Can we furthermore find such h(y) which also preserves
⟨ , ⟩w up to non-zero multiples for each w? Note that

exp(
∑n

j=1 iyjN
∆
j )F̂(n) = t(y) exp(

∑n
j=1 iN

∆
j )F̂(n) = t(y) exp(ε0)r.

§12. Norm estimate

The aymptotic behavior of the Hodge metric in degeneration of polarized Hodge
structure was studied in [Sc], [CKS], [K1]. We generalize the theory to degeneration of
mixed Hodge structure with polarized graded quotients. Results on this subject were
obtained by Pearlstein in [P3] Theorem 4.7 in the cases I, II in 0.7 with n = 1 (his
definition of the norm ([P3] 2.6) differs from ours).

12.1. Let (V,W, (⟨ , ⟩w)w∈Z, F ) be a mixed Hodge structure with polarized graded
quotients. Here V is a finite dimensional R-vector space, W is an increasing filtration
on V such that Ww = V for w ≫ 0 and Ww = 0 for w ≪ 0, ⟨ , ⟩w for each w ∈ Z is
a non-degenerate R-bilinear form grWw × grWw → R which is (−1)w-symmetric, and F
is a decreasing filtration on VC such that (W,F ) is a mixed Hodge structure and that
F (grWw ) is polarized by ⟨ , ⟩w for each w.

We will consider the Hodge metric on VC. For this, we lift the Hodge metrics of the
graded quotients to VC by using the canonical splitting of W in the following way. For
c > 0, we define a Hermitian form

( , )F,c : VC × VC → C

as follows.
For each w ∈ Z, let

( , )F (grWw ) : gr
W
w,C× grWw,C → C

be the Hodge metric on grWw,C defined by ⟨ , ⟩w and F (grWw ) (8.2). For v ∈ VC and

for w ∈ Z, let vw,F be the image in grWw,C of the w-component of v with respect to the

canonical splitting of W associated to the mixed Hodge structure (W,F ). Define

(v, v′)F,c =
∑

w∈Z c
w(vw,F , v

′
w,F )F (grWw ) (v, v′ ∈ VC).

For v ∈ VC, define
∥v∥F,c = (v, v)

1/2
F,c .

12.2. Let

∆ = {q ∈ C | |q| < 1}, ∆∗ = ∆ \ {0}, S = ∆n+r, S∗ = (∆∗)n ×∆r.

Let S → C ; q 7→ qj (1 ≤ j ≤ n + r) be the coordinate functions. For 1 ≤ j ≤ n and
for q ∈ S such that qj ̸= 0, define yj(q) > 0 by

yj(q) = −(2π)−1 log(|qj |).

Define
yn+1 = 1
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(so yn+1 does not mean −(2π)−1 log(|qn+1|)).
Fix non-empty open intervals Ij in R of lengths < 1 for 1 ≤ j ≤ n, and define an

open set U of S∗ by

U = {q ∈ S∗ | qj
|qj | ∈ exp(2πiIj) for 1 ≤ j ≤ n}.

Define maps zj : U → C and xj : U → Ij (1 ≤ j ≤ n) by

qj = exp(2πizj(q)), zj = xj + iyj .

Let
0 = (0, . . . , 0) ∈ S.

For q ∈ S, let

J(q) = {j | 1 ≤ j ≤ n, qj = 0}, J ′(q) = {j | 1 ≤ j ≤ n, qj ̸= 0}.

12.3. Fix (V,W, (⟨ , ⟩w)w) as in 0.2, and let D and D∨ be as in 0.2. Fix nilpotent
linear maps Nj : V → V (1 ≤ j ≤ n) such that NjNk = NkNj for any j, k, and
NjWw ⊂Ww for any j, w.

We consider a holomorphic map

Ψ : S → D∨

satisfying the following condition 12.3.1.

12.3.1. For any q ∈ S,
(
V,W, (⟨ , ⟩w)w, (Nj)j∈J(q), exp(

∑
j∈J′(q) iyj(q)Nj)Ψ(q)

)
generates a mixed nilpotent orbit.

As will be reviewed in 12.10 below, such Ψ appears once we are given an admissible
variation of mixed Hodge structure on S∗ with polarized graded quotients and with
unipotent local monodromy.

For q ∈ U , let zj = zj(q), xj = xj(q), yj = yj(q), and consider

F (q) = exp(
∑n

j=1 zjNj)Ψ(q) ∈ D.

As will be explained in 12.10 below, in the case Ψ comes from an admissible variation
of mixed Hodge structure H on S∗ with polarized graded quotients and with unipotent
local monodromy, F (q) is the fiber at q of the Hodge filtration of H.

In the following Theorem 12.4, for v ∈ VC, we consider the asymptotic behavior of
the norm ∥v∥F (q),y1

(12.1) when q ∈ U , q → 0, yj/yj+1 →∞ for 1 ≤ j ≤ n.

Theorem 12.4. Let the notation be as above. Let W (j) = M(N1 + · · · + Nj ,W ) for
1 ≤ j ≤ n. Fix v ∈ VC and let µ ∈ Zn.

(1) Assume v ∈
∩n

j=1W
(j)
µ(j),C. Then there are constants c, C > 0 such that

∥v∥F (q),y1
≤ C ·

∏n
j=1(

yj

yj+1
)µ(j)/2
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for any q ∈ U satisfying yj/yj+1 > c for 1 ≤ j ≤ n. (Here yj = yj(q) for 1 ≤ j ≤ n
and yn+1 = 1.)

(2) Fix aj ∈ Ij (1 ≤ j ≤ n). Define r ∈ D and the decomposition V =
⊕

µ∈Zn V [µ]

with respect to

(V,W, (⟨ , ⟩w)w, N1, . . . , Nn, exp(
∑n

j=1 ajNj)Ψ(0)),

which generates a mixed nilpotent orbit, as in 0.5 and 10.2, respectively.

Assume v ∈
∩n

j=1W
(j)
µ(j),C. Then, when q ∈ U converges to 0 satisfying yj/yj+1 →∞

and xj → aj for 1 ≤ j ≤ n, we have the convergence

(
∏n

j=1(
yj

yj+1
)µ(j)/2)−1∥v∥F (q),y1

→ ∥v[µ]∥r,1.

This limit is zero if and only if v[µ] = 0, that is, if and only if v belongs to the sum∑
µ′<µ

∩n
j=1W

(j)
µ′(j),C.

(3) Assume v /∈
∩n

j=1W
(j)
µ(j),C. Let aj (1 ≤ j ≤ n) be as in (2). Then it can happen

that q ∈ U converges to 0 satisfying yj/yj+1 → ∞ and xj → aj for 1 ≤ j ≤ n but

(
∏n

j=1(
yj

yj+1
)µ(j)/2)−1∥v∥F (q),y1

tends to ∞.

12.5. For the proof of Theorem 12.4, it is enough to prove (2) and (3) assuming
aj = 0 for 1 ≤ j ≤ n. In fact, if (2) and (3) are proved in the case aj = 0 for 1 ≤ j ≤ n,
it implies that (2) and (3) are true in general. Assume v ∈

∩n
j=1W

(j)
µ(j),C. Then (2)

implies that for each a = (aj)j ∈ Rn, we find open intervals Ia,j in R of lengths < 1
and ca, Ca > 0 such that aj ∈ Ia,j (1 ≤ j ≤ n) and such that the estimate in 12.4 (1)
holds when we take ((Ia,j)j , ca, Ca) as ((Ij)j , c, C) in (1). Since the closure of

∏n
j=1 Ij

in Rn is compact, it is contained in
∪

a∈A

∏n
j=1 Ia,j for some finite set A of Rn. 12.4

(1) then holds for c = maxa∈A ca, C = maxa∈A Ca.
For the proofs of Theorem 12.4 (2) and (3) assuming aj = 0 for 1 ≤ j ≤ n, the key

ideas are, roughly speaking, as in the following (1)–(3). The method is similar to that
in the pure case in [Sc], [CKS], [K1].

(1) By Theorem 0.5, t(y)−1 exp(
∑n

j=1 iyjNj)Ψ(0) converges when yj/yj+1 → ∞
(1 ≤ j ≤ n).

(2) t(y)−1F (q) converges (Corollary 12.8 below). This is deduced from (1), as follows.
Since Ψ(q) is very near to Ψ(0) (12.6 below), t(y)−1F (q) = t(y)−1 exp(

∑n
j=1 zjNj)Ψ(q)

is near to t(y)−1 exp(
∑n

j=1 iyjNj)Ψ(0), which converges by (1).

(3) As in Theorem 0.5, t(y) is related to the canonical splitting of the weight fil-
tration which was used in 12.1 for the construction of the Hodge metric. By this, the
convergence of t(y)−1F (q) in (2) shows that the Hodge metric of F (q) twisted by t(y)
converges. Since the action of t(y) on V is understood well, this gives the estimate of
the Hodge metric of F (q) (this is done in 12.9 below).

12.6. For q ∈ S and for 0 ≤ j ≤ n, let q(j) be the point of S obtained from q by
replacing the first j coordinates of q by 0. Hence q(0) = q. When q → 0, for 0 ≤ j ≤ n,
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Ψ(q(j)) converges to Ψ(0). Furthermore if q → 0 and yj/yj+1 →∞ for 1 ≤ j ≤ n, since
the map q 7→ Ψ(q);S → D∨ is holomorphic, we have

d(Ψ(q(j)),Ψ(q(k))) ≤ O(|qk|) if 0 ≤ j < k ≤ n.

Here d is a metric on a neighborhood of Ψ(0) in D∨ which is compatible with the
analytic structure. (This means that on a neighborhood of Ψ(0) in D∨, for a metric d′

defined by using complex analytic coordinates, log(d/d′) is bounded below and bounded
above.)

Lemma 12.7. Fix j such that 1 ≤ j ≤ n. When q → 0, Re(qk) > 0 and xk → 0 for
1 ≤ k ≤ n, and yk/yk+1 →∞ for j ≤ k ≤ n (yn+1 = 1), then we have the convergence

Aj(q)Ψ(q(j−1))→ exp(
∑n

k=j iNk,j)Ψ̂(0)

with Aj(q) =
∏n

k=j t
(k)(yk/yk+1)

−1 · exp(
∑n

k=j iykNk) exp(
∑n

k=1 xkNk),

where (W (n), Ψ̂(0)) is the R-split mixed Hodge structure associated to (W (n),Ψ(0)), and

Nk,j is the sum of N
[µ]
k for µ ∈ Zn such that µ(l) = 0 for j ≤ l < k. Here, W (n), t(k),

N
[µ]
k are those in 10.1–10.3 with respect to (V,W, (⟨ , ⟩w)w, N1, . . . , Nn,Ψ(0)) which

generates a mixed nilpotent orbit.

Proof. We use downward induction on j. If j < n, by induction, we may assume

(1)j Aj+1(q)Ψ(q(j))→ exp(
∑n

k=j+1 iNk,j+1)Ψ̂(0).

In the case j = n, consider the fact

(1)n An+1(q)Ψ(q(n))→ Ψ(0), where An+1(q) = exp(
∑n

k=1 xkNk).

Since (1)j is a convergence of mixed Hodge structures for the weight filtration W (j),

t(j)(yj/yj+1)
−1 · (l.h.s. of (1)j) converges to the limit of t(j)(yj/yj+1)

−1 · (r.h.s. of (1)j)
which is exp(

∑n
k=j+1 iNk,j)Ψ̂(0).

We apply exp(iNj) to this. Then since exp(iNj)t
(j)(yj/yj+1)

−1Aj+1(q) = Aj(q) by

10.3, we have Aj(q)Ψ(q(j))→ exp(
∑n

k=j iNk,j)Ψ̂(0).

Finally we can replace Ψ(q(j)) in the last convergence by Ψ(q(j−1)). In fact by 12.6,
we have Ψ(q(j−1)) = f(q)Ψ(q(j)) with f(q) ∈ GC, d(f(q), 1) = O(|qj |). Here d is
a metric on a neighborhood of 1 in GC which is compatible with the analytic struc-
ture. Hence Aj(q)Ψ(q(j−1)) = Aj(q)f(q)Ψ(q(j)) = f ′(q)Aj(q)Ψ(q(j)), where f ′(q) =
Aj(q)f(q)Aj(q)

−1. By the shape of Aj(q), the norm of the operator Ad(Aj(q)) on gC
is O(|yj |l) for some l > 0, and hence by d(f(q), 1) = O(|qj |), we have f ′(q)→ 1. Thus

we obtain Aj(q)Ψ(q(j−1))→ exp(
∑n

k=j iNk,j)Ψ̂(0). □

Corollary 12.8. t(y)−1F (q) → exp(ε0)r. Here ε0 is as in Theorem 0.5 (4) for
(V,W, (⟨ , ⟩w)w, N1, . . . , Nn,Ψ(0)).

Proof. The case j = 1 of Lemma 12.7 shows

t(y)−1F (q) = t(y)−1 exp(
∑n

j=1 zjNj)Ψ(q)→ exp(
∑n

j=1 iN
∆
j )Ψ̂(0) = exp(ε0)r,
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where the last equality follows from 10.4 (2). □

12.9. Proofs of Theorem 12.4 (2) and (3) assuming aj = 0 for 1 ≤ j ≤ n. Let
F (q)′ = t(y)−1F (q). This converges to exp(ε0)r (12.8). Let uq = sF (q)s

−1 ∈ GR, where
s is the splitting of W in Theorem 0.5 (1) (that is, s is the canonical splitting of W
associated to the mixed Hodge structure (W, r)) and sF (q) is the canonical splitting

of W associated to (W,F (q)). Let euq = t(y)−1uqt(y) = sF (q)′s
−1. By 12.8, sF (q)′

converges to sexp(ε0)r = sr = s. Hence euq converges to 1. We have

∥v∥2F (q),y1
=
∑

w∈Z y
w
1 ∥vw,F (q)∥2F (q)(grWw )

=
∑

w∈Z y
w
1 ∥(u−1

q v)w,r∥2F (q)(grWw )

=
∑

w∈Z y
w
1 ∥tw(y)−1(u−1

q v)w,r∥2F (q)′(grWw )

=
∑

w∈Z ∥(t(y)−1u−1
q v)w,r∥2F (q)′(grWw )

=
∑

w∈Z ∥(euq
−1t(y)−1v)w,r∥2F (q)′(grWw )

=
∑

w∈Z ∥
∑

ν∈Zn
eu−1

q

∏n
j=1(

yj

yj+1
)ν(j)/2v

[ν]
w,r∥2F (q)′(grWw ).

Assume v ∈
∩n

j=1W
(j)
µ(j),C. Then v[ν] = 0 unless ν ≤ µ. Furthermore by 12.8,

F (q)′(grWw ) converges to exp(ε0)r(gr
W
w ) = r(grWw ) for each w. Hence by the last expres-

sion of ∥v∥2F (q),y1
, we have 12.4 (2).

Next we prove 12.4 (3). Assume v /∈
∩n

j=1W
(j)
µ(j),C. Then there are a family of

integers a(j) > 0 (1 ≤ j ≤ n) and µ′ ∈ Zn such that µ′ ̸= µ, v[µ
′] ̸= 0 and such

that
∑n

j=1 a(j)µ
′(j) >

∑n
j=1 a(j)ν(j) for any ν ∈ Zn satisfying v[ν] ̸= 0, ν ̸= µ′.

When q ∈ S∗ converges to 0 satisfying yj/yj+1 = λa(j) with λ → ∞ (1 ≤ j ≤ n,

yn+1 denotes 1), then λ−
∑n

j=1 a(j)µ′(j)∥v∥2F (q),y1
converges to the non-zero real number

∥v[µ′]∥2r,1. Hence∏n
j=1(

yj

yj+1
)−µ(j)∥v∥2F (q),y1

= λ−
∑n

j=1 a(j)µ(j)∥v∥2F (q),y1
→∞. □

12.10. We review the fact that Ψ as in 12.3 appears when an admissible variation
of mixed Hodge structure with polarized graded quotients and with unipotent local
monodromy on S∗ is given, and review how the latter object appears in geometry.

For a complex analytic manifold M , a variation of mixed Hodge structure with
polarized graded quotients (VPMH for short) onM is a 4-pleH = (HR,W, (⟨ , ⟩w)w, F ),
where

• HR is a locally constant sheaf of finite dimensional R-vector spaces on M ,

• W is an increasing filtration on HR by locally constant R-submodules,

• ⟨ , ⟩w for each w ∈ Z is a non-degenerate (−1)w-symmetric pairing grWw × grWw → R,

• F is a decreasing filtration on HO := OM ⊗C HC (HC = C ⊗R HR) by OM -
submodules such that the OM -modules F p and HO/F

p are locally free of finite rank
for all p ∈ Z,
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satisfying the following conditions 12.10.1 and 12.10.2.

12.10.1. For any q ∈M , (HR,q,Wq, (⟨ , ⟩w)w, F (q)) is a mixed Hodge structure with
polarized graded quotients. Here F (q) = C ⊗OM,q

Fq with OM,q → C the evaluation
f 7→ f(q) at q.

12.10.2. The connection ∇ : HO → Ω1
M ⊗OM

HO ; f ⊗ v 7→ df ⊗ v (f ∈ OM ,
v ∈ HC) satisfies ∇(F p) ⊂ Ω1

M ⊗OM
F p−1 for any p ∈ Z. Here Ω1

M is the sheaf of
holomorphic differential 1-forms.

Assume that a VPMH H on S∗ is given.
Fix non-empty open intervals Ij of lengths < 1 inR for 1 ≤ j ≤ n and define the open

set U of S∗ to be as in 12.2. The restriction of HR to U is a constant sheaf associated
to a finite dimensional R-vector space V , and the restrictions of W and (⟨ , ⟩w)w to U
are also constant. This gives (V,W, (⟨ , ⟩w)w) as in 0.2. For q ∈ U , F (q) is regarded as
a filtration on VC, and we have a holomorphic map

F : U → D : q 7→ F (q).

For q ∈ S∗, if a is a continuous map from the closed interval [0, 1] to S∗ such that

a(0) ∈ U and a(1) = q, then a induces an isomorphism βa : HR,q
∼→ V .

For 1 ≤ j ≤ n, let γj : V → V be the j-th monodromy defined by γj = βa, where
a is a continuous map [0, 1] → S∗ satisfying a(0) = a(1) ∈ U , a(t)k = a(0)k for any
t ∈ [0, 1] and for 1 ≤ k ≤ n + r such that k ̸= j, and a(t)j = a(0)j exp(2πit) for any
t ∈ [0, 1] (βa is independent of the choice of such a). Then the γj commute each other.
Let Γ ⊂ Aut(V ) be the group generated by γj (1 ≤ j ≤ n). Then Γ acts on D in the
natural way. The projection D → Γ\D is a local homeomorphism and hence Γ\D has
a structure of a complex manifold.

We have a holomorphic map
Φ : S∗ → Γ\D

defined by Φ(q) = (βa(F (q)) mod Γ), where a is a continuous map [0, 1]→ S∗ satisfying
a(0) ∈ U and a(1) = q (then (βa(F (q)) mod Γ) is independent of the choice of a). We
have

Φ(q) = (F (q) mod Γ) for q ∈ U.

Let
τ : hn ×∆r → S∗

be the surjective holomorphic map defined by τ(p)j = exp(2πipj) for 1 ≤ j ≤ n and
τ(p)j = pj for n+ 1 ≤ j ≤ n+ r. Define a holomorphic map

Φ̃ : hn ×∆r → D

by Φ̃(p) = βa(F (τ(p))), where a is a continuous map [0, 1]→ S∗ which satisfies a(t)j =
pj for any t ∈ [0, 1] and n + 1 ≤ j ≤ n + r and satisfies the following condition. If
1 ≤ j ≤ n, then there is cj ∈ C such that Re(cj) ∈ Ij , a(0)j = exp(2πicj), and
a(t)j = a(0)j exp(2πit(pj − cj)) for any t ∈ [0, 1]. Such a satisfies a(0) ∈ U and
a(1) = τ(p), and βa(F (τ(p))) ∈ D is independent of the choice of such a. We have

Φ(τ(p)) = (Φ̃(p) mod Γ) for any p ∈ hn ×∆r.
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Now assume :

12.10.3. The monodromy γj : V → V is unipotent for every 1 ≤ j ≤ n.

Let Nj = log(γj) : V → V for 1 ≤ j ≤ n. Then we have

Φ̃(p+ 1j) = γjΦ̃(p) = exp(Nj)Φ̃(p)

for any p ∈ hn ×∆r and 1 ≤ j ≤ n, where p+ 1j is the element of hn ×∆r defined by
(p + 1j)k = pk for any 1 ≤ k ≤ n + r such that k ̸= j, and (p + 1j)j = pj + 1. Hence
there is a unique holomorphic map

Ψ : S∗ → D∨

satisfying Ψ(τ(p)) = exp(−
∑n

j=1 pjNj)Φ̃(p) for any p ∈ hn ×∆r. We have

F (q) = exp(
∑

1≤j≤n zjNj)Ψ(q) for q ∈ U.

For these facts, see, e.g., [Sc] §4.

The VPMHH is said to be admissible if the following 12.10.4 and 12.10.5 are satisfied.
(See Steenbrink-Zucker [SZ], Kashiwara [K2] for the admissibility.)

12.10.4. Ψ extends to a holomorphic map S → D∨.

12.10.5. (V,W,N1, . . . , Nn) satisfies the condition (iv) in 0.2.

If these conditions are satisfied, then the condition 12.3.1 is satisfied. In fact, for
(V,W, (⟨ , ⟩w)w, (Nj)j∈J(q), exp(

∑
j∈J′(q) iyjNj)Ψ(q)) for each q ∈ S, the condition

(i) in 0.2 is clearly satisfied, (iii) follows from the Griffiths transversality 12.10.2, (iv)
follows from 12.10.5, and furthermore, (ii) is satisfied by the nilpotent orbit theorem of
Schmid [Sc] applied to the graded quotients F (grWw ).

We describe how an admissible VPMH on S∗ with unipotent local monodromy arises
from geometry.

Let X be a complex analytic space with a projective morphism f : X → S. Let X∗

be the inverse image of S∗. Assume that a divisor E on X is given and assume the
following (i) and (ii).

(i) The restriction g : X∗ → S∗ of f is smooth.

(ii) The restriction of E to X∗ is a divisor with normal crossings and any intersection
of any family of irreducible components of E is smooth over S∗.

Then by section 5 of Steenbrink-Zucker [SZ] (the case n = 1, r = 0) and by Kashiwara
[K2] and Saito [Sa] (cf. [Fn] 3.1.2), after pulling back by

S → S ; (q1, . . . , qn+r) 7→ (qe1, . . . , q
e
n, qn+1, . . . , qn+r)

for some e ≥ 1, we have an admissible VPMH H = (HR,W, (⟨ , ⟩w)w∈Z, F ) with
unipotent local monodromy on S∗ for each m ∈ Z as follows. Let h : X∗ \ E → S∗ be
the restriction of g. Then, HR = Rmh∗(R), W is the weight filtration defined by the
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method of Deligne [D1], and the ⟨ , ⟩w are defined by using a polarization of X. Let
HO = OS∗⊗CHC. Then we have a canonical isomorphismHO ≃ Rmg∗(Ω

•
X∗/S∗(logE)),

where Ω•
X∗/S∗(logE) is the de Rham complex of X∗ over S∗ with logarithmic poles

along E. For p ∈ Z, the p-th Hodge filtration F p on HO is the image of the injective
homomorphism

Rmg∗(Ω
•≥p
X∗/S∗(logE))→ Rmg∗(Ω

•
X∗/S∗(logE)) ≃ HO.

As is said above, this VPMH is indeed admissible, in particular, satisfies the condition
12.10.4. This is proved in [Fn] 3.1.2. For readers’ convenience, we write here a sketch
of a slightly different proof.

Let P be the product of (D∨ of grWw ) for all w ∈ Z. Then by the nilpotent orbit
theorem of Schmid [Sc], after the base change qj 7→ qej (1 ≤ j ≤ n) for some e ≥ 1, we
have:

(1) The composition S∗ Ψ−→ D∨ → P extends to a holomorphic map S → P .

On the other hand, in the case n = 1 and r = 0, by [SZ] and by semi-stable reduction
theorem, Ψ : S∗ → D∨ extends to S → D∨ after the base change qj 7→ qej (1 ≤ j ≤ n)
for some e ≥ 1. The method in [SZ] in fact proves the following (2) after the base
change qj 7→ qej (1 ≤ j ≤ n) for some e ≥ 1.

(2) There is a closed analytic subspace Y of S of codimension ≥ 2 such that S∗ ∩ Y
is empty and such that Ψ : S∗ → D∨ extends to a holomorphic map S − Y → D∨.

We have also ([U]):

(3) Locally on P , D∨ → P has a structure of a vector bundle on P .

For a vector bundle on a complex analytic manifold, a section defined on the com-
plement of a closed analytic subspace of codimension ≥ 2 in the base space extends to
a section on the whole base space. Hence by (1)–(3), Ψ extends to a holomorphic map
S → D∨.

§13. Examples

Example 13.1. Let V be a 3 dimensional R-vector space with basis (e1, e2, e3),
let W be the increasing filtration on V defined by W0 = V , W−1 = Re1 + Re2, and
W−2 = 0. Hence grWw = 0 unless w = 0 or −1. Define ⟨ , ⟩w by ⟨e3, e3⟩0 = 1,
⟨e2, e1⟩−1 = 1. Take cj ∈ R (j = 1, 2), and let Nj (j = 1, 2) be the elements of gR
defined by

Nj(e1) = 0, Nj(e2) = e1, Nj(e3) = cje1.

Let F be the decreasing filtration on VC defined by F−1 = VC, F
0 = Ce2 + Ce3,

F 1 = 0. Then (N1, N2, F ) generates a mixed nilpotent orbit (0.2). If y1 + y2 > 0,
exp(iy1N1 + iy2N2)F ∈ D and the Hodge type of exp(iy1N1 + iy2N2)F (gr

W
w ) is (0, 0)

for w = 0, and (0,−1) + (−1, 0) for w = −1. In the notation in Theorem 0.5, we have:

(1) s(y)(e3 modW−1) = e3 − (c1y1 + c2y2)(y1 + y2)
−1e2, s(y) converges to s which

is defined by s(e3 modW−1) = e3 − c1e2.
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(2) s(y) = u(y)s with u(y)(e3) = e3+(c2− c1)(
∑∞

m=1(−y2/y1)m)e2 when y2/y1 < 1.

(3) t(y)e1 = y1e1, t(y)ej = ej for j = 2, 3,
r−1 = VC, r0 = C(ie1 + e2) +C(e3 − c1e2), r1 = 0.
As is noted in 0.4, (gw(y))w is not unique. One choice is gw(y) = 1 for any w, and

for this choice, g(y) = eg(y) = u(y).

(4) ε(y) = 0 for the above choice of (gw(y))w.

These (1)–(4) are obtained as follows. Since

exp(iy1N1 + iy2N2)F
0 = C(e2 + i(y1 + y2)e1) +C(e3 + i(c1y1 + c2y2)e1)

= C(e2 + i(y1 + y2)e1) +C(e3 − (c1y1 + c2y2)(y1 + y2)
−1e2),

we have (1) by 1.5. We have (4) also by 1.5. (2) and (3) follow from (1).
We consider the norm estimate. In 12.3, take n = 2, r = 0, and take Ψ : S = ∆2 →

D∨ to be the constant function with value F . Then the condition 12.3.1 is satisfied.
Let v = e3 in Theorem 12.4. Then Theorem 12.4 says that when q ∈ S∗ = (∆∗)2

converges to (0, 0) ∈ ∆2 satisfying y1/y2 → ∞ and x1, x2 → 0 (recall that q = (q1, q2)
with qj = exp(2πi(xj + iyj)) with xj , yj real), ∥e3∥F (q),y1

converges. Here we show

∥e3∥F (q),y1
→ (1 + c21)

1/2

directly. For simplicity, assume that q1, q2 are positive real numbers (that is, q =
(exp(−2πy1), exp(−2πy2))). For the canonical splitting of W associated to (W,F (q)),
the 0-component of e3 is e3 − (c1y1 + c2y2)(y1 + y2)

−1e2 and the (−1)-component of e3
is (c1y1 + c2y2)(y1 + y2)

−1e2. Hence

(e3, e3)F (q),y1
= 1+y−1

1 ((c1y1+c2y2)(y1+y2)
−1e2, (c1y1+c2y2)(y1+y2)

−1e2)F (q)(grW−1)
.

We have (e2, e2)F (q)(grW−1)
= y1 + y2. Hence (e3, e3)F (q),y1

= 1+ y−1
1 ((c1y1 + c2y2)(y1 +

y2)
−1)2(y1 + y2)→ 1 + c21.

This example appears in geometry in the following way. If y1 + y2 > 0, exp(iy1N1 +
iy2N2)F (gr

W
−1) is isomorphic to the Hodge structure H1(Ey,R)(1), where Ey is the

elliptic curve C/(Z + Z(iy1 + iy2)). If py denotes the point ic1y1 + ic2y2 mod Z +
Z(iy1 + iy2) of Ey and if py ̸= 0, exp(iy1N1 + iy2N2)F is isomorphic to the mixed
Hodge structure H1(Ey \ {py, 0},R)(1).

Example 13.2. Let V be a 2 dimensional R-vector space with basis (e1, e2), let W
be the increasing filtration on V defined byW0 = V ,W−1 =W−2 = Re1, andW−3 = 0.
Hence grWw = 0 unless w = 0 or −2. Define ⟨ , ⟩w by ⟨e2, e2⟩0 = 1, ⟨e1, e1⟩−2 = 1. Let
N be the element of gR defined by

N(e1) = 0, N(e2) = e1.

Let α ∈ C, and let F be the decreasing filtration on VC defined by F−1 = VC, F
0 =

C(αe1+e2), F
1 = 0. Then (N,F ) generates a mixed nilpotent orbit, and exp(iyN)F ∈
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D for any y ∈ R. The Hodge type of exp(iyN)F (grWw ) is (0, 0) for w = 0, and (−1,−1)
for w = −2. We have:

(1) s(y)(e2 modW−1) = Re(α)e1 + e2, hence s(y) = s is constant.

(2) u(y) = 1.

(3) t(y)e1 = ye1, t(y)(Re(α)e1 + e2) = Re(α)e1 + e2.
r−1 = VC, r0 = C(Re(α)e1 + e2), r1 = 0.
gw(y) = 1 for any w, g(y) = eg(y) = 1.

(4) ε(y) = i(1 + Im(α)y−1)N .

(5) Let gP (y) be as in 11.4. Then gP (y) = exp(i Im(α)N).

These are obtained as follows. We have exp(iyN)F 0 = C((iy + α)e1 + e2), and
by the definition of δ, we see δ(W, exp(iyN)F ) = (y + Im(α))N and δ(W, exp(iyN)F )
has only the (−1,−1)-Hodge component. Since ζ−1,−1 = 0 (see Appendix), we have
ζ(W, exp(iyN)F ) = 0. Hence we have (1). (2) and (3) follow from (1). We have
t(y)−1g(y)−1 exp(iyN)F 0 = C((Re(α) + i(1 + Im(α)y−1))e1 + e2). Hence
δ(W, t(y)−1g(y)−1 exp(iyN)F ) is (1+ Im(α)y−1)N , and ζ(W, t(y)−1g(y)−1 exp(iyN)F )
is 0 by ζ−1,−1 = 0. This shows (4).

We have M(N,W ) = W , δ(M(N,W ), F ) = Im(α)N , and δ(M(N,W ), F ) has only
(−1,−1)-Hodge component. Hence ζ(M(N,W ), F ) = 0. By this, we obtain (5) from
(3) and (4).

In this example, as is mentioned at the end of 10.1, there is no f(y) ∈ AutC(VC,WC)
such that

exp(iyN)F = f(y)φ(iy), f(y)→ 1 (y →∞).

Here φ(iy) is as in 10.1. In fact, φ(iy) = t(y)r = r, and hence f(y) should send
Re(α)e1 + e2 to (iy + α)e1 + e2. Hence f(y) can not converge when y →∞.

This nilpotent orbit appears at 0 ∈ ∆ from the variation of mixed Hodge structure on
∆∗ obtained by the pull-back of the exponential sequence 0→ Z(1)→ O∆∗ → O×

∆∗ → 0

with respect to Z→ O×
∆∗ ; 1 7→ e−2πiαq−1.

Example 13.3. In this example, we see that for the convergence in Theorem 0.5
(1), it is crucial that the canonical splitting of W is defined by using ζ, not only δ, as
in §1, and that the values of ζ like

ζ−1,−5 = −15i

16
δ−1,−5 (see Appendix),

which may seem strange, are exactly necessary for the convergence.
Let V be a 6 dimensional R-vector space with basis (e1, . . . , e6), let W be the in-

creasing filtration on V defined by W0 = V , W−1 = W−6 = Re1 + · · · + Re5, and
W−7 = 0. Hence grWw = 0 unless w = 0 or −6.

Define ⟨ , ⟩w as follows: ⟨e6, e6⟩0 = 1. For 1 ≤ j ≤ 5 and 1 ≤ k ≤ 5, ⟨ej , ek⟩−6 is
(−1)k+1 if j + k = 6, and is 0 otherwise.

Let N be the element of gR defined by N(e1) = 0, N(ej+1) = ej for 1 ≤ j ≤ 5.
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Let F be the decreasing filtration on VC defined by F p = VC for p ≤ −5, F p =∑6
j=p+6 Cej for −5 ≤ p ≤ 0, and F p = 0 for p ≥ 1. Then (N,F ) generates a mixed

nilpotent orbit. For y > 0, exp(iyN)F ∈ D and the Hodge type of exp(iyN)F (grWw ) is
(0, 0) for w = 0, and (−1,−5)+ (−2,−4)+ (−3,−3)+ (−4,−2)+ (−5,−1) for w = −6.

Let R and I be the real part and the imaginary part of exp(iyN)e6, respectively.
Then δ(W, exp(iyN)F ) annihilatesW−1 and sends e6 to I, and the splitting ofW by the
mixed Hodge structure (W, exp(−iδ(W, exp(iyN)F ))F ) is given by (e6 modW−1) 7→ R.

Let g := exp(iyN)e5. Let I = 2Re (v−5,−1 + v−4,−2) + v−3,−3 be the Hodge decom-

position. Then we have v−5,−1 =
1

5
yg and v−5,−1+v−4,−2 =

2

5
yg+

i

10
y2Ng. Further,

by Lemma in Appendix, we have

(∗)


ζ−5,−1 = i

25

((
5
1

)
+ · · ·+

(
5
4

))
δ−5,−1 = 15i

16 δ−5,−1,

ζ−4,−2 = i
25

((
5
2

)
+
(
5
3

))
δ−4,−2 = 5i

8 δ−4,−2,

ζ−3,−3 = 0δ−3,−3.

Hence the canonical R-splitting of W associated to the mixed Hodge structure
(W, exp(iyN)F ) sends (e6 modW−1) to

R+ 2Re
{

i
25

((
5
1

)
+ · · ·+

(
5
4

))
v−5,−1 + i

25

((
5
2

)
+
(
5
3

))
v−4,−2

}
+ 0v−3,−3

= R− 1
23 Im

{(
5
1

)
v−5,−1 +

(
5
2

)
(v−5,−1 + v−4,−2)

}
= R− 1

8 Im(5yg + iy2Ng)

=
(

y4

24 e2 −
y2

2 e4 + e6

)
− 1

8

{
5y
(

y3

6 e2 − ye4
)
+ y2

(
− y2

2 e2 + e4

)}
= e6,

which is constant and hence converges. Thus we proved the convergence s(y) in Theorem
0.5 directly here by the formula (∗). Note that in the above last equality, we can observe
that all the divergent terms are cancelled in virtue of the fact that the coefficients of
δ−5,−1, δ−4,−2, δ−3,−3 in the formula (∗) are nothing but 15i

16 ,
5i
8 , 0, respectively. In fact,

these coefficients of the formula (∗) are even determined conversely by using the fact
that the canonical splitting of W associated to (W, exp(iyN)F ) converges, as is seen by
a similar computation as above.

Example 13.4. In 13.4–13.6, we consider an example mentioned in 11.9.
Let V be a 3 dimensional R-vector space with basis (e1, e2, e3), and let W be the

increasing filtration on V defined byW0 = V , W−1 =W−3 = Re1+Re2, andW−4 = 0.
Hence grWw = 0 unless w = 0 or −3. Define ⟨ , ⟩w by ⟨e3, e3⟩0 = 1, ⟨e2, e1⟩−3 = 1. Let
N be the element of gR defined by

N(e1) = 0, N(e2) = e1, N(e3) = e2.

Let F ′ be the decreasing filtration on VC defined by (F ′)−2 = VC, (F
′)−1 = Ce2 +

Ce3, (F ′)0 = Ce3, (F ′)1 = 0, let a ∈ R, and let F = exp(iaN)F ′. Then (N,F )
generates a mixed nilpotent orbit. For y > −a, exp(iyN)F ∈ D and the Hodge type of
exp(iyN)F (grWw ) is (0, 0) for w = 0, and (−1,−2) + (−2,−1) for w = −3. We have:
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(1) s(y)(e3 modW−1) = e3, hence s(y) = s is constant.

(2) u(y) = 1.

(3) t(y)(e1) = y2e1, t(y)(e2) = ye2, t(y)(e3) = e3,
r−2 = VC, r−1 = C(ie1 + e2) +Ce3, r0 = Ce3, r1 = 0,
g(y)(e1) = (1 + a

y )
1/2e1, g(y)(e2) = (1 + a

y )
−1/2e2, g(y)e3 = e3,

eg(y) = g(y),

where we have chosen (gw(y))w as gw(y) = (grWw of the above g(y)).

(4) ε(y)(e1) = ε(y)(e2) = 0, ε(y)(e3) = − 1
2 (1 +

a
y )

3/2e1 + i(1 + a
y )

3/2e2.

(5) gP (y)(e1) = (1 + a
y )

1/2e1, gP (y)(e2) = (1 + a
y )

−1/2e2,

gP (y)(e3) =
1
2y

2((1 + a
y )

1/2 − (1 + a
y )

2)e1 + iy((1 + a
y )− (1 + a

y )
−1/2)e2 + e3.

This (5) shows that when y →∞, gP (y) converges if and only if a = 0.

We obtain (1)–(5) as follows.
Let δ(0)(y), ζ(0)(y) and ε(0)(y) be δ, ζ and ε for (W, exp(iyN)F ), respectively. Let

δ(1), ζ(1), ε(1), be δ, ζ and ε for (M(N,W ), F ), respectively.
We have exp(iyN)F = exp(i(a+ y)N)F ′ so that

exp(iyN)F−2 = VC,

exp(iyN)F−1 = C(i(a+ y)e1 + e2) +C
(
− (a+y)2

2 e1 + i(a+ y)e2 + e3

)
,

exp(iyN)F 0 = C
(
− (a+y)2

2 e1 + i(a+ y)e2 + e3

)
,

exp(iyN)F 1 = 0.

By 1.3, δ(0)(y)e1 = δ(0)(y)e2 = 0, δ(0)(y)e3 = (a + y)e2. We have δ(0)(y) =
δ(0)(y)−1,−2 + δ(0)(y)−2,−1, where δ

(0)(y)−1,−2(ej) = δ(0)(y)−2,−1(ej) = 0 for j = 1, 2,

and δ(0)(y)−1,−2(e3) = i (a+y)2

2 e1 +
a+y
2 e2, δ

(0)(y)−2,−1(e3) = −i (a+y)2

2 e1 +
a+y
2 e2.

Since (W,F ) is of the Hodge type (0, 0) + (−1,−2) + (−2,−1), we have ζ(0)(y) =
ζ(0)(y)−1,−2 + ζ(0)(y)−2,−1 = − i

2δ
(0)(y)−1,−2 + i

2δ
(0)(y)−2,−1 (see Appendix for the

last equality), and hence ζ(0)(y)(e1) = ζ(0)(y)(e2) = 0, ζ(0)(y)(e3) = (a+y)2

2 e1. Hence

ε(0)(y)(e1) = ε(0)(y)(e2) = 0, ε(0)(y)(e3) = − (a+y)2

2 e1 + i(a+ y)e2.
Therefore the R-split mixed Hodge structure associated to (W, exp(iyN)F ) is given

by exp(−ε(0)(y)) exp(iyN)F 0 = Ce3, and the canonical splitting s(y) of W associated
to exp(iyN)F is given as (1).

(2) and (3) follow from (1).
(4) follows by ε(y) = ε(W, t(y)−1g(y)−1 exp(iyN)F ) = t(y)−1g(y)−1ε(0)(y)g(y)t(y)

(see 0.3) from the computation of ε(0)(y) = ε(W, exp(iyN)F ) in the proof of (1).
To show (5), let M = M(N,W ). Then M0 = V ; M−1 = M−2 = Re1 + Re2;

M−3 = M−4 = Re1; M−5 = 0. We have δ(1) = aN . Since δ(1) coincides with its
(−1,−1)-Hodge component, we have ζ(1) = 0. Now (5) follows from (3), (4) and
ζ(1) = 0.

13.5. As mentioned in 11.9, in the previous example, there is no f(y) satisfying
11.9.1–11.9.3 unless a = 0.
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To see this, we first compute F̃ and exp(iyN)F̃ . By 13.4, we have F̃ = exp(−iδ(1))F
= F ′. Hence we have exp(iyN)F̃−2 = VC, exp(iyN)F̃−1 = C(iye1 + e2) +C(−y2

2 e1 +

iye2 + e3), exp(iyN)F̃ 0 = C(−y2

2 e1 + iye2 + e3), exp(iyN)F̃ 1 = 0.
Now assume that there is a real analytic function f(y) satisfying the above conditions.

Define aj(y) (1 ≤ j ≤ 4) and bj(y) (j = 1, 2) by

f(y)(e1) = a1(y)e1 + a3(y)e2,

f(y)(e2) = a2(y)e1 + a4(y)e2,

f(y)(e3) = b1(y)e1 + b2(y)e2 + e3.

Then all the aj(y) and the bj(y) are convergent power series in y
−1. Further the aj(y)’s

are real and satisfy
a1(y)a4(y)− a2(y)a3(y) = 1,

because grW−3(f(y)) preserves ⟨ , ⟩−3.

Together with the computation of exp(iyN)F̃ in the above, we have

f(y) exp(iyN)F̃−1 = C((iya1(y) + a2(y))e1 + (iya3(y) + a4(y))e2)

+C((−y2

2 a1(y) + iya2(y) + b1(y))e1

+ (−y2

2 a3(y) + iya4(y) + b2(y))e2 + e3),

f(y) exp(iyN)F̃ 0 = C((−y2

2 a1(y) + iya2(y) + b1(y))e1

+ (−y2

2 a3(y) + iya4(y) + b2(y))e2 + e3).

Comparing this with the description of exp(iyN)F in the previous subsection via the

equality exp(iyN)F = f(y) exp(iyN)F̃ , we have two equalities. The first one is C(i(a+
y)e1 + e2) = C((iya1(y) + a2(y))e1 + (iya3(y) + a4(y))e2), or equivalently,

(1)

∣∣∣∣ i(a+ y) iya1(y) + a2(y)
1 iya3(y) + a4(y)

∣∣∣∣ = 0.

The second one is C(− (a+y)2

2 e1+ i(a+y)e2+e3) = C((−y2

2 a1(y)+ iya2(y)+ b1(y))e1+

(−y2

2 a3(y) + iya4(y) + b2(y))e2 + e3), or equivalently,

− (a+y)2

2 = −y2

2 a1(y) + iya2(y) + b1(y),(2)

i(a+ y) = −y2

2 a3(y) + iya4(y) + b2(y).

We deduce a contradiction from these equalities. Taking the imaginary part of (1),
we see

(3) ya1(y) = (a+ y)a4(y).

Taking the real (resp. imaginary) part of (2), we see
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(4) the constant terms of a1(y) and a3(y) (resp. a2(y) and a4(y)) are 1 and 0 (resp. 0
and 1), respectively.

Comparing the coefficients of y in the first equality of (2), we see that the coefficient of
y−1 in the expansion of a1(y) is 2a, that is,

(5) a1(y) = 1 + 2ay−1 + · · · .
By (3) and (5), we have also

(6) a4(y) = 1 + ay−1 + · · · .
Combining (4), (5), and (6), we have a1(y)a4(y)− a2(y)a3(y) = 1+ 3ay−1 + · · · , which
contradicts a1(y)a4(y)− a2(y)a3(y) = 1 unless a = 0.

13.6. In the above example, we have

exp(iyN)F = exp(i(y + a)N)F̃ = t(y + a) exp(iN)F̃ = t(1 + ay−1) exp(iyN)F̃ .

Note that t(1+ ay−1) does not preserve the intersection forms of grW , but it multiplies
the intersection forms. Hence if we define f(y) := t(1+ay−1), it satisfies the conditions
11.9.1, 11.9.2, 11.9.3′.

Appendix: Computation of ζ−p,−q

Here for reader’s convenience, we review how it is seen that ζ−p,−q are Lie polynomials
and how they are computed. These are included in [CKS], but we think it is nice that
a summary is written here. Let the notation be as in 1.4.

Let

Q :=
∑

k≥1Qk(X2, . . . , Xk+1)y
−k := log

(∑
k≥0 Pky

−k
)
.

Then
Q′ + [Q′,Q]

2! + [[Q′,Q],Q]
3! + [[[Q′,Q],Q],Q]

4! + · · · =
∑

k≥2Xky
−k,

where Q′ := dQ
dy formally. Comparing the coefficients y−2, y−3, y−4, . . . , we have −Q1 =

X2,−2Q2 = X3,−3Q3 + 1
2 [Q1, Q2] = X4, . . . , and Q1 = −X2, Q2 = − 1

2X3, Q3 =

− 1
3X4 +

1
12 [X2, X3], . . . , and in this way we see inductively that Q1, Q2, Q3, . . . are Lie

polynomials. By Campbell-Hausdorff formula applied to

exp(−ζ) exp(iδ) = exp
(∑

k≥1Qk(C2, . . . , Ck+1)
)
,

we can see inductively that ζ−p,−q are Lie polynomials and can calculate them as

ζ−1,−1 = 0,

ζ−1,−2 = − i
2 δ−1,−2,

ζ−1,−3 = − 3i
4 δ−1,−3,

ζ−2,−2 = 0,

ζ−1,−4 = − 7i
8 δ−1,−4,

ζ−2,−3 = − 3i
8 δ−2,−3 − 1

8 [δ−1,−1, δ−1,−2],

ζ−1,−5 = − 15i
16 δ−1,−5,

ζ−2,−4 = − 5i
8 δ−2,−4 +

7
32 [δ−1,−1, δ−1,−3],

ζ−3,−3 = − 1
8 [δ−1,−1, δ−2,−2], . . . .
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(Note that ζ−q,−p is obtained from ζ−p,−q by 1.4 (ii) for any p, q.)
The following lemma is used in §13.

Lemma. For p ≥ q ≥ 1, we have

η−p,−q ≡ − (p+q−1)!
2p+q−2(p−1)!(q−1)!δ−p,−q,

ζ−p,−q ≡ i
2p+q−1

(∑
q≤k<p

(
p+q−1

k

))
δ−p,−q,

modulo Lie polynomials in the δ−r,−s for 1 ≤ r < p, 1 ≤ s < q. Here in the second
congruence we understand ζ−p,−p ≡ 0. η−q,−p, ζ−q,−p are given as the conjugations
over gR of η−p,−q, ζ−p,−q, respectively.

Proof. From the proof of Lemma (6.60) in [CKS], we have

(1) dp−1,q−1η−p,−q + iζ−p,−q ≡ −δ−p,−q,

modulo Lie polynomials in the δ−r,−s for 1 ≤ r < p, 1 ≤ s < q, where

(2) dp−1,q−1 =

∫ 1

0

(1− t)p−1(1 + t)q−1dt.

Exchanging p and q in (1), and taking the conjugate over gR, we have

(3) dq−1,p−1η−p,−q − iζ−p,−q ≡ −δ−p,−q.

From (1) and (3), we obtain

η−p,−q ≡ − 2
dp−1,q−1+dq−1,p−1

δ−p,−q,

ζ−p,−q ≡ −dp−1,q−1+dq−1,p−1

dp−1,q−1+dq−1,p−1
iδ−p,−q.

On the other hand, from (2) we compute

−dp−1,q−1 + dq−1,p−1 = (p−1)!(q−1)!
(p+q−1)!

(∑
q≤k<p

(
p+q−1

k

))
,

dp−1,q−1 + dq−1,p−1 = (p−1)!(q−1)!
(p+q−1)! 2p+q−1.

Substituting these, we obtain the assertion. □
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