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CLASSIFYING SPACES OF DEGENERATING MIXED

HODGE STRUCTURES, I: BOREL-SERRE SPACES

Dedicated to Professor Masaki Kashiwara
on his sixtieth birthday

Kazuya Kato, Chikara Nakayama, Sampei Usui

Abstract. Let D be the classifying space of mixed Hodge structures with polarized
graded quotients. We construct a real analytic manifold with corners DBS which contains

D as a dense open subset. This is the mixed Hodge theoretic version of the Borel-Serre

space in the case of pure weight constructed by Borel-Ji and Kato-Usui.

Introduction

0.1. LetD be the classifying space of mixed Hodge structures whose graded quotients
of weight filtrations are polarized, with fixed Hodge numbers of the graded quotients,
defined in [U]. This space is the mixed Hodge theoretic version of the Griffiths domain
[G] in the pure case. In this paper, we construct a real analytic manifold with corners
DBS which containsD as a dense open subset. This is a generalization of the Borel-Serre
space in the pure case which was constructed in the work of Kato-Usui [KU2]. Note
that the Borel-Serre space in the pure case is independently obtained as a consequence
of the works of Borel-Ji [BJ1], [BJ2].

As in the theorem below, which is proved in §8–§9, our space DBS has similar proper-
ties to those of the original Borel-Serre space X̄ in the work of Borel-Serre [BS], which is
a real analytic manifold with corners containing, as a dense open subset, the symmetric
space X associated to a semi-simple algebraic group over Q. See 1.6 for the definition
of the arithmetic discrete group GZ acting on D in this theorem. Note that in our
terminology, “compact” and “locally compact” contain the Hausdorff condition as in
Bourbaki [Bn].
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Theorem 0.2. (i) The action of GZ on D extends to a real analytic action of GZ on
DBS. For a subgroup Γ of GZ, the action of Γ on DBS is proper and the quotient space
Γ\DBS is locally compact. If Γ is a neat subgroup of GZ, the projection DBS → Γ\DBS

is a local homeomorphism, and Γ\DBS has a unique structure of a real analytic manifold
with corners for which DBS → Γ\DBS is locally an isomorphism.

(ii) If Γ is a subgroup of GZ of finite index, then Γ\DBS is compact.

0.3. We shortly describe our construction of DBS and explain our ideas.
In the definition of the classifying space D, we fix a finitely generated free Z-module

H0, a rational increasing filtration W on H0,R = R ⊗Z H0, rational non-degenerate
bilinear forms grWw × grWw → R for w ∈ Z, which is symmetric if w is even and anti-
symmetric if w is odd, and non-negative integers hp,q

w with hq,p
w = hp,q

w and with hp,q
w = 0

unless p+q = w (w, p, q ∈ Z). ThenD is defined to be the set of all decreasing filtrations
F on H0,C for which (H0,W, F ) is a mixed Hodge structure such that for any w ∈ Z,
the Hodge structure ((H0∩Ww)/(H0∩Ww−1), F (grWw )) of weight w has Hodge numbers
(hp,q

w )p,q and is polarized by ⟨ , ⟩w. Let GR be the group of all automorphisms g of
(H0,R,W ) such that the automorphism of grWw induced by g preserves ⟨ , ⟩w for all
w ∈ Z.

In the pure case, that is, in the case where there is w ∈ Z such that Ww = H0,R and
Ww−1 = 0, the Borel-Serre space DBS is defined to be the set of all pairs (P,Z) where
P is a Q-parabolic subgroup of GR and Z is an orbit in D under the Borel-Serre action
of AP . Here AP is as follows. Let Pu be the unipotent radical of P and let SP be the
largest Q-split torus in the center of P/Pu. Then AP is the connected component of
the group of R-rational points of SP containing the unity. Hence AP ≃ Rn

>0 where
n is the rank of SP . A point F of D is identified with (G◦

R, {F}) ∈ DBS, where G◦
R

is the connected component of GR containing the unity in the Zariski topology, which
is the largest Q-parabolic subgroup of GR. As a point of the topological space DBS,
(P,Z) is the limit point of the points in Z which run to a special direction conducted
by P . In §2, we will review the Borel-Serre action and more details in the pure case.
This construction is similar to that of the original Borel-Serre space X̄ in [BS], which
is defined for a semi-simple algebraic group G over Q and contains the space X of all
maximal compact subgroups of GR as a dense open subset. This X̄ is the set of all
pairs (P,Z), where P is a Q-parabolic subgroup of GR and Z is an orbit in X for the
Borel-Serre action of AP .

Now we consider the mixed case. Assume we are not in the pure case. Then it seems
that both the group GR and the following group G′

R are equally important. Consider
the homomorphism

(1) R× →
∏

w∈Z AutR(grWw ), a 7→ (aw)w∈Z,

and let G′
R be the algebraic subgroup of AutR(H0,R,W ) generated by GR and a one-

dimensional subtorus T of AutR(H0,R,W ) whose image in
∏

w∈Z AutR(grWw ) coincides
with the image of the homomorphism (1). This algebraic group G′

R is independent of
the choice of T , and is defined over Q. We have the following maps

(2) G′
R ←↩ GR

π−→
∏

w∈Z GR(grWw ),
2



where GR(grWw ) = AutR(grWw , ⟨ , ⟩w). The map P ′ 7→ P ′ ∩ GR is a bijection from
the set of all Q-parabolic subgroups of G′

R to that of GR, whose inverse is given by
assigning P to the group generated by P and T . Moreover, the set of all Q-parabolic
subgroups P of GR corresponds bijectively to the set of all families (Pw)w∈Z of Q-
parabolic subgroups Pw of GR(grWw ) by P = π−1(

∏
w Pw), where π is the map in (2).

We have AP =
∏

w APw
. If P ′ is a Q-parabolic subgroup of G′

R and P = P ′ ∩ GR,
then AP ′ = R>0 × AP . We will denote AP ′ by BP . By a method described below,
we define a Borel-Serre action of BP on D. We define DBS in the mixed case as the
set of all pairs (P,Z), where P is a Q-parabolic subgroup of GR and Z is either an
AP -orbit or a BP -orbit in D for the Borel-Serre action. A point F of D is identified
with (G◦

R, {F}) ∈ DBS. Note that for P = G◦
R, AP = {1} and {F} is an AP -orbit.

Here, to define the Borel-Serre action of BP on D, we use the canonical splitting of
the weight filtration associated to a mixed Hodge structure, which was defined in [CKS].
This splitting (reviewed in §4 below) played important roles in the studies [CKS] and
[KNU] of degeneration of Hodge structures. (It will play key roles also in Part II, Part
III, . . . of this series of papers.) For b = (c, a) ∈ BP with c ∈ R>0 and a ∈ AP , we define
the Borel-Serre action of b on D by F 7→ cFaFF (F ∈ D), where cF ∈ AutR(H0,R,W )
is the lifting, by the canonical splitting of W associated to F , of the image of c in∏

w AutR(grWw ) under the homomorphism (1), and aF ∈ AutR(H0,R,W ) is the lifting,
by the canonical splitting of W associated to F , of the Borel-Serre action of the image

of a under AP
≃−→

∏
w APw

.

0.4. This paper is the part I of our series of papers in which we will construct various
enlargements of D, by adding to D points at infinity corresponding to degenerations
of mixed Hodge structures. In the pure case, in [KU2] and [KU3] (a short summary of
[KU3] is given in [KU1]), we constructed eight enlargements of D, which are related to
each other as in the fundamental diagram

(∗)

DSL(2),val ↪→ DBS,val

↓ ↓

DΣ,val ← D♯
Σ,val → DSL(2) DBS.

↓ ↓

DΣ ← D♯
Σ

In [KU3], for arithmetic subgroups Γ of Aut(D), we also obtained toroidal partial
compactifications of Γ\D as the quotients Γ\DΣ of DΣ and proved that Γ\DΣ are fine
moduli spaces of polarized logarithmic Hodge structures. In our series of papers, we will
obtain the mixed Hodge theoretic version of the diagram (∗), and study the fine moduli
spaces Γ\DΣ of logarithmic mixed Hodge structures with polarized graded quotients.

We are very happy to dedicate this paper to Professor Masaki Kashiwara whose study
on the degeneration of mixed Hodge structures plays essential roles in these series of
papers.
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This paper was written while one of the authors (K. Kato) was a visitor of Univer-
sity of Cambridge whose hospitality (especially by Professor John Coates) is gratefully
appreciated. We are thankful to Professor Steven Zucker and also to the referee for
valuable advice.

§1. Classifying spaces of mixed Hodge
structures with polarized graded quotients

We review the classifying spaces D of mixed Hodge structures with polarized graded
quotients and with fixed Hodge numbers, defined in [U]. These spaces are the mixed
Hodge theoretic versions of Griffiths domains. We fix the notation used in this pa-
per. We first review Hodge structures, mixed Hodge structures, and polarized Hodge
structures following [D].

1.1. A Hodge structure of weight w ∈ Z is a pair H = (HZ, F ) where HZ is a free
Z-module of finite rank and F is a decreasing filtration on HC := C⊗Z HZ satisfying

HC =
⊕

p+q=w Hp,q
F , where Hp,q

F = F p ∩ F̄ q.

Here F̄ q denotes the image of F q under the complex conjugation HC → HC ; z ⊗ h 7→
z̄ ⊗ h (z ∈ C, h ∈ HZ).

1.2. A mixed Hodge structure is a triple (HZ,W, F ), where HZ is a free Z-module of
finite rank, W is a rational increasing filtration on HR = R ⊗Z HZ (“rational” means
that all Ww are defined over Q), and F is a decreasing filtration on HC = C⊗ZHZ such
that Ww = HR for w ≫ 0, Ww = 0 for w ≪ 0, and ((HZ∩Ww)/(HZ∩Ww−1), F (grWw ))
is a Hodge structure of weight w for any w ∈ Z. Here F (grWw ) denotes the filtration on
grWw,C = C⊗R grWw induced by F .

1.3. Polarization. LetH = (HZ, F ) be a Hodge structure of weight w. A polarization
on H is a rational non-degenerate R-bilinear form

⟨ , ⟩ : HR ×HR → R

which is symmetric if w is even and anti-symmetric if w is odd, satisfying the following
two conditions.

(1) ⟨F p, F q⟩ = 0 if p + q > w. Here and in (2) below, ⟨ , ⟩ denotes the C-bilinear
form on HC ×HC → C induced by ⟨ , ⟩.

(2) Let CF : HC → HC be the C-linear map whose restriction to Hp,q
F with p+q = w

is the multiplication by ip−q (this CF is called the Weil operator). Then the Hermitian
form

( , )F : HC ×HC → C, (x, y) 7→ ⟨CFx, ȳ⟩

is positive definite.
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A Hodge structure endowed with a polarization is called a polarized Hodge structure.
The positive definite Hermitian form ( , )F in (2) for a polarized Hodge structure is
called the Hodge metric.

1.4. To define the space D, we fix a 4-tuple

Φ0 = (H0,W, (⟨ , ⟩w)w∈Z, (h
p,q)p,q∈Z)

where
H0 is a finitely generated free Z-module,
W is a rational increasing filtration on H0,R,
⟨ , ⟩w is a rational non-degenerate R-bilinear form grWw × grWw → R given for each

w ∈ Z which is symmetric if w is even and anti-symmetric if w is odd, and
hp,q is a non-negative integer given for p, q ∈ Z such that hp,q = hq,p, rankZ(H0) =∑
p,q h

p,q, and dimR(grWw ) =
∑

p+q=w hp,q for all w.

1.5. Let D be the set of all decreasing filtrations F on H0,C for which (H0,W, F )
is a mixed Hodge structure such that, for all w ∈ Z, ⟨ , ⟩w are polarizations on
((H0 ∩Ww)/(H0 ∩Ww−1), F (grWw )) and such that, for all p, q ∈ Z, the dimension of
Hp,q of F (grWp+q) coincides with hp,q.

Let Ď be the set of all decreasing filtrations F on H0,C satisfying the following two
conditions.

(1) dim(F p(grWp+q)/F
p+1(grWp+q)) = hp,q for any p, q ∈ Z.

(2) ⟨ , ⟩w kills F p(grWw )× F q(grWw ) for any p, q, w ∈ Z such that p+ q > w.

Then D is an open subset of Ď.

1.6. We fix notation.
For A = Z,Q,R, or C, let GA be the group of all A-automorphisms g of H0,A which

are compatible with W such that grWw (g) : grWw → grWw are compatible with ⟨ , ⟩w for
all w. Let GA,u = {g ∈ GA | grWw (g) = 1 for all w ∈ Z}, the unipotent radical of GA.
Then

GA/GA,u = GA(gr
W ) :=

∏
w GA(gr

W
w ),

where GA(gr
W
w ) is “the GA of ((H0∩Ww)/(H0∩Ww−1), ⟨ , ⟩w)”, and GA is a semi-direct

product of GA,u and GA(gr
W ).

The natural action of GC on Ď is transitive, and Ď is a complex homogeneous space
under the action of GC. Hence Ď is a complex analytic manifold. Furthermore, D is
open in Ď and it is also a complex analytic manifold.

1.7. For A = Q,R,C, let gA = Lie(GA). We identify gA with the set of all A-linear
maps N : H0,A → H0,A which are compatible with W such that ⟨grWw (N)(x), y⟩w +
⟨x, grWw (N)(y)⟩w = 0 for all w and all x, y. Let gA,u be the nilpotent radical {N ∈
gA | grWw (N) = 0 for all w ∈ Z} of gA. Then

gA/gA,u = gA(gr
W ) :=

∏
w gA(gr

W
w ),
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where gA(gr
W
w ) denotes “the gA of ((H0 ∩Ww)/(H0 ∩Ww−1), ⟨ , ⟩w)”.

1.8. The space D is a natural generalization to the mixed case of a Griffiths domain,
i.e., the classifying space of polarized Hodge structures in [G].

Let D(grWw ) be the Griffiths domain of grWw , that is, the D for ((H0 ∩Ww)/(H0 ∩
Ww−1), ⟨ , ⟩w, (hp,q)p+q=w). Let

D(grW ) =
∏

w∈Z D(grWw ).

We have the canonical surjective holomorphic map

D → D(grW ), F 7→ F (grW ) := (F (grWw ))w∈Z.

1.9. In the pure case, i.e., in the case where there exists w ∈ Z such that Ww = HR

and Ww−1 = 0, the action of GR on D is transitive. However this transitivity is not
true in the mixed case. In Example II (resp. Examples I and III) below, the action of
GR on D is (resp. is not) transitive. The subgroup GRGC,u of GC (1.6) acts always
transitively on D, and the action of GC,u on each fiber of D → D(grW ) is transitive.

In 1.10–1.12, we give three examples of D. These are the simplest examples for which
the set {w ∈ Z | grWw ̸= 0} are {0,−2}, {0,−1}, {0,−3}, respectively.

1.10. Example I. Let H0 = Z2 = Ze1 + Ze2, let W be the increasing filtration on
H0,R defined by

W−3 = 0 ⊂ W−2 = W−1 = Re1 ⊂ W0 = H0,R,

let ⟨e2, e2⟩0 = 1, ⟨e1, e1⟩−2 = 1, and let h0,0 = h−1,−1 = 1, hp,q = 0 for all the other
(p, q).

We have
D = C.

For z ∈ C, the corresponding F (z) ∈ D is defined as

F (z)1 = 0 ⊂ F (z)0 = C(ze1 + e2) ⊂ F (z)−1 = H0,C.

The group GZ,u is isomorphic to Z and is generated by γ ∈ GZ which is defined as

γ(e1) = e1, γ(e2) = e1 + e2.

We have
GZ,u\D ≃ C×

where (F (z) mod GZ,u) corresponds to exp(2πiz) ∈ C×.
This space GZ,u\D is the classifying space of extensions of mixed Hodge structures

of the form 0→ Z(1)→ ?→ Z→ 0.
In this case, D(grW ) is a one point set.
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1.11. Example II. Let H0 = Z3 = Ze1 + Ze2 + Ze3, let

W−2 = 0 ⊂ W−1 = Re1 +Re2 ⊂ W0 = H0,R,

let ⟨e3, e3⟩0 = 1, ⟨e2, e1⟩−1 = 1, and let h0,0 = h0,−1 = h−1,0 = 1, hp,q = 0 for all the
other (p, q).

Then
D = h×C, D(grW ) = h,

where h is the upper half plane. Here (τ, z) ∈ h × C corresponds to the decreasing
filtration F given by

F 1 = 0 ⊂ F 0 = C(τe1 + e2) +C(ze1 + e3) ⊂ F−1 = H0,C.

The group GZ,u is isomorphic to Z2, where (a, b) ∈ Z2 corresponds to the element of
GZ which sends ej to ej for j = 1, 2 and sends e3 to ae1 + be2 + e3. The quotient space
GZ,u\D is the “universal elliptic curves” over the upper half plane h. For τ ∈ h, the
fiber of GZ,u\D → D(grW ) = h is identified with the elliptic curve Eτ := C/(Zτ + Z).
The Hodge structure on H0∩W−1 corresponding to τ is isomorphic to H1(Eτ )(1). Here
H1(Eτ ) denotes the Hodge structure H1(Eτ ,Z) of weight 1 endowed with the Hodge
filtration and (1) here denotes the Tate twist. The fiber of GZ,u\D → h over τ is the
classifying space of extensions of mixed Hodge structures of the form

0→ H1(Eτ )(1)→ ?→ Z→ 0.

1.12. Example III. Let H0 = Z3 = Ze1 + Ze2 + Ze3, let

W−4 = 0 ⊂ W−3 = W−1 = Re1 +Re2 ⊂ W0 = H0,R,

let ⟨e3, e3⟩0 = 1, ⟨e2, e1⟩−3 = 1, and let h0,0 = h−1,−2 = h−2,−1 = 1, hp,q = 0 for all the
other (p, q).

Then
D = h×C2, D(grW ) = h.

Here (τ, z1, z2) ∈ h×C2 corresponds to the decreasing filtration F given by

F 1 = 0 ⊂ F 0 = C(z1e1 + z2e2 + e3) ⊂ F−1 = F 0 +C(τe1 + e2) ⊂ F−2 = H0,C.

The group GZ,u is the same as in Example II. The Hodge structure on H0 ∩W−3

corresponding to τ ∈ h = D(grW−3) is isomorphic to H1(Eτ )(2). The fiber of GZ,u\D →
D(grW ) = h over τ ∈ h is the classifying space of extensions of mixed Hodge structures
of the form

0→ H1(Eτ )(2)→ ?→ Z→ 0.

These three examples will be retreated in §10 to illustrate our results in this paper.
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§2. Review of the pure case

In this section, we review the Borel-Serre enlargement DBS of D in the pure case
constructed in [KU2]. In [KU2], DBS in the pure case was constructed only as a topo-
logical space, but we show that, by refining the work [KU2], we can endow DBS with a
structure of a real analytic manifold with corners.

The results in this section are contained also in the works of Borel-Ji [BJ1], [BJ2]
on Borel-Serre enlargements of homogeneous spaces by the fact that the space D in the
pure case is a homogeneous space over GR. Since our generalization to the mixed case
has the style similar to that of the work [KU2], we follow the formulation in [KU2].

Assume that we are in the pure case, that is, Ww = HR and Ww−1 = 0 for some
w ∈ Z.

2.1. For F ∈ D, we have compact subgroups KF and K ′
F of GR defined as follows.

Let K ′
F = {g ∈ GR | gF = F}. Let KF be the subgroup of GR consisting of all

elements which preserve the Hodge metric ( , )F (1.3). We have K ′
F ⊂ KF , KF is a

maximal compact subgroup of GR, and

(1) KF = {g ∈ GR | CF gC
−1
F = g}

where CF is the Weil operator of F (1.3). We have

(2) D ≃ GR/K ′
F , gF ↔ (g mod K ′

F ) for g ∈ GR.

2.2. As in [BS], a parabolic subgroup of GR is assumed to be contained in the
connected component G◦

R of GR containing 1 for the Zariski topology. We allow the
improper parabolic G◦

R itself as a parabolic subgroup of GR.
Let P be a Q-parabolic subgroup of GR. We identify P with the Lie group of

R-valued points of P .
Let SP be the largest Q-split torus in the center of P/Pu, where Pu denotes the

unipotent radical of P . Let X(SP ) be the character group of SP , which is isomorphic
to Zn where n is the rank of SP . Let

AP = Hom(X(SP ),R>0) ≃ Rn
>0

⊂ SP = Hom(X(SP ),R
×) ≃ (R×)n.

Here R>0 = {r ∈ R | r > 0} which we regard as a multiplicative group.

2.3. Let P be a Q-parabolic subgroup of GR. We have an action of the group AP

on D, which we denote by ◦ and call the Borel-Serre action, defined as follows.
Let F ∈ D. Then there is a unique homomorphism

SP → P, a 7→ aF

of algebraic groups over R having the following two properties.
8



(1) (aF mod Pu) = a for any a ∈ SP .

(2) CFaFC
−1
F = a−1

F for any a ∈ SP , where CF is the Weil operator (1.3) of F .

From 2.1 (1), we have
akF = aF for any k ∈ KF .

We call aF ∈ P the Borel-Serre lifting of a at F . The Borel-Serre action of a ∈ AP

on D is defined by
F 7→ a ◦ F := aFF.

For a fixed r ∈ D, all elements of D are expressed as pkr with p ∈ P and k ∈ Kr.
The action of a ∈ AP on D is described as a ◦ pkr = parkr.

2.4. The Borel-Serre space DBS is defined to be the set of all pairs (P,Z) where
P is a Q-parabolic subgroup of GR and Z is an AP -orbit in D with respect to the
Borel-Serre action.

2.5. We review the notion real analytic manifold with corners ([BS] Appendix by A.
Douady and L. Hérault).

For m,n ≥ 0 and for an open set U of Rm ×Rn
≥0, a function f : U → R is called

a real analytic function if, for each x ∈ U , there are an open neighborhood U ′ of x in
U , an open set V of Rm ×Rn containing U ′, and a real analytic function g on V such
that the restrictions to U ′ of f and g coincide. We thus have the sheaf of real analytic
functions on U . This sheaf is nothing but the inverse image on U of the sheaf of real
analytic functions on Rm ×Rn.

A real analytic manifold with corners is a local ringed space over R which has an
open covering whose each member is isomorphic to an open set of Rm ×Rn

≥0 with the
sheaf of real analytic functions.

2.6. Let P be a Q-parabolic subgroup of GR. Then a real analytic manifold with
corners ĀP is defined as in [BS]. Choose a subtorus S̃P of P such that the projection

P → P/Pu induces an isomorphism S̃P
≃−→ SP . Let X(SP )

−
Q be the Q≥0-subcone of

X(SP )Q := X(SP )⊗Q (i.e., a non-empty subset of X(SP )Q which is stable under the
addition and under the multiplication by any element of Q≥0) generated by all elements

of X(SP ) ≃ X(S̃P ) which appear in the adjoint representation of S̃P in Lie(P ). Then

X(SP )
−
Q does not depend on the choice of S̃P and X(SP )

−
Q ≃ (Qadd

≥0 )
n. Here Qadd

≥0

denotes the set {r ∈ Q | r ≥ 0} regarded as an additive monoid, and n is the rank of

SP . Let X(SP )
+
Q be the image of X(SP )

−
Q under X(SP )Q

≃−→ X(SP )Q, χ 7→ χ−1. Let

ĀP = Hom(X(SP )
+
Q,Rmult

≥0 ) ≃ Hom((Qadd
≥0 )

n,Rmult
≥0 ) ≃ Rn

≥0,

where Rmult
≥0 denotes the set R≥0 = {r ∈ R | r ≥ 0} regarded as a multiplicative

monoid. Note

AP = Hom(X(SP ),R>0) = Hom(X(SP )
+
Q,R>0)

⊂ ĀP = Hom(X(SP )
+
Q,Rmult

≥0 ).
9



The natural action of R>0 on R≥0 induces a natural action of AP on ĀP .

2.7. The space DBS has the following structure of a real analytic manifold with
corners.

For a Q-parabolic subgroup P of GR, let

DBS(P ) := {(Q,Z) ∈ DBS | Q ⊃ P}.

Then we have a canonical bijection

(1) DBS(P ) ≃ D ×AP ĀP ,

where AP acts on D by the Borel-Serre action. The definition of the bijection (1) is
reviewed in 2.8 below.

By (1), we have a canonical surjection

C :=
⊔

P D × ĀP → DBS,

where P ranges over all Q-parabolic subgroups of GR, and C is a real analytic manifold
with corners.

We define the topology of DBS as the quotient of the topology of C via the above
surjection.

We define the sheaf of rings of real analytic functions on DBS as follows. For an open
set U of DBS and a function f : U → R, f is real analytic if and only if the composition

U ′ → U
f−→ R, where U ′ denotes the inverse image of U in C, is real analytic.

With this sheaf of rings over R, DBS is a real analytic manifold with corners as is
shown in 2.10.

2.8. We recall here the definition of the bijection (1) in 2.7.
Let P and Q be Q-parabolic subgroups of GR and assume Q ⊃ P . Then Qu ⊂ Pu,

and the projection Q/Qu → Q/Pu induces an injective homomorphism from SQ into
SP . The induced homomorphism AQ → AP is compatible with the Borel-Serre actions
of AQ and AP on D. The homomorphism X(SP )→ X(SQ) corresponding to SQ → SP

induces a surjective homomorphism X(SP )
+
Q → X(SQ)

+
Q.

For a Q-parabolic subgroup P of GR, there is a bijection ν : Q 7→ Ker(X(SP )
+
Q →

X(SQ)
+
Q) from the set of all Q-parabolic subgroups of GR containing P onto the set of

all faces of the Q≥0-cone X(SP )
+
Q. (Recall that X(SP )

+
Q ≃ (Qadd

≥0 )
n. A face of (Qadd

≥0 )
n

corresponds bijectively to a subset J of {1, 2, . . . , n} by associating J to the face of
(Qadd

≥0 )
n consisting of all elements whose j-th components for all j ∈ J are 0.)

The bijection (1) in 2.7 sends class(F, a) ∈ D ×AP ĀP (F ∈ D, a ∈ ĀP ) to (Q,Z) ∈
DBS(P ), where Q = ν−1(S) with S = {χ ∈ X(SP )

+
Q | a(χ) ̸= 0}, and

Z = {a′ ◦ F | a′ ∈ AP , a
′(χ) = a(χ) for all χ ∈ S}.

Conversely, in the bijection (1) in 2.7, (Q,Z) ∈ DBS(P ) corresponds to class(F, a) ∈
D ×AP ĀP , where F is any element of Z and a : X(SP )

+
Q → R≥0 sends χ ∈ X(SP )

+
Q

to 1 if χ ∈ ν(Q) and to 0 if χ /∈ ν(Q).
10



2.9. For 2.10 below, we give some basic facts (i) and (iii), whose proofs are easy, and
their consequences (ii) and (iv). Let P and Q be Q-parabolic subgroups of GR. Let
P ∗Q be the algebraic subgroup of GR generated by P and Q, which is a Q-parabolic
subgroup of GR.

(i) The inverse image of DBS(P ) in D× ĀQ under the canonical map D× ĀQ → DBS

(2.7) is the open set D× ĀQ(P ∗Q), where ĀQ(P ∗Q) is the open set of ĀQ consisting
of all homomorphisms X(SQ)

+
Q → Rmult

≥0 which send Ker(X(SQ)
+
Q → X(SP∗Q)

+
Q) into

R>0.

This shows

(ii) DBS(P ) is open in DBS.

(iii) Let the notation be as in (i). Take a homomorphism X(SP∗Q)
+
Q → X(SQ)

+
Q

such that the composition X(SP∗Q)
+
Q → X(SQ)

+
Q → X(SP∗Q)

+
Q is the identity, let

AQ → AP∗Q be the corresponding homomorphism, and let H be the kernel of the last
homomorphism. Then we have an isomorphism of real analytic manifolds with corners

H × ĀP∗Q
≃−→ ĀQ(P ∗Q), (a, a′) 7→ aa′. The diagram

D × ĀQ(P ∗Q) → D × ĀP

↓ ↓
DBS(P ) = DBS(P )

is commutative, where the upper horizontal arrow is the real analytic map (F, aa′) 7→
(a ◦ F, a′) (a ∈ H, a′ ∈ ĀP∗Q ⊂ ĀP ). (Here the inclusion ĀP∗Q ⊂ ĀP is induced from
the surjective homomorphism X(SP )

+
Q → X(SP∗Q)

+
Q.)

This shows

(iv) The bijection DBS(P ) ≃ D ×AP ĀP in 2.7 (1) is a homeomorphism. Here
D ×AP ĀP has the topology as a quotient space of D × ĀP . For an open set U of
DBS(P ) and a function f : U → R, f is real analytic if and only if the composition

U ′ → U
f−→ R is real analytic where U ′ is the inverse image of U in D × ĀP .

2.10. We give a proof of the fact that DBS is a real analytic manifold with corners.
Let P be a Q-parabolic subgroup of GR. Then there is a real analytic map f :

D → AP such that f(a ◦ F ) = af(F ) for any a ∈ AP and F ∈ D. The existence of
f is shown as follows (see [KU2] (2.16)). Let ◦P be the intersection of the kernels of
|χ| : P → R>0 for all homomorphisms of algebraic groups χ : P → R× defined over Q.
Then Pu ⊂ ◦P and the composition AP → P/Pu → P/◦P is an isomorphism ([BS] 1.2).
Let | | : P → AP be the composition P → P/◦P ≃ AP . Fix r ∈ D. Then an example
of f is defined as pkr 7→ |p| (p ∈ P , k ∈ Kr).

Let f be as above and let D(1) = {F ∈ D | f(F ) = 1}. Then D(1) is a closed
real analytic submanifold of D (by “closed submanifold”, we do not mean “compact
submanifold” but just mean “submanifold which is closed”) and we have an isomorphism
of real analytic manifolds

D(1) ×AP
≃−→ D, (F, a) 7→ a ◦ F.

11



By the above (iv), this isomorphism extends uniquely to an isomorphism of ringed
spaces

D(1) × ĀP
≃−→ DBS(P ).

Since DBS is covered by open sets DBS(P ) when P varies, this shows that DBS is a real
analytic manifold with corners.

2.11. It is easy to see that the action of GZ on D extends to a real analytic action of
GZ on DBS (i.e., an action of GZ as automorphisms of the real analytic manifold with
corners DBS). Theorem 0.2 in Introduction in the pure case is proved in [KU2] except
the part where the structure of real analytic manifold with corners is concerned. This
part follows from the other part easily. (Theorem 0.2 in the pure case also follows from
the works [BJ1], [BJ2].)

§3. A rough picture of the mixed case

3.1. In this introductory section, we describe roughly the shape of DBS in the mixed
case, comparing it with DBS(gr

W ) :=
∏

w∈Z DBS(gr
W
w ) where DBS(gr

W
w ) is “the DBS

of the pure case ((H0 ∩Ww)/(H0 ∩Ww−1), ⟨ , ⟩w)” in §2. The proofs of the statements
concerning DBS in this section are given later.

3.2. In this paper, the canonical projection D → D(grW ) :=
∏

w∈Z D(grWw ) (1.8)

will be extended to a surjective morphism DBS → DBS(gr
W ) of real analytic manifolds

with corners. We describe roughly the shape of DBS as a fiber space over DBS(gr
W ).

3.3. Let spl(W ) be the set of all splittings of W . That is, spl(W ) is the set of all
isomorphisms

s : grW =
⊕

w grWw
≃−→ H0,R

of R-vector spaces such that for any w ∈ Z and v ∈ grWw , s(v) ∈Ww and v = (s(v) mod
Ww−1).

For g ∈ GR,u and s ∈ spl(W ), the isomorphism gs : grW
≃−→ H0,R is also a splitting

of W . For this action of GR,u on spl(W ), spl(W ) is a GR,u-torsor, that is, for a fixed

s ∈ spl(W ), we have a bijection GR,u
≃−→ spl(W ), g 7→ gs. Via this bijection, we endow

spl(W ) with a structure of a real analytic manifold (which is independent of the choice
of s fixed here).

For F = (Fw)w ∈ D(grW ) (Fw ∈ D(grWw )) and s ∈ spl(W ), we have s(F ) ∈ D
defined by s(F )p = s(

⊕
w F p

w) (p ∈ Z). Let Dspl be the subset of D consisting of all
elements obtained in this way. Then Dspl is a closed real analytic submanifold of D.
We have an isomorphism of real analytic manifolds

spl(W )×D(grW )
≃−→ Dspl, (s, F ) 7→ s(F ).

An element of D is said to be R-split if it belongs to Dspl.
12



3.4. As is shown in Proposition 8.7, the following three conditions are equivalent.
(1) D is a GR-homogenious space. (2) D is a G′

R-homogeneous space. Here G′
R is as

in 0.3. (3) D = Dspl.
Example II in §1 satisfies these equivalent conditions, but Examples I and III do not.

In the case D = Dspl, we have D = spl(W ) × D(grW ). We will have DBS =
spl(W )×DBS(gr

W ) in this case (Proposition 8.7). Thus in this case, for F ∈ D(grW ),
the fiber of DBS → DBS(gr

W ) on F is the same as the fiber of D → D(grW ) on F .
However, in the case D ̸= Dspl, for F ∈ D(grW ), the fiber of DBS → DBS(gr

W ) on
F is actually bigger than the fiber of D → D(grW ) on F .

For example, in Example I, DBS(gr
W ) = D(grW ) and it is a one point set, and

D = C, Dspl = R. The subgroup Γ := GZ,u ≃ Z of GZ is of finite index in GZ, and so
Γ\DBS should be compact as in (ii) in Theorem 0.2 in Introduction. Since Γ\D = Z\C
is not compact, we need to add new points to D to obtain our DBS. As is explained in
10.1, in this case,

DBS = {x+ iy | x ∈ R,−∞ ≤ y ≤ ∞} ⊃ D = C = {x+ iy | x, y ∈ R},

and Γ\DBS ≃ Z\R× [−∞,∞] is compact.

3.5. In general, as a real analytic manifold, D is an L-bundle over spl(W )×D(grW )
for some finite-dimensional graded R-vector space L. (With the notation in 4.2, L =

L−1,−1
R (r) for r ∈ D(grW ); all L−1,−1

R (r) are non-canonically isomorphic to each other
as graded R-vector spaces.)

We will have a compactification L̄ of L (§7) which is a real analytic manifold with
corners. As a real analytic manifold with corners, DBS is an L̄-bundle over spl(W ) ×
DBS(gr

W ) (Corollary 8.5). For example, in Example I, the map D → spl(W )×D(grW )
is identified with the projection C → R, z 7→ Re(z), and L ≃ R, L̄ ≃ [−∞,∞] ⊃ R
(see 10.1).

3.6. As explained in Introduction, an element of DBS has the form (P,Z) where P
is a Q-parabolic subgroup of GR and Z is either an AP -orbit or a BP -orbit in D for
the Borel-Serre action. As is shown in 7.6, Z is an AP -orbit if and only if in the above
local isomorphism between DBS and spl(W )×DBS(gr

W )× L̄, the component of (P,Z)
in L̄ belongs to L.

§4. Canonical splittings of weight filtrations

4.1. In this section, we review the canonical splitting s = splW (F ) ∈ spl(W ) associ-
ated to F ∈ D, defined by the theory of Cattani-Kaplan-Schmid [CKS]. This element s
played an important role in our previous paper [KNU]. The definition of s was reviewed
in detail in section 1 of [KNU].

4.2. Let F = (Fw)w ∈ D(grW ). Regard F as the filtration
⊕

w Fw on grWC =⊕
w grWw,C, and let Hp,q

F = Hp,q
Fp+q

⊂ grWC . Let

L−1,−1
R (F ) = {δ ∈ EndR(grW ) | δ(Hp,q

F ) ⊂
⊕

p′<p,q′<q Hp′,q′

F for all p, q ∈ Z}.
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All elements of L−1,−1
R (F ) are nilpotent.

Let F ∈ D. For the canonical splitting s = splW (F ) of W associated to F , there is

a unique pair (δ, ζ) of elements of L−1,−1
R (F (grW )) such that

F = s(exp(−ζ) exp(iδ)F (grW )).

Here, exp(−ζ) exp(iδ) is defined as an automorphism of grWC , and exp(−ζ) exp(iδ)F (grW )
is defined as a decreasing filtration on grWC . This filtration need not be a direct sum of
filtrations on grWw,C for w ∈ Z.

For F ∈ D, we introduce the definition of the associated element δ first, that of the
associated element ζ next, and then give the definition of the associated splitting s.

4.3. For F ∈ D, there is a unique pair (s′, δ) ∈ spl(W )×L−1,−1
R (F (grW )) such that

F = s′(exp(iδ)F (grW )).

This is the definition of δ = δ(F ) associated to F .
The definition of ζ = ζ(F ) is rather complicated. It is given as a universal Lie

polynomial in the (p, q)-Hodge components of δ (p, q ∈ Z) for F (grW ) as is explained
below.

The maps
D → End(grW ), F 7→ δ(F ), F 7→ ζ(F )

are real analytic.

4.4. Let blp,q (p, q, l ∈ Z, p, q, l ≥ 0) be the integers determined by (1−x)p(1+x)q =∑
l b

l
p,qx

l, so that blp,q = 0 unless p+ q ≥ l.
Define non-commutative polynomials Pk = Pk(X2, . . . , Xk+1) over Q by P0 = 1,

Pk = − 1
k

∑k
j=1 Pk−jXj+1 (k ≥ 1). (So P1 = −X2, P2 = 1

2X
2
2 − 1

2X3, P3 = − 1
6X

3
2 +

1
6X3X2 +

1
3X2X3 − 1

3X4, etc.)
Let A be the ring of non-commutative polynomials in variables δ−p,−q (p ≥ 1, q ≥ 1)

over Q(i). For p, q ≥ 1, let A−p,−q be the part of A consisting of linear combinations
over Q(i) of products of the form δ−p1,−q1 · · · δ−pk,−qk with p =

∑
j pj , q =

∑
j qj . Then

A is the direct sum of the A−p,−q and Q(i) as a Q(i)-module.
In [CKS] (6.60), it is proved that there exists a unique family of elements ζ−p,−q and

η−p,−q of A−p,−q (p, q ≥ 1) satisfying the following two conditions (1) and (2).

(1) Let Â be the formal completion lim←−k A/I
k, where Ik denotes the sum of A−p,−q

such that p + q ≥ k. Let ζ =
∑

p,q ζ−p,−q, η =
∑

p,q η−p,−q ∈ Â. Then we have an

identity in Â
exp(−ζ) exp(iδ) =

∑
k≥0 Pk(C2, . . . , Ck+1),

where Cl+1 = i
∑

p,q≥1

bl−1
p−1,q−1η−p,−q.

(2) By the unique ring homomorphism A → A which sends i to −i and δ−p,−q to
δ−q,−p, the element ζ−p,−q is sent to ζ−q,−p, and η−p,−q is sent to η−q,−p.
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For example, we have

ζ−1,−1 = 0,

ζ−2,−1 = i
2δ−2,−1,

ζ−1,−2 = − i
2δ−1,−2.

It can be shown that ζp,q are Lie polynomials in δk,l (k, l ≤ −1).

4.5. For F ∈ D(grW ) and for δ ∈ L−1,−1
R (F ), let δp,q (p, q ∈ Z) be the (p, q)-Hodge

component of δ defined by

δ =
∑

p,q δp,q (δp,q ∈ L−1,−1
C (F ) = C⊗R L−1,−1

R (F )),

δp,q(H
k,l
F ) ⊂ Hk+p,l+q

F for all k, l ∈ Z.

We define the element ζ ∈ L−1,−1
R (F ) associated to the pair (F, δ), as the element

whose (p, q)-Hodge component ζp,q for F for each p, q ∈ Z is the Lie polynomial in δk,l
(k, l ≤ −1) given in 4.4.

4.6. For F ∈ D, the associated δ, ζ, s are as follows. The element δ is already given
in 4.3. The element ζ is defined to be the element of L−1,−1

R (F (grW )) associated to the
pair (F (grW ), δ) as in 4.5. Finally the canonical splitting s = splW (F ) of W is defined
by

s = s′ exp(ζ)

where s′ is as in 4.3.

4.7. For F ∈ D, the elements s′δ(s′)−1, s′ζ(s′)−1 ∈ gR here are denoted in [CKS]
and also in [KNU] as δ, ζ, respectively. Here s′δ(s′)−1 is understood as the composition

H0,R
(s′)−1

−−−−→ grW
δ−→ grW

s′−→ H0,R.

For these elements, we have

F = exp(is′δ(s′)−1)s′(F (grW )) = exp(is′δ(s′)−1) exp(−s′ζ(s′)−1)s(F (grW )).

4.8. For F ∈ D(grW ) and δ ∈ L−1,−1
R (F ), we define a filtration θ(F, δ) on grWC by

θ(F, δ) = exp(−ζ) exp(iδ)F,

where ζ is the element of L−1,−1
R (F ) associated to the pair (F, δ) in 4.5. For s ∈ spl(W ),

the δ, ζ, s associated to s(θ(F, δ)) are just δ, ζ, s.
15



Proposition 4.9. We have an isomorphism of real analytic manifolds

D ≃ {(s, F, δ) ∈ spl(W )×D(grW )× EndR(grW ) | δ ∈ L−1,−1
R (F )},

F ↔ (splW (F ), F (grW ), δ(F )), s(θ(F, δ))↔ (s, F, δ).

4.10. For g = (gw)w ∈ GR(grW ) =
∏

w GR(grWw ), we have

gθ(F, δ) = θ(gF,Ad(g)δ),

where Ad(g)δ = gδg−1.

4.11. For F ∈ D(grW ), δ ∈ L−1,−1
R (F ) and s ∈ spl(W ), the element s(θ(F, δ)) of D

belongs to Dspl if and only if δ = 0.

§5. Definition of DBS

5.1. Note that a Q-parabolic subgroup P of GR corresponds in one-to-one manner
to a family (Pw)w∈Z of Q-parabolic subgroups Pw of GR(grWw ). The correspondence is
that P is the inverse image of

∏
w∈Z Pw under GR →

∏
w∈Z GR(grWw ). We will denote∏

w∈Z Pw as P (grW ).
Let

SP :=
∏

w∈Z SPw , AP :=
∏

w∈Z APw ≃ Rn
>0, ĀP :=

∏
w∈Z ĀPw ≃ Rn

≥0

where n is the rank of SP . Here SPw
, APw

, and ĀPw
are defined as in §2 for the pure

situation ((H0 ∩Ww)/(H0 ∩Ww−1), ⟨ , ⟩w, Pw).
Let

BP := R>0 ×AP ≃ Rn+1
>0 , B̄P := R≥0 × ĀP ≃ Rn+1

≥0 .

We regard

AP = {1} ×AP ⊂ BP , ĀP = {1} × ĀP ⊂ B̄P .

5.2. We have the Borel-Serre action ◦ of BP on D defined as follows. This is the
mixed Hodge theoretic version of the Borel-Serre action of APw on D(grWw ) in §2.

For F ∈ D and b = (c, a) ∈ BP (c ∈ R>0, a = (aw)w∈Z ∈ AP with aw ∈ APw
),

we define b ◦ F = bFF , where bF ∈ AutR(H0,R,W ) is as follows. For the canonical

splitting s : grW
≃−→ H0,R of W associated to F (§4), bF acts on the weight w-summand

s(grWw ) of H0,R as cwaw,F (grWw ) where aw,F (grWw ) ∈ Pw is the Borel-Serre lifting (2.3) of

aw at F (grWw ).
For b ∈ BP and F ∈ D, we call bF the Borel-Serre lifting of b at F .
The map BP ×D → D, (b, F ) 7→ b◦F is actually an action of BP on D, as is reduced

easily to the pure case.
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For b = (c, a) ∈ BP , s ∈ spl(W ), F = (Fw)w ∈ D(grW ) and δ ∈ L−1,−1
R (F ), we have

(1) b◦s(θ(F, δ)) = a◦s(θ(F, c◦δ)) = s((
⊕

w aw,Fw
)θ(F, c◦δ)) = s(θ(a◦F, c◦Ad(aF )δ)).

Here c ◦ δ =
∑

w cwδw with δw the part of weight w of δ, a ◦ F = (aw ◦ Fw)w, and
Ad(aF ) =

⊕
w Ad(aw,Fw

).
The Borel-Serre action of BP on Dspl factors through the projection BP → AP , but

not so on the rest of D.
Via the projection D → D(grW ), the Borel-Serre action of BP on D is compatible

with the Borel-Serre action of AP on D(grW ) through the projection BP → AP .
If Q is a Q-parabolic subgroup of GR containing P , the canonical homomorphism

AQ → AP (2.8) and the induced homomorphism BQ → BP are compatible with the
Borel-Serre actions of these groups on D.

Definition 5.3. We defineDBS to be the set of all pairs (P,Z) where P is aQ-parabolic
subgroup of GR and Z is either an AP -orbit or a BP -orbit in D for the Borel-Serre
action.

Note that for F ∈ D, the AP -orbit in D containing F and the BP -orbit in D
containing F coincide if and only if F ∈ Dspl.

5.4. We have a canonical map

DBS → DBS(gr
W ), (P,Z) 7→ (Pw, Zw)w

where Zw = {F (grWw ) | F ∈ Z}, which we denote as p 7→ p(grW ).

5.5. We have a canonical map

splW : DBS → spl(W )

sending (P,Z) ∈ DBS to the canonical splitting of W associated to F ∈ Z (§4), which
is independent of the choice of F ∈ Z by 5.2 (1).

Combining these, we have a canonical map

DBS → spl(W )×DBS(gr
W ), p 7→ (splW (p), p(grW )).

§6. The real analytic structure with corners

In this section, we define a structure of a ringed space over R on DBS and lead to
the theorem that DBS is a real analytic manifold with corners.

6.1. For a Q-parabolic subgroup P of GR, let

DBS(P ) := {(Q,Z) ∈ DBS | Q ⊃ P}.
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Write P (grW ) =
∏

w Pw. Then DBS(P ) is the inverse image of DBS(gr
W )(P (grW )) :=∏

w DBS(gr
W
w )(Pw) under the canonical map DBS → DBS(gr

W ).
We have a canonical bijection

(1) DBS(P ) ≃ ((D −Dspl)×BP B̄P ) ∪ (D ×AP ĀP ).

Here the union in the right-hand side is taken inD×BP B̄P , whereD×AP ĀP is embedded
in D ×BP B̄P via the identifications AP = {1} × AP ⊂ BP , ĀP = {1} × ĀP ⊂ B̄P .
Hence, in the right-hand side, the intersection ((D −Dspl) ×BP B̄P ) ∩ (D ×AP ĀP ) is
(D −Dspl)×AP ĀP .

The bijection (1) is defined as follows. Let X(SP ) :=
∏

w X(SPw
) and X(SP )

+
Q :=∏

w X(SPw)
+
Q. For F ∈ D and a = (aw)w ∈ ĀP (resp. F ∈ D−Dspl and b = (0, a) ∈ B̄P

with a = (aw)w ∈ ĀP ), the corresponding (Q,Z) ∈ DBS(P ) is given as follows. For
w ∈ Z, let (Qw, Zw) be the element of DBS(gr

W
w )(Pw) corresponding to (F (grWw ), aw)

(2.7). Then Q is the parabolic subgroup of GR corresponding to (Qw)w. Z is the AQ

(resp. BQ)-orbit in D defined by

Z = {a′ ◦ F | a′ ∈ AP , a
′(χ) = a(χ) for all χ ∈ S}

(resp. Z = {(c, a′) ◦ F | c > 0, a′ ∈ AP , a
′(χ) = a(χ) for all χ ∈ S}),

where S = Ker(X(SP )
+
Q → X(SQ)

+
Q). Conversely, (Q,Z) ∈ DBS(P ) corresponds to

the following element of the right-hand side of (1). Assume Z is an AQ-orbit (resp. a
BQ-orbit but not an AQ-orbit). Take F ∈ Z. Then the corresponding element of the
right-hand side of (1) is the class of (F, a) (resp. (F, b) with b = (0, a) ∈ B̄P ), where
a ∈ ĀP = Hom(X(SP )

+
Q,Rmult

≥0 ) is defined as follows. For χ = (χw)w ∈ X(SP )
+
Q, a(χ)

is 1 if χw belongs to the face of X(SPw)
+
Q corresponding to Qw (2.8) for any w, and is

0 otherwise.

6.2. We define the topology of DBS and the sheaf of rings of real analytic functions
on DBS.

By 6.1 (1), we have a canonical surjection

C :=
⊔

P (((D −Dspl)× B̄P ) ⊔ (D × ĀP ))→ DBS,

where P ranges over all Q-parabolic subgroups of GR, and C is a real analytic manifold
with corners.

We define the topology of DBS as the quotient of the topology of C via the above
surjection.

We define the sheaf of rings of real analytic functions on DBS as follows. For an open
set U of DBS and a function f : U → R, f is real analytic if and only if the composition

U ′ → U
f−→ R, where U ′ denotes the inverse image of U in C, is real analytic.

The following will be proved in §8.
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Theorem 6.3. With the sheaf of rings over R defined in 6.2, DBS is a real analytic
manifold with corners.

Proposition 6.4. (i) The projection DBS → spl(W )×DBS(gr
W ) is real analytic, that

is, it is a morphism of real analytic manifolds with corners.

(ii) Let P be a Q-parabolic subgroup of GR. Then the action of P on D extends
uniquely to a real analytic action of P on DBS(P ).

(iii) Regard the subgroup GQGR,u of GR as a Lie group in which GR,u is an open
subgroup with the usual topology. Then the action of GQGR,u on D extends uniquely
to a real analytic action of GQGR,u on DBS.

§7. Compactified graded real vector spaces

This section gives a result needed for §8.

Let V be a finite-dimensional R-vector space endowed with a direct sum decompo-
sition V =

⊕
w∈Z,w≤−1 Vw. In this section, we define a compactification V̄ of V which

is a real analytic manifold with corners. (In fact, V̄ is actually a real analytic manifold
“with boundary”, for the boundary of V̄ is smooth. As a differentiable manifold with
boundary, V̄ is nothing but the spherical compactification of V .) At the end 7.6 of this
section, we explain how this compactification is used in this paper.

7.1. Consider the action

R>0 × V → V, (c, v) 7→ c ◦ v :=
∑

w∈Z cwvw

of the group R>0 on V where vw denotes the Vw-component of v.
Let V̄ be the set of all subsets of V which are either a one point set or an R>0-orbit

for this action.

7.2. We have a canonical bijection

(1) V̄ ≃ ((V − {0})×R>0 R≥0) ∪ V,

where in the right-hand side R>0 acts on V −{0} by ◦ as in 7.1. Here the union in the
right-hand side is taken in V ×R>0 R≥0. So the intersection ((V −{0})×R>0 R≥0)∩V
is V − {0}. In (1), the one point set {v} ∈ V̄ for v ∈ V corresponds to v ∈ V in the
right-hand side, and the R>0-orbit containing v ∈ V − {0}, regarded as an element of
V̄ , corresponds to the class of (v, 0) ∈ (V − {0})×R≥0 in the right-hand side.

Via the bijection (1), we will identify V̄ with a subset of V ×R>0 R≥0 and identify
V̄ − {0} with (V − {0})×R>0 R≥0.

7.3. We define a structure of a ringed space overR on V̄ . By 7.2, we have a canonical
surjection

C := ((V − {0})×R≥0) ⊔ V → V̄ ,
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and C is a real analytic manifold with corners.
We define the topology of V̄ as the quotient of the topology of C via the above

surjection.
We define the sheaf of real analytic functions on V̄ is as follows. For an open set U

of V̄ , a function f : U → R is real analytic if and only if the composition U ′ → U
f−→ R,

where U ′ denotes the inverse image of U in C, is real analytic.
As is easily seen, we have:

(i) V̄ − {0} and V are open in V̄ .

(ii) The restriction of the topology of V̄ to V coincides with the original topology of
V . For an open set U of V , a function f : U → R is real analytic in the usual sense if
and only if it is real analytic in the above sense when U is regarded as an open set of
V̄ .

(iii) The topology of V̄ − {0} as a subspace of V̄ coincides with the quotient of the
topology of (V −{0})×R≥0. For an open set U of V̄ −{0} and for a function f : U → R,

f is real analytic in the above sense if and only if the composition U ′ → U
f−→ R is real

analytic, where U ′ denotes the inverse image of U in (V − {0})×R≥0.

Proposition 7.4. The ringed space V̄ over R is a real analytic manifold with corners.
It is compact.

Proof. Take a positive definite symmetric R-bilinear form ( , )w : Vw × Vw → R for
each w. Take an integer m < 0 which satisfies m ∈ wZ for any w ∈ Z such that Vw ̸= 0.
Consider the real analytic function

f : V − {0} → R>0 , v 7→ (
∑

w≤−1 (vw, vw)
m/w
w )1/2m.

Then f(c ◦ v) = cf(v) for any c ∈ R>0 and v ∈ V − {0}.
Let V (1) = {v ∈ V | f(v) = 1}. Then V (1) is a closed real analytic submanifold of

V − {0}, and we have an isomorphism of real analytic manifolds

(1) V (1) ×R>0
≃−→ V − {0}, (v, c) 7→ c ◦ v.

The inverse map is given by v 7→ (f(v)−1 ◦ v, f(v)). The isomorphism (1) extends to
an isomorphism of ringed spaces over R

(2) V (1) ×R≥0 ≃ V̄ − {0}

which sends (v, 0) (v ∈ V (1)) to {c ◦ v | c ∈ R>0} ∈ V̄ . Hence V̄ −{0} is a real analytic
manifold with corners.

We prove V̄ is compact. Note that V (1) is compact. The map (2) extends to a
continuous map

V (1) × [0,∞]→ V̄
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which sends (v,∞) (v ∈ V (1)) to 0. Via this map, V̄ is homeomorphic to the quotient
of the compact space V (1)× [0,∞] obtained by identifying all (v,∞) (v ∈ V (1)). Hence
V̄ is compact. □

7.5. Example. Let w ∈ Z, w ≤ −1, and consider the simplest case V = Vw = R.
Then we have a canonical isomorphism of real analytic manifolds with corners

V̄ ≃ [−∞,∞],

which sends the class of (v, c) in V̄ (v ∈ V = R, c ∈ R≥0, (v, c) ̸= (0, 0)) to cwv if
c ̸= 0, to ∞ if c = 0 and v > 0, and to −∞ if c = 0 and v < 0. Here we endow
[−∞,∞] with the following structure of a real analytic manifold with corners. The
topology of [−∞,∞] is the usual topology, we regard the open set R of [−∞,∞] as
a real analytic manifold in the usual way, and we regard (0,∞] (resp. [−∞, 0)) as a

real analytic manifold with corners via the bijection R≥0
≃−→ (0,∞], r 7→ rw (resp.

R≥0
≃−→ [−∞, 0), r 7→ −rw).

The compactified vector space of this section is used in this paper in the following
way.

Proposition 7.6. Let s ∈ spl(W ) and (P,Z) ∈ DBS(gr
W ). Fix F ∈ Z and let L be

the graded vector space L−1,−1
R (F ) of weights ≤ −2.

(i) There is a bijection from the fiber of the map DBS → spl(W ) ×DBS(gr
W ) (5.5)

over (s, (P,Z)) onto the compactified vector space L̄ given in the following way. An

element (P̃ , Z̃) ∈ DBS in this fiber corresponds to the subset {δ ∈ L | s(θ(F, δ)) ∈ Z̃}
of L, which is an element of L̄. Here P̃ is the inverse image of P ⊂ GR(grW ) under
GR → GR(grW ).

(ii) We have the following equivalences. Let (P̃ , Z̃) be an element of this fiber and
let v ∈ L̄ be the corresponding element.

Z̃ is an AP̃ -orbit ⇐⇒ v ∈ L.

Z̃ is a BP̃ -orbit but not an AP̃ -orbit ⇐⇒ v ∈ L̄− L.

Z̃ is an AP̃ -orbit and also a BP̃ -orbit ⇐⇒ v = 0.

Proof. A point of the fiber is a pair (P̃ , Z̃), where Z̃ is either an AP̃ -orbit or a

BP̃ -orbit which contains s(θ(F, δ1)) for some δ1 ∈ L. If it is an AP̃ -orbit, then Z̃ =

{s(θ(a ◦ F,Ad(aF )δ1)) | a ∈ AP }, and hence {δ ∈ L | s(θ(F, δ)) ∈ Z̃} = {δ1}. If it

is a BP̃ -orbit, then Z̃ = {s(θ(a ◦ F, c ◦ Ad(aF )δ1)) | a ∈ AP , c ∈ R>0}, and hence

{δ ∈ L | s(θ(F, δ)) ∈ Z̃} = {c ◦ δ1 | c ∈ R>0}. These imply the desired statements. □

§8. Descriptions of DBS

In this section, we prove results which describe how our space DBS looks like.
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8.1. We define two open sets D
(B)
BS and D

(A)
BS of DBS such that DBS = D

(B)
BS ∪D

(A)
BS .

Let D
(B)
BS be the subset of DBS consisting of all elements of the form (P,Z) such that

Z ⊂ D − Dspl. Let D
(A)
BS be the subset of DBS consisting of all elements of the form

(P,Z) such that Z is an AP -orbit. Note that D
(B)
BS is not the set of all (P,Z) ∈ DBS such

that Z is a BP -orbit, but D
(B)
BS contains any (P,Z) ∈ DBS such that Z is a BP -orbit but

not an AP -orbit. In the bijection of 7.6 between the fiber of DBS → spl(W )×DBS(gr
W )

and L̄, if p ∈ DBS is in the fiber and if v ∈ L̄ is the image of p, then p ∈ D
(B)
BS if and only

if v ̸= 0, and p ∈ D
(A)
BS if and only if v ∈ L ⊂ L̄. For a Q-parabolic subgroup P of GR,

DBS(P )(B) := DBS(P )∩D(B)
BS coincides with the image of (D−Dspl)×BP B̄P → DBS(P )

and DBS(P )(A) := DBS(P ) ∩D
(A)
BS coincides with the image of D ×AP ĀP → DBS(P )

under the bijection (1) in 6.1. Hence under the canonical maps (D−Dspl)× B̄P → DBS

andD×ĀP → DBS (6.2), the inverse image ofD
(B)
BS in (D−Dspl)×B̄P is (D−Dspl)×B̄P

itself, the inverse image of D
(B)
BS in D× ĀP is the open set (D−Dspl)× ĀP , the inverse

image of D
(A)
BS in (D − Dspl) × B̄P is the open set (D − Dspl) × R>0 × ĀP , and the

inverse image of D
(A)
BS in D × ĀP is D × ĀP itself. From these we see that D

(B)
BS and

D
(A)
BS are open in DBS.
We give some basic facts (i) and (iii), whose proofs are easy, and their consequences

(ii) and (iv). These are the mixed versions of the corresponding statements in the pure
case in 2.9.

Let P and Q be Q-parabolic subgroups of GR. Let P ∗Q be the algebraic subgroup
of GR generated by P and Q, which is a Q-parabolic subgroup of GR.

(i) Let ĀQ(P ∗Q) be the open set of ĀQ consisting of all homomorphisms X(SQ)
+
Q →

Rmult
≥0 which send Ker(X(SQ)

+
Q → X(SP∗Q)

+
Q) into R>0. Let B̄Q(P ∗ Q) be the open

subset R≥0×ĀQ(P ∗Q) of B̄Q. Then under the canonical maps (D−Dspl)×B̄Q → DBS

and D × ĀQ → DBS (6.2), the inverse image of DBS(P )(B) in (D −Dspl) × B̄Q is the

open set (D − Dspl) × B̄Q(P ∗ Q), the inverse image of DBS(P )(B) in D × ĀQ is the

open set (D −Dspl)× ĀQ(P ∗Q), the inverse image of DBS(P )(A) in (D −Dspl)× B̄Q

is the open set (D −Dspl)×R>0 × ĀQ(P ∗Q), and the inverse image of DBS(P )(A) in
D × ĀQ is the open set D × ĀQ(P ∗Q).

This shows

(ii) DBS(P )(B) and DBS(P )(A) are open in DBS.

In fact, (ii) can also be deduced from the fact that D
(B)
BS , D

(A)
BS , and DBS(P ) are open

sets of DBS. (The openness of DBS(P ) follows from the openness of DBS(gr
W )(P (grW ))

since DBS(P ) is the inverse image of DBS(gr
W )(P (grW )) under the canonical map

DBS → DBS(gr
W ) which is continuous.)

(iii) Let the notation be as in (i). Take a homomorphism X(SP∗Q)
+
Q → X(SQ)

+
Q

such that the composition X(SP∗Q)
+
Q → X(SQ)

+
Q → X(SP∗Q)

+
Q is the identity, let

AQ → AP∗Q be the corresponding homomorphism, and let H be the kernel of the last
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homomorphism. Then we have an isomorphism of real analytic manifolds with corners

H × B̄P∗Q
≃−→ B̄Q(P ∗Q), (a, b) 7→ ab and H × ĀP∗Q ≃ ĀQ(P ∗Q), (a, a′) 7→ aa′. The

following diagrams are commutative.

(D −Dspl)× B̄Q(P ∗Q) → (D −Dspl)× B̄P D × ĀQ(P ∗Q) → D × ĀP

↓ ↓ ↓ ↓
DBS(P ) = DBS(P ), DBS(P ) = DBS(P ),

where the upper horizontal arrows are the real analytic maps (F, ab) 7→ (a ◦ F, b) (a ∈
H, b ∈ B̄P∗Q ⊂ B̄P ) and (F, aa′) 7→ (a ◦ F, a′) (a ∈ H, a′ ∈ ĀP∗Q ⊂ ĀP ), respectively.
(Here the inclusions B̄P∗Q ⊂ B̄P and ĀP∗Q ⊂ ĀP are induced from the surjective
homomorphism X(SP )

+
Q → X(SP∗Q)

+
Q.)

This shows

(iv) The bijections DBS(P )(B) ≃ (D −Dspl) ×BP B̄P and DBS(P )(A) ≃ D ×AP ĀP

induced by the bijection 6.1 (1) are homeomorphisms. Here (D−Dspl)×BP B̄P has the
topology as a quotient space of (D−Dspl)× B̄P , and D×AP ĀP has the topology as a

quotient space of D× ĀP . For an open set U of DBS(P )(B) and a function f : U → R,

f is real analytic if and only if the composition U ′ → U
f−→ R is real analytic, where U ′

is the inverse image of U in (D −Dspl) × B̄P . For an open set U of DBS(P )(A) and a

function f : U → R, f is real analytic if and only if the composition U ′ → U
f−→ R is

real analytic where U ′ is the inverse image of U in D × ĀP .

8.2. We prove Theorem 6.3.
Let P be a Q-parabolic subgroup of GR.
From 2.10, for each w ∈ Z, there is a closed real analytic submanifold D(grWw )(1)

of D(grWw ) such that we have an isomorphism of real analytic manifolds D(grWw )(1) ×
APw

≃−→ D(grWw ), (F, a) 7→ a ◦ F . Let D(grW )(1) :=
∏

w D(grWw )(1), and let D(1,A) be

the inverse image of D(grW )(1) in D. Then D(1,A) is a closed real analytic submanifold
of D, and we have an isomorphism of real analytic manifolds

D(1,A) ×AP
≃−→ D, (F, a) 7→ a ◦ F.

By 8.1 (iv), this isomorphism extends uniquely to an isomorphism of ringed spaces

(1) D(1,A) × ĀP
≃−→ DBS(P )(A).

Fix r ∈ D(grW ). For w ∈ Z, let Lw be the weight w part of L = L−1,−1
R (r), and

fix a K ′
rw -invariant positive definite symmetric R-bilinear form ( , )w on Lw. Define

f : L − {0} → R>0 as in the proof of Proposition 7.4, replacing V there by L. For
F ∈ D(grW ), taking g ∈ GR(grW ) such that F = gr, let

fF = f ◦Ad(g)−1 : L−1,−1
R (F )− {0} → R>0.
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Then, by the K ′
rw -invariance of ( , )w, this map fF is independent of the choice of g.

Let
D(1,B) = {s(θ(F, δ)) | F ∈ D(grW )(1), δ ̸= 0, fF (δ) = 1} ⊂ D(1,A).

Then D(1,B) is a closed real analytic submanifold of D −Dspl, and we have an isomor-
phism of real analytic manifolds

D(1,B) ×BP
≃−→ D −Dspl, (F, b) 7→ b ◦ F.

By 8.1 (iv), this isomorphism extends uniquely to an isomorphism of ringed spaces

(2) D(1,B) × B̄P
≃−→ DBS(P )(B).

Since DBS is covered by open sets DBS(P )(A) and DBS(P )(B) when P varies, (1) and
(2) show that DBS is a real analytic manifold with corners. This completes the proof
of Theorem 6.3. □

Now Proposition 6.4 is straightforward, and we omit the proof.
In the following theorem, we describe the structure of DBS relative to DBS(gr

W ).

Theorem 8.3. Let P be a Q-parabolic subgroup of GR, and write P (grW ) =
∏

w Pw.

For each w ∈ Z, take a closed real analytic submanifold D(grWw )(1) of D(grWw ) such that

D(grWw )(1)×APw

≃−→ D(grWw ), (F, a) 7→ a◦F (2.10). Let D(grW )(1) :=
∏

w D(grWw )(1),

and let µ : D(grW )(1)×ĀP
≃−→ DBS(gr

W )(P (grW )) :=
∏

w DBS(gr
W
w )(Pw) be the unique

isomorphism of real analytic manifolds with corners which extends the isomorphism

D(grW )(1) ×AP
≃−→ D(grW ) of real analytic manifolds. Take r ∈ D(grW )(1).

(i) There is an open neighborhood U ′ of r in D(grW ) and a real analytic map ν :
U ′ → GR(grW ) such that F = ν(F )r for any F ∈ U ′.

(ii) Let U ′ and ν be as in (i) and let U := µ((D(grW )(1) ∩ U ′) × ĀP ) which is an

open set of DBS(gr
W ). Let L = L−1,−1

R (r). Let Ũ be the inverse image of U in DBS

under the projection DBS → DBS(gr
W ). Then there is a unique isomorphism

Ũ
≃−→ spl(W )× U × L̄

of real analytic manifolds with corners over spl(W ) × U which sends s(a ◦ θ(F, δ)) ∈
D ∩ Ũ with s ∈ spl(W ), a ∈ AP , F ∈ D(grW )(1) ∩ U ′, and δ ∈ L−1,−1

R (F ) to (s, a ◦
F,Ad(ν(F ))−1(δ)). (For the compactified vector space L̄, see §7.)

Proof. (i) is clear. We prove (ii). We define a map Ũ → L̄ as follows. Consider the
maps

(1) DBS(P )(B) ≃ D(1,B) × B̄P = D(1,B) ×R≥0 × ĀP → D(1,B) ×R≥0,

(2) DBS(P )(A) ≃ D(1,A) × ĀP → D(1,A),
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where the isomorphisms are obtained as in 8.2 and the last arrows are the projections.
These maps (1) and (2) induce maps

(3) Ũ ∩DBS(P )(B) → (Ũ ∩D(1,B))×R≥0 → (L− {0})×R≥0 → L̄− {0},

(4) Ũ ∩DBS(P )(A) → Ũ ∩D(1,A) → L,

in which the second arrows are given by s(θ(F, δ)) 7→ Ad(ν(F ))−1δ and the last arrow
of (3) is induced by the case V = L of the bijection 7.2 (1). The maps (3) and (4) induce

the desired map Ũ → L̄. As is easily seen, the maps (3) and (4) induce isomorphisms
of real analytic manifolds with corners

(5) Ũ ∩DBS(P )(B) ≃−→ spl(W )× U × (L̄− {0}),

(6) Ũ ∩DBS(P )(A) ≃−→ spl(W )× U × L.

These (5) and (6) show that the map Ũ → spl(W ) × U × L̄ is an isomorphism of real
analytic manifolds with corners. □

Corollary 8.4. The isomorphism class of the graded R-vector space L−1,−1
R (r) for

r ∈ D(grW ) is independent of r. Let L = L−1,−1
R (r) for a fixed r. Then DBS(gr

W ) is
covered by open subsets U such that the inverse image of U in DBS is isomorphic to
spl(W )× U × L̄ as a real analytic manifold with corners over spl(W )× U .

Proof. This follows from Theorem 8.3. □

By Corollary 8.4, we have

Corollary 8.5. The canonical map DBS → spl(W ) × DBS(gr
W ) is an L̄-bundle. In

particular, it is proper and surjective.

Sometimes, this bundle is canonically trivialized as follows.

8.6. We will consider the following three cases.

(a) The case where hp,q = 0 unless p = q. (Example I in 1.10 is contained in (a).)

(b) The case where there is k such that grw = 0 unless w ∈ {k, k − 1}. (Example II
in 1.11 is contained in (b).)

(c) The case where there is an odd integer k such that grWw = 0 unless w ∈ {k −
1, k, k + 1}, and hp,q = 0 if p + q ∈ {k − 1, k + 1} and p ̸= q. (Example I in 1.10 and
Example II in 1.11 are contained in (c). Many connected mixed Shimura varieties are
D in the case (c).)
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Proposition 8.7. (i) The following three conditions are equivalent. (1) D is a GR-
homogenious space. (2) D is a G′

R-homogeneous space. Here G′
R is as in 0.3. (3)

D = Dspl.

(ii) In the case (b), the equivalent conditions in (i) are satisfied.

(iii) If the equivalent conditions in (i) are satisfied, then

DBS
≃−→ spl(W )×DBS(gr

W ).

Proof. We prove (i) and (iii). Assume that the action of G′
R on D is transitive. We

show that D = Dspl. Let F ∈ D. Take any element F ′ of Dspl. Then F = gF ′ for
some g ∈ G′

R by assumption. Hence F ∈ Dspl. Conversely assume D = Dspl. Then,
by Corollary 8.4, we have (iii). Hence the transitivity of the action of GR on D follows
from the transitivity of the action of GR(grW ) on D(grW ) (2.1) and the transitivity of
the action of GR,u on spl(W ) (3.3).

Finally it is well known that D = Dspl in the case (b) (see, for example, [KNU] 1.5
for the proof). □
Proposition 8.8. Assume we are either in the case (a) or in the case (c). Fix r ∈
D(grW ) and let L = L−1,−1

R (r). Then we have a global isomorphism

DBS ≃ spl(W )×DBS(gr
W )× L̄

of real analytic manifolds with corners.

Proof. In these cases (a), (c), the adjoint action of GR(grW ) on EndR(grW ) is trivial.

Hence the subspace L−1,−1
R (F ) of EndR(grW ) is independent of F ∈ D(grW ) and the

isomorphism in Theorem 8.3 (ii), which is given locally on DBS(gr
W ), glues together to

an isomorphism in this proposition. □

§9. Arithmetic quotients

The purpose of this section is to prove the following Theorem 9.1.

Theorem 9.1. (i) For a subgroup Γ of GZ, the action of Γ on DBS is proper, and
the quotient space Γ\DBS is locally compact (in particular, it is Hausdorff). If Γ is
neat, the projection DBS → Γ\DBS is a local homeomorphism, and Γ\DBS has a unique
structure of a real analytic manifold with corners for which DBS → Γ\DBS is locally an
isomorphism.

(ii) If Γ is a subgroup of GZ of finite index, the quotient space Γ\DBS is compact.

(iii) If Γ is a subgroup of GZ such that Γu := Γ∩GZ,u is of finite index in GZ,u, the
projection Γ\DBS → (Γ/Γu)\DBS(gr

W ) is proper. In particular, the map GZ,u\DBS →
DBS(gr

W ) is proper.
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Here in (i), the meaning of “neat” is as follows. A subgroup Γ of GZ is said to be
neat if for any γ ∈ Γ, the subgroup of C× generated by all eigenvalues of the action
of γ on H0,C is torsion free. If Γ is neat, then Γ is torsion free. There exists a neat
subgroup of GZ of finite index (cf. [B]).

The proof of Theorem 9.1 is given in 9.2–9.7.

9.2. Since DBS → spl(W )×DBS(gr
W ) is proper (8.5) and since DBS(gr

W ) is Haus-
dorff (2.11) as well as spl(W ) (3.3), DBS is a Hausdorff space.

9.3. We prove that for any subgroup Γ of GZ, the action of Γ on DBS is proper. The
canonical continuous map DBS → spl(W )×DBS(gr

W ) is compatible with the actions of
Γ, where γ ∈ Γ acts on spl(W ) as s 7→ γs grW (γ)−1 (s ∈ spl(W )), and acts on DBS(gr

W )
through Γ→ Γ/Γu → GZ(gr

W ) in the natural way. Since spl(W ) is a GR,u-torsor (3.3),
the action of Γu on spl(W ) is proper. Since the action of Γ/Γu on DBS(gr

W ) is proper
(2.11) and the action of Γu on spl(W ) is proper, the action of Γ on spl(W )×DBS(gr

W )
is proper. Since DBS is Hausdorff (9.2), this shows that the action of Γ on DBS is
proper.

9.4. Since the action of Γ on DBS is proper (9.3), it follows that the quotient space
Γ\DBS is Hausdorff. Since DBS is locally compact, this quotient space is also locally
compact.

9.5. We prove that if Γ is a neat subgroup of GZ, then the map DBS → Γ\DBS is
a local homeomorphism. This will show that Γ\DBS has a unique structure of a real
analytic manifold with corners for which DBS → Γ\DBS is locally an isomorphism.

By 9.3, it is sufficient to prove that if p ∈ DBS and γ ∈ Γ satisfy γp = p, then
γ = 1. We have γp(grW ) = p(grW ) in DBS(gr

W ). Since γ̄p̄ = p̄ with γ̄ ∈ Γ/Γu and
p̄ ∈ DBS(gr

W ) implies γ̄ = 1 (2.11), we have γ ∈ Γu. By applying splW : DBS → spl(W )
to γp = p, we have γ splW (p) = splW (p). Since spl(W ) is a GR,u-torsor, we have γ = 1.

Thus we have proved (i) of Theorem 9.1.

9.6. We prove (iii) of Theorem 9.1. Let Γ be a subgroup of GZ such that Γu is of
finite index in GZ,u. The quotient space Γu\GR,u is compact as is easily seen. Since
spl(W ) is a GR,u-torsor, the quotient space Γu\ spl(W ) is also compact. Hence the map
Γu\(spl(W ) × DBS(gr

W )) = (Γu\ spl(W )) × DBS(gr
W ) → DBS(gr

W ) is proper. Since
DBS → spl(W ) × DBS(gr

W ) is proper, the map Γu\DBS → Γu\(spl(W ) × DBS(gr
W ))

is also proper. Hence the composition Γu\DBS → DBS(gr
W ) is proper. Dividing by

Γ/Γu, we have that the map Γ\DBS → (Γ/Γu)\DBS(gr
W ) is proper.

9.7. Theorem 9.1 (ii) follows from (iii) and from the fact that Γ′\DBS(gr
W ) is

compact for any subgroup Γ′ of GZ(gr
W ) of finite index (2.11).

§10. Examples

10.1. Consider Example I in 1.10. The space DBS is described as follows.
27



10.1.1. We have a commutative diagram of real analytic manifolds with corners

D = C
∩ ∩

DBS ≃ X := {x+ iy | x ∈ R,−∞ ≤ y ≤ ∞}

which extends the identification D = C in 1.10. Here X is regarded as a real analytic

manifold with corners via the bijection R × [−∞,∞]
≃−→ X, (x, y) 7→ x + iy, where

[−∞,∞] has the structure of a real analytic manifold with corners defined in 7.5 with
w = −2.

10.1.2. The projection DBS → spl(W ) corresponds to X → spl(W ), x + iy 7→ sx,
where sx(e2 mod W−1) = xe1 + e2.

10.1.3. Let P = GR,u. Note that P is the unique parabolic subgroup of GR,
AP = {1} and BP = R>0. The Borel-Serre action of b ∈ R>0 = BP on D corresponds
to the action x+ iy 7→ x+ ib−2y on X.

10.1.4. The element of DBS corresponding to x + i∞ ∈ X (x ∈ R) is (P,Z),
where Z is the BP -orbit x+ iR>0 in C = D, and the element of DBS corresponding to
x− i∞ ∈ X is (P,Z), where Z is the BP -orbit x− iR>0 in C = D.

10.2. Consider Example II in 1.11. In this case, W0 = H0,R and W−2 = 0. Let P be
the parabolic subgroup of GR consisting of all elements g of GR such that grW0 (g) = 1
and such that grW−1(g) preserves Re1. The space DBS(P ) is described as follows.

10.2.1. We have a commutative diagram of real analytic manifolds with corners

D = h×C ≃ R3 ×R>0

∩ ∩
DBS(P ) ≃ R3 ×R≥0

which extends the identification D = h × C in 1.11, where the right upper horizontal
isomorphism h×C ≃ R3 ×R>0 sends (s1, s2, x, r) ∈ R3 ×R>0 to (x+ ir−2, s1 − (x+
ir−2)s2) ∈ h×C. As an enlargement of D(grW ) = h, DBS(gr

W )(P (grW )) is identified
with {x + iy | x ∈ R, 0 < y ≤ ∞} whose structure as a real analytic manifold with
corners is defined by the bijection (x, r) 7→ x+ ir−2 from R×R≥0, and the projection
DBS(P ) → DBS(gr

W )(P (grW )) corresponds to the map R3 × R≥0 → {x + iy | x ∈
R, 0 < y ≤ ∞} defined by (s1, s2, x, r) 7→ x+ ir−2 (s1, s2, x ∈ R, r ∈ R≥0).

10.2.2. The projection DBS(P ) → spl(W ) corresponds to (s1, s2, x, r) 7→ s, where
s(e3 mod W−1) = s1e1 + s2e2 + e3.

10.2.3. We have AP ≃ R>0 and BP = R>0 × AP = R>0 × R>0. The Borel-
Serre action of (r1, r2) ∈ BP (r1, r2 ∈ R>0) on D corresponds to R3 ×R>0 → R3 ×
R>0, (s1, s2, x, r) 7→ (s1, s2, x, r2r).

10.2.4. The element of DBS(P ) corresponding to (s1, s2, x, 0) is (P,Z), where Z is
the AP -orbit in D (which is also a BP -orbit) corresponding to (s1, s2, x,R>0).

10.3. Consider Example III in 1.12.
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Let P be the Q-parabolic subgroup of GR consisting of all elements g such that
grW0 (g) = 1 and such that grW−3(g) preserves Re1. Let L = R2. The space DBS(P ) is
described as follows.

10.3.1. We have a commutative diagram of real analytic manifolds with corners

D = h×C2 ≃ R3 ×R>0 × L
∩ ∩

DBS(P ) ≃ R3 ×R≥0 × L̄

which extends the identification D = h ×C2 in 1.12. Here the right upper horizontal
isomorphism sends (s1, s2, x, r, d) ∈ R3 ×R>0 × L to

(x+ ir−2, s1 + r−1(id1 − 1
2d2) + xr(id2 +

1
2d1), s2 + r(id2 +

1
2d1)) ∈ h×C2

(s1, s2, x ∈ R, r ∈ R>0, d = (d1, d2) ∈ L with d1, d2 ∈ R), and L̄ is the compactification
of L in §7 regarding L as being of pure weight −3.

The projection DBS(P ) ≃ R3 × R≥0 × L̄ → DBS(gr
W )(P (grW )) = {x + iy | x ∈

R, 0 < y ≤ ∞} is given by (s1, s2, x, r, d) 7→ x+ ir−2 (s1, s2, x ∈ R, r ∈ R≥0, d ∈ L̄).

10.3.2. The projection DBS(P )→ spl(W ) corresponds to (s1, s2, x, r, d) 7→ s, where
s(e3 mod W−1) = s1e1 + s2e2 + e3.

10.3.3. We have AP = R>0, BP = R>0×R>0. The Borel-Serre action of (r1, r2) ∈
BP (r1, r2 ∈ R>0) on DBS(P ) corresponds to (s1, s2, x, r, d) 7→ (s1, s2, x, r2r, r

−3
1 d).

10.3.4. The element of DBS(P ) corresponding to (s1, s2, x, 0, d) (d ∈ L) is (P,Z),
where Z is the AP -orbit in D corresponding to (s1, s2, x,R>0, d). The element of
DBS(P ) corresponding to (s1, s2, x, r,∞d) (r ∈ R>0, d ∈ L, d ̸= 0, ∞d denotes the
limit in L̄ of td ∈ L for t ∈ R>0, t→∞) is (Q,Z), where Q = {g ∈ GR | grW0 (g) = 1}
and Z is the BQ-orbit in D corresponding to (s1, s2, x, r,R>0d). The element of DBS(P )
corresponding to (s1, s2, x, 0,∞d) (d ∈ L, d ̸= 0) is (P,Z), where Z is the BP -orbit in
D corresponding to (s1, s2, x,R>0,R>0d).

We prove these assertions 10.3.1–10.3.4.
Let r ∈ D(grW ) = h be the point i ∈ h. We have L−1,−1

R (r) ≃ L = R2, where

(d1, d2) ∈ L (dj ∈ R) corresponds to the element δ ∈ L−1,−1
R (r) which sends (e3 mod

W−1) to d1e1 + d2e2 and sends e1, e2 to 0. We will identify L with L−1,−1
R (r) via this

isomorphism. From the formula

ζ = i
2δ−2,−1 − i

2δ−1,−2,

we see that θ(r, d) is given by

θ(r, d)1 = 0 ⊂ θ(r, d)0 = C(id1e1 + id2e2 +
1
2 (d1e2 − d2e1) + (e3 mod W−1))

⊂ θ(r, d)−1 = θ(r, d)0 +C(ie1 + e2) ⊂ θ(r, d)−2 = grWC .
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From this we see that the composition of the upper horizontal isomorphisms in the
diagram in 10.3.1 sends (s1, s2, x, r, d) ∈ R3 ×R>0 × L to

s(gxt(r)θ(r, d)),

where s is the splitting of W corresponding to (s1, s2), and gx, t(r) are the elements of
P (grW ) defined by

gx(e1) = e1, gx(e2) = xe1 + e2, gx(e3 mod W−1) = (e3 mod W−1),

t(r)(e1) = r−1e1, t(r)(e2) = re2, t(r)(e3 mod W−1) = (e3 mod W−1).

This proves the assertions.

In Examples II, III, any Q-parabolic subgroup of GR other than {g ∈ GR | grW0 (g) =
1} is GQ-conjugate to P . Hence the above 10.2 and 10.3 give local descriptions of DBS

at all points of DBS for these examples.

In 10.4 and 10.5, in the cases of Example I and Example II, respectively, we introduce
shapes of other enlargements of D or Γ\D in Introduction.

10.4. Remark. In the rather simple case Example I in 1.10, the mixed Hodge
theoretic version of the diagram (∗) in Introduction will be seen to be just:

X = X

∥ ∥

P1(C) ← X = X X

∥ ∥

P1(C) ← X.

Here X is as in 10.1, Γ = GZ,u, and Σ is chosen suitably. The map X → P1(C) sends
z ∈ C ⊂ X to exp(2πiz) ∈ C× ⊂ P1(C), the point x+ i∞ ∈ X (x ∈ R) to 0 ∈ P1(C),
and the point x− i∞ ∈ X to ∞ ∈ P1(C).

10.5. Remark. In the case of Example II in 1.11, for a torsion free subgroup of
Γ′ of SL(2,Z) which contains the kernel of SL(2,Z) → SL(2,Z/NZ) for some N ≥ 1,
and for the inverse image Γ ⊂ GZ of Γ′ under GZ → GZ(gr

W ) = SL(2,Z), Γ\D is
the universal elliptic curve over the modular curve Γ′\h, and for a suitable Σ, Γ\DΣ

is a toroidal compactification of Γ\D. In this case, DSL(2) = DSL(2),val = DBS,val =

DBS = DBS(gr
W )×R2. We do not discuss here the other spaces in the diagram (∗) in

Introduction in this case.
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