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要旨

本論文は、原子炉の核特性の設計予測精度を向上させる二つの設計手法、すなわち、炉定数調整法

と拡張バイアス因子法の理論統合について検討を行ったものである。炉定数調整法と拡張バイアス

因子法は異なる考え方に基づいて導出されるが、両者には設計手法としてそれぞれに長所を持っ

ている。炉定数調整法の長所としては、調整された炉定数セットが得られるため、調整後の炉定数

セットを使って計算するだけで設計値が得られるという利便性が挙げられる。一方、拡張バイアス

因子法の長所としては、炉定数調整法よりも僅かながらも設計予測精度を向上させることができる

ことと、正規分布の仮定を用いていないことが挙げられる。このため、二つの理論を統合すること

を目的として、既存の手法の導出方法について詳細に分析を行った。これにより、炉定数調整法が

ベイズの定理に基づいて導出されているのに対して、拡張バイアス因子法が最小分散不偏線形推定

の考え方に基づいて導出されていることを示した。また、炉定数調整法が核データを最適化するよ

うに炉定数セットを調整するのに対して、拡張バイアス因子法は設計対象炉心核特性に最適化して

バイアス因子を決定していることを示した。更に、最適化対象の違いにより、従来炉定数調整法、

拡張炉定数調整法、回帰炉定数調整法の 3種類の炉定数調整法を導出できることを示した。これら
の分析結果に基づき、炉定数調整法と拡張バイアス因子法の理論の再構築と統合を行った。この結

果として、拡張バイアス因子法と等価な設計予測精度を持つ炉定数セットを作成することが可能な

拡張炉定数調整法を開発した。また、従来炉定数調整法と拡張炉定数調整法の理論式の比較から、

拡張バイアス因子法において従来炉定数調整法よりも設計予測精度が向上する理由は、積分実験

データと設計対象炉心核特性の間の解析モデルに起因する不確かさの相関を考慮することにあるこ

とを示した。一方で、いずれの炉定数調整法においても、臨界実験等で得られた積分実験データを

使って炉定数セットに含まれる核データを調整するが、調整すべき核データの数は非常に多く、調

整に用いる積分実験データの数を核データの数より多くするのは困難である。このように、炉定数

調整法では、通常、少ない情報量から多くの情報量を決定しなければならない劣決定問題の条件下

で適用されるが、この点についてはこれまで詳細な検討は行われていなかった。このため、最小分

散不偏線形推定に基づく導出では正規分布の仮定が不要なことを利用して、正規分布を仮定するこ

とや劣決定問題の条件下で従来炉定数調整法を適用することの妥当性を検討するための新しい手法

として次元削減炉定数調整法等を提案した。これらの新しく開発・提案した手法の適用性確認とし

て、実際の高速炉の設計予測精度評価の問題に適用し、新手法の効果を検討した。この結果、期待

されたとおりに、拡張炉定数調整法を適用した場合には、拡張バイアス因子法と同等の設計予測精

度向上の効果が得られることを確認した。また、新しく提案した手法を応用することで、炉定数調

整法において正規分布の仮定が採用できない場合の影響評価を行うことができることを示した。こ

れらの手法を応用することにより、炉定数調整法を用いた設計予測解析の信頼性向上に資すること

ができると考えられる。最後に、これらの適用性検討の結果を踏まえて、新しく開発した手法を適

切に使い分ける方法に関する提案を行った。



目次

第 1章 序論 1
1.1 研究の背景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 研究の目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 論文の構成 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

第 2章 従来手法の文献研究 4
2.1 ベイズの定理に基づく従来炉定数調整法 . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 炉定数調整法の概要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 ベイズの定理に基づく従来炉定数調整法の導出の詳細 . . . . . . . . . . . . 5

2.1.2.1 多変量正規分布 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2.2 正規分布の仮定と問題設定 . . . . . . . . . . . . . . . . . . . . . 6
2.1.2.3 線形性の仮定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2.4 正規分布と平方完成 . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 CBCAの設計予測精度の評価式 . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 補遺：平方完成の確認 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 拡張バイアス因子法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 拡張バイアス因子法の概要 . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 拡張バイアス因子法の理論式導出の詳細 . . . . . . . . . . . . . . . . . . . 13

2.2.2.1 炉定数調整法の理論式における記号との対応 . . . . . . . . . . . 13
2.2.2.2 設計予測値（バイアス因子）の式の導出 . . . . . . . . . . . . . . 15
2.2.2.3 設計予測精度の式の導出の詳細 . . . . . . . . . . . . . . . . . . . 19

2.2.3 分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3.1 仮定と近似 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3.2 拡張バイアス因子法と炉定数調整法の関係 . . . . . . . . . . . . 20
2.2.3.3 設計予測値と線形推定 . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3.4 設計予測精度の行列表記 . . . . . . . . . . . . . . . . . . . . . . 24
2.2.3.5 絶対値表記と複数の設計対象核特性への拡張 . . . . . . . . . . . 25

2.3 カルマンフィルタ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 カルマンフィルタの概要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 カルマンフィルタの導出の詳細 . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2.1 非線形カルマンフィルタと線形化 . . . . . . . . . . . . . . . . . 27
2.3.2.2 線形カルマンフィルタ . . . . . . . . . . . . . . . . . . . . . . . . 29

i



2.3.3 分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.3.1 カルマンフィルタと拡張バイアス因子法の関係 . . . . . . . . . . 31
2.3.3.2 カルマンフィルタと炉定数調整法の関係 . . . . . . . . . . . . . . 31
2.3.3.3 線形推定の仮定に関する考察 . . . . . . . . . . . . . . . . . . . . 32

第 3章 新手法の開発方針 33
3.1 条件付き確率と線形推定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 従来手法の物理的な意味 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 ベイズの定理に基づく従来炉定数調整法（CBCA） . . . . . . . . . . . . . 34
3.2.2 拡張バイアス因子法（EBPE） . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 開発する新手法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 ベイズの定理に基づく拡張炉定数調整法（CBEA） . . . . . . . . . . . . . 35
3.3.2 最小分散不偏線形推定に基づく拡張バイアス因子法（MLEB） . . . . . . . 35
3.3.3 最小分散不偏線形推定に基づく炉定数調整法（MLCA） . . . . . . . . . . 36
3.3.4 最小分散不偏線形推定に基づく拡張炉定数調整法（MLEA） . . . . . . . . 36
3.3.5 最小分散不偏線形推定に基づく回帰炉定数調整法（MLRA） . . . . . . . . 37
3.3.6 次元拡大線形推定を用いない最小分散不偏推定に基づく従来炉定数調整法

（MRCA） . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.7 射影省略を用いた最小分散不偏推定に基づく従来炉定数調整法（MSCA） . 39
3.3.8 次元削減炉定数調整法（DRCA） . . . . . . . . . . . . . . . . . . . . . . . 39

第 4章 理論式の導出の詳細 41
4.1 記号の定義と数学的な準備 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 物理的な意味による記号の定義 . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 数式による記号の定義 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.3 数学的な準備 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 導出に用いる共通の仮定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.1 線形性の仮定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 感度係数の一次独立性の仮定 . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.3 誤差の独立性の仮定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.4 不偏推定の仮定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.5 線形推定の仮定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.6 正規分布の仮定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 ベイズの定理に基づく拡張炉定数調整法（CBEA）の開発 . . . . . . . . . . . . . . 52
4.3.1 条件付き正規分布の公式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2 条件付き正規分布の公式を使用した従来炉定数調整法の導出 . . . . . . . . 52
4.3.3 ベイズの定理に基づく拡張炉定数調整法（CBEA）の導出 . . . . . . . . . 54

ii



4.4 最小分散不偏線形推定に基づく拡張バイアス因子法（MLEB）の導出 . . . . . . . 57
4.4.1 設計予測値の式の導出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.2 設計予測精度の式の導出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 最小分散不偏線形推定に基づく 3種類の炉定数調整法（MLCA、MLEA、MLRA）
の導出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.1 従来炉定数調整法（MLCA）の調整後炉定数セットの式の導出 . . . . . . . 60
4.5.2 拡張炉定数調整法（MLEA）の調整後炉定数セットの一般解の導出 . . . . 61
4.5.3 回帰炉定数調整法（MLRA）の調整後炉定数セットの一般解の導出 . . . . 64
4.5.4 実用上の観点からのMLEAの解の選択 . . . . . . . . . . . . . . . . . . . . 64

4.5.4.1 調整後の核データの分散が最小になると予想される式 . . . . . . 64
4.5.4.2 証明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5.4.3 推奨されるMLEAの調整後炉定数セットの式 . . . . . . . . . . 69

4.6 次元拡大線形推定を用いない最小分散不偏推定に基づく従来炉定数調整法

（MRCA）の導出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6.1 射影省略を用いない厳密な式（MRCA）の導出 . . . . . . . . . . . . . . . 70
4.6.2 射影省略を用いた最小分散不偏推定に基づく従来炉定数調整法（MSCA）

の導出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.6.3 補遺 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6.3.1 次元拡大を用いない最小分散不偏推定に基づく拡張炉定数調整

法（MREA） . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6.3.2 射影省略を用いた最小分散不偏推定に基づく拡張炉定数調整法

（MSEA） . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6.3.3 MLEAにおけるMREAとMSEAの包含性 . . . . . . . . . . . . 73

4.7 次元削減炉定数調整法（DRCA）の導出 . . . . . . . . . . . . . . . . . . . . . . . . 75
4.7.1 原特徴空間から部分空間への次元削減 . . . . . . . . . . . . . . . . . . . . 75
4.7.2 部分空間への直交射影による近似 . . . . . . . . . . . . . . . . . . . . . . . 76
4.7.3 次元削減を用いた炉定数調整法の導出 . . . . . . . . . . . . . . . . . . . . 77
4.7.4 部分空間を決定する行列（3種類の提案） . . . . . . . . . . . . . . . . . . 80
4.7.5 他の手法との関係（数式による検討） . . . . . . . . . . . . . . . . . . . . 82

4.7.5.1 DRCA1と CBCAの関係 . . . . . . . . . . . . . . . . . . . . . . 83
4.7.5.2 DRCA2と CBCAの関係 . . . . . . . . . . . . . . . . . . . . . . 84
4.7.5.3 DRCA3と CBCAの関係 . . . . . . . . . . . . . . . . . . . . . . 85
4.7.5.4 DRCA3と CBCAの関係（特殊なケースの確認） . . . . . . . . 86
4.7.5.5 DRCA3とMRCAの関係 . . . . . . . . . . . . . . . . . . . . . . 87

4.8 設計予測精度の評価式の導出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.8.1 導出した調整後炉定数セットの式の整理 . . . . . . . . . . . . . . . . . . . 89
4.8.2 調整後炉定数セットの共分散の式の導出 . . . . . . . . . . . . . . . . . . . 90

iii



4.8.3 設計対象炉心核特性の計算値の共分散（設計予測精度）の式の導出 . . . . 92
4.8.4 積分実験データの計算値の共分散の式の導出 . . . . . . . . . . . . . . . . . 93

第 5章 導出した理論式の検証と考察 95
5.1 統一的表記による導出結果の整理 . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.1 炉定数調整法の式の統一的表記 . . . . . . . . . . . . . . . . . . . . . . . . 95
5.1.2 拡張バイアス因子法の式の統一的表記 . . . . . . . . . . . . . . . . . . . . 98

5.2 数値計算による検証 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2.1 MLEAの炉定数セットの分散が最小になることの確認 . . . . . . . . . . . 99
5.2.2 DRCAの理論式に関する確認 . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.2.1 DRCA2と CBCA、DRCA3とMRCAの等価性の確認 . . . . . . 101
5.2.2.2 DRCAの導出における最大階数の仮定の妥当性の確認 . . . . . . 102
5.2.2.3 次元削減の効果の確認 . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 拡張バイアス因子法と拡張炉定数調整法の関係 . . . . . . . . . . . . . . . . . . . . 105
5.3.1 設計予測値の等価性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.2 設計予測精度の等価性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.3 拡張バイアス因子法と拡張炉定数調整法の等価性 . . . . . . . . . . . . . . 107

5.4 従来炉定数調整法と拡張炉定数調整法の関係 . . . . . . . . . . . . . . . . . . . . . 108
5.4.1 従来炉定数調整法と拡張炉定数調整法の相違点 . . . . . . . . . . . . . . . . 108
5.4.2 従来炉定数調整法を一般化した理論としての拡張炉定数調整法 . . . . . . . 108
5.4.3 従来炉定数調整法の解の多様性 . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 従来炉定数調整法における正規分布の仮定の役割 . . . . . . . . . . . . . . . . . . . 111
5.6 拡張カルマンフィルタの拡張としての拡張炉定数調整法 . . . . . . . . . . . . . . . 113

第 6章 新手法の適用研究 115
6.1 実装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 入力データ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.1 実験の不確かさと相関の評価 . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2.2 解析モデルに起因する不確かさと相関の評価 . . . . . . . . . . . . . . . . . 117

6.3 検討条件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.1 設計対象炉心 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.2 代表的な積分実験データ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4 計算結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.4.1 設計予測値と設計予測精度 . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.4.2 核データの調整量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4.3 DRCAの結果に関する検討 . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4.3.1 DRCA1と DRCA2の結果の比較 . . . . . . . . . . . . . . . . . . 126

iv



6.4.3.2 DRCAにおける最大階数の仮定の影響評価 . . . . . . . . . . . . 126
6.5 推奨される設計手法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

第 7章 結論 129
7.1 設計対象炉心に最適化する拡張炉定数調整法の開発 . . . . . . . . . . . . . . . . . 129
7.2 最小分散不偏線形推定に基づく炉定数調整法の開発 . . . . . . . . . . . . . . . . . 129
7.3 次元削減炉定数調整法と正規分布の仮定に関する検討 . . . . . . . . . . . . . . . . 130
7.4 今後の課題と展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

謝辞 132

略語一覧 134

参考文献 136

付録 A 導出で用いた公式に関する補足 141
A.1 Woodburyの公式の証明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.2 分割行列の逆行列の公式の証明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
A.3 条件付き正規分布の公式の導出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.3.1 導出の準備 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
A.3.2 共分散行列を使った条件付き確率分布の式 . . . . . . . . . . . . . . . . . . 144
A.3.3 精度行列を使った条件付き確率分布の式 . . . . . . . . . . . . . . . . . . . 145
A.3.4 平方完成 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
A.3.5 まとめ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

v



表目次

5.1 MLEAの調整後の炉定数セットの共分散のトレースの差の式の数値計算による確認 99
5.2 DRCAと CBCAの調整後の炉定数セットの比較 (na = 726) . . . . . . . . . . . . . 101
5.3 DRCAとMRCAの調整後の炉定数セットの比較 (na = 726) . . . . . . . . . . . . . 102
5.4 DRCAと DRCA′ の調整後の炉定数セットの比較 (na = 726) . . . . . . . . . . . . 102
5.5 各種の従来炉定数調整法を導出する際に用いる仮定 . . . . . . . . . . . . . . . . . 111

6.1 設計対象炉心（750MWe級高速炉炉心）の仕様 . . . . . . . . . . . . . . . . . . . 120
6.2 手法適用後の設計対象炉心核特性に対する予測値（補正値）と予測精度 . . . . . . 122
6.3 手法適用後の代表的な積分実験データの C/E値と予測精度 . . . . . . . . . . . . . 122
6.4 調整後の炉定数セットによる設計対象炉心核特性の予測値（補正値）と予測精度

（DRCAと DRCA′ の比較） . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.5 調整後の炉定数セットによる代表的な積分実験データの C/E値と予測精度（DRCA

と DRCA′ の比較） . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

vi



図目次

5.1 Y(= yJ)と Z0(= Z1 = zJ)に対するM∗MLEA とMmin
MLEA のトレースの差 . . . . . . . 100

5.2 次元削減の効果（n(1) = 447） . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 MARBLEの炉定数調整・各設計精度評価ソルバーの構造 . . . . . . . . . . . . . . 116
6.2 設計対象炉心（750MWe級高速炉炉心）の炉心断面図 . . . . . . . . . . . . . . . . 119
6.3 U-238非弾性散乱断面積の調整量（CAと EAの比較） . . . . . . . . . . . . . . . 124
6.4 Pu-239核分裂断面積の調整量（CAと EAの比較） . . . . . . . . . . . . . . . . . 124
6.5 Pu-239核分裂中性子発生数の調整量（CAと EAの比較） . . . . . . . . . . . . . . 124
6.6 U-238非弾性散乱断面積の調整量（CAとMRCAの比較） . . . . . . . . . . . . . 125
6.7 Pu-239核分裂断面積の調整量（CAとMRCAの比較） . . . . . . . . . . . . . . . 125
6.8 Pu-239核分裂中性子発生数の調整量（CAとMRCAの比較） . . . . . . . . . . . 125

vii



第 1章 序論

1.1 研究の背景

原子力エネルギーのより安全で効率的な利用、資源の有効活用、環境負荷低減等のためには、新

しい型式の原子炉や革新的な燃料の設計が必要であり、それらの炉物理的な特性である核特性を

正確に予測する必要がある。この予測では計算機を用いたシミュレーションが行われるが、近年で

は、シミュレーションにより得られた計算結果に対する信頼性確保の重要性が増している。また、

核特性の予測計算では解析モデルに起因する不確かさがほとんどないと考えられるモンテカルロ法

の利用が進んでおり、計算の入力として用いる核データに起因する不確かさが核特性予測値の不確

かさの主な原因となっている。核特性の予測計算において、核データに起因する不確かさを低減す

る代表的な方策としては、炉定数調整法 [1–4]があり、原子力利用の黎明期の 1960年代から活発
に研究が行われてきた。核特性予測計算で使いやすくするために核データライブラリを処理してま

とめたものが炉定数セットであるが、炉定数調整法では、臨界実験装置や実験炉等で測定される積

分実験データの情報を最大限に活用し、炉定数セットに含まれる核データを調整することで、核特

性の予測精度を向上させる。炉定数調整法のように、観測値を使って現実に近いシミュレーション

結果を得るようにする方法は、他の分野では「データ同化」と呼ばれることが多いが、炉定数調整

法は原子炉核設計の分野で独自に発展してきたと考えられる。現在では、炉定数調整法は世界各国

の主要な原子力研究機関で利用されている [5]。
積分実験データを利用して設計予測精度を向上する方法としては、炉定数調整法以外に、バイア

ス因子法と呼ばれる手法がある。バイアス因子法では積分実験データを一つだけ使って設計予測値

を補正するが、このバイアス因子法を拡張するという考え方に基づいて、炉心核特性の設計予測精

度を向上させる拡張バイアス因子法 [6]が 2007年に提案された。拡張バイアス因子法は、炉定数
調整法と同様に、複数の積分実験データを使って核設計値の予測精度を向上させるが、同じ複数の

積分実験データを適用した場合、従来の炉定数調整法よりも更に予測精度を向上させることができ

る [7]。このように、核特性予測値の不確かさ低減の観点では、拡張バイアス因子法は、明らかに
炉定数調整法よりも優れている。しかしながら、拡張バイアス因子法では、核データの調整は行わ

ないので設計用の炉定数セットを提供できない。設計用の炉定数セットを使って計算するだけで設

計予測値が得られるのは、炉定数調整法の重要な利点の一つであり、核設計手法としての利便性の

観点では、拡張バイアス因子法は炉定数調整法よりも劣ると考えられる。このため、拡張バイアス

因子法の特徴を取り入れた炉定数調整法の理論式を導出することができれば、核特性予測値の不確

かさを更に低減することが可能な新しい炉定数調整法を開発できると考えられる。

一方で、拡張バイアス因子法の理論式は、炉定数調整法とは異なる考え方に基づいて導出されて

いる。拡張バイアス因子法は、積分実験データの実験値を累乗化した仮想的な実験値と、積分実験
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データの計算値を累乗化した仮想的な計算値を構成し、これらの比を乗じて設計対象炉心の核特性

の計算値を補正するという考え方に基づいて導出される。これに対して、炉定数調整法は、ベイズ

の定理に基づいて積分実験データが得られたという条件の下で、核データが正しくなる確率を最

大化するという考え方に基づいて導出される。ベイズの定理に基づいた推定の考え方は、他の分野

でも広く用いられており、炉定数調整法の理論的背景は明快であるが、拡張バイアス因子法の導出

に用いられている考え方はそれほど一般的とは思われない。ただし、炉定数調整法の導出では、核

データや積分実験データが正規分布に従うという仮定を用いるのに対し、拡張バイアス因子法の導

出では、そのような仮定への言及はない。拡張バイアス因子法の理論的背景をより明快に説明する

ことができれば、前提として必要な仮定が少ないという観点でも、拡張バイアス因子法は炉定数調

整法よりも優れている可能性がある。このため、拡張バイアス因子法の考え方に基づいた炉定数調

整法の理論式を導出することができれば、より仮定の少ない、すなわち、正規分布の仮定を用いな

い新しい炉定数調整法を開発できると考えられる。

一般に、データのサンプル数が大きくなると、母集団の分布によらず、その誤差は近似的に正規

分布に従うようになるので、多くの場合、正規分布に従うと仮定することは妥当である。しかしな

がら、炉定数調整法において調整しなければならない核データのパラメータ数は膨大になるため、

調整に用いる積分実験データを核データの数よりも大きくすることは実際上困難である。このよ

うに、炉定数調整法は、調整する核データの数よりも調整に用いる積分実験データの数の方が小さ

い、いわゆる、劣決定問題の条件の下で適用する必要がある。このため、炉定数調整法の適用にお

いては、正規分布の仮定の妥当性をこの観点のみから議論するのは難しい。炉定数調整法における

正規分布の仮定や劣決定問題の条件下での適用についての妥当性についてはこれまでにも認識され

ていたが、これらの妥当性を議論する方法がなかった。しかしながら、前述のような正規分布の仮

定を用いない炉定数調整法を開発することができれば、これらの妥当性について議論する方法を提

供できる可能性がある。

1.2 研究の目的

以上のような背景を踏まえ、炉定数調整法に代わって、拡張バイアス因子法を核設計手法として

採用するための検討を行う。核設計手法として採用する場合、手法の理論的背景についての説明性

は重要な要素となるため、炉定数調整法と拡張バイアス因子法の導出の考え方の違いを説明でき

るようにする必要がある。また、設計において把握しなければならない原子炉内部の状態は、例え

ば、出力分布のような燃料集合体の装荷パターン等による空間的な分布を伴うものがあり、更に、

これらの状態は燃料の燃焼や制御棒の操作等に伴って時間的にも変化するので、予測計算が必要な

すべての状態に対してバイアス因子と求めて補正を行うのは実際上はかなり困難である。このた

め、拡張バイアス因子法を核設計手法として採用し、実用化するためには、拡張バイアス因子法と

炉定数調整法の利点を併せ持つ理論として統合することが必要である。このため、以下のような課

題を設定して研究を行った。
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1. 拡張バイアス因子法と炉定数調整法の相違点を明らかにして、拡張バイアス因子法の方が精
度向上効果が大きくなる理由を説明する。更に、この相違点を導入して、拡張バイアス因子

法と同等の精度向上が得られる新しい炉定数調整法を開発する。

2. 拡張バイアス因子法の導出で用いられている考え方の理論的背景を明らかにして、正規分布
の仮定が用いられていないことを確認する。更に、この考え方に基づいて、正規分布の仮定

を用いない新しい炉定数調整法を開発する。

3. 開発した新しい炉定数調整法を使って、炉定数調整法を劣決定問題の条件で適用することや
正規分布に従うと仮定することの妥当性について議論する方法を検討する。

1.3 論文の構成

第 2章では、既存の従来手法について文献調査を行い、各手法の理論式の導出過程を精査するこ
とにより、理論開発に向けた分析を行う。第 3章では、炉定数調整法と拡張バイアス因子法を統合
した新しい手法の開発方針について述べ、理論式の導出に必要な数学的な準備等を行う。第 4章で
は、理論式の導出過程の詳細を示す。第 5章では、導出した理論式を検証するために実施した数値
計算の結果と、導出した理論式から分かることについて考察を行う。第 6章では、開発した理論を
実際的な問題に適用し、理論の適用性確認を行う。最後に、第 7章で得られた結果を総括する。
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第 2章 従来手法の文献研究

本章では、新しい手法の開発に向けて、従来手法について調査した結果についてまとめる。最初

に、ベイズの定理に基づく従来炉定数調整法について述べる。続いて、拡張バイアス因子法につい

て述べる。本研究では、新しい手法の理論を導出する必要があるため、いずれの手法についても、

理論式の導出過程を含めて詳細に調査した。その結果を踏まえて、両手法の違いについて分析す

る。また、この分析結果から、両手法はデータ同化で利用されているカルマンフィルタと密接な関

係があることが分かったため、従来炉定数調整法と拡張バイアス因子法との関係に着目して、カル

マンフィルタの導出過程を調査した結果についても述べる。

2.1 ベイズの定理に基づく従来炉定数調整法

2.1.1 炉定数調整法の概要

炉定数調整法に関する最初の研究は 1964年の国際会議で発表された二つの論文 [8, 9]と言われ
ている [5]。その後、1970年代にかけて活発に研究が行われた [1–3,10,11]。1973年には、Gandini
らが当時の研究に対して詳細なレビューを行っている [12, 13]。当時、日本では三谷ら [14, 15]が
研究を行っており海外の研究者にも多く引用されている。現在、広く使われている行列表記の調整

後の炉定数セットの式を最初に示したのは、1970年の報告書 [1] *1 に掲載されている Dragtの論
文と思われる。なお、Dragtはこれとほぼ同じ内容を 1977年の論文 [3]に簡略化した形で記載して
いる。1989 年には竹田らが炉定数調整法の式に解析モデルに起因する不確かさ*2を追加し、設計

予測精度を評価する式を提案した [4]。日本の高速炉設計研究では、この文献を理論的基盤として
1990年頃から炉定数調整法に基づく統合炉定数の開発が行われた [16]。なお、この炉定数調整法
によって調整された炉定数セットは、当初、「修正炉定数」と呼ばれていたが、その後、評価済み核

データライブラリに含まれる微分データと臨界実験等で得られる積分データを統合するという意味

で統合炉定数（unified cross-section set）と呼ばれるようになった [17, 18]。この統合炉定数の開発
のために高速炉用の積分実験データ（高速炉核設計基本データベース）の整備が進められた [19]。
現在では、炉定数調整法の方法論は世界中で用いられており、2013年には OECD/NEAの活動の
一環として、10研究機関が参加する大規模な調査研究が実施された [5,20]。この結果、8つの研究

*1 この文献は、臨界実験装置 STEKに関する報告書という形でまとめられているが、要旨の最後に、“The contributions
collected in this report have been presented also at the Tripartite USSR - Belgian - Dutch Symposium on Fast Reactor
Physics, held at Melekess 23-27 February, 1970.”と書かれており、この 3国間会議のプロシーディングとして作成さ
れたもののようである。

*2 解析モデル誤差を明示的に取り扱うことにより、炉定数調整法の式に、解析モデル誤差に対する共分散行列（解析モ
デルに起因する不確かさ）の項を追加した。
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機関で使われている式は等価であると結論づけられた。次節で導出するベイズの定理に基づく従来

炉定数調整法は、この 8つの研究機関で使われている式と等価である。本稿では、このベイズの定
理に基づく従来炉定数調整法を CBCA（Classical Bayesian Conventional cross-section Adjustment
method）と呼ぶことにする。

2.1.2 ベイズの定理に基づく従来炉定数調整法の導出の詳細

ここで、ベイズの定理に基づく従来炉定数調整法（CBCA）の導出の詳細を整理する。これによ
り、従来炉定数調整法の理論式をベイズの定理に基づいて導出できること、導出の過程で正規分布

の仮定が使われていることを改めて確認するとともに、導出の過程でこれまで認識されていないよ

うな仮定が使われていないことを確認する。

従来炉定数調整法の導出については、様々な論文において、正規分布に従うという仮定の下で、

ベイズの定理に基づいて、積分実験データが得られたという条件の下で核データの確率を最大化

すると説明されている。しかしながら、導出の途中の式変形についてはそれほど詳しく書かれて

いない。ベイズの定理に基づく炉定数調整法の理論式の導出方法については、1970年、1977年の
Dragtらの論文 [1, 3]や 1989年の竹田らの論文 [4]に記載されているが、途中の式展開については
それほど詳しく説明されていない。文献 [4]には、最小化すべき J 関数を定義して導出するという

道筋が示されており、この導出方法は物理的な意味を理解しやすいが、この方法で導出する場合、

最終的な式を知っていないと気づくことが難しい発見的な式変形が必要となるため、導出の途中の

式変形をすべて書き下すのは意外に難しい。

なお、この式変形の詳細については、2018年の筆者の文献 [21]を参照できる*3 。ただし、この

文献では、調整後の炉定数セットの式しか導出しておらず、調整後の炉定数セットの共分散行列の

式の導出については言及していない。この点を補足する資料としては 2018年の千葉の文献 [22]を
参照できる。この文献では、調整後の炉定数セットの式の導出では J 関数を微分する方法が用ら

れているが、調整後の炉定数セットの共分散行列の式の導出では、平方完成の概念が用いられてい

る。また、平方完成に基づく炉定数調整法の導出に関しては、2014年の岩元らによる文献 [23]の
§3.1にも詳しい説明がある。ここでは、これらの情報を参考に筆者が整理した文献 [24]の付録 B
に基づいて、1970年の Dragtの文献 [1]になるべく忠実に導出過程を補いながら説明する。

2.1.2.1 多変量正規分布

一般に、n次元ベクトル x に対する多変量正規分布は以下のように表される。

N ( x | µ,Σ) = 1
(2π)n/2

1
|Σ |1/2

exp
(
−1

2
(x − µ)T Σ−1 (x − µ)

)
(2.1.1)

*3 この部分の式変形に関しては、少し異なる方法であるが、1973年の Gandiniの報告書 [12]（付録 Aの式 (A1.15)か
ら式 (A1.22)への展開）も参照できる。
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ただし、ここで、µは平均値*4を表す n次元のベクトル、Σは n× nの共分散行列、|Σ | は Σの行列
式である。また、上付きの Tは行列（ベクトル）の転置、Σ−1 は Σ の逆行列を表す。共分散行列

は対称行列であり、対称行列の逆行列は対称行列になるので、Σ−1 も対称行列である。すなわち、

ΣT = Σ、
(
Σ−1)T

= Σ−1 が成り立つ。

なお、本稿では実数を要素に持つ m × n行列 Xを X ∈ Rm×n のように表す。また、ベクトルにつ
いても同様に、m 次元の列ベクトルを X ∈ Rm×1、n次元の行ベクトルを X ∈ R1×n と表す。ただ

し、ベクトルに対しては、小文字または大文字の斜体を使う。

この表記方法を使うと、ここで定義したベクトルと行列の次元は、x ∈ Rn×1、µ ∈ Rn×1、Σ ∈ Rn×m

と表すことができる。これらの次元から、式 (2.1.1)の expの指数部はスカラーになることが分か
る。また、expの前の係数もスカラーである。これらのことは、この式の定義から明らかであるが、
以降の導出で使うので留意しておく必要がある。

2.1.2.2 正規分布の仮定と問題設定

ここで、na 個の核データを含む炉定数セット T ∈ Rna×1 が、平均値 T 0 ∈ Rna×1、共分散行列

M ∈ Rna×na の正規分布に従うと仮定すると、T の確率分布は以下のように表される。

P (T ) = const. exp
(
−1

2
(T −T 0)T M−1 (T −T 0)

)
(2.1.2)

ただし、ここで、const.は定数を表す。なお、この const.は定数であることが重要であり値につい
ては問わない。また、積分実験データの実験値 R(1)e ∈ Rn

(1)×1 と計算値 R(1)c (T ) ∈ Rn
(1)×1 が、それぞ

れ、実験誤差に対する共分散行列 V(1)e 、解析モデル誤差に対する共分散行列 V(1)m の正規分布に従う
と仮定すると、T が得られたという条件の下で、積分実験データの実験値 R(1)e （と計算値 R(1)c (T )
の差）が従う確率分布は以下のように表される。

P
(
R(1)e

���T )
= const. exp

(
−1

2

(
R(1)e − R(1)c (T )

)T
V(1)−1
e+m

(
R(1)e − R(1)c (T )

))
(2.1.3)

ただし、ここで、V(1)e+m = V(1)e + V(1)m と定義した。また、この式の逆行列を表す V(1)−1
e+m は、積分実

験データを表す (1)と逆行列の −1が重なるため、少し紛らわしいが、V(1)−1
e+m =

(
V(1)e+m

)−1
である。

なお、ベイズの定理に基づく従来炉定数調整法の導出では、明示的に言及されないことも多いが、

この正規分布の仮定の際に、M、V(1)e 、V(1)m を定義しているということは、核データの誤差、実験
誤差、解析モデル誤差は互いに独立と仮定している。以降では、この仮定のことを、誤差の独立性

の仮定と呼ぶ。

一方で、ベイズの定理より、積分実験データの実験値 R(1)e が得られた条件の下で、炉定数セット

T が従う確率分布は以下のように表される。

P
(
T | R(1)e

)
=

P
(
R(1)e

���T )
P (T )

P
(
R(1)e

) = const. P
(
R(1)e

���T )
P (T ) (2.1.4)

*4 正規分布では、平均値、期待値、中央値、最頻値はすべて等しくなる。
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この式に、式 (2.1.2)、(2.1.3)を代入すると以下の式が得られる。

P
(
T | R(1)e

)
= const. exp

(
−1

2

(
(T −T 0)T M−1 (T −T 0)

+
(
R(1)e − R(1)c (T )

)T
V(1)−1
e+m

(
R(1)e − R(1)c (T )

)))
(2.1.5)

この条件付き確率を最大にするような炉定数セット TCBCA とその共分散行列MCBCA を求めるこ

とで、炉定数調整法の理論式を導出することができる。この式の最大値は指数部のみで決定される

ので、式を簡単にするため、以下のように定義する。

J ≡ (T −T 0)T M−1 (T −T 0) +
(
R(1)e − R(1)c (T )

)T
V(1)−1
e+m

(
R(1)e − R(1)c (T )

)
(2.1.6)

2.1.2.3 線形性の仮定

核データに対する感度係数 G(1) を用いて、積分実験データの計算値の差を以下のように表すこ
とができると仮定する。以降では、この仮定を線形性の仮定という。

R(1)c (T ) = R(1)c (T 0) +G(1) (T −T 0) (2.1.7)

この式を、式 (2.1.6)に代入すると以下の式が得られる。

J = (T −T 0)T M−1 (T −T 0)

+
(
R(1)e − R(1)c (T 0) −G(1) (T −T 0)

)T
V(1)−1
e+m

(
R(1)e − R(1)c (T 0) −G(1) (T −T 0)

)
= (T −T 0)T M−1 (T −T 0) + (T −T 0)T G(1)TV(1)−1

e+m G(1) (T −T 0)

− (T −T 0)T G(1)TV(1)−1
e+m

(
R(1)e − R(1)c (T 0)

)
−

(
R(1)e − R(1)c (T 0)

)T
V(1)−1
e+m G(1) (T −T 0)

+
(
R(1)e − R(1)c (T 0)

)T
V(1)−1
e+m

(
R(1)e − R(1)c (T 0)

)
= (T −T 0)T

(
M−1 +G(1)TV(1)−1

e+m G(1)
)
(T −T 0) − 2 (T −T 0)T G(1)TV(1)−1

e+m

(
R(1)e − R(1)c (T 0)

)
+

(
R(1)e − R(1)c (T 0)

)T
V(1)−1
e+m

(
R(1)e − R(1)c (T 0)

)
(2.1.8)

ただし、ここで、V(1)−1
e+m が対称行列であること及びスカラーが行列の転置に対して不変であること

を用いた。具体的には、以下の式が成り立つことを用いた。(
R(1)e − R(1)c (T 0)

)T
V(1)−1
e+m G(1) (T −T 0) =

((
R(1)e − R(1)c (T 0)

)T
V(1)−1
e+m G(1) (T −T 0)

)T

= (T −T 0)T G(1)T
(
V(1)−1
e+m

)T (
R(1)e − R(1)c (T 0)

)
= (T −T 0)T G(1)TV(1)−1

e+m

(
R(1)e − R(1)c (T 0)

)
(2.1.9)

ここで、式 (2.1.8)は、T − T 0、すなわち、T に関する 2次形式になっていることが分かる。一般
には、正規分布と正規分布を乗じたものは正規分布にはならないが、ここでは線形性の仮定を用い
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ているため、結果として、P
(
T | R(1)e

)
の指数部が 2次形式となり、P

(
T | R(1)e

)
も正規分布に従う

ことが分かる。

なお、正規分布において確率が最大になるのは平均値のときであるので、P
(
T | R(1)e

)
の平均値と

共分散行列が、それぞれ、ここで求めるべき、TCBCA とMCBCA に対応していることが分かる。す

なわち、炉定数調整法の理論式を導出する問題は、正規分布の平均値と共分散行列を求める問題に

帰着したことになる。

2.1.2.4 正規分布と平方完成

一般に、正規分布の指数部分は、式 (2.1.1)の記号を用いると、以下のように表すことができる。

−1
2
(x − µ)T Σ−1 (x − µ) = −1

2
xTΣ−1x + xTΣ−1µ − 1

2
µTΣ−1µ

= −1
2
xTΣ−1x + xTΣ−1µ + const. (2.1.10)

ただし、ここで、Σが対称行列であること*5を用いた。一方で、正規分布は、平均値 µ と共分散行

列 Σが与えられれば決定される。以上のことから、正規分布に関しては、指数部の 2次の項の係数
行列を比較することで共分散行列を、指数部の 1次の項の係数行列を比較することで平均値を表す
ベクトルを決定することができる。すなわち、2次の項の係数行列は共分散行列の逆行列 Σ−1 に、

1次の項の係数行列は Σ−1µ に等しいとすることで、µ と Σを決定できる。これは、式 (2.1.10)の
右辺のような 2次形式の式は、式 (2.1.10)の左辺のような形に変形できるということに対応してお
り、このような式変形は「平方完成」と呼ばれている。具体的には、2次形式で表される指数部を
持つ任意の確率分布 P (x)を考えた場合に、以下のように変形できることに対応している。

P (x) = const. exp
(
−1

2
xTΣ−1x + xTΣ−1µ + const.

)
= const. exp

(
−1

2
(x − µ)T Σ−1 (x − µ) + const.

)
= const. exp

(
−1

2
(x − µ)T Σ−1 (x − µ)

)
exp (const.)

= const. exp
(
−1

2
(x − µ)T Σ−1 (x − µ)

)
(2.1.11)

以上のことから、式 (2.1.8)の 2次の項の係数と 1次の項の係数を、それぞれ、比較することに

*5 より具体的には、µ
TΣ−1xがスカラーであり、スカラーは転置に対して不変であることから、µTΣ−1x =

(
µTΣ−1x

)T
=

xT
(
Σ−1

)T (
µT)T

= xTΣ−1µ が成り立つことを用いた。

8



より、以下の式が得られる*6 。

M−1
CBCA =M−1 +G(1)TV(1)−1

e+m G(1) (2.1.12)

M−1
CBCA (TCBCA −T 0) = G(1)TV(1)−1

e+m

(
R(1)e − R(1)c (T 0)

)
(2.1.13)

ここで、一般にWoodburyの公式（例えば、文献 [25]の付録 C）として、任意の行列A、B、C、
D に対して、以下の式が成り立つことが知られている。(

A +BD−1C
)−1
=A−1 −A−1B

(
D + CA−1B

)−1
CA−1 (2.1.14)

この式の証明については付録 A.1に添付した。
この式を、式 (2.1.12)に適用すると以下の式が得られる。

MCBCA =M −MG(1)T
(
G(1)MG(1)T + V(1)e+m

)−1
G(1)M (2.1.15)

この式は、炉定数調整法における調整後の炉定数セットの共分散行列を表す式として知られてお

り、具体的には、文献 [3]の式 (11)や文献 [4]の式 (13)と同じ式である。
一方で、式 (2.1.13)の両辺に左からMCBCA をかけて、式 (2.1.15)を代入すると、以下のように
変形できる。

TCBCA −T 0 =MCBCAG(1)TV(1)−1
e+m

(
R(1)e − R(1)c (T 0)

)
=

(
M −MG(1)T

(
G(1)MG(1)T + V(1)e+m

)−1
G(1)M

)
G(1)TV(1)−1

e+m

(
R(1)e − R(1)c (T 0)

)
=MG(1)T

(
I −

(
G(1)MG(1)T + V(1)e+m

)−1
G(1)MG(1)T

)
V(1)−1
e+m

(
R(1)e − R(1)c (T 0)

)
=MG(1)T

(
G(1)MG(1)T + V(1)e+m

)−1

×
((

G(1)MG(1)T + V(1)e+m
)
−G(1)MG(1)T

)
V(1)−1
e+m

(
R(1)e − R(1)c (T 0)

)
=MG(1)T

(
G(1)MG(1)T + V(1)e+m

)−1
V(1)e+mV(1)−1

e+m

(
R(1)e − R(1)c (T 0)

)
=MG(1)T

(
G(1)MG(1)T + V(1)e+m

)−1 (
R(1)e − R(1)c (T 0)

)
(2.1.16)

ただし、ここで、×は紙面の都合により式の途中に挿入した改行の位置を明示するためのものであ
り、通常の行列の積を表す。したがって、調整後の炉定数セットの式は以下のように表される。

TCBCA = T 0 +MG(1)T
(
G(1)MG(1)T + V(1)e+m

)−1 (
R(1)e − R(1)c (T 0)

)
(2.1.17)

*6 式 (2.1.12)と式 (2.1.13)は、それぞれ、1977年の Dragt氏の論文 [3]の式 (5)と式 (4)に対応している。文献 [3]で
は、この式の導出に関して特に具体的な説明はなく、参考文献が複数引用されている。これらの参考文献の内で最初
に挙げられている文献 [1] は、1970 年に発行された報告書の一部であり、Dragt 氏自身が書いたものである。この
文献 [1]には、条件付き確率の式を定義した後に、「By equating corresponding terms in the identity, this immediately
leads to」という説明があり、この後に、式 (2.1.12)と式 (2.1.13)に対応する式 (3.6)と式 (3.7)が記載されている。こ
の Dragt氏による説明は、平方完成による係数の比較のことを意味しているものと思われる。
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この式が、ベイズの定理に基づく従来炉定数調整法（CBCA）における調整後の炉定数セットの式
である。具体的には、文献 [3]の式 (10)や文献 [4]の式 (12)と同じ式である。
以上のように、平方完成の考え方に基づいて従来炉定数調整法の理論式（調整後の炉定数セット

とその共分散行列の式の両方）を導出できる。また、この導出から、ベイズの定理に基づく従来炉

定数調整法において、正規分布の仮定は、線形性の仮定とともに重要な役割を持っていることが分

かる。更に、正規分布の仮定を使う際に、誤差の独立性の仮定を使っていることが分かる。一方

で、これらの仮定以外には、文献等で式の展開が省略されている部分も含めて、特に他の仮定は使

われていないことが確認できる。

2.1.3 CBCAの設計予測精度の評価式

ベイズの定理に基づく従来炉定数調整法（CBCA）では、調整後の炉定数セットを使って設計
対象炉心核特性を計算するとその計算値が設計予測値となる。したがって、設計予測精度を評価

するための式として、調整後の炉定数セットを使って計算した設計対象炉心核特性の共分散行列

Var
(
R(1)e (TCBCA)

)
を表す式を求めておく。この式の導出については、文献 [4]の §II.Bに詳細な説

明がある。また、本稿の第 4.8節で、文献 [4]と同じ方法を使って設計予測精度の評価式を導出す
るので、ここでは文献 [4]に記載されている結果だけを示す。
ベイズの定理に基づく従来炉定数調整法における設計予測精度は、以下の式で表される。

Var
(
R(2)c (TCBCA)

)
= G(2)MCBCAG(2)T + V(2)m − LCBCAV(12)

m − V(12)T
m LT

CBCA (2.1.18)

ただし、ここで、以下のように定義した。

LCBCA ≡ G(2)MG(1)T
(
G(1)MG(1)T + V(1)e + V(1)m

)−1
(2.1.19)

ここで示した式は、それぞれ、文献 [4]の式 (28)、(24)に対応している。

2.1.4 補遺：平方完成の確認

以上により、ベイズの定理に基づく従来炉定数調整法（CBCA）の理論式の導出は完了している
が、条件付き確率 P

(
T | R(1)e

)
の指数を直接平方完成しても同じ式を導出できることを確認する。

式の変形は少し複雑になるが、この方が直接的で式の意味を理解しやすい面もあるので以下にまと

めておく。

ここで、P
(
T | R(1)e

)
の指数部を表す J の式 (2.1.8)に、式 (2.1.12)を代入すると、以下の式が得

られる。

J = (T −T 0)T M−1
CBCA (T −T 0) − 2 (T −T 0)T G(1)TV(1)−1

e+m

(
R(1)e − R(1)c (T 0)

)
+

(
R(1)e − R(1)c (T 0)

)T
V(1)−1
e+m

(
R(1)e − R(1)c (T 0)

)
(2.1.20)
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ここで、この式を変形するために、以下のような 2次形式を考える。(
(T −T 0) −MCBCAG(1)TV(1)−1

e+m

(
R(1)e − R(1)c (T 0)

))T
M−1

CBCA

×
(
(T −T 0) −MCBCAG(1)TV(1)−1

e+m

(
R(1)e − R(1)c (T 0)

))
(2.1.21)

この式を展開すると以下のようになる。(
(T −T 0) −MCBCAG(1)TV(1)−1

e+m

(
R(1)e − R(1)c (T 0)

))T
M−1

CBCA

×
(
(T −T 0) −MCBCAG(1)TV(1)−1

e+m

(
R(1)e − R(1)c (T 0)

))
= (T −T 0)T M−1

CBCA (T −T 0)

− (T −T 0)T G(1)TV(1)−1
e+m

(
R(1)e − R(1)c (T 0)

)
−

(
R(1)e − R(1)c (T 0)

)T
V(1)−1
e+m G(1) (T −T 0)

+
(
R(1)e − R(1)c (T 0)

)T
V(1)−1
e+m G(1)MCBCAG(1)TV(1)−1

e+m

(
R(1)e − R(1)c (T 0)

)
= (T −T 0)T M−1

CBCA (T −T 0)

− 2 (T −T 0)T G(1)TV(1)−1
e+m

(
R(1)e − R(1)c (T 0)

)
+

(
R(1)e − R(1)c (T 0)

)T
V(1)−1
e+m G(1)MCBCAG(1)TV(1)−1

e+m

(
R(1)e − R(1)c (T 0)

)
(2.1.22)

ただし、ここで、V(1)e+m とMCBCA が対称行列であることを用いた。式 (2.1.20)と式 (2.1.22)より、
以下の式が得られる。

J =
(
(T −T 0) −MCBCAG(1)TV(1)−1

e+m

(
R(1)e − R(1)c (T 0)

))T
M−1

CBCA

×
(
(T −T 0) −MCBCAG(1)TV(1)−1

e+m

(
R(1)e − R(1)c (T 0)

))
−

(
R(1)e − R(1)c (T 0)

)T
V(1)−1
e+m G(1)MCBCAG(1)TV(1)−1

e+m

(
R(1)e − R(1)c (T 0)

)
+

(
R(1)e − R(1)c (T 0)

)T
V(1)−1
e+m

(
R(1)e − R(1)c (T 0)

)
(2.1.23)

この式の第 2項と第 3項には T が含まれていないので定数と考えることができ、第 1項を J ′ とお

くと、以下のように表すことができる。

J = J ′ + const. (2.1.24)

したがって、P
(
T | R(1)e

)
は、式 (2.1.5)と式 (2.1.6)より、以下のように表すことができる。

P
(
T | R(1)e

)
= const. exp

(
−1

2
J
)

= const. exp
(
−1

2
J ′ + const.

)
= const. exp

(
−1

2
J ′

)
exp (const.)
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= const. exp
(
−1

2
J ′

)
= const. exp

(
− 1

2

(
(T −T 0) −MCBCAG(1)TV(1)−1

e+m

(
R(1)e − R(1)c (T 0)

))T
M−1

CBCA

×
(
(T −T 0) −MCBCAG(1)TV(1)−1

e+m

(
R(1)e − R(1)c (T 0)

)) )
(2.1.25)

この式から、この条件付き確率が最大になるのは指数部がゼロになるとき*7であることが分かる。

したがって、調整後の炉定数セットの式は以下のようになる。

TCBCA −T 0 =MCBCAG(1)TV(1)−1
e+m

(
R(1)e − R(1)c (T 0)

)
(2.1.26)

この式は、式 (2.1.16)の最初の式と同じであるので、同様の式変形を行うことで、調整後の炉定数
セットの式として式 (2.1.17)が得られる。また、式 (2.1.25)の指数部の形から、TCBCA の共分散行

列はMCBCA であることが分かる。前述のように、式 (2.1.12)で表されるMCBCA はWoodburyの
公式を使って変形できるので、調整後の炉定数セットの共分散行列の式として式 (2.1.15) が得ら
れる。

*7 この式を T で微分してゼロになるときと考えても良い。
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2.2 拡張バイアス因子法

2.2.1 拡張バイアス因子法の概要

核設計における設計予測値を積分実験データで補正する方法としては、炉定数調整法以外にも、

（従来）バイアス因子法 [26]がある。この手法は、設計対象炉心核特性とよく似た実験を一つだけ
使って、その測定値（E）と計算値（C）の比（E/C）を乗じて補正する方法である。このため、E/C
バイアス因子法と呼ばれることもあるが、ここでは、拡張バイアス因子法と区別するため「従来」

を付けて、従来バイアス因子法と呼ぶ。従来バイアス因子法は、積分実験データを一つしか使うこ

とができないので、設計対象炉心とよく似た実験を行うことができない場合にはあまり精度は向上

しない。場合によっては、精度が悪化することもある。このため、基本的には、設計対象炉心を完

全に模擬した、いわゆる、フルモックアップ実験と呼ばれる積分実験データを取得できない場合に

は効果が少ない。

このような従来バイアス因子法の問題点を解決する方法として、2006年に佐野らは、複数の積
分実験を組み合わせて利用することができる一般化バイアス因子法 [27]を提案した。更に、久語
らはこの手法を改良して、2007年に拡張バイアス因子法 [6]を提案した。

2.2.2 拡張バイアス因子法の理論式導出の詳細

次に、文献 [6]を参考に、拡張バイアス因子法の導出の詳細を説明する。これにより、拡張バイ
アス因子法では、「複数の累乗化した実験値」と「複数の累乗化した計算値」の比によって、設計

値を補正するバイアス因子を決定するという考え方がどのような意味を持っているのか分析する。

また、拡張バイアス因子法の導出では、正規分布の仮定を用いていないことをここで確認する。な

お、拡張バイアス因子法には、LC（Linear Combination of experimental values）法と PE（Product
of Exponentiated experimental values）法の 2種類があるが、本稿では、PE法のみを対象とし、拡
張バイアス因子法（EB: Extended Bias factor method）の PE法のことを EBPEと呼ぶ。

2.2.2.1 炉定数調整法の理論式における記号との対応

拡張バイアス因子法の論文 [6]で使われている記号と、炉定数調整法の論文（文献 [3, 4]等）で
用いられている記号は比較的よく似ているが、少し異なる。本稿では、炉定数調整法の理論式との

比較が重要となるので、炉定数調整法の論文で使われている記号に準拠した記号を統一的に使って

議論する。このため、最初に、拡張バイアス因子法の論文で使われている記号と本稿で用いる記号

との対応を以下にまとめる。

N ←→ n(1) : 積分実験データの数

Ri ←→ R(1)t,i : i 番目の積分実験データの真値

Ei ←→ R(1)e,i : i 番目の積分実験データの実験値

Ci ←→ R(1)c,i : i 番目の積分実験データの計算値
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Rt ←→ R(2)
t,1 : 設計対象炉心核特性の真値

RR ←→ R(2)EBPE : 拡張バイアス因子法の設計予測値

RC ←→ R(2)
c,1 : 設計対象炉心核特性の計算値

fPE ←→ fEBPE : 拡張バイアス因子法による補正係数

Si ←→ G(1)i : 積分実験データの感度係数

SR ←→ G(2)1 : 設計対象炉心核特性の感度係数
∆σ ←→ ∆T : 核データの誤差

∆Ei ←→ ∆e(1)i : i 番目の積分実験データの実験誤差

∆Mi ←→ ∆m(1)i : i 番目の積分実験データの解析モデル誤差

∆MR ←→ ∆m(2)1 : 1番目の設計対象炉心核特性の解析モデル誤差

ただし、ここで、ベクトルの要素を以下のように定義した。

R(1)t =
(
R(1)
t,1 R(1)

t,2 · · · R(1)
t,n(1)

)T
∈ Rn(1)×1 (2.2.1)

R(1)e =
(
R(1)
e,1 R(1)

e,2 · · · R(1)
e,n(1)

)T
∈ Rn(1)×1 (2.2.2)

R(i)c (T 0) =
(
R(i)
c,1 R(i)

c,2 · · · R(i)
c,n(i)

)T
∈ Rn(i)×1 (i = 1, 2) (2.2.3)

∆e(1) =
(
∆e(1)1 ∆e(1)2 · · · ∆e(1)

n(1)

)T
∈ Rn(1)×1 (2.2.4)

∆m(i) =
(
∆m(i)1 ∆m(i)2 · · · ∆m(i)

n(i)

)T
∈ Rn(i)×1 (i = 1, 2) (2.2.5)

ここで、上付きの Tは行列（ベクトル）の転置を表す。すなわち、これらはいずれも列ベクトルで
ある。なお、拡張バイアス因子法の理論式では、設計対象炉心核特性は一つしか考えない*8 ので、

設計対象炉心核特性を表す記号はスカラーの記号が一つあればよいが、積分実験データと同様に、

ここでは、n(2) 個の複数の設計対象炉心核特性を考慮できるように拡張している。

一方、拡張バイアス因子法の論文に示されている式において、感度係数 Si、SR と核データ誤差

∆σ はスカラーではなくベクトルである。これに対して、本稿では、行列を太字の立体（ローマン

体）、ベクトルを太字の斜体で表すので、拡張バイアス因子法における感度係数と核データ誤差に

ついても、ベクトルを表す太字の斜体を使う。ここで、考慮する核データのパラメータの数を na

とすると、以下に示すように、拡張バイアス因子法の式に現れる積分実験データの感度係数 G(1)i 、

設計対象炉心核特性の感度係数 G(2)1 は、いずれも na 個の要素を持つ行ベクトル、核データ誤差

∆T は、na 個の要素を持つ列ベクトルであると考えられる。

G(1)i =
(
G(1)

i,1 G(1)
i,2 · · · G(1)i,na

)
∈ R1×na (2.2.6)

G(2)1 =
(
G(2)1,1 G(2)1,2 · · · G(2)1,na

)
∈ R1×na (2.2.7)

∆T =
(
∆T1 ∆T2 · · · ∆T1,na

)T ∈ Rna×1 (2.2.8)

*8 通常、設計対象炉心核特性は複数あるが、繰り返し適用すればよい。
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なお、核データ誤差については、炉定数調整法の式においても列ベクトルであり同じ次元を持つ。

G(1)i は第 i 番目の積分実験データの感度係数であるので、炉定数調整法の式における G(1) の第 i 行

に対応するので、以下のように両者の関係は以下のように表すことができる。

G(1) =

©­­­­­«
G(1)1
G(1)2
...

G(1)
n(1)

ª®®®®®¬
=

©­­­­­­«
G(1)1,1 G(1)1,2 · · · G(1)1,na

G(1)2,1 G(1)2,2 · · · G(1)2,na

...
...

. . .
...

G(1)
n(1),1 G(1)

n(1),2 · · · G(1)2,na

ª®®®®®®¬
∈ Rn(1)×na (2.2.9)

2.2.2.2 設計予測値（バイアス因子）の式の導出

文献 [6]の式 (37)の展開では、「核データ誤差、解析モデル誤差、実験誤差は 1に比べて小さい
と仮定」*9 と説明されているが、この仮定（近似）を具体的にどのように使用しているかまでは説

明されていない。このため、以下では、どのような形で仮定や近似が使われているかを補足しなが

ら理論式の導出過程を確認する。

前述のように、拡張バイアス因子法では「複数の累乗化した実験値」と「複数の累乗化した計算

値」の比によって、設計値を補正するバイアス因子を決定するという考え方を用いており、拡張バ

イアス因子法における設計対象炉心核特性の設計予測値は以下のように表すことができる。

R(2)EBPE = R(2)
c,1 · fEBPE

= R(2)
c,1 ·

n(1)∏
i=1

(
R(1)e,i

)Fi

n(1)∏
i=1

(
R(1)c,i

)Fi

= R(2)
t,1

(
1 + G(2)1 ∆T + ∆m(2)1

)
·

n(1)∏
i=1

(
R(1)t,i

)Fi

·
n(1)∏
i=1

(
1 + ∆e(1)i

)Fi

n(1)∏
i=1

(
R(1)t,i

)Fi

·
n(1)∏
i=1

(
1 + G(1)i ∆T + ∆m(1)i

)Fi

= R(2)
t,1

(
1 + G(2)1 ∆T + ∆m(2)1

)
·

n(1)∏
i=1

(
1 + ∆e(1)i

)Fi

n(1)∏
i=1

(
1 + G(1)i ∆T + ∆m(1)i

)Fi

(2.2.10)

なお、文献 [6]の本文中には特に明示されていないが、文献 [6]に示されているこの式の変形にお
いて、核データ誤差による設計対象炉心核特性及び積分実験データの真値からのずれを感度係数と

*9 原文は “Assuming that the uncertainties due to cross section errors, method errors and experimental errors are small
compared with unity”である。
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核データ誤差を使って評価できるとしているので、ベイズの定理に基づく従来炉定数調整法の導出

で用いたのと同様に、線形性の仮定を用いていると考えられる。

ここで、指数と対数の定義から eln x = x が成り立つことを用いると、式 (2.2.10)は以下のように
変形できる。

R(2)EBPE = R(2)
t,1

(
1 + G(2)1 ∆T + ∆m(2)1

) n(1)∏
i=1

eln
(
1+∆e(1)i

)Fi

n(1)∏
i=1

eln
(
1+G(1)i ∆T+∆m

(1)
i

)Fi

= R(2)
t,1

(
1 + G(2)1 ∆T + ∆m(2)1

) n(1)∏
i=1

eFi ln
(
1+∆e(1)i

)
n(1)∏
i=1

eFi ln
(
1+G(1)i ∆T+∆m

(1)
i

) (2.2.11)

ただし、ここで ln xp = p ln x の関係を用いた。ここで、仮定より、

R(1)e,i ≪ 1 (2.2.12)

G(1)i ∆T + ∆m(1)i ≪ 1 (2.2.13)

が成り立つので、

lim
x→1

ln x = 0 (2.2.14)

であることを考慮すると、それぞれ、

Fi ln(1 + ∆e(1)i ) ≪ 1 (2.2.15)

Fi ln(1 + G(1)i ∆T + ∆m(1)i ) ≪ 1 (2.2.16)

が成り立つ。一方で、

ex =
∞∑
n=0

xn

n!
= 1 +

1
1!

x +
1
2!

x2 + · · · (2.2.17)

のように展開できるので、x ≪ 1のときは、

ex ≈ 1 + x (2.2.18)

と近似できる。したがって、式 (2.2.11)は更に以下のように変形できる。

R(2)EBPE ≈ R(2)
t,1

(
1 + G(2)1 ∆T + ∆m(2)1

) n(1)∏
i=1

{
1 + Fi ln

(
1 + ∆e(1)i

)}
n(1)∏
i=1

{
1 + Fi ln

(
1 + G(1)i ∆T + ∆m(1)i

)} (2.2.19)
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ここで、|x | < 1のとき、

ln(1 + x) =
∞∑
n=1

(−1)n+1

n
xn = x − 1

2
x2 + · · · (2.2.20)

のように展開できるので、x ≪ 1のときは、

ln(1 + x) ≈ x (2.2.21)

と近似できる。したがって、式 (2.2.19)は更に以下のように変形できる。

R(2)EBPE ≈ R(2)
t,1

(
1 + G(2)1 ∆T + ∆m(2)1

) n(1)∏
i=1

(
1 + Fi∆e(1)i

)
n(1)∏
i=1

{
1 + Fi

(
G(1)i ∆T + ∆m(1)i

)} (2.2.22)

ここで、
∏n

i=1(1 + xi)について考える。この式を 1次の項まで展開すると

n∏
i=1
(1 + xi) = (1 + x1)(1 + x2)(1 + x3) · · · (1 + xn) = 1 +

n∑
i=1

xi + · · · (2.2.23)

のようになるので、xi ≪ 1のときは、
n∏
i=1
(1 + xi) ≈ 1 +

n∑
i=1

xi (2.2.24)

と近似できる。したがって、式 (2.2.22)は更に以下のように変形できる。

R(2)EBPE ≈ R(2)
t,1

(
1 + G(2)1 ∆T + ∆m(2)1

) 1 +
n(1)∑
i=1

Fi∆e(1)i

1 +
n(1)∑
i=1

Fi

(
G(1)i ∆T + ∆m(1)i

)

= R(2)
t,1

(
1 + G(2)1 ∆T + ∆m(2)1

) 1 +
n(1)∑
i=1

Fi∆e(1)i

1 +
n(1)∑
i=1

FiG
(1)
i ∆T +

n(1)∑
i=1

Fi∆m(1)i

= R(2)
t,1

(
1 + G(2)1 ∆T + ∆m(2)1

) ©­«1 +
n(1)∑
i=1

Fi∆e(1)i
ª®¬ 1

1 +
n(1)∑
i=1

FiG
(1)
i ∆T +

n(1)∑
i=1

Fi∆m(1)i

(2.2.25)

ここで、 1
1+x について考える。この式は、

1
1 + x

= 1 − x + 2x2 + · · · (2.2.26)
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のように展開できるので、x ≪ 1のときは、

1
1 + x

≈ 1 − x (2.2.27)

と近似できる。したがって、式 (2.2.25)は更に以下のように変形できる。

R(2)EBPE ≈ R(2)
t,1

(
1 + G(2)1 ∆T + ∆m(2)1

) ©­«1 +
n(1)∑
i=1

Fi∆e(1)i
ª®¬ ©­«1 − ©­«

n(1)∑
i=1

FiG
(1)
i ∆T +

n(1)∑
i=1

Fi∆m(1)i
ª®¬ª®¬ (2.2.28)

ここで、
(
1 +

∑n
i=1 xi

) (
1 −∑n

i=1 yi
)
について考える。この式を展開すると、(

1 +
n∑
i=1

xi

) (
1 −

n∑
i=1

yi

)
= 1 +

n∑
i=1

xi −
n∑
i=1

yi +

(
n∑
i=1

xi

) (
n∑
i=1

yi

)
(2.2.29)

となるので、xi ≪ 1、yi ≪ 1のときは、xi と yi の 2次の項を無視することで以下のように近似で
きる。 (

1 +
n∑
i=1

xi

) (
1 −

n∑
i=1

yi

)
≈ 1 +

n∑
i=1

xi −
n∑
i=1

yi (2.2.30)

したがって、式 (2.2.28)は更に以下のように変形できる。

R(2)EBPE = R(2)
t,1

(
1 + G(2)1 ∆T + ∆m(2)1

) ©­«1 +
n(1)∑
i=1

Fi∆e(1)i −
©­«
n(1)∑
i=1

FiG
(1)
i ∆T +

n(1)∑
i=1

Fi∆m(1)i
ª®¬ª®¬

= R(2)
t,1

(
1 + G(2)1 ∆T + ∆m(2)1

) ©­«1 +
n(1)∑
i=1

Fi∆e(1)i −
n(1)∑
i=1

FiG
(1)
i ∆T −

n(1)∑
i=1

Fi∆m(1)i
ª®¬ (2.2.31)

この式は、文献 [6]の式 (37)の最後の式と一致する。
文献 [6]ではこの後に「同じ仮定の下」で式 (38)に変形できると説明されている。この仮定から

G(1)i ∆T ≪ 1、∆m(2)1 ≪ 1、∆m(1)i ≪ 1、∆e(1)i ≪ 1が成り立つので、G(1)i ∆T、∆m(2)1 、∆m(1)i 、∆e(1)i
の 2次以上の項を無視して展開すると、式 (2.2.31)は更に以下のように変形できる。

R(2)EBPE ≈ R(2)
t,1

©­«1 + G(2)1 ∆T + ∆m(2)1 +

n(1)∑
i=1

Fi∆e(1)i −
n(1)∑
i=1

FiG
(1)
i ∆T −

n(1)∑
i=1

Fi∆m(1)i
ª®¬

= R(2)
t,1

©­«1 + ©­«G(2)1 −
n(1)∑
i=1

FiG
(1)
i

ª®¬∆T + ∆m(2)1 −
n(1)∑
i=1

Fi∆m(1)i +
n(1)∑
i=1

Fi∆e(1)i
ª®¬ (2.2.32)

この式は、文献 [6]の式 (38)と一致する。
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2.2.2.3 設計予測精度の式の導出の詳細

拡張バイアス因子法の設計予測精度、すなわち、核設計予測値の分散は、文献 [6]の式 (39)に示
されるように、以下の式で表される。

Var ©­«
R(2)EBPE

R(2)
t,1

ª®¬ = ©­«G(2)1 −
n(1)∑
i=1

FiG
(1)
i

ª®¬ M ©­«G(2)1 −
n(1)∑
i=1

FiG
(1)
i

ª®¬
T

+ Var ©­«∆m(2)1 −
n(1)∑
i=1

Fi∆m(1)i
ª®¬ + Var ©­«

n(1)∑
i=1

Fi∆e(1)i
ª®¬ (2.2.33)

この式の導出過程についても、文献 [6] には詳しく書かれていないが、後述する分散の定義式
(4.1.11)に式 (2.2.32)を代入し、R(2)EBPE/R

(2)
t,1 の期待値が 1であると仮定して、核データ誤差、積分

実験データの実験誤差、積分実験データの解析モデル誤差が互いに独立であるという仮定を用いる

と、以下のように導出できる。

Var ©­«
R(2)EBPE

R(2)
t,1

ª®¬ = E
©­­«
©­«

R(2)EBPE

R(2)
t,1

− E ©­«
R(2)EBPE

R(2)
t,1

ª®¬ª®¬ ©­«
R(2)EBPE

R(2)
t,1

− E ©­«
R(2)EBPE

R(2)
t,1

ª®¬ª®¬
Tª®®¬

= E
©­­«
©­«

R(2)EBPE

R(2)
t,1

− 1ª®¬ ©­«
R(2)EBPE

R(2)
t,1

− 1ª®¬
Tª®®¬

= E ©­«©­«©­«G(2)1 −
n(1)∑
i=1

FiG
(1)
i

ª®¬∆T + ∆m(2)1 −
n(1)∑
i=1

Fi∆m(1)i +
n(1)∑
i=1

Fi∆e(1)i
ª®¬©­«©­«G(2)1 −

n(1)∑
i=1

FiG
(1)
i

ª®¬∆T + ∆m(2)1 −
n(1)∑
i=1

Fi∆m(1)i +
n(1)∑
i=1

Fi∆e(1)i
ª®¬

Tª®®¬
= E

©­­«
©­«G(2)1 −

n(1)∑
i=1

FiG
(1)
i

ª®¬∆T∆TT ©­«G(2)1 −
n(1)∑
i=1

FiG
(1)
i

ª®¬
T

+
©­«∆m(2)1 −

n(1)∑
i=1

Fi∆m(1)i
ª®¬ ©­«∆m(2)1 −

n(1)∑
i=1

Fi∆m(1)i
ª®¬

T

+
©­«
n(1)∑
i=1

Fi∆e(1)i
ª®¬ ©­«

n(1)∑
i=1

Fi∆e(1)i
ª®¬

Tª®®¬
=

©­«G(2)1 −
n(1)∑
i=1

FiG
(1)
i

ª®¬ E
(
∆T∆TT

) ©­«G(2)1 −
n(1)∑
i=1

FiG
(1)
i

ª®¬
T

+ E
©­­«
©­«∆m(2)1 −

n(1)∑
i=1

Fi∆m(1)i
ª®¬ ©­«∆m(2)1 −

n(1)∑
i=1

Fi∆m(1)i
ª®¬

Tª®®¬ + E
©­­«
©­«
n(1)∑
i=1

Fi∆e(1)i
ª®¬ ©­«

n(1)∑
i=1

Fi∆e(1)i
ª®¬

Tª®®¬
=

©­«G(2)1 −
n(1)∑
i=1

FiG
(1)
i

ª®¬ M ©­«G(2)1 −
n(1)∑
i=1

FiG
(1)
i

ª®¬
T
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+ Var ©­«∆m(2)1 −
n(1)∑
i=1

Fi∆m(1)i
ª®¬ + Var ©­«

n(1)∑
i=1

Fi∆e(1)i
ª®¬ (2.2.34)

ただし、ここで、実験誤差及び解析モデル誤差の期待値が 0であるという仮定を用いた。
この分散の式を最小にするように累乗の係数を決定する。累乗の係数の一次微分を 0とすると以
下の式が得られる。

n(1)∑
j=1

Fj

{
G(1)i MG(1)j + Cov

(
∆m(1)i ,∆m(1)j

)
+ Cov

(
∆e(1)i ,∆e(1)j

)}
−

{
G(2)1 MG(1)Ti + Cov

(
∆m(2)1 ,∆m(1)i

)}
= 0 (i = 1, 2, · · · , n(1)) (2.2.35)

この式は、文献 [6]の式 (40)と一致する。

2.2.3 分析

次に、以上の拡張バイアス因子法の理論式の導出過程から分かることについて述べる。

2.2.3.1 仮定と近似

拡張バイアス因子法の導出過程を詳細に追跡した結果から、正規分布の仮定は用いられていない

ことが確認できる。また、ベイズの定理に基づく従来炉定数調整法の導出と同様に、線形性の仮定

と、誤差の独立性の仮定が用いられていることが確認できる。一方で、導出の最後で、実験誤差及

び解析モデル誤差の期待値が 0 であるという仮定を用いていることが分かる。この仮定は一般に
は、不偏推定と呼ばれているものであり、以降では、不偏推定の仮定と呼ぶ。

また、導出の途中で繰り返し近似を適用しているが、基本的には、すべて以下の近似である。

G(1)i ∆T ≪ 1 (2.2.36)

∆e(1)i ≪ 1 (2.2.37)

∆m(1)i ≪ 1 (2.2.38)

∆m(2)1 ≪ 1 (2.2.39)

これらは、核データ誤差、積分実験データの実験誤差、積分実験データ及び設計対象炉心核特性の

解析モデル誤差が十分に小さいという仮定であり、物理的に妥当な仮定と考えられる。なお、ベイ

ズの定理に基づく従来炉定数調整法の導出では、これらの近似を陽には使っていないが、暗黙の条

件として含まれていると考えられる。

2.2.3.2 拡張バイアス因子法と炉定数調整法の関係

次に、拡張バイアス因子法と炉定数調整法の関係について調べるために、拡張バイアス因子法の

累乗の係数を求める式を行列式で表現することを考える（文献 [28]の §3.2参照）。積分実験データ
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の実験誤差に対する共分散行列は要素を書き下すと以下のように表すことができる。

V(1)e = Var
(
R(1)e

)
= E

(
∆e(1)∆e(1)T

)
=

©­­­­«
E

(
∆e(1)1 ∆e(1)1

)
· · · E

(
∆e(1)1 ∆e(1)

n(1)

)
...

. . .
...

E
(
∆e(1)

n(1)
∆e(1)1

)
· · · E

(
∆e(1)

n(1)
∆e(1)

n(1)

)ª®®®®¬
=

©­­­­«
Cov

(
∆e(1)1 ,∆e(1)1

)
· · · Cov

(
∆e(1)1 ,∆e(1)

n(1)

)
...

. . .
...

Cov
(
∆e(1)

n(1)
,∆e(1)1

)
· · · Cov

(
∆e(1)

n(1)
,∆e(1)

n(1)

)ª®®®®¬
=

©­­­«
V (1)
e,1,1 · · · V (1)

e,1,n(1)
...

. . .
...

V (1)
e,n(1),1 · · · V (1)

e,n(1),n(1)

ª®®®¬ (2.2.40)

積分実験データ及び設計対象炉心核特性の解析モデル誤差に対する共分散行列は以下のように表さ

れる。

V(i)m = Var
(
R(i)c (T t )

)
= E

(
∆m(i)∆m(i)T

)
=

©­­­­«
E

(
∆m(i)1 ∆m(i)1

)
· · · E

(
∆m(i)1 ∆m(i)

n(1)

)
...

. . .
...

E
(
∆m(i)

n(1)
∆m(i)1

)
· · · E

(
∆m(i)

n(1)
∆m(i)

n(1)

)ª®®®®¬
=

©­­­­«
Cov

(
∆m(i)1 ,∆m(i)1

)
· · · Cov

(
∆m(i)1 ,∆m(i)

n(1)

)
...

. . .
...

Cov
(
∆m(i)

n(1)
,∆m(i)1

)
· · · Cov

(
∆m(i)

n(1)
,∆m(i)

n(1)

)ª®®®®¬
=

©­­­«
V (i)
m,1,1 · · · V (i)

m,1,n(1)
...

. . .
...

V (i)
m,n(1),1 · · · V (i)

m,n(1),n(1)

ª®®®¬ (i = 1, 2) (2.2.41)

積分実験データと設計対象核特性の解析モデル誤差に対する相互相関行列は以下のように表さ

れる。

V(12)
m = Cov

(
R(1)c (T t ), R(2)c (T t )

)
= E

(
∆m(1)∆m(2)T

)
=

©­­­­«
E

(
∆m(1)1 ∆m(2)1

)
· · · E

(
∆m(1)1 ∆m(2)

n(2)

)
...

. . .
...

E
(
∆m(1)

n(2)
∆m(2)1

)
· · · E

(
∆m(1)

n(2)
∆m(2)

n(2)

)ª®®®®¬
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=

©­­­­«
Cov

(
∆m(1)1 ,∆m(2)1

)
· · · Cov

(
∆m(1)1 ,∆m(2)

n(2)

)
...

. . .
...

Cov
(
∆m(1)

n(1)
,∆m(2)1

)
· · · Cov

(
∆m(1)

n(1)
,∆m(2)

n(2)

)ª®®®®¬
=

©­­­«
V (12)
m,1,1 · · · V (12)

m,1,n(2)
...

. . .
...

V (12)
m,n(1),1 · · · V (12)

m,n(1),n(2)

ª®®®¬ (2.2.42)

ここで、式 (2.2.35)について考える。核種数 nn、反応数 nr、エネルギー群数 ng とすると、炉定

数セットに含まれる核データの数は na = nnnrng と表すことができる。また、積分実験データの数

は n(1) である。このとき、i = 1, 2, 3, . . . , n(1) のそれぞれの i に対して、感度係数は G(1)i ∈ R1×na の

ベクトル、核データ共分散はM ∈ Rna×na の行列となる。したがって、G(1)i MG(1)Tj はスカラーと

なる。また、式中の Covの項はいずれもスカラーである。
一方で、Ai (i = 1, 2, . . . , n)を要素に持つ任意の行ベクトルA ∈ R1×n と、Bi (i = 1, 2, . . . , n)を
要素に持つ行ベクトル B ∈ R1×n に対する内積は、行列の積を使って以下のように表すことがで

きる。

A ·B =
n∑
i=1
AiBi =ABT (2.2.43)

したがって、式 (2.2.35)の i = 1, 2, . . . , n(1) に対して、行列の積を使って以下のように表すことが
できる。

(
F1 F2 · · · Fn(1)

) ©­­­­­­«
©­­­­­«
G(1)i MG(1)T1
G(1)i MG(1)T2

...

G(1)i MG(1)T
n(1)

ª®®®®®¬
+

©­­­­­­«
V (1)
m,i,1

V (1)
m,i,2
...

V (1)
m,i,n(1)

ª®®®®®®¬
+

©­­­­­­«
V (1)
e,i,1

V (1)
e,i,2
...

V (1)
e,i,n(1)

ª®®®®®®¬
ª®®®®®®¬

−
(
G(2)1 MG(1)Ti + V (12)

m,i,1

)
= 0 (i = 1, 2, . . . , n(1)) (2.2.44)

この n(1) 個の式を行列を使ってまとめると以下のように表すことができる。

(
F1 F2 · · · Fn(1)

) ©­­­«
©­­­«
G(1)1 MG(1)T1 . . . G(1)

n(1)
MG(1)T1

...
. . .

...

G(1)1 MG(1)T
n(1)

. . . G(1)
n(1)

MG(1)T
n(1)

ª®®®¬
+

©­­­«
V (1)
m,1,1 . . . V (1)

m,1,n(1)
...

. . .
...

V (1)
m,1,n(1) . . . V (1)

m,n(1),n(1)

ª®®®¬
+

©­­­«
V (1)
e,1,1 . . . V (1)

e,1,n(1)
...

. . .
...

V (1)
e,1,n(1) . . . V (1)

e,n(1),n(1)

ª®®®¬
ª®®®¬
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−
((
G(2)1 MG(1)T1 · · · G(2)1 MG(1)T

n(1)

)
+

(
V (12)
m,1,1 · · · V (12)

m,n(1),1

))
=

(
0 · · · 0︸       ︷︷       ︸

n(1)

)
(2.2.45)

更に、この式は以下のようにまとめることができる。

FEBPE

(
G(1)MG(1)T + V(1)m + V(1)e

)
−

(
G(2)MG(1)T + V(12)T

m

)
= O1×n(1) (2.2.46)

ただし、ここで、以下のように定義した。

FEBPE ≡
(
F1 F2 · · · Fn(1)

)
∈ R1×n(1) (2.2.47)

また、Om×n は、m × nの零行列を表す。したがって、炉定数調整法と同様の行列を使って以下の

ように表すことができる。

FEBPE =
(
G(2)MG(1)T + V(12)T

m

) (
G(1)MG(1)T + V(1)m + V(1)e

)−1
(2.2.48)

この式の右辺は、炉定数調整法の調整後の炉定数セットの式 (2.1.17)で表されるに含まれる、以下
の式とよく似た形をしていることが分かる。

MG(1)T
(
G(1)MG(1)T + V(1)m + V(1)e

)−1
(2.2.49)

より具体的には、この式のMG(1)T に左から G(2) をかけて V(12)T
m を加えると同じ式になる。この

ように、拡張バイアス因子法と炉定数調整法はよく似た理論であるが、この式から、明らかに異な

る理論であることが分かる。

2.2.3.3 設計予測値と線形推定

続いて、拡張バイアス因子法の設計予測値の式を行列表記で整理する（文献 [28]の §3.2参照）。
これにより、拡張バイアス因子法の式は、積分実験データの実験値と計算値の相対差を線形結合し

た形になっていることを示す。

設計対象炉心核特性の設計予測値は以下のように表される。

R(2)EBPE = R(2)
c,1 · fEBPE = R(2)

c,1 ·

n(1)∏
i=1

(
R(1)e,i

)Fi

n(1)∏
i=1

(
R(1)c,i

)Fi

= R(2)
c,1 ·

n(1)∏
i=1

(
R(1)e,i

R(1)c,i

)Fi

(2.2.50)

ここで、関数 f (x) = ax は |x | ≪ 1のとき、 f (x) ≈ 1 + (a log a)x と近似できるので、

R(2)EBPE = R(2)
c,1 ·

n(1)∏
i=1

(
R(1)e,i

R(1)c,i

)Fi

≈ R(2)
c,1 ·

n(1)∏
i=1

(
1 +

(
R(1)e,i

R(1)c,i
log

R(1)e,i

R(1)c,i

)
Fi

)
(2.2.51)
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となる。更に、関数 f (x) = x log x は x ≈ 1のとき、 f (x) ≈ x − 1と近似できるので、以下のよう
になる。

R(2)EBPE ≈ R(2)
c,1 ·

n(1)∏
i=1

(
1 +

(
R(1)e,i

R(1)c,i
− 1

)
Fi

)
(2.2.52)

更に、関数 f (x) =∏
i(1 + xi)は |xi | ≪ 1のとき、 f (x) ≈ 1 +

∑
i xi と近似できるので、以下のよう

になる。

R(2)EBPE ≈ R(2)
c,1

©­«1 +
n(1)∑
i=1

R(1)e,i − R(1)c,i

R(1)c,i
Fi

ª®¬ (2.2.53)

したがって、設計対象炉心核特性の設計予測値はベクトルと行列の積を使って以下のように表すこ

とができる。

R(2)EBPE = R(2)
c,1

(
1 + FEBPE

R(1)e − R(1)c

R(1)c

)
(2.2.54)

ただし、ここでベクトルの割算はベクトルの要素ごとの割算を意味する。

更に、この式の両辺を R(2)
c,1 で割って整理すると、以下のように書き直すことができる。

R(2)EBPE − R(2)
c,1

R(2)
c,1

= FEBPE
R(1)e − R(1)c

R(1)c
(2.2.55)

この式から、拡張バイアス因子法では、設計対象炉心核特性の計算値に対する補正係数（バイアス

因子）を積分実験データの実験値と計算値の相対差の線形結合により推定していると理解できる。

2.2.3.4 設計予測精度の行列表記

同様に、拡張バイアス因子法の設計予測精度の式 (2.2.34)を行列とベクトルを使って表記するこ
とを考える。拡張バイアス因子法の設計予測精度、すなわち、設計対象炉心核特性の設計値の分散

は、FEBPE を使って以下のように表すことができる。

Var ©­«
R(2)EBPE

R(2)
t,1

ª®¬ = ©­«G(2)1 −
n(1)∑
i=1

FiG
(1)
i

ª®¬ M ©­«G(2)1 −
n(1)∑
i=1

FiG
(1)
i

ª®¬
T

+ Var ©­«∆m(2)1 −
n(1)∑
i=1

Fi∆m(1)i
ª®¬ + Var ©­«

n(1)∑
i=1

Fi∆e(1)i
ª®¬

=
(
G(2)1 − FEBPEG(1)

)
M

(
G(2)1 − FEBPEG(1)

)T

+ Var
(
∆m(2)1 − FEBPE∆m

(1)
)
+ Var

(
FEBPE∆e

(1)
)

= G(2)1 MG(2)T1 + FEBPEG(1)MG(1)TFT
EBPE − FEBPEG(1)MG(2)T −G(2)MG(1)TFT

EBPE
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+ E
((
∆m(2)1 − FEBPE∆m

(1)
) (
∆m(2)1 − FEBPE∆m

(1)
)T

)
+ E

((
FEBPE∆e

(1)
) (

FEBPE∆e
(1)

)T
)

= G(2)1 MG(2)T1 + FEBPEG(1)MG(1)TFT
EBPE − FEBPEG(1)MG(2)T −G(2)MG(1)TFT

EBPE

+ E
(
∆m(2)1 ∆m(2)1

)
+ FEBPEE

(
∆m(1)∆m(1)T

)
FT

EBPE

− FEBPEE
(
∆m(1)∆m(2)1

)
− E

(
∆m(2)1 ∆m

(1)T
)
FT

EBPE

+ FEBPEE
(
∆e(1)∆e(1)T

)
FT

EBPE

= G(2)1 MG(2)T1 + FEBPEG(1)MG(1)TFT
EBPE − FEBPEG(1)MG(2)T −G(2)MG(1)TFT

EBPE

+ V (2)
m,1,1 + FEBPEV(1)m FT

EBPE − FEBPEV
(12)
m − V (12)T

m FT
EBPE

+ FEBPEV(1)e FT
EBPE

= G(2)1 MG(2)T1 + FEBPE

(
G(1)MG(1)T + V(1)e + V(1)m

)
FT

EBPE

− FEBPEG(1)MG(2)T −G(2)MG(1)TFT
EBPE

+ V (2)
m,1,1 − FEBPEV

(12)
m − V (12)T

m FT
EBPE (2.2.56)

2.2.3.5 絶対値表記と複数の設計対象核特性への拡張

以上のように、拡張バイアス因子法の式は行列とベクトルを使って表記することができる。結果

を整理すると、拡張バイアス因子法の設計予測値（バイアス因子）と設計予測精度の式は以下のよ

うになる。

R(2)EBPE − R(2)
c,1

R(2)
c,1

= FEBPE
R(1)e − R(1)c

R(1)c
(2.2.57)

Var ©­«
R(2)EBPE

R(2)
t,1

ª®¬ = G(2)1 MG(2)T1 + FEBPE

(
G(1)MG(1)T + V(1)e + V(1)m

)
FT

EBPE

− FEBPEG(1)MG(2)T −G(2)MG(1)TFT
EBPE

+ V (2)
m,1,1 − FEBPEV

(12)
m − V (12)T

m FT
EBPE (2.2.58)

どちらの式にも、スカラーと行列（ベクトル）が混在する形になっているが、これらの式は、スカ

ラーをベクトルに、ベクトルを行列に変更した自然な拡張を考えることができる。設計対象炉心核

特性は通常、複数個あるので、それぞれを 1回ずつ個別に計算するのではなく、行列とベクトルを
使って一度に計算すると考えれば、すべて行列とベクトルとなる。また、炉定数調整法の式は絶対

値を使って表記されているのに対して、拡張バイアス因子法の式は相対値を使って表記されてい

る。両者の式を比較する際にはどちらかに統一しておいた方が比較しやすい。

以上のことから、設計対象炉心核特性が R(2)EBPE,1, R
(2)
EBPE,2, · · · , R

(2)
EBPE,n(2) のように n(2) 個あると考
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えてこれらの式を拡張し、絶対値表記にすると以下のような式になる。

R(2)EBPE = R(2)c + FEBPE

(
R(1)e − R(1)c

)
(2.2.59)

Var
(
R(2)EBPE

)
= G(2)MG(2)T + FEBPE

(
G(1)MG(1)T + V(1)e + V(1)m

)
FT

EBPE

− FEBPEG(1)MG(2)T −G(2)MG(1)TFT
EBPE

+ V(2)m − FEBPEV(12)
m − V(12)T

m FT
EBPE (2.2.60)

ただし、ここで、以下のように定義した。

R(2)EBPE =
(
R(2)EBPE,1 R(2)EBPE,2 · · · R(2)EBPE,n(2)

)T
∈ Rn(2)×1 (2.2.61)

FEBPE =
©­­«

F1,1 · · · Fn(1),1
...

. . .
...

F1,n(2) · · · Fn(1),n(2)

ª®®¬ ∈ Rn
(2)×n(1) (2.2.62)

オリジナルの拡張バイアス因子法は、式の上で扱う設計対象炉心核特性は一つだけであるので、設

計対象炉心核特性はスカラーとして R(2)EBPE,1、累乗の係数はベクトルとして FEBPE のように表され

る。これに対して、複数の設計対象炉心核特性に拡張して絶対値表記した拡張バイアス因子法で

は、設計対象炉心核特性はベクトルとして R(2)EBPE、累乗の係数は行列として FEBPE のように表され

る。以降では、基本的に、この複数の設計対象炉心核特性に拡張して絶対値表記した拡張バイアス

因子法を EBPEと呼ぶ。
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2.3 カルマンフィルタ

2.3.1 カルマンフィルタの概要

前述のように、炉定数調整法が最初に提案されたのは 1964年と考えられているが、近年では炉
定数調整法はデータ同化（data assimilation）の一種と考えられることが多くなってきている。デー
タ同化の分野では、基礎理論のひとつとして、カルマンフィルタが広く用いられている。カルマン

フィルタは、1960年の Kalmanの論文 [29]及び 1961年の Kalmanと Bucyの論文 [30]で提案さ
れ、その後、様々な分野で応用され発展してきた。前述のように、炉定数調整法が最初に提案され

たのは 1964年と考えられるので、カルマンフィルタが提案されたのは、炉定数調整法が提案され
る数年前ということになる。しかしながら、1960年代の炉定数調整法の文献には、カルマンフィ
ルタへの言及を見つけることはできなかったので、カルマンフィルタと炉定数調整法は、別々の分

野で発展してきたものと思われる。カルマンフィルタの式と、炉定数調整法の式はとても良く似て

おり、一見して関係性があることは分かるが、少し式の形が異なっており、何が違うのかは必ずし

も明白ではない。また、カルマンフィルタは、時系列データに対して繰り返し推定値を更新してい

くことが主眼となっているのに対して、炉定数調整法では、推定値を求めるのは一度だけであり、

推定値を繰り返し更新していくという考え方はしない。一方、炉定数調整法では、積分実験データ

の核特性の計算値は、通常、炉心解析システムを使って求めるため、感度係数を用いる際には線形

性を仮定するものの、計算値そのものに対しては非線形性を扱っていると考えられる。炉定数調整

法では、時系列で考えない代わりに、この非線形性を扱っている部分で少し複雑になっている。炉

定数調整法におけるこの非線形性の扱いは、通常、陽には議論されないため、カルマンフィルタと

炉定数調整法の関係性が明確に議論されてこなかったと考えられる。次節では、これらの点に着目

してカルマンフィルタの導出の詳細をまとめる。

2.3.2 カルマンフィルタの導出の詳細

ここでは、文献 [31]に基づいて、非線形性を一部考慮した拡張カルマンフィルタの導出過程の
調査結果を示す。カルマンフィルタで用いられる式について、文献 [32]等を参考に導出過程を確
認し、カルマンフィルタと炉定数調整法の関係について検討する。

2.3.2.1 非線形カルマンフィルタと線形化

時系列データの非線形離散時間状態モデルとして、以下の方程式を考える。

sk+1 = f (sk) + wk (2.3.1)
yk = h(sk) + vk (2.3.2)

ここで、以下のように定義した。

sk ∈ Rn×1: 状態ベクトル
wk ∈ Rn×1: システム雑音
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yk ∈ Rm×1: 観測ベクトル
vk ∈ Rm×1: 観測雑音
f (·): 時間非依存の状態遷移関数
h(·): 時間非依存の観測関数

なお、各変数の下付きの k は時刻を表す。この方程式に含まれる状態遷移関数と観測関数を線形化

することを考える。ここで、何らかの方法で状態ベクトルの近似値 s∗
k
を求めることができたとす

る。このとき、状態ベクトルの実際の値と近似値の差を ∆sk とすると、実際の状態ベクトルは以下

のように表すことができる。

sk = s∗k + ∆sk (2.3.3)

このとき、状態遷移関数と観測関数を、それぞれ、s∗
k
の周りでテイラー展開して 2次以降の項を

無視すると以下のように近似できる。

f (sk) ≈ f (s∗k) +
∂ f
∂ sk

����
sk=s

∗
k

∆sk (2.3.4)

h(sk) ≈ h(s∗k) +
∂h
∂ sk

����
sk=s

∗
k

∆sk (2.3.5)

このとき、式 (2.3.1)は以下のように変形できる。

s∗k+1 + ∆sk+1 = f (s∗k) +Φk∆sk + wk (2.3.6)

ただし、ここで以下のように定義した。

Φk ≡
∂ f
∂ sk

����
sk=s

∗
k

∈ Rn×n (2.3.7)

通常、次の時刻の状態ベクトルの近似値が必要な場合に、前の時刻の状態ベクトルの近似値を状態

推移関数で遷移させた値を用いるのは自然な考え方である。すなわち、通常は、s∗
k+1 = f (s∗

k
)とな

るように、s∗
k+1 を決定する。このとき、式 (2.3.1)は以下のようになる。

∆sk+1 = Φk∆sk + wk (2.3.8)

一方、式 (2.3.2)は以下のように変形できる。

yk − h(s∗k) = Hk∆sk + vk (2.3.9)

ただし、ここで以下のように定義した。

Hk ≡
∂h
∂ sk

����
sk=s

∗
k

∈ Rm×n (2.3.10)

更に、ここで以下のように定義する。

xk ≡ ∆sk = sk − s∗k (2.3.11)
zk ≡ yk − h(s∗k) (2.3.12)
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すなわち、改めて、∆sk を状態ベクトル、yk − h(s∗
k
)を観測ベクトルと考える。このとき、時系列

データの離散状態モデルの方程式は以下のように表すことができる。

xk+1 = Φk xk + wk (2.3.13)
zk = Hk xk + vk (2.3.14)

この方程式は、線形カルマンフィルタの状態方程式として知られている。

2.3.2.2 線形カルマンフィルタ

続いて、線形カルマンフィルタについてレビューを行う。システム雑音と観測雑音の共分散行列

を以下のように定義する。

E
(
wkw

T
i

)
=

{
Qk (i = k)
O (i , k)

(2.3.15)

E
(
vkv

T
i

)
=

{
Rk (i = k)
O (i , k)

(2.3.16)

E
(
wkv

T
i

)
= O (for all k and i) (2.3.17)

ただし、ここで、Oは零行列を表す。これらは時系列データに対する式である。ある初期状態とな
る時刻 k に先立つ情報から推定される状態変数を x̂k0 と表記することにする。ここで、ハット（ˆ）
は推定値であること、下付きの 0は時刻 k の一つ前の状態であることを表す。また、この事前推定

値 x̂k0 の共分散行列は既知であるとする。すなわち、推定誤差を以下のように定義する。

ek0 ≡ xk − x̂k0 (2.3.18)

このとき、事前推定値 x̂k0 の共分散行列 Pk0 は以下のように定義される。

Pk0 = E
(
ek0e

T
k0

)
= E

(
(xk − x̂k0) (xk − x̂k0)T

)
(2.3.19)

次に、観測値 zk を用いて、事前推定値 x̂k0 を改善することを考える。このため、雑音を含む観

測値の線形的な組み合わせと事前推定値に関する以下の式を採用する。

x̂k = x̂k0 +Kk (zk −Hk x̂k0) (2.3.20)

ただし、ここで、

x̂k : 更新後の状態ベクトルの推定値

Kk : 線形結合係数

である。更新後の状態変数の共分散行列は以下のように表される。

Pk = E
(
ek e

T
k

)
= E

(
(xk − x̂k) (xk − x̂k)T

)
(2.3.21)
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ここで、式 (2.3.14)を式 (2.3.20)に代入すると以下の式が得られる。

x̂k = x̂k0 +Kk (Hk xk + vk −Hk x̂k0) (2.3.22)

式 (2.3.22)を式 (2.3.21)に代入し、ek0 と vk に相関がないことを考慮すると、以下のように変形で

きる。

Pk = E
(
(ek0 −Kk (Hk ek0 + vk)) (ek0 −Kk (Hk ek0 + vk))T

)
= (I −KkHk) E

(
ek0e

T
k0

)
(I −KkHk)T +KkE

(
vkv

T
k

)
KT

k

= (I −KkHk)Pk0 (I −KkHk)T +KkRkKT
k

= Pk0 −KkHkPk0 − Pk0HT
kKT

k +Kk

(
HkPk0HT

k + Rk

)
KT

k (2.3.23)

ただし、ここで、任意の行列A、B に対して、以下の式が成り立つことを用いた。

(AB)T = BTAT (2.3.24)

この共分散行列のトレース（対角成分の和）tr (Pk)が最小になる Kk を求めるために、Kk で偏微

分すると以下の式が得られる。

∂

∂Kk
tr (Pk) = −2

∂

∂Kk
tr

(
Pk0HT

kKT
k

)
+
∂

∂Kk
tr

(
Kk

(
HkPk0HT

k + Rk

)
KT

k

)
= −2Pk0HT

k + 2Kk

(
HkPk0HT

k + Rk

)
(2.3.25)

ただし、ここで、任意の行列A、B に対して、以下の式が成り立つことを用いた。

tr (A +B) = tr (A) + tr (B) (2.3.26)

tr
(
AT

)
= tr (A) (2.3.27)

また、任意の定数行列A、B、C、変数行列 X に対して、以下の式が成り立つことを用いた。
∂

∂X (tr (A) + tr (B)) = ∂
∂X tr (A) + ∂

∂X tr (B) (2.3.28)

∂

∂X tr
(
AXTB

)
= BA (2.3.29)

∂

∂X tr
(
AXBXTC

)
=ATCTXBT + CAXB (2.3.30)

式 (2.3.25)が 0になるときに極値（最小値）になると考えられるので、この式が 0に等しくなると
きの Kk を求めると以下の式が得られる。

Kk = Pk0HT
k

(
HkPk0HT

k + Rk

)−1
(2.3.31)

この式は、カルマンゲインと呼ばれる。なお、この式を式 (2.3.20)に代入すると以下のようになる。

x̂k = x̂k0 + Pk0HT
k

(
HkPk0HT

k + Rk

)−1
(zk −Hk x̂k0) (2.3.32)

この式が線形カルマンフィルタにおける状態ベクトルの推定式であり、この式を用いることで、時

刻 k における状態ベクトルを推定することができる。
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2.3.3 分析

次に、カルマンフィルタの式と従来炉定数調整法の式には一対一の対応があり、従来炉定数調整

法は拡張カルマンフィルタの一種と解釈できることを示す。また、ここで、カルマンフィルタの導

出で用いられている線形推定の式との対応を考えると、同様の線形推定の式を用いることで従来炉

定数調整法を導出できると予想されることを説明する。

2.3.3.1 カルマンフィルタと拡張バイアス因子法の関係

先に示したカルマンフィルタの式の導出は、大きく分けると、(1)観測値の線形結合により推定
値を決定できると仮定する、(2)推定値の共分散行列のトレースを最小化するように線形結合係数
を決定する、という 2つのステップがあると考えることができる。また、カルマンフィルタの導出
では、ベイズの定理に基づく従来炉定数調整法の導出で用いたような正規分布の仮定は使っていな

いことが分かる。

このように、ここで示したカルマンフィルタの導出過程は、拡張バイアス因子法の導出過程とよ

く似ていることが分かる。具体的には、拡張バイアス因子法の導出では、積分実験データの実験

値、計算値を、それぞれ、累乗化した仮想的な実験値、計算値を構成して、これらの比を乗じると

いう考え方を用いているが、式 (2.2.55)で示したように、この考え方は、設計対象炉心核特性の計
算値に対する補正係数、すなわち、設計予測値（推定値）を積分実験データの実験値と計算値の相

対差（観測値）の線形結合により推定していると考えることができる。拡張バイアス因子法の導出

では、その後に、この設計予測値の分散を最小にするように累乗の係数を決定する。また、拡張バ

イアス因子法の導出においても同様に、正規分布の仮定は特に用いていない。

2.3.3.2 カルマンフィルタと炉定数調整法の関係

ベイズの定理に基づく従来炉定数調整法（CBCA）の調整後の炉定数セットは、式 (2.1.17)で表
される。ここで、カルマンフィルタの式 (2.3.32)と比較するために、二つの式を再掲する。

TCBCA = T 0 +MG(1)T
(
G(1)MG(1)T + V(1)e+m

)−1 (
R(1)e − R(1)c (T 0)

)
(2.1.17)

x̂k = x̂k0 + Pk0HT
k

(
HkPk0HT

k + Rk

)−1
(zk −Hk x̂k0) (2.3.32)

式の形に注目すると、式 (2.1.17)と式 (2.3.32)はほとんど同じであるが、単純に比較した場合、少し
異なっていることに注意が必要である。ただし、式の形が異なっているのは一箇所だけで、Hk x̂k0

と R(1)c (T 0)の部分である。すなわち、炉定数調整法の式では、R(1)c (·)という式で積分実験データの
核特性を計算する際の非線形性を考慮している点が、線形カルマンフィルタの式と異なっていると

考えられる。しかしながら、非線形カルマンフィルタを線形化する導出過程を考慮して、以下のよ

うに対応させると、式 (2.1.17)と式 (2.3.32)は全く同じ形になることが分かる。

x̂k = ŝk − s∗k ←→ TCBCA −T 0 (2.3.33)
x̂k0 = ŝk0 − s∗k ←→ T 0 −T 0 (= O) (2.3.34)
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zk = yk − h(s∗k) ←→ R(1)e − R(1)c (T 0) (2.3.35)
Pk0 ←→M (2.3.36)

Hk ←→ G(1) (2.3.37)

Rk ←→ V(1)e+m (2.3.38)

ただし、ここで、式 (2.3.11)と式 (2.3.12)を用いた。更に、Rk ←→ V(1)e+m の関係から、以下のよ
うに対応していると考えられる。

vk ←→ −∆e(1) + ∆m(1) (2.3.39)

上記の対応から、炉定数調整法は、以下のような状態方程式に基づく非線形カルマンフィルタを

線形化したものであると解釈できる。

T k+1 = f (T k) + wk (2.3.40)

R(1)e = R(1)c (T 0) + (−∆e(1) + ∆m(1)) (2.3.41)

ただし、ここで T k は時刻 k における炉定数セットを表す。式 (2.3.41)は、積分実験データの実験
値、計算値に対して、それぞれ、実験誤差による雑音、解析モデルによる雑音が入るということを

意味しており、妥当なモデル化と考えられる。なお、このような非線形カルマンフィルタの線形化

は、拡張カルマンフィルタ（EKF: Extended Kalman Filter）として知られており、炉定数調整法は
EKFの一種であるという解釈も可能である。

2.3.3.3 線形推定の仮定に関する考察

以上のように、カルマンフィルタの式は、正規分布の仮定を用いずに分散を最小化する方法で導

出できる。以下のように、カルマンフィルタのカルマンゲイン Kk と、拡張バイアス因子法の累乗

の係数 Fが対応していると考えることができる。

Kk ←→ F (2.3.42)

炉定数調整法の式とカルマンフィルタの式の対応、すなわち、式 (2.3.33)、(2.3.34)、(2.3.35)、
(2.3.42)を、カルマンフィルタの線形推定の仮定の式 (2.3.20)に代入すると以下の式が得られる。

T̂ −T 0 = F
(
R(1)e − R(1)c (T 0)

)
(2.3.43)

以上のことから、線形推定の仮定として、この式を採用することで、炉定数調整法に対応する式

を導出できると予想される。
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第 3章 新手法の開発方針

本章では、前章の文献研究の結果に基づいて、新しい手法を開発する方法について説明する。こ

こでは、具体的な式の導出ではなく、既存の手法が物理的にどのような意味を持っているかを整理

し、新しい手法としてどのような手法を開発すればよいかをまとめる。

3.1 条件付き確率と線形推定

ここで、ベイズの定理に基づく従来炉定数調整法の導出で用いられている条件確率の式と、カル

マンフィルタの導出で用いられている線形推定の式の関係について説明する。

ベイズの定理に基づく炉定数調整法の導出では、積分実験データの実験値 R(1)e が得られたとい

う条件の下で、推定したい物理量の確率を考える。推定する対象としては、炉定数セット（核デー

タ）の推定値 T̂、積分実験データの核特性の推定値 R̂
(1)
、設計対象炉心の核特性の推定値 R̂

(2)
が考

えられる。したがって、ベイズの定理に基づく導出（CB: Conventional Bayesian inference）で用い
られる条件付き確率としては以下の 3つが考えられる。

P
(
T̂
��� R(1)e )

(3.1.1)

P
(
R̂
(1)��� R(1)e )

(3.1.2)

P
(
R̂
(2)��� R(1)e )

(3.1.3)

なお、ベイズの定理に基づく炉定数調整法（CBCA）の導出では、式 (3.1.1)が用いられている。こ
の式は、積分実験データの情報を使って核データ（炉定数セット）を最適化していると理解できる。

これ以外の式を使って理論式を導出することで、新しい炉定数調整法を開発できると考えられる。

式 (3.1.3)を使った場合、積分実験データの情報を使って設計対象炉心核特性を最適化すると考え
ることができる。このように設計対象炉心核特性を最適化するような炉定数調整法を拡張炉定数調

整法（EA: Extended cross-section Adjustment method）と呼ぶことにする。また、式 (3.1.2)を使っ
た場合は、積分実験データの実験値を使って積分実験データを推定することになる。このように積

分実験データに最適化するような炉定数調整法を回帰炉定数調整法（RA: Regressive cross-section
Adjustment method）と呼ぶことにする。これらの新しい炉定数調整法と区別するために、式 (3.1.1)
を使って導出される炉定数調整法を従来炉定数調整法（CA: Conventional cross-section Adjustment
method）と呼ぶことにする。
一方、これらの条件付き確率は、それぞれ、以下のような線形推定の仮定に対応していると考え

られる。

T̂ −T 0 = F
(
R(1)e − R(1)c (T 0)

)
(3.1.4)
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R̂
(1) − R(1)c (T 0) = F

(
R(1)e − R(1)c (T 0)

)
(3.1.5)

R̂
(2) − R(2)c (T 0) = F

(
R(1)e − R(1)c (T 0)

)
(3.1.6)

拡張バイアス因子法やカルマンフィルタの導出で用いられている考え方を、ここでは、最小分散不

偏線形推定（MVULE: Minimum Variance Unbiased Linear Estimation）、あるいは、最小分散不偏
推定（MVUE: Minimum Variance Unbiased Estimation）と呼ぶ。なお、これらの導出方法の考え方
との対比として、ここでは、炉定数調整法の導出において古典的に用いられているベイズの定理に

基づく導出を古典的ベイズ推定（CB: Classical Bayesian inference）、あるいは、単純にこれまで通
り、ベイズの定理に基づく導出と呼ぶことにする。

以上のことから、ベイズの定理に基づく導出（古典的ベイズ推定）における条件付き確率の式の

代わりに、これらの線形推定の仮定の式を使って新しい炉定数調整法の式を導出できると考えられ

る。最小分散不偏線形推定や最小分散不偏推定に基づく導出では、正規分布を仮定する必要はない

ので、正規分布の仮定を必要としない炉定数調整法を開発できると考えられる。なお、線形推定の

式として式 (3.1.4)を用いると、劣決定問題の条件（na > n(1)）の場合、積分実験データの線形結合

により積分実験核特性の数 n(1) より炉定数セットに含まれる核データの数 na の方が多い状態で核

データの調整量を推定することになる。すなわち、劣決定問題の条件の場合、F ∈ Rna×n(1) となり、

Fは縦長の矩形行列になる。
一方、線形推定の式として式 (3.1.5)を用いると、積分実験データを使って自分自身を推定する
ので、推定に用いるデータの数と推定されるデータの数は常に一致する。すなわち、劣決定問題の

条件の場合、優決定問題の条件の場合を問わず、常に F ∈ Rn(1)×n(1) となり、Fは正方行列になる。

3.2 従来手法の物理的な意味

3.2.1 ベイズの定理に基づく従来炉定数調整法（CBCA）

ベイズの定理に基づく従来炉定数調整法（CBCA: CB-based CA）は、積分実験データが得られ
たという条件の下で、炉定数セットが真値になる確率が最大になるように炉定数セットを決定して

いると理解することができる。このことは、以下の式により簡潔に表すことができる。

TCBCA = argmax
T̂

P
(
T̂
��� R(1)e )

(3.2.1)

ただし、ここで、argmaxx f (x)は、関数 f (x)の値を最大にする引数 x の集合を表す。また、前述

のように、ハット（ˆ）は推定値であることを表す。
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3.2.2 拡張バイアス因子法（EBPE）

拡張バイアス因子法（EBPE）では、設計対象炉心核特性の補正値の分散が最小になるように、
累乗の係数 Fを決定している。このことは、以下の式で表すことができる。

FEBPE = argmin
F

Var ©­« R̂(2)

R(2)
t,1

ª®¬ (3.2.2)

ただし、ここで、argminx f (x)は、関数 f (x)の値を最小にする引数 x の集合を表す。

このように決定した Fに対して、複数の積分実験データの実験値の累乗の積と、複数の積分実験
データの計算値の累乗の積の比で補正して、設計対象炉心核特性の設計値を決定する。累乗を使っ

て定義しているが、この式は係数 Fの線形和で近似できる [28]。具体的には、以下のような式で表
される。

R(2)EBPE = R(2)c (T 0)
(
1 + FEBPE

R(1)e − R(1)c (T 0)
R(1)c (T 0)

)
(3.2.3)

この式は、相対値で表現されているが、前述の線形推定の 3番目の式、すなわち、式 (3.1.6)と等
価であると考えられる。

3.3 開発する新手法

3.3.1 ベイズの定理に基づく拡張炉定数調整法（CBEA）

以上のことから、積分実験データが得られたという条件の下で、設計対象核特性の計算値の分

散が最小になるような炉定数セットを考えれば、拡張バイアス因子法に対応する炉定数調整法が

導出できると考えられる。この手法をベイズの定理に基づく拡張炉定数調整法（CBEA: CB-based
EA）[28]と呼ぶ。

CBEAにおける調整後の炉定数セットは以下の式で表される。

TCBEA = argmax
T̂

P
(
R(2)c (T̂ )

��� R(1)e )
(3.3.1)

3.3.2 最小分散不偏線形推定に基づく拡張バイアス因子法（MLEB）

オリジナルの拡張バイアス因子法の式は、相対値で定義されているが、炉定数調整法と比較する

際には、ベイズの定理に基づく従来炉定数調整法（CBCA）の定義に合わせて絶対値で定義した方
が分かりやすい。このため、比較対象として、絶対値で定義した拡張バイアス因子法を導出してお

く。また、オリジナルの拡張バイアス因子法では、設計対象核特性は一つであるが、設計対象核特

性を複数に拡張しておく。

前述のように、EBPEでは累乗を使って仮想的な実験値と計算値を推定するが、この推定の式は
近似的に線形推定の式と同じであると考えられる。したがって、積分実験データの実験値と計算値
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の差を線形結合することで設計予測値を推定できるという仮定の下で、設計対象炉心核特性の推定

値の分散を最小化すると、拡張バイアス因子法を導出できると考えられる。この手法を最小分散不

偏線形推定に基づく拡張バイアス因子法（MLEB: MVULE-based EB）[31]と呼ぶ。
MLEBにおける設計予測値は以下の式で表される。

R(2)MLEB = R(2)c (T 0) + FMLEB

(
R(1)e − R(1)c (T 0)

)
(3.3.2)

ただし、ここで、

FMLEB = argmin
F

tr
(
Var

(
R̂
(2)))

(3.3.3)

である。また、tr (·)は行列のトレースを表す。なお、ここでは、設計対象炉心核特性を複数に拡張
しているため、Var

(
R̂
(2))
は行列（共分散行列）になる。共分散行列の対角成分は分散に相当する

ので、この行列のトレースが最小になるように係数 Fを決定するということは、分散の合計を最小
化することに対応していると考えることができる。

3.3.3 最小分散不偏線形推定に基づく炉定数調整法（MLCA）

前述のように、ベイズの定理に基づく従来炉定数調整法（CBCA）の式と、最小分散不偏線形推
定で導出される拡張カルマンフィルタの式は等価になるので、最小分散不偏線形推定に基づいて従

来炉定数調整法を導出できると考えられる。この手法を、最小分散不偏線形推定に基づく従来炉定

数調整法（MLCA: MVULE-based CA）[31]と呼ぶ。
MLCAにおける調整後の炉定数セットは以下の式で表される。

TMLCA = T 0 + FMLCA

(
R(1)e − R(1)c (T 0)

)
(3.3.4)

ただし、ここで、

FMLCA = argmin
F

tr
(
Var

(
T̂
))

(3.3.5)

である。

3.3.4 最小分散不偏線形推定に基づく拡張炉定数調整法（MLEA）

ベイズの定理に基づく拡張炉定数調整法（CBEA）を導出したときのように、最小化する分散の
対象を調整後の炉定数セットを使って計算した設計対象炉心核特性にした場合、拡張炉定数調整法

に対応する手法が導出されると考えられる。この手法を、最小分散不偏線形推定に基づく拡張炉定

数調整法（MLEA: MVULE-based EA）[31]と呼ぶ。
拡張炉定数調整法では、設計対象炉心核特性に最適化するように調整後の炉定数セットを決定す

るので、単純に考えると、調整後の炉定数セットを用いて計算した設計対象炉心核特性の分散を最

小化するように線形推定における係数を決定する手法を MLEA と定義すれば良いと考えられる。
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しかしながら、この条件だけでは、調整後の炉定数セットは一意に決めることができず、調整後の

炉定数セットとしての解が無数に存在することになる。このため、無数の解が存在することを明示

するために上付きの ∗ を用いることにする。すなわち、この条件のみで定義される最小分散不偏
線形推定に基づく拡張炉定数調整法をMLEA∗ と表記する。また、数式において、無数の解が存在
することを強調する際にも上付きの ∗を用いる。したがって、MLEA∗ の調整後の炉定数セットは
T ∗MLEA と表記することも、TMLEA∗ と表記することも可能であるが、いずれも同じ意味である*1 。

MLEA∗ における調整後の炉定数セットは以下の式で表される。

TMLEA∗ = T 0 + FMLEA∗
(
R(1)e − R(1)c (T 0)

)
(3.3.6)

ただし、ここで、

FMLEA∗ = argmin
F

tr
(
Var

(
R(2)c (T̂ )

))
(3.3.7)

である。前述のように、この条件だけでは調整後の炉定数セットは一意に決めることができないの

で、調整後の炉定数セットの分散が最小になるという制約条件を追加した最小分散不偏線形推定に

基づく拡張炉定数調整法を考え、MLEAと表記する。
MLEAにおける調整後の炉定数セットは以下の式で表される。

TMLEA = T 0 + FMLEA

(
R(1)e − R(1)c (T 0)

)
(3.3.8)

ただし、ここで、

FMLEA = argmin
F

tr
(
Var

(
R(2)c (T̂ )

)) ∩
argmin

F
tr

(
Var

(
T̂
))

(3.3.9)

である。

3.3.5 最小分散不偏線形推定に基づく回帰炉定数調整法（MLRA）

前述のように、推定する対象としては、核データ、設計対象炉心核特性、積分実験データの 3種
類が考えられる。積分実験データの計算値の分散を最小化するように調整後の炉定数セットを決

定するに最適化すると最小分散不偏線形推定に基づく回帰炉定数調整法（MLRA: MVULE-based
RA）を導出できると考えられる。ただし、MLEA と同様に、この条件だけでは、調整後の炉定
数セットを一意に決めることはできない（解が無数に存在する）。このため、MLRA についても
MLEAと同様に、上付きの ∗を使って無数の解が存在することを明示する。

MLRA∗ における調整後の炉定数セットは以下の式で表される。

TMLRA∗ = T 0 + FMLRA∗
(
R(1)e − R(1)c (T 0)

)
(3.3.10)

*1 後述するように、本論文で導出する各手法の理論式は統一的な形式で表すことが可能である。各手法の式を統一表
記する場合には、TMLEA∗、FMLEA∗ のような表記の方が便利であるが、式の展開においては、T ∗MLEA と F∗MLEA の
ような表記の方が分かりやすいので、本稿では両方の表記を用いる。
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ただし、ここで、

FMLRA∗ = argmin
F

tr
(
Var

(
R(1)c (T̂ )

))
(3.3.11)

である。MLEAのときと同様に、調整後の炉定数セットの分散が最小になるという制約条件を追
加した最小分散不偏線形推定に基づく回帰炉定数調整法を考え、MLRAと表記する。

MLRAにおける調整後の炉定数セットは以下の式で表される。

TMLRA = T 0 + FMLRA

(
R(1)e − R(1)c (T 0)

)
(3.3.12)

ただし、ここで、

FMLRA = argmin
F

tr
(
Var

(
R(1)c (T̂ )

)) ∩
argmin

F
tr

(
Var

(
T̂
))

(3.3.13)

である。

なお、ベイズの定理に基づいて導出する場合は、ベイズの定理に基づく回帰炉定数調整法（CBRA:
CB-based RA）と呼ぶことにする。CBRAにおける調整後の炉定数セットは以下の式で表される。

TCBRA = argmax
T̂

P
(
R(1)c (T̂ )

��� R(1)e )
(3.3.14)

このように、回帰炉定数調整法（MLRA、CBRA）を定義することは可能であるが、既に実験値が
得られている積分実験データの計算値の精度をあげることは、工学的にはあまり意味がないと考え

られる。このため、本稿では、MLEA∗ の比較対象として、MLRA∗ のみを考えることにする。
なお、回帰炉定数調整法では、積分実験データを使って自分自身を推定するので、推定するのに

用いるデータの数と、推定されるデータの数が常に一致するという重要な特徴を持つ。このため、

調整に用いるデータの数と推定するデータの数の大小関係によって決まる、劣決定問題の条件と優

決定問題の条件の違いを議論する際に有用となる。

3.3.6 次元拡大線形推定を用いない最小分散不偏推定に基づく従来炉定数調整法

（MRCA）

線形推定の式として式 (3.1.5)を用いた場合の炉定数調整法を導出しておくことで、劣決定問題
の条件の下で炉定数調整法を適用することの妥当性や、正規分布の仮定の役割について議論できる

と考えられる。ただし、この式を用いた場合、劣決定問題の条件の下では、推定された積分実験核

特性の数よりも推定すべき炉定数セットの数の方が多いので、炉定数セットは一意には決まらな

い。このため、何らかの制約条件を追加して決定する必要がある。このような場合に工学的によく

用いられる方法として、最小ノルム解の採用がある。最小ノルム解を簡潔に表現することができる

Moore-Penrose型の一般化逆行列を用いると、線形推定の式は以下のようになる。

T −T 0 = G(1)+F
(
R(1)e − R(1)c (T 0)

)
(3.3.15)
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ここで、F ∈ Rn(1)×n(1)、G(1)+ ∈ Rna×n(1) であるので、この場合、Fではなく、G(1)+ により次元の
拡大（情報量の拡大）が行われていると理解できる。この手法においても、線形推定を用いるが、

線形推定による次元の拡大は行わないので、ここでは、「線形」を強調せずに「最小分散不偏推定

（MVUE）」と呼び、線形推定による次元拡大をしない、すなわち、制約が多いと言う意味で「厳密
（rigorous）」と考え、MRCA（MVUE-based Rigorous CA）[33]と呼ぶことにする*2。

MRCAにおける調整後の炉定数セットは以下の式で表される。

TMRCA = T 0 +G(1)+FMRCA

(
R(1)e − R(1)c (T 0)

)
(3.3.16)

ただし、ここで、

FMRCA = argmin
F

tr
(
Var

(
T̂
))

(3.3.17)

である。なお、後述するように、MRCAの式と CBCAの式は一致しない。

3.3.7 射影省略を用いた最小分散不偏推定に基づく従来炉定数調整法（MSCA）

後述するように、MRCAの式と CBCAの式が一致するためには、G(1)+G(1) が単位行列 Iになれ
ば良いが、劣決定問題の条件の場合、G(1)+G(1) と Iが等しくなることは数学的にありえない*3。劣

決定問題の条件の場合、G(1)+G(1) と Iが等しいという関係式は成立しないものの、この関係式は
線形推定による次元の拡大の意味を別の方法で言い換えていると理解できる。このため、この関係

式を等号ではない演算子を使って以下のように表すことにする。

G(1)+G(1) (1)∼ I (3.3.18)

この式の左辺は幾何学的には部分空間への射影を表しており、右辺の単位行列は何もしないこと

（恒等変換）を表す。このため、この式は射影を省略するということを意味していると考えられる

ので、「射影省略（projection simplification」[33]と呼ぶことにする。
この手法を、射影省略を用いた最小分散不偏推定に基づく従来炉定数調整法（MSCA: MVUE-

based Simplified CA）[33]と呼ぶ。

3.3.8 次元削減炉定数調整法（DRCA）

以上のMRCAとMSCAの議論から、線形推定による次元拡大をしないということは、部分空間
への射影を省略することに対応していると理解できる。このことから逆に、部分空間への射影を行

*2 これらの開発の経緯として、最小分散不偏推定（MVUE）に基づく炉定数調整法は、最小分散不偏線形推定（MVULE）
に基づく炉定数調整法よりも先に開発された。このため、現在の視点から見ると、MVUEとMVULEの名前の区別
は少し分かりにくいが、既に発表されている論文との整合性の観点から、本稿では、英語の名称については変更しな
いことにする。また、MRCAの開発当初は、後述する射影省略（projection simplification）を使わないと言う意味で
「rigorous」と命名した。この「rigorous」という呼び方についても、現在の視点では最善ではないかもしれないが、
同様に英語の名称については変更しないことにする。

*3 優決定問題の条件の場合は、G(1) が最大階数であれば Iと等しくなる。
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うことで、線形推定による次元拡大を代替できると考えられる。より厳密には、G(1)+G(1) ∈ Rna×na

による射影は、na 次元のベクトルを、G(1) の行ベクトルが張る n(1) 次元の部分空間への射影を意味

するので、na 次元の炉定数セットを一旦、n(1) 次元の部分空間に射影（次元削減）してから調整し、˜̂
T = ATT̂ (3.3.19)

近似的に na 次元の炉定数セットに復元できると仮定することによって、

T̂ ≈ A˜̂
T (3.3.20)

線形推定による次元の拡大を行わなくても CBCAと同じ調整後の炉定数セットの式を導出できる
と考えられる。

以上のような考え方に基づき、次元削減を使って調整後の炉定数セットを一意に決める方法で導

出した従来炉定数調整法を、次元削減炉定数調整法（DRCA: Dimension-Reduced CA）[34]と呼ぶ
ことにする。

DRCAにおける調整後の炉定数セットは以下の式で表される*4。

TDRCA = T 0 + A
(
G(1)A

)+
FDRCA

(
R(1)e − R(1)c (T 0)

)
(3.3.21)

ただし、ここで、

FDRCA = argmin
F

tr
(
Var

(
T̂
))

(3.3.22)

である。

なお、次元削減後の部分空間は、Karhunen-Loève展開（主成分分析）の考え方に基づいて、任意
の行列 Xの特異値分解によって決定する。この行列 Xの候補としては、以下の 3種類を考える。

X1 =M (3.3.23)

X2 = G(1)M (3.3.24)

X3 = G(1) (3.3.25)

次元削減の物理的な意味から考えると、X1 は核データの不確かさのみが大きい部分空間、X2 は核

データの不確かさと感度係数がともに大きい部分空間、X3 は感度係数のみが大きい部分空間を考

慮して炉定数調整を行うことに対応している。物理的には、核データの不確かさと感度係数がとも

に大きい核データを調整するのが良いと考えられるので、これらの候補の中では X2 が最も望まし

い結果を与えるものと予想される。以降では、次元削減に X1、X2、X3 を用いる場合の DRCAを、
それぞれ、DRCA1、DRCA2、DRCA3と呼ぶことにする。

*4 文献 [34]の式 (44)の両辺に左から Aを乗じて、同文献の式 (27)の近似 T ≈ AATT を使うとこの式が得られる。
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第 4章 理論式の導出の詳細

4.1 記号の定義と数学的な準備

ここで、本稿で用いる記号を定義するとともに、導出で必要な数学の公式等を整理する。前章に

おいて、従来炉定数調整法と拡張バイアス因子法の理論式の導出についてまとめたので、記号や公

式等は既出のものも多いが、本章の導出で用いる記号や公式等をここで改めて整理する。

4.1.1 物理的な意味による記号の定義

実際に値を取得あるいは評価することができる物理量に対して、以下のような記号を定義する。

T 0 ∈ Rna×1: 調整前の炉定数セット
R(1)e ∈ Rn

(1)×1: 積分実験データの実験値
R(1)c (T ) ∈ Rn

(1)×1: 任意の炉定数セット T を用いた場合の積分実験データの計算値

G(1) ∈ Rn(1)×na : 積分実験データに対する核データの感度係数
G(2) ∈ Rn(2)×na : 設計対象炉心核特性に対する核データの感度係数
M ∈ Rna×na : 調整前の炉定数セットの共分散行列（炉定数セット（核データ）の不確かさ）
V(1)e ∈ Rn

(1)×n(1) : 積分実験データの実験誤差に対する共分散行列（実験に起因する不確かさ）
V(1)m ∈ Rn

(1)×n(1) : 積分実験データの解析モデル誤差に対する共分散行列（解析モデルに起因す
る不確かさ）

V(12)
m ∈ Rn(1)×n(2) : 積分実験データと設計対象炉心核特性の間の計算値における解析モデル誤

差に対する相互相関行列

一方、真値や誤差は実際の値を得ることはできないが、理論式の導出において、以下のような量を

考える。

T t ∈ Rna×1: 炉定数セットの真値
R(i)t ∈ Rn

(i)×1: 積分実験データ（i = 1）、または、設計対象炉心（i = 2）の核特性の真値
∆T 0 ∈ Rna×1: 炉定数セット（核データ）の誤差
∆e(1) ∈ Rn(1)×1: 積分実験データの実験誤差
∆m(i) ∈ Rn(i)×1: 積分実験データ（i = 1）、または、炉心設計対象炉心（i = 2）の核特性の計

算値における解析モデル誤差

なお、積分実験データの実験誤差に対する共分散行列と解析モデル誤差に対する共分散行列は、
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和の形で頻繁に利用するので、以下のように定義する。

V(1)e+m ≡ V(1)e + V(1)m (4.1.1)

また、積分実験データに対する核データ起因不確かさは、G(1)MG(1)T という共分散行列で表すこ
とができる。この共分散行列と実験誤差に対する共分散行列、解析モデル誤差に対する共分散行列

の和は、積分実験データの C/E値（計算値（C）と実験値（E）の比）に対する不確かさの合計を表
す重要な式であり、頻繁に利用するので以下のように定義する。

D ≡ G(1)MG(1)T + V(1)e+m (4.1.2)

4.1.2 数式による記号の定義

ここで、感度係数や誤差、共分散行列等、数式を使って、より厳密に定義できる記号について説

明する。また、各手法の導出で用いる共分散行列が持つ数学的な特徴について説明する。

前述の一部の記号については、以下のように、数式を使って定義できる。

G(i) ≡ dR(i)c
dT

�����
T=T 0

(i = 1, 2) (4.1.3)

∆T 0 ≡ T 0 −T t (4.1.4)

∆e(1) ≡ R(1)e − R(1)t (4.1.5)

∆m(i) ≡ R(i)c (T t ) − R(i)t (i = 1, 2) (4.1.6)

なお、ここで定義しているように、∆T 0、∆e(1)、∆m(i) は真値と観測値の差であるので、不確かさ

ではなく誤差と呼ぶべき量になっていることに注意が必要である。前述のように、これらの誤差を

直接取得したり評価したりすることはできないが、これらの誤差に対する共分散行列を評価する

ことは可能であり、これらの誤差に対する共分散行列が不確かさに相当する。また、共分散行列の

非対角成分や相互相関行列の成分が相関に対応する。より具体的には、これらの共分散行列の対角

成分の平方根が標準偏差に対応しており、この標準偏差を不確かさの指標として用いる。なお、最

終的に導出する式には誤差の式は含まれず、共分散行列と相互相関行列の式のみになるが、式の導

出過程では誤差を明示的に扱う必要がある。このため、本章では不確かさや相関に対応する量とし

て、基本的には誤差を扱うことになるが、最終的には共分散行列と相互相関行列の式になるので、

誤差を不確かさと読み替えてもよい。

一方で、不確かさや相関に相当する共分散行列や相互相関行列については、以下のように定義で

きる。

M ≡ Var (T 0) (4.1.7)

V(1)e ≡ Var
(
R(1)e

)
(4.1.8)

V(i)m ≡ Var
(
R(i)c (T t )

)
(4.1.9)

V(i j)m ≡ Cov
(
R(i)c (T t ), R(j)c (T t )

)
(i = 1, 2; j = 1, 2) (4.1.10)
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ただし、ここで、Var (·)、Cov (·)は、それぞれ、分散、共分散を表す。これらは、任意の列ベクト
ル X、Y に対して、以下のように定義される。

Var (X) ≡ E
(
(X − E (X)) (X − E (X))T

)
(4.1.11)

Cov (X,Y) ≡ E
(
(X − E (X)) (Y − E (Y))T

)
(4.1.12)

ただし、ここで、E (·)は期待値を表す。なお、この定義式より分散はすべて対称行列になる。すな
わち、以下の式が成り立つ。

MT =M (4.1.13)

V(1)Te = V(1)e (4.1.14)

V(i)Tm = V(i)m (i = 1, 2) (4.1.15)

以上のように、これらの行列は、ベクトルに対する分散として定義されるが、対角成分はスカラー

に対して定義される分散、非対角成分はスカラーに対して定義される共分散に対応しているため、

この行列は分散共分散行列と呼ばれる。省略して共分散行列と呼ばれることもある。

本稿では、基本的に、これらのベクトルに対する分散 Var (·)で定義された行列を共分散行列と呼
ぶ。これに対して、ベクトルに対する共分散 Cov (·)で定義された行列を相互相関行列と呼ぶ。
ただし、炉定数調整法の分野の慣例として、単に共分散行列といった場合には、核データ起因不

確かさに対応する共分散行列のことを指すことが多く、積分実験データや設計対象炉心核特性の不

確かさについては、厳密には共分散行列であっても、分散と呼ぶことが多い。これは、炉定数調整

法の開発の歴史的な経緯と関係していると考えられる。核データ間の相関は黎明期の頃から重要と

認識されていて、核データの不確かさについては、共分散行列で扱うことが必須と考えられていた

ことに由来すると考えられる。一方で、設計対象炉心核特性の不確かさについては、設計予測精度

として捉えるので、通常、分散（標準偏差）のみに着目すればよいと考えられていたものと思われ

る。ただし、積分実験データや設計対象炉心核特性の不確かさについても、厳密には、共分散行列

であり、互いに相関があるということを認識しておく必要がある。特に、積分実験データ間の相関

は炉定数調整の結果に大きな影響を与えることが分かっている（例えば、文献 [20]の §4.1参照）。
また、炉定数調整後の結果には、積分実験データ間の相関だけでなく、積分実験データと核データ

の間にも相関がつくことが分かっている（例えば、文献 [35]の第 1章の §6参照）。
一方で、共分散行列には、常に非負定値（nonnegative definite）行列になるという重要な特徴が
ある。これは、非負定値行列は必ず、正定値（positive definite）行列、または、半正定値（positive
semidefinite）行列になるということを意味する。すなわち、M、V(1)e 、V(1)m は非負定値行列であり、
正定値行列、または、半正定値行列のいずれかになる。なお、非負定値行列、正定値行列、半正定

値行列の定義（例えば、文献 [36]の §14.2参照）は以下のとおりである。
任意のベクトル x ∈ Rn×1 に対して、二次形式 xTAx ≥ 0 のとき、この二次形式及び行列

A ∈ Rn×n は非負定値であるという。この二次形式が非負定値であり、x が零ベクトル 0のときに
のみ xTAx = 0になるとき、この二次形式及び行列Aは正定値であるという。逆に言えば、x = 0
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を除くあらゆる x に対して xTAx ≥ 0となるとき、この二次形式及び行列A は正定値である。一
方で、非負定値であるが正定値でない二次形式及び行列を半正定値であるという。すなわち、あら

ゆる x ∈ Rn に対して xTAx ≥ 0であり、xTAx = 0となる x が零ベクトル以外にも存在すると

き、この二次形式及び行列A は半正定値である。
なお、積分実験データに対する核データ起因不確かさを表す G(1)MG(1)T や積分実験データの合
計不確かさを表す D及びその逆行列 D−1 についても、以下の定理より、対称かつ非負定値行列に

なる。

• 任意の行列 A ∈ Rn×n と任意の行列 B ∈ Rn×m に対して、もし A が（対称かつ）非負定
値行列であれば、BTAB は（対称かつ）非負定値行列である（例えば、文献 [36]) の定理
14.2.9参照）。

• 任意の行列A ∈ Rn×n と B ∈ Rn×n に対して、もしA と B がともに非負定値行列であれ
ば、A +B も非負定値行列になる（例えば、文献 [36]の補助定理 14.2.4参照）。

• 任意の行列A ∈ Rn×n に対して、もしA が可逆かつ対称行列であれば、A−1 も対称行列で

ある（例えば、文献 [36]の式 (2.4)参照）。
• 任意の行列A ∈ Rn×n に対して、もしA が可逆かつ非負定値行列であれば、A−1 も非負定

値行列である（例えば、文献 [36]の系 14.2.11参照）。

4.1.3 数学的な準備

次に、導出で繰り返し用いる行列の転置、行列のトレース（対角成分の和）や行列のトレースの

微分、一般化行列に関する定義や公式等についてまとめる。

転置行列に関して、任意の行列A、B に対して、以下の式が成り立つ。

(AB)T = BTAT (4.1.16)

ただし、上付きの Tは行列の転置を表す。
行列の転置と和に対するトレースに関しては、明らかに以下が成り立つ。

tr
(
AT

)
= tr (A) (4.1.17)

tr (A +B) = tr (A) + tr (B) (4.1.18)

また、任意の行列A、B の積のトレースに対して、以下の式が成り立つ。

tr (AB) = tr (BA) (4.1.19)

なお、任意の行列A、B、C の積のトレースに対しては、以下の式が成り立つ。

tr (ABC) = tr (CAB) = tr (BCA) (4.1.20)

この式は、A、B、C の積の順番を自由に入れ替えられるという意味ではなく、巡回に対してト
レースが不変という意味であることに注意が必要である。
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任意の定数行列A、B、C に対して、以下の微分の公式が成り立つ。

∂

∂X (tr (A) + tr (B)) = ∂
∂X tr (A) + ∂

∂X tr (B) (4.1.21)

∂

∂X tr (AXB) =ATBT (4.1.22)

∂

∂X tr
(
AXTB

)
= BA (4.1.23)

∂

∂X tr
(
AXBXTC

)
=ATCTXBT + CAXB (4.1.24)

一般化逆行列に対して、定義により、任意の行列A に対して以下の式が成り立つ。

AA−A =A (4.1.25)

ここで、上付きのマイナス記号（−）は一般化逆行列を表す。なお、通常、一般化逆行列は無数に
存在する。

一般に、任意の最大行階数行列 A の一般化逆行列 A− は常に右逆行列になる*1（例えば、文

献 [36]の定理 9.2.8参照）。すなわち、以下の式が成り立つ。

AA− = I (4.1.26)

ただし、ここで、A は最大行階数行列であるとしているので、A は横長の行列（行の数の方が列
の数よりも少ない）*2であることに注意が必要である。したがって、逆の順番で乗じた場合には単

位行列にはなり得ない、すなわち、A−A , Iであることに注意が必要である。
また、任意の m × n行列A に対して、次の条件を満たす一意な n × m行列 Bが存在する（例え
ば、文献 [36]の定理 20.1.1参照）。

(1) ABA =A （B はA の一般化逆行列）
(2) BAB = B （A は B の一般化逆行列）
(3) (AB)T =AB（AB は対称行列）
(4) (BA)T = BA（BA は対称行列）

この条件を満たす行列Bを、行列A に対するMoore-Penrose型の一般化逆行列と呼び、上付きの
+ を使ってA+ と表す。条件の (1)、(2) よりA+ は明らかに一般化逆行列であり、A+ は無数に
存在し得る一般化逆行列A− の一つである。したがって、A+ に対しても、式 (4.1.25)、及び、式
(4.1.26)が成り立つ。すなわち、以下の式が成り立つ。

AA+A =A (4.1.27)
AA+ = I (4.1.28)

*1 後述するMoore-Penrose型に限る必要はなく、最大行階数行列という条件があればよい。
*2 厳密には、正方行列を含む
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4.2 導出に用いる共通の仮定

次に、理論式の導出で用いる仮定（線形性の仮定、誤差の独立性の仮定、不偏推定の仮定、線形

推定の仮定等）について説明する。

4.2.1 線形性の仮定

核データの変化に伴う核特性の計算値の変化量は、任意の炉定数セット T、T ′ に対して、一次

係数である感度係数 G(i) を使って以下のように近似できると仮定する。

R(i)c (T ′) − R(i)c (T ) ≈ G(i)(T ′ −T ) (i = 1, 2) (4.2.1)

このとき、核データに起因する計算値の誤差は以下のように表すことができる。

R(i)c (T 0) − R(i)c (T t ) ≈ G(i)(T 0 −T t )
= G(i)∆T 0 (i = 1, 2) (4.2.2)

また、計算値に含まれる誤差の合計は、以下のように、解析モデル誤差と核データ起因誤差の合計

として表すことができる。

R(i)c (T 0) − R(1)t =
(
R(1)c (T 0) − R(1)c (T t )

)
+

(
R(1)c (T t ) − R(1)t

)
≈ G(i) (T 0 −T t ) + ∆m(1)

= ∆m(i) +G(i)∆T 0 (i = 1, 2) (4.2.3)

更に、積分実験データの実験値と計算値の差は以下のように表すことができる。

R(1)e − R(1)c (T 0) =
(
R(1)e − R(1)t

)
−

(
R(1)c (T t ) − R(1)t

)
−

(
R(1)c (T 0) − R(1)c (T t )

)
≈ ∆e(1) − ∆m(1) −G(1)∆T 0 (4.2.4)

ただし、ここで、式 (4.1.5)、(4.1.6)、(4.1.4)を用いた。
なお、この線形性の仮定は、以下のように、関数 R(i)c (T ′)を T のまわりでテイラー展開して 2次
以降の項を無視し、T における一次微分係数を T 0 における一次微分係数で代替できるとする近似

と解釈できる。

R(i)c (T ′)

=
1
0!

R(i)c (T ′)
���
T ′=T
(T ′ −T )0 + 1

1!
dR(i)c
dT ′

�����
T ′=T

(T ′ −T )1 + 1
2!

d2R(i)c
dT ′2

�����
T ′=T

(T ′ −T )2 + · · ·

≈ R(i)c (T ) +
dR(i)c
dT ′

�����
T ′=T

(T ′ −T )

≈ R(i)c (T ) +
dR(i)c
dT ′

�����
T ′=T 0

(T ′ −T )

= R(i)c (T ) +G(i)(T ′ −T ) (i = 1, 2) (4.2.5)
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4.2.2 感度係数の一次独立性の仮定

感度係数行列 G(1) と G(2) はともに最大階数（フルランク）であると仮定する。すなわち、以下
の式が成り立つと仮定する。

rank
(
G(i)

)
= n(i) (i = 1, 2) (4.2.6)

炉定数調整法を適用する際は、通常、劣決定問題の条件になっているので、

n(1) < na (4.2.7)

が成り立つ。また、拡張炉定数調整法において考慮する設計対象炉心核特性の数は調整する核デー

タの数よりも小さいと仮定する。

n(2) < na (4.2.8)

したがって、劣決定問題の条件の下では、G(1) ∈ Rn(1)×na、G(2) ∈ Rn(2)×na はいずれも横長の矩形行

列であり、最大行階数行列であると仮定していることになる。

この仮定は、積分実験データ、設計対象炉心核特性の感度係数ベクトルがすべて互いに一次独立

であると仮定することと等価である。測定している物理量や設計対象として考慮している核特性が

異なれば感度係数も異なるはずであるので、この仮定は物理的に妥当であると考えられる。また、

もし積分実験データの感度係数が全く同じであるのであれば、同じ実験が 2回行われたと解釈して
評価を行えば一つの積分実験データにまとめることが可能である。また、設計対象炉心核特性の感

度係数が全く同じであるのであれば、両者は炉物理的な特性として同じ核特性と考えることができ

るので、どちらか一つを考慮すれば良いと考えられる。したがって、実用上は、仮に最大階数でな

かったとしても、G(1)、G(2) の両方を最大階数に保つことが可能であり、この仮定は妥当と考えら
れる。

4.2.3 誤差の独立性の仮定

実験誤差、解析モデル誤差、積分実験データに対する核データ起因誤差は、互いに独立であると

仮定する。

E
(
∆xi∆x

T
j

)
= O (i , j) (4.2.9)

ただし、ここで、

∆xi =


∆e(1) (i = 1)
∆m(1),∆m(2) (i = 2)
G(1)∆T 0 (i = 3)
G(2)∆T 0 (i = 4)

(4.2.10)

である。
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なお、ベイズの定理に基づく従来炉定数調整法の導出では、正規分布の仮定を用いる際に、核

データの共分散行列M、積分実験データの実験誤差に対する共分散行列 V(1)e 、積分実験データの解
析モデル誤差に対する共分散行列 V(1)m を、それぞれ、独立に定義できるということを暗黙のうちに
仮定している。これは、誤差の独立性の仮定を用いることに対応しており、ベイズの定理に基づく

従来炉定数調整法の導出においても、誤差の独立性の仮定を用いていると理解することができる。

4.2.4 不偏推定の仮定

炉定数セット、積分実験データや設計対象炉心の核特性の計算値、積分実験データの実験値はす

べて不偏推定値（unbiased estimate）であると仮定する。すなわち、それぞれの期待値が真値に等
しいと仮定する。

E (T 0) = T t (4.2.11)

E
(
R(1)e

)
= R(1)t (4.2.12)

E
(
R(i)c (T t )

)
= R(i)t (i = 1, 2) (4.2.13)

この仮定が成り立つとき、導出で用いる共分散行列と相互相関行列は、それぞれ、定義式 (4.1.7)、
(4.1.8)、(4.1.9)、(4.1.10)より、以下のように表すことができる。

M = Var (T 0) = E
(
(T 0 − E (T 0)) (T 0 − E (T 0))T

)
= E

(
(T 0 −T t ) (T 0 −T t )T

)
= E

(
∆T 0∆T

T
0

)
(4.2.14)

V(1)e = Var
(
R(1)e

)
= E

((
R(1)e − E

(
R(1)e

)) (
R(1)e − E

(
R(1)e

))T
)

= E
((
R(1)e − R(1)t

) (
R(1)e − R(1)t

)T
)

= E
(
∆e(1)∆e(1)T

)
(4.2.15)

V(i)m = Var
(
R(i)c (T t )

)
= E

((
R(i)c (T t ) − E

(
R(i)c (T t )

)) (
R(i)c (T t ) − E

(
R(i)c (T t )

))T
)

= E
((
R(i)c (T t ) − R(i)t

) (
R(i)c (T t ) − R(i)t

)T
)

= E
(
∆m(i)∆m(i)T

)
(i = 1, 2) (4.2.16)
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V(i j)m = Cov
(
R(i)c (T t ), R(j)c (T t )

)
= E

((
R(i)c (T t ) − E

(
R(i)c (T t )

)) (
R
(j)
c (T t ) − E

(
R
(j)
c (T t )

))T
)

= E
((
R(i)c (T t ) − R(i)t

) (
R
(j)
c (T t ) − R

(j)
t

)T
)

= E
(
∆m(i)∆m(j)T

)
(i = 1, 2; j = 1, 2) (4.2.17)

なお、不偏推定の仮定は、ベイズの定理に基づく従来炉定数調整法の導出で用いられている正規分

布の仮定と密接な関係がある。この点については後述する。

4.2.5 線形推定の仮定

積分実験データの実験値と計算値が得られたときに、その実験値と計算値の差を線形結合するこ

とにより、核データ（炉定数セット）、積分実験データ、設計対象炉心核特性の値を推定できると

仮定する。

核データを推定する場合は、線形推定の仮定は以下の式で表される。

T̂ −T 0 = F
(
R(1)e − R(1)c (T 0)

)
(4.2.18)

ただし、この場合の線形結合の係数の次元は、F ∈ Rna×n(1) となる。

また、積分実験データの核特性を推定する場合は、以下の式になる。

R̂
(1) − R(1)c (T 0) = F

(
R(1)e − R(1)c (T 0)

)
(4.2.19)

ただし、この場合の線形結合の係数の次元は、F ∈ Rn(1)×n(1) となる。
設計対象炉心の核特性を推定する場合は、以下の式になる。

R̂
(2) − R(2)c (T 0) = F

(
R(1)e − R(1)c (T 0)

)
(4.2.20)

ただし、この場合の線形結合の係数の次元は、F ∈ Rn(2)×n(1) となる。
以上のように、線形推定の仮定の式は 3種類考えられるが、どの式を使うかによって、線型結合
の係数行列 F の次元が変わることに注意が必要である。炉定数調整法を適用する場合の標準的な
条件（劣決定問題の条件：n(1) < na）の下では、一つ目の F ∈ Rna×n(1) は縦長の矩形行列となる。

二つ目の F ∈ Rn(1)×n(1) は条件によらず常に正方行列である。なお、三つ目の F ∈ Rn(2)×n(1) は、拡
張バイアス因子法（MLEB）の導出で用いる。したがって、この Fについては、MLEBを適用す
るときの条件に依存して次元が変わる。

このように、核データを直接推定する式 (4.2.18)を使う場合は、積分実験データの情報（次元）
を線形結合による外挿によって拡大することになる。このため、前述のように、次元拡大のない線

形推定の仮定として、以下の式を考える。

T̂ −T 0 = G(1)+F
(
R(1)e − R(1)c (T 0)

)
(4.2.21)
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この場合の線形結合の係数は、F ∈ Rn(1)×n(1) と正方行列になり、線形推定による次元の拡大は行っ
ていないことが確認できる。なお、この線形推定の仮定の式は、式 (4.2.19)において、線形推定の
仮定の式 (4.2.1)を適用した上で、T̂ の解として最小ノルム解*3 を採用したことに相当する。

4.2.6 正規分布の仮定

最小分散不偏線形推定に基づく導出では、正規分布の仮定は用いないが、ここで、正規分布の仮

定についてまとめ、線形推定の仮定との関係を整理する。

ベイズの定理に基づく従来炉定数調整法の導出では、式 (2.1.2)において、炉定数セットの確率
分布として、平均値が T 0、共分散がMの正規分布を仮定している。

P (T ) = N (T |T 0,M)

=
1

(2π)n/2
1
|M|1/2

const. exp
(
−1

2
(T −T 0)T M−1 (T −T 0)

)
(4.2.22)

正規分布では、期待値、最大値、平均値は互いに等しくなるので、正規分布に従う確率を最大化す

ることにより核データ（炉定数セット）が真値に近づくと考えることは、T 0 の期待値が真値であ

ると仮定していることになる。すなわち、以下の式を仮定していることになる。

E (T 0) = T t (4.2.23)

この式は、炉定数セット T に対する不偏推定の仮定を表す式 (4.2.11)と同じである。このように、
式 (4.2.22)で表される正規分布の仮定には、式 (4.2.11)で表される不偏推定の仮定が含まれている
と考えられる。

一方で、ベイズの定理に基づく従来炉定数調整法の導出では、式 (2.1.3)において、以下のよう
な条件付き確率分布も仮定している。

P
(
R(1)e

���T )
= N

(
R(1)e

��� R(1)c (T ),V(1)e+m)
=

1
(2π)n/2

1���V(1)e+m���1/2 exp
(
−1

2

(
R(1)e − R(1)c (T )

)T
V(1)−1
e+m

(
R(1)e − R(1)c (T )

))
(4.2.24)

このような正規分布を仮定するということは、炉定数セット T が得られたという条件の下での R(1)e

の期待値は R(1)c (T )であると仮定していることになる。すなわち、以下のような条件付き期待値を
仮定していると考えられる。

E
(
R(1)e

���T )
= R(1)c (T ) (4.2.25)

*3 ここでは、劣決定問題の条件の場合を考えているので最小ノルム解になる。優決定問題の条件の場合は最小二乗解
になるが、優決定問題の条件の場合は線形推定による次元拡大の必要はないので、このような線形推定の式を考える
必要はない。
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この式は、炉定数セット T が与えられた条件の下で、実験値の期待値が計算値に一致するというこ

とを意味するので、実験値の期待値が真値になる、炉定数セットの真値で計算した計算値の期待値

が真値になるという不偏推定の仮定に対応していると推測される。

一方で、式 (4.2.24)で表される正規分布の仮定は、以下のように理解することもできる。

P
(
R(1)e

���T )
=

1
(2π)n/2

1���V(1)e+m���1/2 exp
(
−1

2

((
R(1)e − R(1)c (T )

)
−O

)T
V(1)−1
e+m

((
R(1)e − R(1)c (T )

)
−O

))
= N

(
R(1)e − R(1)c (T )

��� O,V(1)e+m)
(4.2.26)

この式からは、以下のような条件付き期待値を仮定していると考えることができる。

E
(
R(1)e − R(1)c (T )

���T )
= O (4.2.27)

次に、この式と不偏推定の仮定の式との関係について考える。式 (4.2.27)の左辺は以下のように変
形できる。

E
(
R(1)e − R(1)c (T )

���T )
= E

(
R(1)e

���T )
− E

(
R(1)c (T )

���T )
(4.2.28)

積分実験データの実験値の条件付き期待値 E
(
R(1)e

���T )
は、通常、事前条件としての炉定数セット

T には関係しない*4と考えられるので、E
(
R(1)e

)
で置き換えられる。一方、積分実験データの計算

値の条件付き期待値 E
(
R(1)c (T )

���T )
は、任意の炉定数セット T に対する式であるので、この T とし

て調整前の炉定数セットの期待値 E (T 0)を採用し、式 (4.2.11)で表される不偏推定の仮定を使う
と、E

(
R(1)c (T t )

���T t

)
で置き換えられる。更に、この条件付き期待値の事前条件である炉定数セッ

トの真値 T t は一つしか存在しないので、この条件付き期待値は、事前条件には依存しないと考え

られ、E
(
R(1)c (T t )

)
で置き換えられる。これらのことを考慮すると式 (4.2.28)の左辺は以下のよう

に変形できる。

E
(
R(1)e − R(1)c (T )

���T )
= E

(
R(1)e

)
− E

(
R(1)c (T t )

)
(4.2.29)

この式の右辺は、式 (4.2.12)、(4.2.13)で表される不偏推定の仮定が成り立つ場合、零行列 Oにな
ることが分かる。したがって、式 (4.2.27)で表される条件付き期待値の仮定、すなわち、式 (4.2.24)
で表される正規分布の仮定には、式 (4.2.11)、(4.2.12)、(4.2.13)で表される不偏推定の仮定が含ま
れていると考えられる。

以上のように、ベイズの定理に基づく導出で用いられる正規分布の仮定には、最小分散不偏線形

推定に基づく導出で用いられる不偏推定の仮定が含まれていると考えることができる。

*4 実験値を得るために核データ（炉定数セット）を使った計算値を使うことは考えられるが、誤差の独立性を仮定して
いるので、本来、核データとの間に無視できない相関があるような積分実験データの実験値は炉定数調整法の適用範
囲外と考えられる。
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4.3 ベイズの定理に基づく拡張炉定数調整法（CBEA）の開発

文献 [28]に基づいて、ベイズの定理に基づく拡張炉定数調整法（CBEA）の導出の詳細について
説明する。ここでは、最初に、条件付き正規分布の公式を用いことで、ベイズの定理に基づく従来

炉定数調整法（CBCA）が簡単に導出できることを示し、同様の方法で CBEAを導出する。

4.3.1 条件付き正規分布の公式

ベイズの定理に基づく従来炉定数調整法は、条件付き正規分布（条件付きガウス分布）の公式

（例えば、文献 [25,37]参照）を用いることで簡単に導出できる。なお、条件付き正規分布の公式の
導出の詳細については、付録 A.3にまとめた。
ここで、x が、正規分布 N ( x | µ,Σ)に従うとする。ただし、µ、Σは、それぞれ、x の平均値と

共分散行列である。このとき、x と Σは、互いに素な二つのベクトルに分割することができる。

x =

(
xa
xb

)
(4.3.1)

µ =

(
µa

µb

)
(4.3.2)

Σ =

(
Σaa Σab

Σba Σbb

)
(4.3.3)

このとき、条件付き正規分布 P(xa |xb)の平均値と共分散行列は以下の式で表される。

µa |b = µa + ΣabΣ
−1
bb

(
xb − µb

)
(4.3.4)

Σa |b = Σaa − ΣabΣ−1
bbΣba (4.3.5)

4.3.2 条件付き正規分布の公式を使用した従来炉定数調整法の導出

従来炉定数調整法の式を導出するために、条件付き正規分布 P
(
T | R(1)e

)
を考えて、その平均値

と共分散行列を求める。このとき、 x と µ は、それぞれ、以下のように定義される。

x =

(
xa
xb

)
=

(
T

R(1)e

)
(4.3.6)

µ =

(
µa

µb

)
=

(
T 0

R(1)c (T 0)

)
(4.3.7)

なお、前節で考察したように、ベイズの定理に基づく従来炉定数調整法（CBCA）の導出で用いら
れている正規分布の仮定では、式 (4.2.26)で示されるように、積分実験データが得られたという条
件は、積分実験データの実験値と計算値の差の情報が得られたという条件を考えているので、実験

値と計算値の差に含まれるすべての誤差、すなわち、実験誤差、解析モデル誤差、核データ起因誤

差の合計、式 (4.2.4)で表されると考えられる。
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また、誤差の独立性の仮定の下で、共分散行列の定義式、すなわち、式 (4.1.12)を使うと、共分
散行列 Σの部分行列は、それぞれ、以下のように表すことができる。

Σaa = Cov (T,T )
=M (4.3.8)

Σab = Cov
(
T, R(1)e

)
= E

(
∆T 0

(
∆e(1) + ∆m(1) +G(1)∆T 0

)T
)

= E
(
∆T 0∆T

T
0

)
G(1)T

=MG(1)T (4.3.9)

Σba = Cov
(
R(1)e ,T

)
= (Σab)T

= G(1)M (4.3.10)

Σbb = Cov
(
R(1)e , R

(1)
e

)
= E

((
∆e(1) + ∆m(1) +G(1)∆T 0

) (
∆e(1) + ∆m(1) +G(1)∆T 0

)T
)

= E
(
∆e(1)∆e(1)T

)
+ E

(
∆m(1)∆m(1)T

)
+G(1)E

(
∆T 0∆T

T
0

)
G(1)T

= V(1)e + V(1)m +G(1)MG(1)T

= G(1)MG(1)T + V(1)e+m
= D (4.3.11)

これらの式は以下のようにまとめることができる。

Σ =

(
Σaa Σab

Σba Σbb

)
=

©­«
Cov (T,T ) Cov

(
T, R(1)e

)
Cov

(
R(1)e ,T

)
Cov

(
R(1)e , R

(1)
e

)ª®¬
=

(
M MG(1)T

G(1)M D

)
(4.3.12)

このように、式 (4.3.4)と式 (4.3.5)を用いると、調整後の炉定数セットとその共分散行列は、条件
付き確率 P

(
T | R(1)e

)
の平均値と共分散行列として、それぞれ、以下のように導出できる。

T ′CBCA = µa + ΣabΣ
−1
bb

(
xb − µb

)
= T 0 +MG(1)TD−1

(
R(1)e − R(1)c (T 0)

)
(4.3.13)

M′CBCA = Σaa − ΣabΣ−1
bbΣba

=M −MG(1)TD−1G(1)M (4.3.14)
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なお、ここでは、異なる方法で導出したことを明示するため、記号にプライム（′）をつけたが、

このようにして条件付き正規分布の公式を用いて導出した上記の従来炉定数調整法の式 (4.3.13)、
(4.3.14)は、それぞれ、前節のベイズの定理に基づく従来炉定数調整法で求めた式 (2.1.17)、(2.1.15)
と一致していることが分かる。

T ′CBCA = TCBCA (4.3.15)
M′CBCA =MCBCA (4.3.16)

条件付き正規分布の公式はベイズの定理に基づいているので、この方法を使えば、簡単にベイズの

定理に基づく従来炉定数調整法（CBCA）の式を導出できることが分かる。次に、同じ導出方法を
使って、ベイズの定理に基づく拡張炉定数調整法（CBEA）を導出する。

4.3.3 ベイズの定理に基づく拡張炉定数調整法（CBEA）の導出

拡張炉定数調整法は、積分実験データの実験値 R(1)e が観測された条件の下での設計対象炉

心核特性 R(2)c (T ) の確率を最大化しようとするものである。これは、条件付き正規分布として
P

(
R(2)c (T )

��� R(1)e )
を考え、平均値と分散を求めることに相当する。

このとき、公式中のベクトル x は以下のようになる。

x =

(
xa
xb

)
=

(
R(2)c (T )
R(1)e

)
(4.3.17)

このとき、公式中の平均ベクトル µ は以下のようになる。

µ =

(
µa

µb

)
=

(
R(2)c (T 0)
R(1)c (T 0)

)
(4.3.18)

ここで、設計対象炉心核特性の計算値の誤差は、解析モデル誤差と核データ起因誤差の和、すなわ

ち、式 (4.2.3)で表されると考えられるので、公式中の共分散行列 Σは以下のように求まる。

Σ =

(
ΣaaΣab

ΣbaΣbb

)
=

©­«
Cov

(
R(2)c (T ), R(2)c (T )

)
Cov

(
R(2)c (T ), R(1)e

)
Cov

(
R(1)e , R

(2)
c (T )

)
Cov

(
R(1)e , R

(1)
e

) ª®¬
=

(
G(2)MG(2)T + V(2)m G(2)MG(1)T + V(12)T

m

G(1)MG(2)T + V(12)
m D

)
(4.3.19)

なお、各部分行列の式変形の詳細は以下のとおりである。

Σaa = Cov
(
R(2)c (T ), R(2)c (T )

)
= E

((
∆m(2) +G(2)∆T 0

) (
∆m(2) +G(2)∆T 0

)T
)
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= G(2)E
(
∆T 0∆T

T
0

)
G(2)T + E

(
∆m(2)∆m(2)T

)
= G(2)MG(2)T + V(2)m (4.3.20)

Σab = Cov
(
R(2)c (T ), R(1)e

)
= E

((
∆m(2) +G(2)∆T 0

) (
∆e(1) + ∆m(1) +G(1)∆T 0

)T
)

= G(2)E
(
∆T 0∆T

T
0

)
G(1)T + E

(
∆m(2)∆m(1)T

)
= G(2)MG(1)T + V(12)T

m (4.3.21)

Σba = Cov
(
R(1)e , R

(2)
c (T )

)
= (Σab)T

= G(1)MG(2)T + V(12)
m (4.3.22)

なお、Σbb については、式 (4.3.11)と同じになる。
このとき、条件付き正規分布 P

(
R(2)c (T )

��� R(1)e )
の平均（公式中の µa |b）が調整後の断面積 TCBEA

を用いて計算した設計対象炉心核特性 R(2)c (TCBEA)である。したがって、R(2)c (TCBEA)は条件付き
正規分布の公式を適用すると以下のように求まる。

R(2)c (TCBEA) = µa + ΣabΣ
−1
bb

(
xb − µb

)
= R(2)c (T 0) +

(
G(2)MG(1)T + V(12)T

m

)
D−1

(
R(1)e − R(1)c (T 0)

)
(4.3.23)

この式に、線形推定の仮定を表す式 (4.2.1)を適用すると以下の式が得られる。

G(2) (TCBEA −T 0) =
(
G(2)MG(1)T + V(12)T

m

)
D−1

(
R(1)e − R(1)c (T 0)

)
(4.3.24)

この式を TCBEA の方程式と考えて最小ノルム解を採用すると、TCBEA は G(2) のMoore-Penrose型
の一般化逆行列 G(2)+ を使って以下のように表すことができる*5。

TCBEA = T 0 +
(
MG(1)T +G(2)+V(12)T

m

)
D−1

(
R(1)e − R(1)c (T 0)

)
(4.3.25)

同様に、条件付き正規分布の共分散（公式中の Σa |b）が調整後の断面積を使って計算した設計対象

炉心核特性の分散と考えられる。したがって、この設計対象炉心核特性の分散（共分散）は以下の

ように表すことができる。

Var
(
R(2)c (TCBEA)

)
= Σaa − ΣabΣ−1

bbΣba

=
(
G(2)MG(2)T + V(2)m

)
−

(
G(2)MG(1)T + V(12)T

m

)
D−1

(
G(1)MG(2)T + V(12)

m

)
(4.3.26)

*5 本来、この式を満たす TCBEA の解は無数に存在しうるため、最小ノルム解以外にも解は存在する。この部分につい
ては、後述する最小分散不偏線形推定に基づく拡張炉定数調整法の導出においてより厳密に扱う。
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なお、この導出方法では、条件付き正規分布の公式からは、拡張炉定数調整法の調整後の炉定数

セットの共分散行列の式を導出できないが、共分散行列の定義式を使うことで導出できる。この導

出方法については、第 4.8節で詳述するので、ここでは、文献 [28]に示されている結果のみを示す。

MCBEA =M +
(
MG(1)T +G(2)+V(12)T

m

)
D−1

(
G(2)+V(12)T

m

)T

−MG(1)TD−1
(
MG(1)T +G(2)+V(12)T

m

)T
(4.3.27)
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4.4 最小分散不偏線形推定に基づく拡張バイアス因子法（MLEB）の
導出

次に、文献 [31]に基づいて、MLEBの導出の詳細を説明する。

4.4.1 設計予測値の式の導出

MLEBの導出では、線形推定の仮定として式 (4.2.20)を採用する。最小分散不偏線形推定に基づ
く導出において、線形推定の仮定は最も重要な仮定であるので、以下に式 (4.2.20)を再掲する。

R̂
(2) − R(2)c (T 0) = F

(
R(1)e − R(1)c (T 0)

)
(4.2.20)

最初に、設計予測値、すなわち、設計対象炉心核特性の計算値の推定値の式を導出する。なお、

本来、拡張バイアス因子法は、バイアス因子を求めて補正することを目的としているので、設計予

測値ではなく、相対値（バイアス因子）の式であるべきであるが、炉定数調整法との比較の観点か

ら、設計予測値そのものを表す式を導出する。

既に得られている炉定数セット T 0 を使って計算した設計対象炉心の核特性の計算値 R(2)c (T 0)
は、以下のように表すことができる。

R(2)c (T 0) = R(2)t +
(
R(2)c (T 0) − R(2)c (T t )

)
+

(
R(2)c (T t ) − R(2)t

)
≈ R(2)t +G(2)(T 0 −T t ) + ∆m(2)

= R(2)t +G(2)∆T 0 + ∆m
(2) (4.4.1)

ただし、ここで、式 (4.1.4)、(4.1.6)を用いた。式 (4.4.1)と式 (4.2.4)を式 (4.2.20)に代入すると以
下のように変形できる。

R̂
(2)
= R(2)t +G(2)∆T 0 + ∆m

(2) + F
(
∆e(1) − ∆m(1) −G(1)∆T 0

)
= R(2)t +

(
G(2) − FG(1)

)
∆T 0 + F∆e(1) − F∆m(1) + ∆m(2) (4.4.2)

したがって、R̂
(2)
の分散は以下のように表すことができる。

Var
(
R̂
(2))
= E

((
R̂
(2) − R(2)t

) (
R̂
(2) − R(2)t

)T
)

=
(
G(2) − FG(1)

)
E

(
∆T 0∆T

T
0

) (
G(2) − FG(1)

)T

+ F E
(
∆e(1)∆e(1)T

)
FT + F E

(
∆m(1)∆m(1)T

)
FT + E

(
∆m(2)∆m(2)T

)
− F E

(
∆m(1)∆m(2)T

)
− E

(
∆m(2)∆m(1)T

)
FT

= G(2)MG(2)T + FG(1)MG(1)TFT −G(2)MG(1)TFT − FG(1)MG(2)T

+ FV(1)e FT + FV(1)m FT + V(2)m − FV(12)
m − V(12)T

m FT (4.4.3)
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この分散を最小化する Fを求めるために、この分散のトレースを Fで偏微分した関数を考える。

∂

∂F
tr

(
Var

(
R̂
(2)))

=
∂

∂F
tr

(
FG(1)MG(1)TFT

)
− 2
∂

∂F
tr

(
G(2)MG(1)TFT

)
+
∂

∂F
tr

(
FV(1)e FT

)
+
∂

∂F
tr

(
FV(1)m FT

)
− 2
∂

∂F
tr

(
V(12)T

m FT
)

= 2FG(1)MG(1)T − 2G(2)MG(1)T

+ 2FV(1)e + 2FV(1)m − 2V(12)T
m (4.4.4)

ただし、ここで、トレースに関して、式 (4.1.17)、(4.1.19)を用いた。また、トレースの微分に関し
て、式 (4.1.21)、(4.1.23)、(4.1.24)を用いた。この式が 0となる Fを FMLEB とおくと以下の式が

得られる。

FMLEB

(
G(1)MG(1)T + V(1)e+m

)
= G(2)MG(1)T + V(12)T

m (4.4.5)

この式の両辺に右から式 (4.1.2)で定義される Dの逆行列をかけると以下の式が得られる。

FMLEB =
(
G(2)MG(1)T + V(12)T

m

)
D−1 (4.4.6)

この式を式 (4.2.20) の F に代入し、そのときの R̂
(2)
が R(2)MLEB であるとすると、以下の式が得ら

れる。

R(2)MLEB = R(2)c (T 0) +
(
G(2)MG(1)T + V(12)T

m

)
D−1

(
R(1)e − R(1)c (T 0)

)
(4.4.7)

この式は、オリジナルの拡張バイアス因子法を複数の設計対象核特性に拡張して絶対値表記した

式 (2.2.59)と同じであることが分かる。すなわち、以下の式が成り立つ。

R(2)MLEB = R(2)EBPE (4.4.8)

4.4.2 設計予測精度の式の導出

次に、設計予測精度、すなわち、調整後の炉定数セットを使って計算した設計対象炉心核特性

の共分散行列の式を導出する。分散の定義式 (4.1.11)と、不偏分散の仮定を表す式 (4.2.13)を使う
と、調整後の炉定数セットを使って計算した設計対象炉心核特性の共分散行列は以下のように表さ

れる。

Var
(
R(2)MLEB

)
= E

((
R(2)MLEB − E

(
R(2)MLEB

)) (
R(2)MLEB − E

(
R(2)MLEB

))T
)

= E
((
R(2)MLEB − R(2)t

) (
R(2)MLEB − R(2)t

)T
)

(4.4.9)
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MLEBの設計予測値の式に、線形性の仮定から得られる式 (4.2.3)と式 (4.2.4)を代入すると以下の
式が得られる。

R(2)MLEB = R(2)c (T 0) + FMLEB

(
R(1)e − R(1)c (T 0)

)
= R(2)t +G(2)∆T 0 + ∆m

(2) + FMLEB

(
∆e(1) − ∆m(1) −G(1)∆T 0

)
= R(2)t +

(
G(2) − FMLEBG(1)

)
∆T 0 + FMLEB∆e

(1) +
(
∆m(2) − FMLEB∆m

(1)
)

(4.4.10)

この式を式 (4.4.9)に代入すると以下の式が得られる。

Var
(
R(2)MLEB

)
= E

((
R(2)MLEB − R(2)t

) (
R(2)MLEB − R(2)t

)T
)

= E
(((

G(2) − FMLEBG(1)
)
∆T 0 + FMLEB∆e

(1) +
(
∆m(2) − FMLEB∆m

(1)
))

((
G(2) − FMLEBG(1)

)
∆T 0 + FMLEB∆e

(1) +
(
∆m(2) − FMLEB∆m

(1)
))T

)
=

(
G(2) − FMLEBG(1)

)
Var

(
∆T 0∆T

T
0

) (
G(2) − FMLEBG(1)

)T

+ FMLEBVar
(
∆e(1)∆e(1)T

)
FT

MLEB

+ Var
(
∆m(2)∆m(2)T

)
+ FMLEBVar

(
∆m(1)∆m(1)T

)
FT

MLEB

− FMLEBVar
(
∆m(1)∆m(2)T

)
− Var

(
∆m(2)T∆m(1)

)
FT

MLEB

=
(
G(2) − FMLEBG(1)

)
M

(
G(2) − FMLEBG(1)

)T

+ FMLEBV(1)e FT
MLEB + V(2)m + FMLEBV(1)m FT

MLEB − FMLEBV(12)
m − V(12)T

m FT
MLEB

= G(2)MG(2)T + FMLEBG(1)MG(1)TFT
MLEB

−G(2)MG(1)TFT
MLEB − FMLEBG(1)MG(2)T

+ FMLEBV(1)e FT
MLEB + V(2)m + FMLEBV(1)m FT

MLEB − FMLEBV(12)
m − V(12)T

m FT
MLEB

= G(2)MG(2)T + FMLEB

(
G(1)MG(1)T + V(1)e + V(1)m

)
FT

MLEB

−G(2)MG(1)TFT
MLEB − FMLEBG(1)MG(2)T

+ V(2)m − FMLEBV(12)
m − V(12)T

m FT
MLEB (4.4.11)

この式は、オリジナルの拡張バイアス因子法を複数の設計対象核特性に拡張して絶対値表記した式

(2.2.60)と同じであることが分かる。すなわち、以下の式が成り立つ。

Var
(
R(2)MLEB

)
= Var

(
R(2)EBPE

)
(4.4.12)

以上のように、最小分散不偏線形推定に基づく拡張バイアス因子法（MLEB）の設計予測値及び
設計予測精度は、オリジナルの拡張バイアス因子法（EBPE）と等価になる。このことから、拡張
バイアス因子法は、設計対象炉心の核特性値 R̂

(2)
を推定する状態ベクトル、積分実験データの実験

値 R(1)e を観測ベクトルとしたカルマンフィルタであると解釈できる。
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4.5 最小分散不偏線形推定に基づく 3種類の炉定数調整法（MLCA、
MLEA、MLRA）の導出

文献 [31]に基づいて、MLCA、MLEA、MLRAの導出の詳細を説明する。MLEAについては、
調整後の炉定数セットの分散が最小になるような制約条件を追加することで、CBEAと同じ式が導
出できることを説明する。

4.5.1 従来炉定数調整法（MLCA）の調整後炉定数セットの式の導出

線形推定の仮定として、式 (4.2.18)を採用して、従来炉定数調整法を導出する。最小分散不偏線
形推定に基づく導出において、線形推定の仮定は最も重要な仮定であるので、以下に式 (4.2.18)を
再掲する。

T̂ −T 0 = F
(
R(1)e − R(1)c (T 0)

)
(4.2.18)

任意の炉定数セットの推定値 T̂ は、式 (4.1.4)を使うと、下のように表すことができる。

T̂ = T t +
(
T̂ −T 0

)
+

(
T̂ −T t

)
= T t +

(
T̂ −T 0

)
+ ∆T 0 (4.5.1)

この式に、式 (4.2.18)と式 (4.2.4)を代入すると、以下のように変形できる。

T̂ = T t + F
(
∆e(1) − ∆m(1) −G(1)∆T 0

)
+ ∆T 0

= T t +
(
I − FG(1)

)
∆T 0 + F∆e(1) − F∆m(1) (4.5.2)

したがって、炉定数セットの推定値 T̂ の分散 Var
(
T̂
)
は以下のように表すことができる。

Var
(
T̂
)
= E

((
T̂ −T t

) (
T̂ −T t

)T
)

=
(
I − FG(1)

)
E

(
∆T 0∆T

T
0

) (
I − FG(1)

)T

+ FE
(
∆e(1)∆e(1)T

)
F + FE

(
∆m(1)∆m(1)T

)
F

=M + FG(1)MG(1)TFT −MG(1)TFT − FG(1)M

+ FV(1)e FT + FV(1)m FT (4.5.3)

この分散を最小化する Fを求めるために、この分散のトレースを Fで偏微分した関数を考える。

∂

∂F
tr

(
Var

(
T̂
))
=
∂

∂F
tr

(
FG(1)MG(1)TFT

)
− 2
∂

∂F
tr

(
MG(1)TFT

)
+
∂

∂F
tr

(
FV(1)e FT

)
+
∂

∂F
tr

(
FV(1)m FT

)
= 2FG(1)MG(1)T − 2MG(1)T + 2FV(1)e + 2FV(1)m (4.5.4)
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ただし、ここで、トレースに関して、式 (4.1.17)、(4.1.19)を用いた。また、トレースの微分に関し
て、式 (4.1.21)、(4.1.23)、(4.1.24)を用いた。この式がゼロとなる Fを FMLCA とおくと以下の式

が得られる。

FMLCA

(
G(1)MG(1)T + V(1)e+m

)
=MG(1)T (4.5.5)

この式の両辺に右から式 (4.1.2)で定義される Dの逆行列をかけると以下の式が得られる。

FMLCA =MG(1)TD−1 (4.5.6)

この式の FMLCA を式 (4.2.18)の Fに代入し、そのときの T̂ が TMLCA であるとすると、以下の式

が得られる。

TMLCA = T 0 +MG(1)TD−1
(
R(1)e − R(1)c (T 0)

)
(4.5.7)

したがって、以下の式が成り立つ。

TMLCA = TCBCA (4.5.8)

以上のように、線形推定の仮定として式 (4.2.18) が成り立つ場合には、射影省略（projection
simplification）や次元削減の概念を使わなくても、CBCA と完全に同じ式を導出できることが分
かる。

4.5.2 拡張炉定数調整法（MLEA）の調整後炉定数セットの一般解の導出

続いて、MLCAと同様に、線形推定の仮定として式 (4.2.18)を採用して、拡張炉定数調整法の式
を導出する。繰り返しになるが、最小分散不偏線形推定に基づく導出において、線形推定の仮定は

最も重要な仮定であるので、以下に式 (4.2.18)を再掲する。

T̂ −T 0 = F
(
R(1)e − R(1)c (T 0)

)
(4.2.18)

推定された炉定数セット T̂ を使って計算された設計対象炉心の核特性の計算値 R(2)c (T̂ ) は、式
(4.4.1)と同様に、以下のように表すことができる。

R(2)c (T̂ ) = R(2)t +
(
R(2)c (T̂ ) − R(2)c (T t )

)
+

(
R(2)c (T t ) − R(2)t

)
≈ R(2)t +G(2)(T̂ −T t ) + ∆m(2)

= R(2)t +G(2)(T̂ −T 0) +G(2)∆T 0 + ∆m
(2) (4.5.9)

この式に、式 (4.2.18)と式 (4.2.4)を代入すると、以下のように変形できる。

R(2)c (T̂ ) = R(2)t +G(2)F
(
∆e(1) − ∆m(1) −G(1)∆T 0

)
+G(2)∆T 0 + ∆m

(2)

= R(2)t +
(
G(2) −G(2)FG(1)

)
∆T 0 +G(2)F∆e(1) −G(2)F∆m(1) + ∆m(2) (4.5.10)
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したがって、R(2)c (T̂ )の分散は以下のように表すことができる。

Var
(
R(2)c (T̂ )

)
= E

((
R(2)c (T̂ ) − R(2)t

) (
R(2)c (T̂ ) − R(2)t

)T
)

=
(
G(2) −G(2)FG(1)

)
E

(
∆T 0∆T

T
0

) (
G(2) −G(2)FG(1)

)T

+
(
G(2)F

)
E

(
∆e(1)∆e(1)T

) (
G(2)F

)T

+
(
G(2)F

)
E

(
∆m(1)∆m(1)T

) (
G(2)F

)T

+ E
(
∆m(2)∆m(2)T

)
−

(
G(2)F

)
E

(
∆m(1)∆m(2)T

)
− E

(
∆m(2)∆m(1)T

) (
G(2)F

)T

= G(2)MG(2)T +G(2)FG(1)MG(1)TFTG(2)T

−G(2)MG(1)TFTG(2)T −G(2)FG(1)MG(2)T

+G(2)FV(1)e FTG(2)T +G(2)FV(1)m FTG(2)T

+ V(2)m −G(2)FV(12)
m − V(12)T

m FTG(2)T (4.5.11)

この分散を最小化する Fを求めるために、この分散のトレースを Fで偏微分した関数を考える。

∂

∂F
tr

(
Var

(
R(2)c (T̂ )

))
=
∂

∂F
tr

(
G(2)FG(1)MG(1)TFTG(2)T

)
− 2
∂

∂F
tr

(
G(2)MG(1)TFTG(2)T

)
+
∂

∂F
tr

(
G(2)FV(1)e FTG(2)T

)
+
∂

∂F
tr

(
G(2)FV(1)m FTG(2)T

)
− 2
∂

∂F
tr

(
V(12)T

m FTG(2)T
)

= 2G(2)TG(2)FG(1)MG(1)T − 2G(2)TG(2)MG(1)T

+ 2G(2)TG(2)FV(1)e + 2G(2)TG(2)FV(1)m − 2G(2)TV(12)T
m (4.5.12)

ただし、ここで、トレースに関して、式 (4.1.17)、(4.1.19)を用いた。また、トレースの微分に関し
て、式 (4.1.21)、(4.1.23)、(4.1.24)を用いた。この式が 0となる Fを FMLEA とおくと以下の式が

得られる。

G(2)TG(2)FMLEA

(
G(1)MG(1)T + V(1)e+m

)
= G(2)T

(
G(2)MG(1)T + V(12)T

m

)
(4.5.13)

この式の両辺に右から式 (4.1.2)で定義される Dの逆行列をかけると以下の式が得られる。

G(2)TG(2)FMLEA = G(2)T
(
G(2)MG(1)T + V(1)e+m

)
D−1 (4.5.14)

ここで、式 (4.2.8)を仮定しているため、n(2) < na であり、G(2) ∈ Rn(2)×na は横長の矩形行列とな

る。したがって、G(2)TG(2) は特異行列になる。このため、式 (4.5.14)を満たす FMLEA は無数に存

在する。すなわち、拡張炉定数調整法の解は無数に存在する。
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このため、次に、この無数に存在する解を陽に扱うことを考える。感度係数の一次独立性の仮定

から、G(2) は最大行階数行列であるので、G(2) に対して式 (4.1.26)が成り立つ。すなわち、以下の
式が成り立つ。

G(2)G(2)− = I (4.5.15)

ただし、G(2)−G(2)− , Iである。したがって、式 (4.5.14)は、以下のように変形できる。

G(2)TG(2)FMLEA = G(2)T
(
G(2)MG(1)T +G(2)G(2)−0 V(12)T

m

)
D−1

= G(2)TG(2)
(
MG(1)T +G(2)−0 V(12)T

m

)
D−1 (4.5.16)

なお、G(2) の一般化逆行列は無数に存在するため、そのうちの一つであることを表すため、G(2)−0

という記号を用いた。

ここで、以下のように定義する。

BMLEA0 ≡MG(1)T +G(2)−0 V(12)T
m (4.5.17)

このとき、式 (4.5.16)は以下のように表すことができる。

G(2)T
(
G(2)FMLEA −G(2)BMLEA0D−1

)
= O (4.5.18)

この式の両辺に左から
(
FMLEA − BMLEA0D−1)T

をかけると以下のように変形できる。(
G(2)FMLEA −G(2)BMLEA0D−1

)T (
G(2)FMLEA −G(2)BMLEA0D−1

)
= O (4.5.19)

ただし、ここで、式 (4.1.16)を用いた。一般に、任意の行列A に対して、ATA = Oのとき、か
つ、そのときに限って、A = Oとなる（例えば、文献 [36]の系 5.3.2参照）。このため、式 (4.5.16)
は以下の式と等価である。

G(2)FMLEA = G(2)BMLEA0D−1 (4.5.20)

一般に、AX = B の形の線形方程式のすべての解は、AX = B の特殊解 X0 とAZ = Oのす
べての解Z∗ を用いて、X∗ = X0 +Z∗ と表すことができる（文献 [36]の定理 11.2.3参照）。また、
AZ = Oのすべての解Z∗ は、適当な行列 Y に対して、Z∗ = (I −A−A)Y と表すことができる
（文献 [36]の定理 11.2.1参照）。
ここで、式 (4.5.20)の FMLEA に対する特殊解としては、BMLEA0D−1 が考えられる。したがって、

FMLEA のすべての解の表式 F∗MLEA として、以下が得られる。

F∗MLEA = BMLEA0D−1 +
(
I −G(2)−1 G(2)

)
Y (4.5.21)

ただし、ここで、Y ∈ Rna×n(1) は任意の行列を表す。なお、ここで用いた G(2) の一般化逆行列は、
先に定義した G(2)−0 と異なる行列であっても良いと考えられるので、G(2)−1 という記号を用いた。

また、上付きの ∗は無数の解が存在することを表す。
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この式を式 (4.2.18)に代入すると、拡張炉定数調整法における調整後の炉定数セットのすべての
解を表す式が得られる。

T ∗MLEA = T 0 +
(
BMLEA0 +

(
I −G(2)−1 G(2)

)
YD

)
D−1

(
R(1)e − R(1)c (T 0)

)
(4.5.22)

4.5.3 回帰炉定数調整法（MLRA）の調整後炉定数セットの一般解の導出

前述のように、回帰炉定数調整法は設計手法としてはあまり実用性がないと考えられる [33]が、
物理的な意味（最適化対象の違い）を理解する観点から意味があるので、MLRAの導出について
も簡単にまとめる。この最小分散不偏線形推定に基づく導出方法では、拡張炉定数調整法と回帰炉

定数調整法の式には完全な対称性があり、設計対象炉心を表す上付きの (2)を積分実験データを表
す上付きの (1)に置き換えて、同じように導出を行うと、回帰炉定数調整法の式として以下の式が
得られる。

T ∗MLRA = T 0 +
(
BMLRA0 +

(
I −G(1)−1 G(1)

)
YD

)
D−1

(
R(1)e − R(1)c (T 0)

)
(4.5.23)

ただし、ここで、

BMLRA0 ≡MG(1)T +G(1)−0 V(1)m (4.5.24)

と定義した。なお、G(1)−0 、G(1)−1 は、それぞれ、無数に存在するG(1) の一般化行列のひとつであり、
互いに異なる行列であっても良いことを意味する。また、式 (4.1.1)、(4.1.10)、(4.1.11)、(4.1.12)
より、V(11)

m = V(1)m となることを用いた。

4.5.4 実用上の観点からの MLEAの解の選択

拡張炉定数調整法における調整後の炉定数セットのすべてを表す一般式が得られたので、次に、

この一般式で表される解のうちどの解を使えば良いかを検討する。設計手法としての実用上の観点

からは、調整後の核データ（炉定数セット）の分散を最小するような制約条件を追加するのが自然

である。

4.5.4.1 調整後の核データの分散が最小になると予想される式

ここで、導出したMLEAの一般解において、Yとして O（このとき G(2)−1 の項は消えるので任

意）、G(2)−0 として G(2)+ を採用したときに、調整後の炉定数セットの共分散行列のトレースが最小
になると予想し、以下のように定義する。

Bmin
MLEA ≡ B∗MLEA

���
Y=O,G(2)−0 =G(2)+

(4.5.25)

ただし、ここで、以下のように定義した。

B∗MLEA = BMLEA0 +
(
I −G(2)−1 G(2)

)
YD (4.5.26)
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なお、このとき、以下のようになるので、調整後の炉定数セットの式は、CBEAと同じ式になる。

Bmin
MLEA =MG(1)T +G(2)+V(12)T

m (4.5.27)

以下で、この式を使ったときの調整後の炉定数セットの共分散行列Mmin
MLEA が最小になることを証

明する。すなわち、以下の式を証明する。

tr
(
M∗MLEA

)
≥ tr

(
Mmin

MLEA

)
(4.5.28)

4.5.4.2 証明

調整後の炉定数セットの共分散行列は、後述するように、B∗MLEA や B∗TMLEA として定義した部分

がどのような式（Bx）であったとしても、式 (4.8.12)で表される。ここでは、この結果を先取りし
て利用する。

Mx =M + BxD−1BT
x −MG(1)TD−1BT

x − BxD−1G(1)M (4.8.12)

この式のトレースは、式 (4.1.17)を用いると、以下のように変形できる。

tr (Mx) = tr (M) + tr
(
BxD−1BT

x

)
− 2tr

(
MG(1)TD−1BT

x

)
(4.5.29)

したがって、式 (4.5.28)の左辺と右辺の差は以下のように表すことができる。

tr
(
M∗MLEA

)
− tr

(
Mmin

MLEA

)
= tr

(
B∗MLEAD−1B∗TMLEA

)
− 2tr

(
MG(1)TD−1B∗TMLEA

)
− tr

(
Bmin

MLEAD−1BminT
MLEA

)
+ 2tr

(
MG(1)TD−1BminT

MLEA

)
(4.5.30)

ここで、B∗MLEA を以下のように表す。

B∗MLEA = BMLEA0 + PYD (4.5.31)

ただし、ここで、以下のように定義した。

P ≡ I −G(2)−1 G(2) (4.5.32)

なお、Pは冪等行列である。

P2 = P (4.5.33)

ただし、Pは必ずしも対称行列ではないことに注意が必要である。なお、ここで、一般化逆行列の
定義式 (4.1.25)を用いた。一方で、以下の式が成り立つ。

G(2)P = PG(2)− = O (4.5.34)
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ここで、式 (4.5.30)に、式 (4.5.31)で表される B∗MLEA を代入すると以下の式が得られる。

tr
(
M∗MLEA

)
− tr

(
Mmin

MLEA

)
= tr

(
(BMLEA0 + PYD)D−1 (BMLEA0 + PYD)T

)
− 2tr

(
MG(1)TD−1 (BMLEA0 + PYD)T

)
− tr

(
Bmin

MLEAD−1BminT
MLEA

)
+ 2tr

(
MG(1)TD−1BminT

MLEA

)
= tr

(
PYDYTPT

)
+ tr

(
BMLEA0D−1BT

MLEA0

)
+ 2tr

(
BMLEA0YTPT

)
− 2tr

(
MG(1)TD−1BT

MLEA0

)
− 2tr

(
MG(1)TYTPT

)
− tr

(
Bmin

MLEAD−1BminT
MLEA

)
+ 2tr

(
MG(1)TD−1BminT

MLEA

)
(4.5.35)

ただし、ここで、式 (4.1.17)を用いた。続いて、式 (4.5.35)に、式 (4.5.17)で表される BMLEA0 と、

式 (4.5.27)で表される Bmin
MLEA を代入すると、以下の式が得られる。

tr
(
M∗MLEA

)
− tr

(
Mmin

MLEA

)
= tr

(
PYDYTPT

)
+ tr

((
MG(1)T +G(2)−0 V(12)T

m

)
D−1

(
MG(1)T +G(2)−0 V(12)T

m

)T
)

+ 2tr
((

MG(1)T +G(2)−0 V(12)T
m

)
YTPT

)
− 2tr

(
MG(1)TD−1

(
MG(1)T +G(2)−0 V(12)T

m

)T
)

− 2tr
(
MG(1)TYTPT

)
− tr

((
MG(1)T +G(2)+V(12)T

m

)
D−1

(
MG(1)T +G(2)+V(12)T

m

)T
)

+ 2tr
(
MG(1)TD−1

(
MG(1)T +G(2)+V(12)T

m

)T
)

= tr
(
PYDYTPT

)
+ 2tr

(
G(2)−0 V(12)T

m YTPT
)

+ tr
(
G(2)−0 V(12)T

m D−1V(12)
m G(2)−T

0

)
− tr

(
G(2)+V(12)T

m D−1V(12)
m G(2)+T

)
(4.5.36)

ここで、一般に、行列A ∈ Rm×n の特定の一般化逆行列をA◦ とするとき、A のすべての一般
化逆行列A− は以下の式で表すことができる（文献 [36]の定理 9.2.7参照）。

A− =A◦ +Z −A◦AZAA◦ (4.5.37)

ただし、ここで、Z ∈ Rn×m は任意の行列である。
このため、G(2)−0 の特定の一般化行列を G(2)+ とすると、無数に存在する G(2)−0 は、任意の行列
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Z0 ∈ Rna×n(2) を用いて、以下のように表すことができる。

G(2)−0 = G(2)+ + Z0 −G(2)+G(2)Z0G(2)G(2)+

= G(2)+ + Z0 −G(2)+G(2)Z0

= G(2)+ +
(
I −G(2)+G(2)

)
Z0

= G(2)+ +QZ0 (4.5.38)

ただし、ここで、以下のように定義した。

Q ≡ I −G(2)+G(2) (4.5.39)

また、式 (4.5.15)より、G(2)+G(2) = Iが成り立つことを用いた。なお、Qは冪等行列であり、対称
行列でもある。すなわち、以下の式が成り立つ。

Q2 = Q (4.5.40)

QT = Q (4.5.41)

また、一般化逆行列の定義式より、以下の式が成り立つ。

G(2)Q = QG(2)+ = O (4.5.42)

同様に、無数に存在する G(2)−1 を任意の行列 Z1 ∈ Rna×n(2) を用いて、以下のように表す。

G(2)−1 = G(2)+ +QZ1 (4.5.43)

このとき、式 (4.5.32)で定義される Pは以下のように表すことができる。

P = I −
(
G(2)+ +QZ1

)
G(2)

= I −G(2)+G(2) +QZ1G(2)

= Q
(
I − Z1G(2)

)
(4.5.44)

式 (4.5.36)は、Y、G(2)−0 、G(2)−1 の関数と考えることができるが、式 (4.5.38)と式 (4.5.44)を代
入することで、任意の行列 Y、Z0、Z1 の関数として表すことができる。

最初に、G(2)−0 を Z0 に置き換えるため、式 (4.5.36)に、式 (4.5.38)で表される G(2)−0 を代入する。

tr
(
M∗MLEA

)
− tr

(
Mmin

MLEA

)
= tr

(
PYDYTPT

)
+ 2tr

((
G(2)+ +QZ0

)
V(12)T

m YTPT
)

+ tr
((

G(2)+ +QZ0

)
V(12)T

m D−1V(12)
m

(
G(2)+ +QZ0

)T
)

− tr
(
G(2)+V(12)T

m D−1V(12)
m G(2)+T

)
= tr

(
PYDYTPT

)
+ 2tr

((
G(2)+ +QZ0

)
V(12)T

m YTPT
)

+ tr
(
QZ0V(12)T

m D−1V(12)
m ZT

0 Q
)

+ 2tr
(
G(2)+V(12)T

m D−1V(12)
m ZT

0 Q
)

(4.5.45)
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ここで、式 (4.5.45)の第 4項は以下のように変形できる。

2tr
(
G(2)+V(12)T

m D−1V(12)
m ZT

0 Q
)
= 2tr

(
QG(2)+V(12)T

m D−1V(12)
m ZT

0

)
= 0 (4.5.46)

ただし、ここで、式 (4.5.42)を用いた。また、行列の積のトレースに関する公式 (4.1.20)を用いた。
次に、G(2)−1 を Z1 に置き換えるため、式 (4.5.45) に、式 (4.5.44)で表される Pを代入する。こ
のとき、式 (4.5.45)の第 2項は以下のように変形できる。

2tr
((

G(2)+ +QZ0

)
V(12)T

m YTPT
)
= 2tr

(
PT

(
G(2)+ +QZ0

)
V(12)T

m YT
)

= 2tr
((

I − Z1G(2)
)T

Q
(
G(2)+ +QZ0

)
V(12)T

m YT
)

= 2tr
((

I − Z1G(2)
)T

QZ0V(12)T
m YT

)
= 2tr

(
QZ0V(12)T

m YT
(
I − Z1G(2)

)T
)

(4.5.47)

ただし、ここで、式 (4.1.20)、(4.5.42)、(4.5.40)を用いた。したがって、式 (4.5.45)は、以下のよ
うに表すことができる。

tr
(
M∗MLEA

)
− tr

(
Mmin

MLEA

)
= tr

(
Q

(
I − Z1G(2)

)
YDYT

(
I − Z1G(2)

)T
Q

)
+ 2tr

(
QZ0V(12)T

m YT
(
I − Z1G(2)

)T
)

+ tr
(
QZ0V(12)T

m D−1V(12)
m ZT

0 Q
)

(4.5.48)

この式の右辺は、Y、Z0、Z1 の 2次形式になっており、因数分解が可能である。すなわち、以下の
ような 2次形式を考えると、(4.5.48)式の右辺と等しくなることが分かる。

tr
((

Q
(
I − Z1G(2)

)
YD +QZ0V(12)T

m

)
D−1

(
Q

(
I − Z1G(2)

)
YD +QZ0V(12)T

m

)T
)

= tr
(
Q

(
I − Z1G(2)

)
YDD−1DYT

(
I − Z1G(2)

)T
Q

)
+ tr

(
Q

(
I − Z1G(2)

)
YDD−1V(12)

m ZT
0 Q

)
+ tr

(
QZ0V(12)T

m D−1DYT
(
I − Z1G(2)

)
Q

)
+ tr

(
QZ0V(12)T

m D−1V(12)
m ZT

0 Q
)

= tr
(
Q

(
I − Z1G(2)

)
YDYT

(
I − Z1G(2)

)T
Q

)
+ tr

(
Q

(
I − Z1G(2)

)
YV(12)

m ZT
0 Q

)
+ tr

(
QZ0V(12)T

m YT
(
I − Z1G(2)

)
Q

)
+ tr

(
QZ0V(12)T

m D−1V(12)
m ZT

0 Q
)

= tr
(
Q

(
I − Z1G(2)

)
YDYT

(
I − Z1G(2)

)T
Q

)
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+ 2tr
(
QZ0V(12)T

m YT
(
I − Z1G(2)

)
Q

)
+ tr

(
QZ0V(12)T

m D−1V(12)
m ZT

0 Q
)

(4.5.49)

したがって、最終的に、式 (4.5.30)は以下のように表すことができる。

tr
(
M∗MLEA

)
− tr

(
Mmin

MLEA

)
= tr

((
Q

(
I − Z1G(2)

)
YD +QZ0V(12)T

m

)
D−1

(
Q

(
I − Z1G(2)

)
YD +QZ0V(12)T

m

)T
)

(4.5.50)

前述のように、任意の正方行列A、任意の矩形行列 B に対して、A が非負定値行列であれば、
BTAB も非負定値行列となる（文献 [36]の定理 14.2.9参照）。また、一般に、任意の対称非負定
値行列A に対して、tr (A) ≥ 0が成り立つ。
以上のことから、任意の Y、Z0、Z1、すなわち、任意の Y、G(2)−0 、G(2)−1 に対して、以下の式が

成り立つ。

tr
(
M∗MLEA

)
≥ tr

(
Mmin

MLEA

)
(4.5.51)

（証明終わり）

4.5.4.3 推奨される MLEAの調整後炉定数セットの式
以上により、無数に存在するMLEAの解の中で、Bmin

MLEA を採用したときのMmin
MLEA のトレース

が最小になることが分かった。したがって、MLEA では Bx として Bmin
MLEA の採用が推奨される。

すなわち、実用上、MLEAの調整後の炉定数セットの式は以下のようになる。

Tmin
MLEA = T 0 + Bmin

MLEAD−1(R(1)e + R(1)c (T 0)) (4.5.52)

前述のように、この式は CBEA（及びMSEA）と等価である。
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4.6 次元拡大線形推定を用いない最小分散不偏推定に基づく従来炉

定数調整法（MRCA）の導出

文献 [33] に基づいて、MRCA の導出の詳細を説明する。ここでは、線形推定の仮定として式
(4.2.21)を用いる。このため、劣決定問題の条件の場合であっても、線形推定において次元の拡大
を行わない。また、最小分散不偏推定に基づく導出であるので、正規分布の仮定も不要であり、本

稿で導出する従来炉定数調整法の中で最も仮定の少ない導出方法となる。なお、優決定問題の条件

の場合、すなわち、n(1) ≥ na の場合は、線形推定の式において次元の拡大は行われないので、ここ

では、劣決定の問題の条件の場合、すなわち、n(1) < na の場合のみを考える。

4.6.1 射影省略を用いない厳密な式（MRCA）の導出

次元拡大を伴わない線形推定の仮定を表す式 (4.2.21)を以下に再掲する。

T̂ −T 0 = G(1)+F
(
R(1)e − R(1)c (T 0)

)
(4.2.21)

一方、炉定数セットの推定値 T̂ は、式 (4.5.1)で表すことができる。以下に再掲する。

T̂ = T t +
(
T̂ −T 0

)
+ ∆T 0 (4.5.1)

ここで、式 (4.2.21)を、式 (4.5.1)に代入し、式 (4.2.4)を使うと以下の式が得られる。

T̂ = T t +G(1)+F
(
R(1)e − R(1)c (T 0)

)
+ ∆T 0

= T t +G(1)+F
(
∆e(1) − ∆m(1) −G(1)∆T 0

)
+ ∆T 0

= T t +
(
I −G(1)+FG(1)

)
∆T 0 +G(1)+F∆e(1) −G(1)+F∆m(1) (4.6.1)

このとき、炉定数セットの推定値の共分散は、以下のように表される。

Var
(
T̂
)
= E

((
T̂ − E

(
T̂
)) (

T̂ − E
(
T̂
))T

)
= E

((
T̂ −T t

) (
T̂ −T t

)T
)

= E
(((

I −G(1)+FG(1)
)
∆T 0 +G(1)+F∆e(1) −G(1)+F∆m(1)

)
((

I −G(1)+FG(1)
)
∆T 0 +G(1)+F∆e(1) −G(1)+F∆m(1)

)T
)

=
(
I −G(1)+FG(1)

)
E

(
∆T 0∆T

T
0

) (
I −G(1)+FG(1)

)T

+
(
G(1)+F

)
E

(
∆e(1)∆e(1)T

) (
G(1)+F

)T
+

(
G(1)+F

)
E

(
∆m(1)∆m(1)T

) (
G(1)+F

)T

=M +G(1)+FG(1)MG(1)TFTG(1)+T −MG(1)TFTG(1)+T −G(1)+FG(1)M

+G(1)+FV(1)e FTG(1)+T +G(1)+FV(1)m FTG(1)+T (4.6.2)

70



ここで、共分散行列の定義式と不偏推定の仮定の式から得られる式 (4.2.14)、(4.2.15)、(4.2.16)、
(4.2.17)を使った。また、誤差の独立性の仮定も用いた。
この分散を最小化する Fを求めるために、この分散のトレースを Fで偏微分した関数を考える。

∂

∂F
tr

(
Var

(
T̂
))
=
∂

∂F
tr

(
G(1)+FG(1)MG(1)TFTG(1)+T

)
− ∂
∂F

tr
(
MG(1)TFTG(1)+T

)
− ∂
∂F

tr
(
G(1)+FG(1)M

)
+
∂

∂F
tr

(
G(1)+FV(1)e FTG(1)+T

)
+
∂

∂F
tr

(
G(1)+FV(1)m FTG(1)+T

)
= 2G(1)+TG(1)+FG(1)MG(1)T

− 2G(1)+TMG(1)T

+ 2G(1)+TG(1)+FV(1)e
+ 2G(1)+TG(1)+FV(1)m . (4.6.3)

ただし、ここで、転置に関する公式 (4.1.16)、トレースの微分の公式 (4.1.22)、(4.1.23)、(4.1.24)を
用いた。また、共分散行列が対称であることを用いた。

この式が 0になるときの Fを、FMRCA とおく。

G(1)+TG(1)+FMRCAG(1)MG(1)T −G(1)+TMG(1)T

+G(1)+TG(1)+FMRCAV(1)e +G(1)+TG(1)+FMRCAV(1)m = 0 (4.6.4)

この式を FMRCA について整理すると以下の式が得られる。(
G(1)+TG(1)+

)
FMRCA

(
G(1)MG(1)T + V(1)e+m

)
= G(1)+TMG(1)T (4.6.5)

この式に含まれる G(1)+TG(1)+ について考える。ここでは、劣決定条件の問題の場合を考えて
いるので、感度係数の一次独立性の仮定より、G(1) は最大行階数行列である。一方で、任意の
行列 A に対して、rank

(
ATA

)
= rank (A)、rank

(
A+

)
= rank (A) が成り立つことを考慮する

と、rank
(
G(1)+TG(1)+

)
= n(1) となる。G(1)+TG(1)+ ∈ Rn(1)×n(1) は n(1) 次の正方行列であるので、

G(1)+TG(1)+ は正則（可逆）である。そこで、左から
(
G(1)+TG(1)+

)−1
を、右から式 (4.1.2)で定義さ

れる Dの逆行列をかけると以下の式が得られる。

FMRCA =
(
G(1)+TG(1)+

)−1
G(1)+TMG(1)TD−1

= G(1)MG(1)TD−1 (4.6.6)

ただし、ここで、以下の式が成り立つことを用いた。(
G(1)+TG(1)+

)−1
G(1)+T = G(1) (4.6.7)
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この式が成り立つことは次のように確認できる。この式の左辺を X =
(
G(1)+TG(1)+

)−1 G(1)+T とお

き、両辺の両方から G(1)+ をかけると以下のようになる。

G(1)+XG(1)+ = G(1)+
(
G(1)+TG(1)+

)−1 (
G(1)+TG(1)+

)
G(1)+XG(1)+ = G(1)+ (4.6.8)

一方で、Moore-Penrose型の一般化行列は一意に決まるので、Xは G(1)+ のMoore-Penrose型の一
般化逆行列でなければならない。すなわち X =

(
G(1)+

)+
= G(1) が成り立つ。

なお、この段階ではまだ、射影省略（projection simplification）は使っていない。式 (4.6.6)を式
(4.2.21)に代入すると、MRCAの調整後の炉定数セットの式が得られる。

TMRCA = T 0 +G(1)+G(1)MG(1)TD−1
(
R(1)e − R(1)c (T 0)

)
(4.6.9)

なお、この式は、ベイズの定理に基づく従来炉定数調整法の式 (2.1.17)と比べると、右辺第 2項に
G(1)+G(1) が追加されている分だけ異なる。ここでは、劣決定問題の条件（n(1) < na）の場合を考え

ているので、G(1) が最大階数であっても、G(1)+G(1) , Iである。すなわち、劣決定問題の条件の場
合、TMRCA , TCBCA となる。一方で、優決定問題の条件（n(1) ≥ na）の場合は、G(1) が最大階数
の場合、G(1)+G(1) = Iである。すなわち、優決定条件の場合は、TMRCA = TCBCA となる。

4.6.2 射影省略を用いた最小分散不偏推定に基づく従来炉定数調整法（MSCA）の
導出

MRCAの式に対して、射影省略（projection simplification）の式 (3.3.18)を用いると、MSCAの
調整後の炉定数セットが得られる。

TMRCA = T 0 +G(1)+G(1)MG(1)T
(
G(1)MG(1)T + V(1)e+m

)−1 (
R(1)e − R(1)c (T 0)

)
(1)∼ T 0 +MG(1)T

(
G(1)MG(1)T + V(1)e+m

)−1 (
R(1)e − R(1)c (T 0)

)
≡ TMSCA (4.6.10)

この式は、ベイズの定理に基づく従来炉定数調整法の式 (2.1.17)と同じである。

TMSCA = TCBCA (4.6.11)

以上のように、劣決定問題の条件の場合には、線形推定における次元拡大を用いないと、ベイズの

定理に基づく従来炉定数調整法とは一致しない。射影省略は、両者の式の違いから導かれたもので

あるが、この式の意味するところから次元削減の概念が導かれる。

4.6.3 補遺

文献 [33] では、同様の方法で拡張炉定数調整法を導出している。すなわち、本稿では言及し
ていない二つの手法、次元拡大線形推定を用いない最小分散不偏推定に基づく拡張炉定数調整法
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（MREA）及び射影省略を用いた最小分散不偏推定に基づく拡張炉定数調整法（MSEA）を導出し
ている。前述の従来炉定数調整法（MRCA と MSCA）に対応する拡張炉定数調整法（MREA と
MSEA）を導出することができるが、MREAは、MLEAの一般解の一つと考えることができるた
め、本論文では詳細を省略する。ここでは、MREAとMSEAの導出結果のみを示す。

4.6.3.1 次元拡大を用いない最小分散不偏推定に基づく拡張炉定数調整法（MREA）
MREAにおける調整後の炉定数セットは以下の式で表される。

TMREA = T 0 +G(1)+FMREA

(
R(1)e − R(1)c (T 0)

)
(4.6.12)

ただし、ここで、

FMREA = argmin
F

tr
(
Var

(
R(2)c (T̂ )

))
(4.6.13)

である。

MRCAと同様に導出すると以下の式が得られる。

TMREA = T 0 +G(1)+
(
G(2)G(1)+

)+ (
G(2)MG(1)T + V(12)T

m

)
D−1

(
R(1)e − R(1)c (T 0)

)
(4.6.14)

4.6.3.2 射影省略を用いた最小分散不偏推定に基づく拡張炉定数調整法（MSEA）
G(2) に対する射影省略として以下を考える。

G(2)+G(2) (2)∼ I (4.6.15)

この式と、G(1) に対する射影省略の式 (3.3.18)を繰り返し適用すると、以下のように MSEAの式
を導出することができる。この式の導出の詳細については、文献 [33]を参照できる。

TMREA = T 0 +G(1)+
(
G(2)G(1)+

)+ (
G(2)MG(1)T + V(12)T

m

)
D−1

(
R(1)e − R(1)c (T 0)

)
(1)(2)∼ T 0 +

(
MG(1)T +G(2)+V(12)T

m

)
D−1

(
R(1)e − R(1)c (T 0)

)
≡ TMSEA (4.6.16)

この式は、ベイズの定理に基づく拡張炉定数調整法の式 (4.3.25)と同じである。

TMSEA = TCBEA (4.6.17)

4.6.3.3 MLEAにおける MREAと MSEAの包含性
MLEA の調整後の炉定数セットの一般解 T ∗MLEA において、Y = O、G(2)−0 = G(2)+ とすると、

CBEA（= MSEA）の式と同じになるので、MLEA は、CBEA や MSEA を含んでいることが分
かる。

以下では、MLEA が、CBEA（= MSEA）の式だけでなく、実用上は MREA の式も含んでい
ることを示す。ここで、G(2) は最大階数であると仮定しているので、任意の行列 A に対して
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rank (A+) = rank (A)が成り立つことを考慮すると、G(2)+ も最大階数である。また、G(1) について
も最大階数であると仮定しているので、G(1) ∈ Rn(1)×na、G(2)+ ∈ Rna×n(2) はともに最大階数である。

二つの最大階数の行列を乗じた行列は最大階数になるとは限らないが、実用上の計算においては、

n(2) ≪ n(1) が成り立つと考えられるので、G(1)G(2)+ ∈ Rn(1)×n(2) は最大階数になっている可能性が
高い。この場合、G(2)G(1)+

(
G(2)G(1)+

)+
= Iとなるので、以下の式が成り立つ。

G(2)G(1)+
(
G(2)G(1)+

)+
G(2) = G(2) (4.6.18)

したがって、一般化逆行列の定義より、G(1)+
(
G(2)G(1)+

)+
は、G(2) の一般化逆行列である。そこ

で、Yとして −BCBEAD−1 を、G(2)−0 として G(2)+ を、G(2)−1 として G(1)+
(
G(2)G(1)+

)+
を採用した場

合、B∗MLEA は以下のようになる。

B∗MLEA

���
Y=−BCBEAD−1,G(2)−0 =G(2)+,G(2)−1 =G(1)+(G(2)G(1)+)+

= BCBEA +
(
I −G(1)+

(
G(2)G(1)+

)+
G(2)

) (
−BCBEAD−1

)
D

= G(1)+
(
G(2)G(1)+

)+
BCBEA

= BMREA (4.6.19)

このように、MLEAの一般解は、実用上、MREAの式を含んでいることが分かる。
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4.7 次元削減炉定数調整法（DRCA）の導出

次に、文献 [34]に基づいて、DRCAの導出の詳細を説明する。また、DRCA1と CBCAの関係
（近似的に等価）、DRCA2と CBCAの関係（等価）、DRCA3とMRCAの関係（等価）について説
明する。

4.7.1 原特徴空間から部分空間への次元削減

最初に、任意の炉定数セット T ∈ Rna×1 の次元を削減するための行列として、行列 A ∈ Rna×ña

を考える。すなわち、以下の式により、次元削減された炉定数セット T̃ ∈ Rña×1 に変換することを

考える。

T̃ = ATT (4.7.1)

なお、この式において次元を拡張することは考えないものとする。すなわち、以下の不等式が成り

立つ。

ña ≤ na (4.7.2)

この式を「次元削減の不等式」と呼ぶことにする。また、調整に用いる積分実験データの数 n(1) よ

りも大きな次元の部分空間を使わないものとする。すなわち、以下の不等式が成り立つ。

ña ≤ n(1) (4.7.3)

この式を「情報量の不等式」と呼ぶことにする。これらの二つの不等式は常に同時に成り立つ状態

を考えているので、優決定問題の条件のときには、次元削減の不等式が ña の上限を表す式となる。

ña ≤ na （優決定問題の条件 n(1) > naのとき） (4.7.4)

一方、劣決定問題の条件のときは、情報量の不等式が ña の上限を表す式となる。

ña ≤ n(1) （劣決定問題の条件 n(1) < naのとき） (4.7.5)

ここで、A として、線形空間における特徴ベクトルの分布を最もよく近似する部分空間を求め
る方法である Karhunen-Loéve展開（KL展開）、あるいは、主成分分析として知られる方法を用い
る。これらの方法は「分散最大基準」と呼ばれることもあり、原特徴空間における共分散行列の上

位固有値に対応する固有ベクトルを基底とする部分空間を使う方法である。

ここで、ña 次元の部分空間を張る ña 個の列ベクトル vi ∈ Rna×1 からなる以下のような正規直

交基底を考える。

{v1, · · · , vña
} (4.7.6)

基底の正規直交性から以下の式が成り立つ。

vT
i v j = δi j (4.7.7)
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ただし、δi j はクロネッカーのデルタであり、以下のように定義される。

δi j =

{
1 (i = j)
0 (i , j)

(4.7.8)

このとき、原特徴空間から部分空間への変換行列 Aは以下のように表すことができる。

A =
(
v1 v2 · · · vña

)
(4.7.9)

なお、この Aで決定される部分空間は原特徴空間における特徴ベクトルの分布として何を採用する
かによって変わる。この原特徴空間における特徴ベクトルの分布を表す任意の共分散行列を XTX
と考えれば、Xの特異値分解 X = UΣVT で得られる直交行列 Vの列ベクトルにより Aを決定する
ことができる。なお、次元削減の不等式 (4.7.2)が成り立つので、Aについて以下の式が成り立つ。

ATA = Iña
(ña ≤ na), (4.7.10)

ただし、ここで、Ip は p次の単位行列を表す。ここでは、行列の次数（次元）が特に重要になるの

で、必要に応じて行列の次数を下付き文字で明示する。なお、文脈から次数が明らかな場合には次

数の下付き文字を省略する。一方で、順序を入れ替えた場合には単位行列にはならないことに注意

が必要である。 {
AAT , Ina (ña < na)
AAT = Ina (ña = na)

(4.7.11)

4.7.2 部分空間への直交射影による近似

一般に、行列 Zの列ベクトルで張られる部分空間への（直交）射影行列 PZ は以下のように表さ

れる。

PZ ≡ Z
(
ZTZ

)−1
ZT (4.7.12)

ここでは、式 (4.7.10)が成り立つような Aを考えているので、Aの列ベクトルで張られる部分空
間への射影行列 PA は以下のようになる。

PA = AAT (4.7.13)

このことを踏まえると、次元削減した部分空間に射影された炉定数セットは原特徴空間上では

AATT と表される。ここで、原特徴空間における炉定数セットを次元削減した部分空間に射影され

た炉定数セットで近似できると仮定する。すなわち、以下の近似式が成り立つと仮定する。

T ≈ AATT (4.7.14)

このとき、原特徴空間における炉定数セットは、次元削減された炉定数セットを用いて以下のよう

に表すことができる。

T ≈ AT̃ (4.7.15)
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4.7.3 次元削減を用いた炉定数調整法の導出

上記の仮定を用いて新しい炉定数調整法を導出する。推定する炉定数セット T̂、調整前の炉定数

セット T 0 に、式 (4.7.1)を適用して次元削減した炉定数セットを、それぞれ、˜̂
T、T̃ 0 とする。˜̂

T = ATT̂ (4.7.16)

T̃ 0 = ATT 0 (4.7.17)

同様に、炉定数セットの真値 T t に対して次元削減した炉定数セットを T̃ t とする。

T̃ t = ATT t (4.7.18)

このとき、式 (4.7.15)より、原特徴空間における炉定数セットは以下のように表される。

T̂ ≈ A˜̂
T (4.7.19)

T 0 ≈ AT̃ 0 (4.7.20)

ここで、ここで線形推定の式について考える。ここで、炉定数セットの推定値 T̂ を使って積分実験

データを計算することで積分実験データの推定値 R̂
(1)
を再現できると仮定する。このとき、（次元

拡大のない）積分実験データを推定する線形推定の式 (4.2.19)は、線形性の仮定の式 (4.2.1)を用
いると、以下のように変形できる。

R̂
(1) − R(1)c (T 0) = F

(
R(1)e − R(1)c (T 0)

)
G(1)

(
T̂ −T 0

)
≈ F

(
R(1)e − R(1)c (T 0)

)
(4.7.21)

この式に、式 (4.7.19)、(4.7.20)を代入すると以下の式が得られる。

G(1)A(˜̂T − T̃ 0) = F
(
R(1)e − R(1)c (T 0)

)
(4.7.22)

ここで、Moore-Penrose型の一般化逆行列を使うと、式 (4.7.22)の最小ノルム解は以下のように表
すことができる。 ˜̂

T − T̃ 0 =
(
G(1)A

)+
F

(
R(1)e − R(1)c (T 0)

)
(4.7.23)

この式に式 (4.7.16)、(4.7.17)を代入すると以下の式が得られる。

AT
(
T̂ −T 0

)
=

(
G(1)A

)+
F

(
R(1)e − R(1)c (T 0)

)
(4.7.24)

一方で、MRCAの導出で用いた以下の炉定数セットの推定値 T̂ の式 (4.5.1)の両辺に左から AT を

かけると以下の式が得られる。

T̂ = T t +
(
T̂ −T 0

)
+ ∆T 0

ATT̂ = ATT t + AT(T̂ −T 0) + AT
∆T 0 (4.7.25)
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この式に、式 (4.7.24)を代入すると、以下の式が得られる。

ATT̂ = ATT t +
(
G(1)A

)+
F

(
R(1)e − R(1)c (T 0)

)
+ AT

∆T 0 (4.7.26)

更に、式 (4.2.4)を代入すると、以下のように変形できる。

ATT̂ = ATT t +
(
G(1)A

)+
F

(
∆e(1) − ∆m(1) −G(1)∆T 0

)
+ AT

∆T 0 (4.7.27)

この式に、式 (4.7.16)、(4.7.18)を代入すると以下の式が得られる。˜̂
T = T̃ t +

(
G(1)A

)+
F

(
∆e(1) − ∆m(1) −G(1)∆T 0

)
+ AT

∆T 0

= T̃ t +
(
AT −

(
G(1)A

)+
FG(1)

)
∆T 0

+
(
G(1)A

)+
F∆e(1) −

(
G(1)A

)+
F∆m(1) (4.7.28)

次に、この次元削減後の炉定数セットの分散が最小になるような炉定数調整法を導出することを

考える。ここで、式 (4.7.28)を用いると、次元削減後の炉定数セットの分散は以下のように表すこ
とができる。

Var
(˜̂
T
)
= E

((˜̂
T − T̃ t

) (˜̂
T − T̃ t

)T)
=

(
AT −

(
G(1)A

)+
FG(1)

)
E

(
∆T 0∆T

T
0

) (
AT −

(
G(1)A

)+
FG(1)

)T

+
((

G(1)A
)+

F
)

E
(
∆e(1)∆e(1)T

) ((
G(1)A

)+
F
)T

+
((

G(1)A
)+

F
)

E
(
∆m(1)∆m(1)T

) ((
G(1)A

)+
F
)T

= ATMA +
(
G(1)A

)+
FG(1)MG(1)TFT

((
G(1)A

)+)T

− ATMG(1)TFT
((

G(1)A
)+)T

−
(
G(1)A

)+
FG(1)MA

+
(
G(1)A

)+
FV(1)e FT

((
G(1)A

)+)T

+
(
G(1)A

)+
FV(1)m FT

((
G(1)A

)+)T
(4.7.29)

ただし、ここで、不偏推定の仮定と誤差の独立性に関する仮定を用いた。また、式 (4.1.16) を用
いた。

次に、この分散が最小となるような Fを決定するために、この分散のトレースを Fで偏微分した
ものを考える。ここで、行列のトレース、偏微分に対して分配法則が成り立つことを考慮すると、
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T̂ の分散のトレースを Fで偏微分したものは以下のように表すことができる。

∂

∂F
tr

(
Var

(
T̂
))
=
∂

∂F
tr

((
G(1)A

)+
FG(1)MG(1)TFT

((
G(1)A

)+)T)
− ∂
∂F

tr
(
ATMG(1)TFT

((
G(1)A

)+)T)
− ∂
∂F

tr
((

G(1)A
)+

FG(1)MA
)

+
∂

∂F
tr

((
G(1)A

)+
FV(1)e FT

((
G(1)A

)+)T)
+
∂

∂F
tr

((
G(1)A

)+
FV(1)m FT

((
G(1)A

)+)T)
= 2

((
G(1)A

)+)T (
G(1)A

)+
FG(1)MG(1)T

− 2
((

G(1)A
)+)T

MG(1)T

+ 2
((

G(1)A
)+)T (

G(1)A
)+

FV(1)e

+ 2
((

G(1)A
)+)T (

G(1)A
)+

FV(1)m (4.7.30)

また、ここで、行列のトレースに対する微分の公式 (4.1.22)、(4.1.23)、(4.1.24)を用いた。
したがって、式 (4.7.30)が 0になるときの Fが、分散を最小にする係数であり、FDRCA と表記す

ると以下の式が得られる。((
G(1)A

)+)T (
G(1)A

)+
FDRCAG(1)MG(1)T −

((
G(1)A

)+)T
MG(1)T

+
((

G(1)A
)+)T (

G(1)A
)+

FDRCAV(1)e +
((

G(1)A
)+)T (

G(1)A
)+

FDRCAV(1)m = 0 (4.7.31)

FDRCA について整理すると以下の式が得られる。((
G(1)A

)+)T (
G(1)A

)+
FDRCA

(
G(1)MG(1)T + V(1)e+m

)
=

((
G(1)A

)+)T
ATMG(1) (4.7.32)

ところで、一般に、任意の実数の行列A に対して以下の式が成り立つ。

A+AAT =AT (4.7.33)

この式に対して、B =
(
A+

)T とおくと以下の式が得られる。

BT (
B+

)T B+ = B+ (4.7.34)

ただし、ここで、任意の行列 Cに対して、
(
CT)T

= C、
(
C+

)+
= C、

(
C+

)T
=

(
CT)+ が成り立つこと

を用いた。

上式が成り立つことを考慮して、式 (4.7.32)の両辺に左から
(
G(1)A

)T
、右から式 (4.1.2)で定義

される D−1 をかけると以下の式が得られる。(
G(1)A

)+
FDRCA =

((
G(1)A

)+ (
G(1)A

))T
ATMG(1)D−1 (4.7.35)
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ただし、ここで、式 (4.1.16)を用いた。
この式を式 (4.7.23)に代入したときの ˜̂

T が、次元削減された調整後の炉定数セット T̃DRCA とな

る。すなわち、以下のような式となる。

T̃DRCA = T̃ 0 +
((

G(1)A
)+ (

G(1)A
))T

ATMG(1)D−1
(
R(1)e − R(1)c (T 0)

)
(4.7.36)

両辺に左から Aをかけて、式 (4.7.19)、(4.7.20)を用いると次元削減する前の調整後の炉定数セッ
ト TDRCA の式が得られる。

TDRCA = T 0 + A
((

G(1)A
)+ (

G(1)A
))T

ATMG(1)D−1
(
R(1)e − R(1)c (T 0)

)
(4.7.37)

ここで、情報量の不等式 (4.7.3)は、優決定問題、劣決定問題の条件のいずれの場合でも成り立っ
ていることを考えると G(1)A ∈ Rn(1)×ña は常に横長の矩形行列となる。したがって、G(1)Aが最大
階数であると仮定すると、以下の式が成り立つ。(

G(1)A
)+ (

G(1)A
)
= Iña

(ña ≤ n(1)) (4.7.38)

このとき、次元削減する前の調整後の炉定数セット TDRCA の式は以下のように表すことができる。

TDRCA = T 0 + AATMG(1)D−1
(
R(1)e − R(1)c (T 0)

)
(4.7.39)

この式が次元削減炉定数調整法（DRCA）における調整後の断面積セットの式となる。
なお、この式は、劣決定問題、優決定問題のいずれの条件下でも適用可能である。ただし、劣決

定問題の条件では、式 (4.7.5)の不等式を満たさなければならないので、必ず次元削減が行われる
ことになる。したがって、劣決定問題の条件下では、部分空間を決定する行列 Xの選択によって
結果が変わる。一方、優決定問題の条件では、式 (4.7.4)の不等式を満たせば良いので、ña = na と

した場合には次元削減は行わないことになる。このときは、Xの選択には関係なく、AAT = I、す
なわち、式 (4.7.11)が成り立つので、CBCAの式と同じになる。このように、この式は CBCAを
包含しており、通常の炉定数調整法を拡張した一般的な理論式になっていることが分かる。

なお、次元削減炉定数調整法（DRCA）の導出では、G(1)Aが最大階数であると仮定しているが、
式 (4.7.37)は、この仮定を使わなくても成り立つ。このため、ここで、この G(1)Aが最大階数であ
るという仮定を用いない厳密な次元削減炉定数を DRCA′ として以下のように定義しておく。

TDRCA′ = T 0 + A
((

G(1)A
)+ (

G(1)A
))T

ATMG(1)D−1
(
R(1)e − R(1)c (T 0)

)
(4.7.40)

4.7.4 部分空間を決定する行列（3種類の提案）

前述のように、次元削減炉定数調整法における部分空間の選択は任意である。このため、ここ

で、次元削減後の部分空間を決定する行列 Xの候補として以下の 3種類を考える。

X1 =M (4.7.41)

X2 = G(1)M (4.7.42)

X3 = G(1) (4.7.43)
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次元削減の物理的な意味から考えると、X1 は核データの不確かさのみが大きい部分空間、X2 は核

データの不確かさと感度係数がともに大きい部分空間、X3 は感度係数のみが大きい部分空間に考

慮して炉定数調整を行うことに対応している。物理的には、核データの不確かさと感度係数がとも

に大きい核データが重要と考えて調整するのが良いと考えられるので、これらの候補の中では X2

が最も望ましい結果を与えるものと予想される。以降では、次元削減に X1、X2、X3 を用いる場合

の DRCAを、それぞれ、DRCA1、DRCA2、DRCA3と呼ぶことにする。
なお、前述のように、優決定問題の条件下で、ña = na とした場合には、行列 Xの選択に関係な
く、DRCAは CBCAと等価になることが分かっている。このため、これ以降では、以下の劣決定
問題の条件が成り立っているときについてのみ検討する。

n(1) < na (4.7.44)

次元削減に用いる Xi(i = 1, 2, 3)の特異値分解を直交行列 Ui、Vi と対角行列 Σi を使って以下の

ように表す。

Xi = UiΣiVT
i (4.7.45)

ここで、Xi の j 番目の特異値を σi, j、対応する直交行列 Ui、Vi の j 番目の列ベクトルを、それぞ

れ、ui, j、vi, j とする。ただし、特異値は降順に並べるものとする。すなわち、以下の不等式が成り

立つものとする。

σi,1 ≥ σi,2 ≥ · · · ≥ σi,n(1) (4.7.46)

なお、ui, j と vi, j には、式 (4.7.7)と同様の正規直交性があるので、以下の式が成り立つ。

UiUT
i = UT

i Ui = I (4.7.47)

ViVT
i = VT

i Vi = I (4.7.48)

このとき、i = 1, 2, 3に対して、原特徴空間から部分空間への変換行列 Ai は以下のように表すこと

ができる。

Ai =
(
vi,1 vi,2 · · · vi,ña

)
(4.7.49)

ここで、この変換行列 Ai を使って、式 (4.7.39)を以下のように定義し直す。

TDRCA = T 0 + AiAT
i MG(1)D−1

(
R(1)e − R(1)c (T 0)

)
(i = 1, 2, 3) (4.7.50)

同様に、式 (4.7.40)を以下のように定義し直す。

TDRCAi′ = T 0 + Ai

((
G(1)Ai

)+ (
G(1)Ai

))T
AT
i MG(1)D−1

(
R(1)e − R(1)c (T 0)

)
(i = 1, 2, 3) (4.7.51)
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ここで、X1 は対称行列であるので、X1 のときは、U1 ∈ Rna×na、V1 ∈ Rna×na、Σ1 ∈ Rna×na と

なり、以下のように表すことができる。

U1 =
(
u1,1 u1,2 · · · u1,na

)
(4.7.52)

V1 =
(
v1,1 v1,2 · · · v1,na

)
(4.7.53)

Σ1 =

©­­­­­«
σ1,1 0 · · · 0

0 σ1,2
. . .

...
...

. . .
. . . 0

0 · · · 0 σ1,na

ª®®®®®¬
(4.7.54)

一方、X2、X3のときは非対称行列になり、Uk ∈ Rn
(1)×n(1)、Vk ∈ Rna×na、Σk ∈ Rn

(1)×na（k = 2, 3）
となる。ここで、劣決定問題の条件、すなわち、不等式 (4.7.44)が成り立つ場合は以下のように表
すことができる。

Uk =
(
uk,1 uk,2 · · · uk,n(1)

)
(4.7.55)

Vk =
(
vk,1 vk,2 · · · vk,na

)
(4.7.56)

Σk =

©­­­­­«
σk,1 0 · · · 0 0 · · · 0

0 σk,2
. . .

...
...
. . .

...
...

. . .
. . . 0

...
. . .

...
0 · · · 0 σk,n(1) 0 · · · 0

ª®®®®®¬
=

(
Σk1 O

)
(4.7.57)

ただし、ここで、Oは零行列である。また、以下のように定義した。

Σk1 =

©­­­­­«
σk,1 0 · · · 0

0 σk,2
. . .

...
...

. . .
. . . 0

0 · · · 0 σk,n(1)

ª®®®®®¬
(4.7.58)

なお、式 (4.7.53)、(4.7.56)より、i = 1, 2, 3に対して、Vi は同じ形をしていることが分かる。

Vi =
(
vi,1 v,2 · · · vi,na

)
(i = 1, 2, 3) (4.7.59)

4.7.5 他の手法との関係（数式による検討）

DRCAと CBCAによる調整後の断面積の差を定量化するために、両手法の調整後の断面積の差
のユークリッドノルム ∥ · ∥2 を使って議論する。次元削減に Xi を用いる場合の調整後の断面積を

TDRCAi とすると DRCAと CBCAの調整後の断面積の差のユークリッドノルムの 2乗は以下のよ

82



うに表すことができる。

∥TDRCAi −TCBCA∥22
= (TDRCAi −TCBCA)T (TDRCAi −TCBCA)

= tr
(
(TDRCAi −TCBCA) (TDRCAi −TCBCA)T

)
= tr

((
AiAT

i − I
)

MG(1)TD−1
(
R(1)e − R(1)c (T 0)

) (
R(1)e − R(1)c (T 0)

)T
D−1G(1)M

(
AiAT

i − I
)T

)
= tr

(
G(1)M

(
AiAT

i − I
)T (

AiAT
i − I

)
MG(1)TD−1

(
R(1)e − R(1)c (T 0)

) (
R(1)e − R(1)c (T 0)

)T
D−1

)
= tr

(
G(1)M

(
I − AiAT

i

)
MG(1)TD−1

(
R(1)e − R(1)c (T 0)

) (
R(1)e − R(1)c (T 0)

)T
D−1

)
(4.7.60)

ただし、ここで、
(
AiAT

i − I
)
が対称行列であることと、行列の積のトレースに関する公式 (4.1.19)

を用いた。

ここで、後述の議論で使うために、i = 1, 2, 3 に対する Xi

(
I − AiAT

i

)
XT
i について考えておく。

式 (4.7.45)と式 (4.7.48)を用いると以下のように変形することができる。

Xi

(
I − AiAT

i

)
XT
i = UiΣiVT

i

(
I − AiAT

i

)
VT
i Σ

T
i Ui

= UiΣi

(
I − VT

i AiAT
i VT

i

)
ΣT
i Ui (4.7.61)

一方で、式 (4.7.49)、(4.7.59)より、以下の式が得られる。

AT
i Vi =

©­­«
vT
i,1
...

vT
i,ña

ª®®®¬
(
vi,1 · · · vi,na

)
=

(
Iña

O
)

(4.7.62)

VT
i Ai =

(
AT
i Vi

)T
=

(
Iña

O

)
(4.7.63)

ただし、ここで、正規直交性を表す式 (4.7.7)と次元削減の不等式 (4.7.2)を用いた。したがって、
更に以下のように変形することができる。

Xi

(
I − AiAT

i

)
XT
i = UiΣi

(
Ina −

(
Iña

O

) (
Iña

O
) )
ΣT
i UT

i

= UiΣi

(
Ina −

(
Iña

O
O O

))
ΣT
i UT

i

= UiΣi

(
O O
O Ina−ña

)
ΣT
i UT

i (4.7.64)

4.7.5.1 DRCA1と CBCAの関係
DRCA1と CBCAの調整後の断面積セットの差について考える。このとき、式 (4.7.60)より、調
整後の断面積の差のユークリッドノルムの 2乗は以下のように計算することができる。

∥TDRCA1 −TCBCA∥22
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= tr
(
G(1)X1

(
I − A1AT

1

)
XT

1 G(1)TD−1
(
R(1)e − R(1)c (T 0)

) (
R(1)e − R(1)c (T 0)

)T
D−1

)
(4.7.65)

ここで、劣決定問題の条件下で ña = n(1) とした場合の X1
(
I − A1AT

1
)
XT

1 について考える。この式

は、式 (4.7.64)より、以下のように変形することができる。

X1

(
I − A1AT

1

)
XT

1 = U1Σ1

(
O O
O Ina−n(1)

)
ΣT

1 UT
1

= U1diag
(
0, · · · , 0, σ2

1,n(1)+1, · · · , σ
2
1,na

)
UT
i

=

na∑
j=n(1)+1

σ2
1, ju1, ju

T
1, j (4.7.66)

なお、ここで、式 (4.7.52)と式 (4.7.54)を用いた。
X1 は核データ共分散行列Mであるので、n(1) + 1番目以降の特異値（固有値）もゼロでない可
能性がある。しかしながら、特異値 σi, j は降順で定義しているので、n(1) が大きくなるにつれて、

特異値は小さくなっていき、n(1) = na になったときに、式 (4.7.66)は零行列 Oになる。
このため、n(1) が十分に大きい、すなわち、n(1) ≈ na のとき、この項の行列の要素の値は小さく、

式 (4.7.66)は零行列 O で近似できると考えられる。すなわち、以下の近似式が成り立つと考えら
れる。

X1

(
I − A1AT

1

)
X1 ≈ O (4.7.67)

したがって、劣決定問題の条件下で、ña = n(1) とした場合に、n(1) ≈ na であれば、以下の近似が成

り立つと考えられる。

∥TDRCA1 −TCBCA∥22 ≈ tr (O) = 0 (4.7.68)

ノルムが 0のときは完全に一致するので、以下の近似が成り立つと考えられる。

TDRCA1 ≈ TCBCA (4.7.69)

4.7.5.2 DRCA2と CBCAの関係
DRCA2と CBCAの調整後の断面積セットの差のユークリッドノルムの 2乗は、式 (4.7.60)より
以下のように計算することができる。

∥TDRCA2 −TCBCA∥22

= tr
(
X2

(
I − A2AT

2

)
XT

2 D−1
(
R(1)e − R(1)c (T 0)

) (
R(1)e − R(1)c (T 0)

)T
D−1

)
(4.7.70)
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ここで、劣決定問題の条件下で、ña = n(1) としたときの k = 2, 3に対する Xk

(
I − AkAT

k

)
XT
k
につ

いて考える。この式は、式 (4.7.64)より、以下のように変形できる。

Xk

(
I − AkAT

k

)
XT
k = UkΣk

(
O O
O Ina−n(1)

)
ΣT
kUT

k

= Uk

(
Σk1 O

) (
O O
O Ina−n(1)

) (
Σk1
O

)
UT
k

= UkOUT
k

= O (4.7.71)

この式は近似なしに厳密に成り立つ。したがって、以下の式が成り立つ。

∥TDRCA2 −TCBCA∥22 = tr (O) = 0 (4.7.72)

ノルムがゼロであるので以下の式が成り立つ。

TDRCA2 = TCBCA (4.7.73)

すなわち、劣決定問題の条件下で ña = n(1) とした場合の DRCA2は、正規分布を仮定していない
が、CBCAと完全に結果が一致する。
このことから、劣決定問題の条件下で通常の炉定数調整法を適用する場合の正規分布の仮定の役

割は、積分実験データを最大限有効活用したG(1)Mの部分空間で次元削減して調整することに対応
していると考えられる。また、前述のように、現在考えている 3種類の DRCAの中では、DRCA2
が物理的な意味から考えて最も望ましい結果を与えると期待されるが、DRCA2は CBCAと等価で
ある。今回の検討結果は、劣決定問題の条件下で CBCAを適用することの物理的な妥当性を支持
するものであると考えられる。

4.7.5.3 DRCA3と CBCAの関係
DRCA3と CBCAの調整後の断面積セットの差のユークリッドノルムの 2乗は、式 (4.7.60)より
以下のように計算することができる。

∥TDRCA3 −TCBCA∥22

= tr
(
X3X1

(
I − A3AT

3

)
XT

1 XT
3 D−1

(
R(1)e − R(1)c (T 0)

) (
R(1)e − R(1)c (T 0)

)T
D−1

)
(4.7.74)

この式に対して一般的な議論を行うのは難しいので、特殊なケースについて考えることで、物理的

な考察を行う。

例えば、特殊なケースとして、X1 ≈ ρI（すなわち、M ≈ ρI）の近似が成り立つと仮定する。た
だし、ここで、ρは正の実数とする。このとき、以下の式が成り立つ。

X3X1

(
I − A3AT

3

)
XT

1 XT
3 ≈ ρ2X3

(
I − A3AT

3

)
XT

3 = O (4.7.75)

85



ただし、ここで、式 (4.7.71)が成り立つことを用いた。すなわち、核データの不確かさが核種、反
応、エネルギーによらず一定で相関がないような特殊なケースでは、TDRCA3 は TCBCA に等しく

なる。

別の特殊なケースとして、A3 ≈ A1（例えば、G(1)TG(1) ≈M）の近似が成り立つと仮定する。こ
のとき、以下の式が成り立つ。

X3X1

(
I − A3AT

3

)
X1X3 ≈ X3X1

(
I − A1AT

1

)
X1X3 ≈ O (4.7.76)

ただし、ここで 式 (4.7.67) の近似を用いた。すなわち、感度係数の主要な成分（特異値の大き
い特異ベクトル）と核データの不確かさの主要な成分（固有値の大きい固有ベクトル）がよく似

ていれば、TDRCA3 は TCBCA とよく似たものとなるということを意味する。実際に、M = I や
M = G(1)TG(1) を TMRCA と TCBCA の式に代入し、G(1)+G(1)G(1)T = G(1)T が成り立つことを用いる
と、両者が等しくなることを確認できる。詳細については次節にまとめた。

核データの不確かさは核種、反応、エネルギーによって大きく異なるのが普通である。また、核

データの測定、評価において、これらの間には互いに強い相関が生じることが多い。また、感度係

数の大きい核種、反応、エネルギーは工学的に関心のあるところなので、優先的に精度向上の努力

が払われ、核データの不確かさは相対的に小さくなっていると考えられる。したがって、ここで仮

定したような条件が成立していることは通常期待できない。このように、MRCAは、物理的に望
ましいと考えられる DRCA2、すなわち、CBCAの結果と一致するような条件が満たされていると
期待することは難しいと考えられる。

4.7.5.4 DRCA3と CBCAの関係（特殊なケースの確認）
ここで、前節で示した二つの特殊なケースについて、実際に、M = IやM = G(1)TG(1) を TMRCA

と TCBCA の式に代入し、G(1)+G(1)G(1)T = G(1)T が成り立つことを用いると、両者が等しくなるこ
とを確認する。

核データ共分散行列が単位行列に等しい場合 核データの不確かさが、核種、反応、エネルギー等

によらず一定で（分散を ρとする）、相関がないような場合、すなわち、M ≈ ρIの近似が成り立つ
場合を考える。このとき、TCBCA は以下のような式になる。

TCBCA =MG(1)T
(
G(1)MG(1)T + V(1)e+m

)−1 (
R(1)e − R(1)c (T 0)

)
≈ ρG(1)T

(
ρG(1)G(1)T + V(1)e+m

)−1 (
R(1)e − R(1)c (T 0)

)
(4.7.77)

同様に、TMRCA は以下のような式になる。

TMRCA = G(1)+G(1)MG(1)T
(
G(1)MG(1)T + V(1)e+m

)−1 (
R(1)e − R(1)c (T 0)

)
≈ ρG(1)+G(1)G(1)T

(
ρG(1)G(1)T + V(1)e+m

)−1 (
R(1)e − R(1)c (T 0)

)
(4.7.78)
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ここで、任意の実数の行列 X に対して以下の式が成り立つ。

X+XXT = XT (4.7.79)

したがって、TMRCA は以下のようになる。

TMRCA = ρG(1)T
(
ρG(1)G(1)T + V(1)e+m

)−1 (
R(1)e − R(1)c (T 0)

)
(4.7.80)

以上より、M ≈ ρIの場合には以下の式が成り立つことが確認できる。

TCBCA ≈ TMRCA (4.7.81)

核データ共分散行列が感度係数に等しい場合 核データ共分散行列が感度係数行列に似ている場

合について考える。ただし、感度係数行列は対称行列ではなくサイズも異なるので、感度係数行

列として G(1)TG(1) を考える。例えば、M ≈ G(1)TG(1) の近似が成り立つ場合を考える。このとき、
TCBCA は以下のような式になる。

TCBCA =MG(1)T
(
G(1)MG(1)T + V(1)e+m

)−1 (
R(1)e − R(1)c (T 0)

)
≈ G(1)TG(1)G(1)T

(
G(1)G(1)TG(1)G(1)T + V(1)e+m

)−1 (
R(1)e − R(1)c (T 0)

)
(4.7.82)

一方、TMRCA は以下のような式になる。

TMRCA = G(1)+G(1)MG(1)T
(
G(1)MG(1)T + V(1)e+m

)−1 (
R(1)e − R(1)c (T 0)

)
≈ G(1)+G(1)G(1)TG(1)G(1)T

(
G(1)G(1)TG(1)TG(1)T + V(1)e+m

)−1 (
R(1)e − R(1)c (T 0)

)
= G(1)TG(1)G(1)T

(
G(1)G(1)TG(1)TG(1)T + V(1)e+m

)−1 (
R(1)e − R(1)c (T 0)

)
(4.7.83)

ただし、ここで (4.7.79)式を用いた。
以上より、M ≈ G(1)TG(1) の場合には以下の式が成り立つことが確認できる。

TCBCA ≈ TMRCA (4.7.84)

4.7.5.5 DRCA3と MRCAの関係
次に、DRCA3 と MRCA の関係について考える。式 (4.6.9) と式 (4.7.50) を比べると A3AT

3 と

G(1)+G(1) のみが置き換わった式になっていることが分かる。式 (4.7.49)を用いると、A3AT
3 は以下

のように表すことができる。

A3AT
3 =

ña∑
i=1

v3,iv
T
3,i (4.7.85)
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一方で、式 (4.7.45)を用いると、G(1)+G(1) は以下のように表すことができる。

G(1)+G(1) =
(
U3Σ3VT

3

)+
U3Σ3VT

3

= V3Σ
+
3 UT

3 U3Σ3VT
3

= V3Σ
+
3Σ3VT

3

= V3
(
Σ31 O

)+ (
Σ31 O

)
VT

3 (4.7.86)

ここで、感度係数の一次独立性の仮定、すなわち、G(1) が最大階数あるという仮定を用いると更に
以下のように変形することができる。

G(1)+G(1) = V3

(
Σ−1

31
O

) (
Σ31 O

)
VT

3

= V3

(
In(1) O
O O

)
VT

3

=

n(1)∑
i=1

v3,iv
T
3,i (4.7.87)

以上のことから、劣決定問題の条件下で、ña = n(1) とした場合には、以下の式が成り立つことが分

かる。

A3AT
3 = G(1)+G(1) (4.7.88)

このとき、明らかに以下の式が成り立つ。

TDRCA3 = TMRCA (4.7.89)

すなわち、劣決定問題の条件下で、ña = n(1) とした場合には、DRCA3とMRCAの調整後の断面
積セットは完全に一致する。DRCA3の物理的な意味を考えると、MRCAは、G(1) の部分空間に射
影したときに同じになるベクトルの中から、調整後の断面積セットの分散が最小になるようなベ

クトルを採用していると解釈することができる。したがって、射影省略（projection simplification）
は正規分布の仮定のありなしに由来するものではなく、最小分散不偏推定に基づく炉定数調整の導

出で、G(1) のMoore-Penrose型の一般化逆行列を採用したこと*6 に由来すると考えられる。

*6 具体的には、文献 [33]の式 (39)から式 (40)の導出部分で G(1)+ を使っている部分に対応する。
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4.8 設計予測精度の評価式の導出

次に、文献 [33]に基づいて、調整後の炉定数セットの共分散行列の式を導出する。また、設計精
度評価に必要な設計対象炉心核特性の計算値の共分散行列及び積分実験データの計算値の共分散行

列の式を導出する。このために、最初に調整後の炉定数セットの式を統一された形式で示し、その

式に対して共分散行列の式を導出することで、すべての手法に対する共分散行列の式を一度に導出

する。ここでは、各手法の共分散行列の式の導出に必要な整理だけを行う。共分散行列の式を含め

た各手法の式の統一的な表記については改めて次章で述べる。

4.8.1 導出した調整後炉定数セットの式の整理

炉定数調整法の各手法 x における調整後の炉定数セット T x は、以下の形式で統一的に表現で

きる。

T x ≡ T 0 + BxD−1
(
R(1)e − R(1)c (T 0)

)
(4.8.1)

このように、すべての手法の調整後の炉定数セットの式は、Bx を変更するだけで表現できる。具

体的には、最小分散不偏推定推定に基づく炉定数調整法（MLEA、MLCA、MLRA）の調整後の炉
定数セットの式の Bx は、以下のように定義できる。

Bx ≡


MG(1)T +G(2)−0 V(12)T

m +
(
I −G(2)−1 G(2)

)
YD (x = MLEA∗)

MG(1)T +G(2)+V(12)T
m (x = MLEA)

MG(1)T (x = MLCA)
MG(1)T +G(1)−0 V(1)m +

(
I −G(1)−1 G(1)

)
YD (x = MLRA∗)

(4.8.2)

次元拡大を用いない最小分散不偏推定に基づく炉定数調整法（MREA、MRCA、MRRA）の式は以
下のように定義できる。

Bx ≡


G(1)+

(
G(2)G(1)+

)+ (
G(2)MG(1)T + V(12)T

m

)
(x = MREA)

G(1)+
(
G(1)MG(1)T

)
(x = MRCA)

G(1)+
(
G(1)MG(1)T + V(1)m

)
(x = MRRA)

(4.8.3)

なお、MRCAの式の G(1)MG(1)T には括弧は不要であるが、MREAやMRRAの式との対比が分か
りやすいようにここではあえて括弧をつけた。同様に、射影省略を用いた最小分散不偏推定に基づ

く炉定数調整法（MSEA、MSCA、MSRA）の式は以下のように定義できる。

Bx ≡


MG(1)T +G(2)+V(12)T
m (x = MSEA)

MG(1)T (x = MSCA)
MG(1)T +G(1)+V(1)m (x = MSRA)

(4.8.4)
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次元削減炉定数調整法（DRCA）の式は、G(1)Aが最大階数であるという仮定を用いない厳密な次
元削減炉定数調整法（DRCA′）の式を含めて、以下のように定義できる。

Bx ≡


AATMG(1) (x = DRCA)
A

( (
G(1)A

)+ (
G(1)A

) )T
ATMG(1) (x = DRCA′)

(4.8.5)

最後に、ベイズの定理に基づく炉定数調整法の式は以下のように定義できる。

Bx ≡
{

MG(1)T +G(2)+V(12)T
m (x = CBEA)

MG(1)T (x = CBCA)
(4.8.6)

また、最小分散不偏（線形）推定において分散を最小にする係数行列は、以下のように表すことが

できる。

Fx ≡ G(1)BxD−1 (4.8.7)

この係数行列に対応する行列として、以下の記号を定義しておく。

Lx ≡ G(2)BxD−1 (4.8.8)

である。

4.8.2 調整後炉定数セットの共分散の式の導出

以上のように、すべての手法の調整後の炉定数セットの式は、Bx の定義を変更するだけで同じ

式で表すことができる。この Bx を使って表される調整後の炉定数セットに対する共分散行列の式

を導出すれば、すべての手法における共分散行列の式を導出できたことになる。

分散の定義式 (4.1.11)と、不偏分散の仮定を表す式 (4.2.11)を使うと、調整後の炉定数セットの
共分散行列は以下のように表される。

Mx ≡ Var (T x)

= E
(
(T x − E (T 0)) (T x − E (T 0))T

)
= E

(
(T x −T t ) (T x −T t )T

)
(4.8.9)

一方で、式 (4.8.1)、(4.2.4)、(4.1.4)を使うと、以下の式が得られる。

T x −T t = T 0 + BxD−1
(
R(1)e − R(1)c (T 0)

)
−T t

= ∆T 0 + BxD−1
(
∆e(1) − ∆m(1) −G(1)∆T 0

)
=

(
I − BxD−1G(1)

)
∆T 0 + BxD−1

(
∆e(1) − ∆m(1)

)
(4.8.10)
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この式を式 (4.8.9)に代入すると以下のようになる。

Mx = E
(
(T x −T t ) (T x −T t )T

)
= E

(((
I − BxD−1G(1)

)
∆T 0 + BxD−1

(
∆e(1) − ∆m(1)

))
((

I − BxD−1G(1)
)
∆T 0 + BxD−1

(
∆e(1) − ∆m(1)

))T
)

=
(
I − BxD−1G(1)

)
E

(
∆T 0∆T

T
0

) (
I − BxD−1G(1)

)T

+ BxD−1E
(
∆e(1)∆e(1)T

)
D−1BT

x + BxD−1E
(
∆m(1)∆m(1)T

)
D−1BT

x

=
(
I − BxD−1G(1)

)
M

(
I − BxD−1G(1)

)T
+ BxD−1V(1)e+mD−1BT

x

=M + BxD−1G(1)MG(1)TD−1Bx −MG(1)TD−1BT
x − BxD−1G(1)M + BxD−1V(1)e+mD−1BT

x

=M + BxD−1
(
G(1)MG(1)T + V(1)e+m

)
D−1BT

x −MG(1)TD−1BT
x − BxD−1G(1)M

=M + BxD−1DD−1BT
x −MG(1)TD−1BT

x − BxD−1G(1)M

=M + BxD−1BT
x −MG(1)TD−1BT

x − BxD−1G(1)M (4.8.11)

ただし、ここで、Dの定義式 (4.1.2)を用いた。この式は、Bx がどのように定義されているかには

関係なく常に成り立つ。したがって、炉定数調整法の手法 x に対する調整後の炉定数セットの共分

散行列は以下のように表される。

Mx =M + BxD−1BT
x −MG(1)TD−1BT

x − BxD−1G(1)M (4.8.12)

例えば、MLCAの場合は以下のようになり、式 (2.1.15)で示した CBCAの式と同じになることが
確認できる。

MMLCA =M +MG(1)TD−1G(1)M −MG(1)TD−1G(1)M −MG(1)TD−1G(1)M

=M −MG(1)TD−1G(1)M
=MCBCA (4.8.13)

また、MLEAの場合は、以下のように、式 (4.3.27)で示した CBEAの式と同じになることが確認
できる。

MMLEA =M +
(
MG(1)T +G(2)+V(12)T

m

)
D−1

(
MG(1)T +G(2)+V(12)T

m

)T

−MG(1)TD−1
(
MG(1)T +G(2)+V(12)T

m

)T
−

(
MG(1)T +G(2)+V(12)T

m

)
D−1G(1)M

=M +
(
MG(1)T +G(2)+V(12)T

m

)
D−1

(
G(2)+V(12)T

m

)T

−MG(1)TD−1
(
MG(1)T +G(2)+V(12)T

m

)T

=MCBEA (4.8.14)
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4.8.3 設計対象炉心核特性の計算値の共分散（設計予測精度）の式の導出

次に、設計予測精度、すなわち、調整後の炉定数セットを使って計算した設計対象炉心核特性

の共分散行列の式を導出する。分散の定義式 (4.1.11)と、不偏分散の仮定を表す式 (4.2.13)を使う
と、調整後の炉定数セットを使って計算した設計対象炉心核特性の共分散行列は以下のように表さ

れる。

Var
(
R(2)c (T x)

)
= E

((
R(2)c (T x) − E

(
R(2)c (T x)

)) (
R(2)c (T x) − E

(
R(2)c (T x)

))T
)

= E
((
R(2)c (T x) − R(2)t

) (
R(2)c (T x) − R(2)t

)T
)

(4.8.15)

一方で、線形性の仮定を表す式 (4.2.1)を使うと以下の式が得られる。

R(2)c (T x) ≈ R(2)c (T 0) +G(2)(T x −T 0) (4.8.16)

この式に、調整後の炉定数セットを表す式 (4.8.1)、線形性の仮定から得られる式 (4.2.3)、(4.2.4)を
代入すると以下の式が得られる。

R(2)c (T x) = R(2)c (T 0) +G(2)BxD−1
(
R(1)e − R(1)c (T 0)

)
= R(2)c (T 0) + Lx

(
R(1)e − R(1)c (T 0)

)
= R(2)t +G(2)∆T 0 + ∆m

(2) + Lx

(
∆e(1) − ∆m(1) −G(1)∆T 0

)
= R(2)t +

(
G(2) − LxG(1)

)
∆T 0 + Lx∆e

(1) +
(
∆m(2) − Lx∆m

(1)
)

(4.8.17)

ただし、ここで、式 (4.8.8)で定義した Lx を用いた。

この式を式 (4.8.15)に代入すると以下の式が得られる。

Var
(
R(2)c (T x)

)
= E

((
R(2)c (T x) − R(2)t

) (
R(2)c (T x) − R(2)t

)T
)

= E
(((

G(2) − LxG(1)
)
∆T 0 + Lx∆e

(1) +
(
∆m(2) − Lx∆m

(1)
))

((
G(2) − LxG(1)

)
∆T 0 + Lx∆e

(1) +
(
∆m(2) − Lx∆m

(1)
))T

)
=

(
G(2) − LxG(1)

)
Var

(
∆T 0∆T

T
0

) (
G(2) − LxG(1)

)T

+ LxVar
(
∆e(1)∆e(1)T

)
LT
x

+ Var
(
∆m(2)∆m(2)T

)
+ LxVar

(
∆m(1)∆m(1)T

)
LT
x

− LxVar
(
∆m(1)∆m(2)T

)
− Var

(
∆m(2)T∆m(1)

)
LT
x

=
(
G(2) − LxG(1)

)
M

(
G(2) − LxG(1)

)T

+ LxV(1)e LT
x + V(2)m + LxV(1)m LT

x − LxV(12)
m − V(12)T

m LT
x
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= G(2)MG(2)T + LxG(1)MG(1)TLT
x −G(2)MG(1)TLT

x − LxG(1)MG(2)T

+ LxV(1)e LT
x + V(2)m + LxV(1)m LT

x − LxV(12)
m − V(12)T

m LT
x

= G(2)MG(2)T + Lx

(
G(2)MG(2)T + V(1)e + V(1)m

)
LT
x

−G(2)MG(1)TLT
x − LxG(1)MG(2)T + V(2)m − LxV(12)

m − V(12)T
m LT

x

= G(2)MG(2)T + LxDLT
x −G(2)MG(1)TLT

x − LxG(1)MG(2)T

+ V(2)m − LxV(12)
m − V(12)T

m LT
x (4.8.18)

一方で、調整後の炉定数セットを表す式 (4.8.12)の両辺に、左から G(2)、右から G(2)T をかける
と以下の式が得られる。

G(2)MxG(2)T = G(2)MG(2)T +G(2)BxD−1BT
xG(2)T −G(2)MG(1)TD−1BT

xG(2)T

−G(2)BxD−1G(1)MG(2)T

= G(2)MG(2)T +G(2)BxD−1
(
DD−1

)
BT
xG(2)T

−G(2)MG(1)TD−1BT
xG(2)T −G(2)BxD−1G(1)MG(2)T

= G(2)MG(2)T + LxDLT
x −G(2)MG(1)TLT

x − LxG(1)MG(2)T (4.8.19)

この式の右辺は、式 (4.8.18)の右辺の最初の 4つの項と同じであることが分かる。したがって、式
(4.8.19)を式 (4.8.18)に代入すると、設計対象炉心核特性の計算値の分散の式は以下のようにまと
めることができる。すなわち、手法 x の設計予測精度は以下の式で表される。

Var
(
R(2)c (T x)

)
= G(2)MxG(2)T + V(2)m − LxV(12)

m − V(12)T
m LT

x (4.8.20)

なお、この式は CBCAの設計予測精度の評価式 (2.1.18)と同じ形をしていることが分かる。更
に、x = MLCAのとき、Lx は以下のようになる。

LMLCA = G(2)BCBCAD−1

= G(2)MG(1)T
(
G(1)MG(1)T + V(1)e + V(1)m

)−1

= LCBCA (4.8.21)

この式は、CBCA の設計予測精度の評価式に含まれる LCBCA の定義式 (4.8.8) と同じであり、
MLCAの設計予測精度の評価式は、CBCAと同じになることが確認できる。すなわち、以下の式
が成り立つ。

Var
(
R(2)c (TCBCA)

)
= Var

(
R(2)c (TMLCA)

)
(4.8.22)

4.8.4 積分実験データの計算値の共分散の式の導出

積分実験データについては実験値が得られているので、調整後の炉定数セットを使って積分実験

データを計算しなおした場合の不確かさ（共分散行列）は、設計手法としては特に必要ないが、こ
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の不確かさを評価できるようにしておくことは、異なる手法の性能比較や、調整後の C/E値に残っ
ている 1 からの差を議論する場合等に有効である。このため、ここで、調整後の炉定数セットを
使って積分実験データを計算した場合の共分散行列の式を導出する。この式の導出は、調整後の炉

定数セットを使って設計対象炉心核特性を計算した場合の共分散行列の式の導出とほとんど同じで

あり、基本的には、G(2)、V(12)
m 、Lx を、G(1)、V(1)m 、Fx に置き換えるだけである。このため、途中

の式変形は少し省略して導出の過程を示す。

調整後の炉定数セットを使って計算した積分実験データの計算値の共分散行列は以下のように表

される。

Var
(
R(1)c (T x)

)
= E

((
R(1)c (T x) − E

(
R(1)c (T x)

)) (
R(1)c (T x) − E

(
R(1)t (T x)

))T
)

= E
((
R(1)c (T x) − R(1)t

) (
R(1)c (T x) − R(1)t

)T
)

(4.8.23)

一方で、この式に、調整後の炉定数セットを表す式 (4.8.1)、線形性の仮定から得られる式 (4.2.3)、
(4.2.4)を代入すると以下の式が得られる。

R(1)c (T x) ≈ R(1)c (T 0) +G(1)(T x −T 0)

= R(1)c (T 0) + Fx

(
R(1)e − R(1)c (T 0)

)
= R(1)t + ∆m

(1) +G(1)∆T 0 + Fx

(
∆e(1) − ∆m(1) −G(1)∆T 0

)
= R(1)t +

(
G(1) − FxG(1)

)
∆T 0 + Fx∆e

(1) +
(
∆m(1) − Fx∆m

(1)
)

(4.8.24)

この式を式 (4.8.23)に代入すると以下の式が得られる。

Var
(
R(1)c (T x)

)
=

(
G(1) − FxG(1)

)
M

(
G(1) − FxG(1)

)T
+ FxV(1)e FT

x

+ V(1)m + FxV(1)m FT
x − FxV(1)m − V(1)m FT

x

= G(1)MG(1) + FxDFT
x −G(1)MG(1)TFT

x − FxG(1)MG(1)T

+ V(1)m − FxV(1)m − V(1)m FT
x (4.8.25)

一方で、調整後の炉定数セットを表す式 (4.8.12)の両辺に、左から G(1)、右から G(1)T をかけると
以下の式が得られる。

G(1)MxG(1)T = G(1)MG(1)T + FxDFT
x −G(1)MG(1)TFT

x − FT
xG(1)MG(1)T (4.8.26)

この式の右辺は、式 (4.8.25)の右辺の最初の 4つの項と同じであるので、式 (4.8.26)を式 (4.8.25)
に代入すると、調整後の炉定数セットを使って計算しなおした計算値の共分散（分散）の式は以下

のように表される。

Var
(
R(1)c (T x)

)
= G(1)MxG(1)T + V(1)m − LxV(1)m − V(1)m LT

x (4.8.27)
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第 5章 導出した理論式の検証と考察

本章では、最初に、前章で導出した理論式を統一的な表記を使って整理する。次に、導出した理

論式に対する数値検証を用いた検証結果示す。また、理論式の導出過程や理論式の比較から分かる

こと等について考察を行う。

5.1 統一的表記による導出結果の整理

5.1.1 炉定数調整法の式の統一的表記

炉定数調整法の各手法 x における調整後の炉定数セット T x は、前章の式 (4.8.1)で示したよう
に、以下の形式で統一的に表現できる。

T x ≡ T 0 + BxD−1
(
R(1)e − R(1)c (T 0)

)
(5.1.1)

ただし、ここで、式 (4.1.2)、(4.1.1)で定義したように、

D ≡ G(1)MG(1)T + V(1)e+m (5.1.2)

V(1)e+m ≡ V(1)e + V(1)m (5.1.3)

である。

この表記を用いると、拡張炉定数調整法、従来炉定数調整法、回帰炉定数調整法の式は、それぞ

れ、以下のように整理することができる。

(1)拡張炉定数調整法

Bx ≡


MG(1)T +G(2)−0 V(12)T

m +
(
I −G(2)−1 G(2)

)
YD (x = MLEA∗)

G(1)+
(
G(2)G(1)+

)+ (
G(2)MG(1)T + V(12)T

m

)
(x = MREA)

MG(1)T +G(2)+V(12)T
m (x = MLEA,MSEA,CBEA)

(5.1.4)

(2)従来炉定数調整法

Bx ≡


A

( (
G(1)A

)+ (
G(1)A

) )T
ATMG(1) (x = DRCA′)

AATMG(1) (x = DRCA)
G(1)+G(1)MG(1)T (x = MRCA,DRCA3)
MG(1)T (x = MLCA,MSCA,DRCA2,CBCA)

(5.1.5)
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(3)回帰炉定数調整法

Bx ≡


MG(1)T +G(1)−0 V(1)m +

(
I −G(1)−1 G(1)

)
YD (x = MLRA∗)

G(1)+
(
G(1)MG(1)T + V(1)m

)
(x = MRRA)

MG(1)T +G(1)+V(1)m (x = MLRA,MSRA)

(5.1.6)

ただし、ここで、

A ∈ Rna×ña : 次元削減のための変換行列
Y ∈ Rna×n(1) : 任意の行列
G(i)−0 , G(i)−1 ∈ Rn(i)×na (i = 1, 2) : G(i) の一般化逆行列*1

である。

なお、行列 Aは、次元削減のための変換行列であるが、この行列 Aにより次元削減が行われ、
炉定数セットを表すベクトルは部分空間に射影される。この部分空間は、特徴空間における特徴ベ

クトル（炉定数セットのベクトル）の分布（共分散行列）として何を採用するかによって変わる。

この原特徴空間における特徴ベクトルの分布を表す共分散行列を XTXと考えれば、Xの特異値分
解 X = UΣVT で得られる直交行列 Vの列ベクトル v1, v2, · · · , vña

により、以下のように Aを決定
することができる。

A =
(
v1 v2 · · · vña

)
(5.1.7)

なお、ここでは、Xとして以下の 3種類を定義し、それぞれ、DRCA1、DRCA2、DRCA3とする。

X1 =M (5.1.8)

X2 = G(1)M (5.1.9)

X3 = G(1) (5.1.10)

前章で示したように、DRCA2、DRCA3については、以下の式と等価になる。

Bx ≡
{

MG(1)T (x = DRCA2)
G(1)+G(1)MG(1) (x = DRCA3)

(5.1.11)

なお、DRCA1に対しては、Bx ≈MG(1)T の近似が成り立つ。
このとき、手法 x の調整後の炉定数セットの共分散行列Mx、調整後の炉定数セットで計算しな

おした積分実験データの核特性の分散 Var
(
R(1)c (T x)

)
、調整後の炉定数セットで計算した設計対象

炉心の核特性の分散 Var
(
R(2)c (T x)

)
は、それぞれ、式 (4.8.12)、(4.8.27)、(4.8.20)で示したように、

*1 G(i)−0 と G(i)−1 は、それぞれ、無数に存在する一般化行列のうちの一つである。両者は独立に選択することが可能で

あり、G(i)−0 = G(i)−1 であっても、G(i)−0 , G(i)−1 であってもよい。
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以下の式で表される。

Mx =M + BxD−1BT
x −MG(1)TD−1BT

x − BxD−1G(1)M (5.1.12)

Var
(
R(1)c (T x)

)
= G(1)MxG(1)T + V(1)m − FxV(1)m − V(1)m FT

x (5.1.13)

Var
(
R(2)c (T x)

)
= G(2)MxG(2)T + V(2)m − LxV(12)

m − V(12)T
m LT

x (5.1.14)

ただし、ここで、式 (4.8.7)、(4.8.8)で定義したように、

Fx ≡ G(1)BxD−1 (5.1.15)

Lx ≡ G(2)BxD−1 (5.1.16)

である。

以上のように、ベイズの定理に基づく導出、最小分散不偏線形推定に基づく導出のいずれでも、

拡張炉定数調整法及び従来炉定数調整法を導出することが可能であり、結果として得られる式は完

全に一致することが分かる。また、従来炉定数調整法については、MSCAや DRCA2でも同じ式に
なる。このため、以降では、導出方法を特に区別する必要がない場合は、単純に、拡張炉定数調整

法（EA）、従来炉定数調整法（CA）と省略する。回帰炉定数調整法（RA）についても同様とする。
すなわち、以下のように整理することができる。

EA ≡ CBEA = MLEA
CA ≡ CBCA = MLCA = MSCA = DRCA2

これにあわせて、統一表記における Bx についても以下のように定義する。

Bx ≡


MG(1)T +G(2)+V(12)T
m (x = EA)

MG(1)T (x = CA)
MG(1)T +G(1)+V(1)m (x = RA)

(5.1.17)

なお、拡張炉定数調整法は、従来にはなかった手法であり、拡張バイアス因子法と従来炉定数調整

法の特徴をあわせ持つ新しい手法である。また、拡張炉定数調整法及び従来炉定数調整法は、ベイ

ズの定理に基づく導出（CBEA、CBCA）、最小分散不偏線形推定に基づく導出（MLEA、MLCA）
のいずれでも導出が可能であり、結果として同じ式が得られることが分かる。

なお、最小分散不偏線形推定に基づく導出では、正規分布の仮定は不要であるので、正規分布の

仮定を必要としない従来炉定数調整法を導出できたことになる。ただし、この導出では、線形推定

の式による次元拡大を行なっており、ベイズの定理に基づく導出とは異なる仮定を導入しているこ

とに注意が必要である。また、式は同じであるので、最小分散不偏線形推定に基づく従来炉定数調

整法は（MLCA）は、新しい手法を開発したというよりは、ベイズの定理に基づく従来炉定数調整
法（CBCA）に対して、新しい物理的な解釈を与えたというべきかもしれない。これまで、従来炉
定数調整法に対して「正規分布を仮定し、ベイズの定理に基づいて導出された」といった説明をす

ることが多かったが、今後は、「次元拡大を伴う線形推定が可能であると仮定し、最小分散不偏線

形推定に基づいて導出した」といった説明をしても良いことになる。また、次元削減炉定数調整法
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の特殊なケース（DRCA2）として同じ式を導出できるので、「核データ共分散と積分実験データの
感度係数を重みとした次元削減が可能であると仮定し、最小分散不偏推定に基づいて導出した」と

いった説明をしても良いことになる。炉定数調整法の適用に際しては、その結果の物理的な意味を

精査して用いる必要があるため、このように理論式に対して物理的な解釈を複数持っていることは

結果を精査する際に有用であり、結果の信頼性向上に資すると考えられる。なお、ベイズの定理に

基づく従来炉定数調整法における正規分布の役割については後で改めて議論する。

5.1.2 拡張バイアス因子法の式の統一的表記

一方、拡張バイアス因子法については、以下のように整理することができる。

R(2)x = R(2)c (T 0) +Kx

(
R(1)e − R(1)c (T 0)

)
(5.1.18)

ただし、

Kx ≡
(
G(2)MG(1)T + V(12)T

m

)
D−1 (x = MLEB,EBPE) (5.1.19)

である。

このとき、設計対象炉心の核特性の分散 Var
(
R(2)x

)
は、以下のように表される。

Var
(
R(2)x

)
= G(2)MG(2)T +KxDKT

x −KxG(1)MG(2)T −G(2)MG(1)TKT
x

+ V(2)m −KxV(12)
m − V(12)T

m KT
x (x = MLEB,EBPE) (5.1.20)

以上のように、拡張バイアス因子法についても、複数の設計対象炉心核特性に拡張して絶対値表

記した式を使う場合、EBPEと MLEBは同じ式になる。このため、以降では、両者を区別する必
要がない場合は、単純に、拡張バイアス因子法（EB）と省略する。すなわち、以下のように整理す
ることができる。

EB ≡ EBPE = MLEB

これにあわせて、Kx についても以下のように定義する。

Kx ≡
(
G(2)MG(1)T + V(12)T

m

)
D−1 (x = EB) (5.1.21)
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5.2 数値計算による検証

次に、導出した式が正しいことを確認するために実施した数値計算結果を示す。MLEAの導出
では、調整後の炉定数セットの分散が最小になることを示すために複雑な式変形を行っているの

で、この式変形に問題ないことを確認するための数値計算を行った。また、DRCA の導出では、
DRCA2と CBCA、DRCA3とMRCAが等価であることを説明するために複雑な式変形を行ってい
る。同様に、これらの等価性が正しいことを確認するための数値計算結果を示す。その他、DRCA
の導出の際に仮定した最大階数の仮定の妥当性等について数値計算結果を使って確認する。

5.2.1 MLEAの炉定数セットの分散が最小になることの確認

MLEAの調整後の炉定数セット（核データ）の分散が最小になることを証明するために導出した
式 (4.5.50)が正しいことを数値計算結果を使って説明する。以下に式 (4.5.50)を再掲する。

tr
(
M∗MLEA

)
− tr

(
Mmin

MLEA

)
= tr

((
Q

(
I − Z1G(2)

)
YD +QZ0V(12)T

m

)
D−1

(
Q

(
I − Z1G(2)

)
YD +QZ0V(12)T

m

)T
)

(4.5.50)

なお、この検証計算では、単純化した計算ケース（n(1) = 5、n(2) = 3、na = 36）を用いた。任意の
行列 Y、Z0、Z1 については、乱数を発生させて決定した。右辺と左辺の値を別々に計算して、両

者が有効数字の範囲内でよく一致することを確認した。表 5.1に、乱数を 10回発生させたときの
計算結果を示す。この表から、(4.5.50)の左辺と右辺の値は十分な精度で一致しており、式 (4.5.50)

表 5.1 MLEAの調整後の炉定数セットの共分散のトレースの差の式の数値計算による確認

乱数の発生 tr
(
M∗MLEA

)
tr

(
Mmin

MLEA

)
式 (4.5.50)の左辺 式 (4.5.50)の右辺

1 0.49237890 0.45089513 0.04148377 0.04148377

2 0.49123659 0.45089513 0.04034146 0.04034146

3 0.49418084 0.45089513 0.04328571 0.04328571

4 0.49415252 0.45089513 0.04325739 0.04325739

5 0.49068917 0.45089513 0.03979404 0.03979404

6 0.48526080 0.45089513 0.03436567 0.03436567

7 0.48060686 0.45089513 0.02971173 0.02971173

8 0.47527166 0.45089513 0.02437653 0.02437653

9 0.47532271 0.45089513 0.02442758 0.02442758

10 0.49866152 0.45089513 0.04776639 0.04776639

が成り立っていることを確認できる。また、この表の結果はすべて tr
(
M∗MLEA

)
≥ tr

(
Mmin

MLEA
)
が

成り立っていることが確認できるが、すべての M∗MLEA に対して Mmin
MLEA のときにトレースが最

小になることの確認としてはやや不十分である。このため、同じ計算ケースを使って、Y = O、
Z0 = Z1 = Oの近傍の tr

(
M∗MLEA

)
− tr

(
Mmin

MLEA
)
の値を計算し、Y = O、Z0 = Z1 = Oになるとき

に tr
(
M∗MLEA

)
− tr

(
Mmin

MLEA
)
がゼロになることを数値計算で確認する。
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調整後の炉定数セットの共分散行列のトレースの差 tr
(
M∗MLEA

)
− tr

(
Mmin

MLEA
)
を Y = O、Z0 =

Z1 = O の近傍で計算した結果を図 5.1 に示す。この計算では、スカラー変数 y、z を用いて、

Y = yJ、Z0 = Z1 = zJとし、yと zを、それぞれ、0 ≤ y ≤ 2、0 ≤ z ≤ 4の範囲で変化させた。ただ
し、ここで、Jはすべての要素が 1の行列を表す。この図から、少なくともこの範囲では、Y = O、
Z0 = Z1 = O（このとき、G(2)−0 = G(2)−1 = G(2)+ となる）、すなわち、Bmin

MLEA のときにトレースの差

が最小になっていることが確認できる。

図 5.1 Y(= yJ)と Z0(= Z1 = zJ)に対するM∗MLEA とMmin
MLEA のトレースの差
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5.2.2 DRCAの理論式に関する確認

次に、文献 [34]の §5.1に基づいて、DRCA2と CBCAが等価であること及び DRCA3とMRCA
が等価であることを数値計算により確認した結果を示す。また、DRCAの導出において、G(1)Aが
最大階数と仮定したことの妥当性を数値計算により確認した結果についても示す。この検証計算で

は、基本的に統合炉定数 ADJ2010 [19,38]の作成で用いられた積分実験データや感度係数を利用し
ているが、計算を簡単にするため、少しモデルを修正しており、中性子のエネルギー群数は 18群と
し、調整対象核種・反応数は 40としている。調整に用いる積分実験データの数は 447（n(1) = 447
）、調整される核データの数は 726（na = 726）である。また、感度係数の一次独立性の仮定が成り
立つように、数値計算精度上、感度係数が一次従属となってしまう一部の積分実験データ*2を除外

した。この検証用のモデルにおいても、調整に用いる積分実験データ数の方が調整される核データ

の数より少ないので、劣決定問題の条件になっている。ただし、実際に統合炉定数を作成する場合

には、次章で示すように、中性子のエネルギー群数は 70群であり、調整対象核種・反応数も多い。

5.2.2.1 DRCA2と CBCA、DRCA3と MRCAの等価性の確認
表 5.2に、DRCAと CBCAの調整後の炉定数セットの差のユークリッドノルムの計算結果を示
す。表中に小さく示した数字は、実用的な計算においては有効数字範囲外と考えられるが、ここで

の目的は数値計算による検証であるため、参考情報として示した。また、この表には積分実験デー

タの数 na を 447から減らしていったときの計算結果を示した。積分実験データの選択方法には任
意性があるが、ここでは単純に積分実験データが登録されている順番に取り出して使っている。な

お、この検証計算ではすべて、積分実験データの数と次元削減後の次元の数は等しい（na = ña）と

いう条件で計算している。二つのベクトルが完全に一致したときにしか、ユークリッドノルムはゼ

ロにならないので、この表から、DRCA2と CBCAの調整後の炉定数セットは十分な計算精度で一
致していることが確認できる。

表 5.2 DRCAと CBCAの調整後の炉定数セットの比較 (na = 726)

ña
(
= n(1)

)
∥TDRCA1 −TCBCA∥2 ∥TDRCA2 −TCBCA∥2 ∥TDRCA3 −TCBCA∥2

447 0.00000261 0.00000000 0.28251234

400 0.00004267 0.00000000 0.34515829

300 0.00382252 0.00000000 0.43446419

200 0.00874558 0.00000000 0.35963292

100 0.06832549 0.00000000 0.32584523

50 0.16410035 0.00000000 0.31044264

1 0.04087671 0.00000000 0.04034195

同様に、表 5.3に、DRCAとMRCAの調整後の炉定数セットの差のユークリッドノルムの計算

*2 積分実験データの感度係数が本質的に一次独立性の仮定を満たしていないのではなく、感度係数の計算方法を簡略化
したのが原因であることが分かっており、最新の統合炉定数 ADJ2017 [24]ではこれらの積分実験データの感度係数
が修正されている。

101



結果を示す。計算条件は DRCAと CBCAの比較したときと同じである。この表から、DRCA3と
MRCAの調整後の炉定数セットは十分な計算精度で一致していることが確認できる。

表 5.3 DRCAとMRCAの調整後の炉定数セットの比較 (na = 726)

ña
(
= n(1)

)
∥TDRCA1 −TMRCA∥2 ∥TDRCA2 −TMRCA∥2 ∥TDRCA3 −TMRCA∥2

447 0.28251242 0.28251234 0.00000000

400 0.34515857 0.34515829 0.00000000

300 0.43450043 0.43446419 0.00000000

200 0.35985547 0.35963292 0.00000000

100 0.33409301 0.32584523 0.00000000

50 0.29820942 0.31044264 0.00000000

1 0.00659033 0.04034195 0.00000000

5.2.2.2 DRCAの導出における最大階数の仮定の妥当性の確認
続いて、文献 [34]の §5.1に基づいて、DRCAの導出において、G(1)Aが最大階数と仮定するこ
との妥当性を数値計算によって確認した結果を示す。

表 5.4に、DRCA（G(1)Aに対する最大階数の仮定が必要）と DRCA′（G(1)Aに対する最大階数
の仮定は不要）の調整後の炉定数セットの差のユークリッドノルムの計算結果を示す。この表か

表 5.4 DRCAと DRCA′ の調整後の炉定数セットの比較 (na = 726)

ña
(
= n(1)

)
∥TDRCA1 −TDRCA1′ ∥2 ∥TDRCA2 −TDRCA2′ ∥2 ∥TDRCA3 −TDRCA3′ ∥2

447 0.01021925 0.00000043 0.00000000

400 0.02202164 0.00000006 0.00000000

300 0.01433674 0.00000001 0.00000000

200 0.00066790 0.00000000 0.00000000

100 0.00000012 0.00000000 0.00000000

50 0.00000000 0.00000000 0.00000000

1 0.00000000 0.00000000 0.00000000

ら、DRCA2、DRCA3については、十分な精度で DRCAと DRCA′ の結果がよく一致しているこ
とが確認できる。DRCA2、DRCA3の式の導出では、G(1)Aが最大階数という仮定を用いているた
め、厳密には、CBCA、MRCAと等価ではないが、実質的に、CBCA、MRCAと等価であると考
えてよいことが確認できる。

なお、DRCA1については、この表から、G(1)Aが最大階数であると仮定するのは難しい場合が
あることが分かる。すなわち、DRCA1については、DRCA1′ を使うか、問題に応じて DRCA1と
DRCA1′ が等価であることを確認してから DRCA1を使うのが良いと考えられる。
一方で、DRCA3 については、ña = na のときは、G(1)A が最大階数であるという仮定は、G(1)

が最大階数であるという仮定と等価になる。DRCA の導出に用いる感度係数の一次独立性の仮定
において、G(1) が最大階数であると仮定しているので、DRCA3については、ña = na のときには、
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G(1)Aに対する最大階数の仮定を気にする必要はなく、DRCA3と DRCA3′ は等価になると考えて
良い。このことは以下のようにして確認することができる。

rank
(
G(1)A3

)
= rank

(
U3Σ3VT

3 A3

)
= rank

(
U3

(
Σ31 O

) (
In(1)
O

))
= rank (U3Σ31)

= rank
(
G(1)

)
(5.2.1)

また、このことから、DRCA2よりも DRCA1の方が G(1)Aに対する最大階数の仮定が成り立ちに
くい理由を推測することができる。DRCA2では、A2 を計算するのに使う X2

(
= G(1)M

)
に最大階

数を仮定している G(1) が含まれているのに対して、DRCA1では、X1 (=M)に G(1) は含まれてお
らず、G(1)A2 が最大階数になりにくいと推測できる。

5.2.2.3 次元削減の効果の確認

ここまでの計算結果はすべて、次元削減後の次元数と積分実験データの数を一致させている

（ña = n(1)）が、DRCAでは、積分実験データの数よりも次元削減後の次元数を小さくすることが
できる。ここで、この更なる次元削減を行った場合の効果について確認した結果を示す。

図 5.2に、調整に用いる積分実験データの数を n(1) = 447に固定しておき、次元削減後の次元数
を小さくしていった場合の結果を示す。この図の縦軸は、次元削減後の次元数を積分実験データと
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図 5.2 次元削減の効果（n(1) = 447）

同じにした場合（ña = n(1) = 447）の調整後の炉定数セットのベクトルと、次元削減後の次元数を
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小さくした場合（ña < n(1)）の調整後の炉定数セットのベクトルの差のユークリッドノルムを示し

ている。横軸は次元削減後の次元数（ña）を示している。この図から、DRCA2の調整後の炉定数
セットは、次元数を 447 から小さくしていっても、ña = 100 ぐらいまでは、ña = 447 の場合の
結果とほとんど変わらないことが分かる。これに対して、DRCA3では、次元数を少し小さくする
とすぐに、ña = 447の場合の結果との差が大きくなることが分かる。これらの結果から、DRCA2
（すなわち、CBCA）は、物理的に妥当と考えられるだけでなく、数値計算の観点でも安定している
と考えられる。この結果は、現状、以下のような条件になっているため、両者を乗じた G(1)M に

ついても、Mの影響で次元削減による近似が比較的成立しやすいという状態になっているからで
あると推測される。

• 感度係数行列 G(1) は、一般化摂動論を用いて厳密に計算することができるため、複雑な情報
を大量に含む行列になっており、次元削減による近似が成り立ちにくい。

• 核データ共分散行列 M は、現状、核データ評価者の手作業による評価結果を含んでおり、

感度係数行列に比べるとそれほど複雑な行列になっておらず、次元削減による近似が成り立

ちやすい。

しかしながら、核データ共分散の評価手法は近年急速に開発が進んでいるので、このような条件が

成り立つ状態は今後大きく変化していく可能性が高いと考えられる。
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5.3 拡張バイアス因子法と拡張炉定数調整法の関係

続いて、導出した理論式の比較により、拡張バイアス因子法と拡張炉定数調整法の関係について

考察する。最小分散不偏線形推定に基づく拡張炉定数調整法（MLEA）には調整後の炉定数セット
として無数の解が存在するが、どの解を採用しても、設計予測値及び設計予測精度は拡張バイアス

因子法と同じになることを示す。

5.3.1 設計予測値の等価性

最小分散不偏線形推定に基づく拡張炉定数調整法の調整後の炉定数セットの一般解 TMLEA∗ を表

す式 (5.1.1)、(5.1.4) を使って設計対象炉心の核特性を計算した場合、常に、拡張バイアス因子法
（EB）の設計予測値の式 (5.1.18)、(5.1.21)と等しくなる。このことは以下のように確認することが
できる。

R(2)c (TMLEA∗ )

= R(2)c (T 0) +G(2)(TMLEA∗ −T 0)

= R(2)c (T 0) +G(2)
(
MG(1)T +G(2)−0 V(12)T

m +
(
I −G(2)−1 G(2)

)
YD

)
D−1

(
R(1)e − R(1)c (T 0)

)
= R(2)c (T 0) +

(
G(1)MG(1)T +G(2)G(2)−0 V(12)T

m +
(
G(2) −G(2)G(2)−1 G(2)

)
YD

)
D−1

(
R(1)e − R(1)c (T 0)

)
= R(2)c (T 0) +

(
G(2)MG(1)T + V(12)T

m +
(
G(2) −G(2)

)
YD

)
D−1

(
R(1)e − R(1)c (T 0)

)
= R(2)c (T 0) +

(
G(2)MG(1)T + V(12)T

m

)
D−1

(
R(1)e − R(1)c (T 0)

)
= R(2)EB (5.3.1)

ただし、ここで、一般化逆行列に関する式 (4.1.25)、(4.1.26)を用いた。このように、最小分散不
偏線形推定に基づく拡張炉定数調整法の一般解のいずれを採用しても、設計予測値は拡張バイアス

因子法と等しくなる。すなわち、以下の式が成り立つ。

R(2)c (TMLEA∗ ) = R(2)EB (5.3.2)

5.3.2 設計予測精度の等価性

設計予測精度については、前述のように、すべての手法 x に対して式 (5.1.14)で表されるが、こ
の式に式 (5.1.12)を代入して展開すると以下のように変形できる。

Var
(
R(2)c (T x)

)
= G(2)MxG(2)T + V(2)m − LxV(12)

m − V(12)T
m LT

x

= G(2)
(
M + BxD−1BT

x −MG(1)TD−1BT
x − BxD−1G(1)M

)
G(2)T

+ V(2)m − LxV(12)
m − V(12)T

m LT
x

= G(2)MG(2)T +G(2)BxD−1BT
xG(2)T

−G(2)MG(1)TD−1BT
xG(2)T −G(2)BxD−1G(1)MG(2)T
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+ V(2)m − V(12)T
m LT

x − LxV(12)
m

= G(2)MG(2)T +
(
G(2)BxD−1

)
D

(
D−1BT

xG(2)T
)

−G(2)MG(1)T
(
D−1BT

xG(2)T
)
−

(
G(2)BxD−1

)
G(1)MG(2)T

+ V(2)m − V(12)T
m LT

x − LxV(12)
m

= G(2)MG(2)T + LxDLT
x −G(2)MG(1)TLT

x − LxG(1)MG(2)T

+ V(2)m − LxV(12)
m − V(12)T

m LT
x (5.3.3)

すなわち、最小分散不偏線形推定に基づく拡張バイアス因子法の調整後の炉定数セットの一般解

T ∗MLEA を使った場合の設計予測精度の式は以下のように書くことができる。

Var
(
R(2)c (TMLEA∗ )

)
= G(2)MG(2)T + LMLEA∗DLT

MLEA∗ −G(2)MG(1)TLT
MLEA∗ − LMLEA∗G(1)MG(2)T

+ V(2)m − LMLEA∗V(12)
m − V(12)T

m LT
MLEA∗ (5.3.4)

一方、拡張バイアス因子法については、すべての手法 x の設計予測精度は式 (5.1.20)で表される
ので、拡張バイアス因子法（EB）の設計予測精度の式は以下のように書くことができる。

Var
(
R(2)EB

)
= G(2)MG(2)T +KEBDKT

EB −G(2)MG(1)TKT
EB −KEBG(1)MG(2)T

+ V(2)m −KEBV(12)
m − V(12)T

m KT
EB (5.3.5)

このように、拡張炉定数調整法と拡張バイアス因子法の設計予測精度の式は全く同じ形をしている

ことが分かる。更に、式 (5.1.16)で定義される最小分散不偏線形推定に基づく拡張炉定数調整法の
調整後の炉定数セットの一般解 T ∗MLEA に対する LMLEA∗ は、式 (5.1.21)で表される拡張バイアス
因子法（EB）に対する KEB と等しくなる。

LMLEA∗ = G(2)
(
MG(2)T +G(2)−0 V(12)T

m +
(
I −G(2)−1 G(2)

)
YD

)
D−1

=
(
G(2)MG(2)T +G(2)G(2)−0 V(12)T

m +
(
G(2) −G(2)G(2)−1 G(2)

)
YD

)
D−1

=
(
G(2)MG(1)T + V(1)m +

(
G(2) −G(2)

)
YD

)
D−1

=
(
G(2)MG(1)T + V(1)m

)
D−1

= KEB (5.3.6)

したがって、最小分散不偏線形推定に基づく拡張炉定数調整法（MLEA∗）において、調整後の炉
定数セットとしてどのような解を採用したとしても、設計予測精度についても、拡張バイアス因子

法と等しくなる。すなわち、以下の式が成り立つ。

Var
(
R(2)c (TMLEA∗ )

)
= Var

(
R(2)EB

)
(5.3.7)
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5.3.3 拡張バイアス因子法と拡張炉定数調整法の等価性

以上のことは、拡張炉定数調整法と拡張バイアス因子法の間に矛盾はなく、互いに整合している

ことを意味する。また、拡張炉定数調整法は、調整の際に考慮した設計対象炉心核特性に対して

は、拡張バイアス因子法と等価な設計予測値を提供することが可能であり、このとき、設計予測精

度も等しくなる。これにより、拡張バイアス因子法と炉定数調整法の理論統合が達成できたと考え

られる。
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5.4 従来炉定数調整法と拡張炉定数調整法の関係

次に、前節と同様に、導出した理論式を比較することにより、従来炉定数調整法（CA）と拡張炉
定数調整法（EA）の関係を考察する。これにより、両者の違いを明らかにする。なお、前述のよ
うに、拡張炉定数調整法は拡張バイアス因子法（EB）と等価であるので、この違いは、従来炉定数
調整法と拡張バイアス因子法の違いと理解することができる。また、この考察から、従来炉定数調

整法を適用した後に得られる積分実験データの C/E 値を再現するような調整後の炉定数セットに
は無数の解が存在することが分かる。また、そのような解を表す式を容易に推測することができる

ので、そのような式を示す。

5.4.1 従来炉定数調整法と拡張炉定数調整法の相違点

式 (5.1.1)、(5.1.17)より、拡張炉定数調整法（EA）と従来炉定数調整法（CA）の調整後の炉定
数セットの式は、それぞれ、以下のように表すことができる。

TEA = T 0 +
(
MG(1)T +G(2)+V(12)T

m

)
D−1

(
R(1)e − R(1)c (T 0)

)
(5.4.1)

TCA = T 0 +MG(1)TD−1
(
R(1)e − R(1)c (T 0)

)
(5.4.2)

この二つの式の比較から、拡張炉定数調整法と従来炉定数調整法の調整後の炉定数セットの式の違

いは、G(2)+V(12)T
m という項があるかないかだけであることが分かる。拡張炉定数調整法と従来炉定

数調整法の導出の考え方の違いは、最適化する対象を設計対象炉心核特性とするか、炉定数セット

（核データ）とするかの違いであるので、この項が、設計対象炉心核特性に最適化して炉定数セッ

トを調整する効果に対応していると考えられる。このことから、拡張バイアス因子法の方が従来炉

定数調整法より設計予測精度が向上する理由は、この解析モデル誤差の相関を考慮することである

ことが分かる。

逆に言えば、設計対象炉心核特性と積分実験データの解析モデル誤差に相関がない場合、すなわ

ち、V(12)
m = Oの場合は、拡張炉定数調整法は従来炉定数調整法と等価になることが分かる。以上

のことから、拡張炉定数調整法は、解析モデル誤差の相関を考慮できるように拡張した理論と考え

ることができる。実際、拡張炉定数調整法の式において、V(12)
m = Oとした場合には、従来炉定数

調整法と同じ式になることから、拡張炉定数調整法の式は、従来炉定数調整法の式を含んでおり、

理論式の上でも、拡張炉定数調整法は従来炉定数調整法を一般化した理論と考えることができる。

5.4.2 従来炉定数調整法を一般化した理論としての拡張炉定数調整法

更に、最小分散不偏線形推定に基づく拡張炉定数調整法の調整後の炉定数セットの一般解は、従

来炉定数調整法の調整後の炉定数セットの解を一般化した理論と考えることができる。最小分散

不偏線形推定に基づく拡張炉定数調整法の調整後の炉定数セットの一般解 TMLEA∗ は、式 (5.1.1)、
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(5.1.4)より、以下のように表すことができる。

TMLEA∗ = T 0 −
(
MG(1)T +G(2)−0 V(12)T

m +
(
I −G(2)−1 G(2)

)
YD

)
D−1

(
R(1)e − R(1)c (T 0)

)
(5.4.3)

前章で示したように、この式において Y = O、G(2)−0 = G(2)+ とすると、炉定数セット（核データ）
の共分散のトレースを最小化することができ、最小分散不偏線形推定に基づく拡張炉定数調整法

（MLEA）やベイズの定理に基づく拡張炉定数調整法（CBEA）、すなわち、拡張炉定数調整法（EB）
と同じ式になる。更に、前述のように、拡張炉定数調整法（EB）の式において V(12)

m = O とする
と、従来炉定数調整法（CA）と同じ式になるので、最小分散不偏線形推定に基づく拡張炉定数調
整法の調整後の炉定数セットの一般解 TMLEA∗ は、従来炉定数調整法を一般化した理論と考えるこ

ともできる。以上のことを式で整理すると、以下のように表すことができる。

TMLEA∗
���
Y=O,G(2)−0 =G(2)+

= TEA (= TCBEA = TMLEA) (5.4.4)

TMLEA∗
���
Y=O,G(2)−0 =G(2)+,V(12)

m =O
= TCA (= TCBCA = TMLCA = TMSCA = TDRCA2) (5.4.5)

このように、最小分散不偏線形推定に基づく拡張炉定数調整法の調整後の炉定数セットの一般解

TMLEA∗ は、本稿で提案した炉定数調整法の多くを包含する一般化された理論式になっていること

が分かる。

5.4.3 従来炉定数調整法の解の多様性

ここまでの議論からの類推として、調整後の炉定数セットの式として、仮に以下のような式を採

用したとすると、従来炉定数調整法の調整後の積分実験データの計算値を完全に再現できると考え

られる。

T quasi-CA = T 0 −
(
MG(1)T +

(
I −G(1)−G(1)

)
YD

)
D−1

(
R(1)e − R(1)c (T 0)

)
(5.4.6)

ここで、Yは任意の行列であり、G(1)− の一般化逆行列も無数に存在するので、この式は、特定の
積分実験データの解析値を再現する調整後の炉定数セットの解は無数に存在することを意味してい

る。ただし、この式は、調整後の炉定数セットの分散を最小化するような最適解ではないことに注

意が必要である。

実際に、以下のようにして、この式で表される炉定数セットのいずれを使っても積分実験データ

の計算値は、従来炉定数調整法で得られる調整後の炉定数セットを使って計算した積分実験データ

の値と等しくなることを確認できる。

R(1)c (T quasi-CA)

= R(1)c (T 0) +G(1)(T quasi-CA −T 0)

= R(1)c (T 0) +G(1)
(
MG(1)T +

(
I −G(1)−G(1)

)
YD

)
D−1

(
R(1)e − R(1)c (T 0)

)
= R(1)c (T 0) +

(
G(1)MG(1)T +

(
G(1) −G(1)G(1)−G(1)

)
YD

)
D−1

(
R(1)e − R(1)c (T 0)

)
109



= R(1)c (T 0) +
(
G(1)MG(1)T +

(
G(1) −G(1)

)
YD

)
D−1

(
R(1)e − R(1)c (T 0)

)
= R(1)c (T 0) +G(1)MG(1)TD−1

(
R(1)e − R(1)c (T 0)

)
= R(1)c (T 0) +G(1) (TCBCA −T 0)

= R(1)c (TCBCA) (5.4.7)

炉定数調整法を適用した後の積分実験データの C/E値は一致していても、調整後の核データは全く
違ったものになっていることはよくあり、この事実は「compensation effect」[20,35]として、炉定数
調整法の専門家の間では知られている。近年では、核データ評価における積分実験ベンチマークの

利用と関連して、「compensation effect」は核データ評価の専門家の間でも広く知られるようになっ
た。例えば、臨界性のような積分実験データは、非常に多くの核種・反応の核データに感度を持っ

ているため、仮にある核データが大きく間違っていたとしても、他の核データが逆の効果を持つよ

うに大きく調整されていれば、積分実験データの C/E値に対しては効果が相殺（compensation）さ
れる。このため、積分実験データの C/E値が良いからといって、必ずしも核データが正しいという
ことにはならない。

この事実は直感的に理解することができるが、式 (5.4.6)で表される調整後の炉定数セット（核
データ）は、通常の従来炉定数調整法で得られる調整後の積分実験データの C/E値を再現できるす
べての核データの調整量を表す式になっており、積分実験データの C/E値を良くするような核デー
タの調整方法は無数に存在することを意味している。このように、式 (5.4.6) は、「compensation
effect」の意味を具体的に表現する式になっていると考えられる。

110



5.5 従来炉定数調整法における正規分布の仮定の役割

ここでは、文献 [31]の §4.4に基づいて、ベイズの定理に基づく従来炉定数調整法（CBCA）に
おける正規分布の仮定の役割について考察する。この考察から、CBCAを劣決定問題の条件で適用
する際には、不足している積分実験データの情報を適切に補う役割を持っていることが分かる。

最小分散不偏線形推定に基づく従来炉定数調整法（MLCA）の導出から、線形推定の式 (4.2.18)
を用いて、核データ（炉定数セット）の分散（共分散行列のトレース）を最小にするようにする

こととで、ベイズの定理に基づく従来炉定数調整法（CBCA）と全く同じ式を導出できることが分
かった。一方で、同じ式は、次元拡大線形推定を用いない最小分散不偏推定に基づく従来炉定数調

整法（MSCA）や次元削減炉定数調整法（DRCA2）のように別の仮定を用いても導出できる。こ
のため、ここで、ベイズの定理に基づく従来炉定数調整法と等価な式を導出するのに必要な仮定を

整理する。表 5.5に本稿で検討した主な従来炉定数調整法、すなわち、CBCA、MSCA、DRCA2、
MLCA、MRCAの導出で用いられている仮定をまとめた。

表 5.5 各種の従来炉定数調整法を導出する際に用いる仮定

CBCA MSCA DRCA2 MLCA MRCA
正規分布 ✓

不偏推定 (✓)∗1 ✓ ✓ ✓ ✓

式 (4.2.19)による線形推定 ∗2 ✓ ✓ ✓

式 (4.2.21)による線形推定 ∗3 ✓ ✓ ✓

射影省略 ✓

次元削減 ✓

式 (4.2.18)による線形推定 ∗4 ✓

CBCAとの等価性 = = = = ,
∗1: 不偏推定の仮定は正規分布の仮定に含まれる。
∗2: 積分実験データを用いて積分実験データを線形推定する。線形推定の際に 次元拡大は行わない。
∗3: 積分実験データを用いて積分実験データを線形推定する。最小ノルム解により次元拡大を行う。
∗4: 積分実験データを用いて直接、炉定数セットを線形推定する。線形推定に次元拡大が含まれる。

線形推定の仮定については、式で示した方が意味が明確になるので式を再掲する。ただし、こ

こでは、線形推定の際の次元拡大の有無が明確になるように、線形結合係数を表す行列 F の次元
が分かるように下付きで次元を示す。積分実験データ自身を推定する場合の線形推定の仮定は式

(4.2.19)で表される。以下に再掲する。

R̂
(1) − R(1)c (T 0) = Fn(1)×n(1)

(
R(1)e − R(1)c (T 0)

)
(4.2.19)

この式に対して最小ノルム解を採用した場合の線形推定の仮定は式 (4.2.21)で表される。以下に再
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掲する。

T̂ −T 0 = G(1)+Fn(1)×n(1)
(
R(1)e − R(1)c (T 0)

)
(4.2.21)

積分実験データから直接、炉定数セットを推定する場合の線形推定の仮定は式 (4.2.18) で表され
る。以下に再掲する。

T̂ −T 0 = Fna×n(1)
(
R(1)e − R(1)c (T 0)

)
(4.2.18)

なお、前述のように、正規分布の仮定には平均値が真値に等しいという仮定が含まれており、正規分

布の平均値は期待値に等しい。したがって、正規分布の仮定には不偏推定の仮定が含まれていると

理解することができる。更に、線形推定の仮定の式 (4.2.21)を用いる場合には、最小ノルム解を導
入していることに注意が必要である。前述のように、劣決定問題の条件の場合（na > n(1)）、線形推

定の仮定の式 (4.2.18)には次元拡大の概念が含まれる。すなわち、式 (4.2.21)では、G(1)+ ∈ Rna×n(1)

によって、式 (4.2.18)では、F ∈ Rna×n(1) によって次元の拡大（情報量の拡大）が行われる。この

表から、ベイズの定理に基づく従来炉定数調整法（CBCA）で採用されている正規分布の仮定は、
以下の仮定の組み合わせと等価であることが分かる。

• 不偏推定の仮定、式 (4.2.19)で定義される線形推定の仮定（線形推定の際に次元拡大は行わ
ない）、最小ノルム解の仮定、射影省略の仮定

• 不偏推定の仮定、式 (4.2.19)で定義される線形推定の仮定（線形推定の際に次元拡大は行わ
ない）、最小ノルム解の仮定、次元削減の仮定

• 不偏推定の仮定、式 (4.2.18)（線形推定に次元拡大が含まれる）で定義される線形推定の仮定

以上のことから、劣決定問題の条件下でベイズの定理に基づく従来炉定数調整法を適用する場

合、正規分布の仮定は、不足している積分実験データの情報量を適切に補い、積分実験データより

も多い数の核データ（炉定数セット）に反映させるという重要な役割を持っていると理解すること

ができる。また、正規分布の仮定が成り立つかどうかを考える代わりに、射影省略の仮定、次元削

減の仮定、次元拡大を含む線形推定の仮定が成り立つかどうかを考えてもよいことが分かる。
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5.6 拡張カルマンフィルタの拡張としての拡張炉定数調整法

第 2.3節で示したように、従来炉定数調整法は拡張カルマンフィルタと等価であるので、拡張炉
定数調整法は拡張カルマンフィルタを拡張した理論であると考えられる。ただし、従来炉定数調整

法は、拡張カルマンフィルタの時間ステップを一つしか考えていないので、時系列に関するモデル

に関しては簡略化されていることに注意が必要である。このため、原子炉の設計予測精度向上の問

題以外の問題に対しても、拡張炉定数調整法が前提としている条件に合致する場合には、拡張炉定

数調整法を適用できると考えられる。

拡張炉定数調整法が前提としている条件を一般化すると、以下のようにまとめることができる。

• 直接観測することはできないが、精度よく予測したい値（観測不能値）が存在する。
• 観測不能値に似た不確かさの少ない観測値（代替観測値）を得ることはできる。
• 状態ベクトルの近似値 s∗

k
を使って観測不能値や代替観測値を予測する方法がある（予測計

算 h(·)）。
• 状態ベクトルの近似値の不確かさや、予測計算の解析モデル誤差に起因する不確かさが大
きい。

• 代替観測値と観測不能値の間の解析モデル誤差には強い相互相関があり、かつ、この相互相
関を正確に評価できる。

第 2.3節で用いたカルマンフィルタの式の記号を使うと、拡張炉定数調整法の状態ベクトルの推
定の式は以下のように表すことができる。ただし、拡張炉定数調整法では、時間ステップは一つし

か考えていないので、下付きの k については固定（定数）であり、時間変化を考慮することはでき

ない。

ŝk = ŝk0 +
(
Pk0H(1)T

k
+H(2)+

k
Rh(12)T
k

) (
H(1)

k
Pk0H(1)T

k
+ Ryk

k
+ Rh(1)

k

)−1 (
yk − h(s∗k)

)
(5.6.1)

ただし、ここで、

H(1)
k

: 代替観測値の状態ベクトル s∗
k
に対する感度行列

H(2)
k

: 観測不能値の状態ベクトル s∗
k
に対する感度行列

Ryk
k

: 代替観測値 yk の観測誤差に対する共分散行列

Rh(1)
k

: 代替観測値の予測計算 h(·)における解析モデル誤差に対する共分散行列
Rh(2)
k

: 観測不能値の予測計算 h(·)における解析モデル誤差に対する共分散行列
Rh(12)
k

: 代替観測値と観測不能値に対する予測計算 h(·) の解析モデル誤差に対する相互相関
行列

である。これらは以下のように定義することができる。

H(1)
k
≡ ∂h(1)(sk)

∂ sk

����
sk=s

∗
k

(5.6.2)
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H(2)
k
≡ ∂h(2)(sk)

∂ sk

����
sk=s

∗
k

(5.6.3)

Ryk
k
≡ E

(
v
yk
k

(
v
yk
k

)T
)

(5.6.4)

Rh(1)
k
≡ E

(
vh(1)
k

(
vh(1)
k

)T
)

(5.6.5)

Rh(2)
k
≡ E

(
vh(2)
k

(
vh(2)
k

)T
)

(5.6.6)

Rh(12)
k
≡ E

(
vh(1)
k

(
vh(2)
k

)T
)

(5.6.7)

ただし、ここで、

h(1)(sk): 状態ベクトル sk を使って予測した観測可能値

h(2)(sk): 状態ベクトル sk を使って予測した観測不能値

v
yk
k

: 観測可能値の観測誤差

vh(1)
k

: 観測可能値を予測するときの予測計算 h(·)の解析モデル誤差
vh(2)
k

: 観測不能値を予測するときの予測計算 h(·)の解析モデル誤差

である。
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第 6章 新手法の適用研究

本章では、新しく開発した手法を実際の高速炉核設計予測精度評価の問題に適用して、その適用

性を確認する。最初に、開発した手法を実際的な予測精度評価の問題に適用できるようにするため

に作成した数値計算用プログラムの実装について述べる。続いて、各手法の適用に必要な入力デー

タとしての積分実験データ、検討条件としての設計対象炉心等について述べ、適用結果を示す。最

後に、この適用結果に基づいて、新しく開発した手法を状況に応じて使い分ける方法について提案

する。

6.1 実装

開発した手法を高速炉の設計精度評価の問題に適用できるようにするため、汎用炉心解析システ

ム MARBLE [39, 40]に実装した。MARBLEには、従来炉定数調整法をベースとした核設計精度
評価を行うためのソルバー [41, 42]が含まれており、オブジェクト指向技術に基づいて拡張性を重
視して設計されている。具体的には、複数の手法で共通する部分のプログラムを重複して作成する

必要がないように、オブジェクト指向技術の一つである Template Methodパターン [43]を利用し
て実装されている。このため、今回開発したような新しい手法を追加するのが容易な仕組みになっ

ており、この仕組みを利用して、図 6.1に示すように、理論の開発に合わせて、段階的にソルバー
を実装していった [44]。このソルバーを最初に作成した段階では、積分実験データを利用しない
方法（補正なし）、従来型のある特定の一つの積分実験データの E/C値を乗じる E/Cバイアス因子
法、従来炉定数調整法の 3種類を実装していた。
本研究を開始するにあたって最初に、この仕組みを利用して、拡張バイアス因子法を導入した

（図中 (i)）。同様に、その後に開発した、ベイズの定理に基づく拡張炉定数調整法（図中 (ii)）、最
小分散不偏推定に基づく炉定数調整法（図中 (iii)）、次元削減炉定数調整法（図中 (iv)）、最小分散
不偏線形推定に基づく炉定数調整法（図中 (v)）と段階的に新しい手法を実装していった。前述の
ように、このソルバーは新しい手法を追加するための拡張性を考慮した設計となっているため、新

しい手法を追加する際に、既に存在している機能を書き直す必要はない。例えば、どの手法でも利

用する入力データを設定する機能（図中 set_inputs()）や設計予測精度を計算する機能（図中

get_VRc()）等は、すべての手法の実装で共有されている。一方、本稿で示した理論式の統一表記

は、最初、最小分散不偏推定に基づく炉定数調整法 [33]において提案したが、このときに、この
統一表記で重要となる Bx を計算する機能（図中 calc_Bx()）を追加した。この理論式の統一表記

は、その後に開発された次元削減炉定数調整法や最小分散不偏線形推定に基づく炉定数調整法でも

利用できるため、この Bx を計算する機能が再利用されている。一方で、次元削減炉定数調整法で

は次元削減に変換行列 Aを計算する機能（図中 calc_A()）、最小分散不偏線形推定では一般解を表
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Reference
(補正なし)

UncertaintyPrediction

Bias
(CB)

Adjust
(CA)

ExtendedBias
(EB)

MvueAdjust
（最小分散不偏推定）

MvueCA
(MRCA)

ExtendedAdjust
(EA)

MvueEA
(MREA)

DRCA
（次元削減）

（ベイズの定理）

DRCA1
(X=M)

DRCA2
（X=G(1)M）

DRCA3
（X=G(1)）

(iv)

+	set_inputs()
+	get_VRc()

+	calc_Bx()

+	calc_A()

(ii) (iii)

Template	Method
パターン

(i)

MvuleCA
(MLCA)

MvuleEA
(MLEA)

MvuleRA
(MLRA)

MvuleAdjust
（最小分散不偏線形推定）

(v)
+	calc_Y()
+	calc_G2g0()
+	calc_G2g1()

MvuleEB
(MLEB)

図 6.1 MARBLEの炉定数調整・各設計精度評価ソルバーの構造

すために使う行列 Y、G(2)−0 、G(2)−1 を計算する機能（図中 calc_Y()、calc_G2go、calc_G2g1()）

が追加されている。このように、新しい手法に特有の機能だけを追加すれば、新しい手法を実装で

きるようになっている。

また、MARBLEは、オブジェクト指向スクリプト言語 Pythonをベースとした開発フレームワー
クになっており、このソルバーは、Python の数値計算ライブラリ Numpy や Scipy [45] を使って
実装されている。Numpy、Scipyでは配列（行列）に対する演算を高速に実行することができるよ
うに開発されており、行列に対する演算を、数式と良く似た形で簡潔に記述できるようになってい

る。このため、MARBLEでは、今回開発した理論式をほとんど直訳する形で、実装することが可
能となっている（文献 [41]の Fig.3参照）。

6.2 入力データ

この適用研究では、炉定数調整計算の入力として用いる積分実験データは、日本原子力研究開発

機構（以下、原子力機構）で高速炉用の核設計基本データベース [19]として整備されてきた積分実
験データを用いた。この核設計基本データベースは、1990年頃から原子力機構の前身となる動力
炉・核燃料開発事業団において開発が始められ、長年にわたって、多くの開発者によって整備され

てきたものである。その品質は国際的にも認められており、一部のデータは登録に際して厳格な基
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準 [46, 47] を満たす必要がある OECD/NEA の国際炉物理ベンチマーク（IRPhEP）のハンドブッ
クにも登録されている [48]。筆者も高速実験炉「常陽」MK-I の性能試験・運転データの解析等、
この核設計基本データベースの一部の解析評価に関与しており、[49–51]、その評価結果とベンチ
マーク用のデータは IRPhEPハンドブックに登録されている [52]が、ここでは、新しく開発した
手法の適用研究に必要な入力データとして全体の概要のみを説明する。なお、この核設計基本デー

タベースは現在も開発が進められており、積分実験データの追加や評価の見直し等が行われている

が、この適用研究では、統合炉定数 ADJ2010 [19,38]の作成で利用された積分実験データセットを
用いた。

6.2.1 実験の不確かさと相関の評価

この核設計基本データベースにおいて積分実験データの不確かさは、基本的には実験者の報告書

に基づいて評価されている [19]。しかしながら、実験値に対する不確かさは詳細に報告されていた
としても、実験間の相関（共分散行列）までは評価されていないことがほとんどである。

このため、実験値の不確かさの相関は、実験者の評価結果を使って、文献 [19]（§2.1参照）で説
明されている「共通独立誤差要因完全相関に基づく共分散評価法」（略して、「誤差要因相関法」）

に基づいて評価されている。なお、この方法は、OECD/NEAの核データ評価国際ワーキングパー
ティ（WPEC: Working Party on International Nuclear Data Evaluation Co-operation）のサブグルー
プ（SG）33の最終報告書 [20]においても実験間の相関の評価方法として推奨されている。この方
法の詳細については、文献 [19, 20]に記載されているので、ここでは繰り返さないが、不確かさの
要因を細分化していき、共通の不確かさか、独立の不確かさのどちらかに分類できるまで、実験の

不確かさを評価していき、その評価結果に基づいて、相関係数の定義式に基づいて評価する。

•（ステップ 1）不確かさの要因を共通または独立に分類する。
•（ステップ 2）共通の不確かさ、独立の不確かさをそれぞれ合計する。
•（ステップ 3）相関係数の定義式に基づいて相関係数を評価する。

この方法を適用するためには、実験の不確かさの要因を共通または独立に分類できるまで詳細化し

なければならないため、不確かさの評価を非常に詳細に行う必要があるが、このような不確かさの

要因ごとに詳細に不確かさ評価を行うことは、国際臨界実験ベンチマーク ICSBEPや国際炉物理ベ
ンチマーク IRPhEPの不確かさ評価においても推奨されている方法 [46]となっている。

6.2.2 解析モデルに起因する不確かさと相関の評価

解析モデルに起因する不確かさと相関係数についても、前述の OECD/NEA のWPEC/SG33 の
最終報告書 [20]に記載されている方法を使って評価されている。この方法では、以下の 3種類の
解析手法に対する解析モデル起因不確かさを考慮する。

1. 形状・組成を忠実にモデル化した as-builtモデルを使った連続エネルギーモンテカルロ法に
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よる解析

2. 解析モデルを簡略化した基準計算値と解析モデルを最大限に詳細化して求めた補正係数を組
み合わせた決定論的手法のみによる解析

3. 解析モデルをを簡略化した形状に基づく決定論的手法と as-builtモデルを使ったモンテカル
ロ法による補正を組み合わせた解析

本稿の適用研究で用いた積分実験データの解析評価では、一部に対しては連続エネルギーモンテカ

ルロ法が用いられているが、そのほとんどは決定論的手法のみが用いられている。すなわち、この

適用研究における解析モデル起因不確かさのほとんどは、上記の 2.により評価されている。なお、
この決定論的手法に対する解析モデル起因不確かさの評価方法は、本来、原子力機構で開発された

手法であり、その詳細については、前述の文献 [20]の §4.5に加えて、文献 [19]の §3.1を参照す
ることができる。

以上のように、この適用研究では、文献 [19, 20]に示される方法に基づいて、解析モデル起因不
確かさ、すなわち、解析モデル誤差に対する共分散行列（相関行列）V(1)m 、V(2)m が評価されている。
前述のように、拡張炉定数調整法に対しては、設計対象炉心核特性と積分実験データ間の相互相関

行列 V(12)
m が重要な役割を持つが、この相互相関行列についても、同じ方法で評価されている。

なお、より厳密には、統合炉定数 ADJ2010の作成では、設計対象炉心核特性と積分実験データ
の間の相互相関については、臨界性に対してしか評価が行われておらず、他の核特性については相

関が無視されていた。しかしながら、この適用研究では、この相互相関が重要となるため、臨界性

以外の核特性に対しても、解析モデル起因不確かさに対する相互相関行列を評価して計算に用い

た [44]。本来、この相関は無視すべきではないが、従来炉定数調整法では、炉定数調整計算の段階
では、設計対象炉心核特性と積分実験データの間の相互相関行列の値は、計算結果に影響を与えな

い。このため、従来炉定数調整法により統合炉定数を作成する段階においては、この相互相関は無

視することができる*1。

6.3 検討条件

この適用研究では、前述のように、統合炉定数 ADJ2010 の作成で利用された積分実験データ
セットを用いるが、ADJ2010は、高速炉用の炉定数セット UFLIBに含まれているエネルギー群数
70群と同じフォーマットの炉定数セットであり、評価済み核データライブラリ JENDL-4.0 [53]を
基準とした調整炉定数セットである。ADJ2010作成のための炉定数調整計算で最終的に用いられ
た核特性数は 488である。また、ADJ2010と同様に、炉定数調整計算においては、エネルギー群
数は 70とし、調整対象とする核種・反応もすべて考慮する。核種、反応、エネルギーを考慮した
全反応数は 11351となる。すなわち、na = 488、n(1) = 11351という条件の下で炉定数調整法を適
用することになる。このように、調整する核データの数は、調整に用いる積分実験データの数の 20

*1 ただし、従来炉定数調整法においても設計予測精度評価の式には V(12)
m が含まれるので、統合炉定数作成の段階と設

計予測精度評価の段階で一貫した方法で評価された相互相関を共通して用いるのが望ましい。

118



倍以上あり、かなり厳しい劣決定問題の条件となるが、これは、現在の実際の高速炉の設計予測精

度評価で用いられているのと同じ条件である。このような実用レベルの条件下において、各々の核

設計手法が本来の性能を発揮できるかどうかを確認する。

6.3.1 設計対象炉心

設計対象炉心は、FaCT プロジェクトで設計された 750MWe 級の高速炉（U-Pu 炉心） [19, 54]
とする。表 6.1に、設計対象炉心の仕様を示す。また、図 6.2に、設計対象炉心の径方向断面図を
示す。設計対象として予測精度を評価する核特性は、ADJ2010の設計精度評価で用いられた以下
の 6種類とする。

• 750MWe KEFF：設計対象炉心の臨界性（keff）

• 750MWe F49 OC/IC：出力分布（Pu-239の外側炉心（OC: Outer Core）と内側炉心（IC: Inner
Core）の核分裂率比）

• 750MWe CRW BOEC：平衡炉心初期（BOEC: Beginning Of Equilibrium Cycle）における制
御棒価値（CRW: Control Rod Worth）

• 750MWe SVR EOEC：平衡炉心末期（EOEC: End Of Equilibrium Cycle）におけるナトリウ
ムボイド反応度（SVR: Sodium Void Reactivity）

• 750MWe Doppler：ドップラー（Doppler）係数
• 750MWe BRC：燃焼反応度係数（BRC: Burnup Reactivity Coefficient）

以降ではここに示した略称を用いる。なお、拡張炉定数調整法（EA）においては、この 6核特性
を最適化する設計対象炉心核特性とする。
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図 6.2 設計対象炉心（750MWe級高速炉炉心）の炉心断面図
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表 6.1 設計対象炉心（750MWe級高速炉炉心）の仕様

項目 単位 仕様

熱出力 /電気出力 MW 1765/750
原子炉出口 /入り口温度 ◦C 550/395
運転サイクル長 month 18
炉心高さ m 1.00
軸ブランケット厚（上部 /下部） m 0.20/0.25
炉心等価直径 m 3.75
燃料集合体数 - 157/117/66∗1

集合体あたりの燃料ピン本数 - 255/255/217∗1,2

燃料ピン直径 mm 10.4/10.4/11.7∗1

Pu富化度　（内側炉心 /外側炉心） wt% 19/26
∗1 内側炉心 /外側炉心 /径方向ブランケット燃料集合体
∗2 ダクト付き炉心燃焼集合体

6.3.2 代表的な積分実験データ

前述のように、積分実験データは 488と多く、すべての結果を示すのは難しいので、ここでは、
上記の設計対象炉心の 6 種類の核特性に比較的似た感度を持つと考えられる ZPPR-10A [48, 55]、
SEFOR [56,57]、高速実験炉「常陽」MK-I [51,52]の核特性を代表的な積分実験データと考え、こ
れらの積分実験データに着目して結果を示す。

• ZPPR-10A KEFF：ZPPR-10A炉心の臨界性（keff）

• ZPPR-10A F49 OC/IC：外側炉心と内側炉心の Pu-239の核分裂率分布
• ZPPR-10A CR Ring2：ZPPR-10A炉心の最外周（Ring2）に配置された制御棒（CR: Control

Rod）の制御棒価値
• ZPPR-10A SVR Step9: ZPPR-10A炉心の内側炉心で測定されたもっとも大きな領域（Step

9）をボイド化したナトリウムボイド反応度
• SEFOR I-I PRC: SEFOR I-I 炉心で測定された出力反応度係数（PRC: Power Reactivity

Coefficient）
• JOYO MK-I BRC 75MW 3rd: 高速実験炉「常陽」MK-I炉心の第 3定格出力運転サイクルに
おいて測定された燃焼反応度係数

設計対象炉心核特性と同様に、以降ではこの略称を用いる。
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6.4 計算結果

6.4.1 設計予測値と設計予測精度

表 6.2に、拡張炉定数調整法（EA）、従来炉定数調整法（CA）、次元拡大線形推定を用いない最小
分散不偏推定に基づく従来炉定数調整法（MRCA）で評価した設計対象炉心の設計予測値と設計予
測精度の結果を示す。この表には、比較対象として、積分実験データを用いない場合の結果（Ref.）
をあわせて示した。すなわち、与えられた評価済み核データライブラリをそのまま使った場合の結

果に相当する。前述のように、ここでは JENDL-4.0を用いている。なお、設計予測値については、
積分実験データを用いない場合の結果が 1になるように規格化しており、積分実験データを用いな
い場合の結果に対する補正値（比）になっている。設計予測精度としては、設計対象炉心核特性の

標準偏差（共分散行列の対角成分の平方根）を示した。この表から、いずれの核特性に対しても、

期待通りに、従来炉定数調整法（CA）に比べて、拡張炉定数調整法（EA）の方が設計予測精度が
向上していることが確認できる。この精度向上の効果は全般的にはそれほど大きくはないが、制御

棒価値では比較的大きな効果が得られていることが分かる。前述のように、この精度向上の効果は

解析モデルに起因する不確かさの相関を考慮する効果であるため、正確な評価の難しい解析モデル

に起因する不確かさの相関に依存して精度向上を図ることは難しい面があるが、この相関を別途検

証しておくことができれば、この精度向上の効果を活用する方法はあると思われる。設計解析では

計算精度だけでなく計算速度も重要であるため、例えば、解析モデルに起因する不確かさは大きい

ものの、より精度の高い解析モデルとの結果の差が同じような傾向を示すことが分かっている非常

に計算効率のよい解析モデルがあったとすると、この解析モデルに起因する不確かさの相関は正確

に評価できるはずなので、設計解析においてこの解析モデルを採用することで効率的で精度の良い

計算が可能になると考えられる。

表 6.3には、各手法で評価した積分実験データに対して、調整後の炉定数セットを使った計算値
とその不確かさを示した。この表の計算値についても、先の表の設計予測値と同様に、積分実験

データを用いない場合（Ref.）の値が 1になるように規格化している。この表から、調整に用いた
積分実験データに対しては、従来炉定数調整法（CA）に比べて、拡張炉定数調整法（EA）の方が
少し精度が悪化しているものがあることが分かる。実際に、調整後の炉定数セットの標準偏差（共

分散行列の対角成分の平方根）を従来炉定数調整法と拡張炉定数調整法で比較すると、拡張炉定数

調整法の方が従来炉定数調整法よりも大きくなっていることがあり [28]、これは、拡張炉定数調整
法では、炉定数セット（核データ）だけでなく、設計対象炉心核特性に対しても最適化を行うため、

その分のトレードオフが発生していると考えられる。
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6.4.2 核データの調整量

図 6.3、図 6.4、図 6.5に、それぞれ、従来炉定数調整法（CA）と拡張炉定数調整法（EA）によ
る U-238非弾性散乱断面積、Pu-239核分裂断面積、Pu-239核分裂中性子発生数の調整量の比較を
示す。なお、図中の SDは調整前の核データの標準偏差（SD: standard deviation）を表す。この図
から U-238非弾性散乱断面積の調整量については、EAと CAでほとんど差がないことが分かる。
この計算では、U-238非弾性散乱断面積の調整量と同様に、ほとんどの核種・反応の核データ調整
量に対して EAと CAの差は見られなかった。一方、Pu-239核分裂断面積と Pu-239核分裂中性子
発生数の調整量については、EAと CAで比較的大きな差が見られることが分かる。これらは、こ
の計算で特に核データ調整量の差が大きかった例を示したものである。

この核データ調整量の差は、設計対象炉心核特性への最適化をするかしないかの違いにより生じ

たと理解することができる。また、拡張炉定数調整法（EA）と拡張バイアス因子法（EB）の等価
性から、拡張バイアス因子法は、実際には核データを調整している訳ではないが、暗黙的にこのよ

うな核データの調整を行って設計予測値を補正していると解釈できる。したがって、拡張バイアス

因子法を設計手法として採用する場合においても、拡張炉定数調整法を使って核データの調整量を

確認することで、核データの観点から不自然な調整を行っていないかを確認できると考えられる。

続いて、図 6.6、図 6.7、図 6.8に、それぞれ、通常の従来炉定数調整法（CA）、次元拡大線形推
定を用いない最小分散不偏推定に基づく従来炉定数調整法（MRCA）による U-238非弾性散乱断
面積、Pu-239核分裂断面積、Pu-239核分裂中性子発生数の調整量の比較を示す。なお、MRCAで
は正規分布の仮定を用いていないことに注意が必要である。U-238非弾性散乱断面積の調整量は、
どちらの手法を使っても調整量はよく似ているが、Pu-239核分裂断面積、Pu-239核分裂中性子発
生数の調整量は、MRCAでは、大きく振動していることが分かる。これらの核データは高速炉の
核特性解析において、どちらも非常に重要であるが、正規分布の仮定次元拡大線形推定の仮定が成

り立たない場合は、このような核データの調整量も解として考えられるということである。一方

で、前述のように、このような調整をした炉定数セットを使ったとしても、設計予測値や設計予測

精度にはほとんど影響がないは注目に値する。これは、仮に正規分布の仮定や次元拡大線形推定の

仮定が成り立たないような状況で従来炉定数調整法を適用したとしても、設計予測値や設計予測

精度への影響は小さく、設計手法としての堅牢性があるということを意味する。ただし、核データ

の調整量としては、このように大きく振動するような調整量は物理量として明らかに不自然であ

り、正規分布の仮定や次元拡大線形推定の仮定が成り立たないような場合には、核データの調整量

自体はそれほど信頼できないということを意味していると考えられる。なお、MRCAの核データ
調整量がこのように大きく振動する理由は、MRCAと DRCA3 の等価性から推測することができ
る。DRCA3では、積分実験データの不足分を次元削減により補足する際に核データ共分散は考慮
せずに、積分実験データの感度係数のみを考慮するので、核データの不確かさを無視して、積分実

験データの感度係数に含まれる詳細な情報（特異値の小さい高次の特異ベクトルの構造）がそのま

ま核データ調整量に反映されてしまうからであると考えられる。

123



10 4 10 2 100 102 104 106

Neutron energy (eV)
20

15

10

5

0

5

10

15

20

Cr
os

s s
ec

tio
n 

al
te

ra
tio

n 
(%

)

CA
EA
SD (+)
SD ( )

図 6.3 U-238非弾性散乱断面積の調整量（CAと EAの比較）
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図 6.4 Pu-239核分裂断面積の調整量（CAと EAの比較）
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図 6.5 Pu-239核分裂中性子発生数の調整量（CAと EAの比較）
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図 6.6 U-238非弾性散乱断面積の調整量（CAとMRCAの比較）
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図 6.7 Pu-239核分裂断面積の調整量（CAとMRCAの比較）
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6.4.3 DRCAの結果に関する検討

次に、次元削減炉定数調整法（DRCA）の結果について確認する。表 6.4に、DRCAと DRCA′

により調整した炉定数セットを使って、設計対象炉心の設計予測値と設計予測精度を計算した場合

の結果を示す。同様に、表 6.5には、DRCAと DRCA′ により調整した炉定数セットを使って、代
表的な積分実験データを計算し直した場合の計算予測精度の結果を示す。これまでに示した結果と

同様に、設計予測値については積分実験データを用いない場合の結果に規格化してあり、積分実験

データを用いない場合の結果に対する補正量となっている。

6.4.3.1 DRCA1と DRCA2の結果の比較
繰り返しになるが、DRCA1では、劣決定問題の条件下での積分実験データの不足分を補うため
に、炉定数セットを核データの共分散行列によって張られる部分空間に射影してから核データの調

整を行う。すなわち、この射影の際に積分実験データ感度係数を全く考慮しない。一方、DRCA2
（= CA）では、炉定数セットは感度係数行列と核データ共分散行列の積の行列で張られる部分空間
に射影してから調整される。すなわち、従来炉定数調整法（CA）では積分実験データの感度係数
が似ているかどうかを考慮していると解釈できる。設計対象炉心の感度係数は通常、積分実験デー

タの感度係数と似ていることが期待できるが、DRCA1 では積分実験データの不足分を補う際に、
このことを完全に無視してしまう。このため、DRCA1の結果は、DRCA2の結果と異なったもの
になると考えられる。ここで扱っている問題は、前章の表 5.2で示した DRCA の計算に用いた問
題に比べて、劣決定問題の条件の程度が大きい。このため、DRCA1と DRCA2の差が大きくなっ
たと考えられる。このことから、表 6.4や表 6.5に示されるような DRCA1と CA（= DRCA2）の
結果の差は、積分実験データと設計対象炉心核特性の感度係数の違いを表す指標として使えると考

えられる。また、この結果の差は、設計対象炉心の核特性を正確に予測することはできるものの、

核データの調整量としては十分に決定できていない状態を表す指標としても使えると考えられる。

6.4.3.2 DRCAにおける最大階数の仮定の影響評価
次に、この問題に対する DRCAの最大階数の仮定の影響を確認する。前章の表 5.4でも確認した
ように、DRCA′はこの最大階数の仮定は使っていないので、DRCAと DRCA′の結果を比較するこ
とで、この最大階数の仮定の妥当性を確認することができる。表 6.4、6.5から、DRCA1、DRCA2、
DRCA3のいずれについても、設計予測値、設計予測精度ともに、DRCAの結果は DRCA′ の結果
とよく一致していることが確認できる。このように、ここで適用した実規模レベルの問題に対して

も、G(1)Aの最大階数の仮定は妥当であることを確認できる。なお、この最大階数の仮定は、積分
実験データの数が核データの数に比べて小さくなる方が成立しやすくなるので、劣決定問題の条

件の程度が大きい実規模レベルの問題で最大階数の仮定が成り立っているのは妥当と考えられる。

DRCA′は DRCAよりも計算量が多くなるため、特に実規模レベルの問題ではこの計算量の増加は
無視できなくなる。計算時間の観点からも、実用上は DRCA と DRCA′ で差がないことを確認し
た上で、DRCA′ の代わりに DRCAを使うのが良いと考えられる。
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6.5 推奨される設計手法

最後に、文献 [44]での議論に基づいて、新しく開発した手法を核設計手法として用いる場合に、
各手法を使い分ける方法について説明する。理論的考察及び各手法の適用性確認の結果から、拡張

炉定数調整法（EA）が最も良い設計予測精度を与えることが確認できたので、基本的には拡張炉
定数調整法を使えばよいと考えられる。しかしながら、拡張炉定数調整法では最適化する設計対象

炉心及びその核特性を先に決定する必要があるので、設計対象炉心の仕様が明確に定まっていない

概念設計の段階では、適用するのが難しいと考えられる。このため、概念設計の段階ではこれまで

通り従来炉定数調整法（CA）を用い、設計対象炉心の仕様がある程度定まった後に、拡張炉定数
調整法を用いるのが良いと考えられる。

一方で、従来炉定数調整法を用いる段階において、劣決定問題の条件下で、正規分布の仮定を

用いることの妥当性を説明することが難しいような実験値や解析値、核データを使わなければな

らない場合には、少ない積分実験データの情報量を使って多くの核データを調整している（次元

拡大を含む線形推定の仮定を用いている）ことに注意を払う必要がある。これらの仮定を使わな

い場合の設計予測値や設計予測精度に対する影響は、次元拡大線形推定を用いない従来炉定数調

整法（MRCA）を使うことで評価することができる。また、CA、MRCAは、それぞれ、次元削減
炉定数調整法（DRCA）において、核データ共分散と感度係数の両方を考慮して次元削減した場合
（DRCA2）、感度係数のみを考慮して次元削減した場合（DRCA3）と等価であることが分かってい
るので、CAと MRCAの結果に大きな差がある場合には、次元削減炉定数調整法を使って分析す
ることが可能であると考えられる。

なお、設計精度評価のための解析システムを新たに実装しなければならない場合には、上記の等

価性があることが分かっているので、従来炉定数調整法に関しては、次元削減炉定数調整法だけ実

装しておけば十分であることが分かる。

一方、高速炉核設計を対象とした実規模の問題に対する適用性確認において、正規分布の仮定を

用いないMRCAでも、正規分布の仮定を用いる CAと同等の結果が得られることが分かった。こ
のことから、少なくとも今回適用性確認を行った問題に対しては、設計予測値や設計予測精度のみ

に着目している限りにおいては、正規分布の仮定の成立性はそれほど重要でないと言える。ただ

し、調整後の炉定数セット（核データ）に対しては、核データの標準偏差を超えて大きく振動した

形で調整されており、物理的に妥当な調整結果とは言えない。前述のように、MRCAは DRCA3と
等価であることから、この振動を含む調整は感度係数に含まれる詳細な情報（特異値の小さい高次

の特異ベクトルの構造）が顕在化したものと考えることができる。MRCAは、核データ共分散の情
報を用いずに感度係数のみの情報を使って調整された核データは過剰適合（overfitting）した状態
になっていると考えられ、積分実験データと感度の大きく異なる設計対象炉心核特性に対する外挿

性に問題がある可能性が高いので、実用上は、CAの結果を使うのが良いと考えられる。この観点
からは、従来炉定数調整法において、正規分布の仮定は重要な役割を果たしていると考えられる。
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第 7章 結論

拡張バイアス因子法と従来炉定数調整法の利点を併せ持つ理論を新たに開発することを目的とし

て、最初に設定した 3つの課題に対応して、以下の開発及び検討を行った。

1. 設計対象炉心に最適化する拡張炉定数調整法の開発
2. 最小分散不偏線形推定に基づく 3種類の炉定数調整法の開発
3. 次元削減炉定数調整法の開発と正規分布の仮定に関する検討

以下では、この 3つの課題に対する開発・検討結果を総括し、最後に今後の課題や展望について述
べる。

7.1 設計対象炉心に最適化する拡張炉定数調整法の開発

拡張バイアス因子法（EB）とベイズの定理に基づく従来炉定数調整法（CA）の導出方法の違い
を検討し、両者の特徴を組み合わせた新しい手法として、拡張炉定数調整法（EA）を開発した。拡
張炉定数調整法を適用することにより、拡張バイアス因子法と同等の設計予測値、設計予測精度が

得られる。このことを理論式を用いて説明するとともに、高速炉を対象とした実際の設計精度評価

の問題に適用して確認した。更に、拡張炉定数調整法では、拡張バイアス因子法では提供すること

ができかった調整後の炉定数セットを作成することが可能であり、この調整後の炉定数セットを

使って計算するだけで、設計予測値を得ることができる。このように、新しく開発した拡張炉定数

調整法は、拡張バイアス因子法と同等の精度向上性能と、従来炉定数調整法の利便性を併せ持つ。

一方で、拡張炉定数調整法の導出過程から、拡張バイアス因子法と従来炉定数調整法の違いは、

最適化（推定）する対象の違いであることを明らかにした。すなわち、従来炉定数調整法では、積

分実験データの情報を利用して核データを改善することで、間接的に設計炉心核特性の予測精度を

向上させるのに対して、拡張バイアス因子法では、積分実験データの情報を利用して、直接的に設

計対象炉心核特性の予測精度を向上させる。このため、拡張バイアス因子法や拡張炉定数調整法で

は、従来炉定数調整法に比べて、設計予測精度をより向上できる。更に、導出された拡張炉定数調

整法の理論式から、この違いは、設計対象炉心核特性と積分実験データの間の解析モデルに起因す

る不確かさの相関によって得られることを明らかにした。

7.2 最小分散不偏線形推定に基づく炉定数調整法の開発

拡張バイアス因子法の導出過程や理論式を精査することで、正規分布の仮定が用いられていない

ことを確認するとともに、拡張バイアス因子法の導出で用いられている「累乗化した実験値・計算
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値の積で構成される仮想的な実験値・計算値」という考え方は、最小分散不偏線形推定と近似的に

等価であることを示した。この分析結果にしたがって、最小分散不偏線形推定に基づく従来炉定数

調整法（MLCA）と拡張炉定数調整法（MLEA）を新たに導出した。また、これらの帰結として、
回帰炉定数調整法（MLRA）と名付けた第 3の手法が考えられることを示した。拡張バイアス因子
法の導出と同様に、この導出では、正規分布の仮定を用いておらず、それぞれ、ベイズの定理に基

づいて導出された拡張炉定数調整法（CBEA）と従来炉定数調整法（CBCA）と同じ式になること
を示した。これまで従来炉定数調整法の導出には正規分布の仮定が必要と考えられていたが、最小

分散不偏線形推定に基づく導出を考えた場合には、正規分布の仮定は使っていないと考えても良い

ことが分かった。ただし、最小分散不偏線形推定に基づく導出では新たに、線形推定の仮定を導入

する必要があり、劣決定問題の条件の下で適用する場合には、この線形推定の仮定を使って次元を

拡大（情報量を拡大）できるという仮定が含まれる。このため、厳密には、正規分布の仮定が必要

ないのではなく、正規分布の仮定、あるいは、線形推定による次元拡大の仮定のいずれかが必要で

あると説明できることが分かった。

7.3 次元削減炉定数調整法と正規分布の仮定に関する検討

ベイズの定理に基づく従来炉定数調整法で用いられている正規分布の仮定の妥当性について検討

することを目的に、線形推定による次元拡大を用いない最小分散不偏推定に基づく炉定数調整法

（MRCA）及び、射影省略（projection simplification）と名付けた特殊な式の置き換えを用いた最小
分散不偏推定に基づく炉定数調整法（MSCA）を提案し、最終的に、これらを包括する次元削減炉
定数調整法と名付けた新しい炉定数調整法（DRCA）を開発した。この次元削減炉定数調整法の開
発により、ベイズの定理に基づく導出における正規分布の仮定、あるいは、最小分散不偏線形推定

における線形推定による次元拡大の仮定は、調整に用いる積分実験データの感度係数と核データ共

分散の積、すなわち、両方の重みを考慮して、他の重要でないと考えられる情報を振るい落とすと

いう役割を持っていると説明できることが分かった。

また、これらの手法を実際の高速炉設計予測精度評価の問題に適用した結果から、設計予測値と

その精度（不確かさ）に対しては、正規分布の仮定や線形推定による次元拡大の仮定が成り立たな

い場合においても、ほとんど影響がないことを確認した。ただし、この場合、核データの調整量は

物理的に妥当とは考えられない結果になる可能性があることが分かった。この検討結果は、炉定数

調整法を適用して得られた設計予測値とその精度の信頼性を支持する一方で、正規分布の仮定の妥

当性が確認できない場合の問題点を示唆するものとなっている。このように、新たに開発した次元

削減炉定数調整法は、炉定数調整法を劣決定問題の条件下で適用する際に、正規分布の仮定の妥当

性を検討する手段を与えるものとなっている。
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7.4 今後の課題と展望

これまで、従来炉定数調整法の結果は、ベイズの定理に基づいて得られた結果であると説明され

てきたが、今後は、過去に得られた結果も含めて、最小分散不偏線形推定に基づいて得られた結果

であると説明してもよいことになる。どちらの方法で導出しても同じ式が得られるが、導出に用い

る仮定が異なるので、両方の観点から結果を説明することで、設計予測値に対する説明性の向上に

寄与できると考えられる。また、拡張炉定数調整法については、従来炉定数調整法よりも予測精度

を向上できるようになり、かつ、その理論的根拠や精度向上の理由も明確になったので、状況に応

じて従来炉定数調整法との使い分けをしながら、新型炉の設計研究等に適用していくことができる

と期待される。次元削減炉定数調整法に関しては、次元削減して核データを調整する際にどのよう

な情報を重要と考えるかは、利用者が決めることができるため、この自由度を利用することで、核

設計予測値の信頼性や説明性を向上させる手段を提供できる可能性がある。

一方で、本研究において、従来炉定数調整法の理論式は拡張カルマンフィルタの理論式と等価で

あることを示した。このことから、本研究で開発した拡張炉定数調整法は、拡張カルマンフィルタ

を「拡張」した手法ということができる。拡張カルマンフィルタは、新型炉の核設計以外の分野で

も広く利用されているので、拡張炉定数調整法は他の分野でも応用できる可能性がある。
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略語一覧

1. 導出方法
CB : 炉定数調整法の導出において古典的に用いられているベイズの定理（推定）（classical

Bayesian inference）
MVUE : 最小分散不偏推定（minimum variance unbiased estimation）
MVULE : 最小分散不偏線形推定（minimum variance unbiased linear estimation）

2. 拡張バイアス因子法と最適化対象の異なる 3種類の炉定数調整法
EB : 拡張バイアス因子法（extended bias factor method）
CA : 従来炉定数調整法（conventional cross-section adjustment method）
EA : 拡張炉定数調整法（extended cross-section adjustment method）
RA : 回帰炉定数調整法（regressive cross-section adjustment method）

3. 導出方法の異なる拡張バイアス因子法
EBPE : オリジナルの拡張バイアス因子法（PE法）（extended bias factor method – product

of exponentiated experimental values）
MLEB : 最小分散不偏線形推定に基づく拡張バイアス因子法（MVULE-based extended bias

factor method）
4. 導出方法の異なる従来炉定数調整法

CBCA : ベイズの定理に基づく従来炉定数調整法（classical Bayesian conventional cross-
section adjustment method）

MLCA : 最小分散不偏線形推定に基づく従来炉定数調整法（MVULE-based conventional
cross-section adjustment method）

MRCA : 次元拡大線形推定を用いない最小分散不偏推定に基づく従来炉定数調整法（射影
省略を用いない厳密な式）（MVUE-based rigorous conventional cross-section adjustment
method）

MSCA : 射影省略を用いた最小分散不偏推定に基づく従来炉定数調整法（MVUE-based
simplified conventional cross-section adjustment method）

DRCA : 次元削減（従来）炉定数調整法（dimension-reduced conventional cross-section
adjustment method）

5. 導出方法の異なる拡張炉定数調整法
CBEA : ベイズの定理に基づく拡張炉定数調整法（classical Bayesian extended cross-section

adjustment method）
MLEA : 最小分散不偏線形推定に基づく拡張炉定数調整法（MVULE-based extended cross-

section adjustment method）
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MREA : 次元拡大線形推定を用いない最小分散不偏推定に基づく拡張炉定数調整法（射
影省略を用いない厳密な式）（MVUE-based rigorous extended cross-section adjustment
method）

MSEA : 射影省略を用いた最小分散不偏推定に基づく拡張炉定数調整法（MVUE-based
simplified extended cross-section adjustment method）

6. 導出方法の異なる回帰炉定数調整法
MLRA : 最小分散不偏線形推定に基づく回帰炉定数調整法（MVULE-based regressive

cross-section adjustment method）
MRRA : 次元拡大線形推定を用いない最小分散不偏推定に基づく回帰炉定数調整法（射

影省略を用いない厳密な式）（MVUE-based rigorous regressive cross-section adjustment
method）

MSEA : 射影省略を用いた最小分散不偏推定に基づく回帰炉定数調整法（MVUE-based
simplified regressive cross-section adjustment method）
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付録 A 導出で用いた公式に関する補足

A.1 Woodburyの公式の証明

一般に、以下の式が成り立つ（例えば、文献 [25]の付録 C参照）。(
A + BD−1C

)−1
= A−1 − A−1B

(
D + CA−1B

)−1
CA−1 (A.1.1)

この式はWoodburyの公式として知られている。この式が成り立つことは、両辺に
(
A + BD−1C

)
を乗じることで確認できる。左辺に左から

(
A + BD−1C

)
を乗じると、当然のことながら単位行列

になる。

(左辺 ) =
(
A + BD−1C

) (
A + BD−1C

)−1

= I (A.1.2)

右辺についても以下のように単位行列になることが確認できる。

(右辺 ) =
(
A + BD−1C

) (
A−1 − A−1B

(
D + CA−1B

)−1
CA−1

)
= AA−1 − AA−1B

(
D + CA−1B

)−1
CA−1

+ BD−1CA−1 − BD−1CA−1B
(
D + CA−1B

)−1
CA−1

= I − B
(
D + CA−1B

)−1
CA−1 + BD−1CA−1 − BD−1CA−1B

(
D + CA−1B

)−1
CA−1

= I + BD−1CA−1 − B
(
D + CA−1B

)−1
CA−1 − BD−1CA−1B

(
D + CA−1B

)−1
CA−1

= I + BD−1CA−1 −
(
B + BD−1CA−1B

) (
D + CA−1B

)−1
CA−1

= I + BD−1CA−1 −
(
BD−1D + BD−1CA−1B

) (
D + CA−1B

)−1
CA−1

= I + BD−1CA−1 − BD−1
(
D + CA−1B

) (
D + CA−1B

)−1
CA−1

= I + BD−1CA−1 − BD−1CA−1

= I (A.1.3)

（証明終わり）

141



A.2 分割行列の逆行列の公式の証明

分割行列の逆行列に関して、一般に、以下の式が成り立つことが知られている（例えば、文献 [25]
の §2.3、文献 [36]の定理 8.5.11参照）。(

A B
C D

)−1
=

(
M −MBD−1

−D−1CM D−1 + D−1CMBD−1

)
(A.2.1)

ただし、ここで、

M =
(
A − BD−1C

)−1
(A.2.2)

この式が成り立つことは、両辺に

(
A B
C D

)
を乗じることで確認できる。

左辺の右側から

(
A B
C D

)
を乗じると、当然のことながら単位行列になる。

（左辺）=

(
A B
C D

)−1 (
A B
C D

)
= I (A.2.3)

同様に、右辺の右側から

(
A B
C D

)
を乗じると以下のように単位行列になることが確認できる。

（右辺）=

(
M −MBD−1

−D−1CM D−1 + D−1CMBD−1

) (
A B
C D

)
=

(
MA −MBD−1C MB −MBD−1D

−D−1CMA +
(
D−1 + D−1CMBD−1) C −D−1CMB +

(
D−1 + D−1CMBD−1) D

)
=

(
MA −MBD−1C MB −MB

−D−1CMA + D−1C + D−1CMBD−1C −D−1CMB + I + D−1CMB

)
=

(
MA −MBD−1C O

−D−1CMA + D−1C + D−1CMBD−1C I

)
=

(
M

(
A − BD−1C

)
O

−D−1CM
(
A − BD−1C

)
+ D−1C I

)
=

(
MM−1 O

−D−1CMM−1 + D−1C I

)
=

(
I O

−D−1C + D−1C I

)
=

(
I O
O I

)
= I (A.2.4)

（証明終わり）
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A.3 条件付き正規分布の公式の導出

文献 [25]の説明を参考にして、条件付き正規分布（ガウス分布）の公式の導出についてまとめる。
多変量正規分布の特性として、2つの変数集合の同時分布が正規分布に従う場合には、一方の変
数集合が与えられたときのもう一方の変数集合の条件付き分布も正規分布になる。

A.3.1 導出の準備

正規分布 N ( x | µ,Σ)に従う D 次元の変数 x を考え、二つの互いに素な部分集合 xa と xb に分

割する。xa と xb は互いに素な部分集合であるので、重複した要素（変数）は含まれない。また、

x を分割した部分集合であるので、x の変数は、xa か xb のどちらかもれなく含まれる。更に、正

規分布は、平均値と分散によって決定することができるので、x に含まれる変数に対する平均と分

散（共分散）との対応が取れていれば、x に含まれる変数の順番は任意に決定することができる。

したがって、x の最初の M 個の要素を xa、残りの D − M 個の要素を xb を以下のように分割し、

同時に平均値 µ と共分散行列 Σを定義しておけば、一般性を失わない。

x =

(
xa
xb

)
(A.3.1)

これに対応する平均ベクトル µ の分割を以下のように定義する。

µ =

(
µa

µb

)
(A.3.2)

同様に、共分散行列 Σの分割を以下のように定義する。

Σ =

(
Σaa Σab

Σba Σbb

)
(A.3.3)

また、ここで、ベクトル x の分割に対応する共分散行列の逆行列（精度行列）を以下のように定義

しておく、

Λ ≡ Σ−1 =

(
Σaa Σab

Σba Σbb

)−1
=

(
Λaa Λab

Λba Λbb

)
(A.3.4)

なお、分割行列の逆行列に関しては以下の公式が成り立つ。(
A B
C D

)−1
=

(
M −MBD−1

−D−1CM D−1 +D−1CMBD−1

)
(A.3.5)

ただし、ここで、

M =
(
A −BD−1C

)−1
(A.3.6)
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である。この公式を用いると、精度行列の部分行列は、それぞれ、以下のように表すことができる。

Λaa =
(
Σaa − ΣabΣ−1

bbΣba

)−1
(A.3.7)

Λab = −
(
Σaa + ΣabΣ

−1
bbΣba

)−1
ΣabΣ

−1
bb (A.3.8)

Λba = −Σ−1
bbΣba

(
Σaa − ΣabΣ−1

bbΣba

)−1
(A.3.9)

Λbb = Σ
−1
bb + Σ

−1
bbΣba

(
Σaa − ΣabΣ−1

bbΣba

)−1
ΣabΣ

−1
bb (A.3.10)

A.3.2 共分散行列を使った条件付き確率分布の式

次に、条件付き分布 P ( xa | xb) について考える。ここで、確率の乗法定理より以下の式が成り
立つ。

P (xb, xa) = P ( xa | xb) P (xb) (A.3.11)

この式の左辺は、xa と xb の同時確率であるので P (x)に等しい。したがって、条件付き分布は以
下のように表すことができる。

P ( xa | xb) =
P (x)

P (xb)
(A.3.12)

ここでは、条件付き分布を考えており、xb は条件として与えられた定数と考えることができるの

で、右辺の分母は定数と考えることができる。一方、ここでは、x は正規分布に従うと仮定してい

るので、右辺の分子は正規分布である。したがって、この条件付き分布は、本文中でも用いた平方

完成を使って正規分布の平均ベクトルと共分散行列を決定することができる。

条件付き分布は以下のように表すことができる。

P ( xa | xb) =
1

P (xb)
N ( x | µ,Σ)

=
1

P (xb)
1

(2π)n/2
1
|Σ |1/2

exp
(
−1

2
(x − µ)T Σ−1 (x − µ)

)
= const. exp

(
−1

2
(x − µ)T Σ−1 (x − µ)

)
= const. exp

(
−1

2
(x − µ)T Σ−1 (x − µ)

)
exp (const.)

= const. exp
(
−1

2
(x − µ)T Σ−1 (x − µ) + const.

)
(A.3.13)

この指数関数の指数部は、x の 2次形式になっていることが分かる。このことから、指数関数 exp
の前にかかっている定数 const.を正規分布の規格化定数になるように決定すると、この条件付き分
布も正規分布になることが分かる。
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したがって、この条件付き分布の平均ベクトルを µa |b、共分散行列を Σa |b とすると、式 (A.3.13)
は、以下のように表すことができる。

P ( xa | xb) = N
(
xa | µa |b,Σa |b

)
=

1
(2π)n/2

1��Σa |b ��1/2 exp
(
−1

2

(
xa − µa |b

)T
Σ−1
a |b

(
xa − µa |b

))
= const. exp

(
−1

2

(
xa − µa |b

)T
Σ−1
a |b

(
xa − µa |b

))
= const. exp

(
−1

2
xT
aΣ
−1
a |bxa +

1
2
xT
aΣ
−1
a |bµa |b +

1
2
µa |bΣ

−1
a |bxa + const.

)
(A.3.14)

ここで、この式の expの指数部の項はすべてスカラーであり、スカラーは行列の転置に対して影響

を受けない。また、対称行列の逆行列は対称行列になるので、
(
Σ−1
a |b

)T
= Σ−1

a |b が成り立つ。このた

め、以下の式が成り立つ。

1
2
µa |bΣ

−1
a |bxa =

1
2

(
µa |bΣ

−1
a |bxa

)T

=
1
2
xT
aΣ
−1
a |bµ

T
a |b (A.3.15)

したがって、式 (A.3.14)は、以下のように変形できる。

P ( xa | xb) = const. exp
(
−1

2
xT
aΣ
−1
a |bxa + xT

aΣ
−1
a |bµa |b + const.

)
(A.3.16)

A.3.3 精度行列を使った条件付き確率分布の式

一方で、式 (A.3.13)は、精度行列を使うと以下のように変形できる。

P ( xa | xb)

= const. exp

(
−1

2

(
xa − µa

xb − µb

)T (
Λaa Λab

Λba Λbb

) (
xa − µa

xb − µb

)
+ const.

)
= const. exp

(
−1

2

( (
xa − µa

)T (
xb − µb

)T
) (
Λaa Λab

Λba Λbb

) (
xa − µa

xb − µb

)
+ const.

)
= const. exp

(
−1

2
(
xa − µa

)T
Λaa

(
xa − µa

)
− 1

2
(
xa − µb

)T
Λab

(
xb − µb

)
− 1

2
(
xb − µb

)T
Λba

(
xa − µa

)
− 1

2
(
xb − µb

)T
Λbb

(
xb − µb

)
+ const.

)
(A.3.17)

更に、この式は xa 以外は定数であることに注意すると、以下のように表すことができる。

P ( xa | xb) = const. exp
(
−1

2
xT
aΛaaxa +

1
2
xT
aΛaaµa +

1
2
µT
aΛaaxa

− 1
2
xT
aΛab

(
xb − µb

)
− 1

2
(
xb − µb

)T
Λbaxa + const.

)
(A.3.18)
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ここで、先ほどと同様に、expの指数部の項はすべてスカラーであり、スカラーは行列の転置に対
して影響を受けないことを考慮すると、以下の式が成り立つ。

1
2
µT
aΛaaxa =

1
2

(
µT
aΛaaxa

)T

=
1
2
xT
aΛaaµ

T
a (A.3.19)

ただし、ここで、Λaa が対称行列であること、すなわち、(Λaa)T = Λaa が成り立つことを用いた。

同様に、以下の式が成り立つ。

1
2

(
xb − µb

)T
Λbaxa =

1
2

( (
xb − µb

)T
Λbaxa

)T

=
1
2
xT
aΛab

(
xb − µb

)
(A.3.20)

ただし、ここで、ΛT
ba = Λab が成り立つことを用いた。したがって、条件付き分布の式は、以下の

ように整理できる。

P ( xa | xb) = const. exp
(
−1

2
xT
aΛaaxa + xT

a

(
Λaaµa − Λab

(
xb − µb

) )
+ const.

)
(A.3.21)

A.3.4 平方完成

式 (A.3.21)と式 (A.3.16)は等しいので、expの指数部の x の 2次の項と 1次の項の係数は、そ
れぞれ、等しくならなければならない（平方完成）。この平方完成の 2次の項の比較から、以下の
式が得られる。

Σa |b = Λ
−1
aa (A.3.22)

この式に、式 (A.3.7)を代入すると以下のように表すことができる。

Σa |b = Σaa − ΣabΣ−1
bbΣba (A.3.23)

一方、平方完成の 1次の項の比較からは、以下の式が得られる。

Σ−1
a |bµa |b = Λaaµa − Λab

(
xb − µb

)
(A.3.24)

この式の両辺に左から Σa |b を乗じて、式 (A.3.22)を用いると以下のように表すことができる。

µa |b = Σa |b
(
Λaaµa − Λab

(
xb − µb

) )
= Λ−1

aa

(
Λaaµa − Λab

(
xb − µb

) )
= µa − Λ−1

aaΛab

(
xb − µb

)
= µa −

(
Σaa − ΣabΣ−1

bbΣba

) (
Σaa + ΣabΣ

−1
bbΣba

)−1
ΣabΣ

−1
bb

(
xb − µb

)
= µa − ΣabΣ−1

bb

(
xb − µb

)
(A.3.25)

ただし、ここで、式 (A.3.7)、(A.3.8)を用いた。
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A.3.5 まとめ

以下のような平均ベクトル µ、共分散行列 Σ で表される正規分布 N ( x | µ,Σ)に従う変数ベクト
ル x を考える。

x =

(
xa
xb

)
(A.3.26)

µ =

(
µa

µb

)
(A.3.27)

Σ =

(
Σaa Σab

Σba Σbb

)
(A.3.28)

これは、正規分布 N
(
xa | µa,Σa

)
に従う変数 xa と正規分布 N

(
xb | µb,Σb

)
に従う変数 xb を考

え、それらの相互相関係数行列が Σab = ΣT
ba で与えられている場合に相当すると考えられる。更

に、このとき、xb が与えられた条件の下での xa の条件付き分布 P ( xa | xb) は正規分布に従う。
この条件付き分布の平均ベクトルを µa |b、共分散行列を Σa |b とすると、条件付き分布 P ( xa | xb)
は、以下のように表すことができる。

P ( xa | xb) = N
(
xa | µa |b,Σa |b

)
=

1
(2π)n/2

1��Σa |b ��1/2 exp
(
−1

2

(
xa − µa |b

)T
Σ−1
a |b

(
xa − µa |b

))
(A.3.29)

ただし、

µa |b = µa − ΣabΣ−1
bb

(
xb − µb

)
(A.3.30)

Σa |b = Σaa − ΣabΣ−1
bbΣba (A.3.31)

である。
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