
Title Moduli of equivariant algebraic vector bundles
over affine cones with one-dimensional quotient

Author(s) Masuda, Kayo

Citation Osaka Journal of Mathematics. 1995, 32(4), p.
1065-1085

Version Type VoR

URL https://doi.org/10.18910/7345

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University



Masuda, K.
Osaka J. Math.
32 (1995), 1065-1085

MODULI OF EQUIVARIANT ALGEBRAIC VECTOR

BUNDLES OVER AFFINE CONES WITH ONE
DIMENSIONAL QUOTIENT

KAYO MASUDA

(Received March 3, 1994)

Introduction

Let G be a reductive complex algebraic group. We consider on the base
field C of complex numbers. Let X be an affine G-variety with a G-fixed base
point JC O GX and Q be a G-module. We denote by VecG(X,Q) the set of algebraic
G-vector bundles over X whose fiber at x0 is Q and by VECG(X,Q) the set of
G-isomorphism classes in VecG(X,Q). The set VECG(X9Q) has the distinguished

element represented by the product bundle &Q:—XxQ. We denote by [£] the
isomorphism class of Ee VecG(X,Q).

The study of VECG(X,Q) is especially interesting when X is a G-module P
(see e.g. [2]). In this case we take the origin as the G-fixed base point. When

G is trivial, the Serre conjecture, which was proved by Quillen and Suslin

independently, implies that KBCσ(jP,β) = {*} (the trivial set consisting of the
distinguished element) for any P and Q. However, only few facts are known when
G is non-trivial. One approach is to require that the quotient space P // G be of

small dimension. It is easy to see that KECG(Λβ) = {*} if dimP//G = Q. But,
VECG(P,Q) is not trival in general. Schwarz [11] (see [5] for the details) has
shown that if dimP//β=l, VECG(P,Q) has a structure of finite dimensional
vector group and it can be non-trivial. Later, many other families of non-trivial

examples have been produced by Knop [4], Masuda-Petrie [9] and Masuda-
Moser-Petrie [7] when P has a higher dimensional quotient. However it remains

open to classify elements in VECG(P,Q) when dimP//G>2.

If dimP//G>l, there is a non-zero point xeP whose orbit is closed. The

closure of the orbit of the line spanned by x is an affine cone with G-action whose

quotient is one dimensional (but not necessarily isomorphic to affine line). Masuda-

Moser-Petrie [8] noticed that elements of VECG(P,Q} can be often distinguished

by restricting to the cone. This led them to the notion of weighted G-cones with

smooth one dimensional quotient (see §1). Note that a G-module with one

dimensional quotient is an example of a weighted G-cone with smooth one

dimensional quotient.
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In this paper, we extend the main results of Schwarz [11] to the case that

the base space A" is a weighted G-cone with smooth one dimensional quotient, i.e.

we prove

Theorem. Let X be a weighted G-cone with smooth one dimensional quotient

and H be a principal isotropy group of X. Let Q, Qv and Q2 be G-modules.
(1) VECG(X,Q)^(CP, +) (Cp as a vector group under addition) for some

non-negative integer p. Moreover ', there is a G-vector bundle μ : 95 ->
Xx VECG(X,Q) such that μ~\Xx [_E~])^E for every Ee VecG(X,Q\

(2) Whitney sum induces an epimorphism of vector groups

WS: VECG(X9Qί)xVEC^X9Q2)^VECG(X9Qi®Q2).

If Hom(β1,β2)
H={0}, then WS is an isomorphism.

(3) Let ElyE2 e VecG(X, Q). Then E^ ®E2 ^E3®ΘQ where [£3] := [
(4) The stabilization map

Stab : VECG(X, Q) -> VECG(X, Q® Q)

is an isomorphism.

Schwarz [11] (or Kraft-Schwarz [5]) proved the theorem above when A" is a
G-module with one dimensional quotient and basically we follow his argument.

However our argument is considerably simplified and made elementary at several
points. The key fact to enable it is Equivariant Nakayama Lemma, which implies
that VECG(X,Q)^VECG(Y9Q) if Y is a closed G-subvariety of X containing all
closed orbits in X. We take Y to be the minimal one among those

G-subvarieties. Such Y is called the closed orbit closure of X and denoted by Xcl

(cf. [1]). It turns out that Xcl is also a weighted G-cone with smooth one dimensional

quotient. The advantage of taking Xcl is that the generic fiber F of the quotient
map πcl : Xcl -> Xcl // G = A is a closed orbit. This fact makes the proofs much simpler.

The organization of this paper is as follows. We define a closed orbit closure

in §1 and a weighted G-cone with smooth one dimensional quotient in §2 and discuss
their properties. In §3, we show that every G-vector bundle over Xcl is trivial

when restricted to Xcl-π^l(0). This reduces VECG(Xcl,Q) to the double coset of
the group αf transition functions. In order to deform the double coset to a
calculable form, we prove the decomposition property for Mor(7%GL(2)G (the group
of G-equivariant morphisms from F to GL0 and the approximation property for

the semisimple part of Mor(F,GLg)G in §§4 and 5. These properties are established
in [5] in full generality, but thanks to the fact that F is a closed orbit, it suffices
to prove them in a special case and we give them rather elementary proofs in
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that case. The main theorem above is proved in §§6 and 7. In §8, we make an
explicit computation of the dimension of VECG(X, Q) for an example treated in [8],

I wish to thank Professor L. * Moser-Jauslin and Professor T. Petrie for
encouraging comments on this paper. I thank Professor Y. Tsushima for his help
concerning the automorphism group of GLn. Finally, I heartily thank Professor
Mikiyέi Masuda for giving precious advices throughout this paper.

1. Closed orbit closure

Let G be a reductive algebraic group and Z be an affine G-variety (reduced
but not necessarily irreducible). We denote by Θ(Z) the ring of regular functions
on Z and by Θ(Z)G the G-invariant subring of 0(Z). The algebraic quotient space
of Z by G, denoted by Z//G, is defined to be Sρec0(Z)G. The algebraic quotient
map π:Z->Z//G is defined to be the morphism corresponding to the inclusion
CO(Z)G q; 0(Z).

DEFINITION ([!]). The minimal closed G-subvariety of Z containing all
closed orbits of Z is called the closed orbit closure of Z and denoted by Zd.

REMARK. If Z//G is irreducible, then it follows from Luna's slice theorem
[6] that there exist a maximal open dense subset U a Z//G and a reductive subgroup

H ^ G such that the isotropy groups of points of closed orbits in π "*(£/) are all
conjugate to H and n\π-ι(U):π~l(U) -* U is a G-fiber bundle. The group H is the
minimal one among isotropy groups of points of closed orbits in Z up to
conjugation. The group H is called a principal isotropy group of Z and U is
called the principal stratum of Z//G. We call the fiber over U the generic fiber

of π. One sees that Zcί = G'(π~\Uψ. In fact, it is clear that Zd => G'(π~*(U)f.
Since π maps a G-closed set to a closed set ([3, p.96]), τι(G (π~ \lTSf1) ^
π(G (π-1It7^=c7=Z//G. This means that G'(π-\U)f contains all closed
orbits. Hence Zcl = G-(π~ί(U))H. Note that a principal isotropy group of Zcl is

also H up to conjugation.

Lemma 1.1. The closed orbit closure Zcl satisfies the following properties:
(1) The restriction map Θ(Z)G -»0(Zd)

G is an isomorphism.

(2) If Z//G is irreducible, then the generic fiber of π\Zcl:Zcl ->Zd//G = Z//G
is isomorphic to G/H where H is a principal isotropy group of Z.

Proof. (1) The injectivity follows from the fact that Zd contains all closed
orbits of Z and the surjectivity follows from the fact that Zd is closed and G is

reductive.
(2) Let (π\Zcl)~l(ξ) be the generic fiber and U be the principal stratum of

Z// G. Since generic fibers are isomorphic to each other, we may think ξeU. The
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fiber n~l(ξ) contains a unique closed orbit Gz such that the isotropy group of
zeZ is H and π ~ l ( ξ ) = {zΈZ\Gz'3z}. It is clear that (π\zJ~l(ξ) = π~l(ξ)nZcl

contains Gz. We show that (π\Zel)~l(ξ) = Gz. From the remark above, Zd =

G-(π'l(U)f. Hence

= dimG (π-1(t/))II-dimZ//G

= dimG (π-1(£))" + dim U-dimZ//G

= dim<7 (π-1(£))H.

Let zΈπ~i(ξ) and z'φGz. Since dim Gz' ̂  dim Gz, the dimension of the isotropy

group of z' is strictly smaller than that of H. Thus (π~l(ξ))a = (Gz)H and
-Hΰ = dimG'(π-l(ξ))H = dimGz. While, if z' e(π\ZclΓ

l(ξ) then

~^)£dimGz. This means that ( π \ Z e ί ) ' l ( ξ ) = Gz ̂  G/#. ' Π

The next lemma is the key fact used in this paper.

Equivariant Nakayama Lemma ([!]). Let Z be an affine G-variety, W a Z be
a closed G-subvariety and let E and E' be G-vector bundles over Z.

(1) Every G-vector bundle homomorphism Φ:E\W-+E'\W extends to a G-vector
bundle homomorphism Φ :E -+ E'.

(2) If W contains all closed orbits of Z and Φ is an isomorphism, then the
extension Φ is also an isomorphism.

Corollary 1.2. The restriction map VECG(Z,Q)-» VECG(ZchQ) is injective for
any G-module Q.

2. Weighted G-cone with smooth one dimensional quotient

Let A" be a GxC*-affine variety. The C*-action defines a (integer- valued)
grading on &(X\ i.e. we say that /e Θ(X) has degree r iff

f(λx) = λrf(x) for all λ e C * and x e X.

DEFINITION ([8]). An affine G x C*-variety X is called a weighted G-cone with
smooth one dimensional quotient if it satisfies the following conditions :

(1) &(X)C* = C and Θ(X) is positively graded with respect to the C*-action.
(2) &(X)G = C[f] where tε®(X)G is homogeneous.

REMARK. A G-module admits the C*-action defined by scalar multiplication,
which satisfies condition (1). Since a G-module whose quotient is one dimensional
satisfies condition (2) (see [5, II]), it is an example of a weighted G-cone with smooth
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one dimensional quotient.

From now on X will denote a weighted G-cone with smooth one dimensional
quotient unless otherwise stated. Condition (2) means that X// G is isomorphic to
the affine line Λ = SpecC[/]. Through an isomorphism between X//G and A the
quotient map π\X-*X//G^A is nothing but the function t. Let d:=deg/>0.
Note that the C*-action on X induces a C*-action on X//G^A which is d-th
power scalar multiplication. It follows from condition (1) that X has a unique
closed C*-ordit, in fact, a G x C*-fixed point (see [8,2.1]), which we denote by x0.

Lemma 2.1. For any xeX such that t(x)^Q, limΛ_0Ajc = jc0 where AeC*.

Proof. Since X has a unique closed C*-orbit {x0}, one easily sees that
C*.x = C*.xu{.x0}. This implies that x0 equals to \imλ_+0λx or lim^^/bc. If
Λ:0 = limΛ^00Ax, then

ί(x0) = t( lim λx) = lim t(λx) = lim λdt(x).
λ—»• oo λ-*oo A-*OO

Since J>0 and φc)/0, the identity above cannot hold. Hence -x0 = limA_>0/bc.

D

We consider the closed orbit closure Xcl of X (as an affine G-variety). Let H
be a principal isotropy group of X and x e X— π^ be a point whose isotropy group is
H. Then JΓc/ = (GxC*)jc, in particular A^ is a GxC*-variety. In fact, Ύd is also
a weighted G-cone with smooth one dimensional quotient because condition (1) is
obviously satisfied and condition (2) follows from Lemma 1.1 (1). We abbreviate
the quotient map π\Xeί:Xct -> Xcl//G ^ A by πcl. Let F= π~t

 J(l), which is a generic
fiber. For affine G-varieties (or schemes) Y and Z, we denote by Mor(7,Z) the

set of morphisms from Y to Z. With this understood

Lemma 2.2.
(1) F^G/H.
(2) For any G-module V, Mor(XchV)G is a free ®(Xcϊf-module of rank

dim VH. Moreover the restriction map Mor (Xcl, V)G -> Mor (F, V)G ^ VΉ is surjective.

Proof. The first statement follows from Lemma 1.1 (2) and the second one

is proved in [8, 2.3]. Π

3. Triviality over the principal stratum

In this section, we show that every G-vector bundle over Xcl is trivial when

restricted to Xcl:=Xcl — π^Ίl(0). We identify Xd//G with A so that the induced
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C*-action on Xcl//G = A is rf-th power scalar multiplication. The group of rf-th
roots of unity, denoted by Γ, acts trivially on A, so the generic fiber F=n~t

l(l)
is invariant under the Γ-action. Let J? = SpecC|Y] where t=sd. We define a
Γ-action on B by scalar multiplication. Then B/Γ = A. We denote by
B*ΓF the quotient of B x F by Γ where y e Γ acts on B x F by (b,f) -> (by,y~vf\ and
define a G-action on B*ΓF by g [&,/] = [£,£/] for geG. There is a G-morphism
B*ΓF->Xci mapping [6,/] to bf where 6eΰ:=Λ-{0} is identified with C* so
that bf makes sense. This can be extended to a G-map φ:B*ΓF-+Xd by defining

Lemma 3.1. The map φ:B*ΓF-+Xcl is a G-morphism which restricts to an
isomorphism from B*ΓF to Xcl.

Proof. Since φ\β*rF is a morphism, to see that φ is a morphism from B*ΓF,
it suffices to show that the image of φ* : Θ(Xcl) -> &(B*ΓF) = (0(B)®Θ(F))Γ is contained
in (Θ(B)®@(F))Γ. This is equivalent to showing that limb_>0((p*A)([6,/]) exists for
any he(9(Xcl). From Lemma 2.1 we have

lim(φ *AX[6,/]) = Km h(bf) = h(\im bf) = h(x0).

Hence φ is a morphism from B*ΓF to Xcl.
Clearly φ\gtΓF:B*ΓF->Xcl is a bijective morphism. Note that Xcl consists of

one G x C *-orbit, so Xcl is normal at every point. Therefore φ\^rF is an isomorphism
by Richardson's lemma (see [3, p. 106]). Π

Let EG VecG(Xch Q) and E be the pull-back of E by the map BxF-> B*ΓF Λ Xcl.

Then E is a G x Γ- vector bundle over B x F.

Lemma 3.2. E is isomorphic to the trivial bundle BxFxQ-+BxF as a
G-vector bundle.

Proof. We identify F with G / H and set E0 '=E\Bx{eH}. Then E is isomorphic
to G*HE0 and E0 is isomorphic to a trivial //-vector bundle since the base space is a
trivial H-module (cf. [2, 2.1]). Let Φ:Bx{eH}x Q^ E0 be an //-vector bundle
isomorphism over Bx{eH}. It induces a G-vector bundle isomorphism Φ over
BxG/H

lq). D

Set M:=Mor(F,GL0G. We define an action of y e Γ on M by
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(ynί)(f) = m(y "lf) for m e M and fe F

and on M(B):=Mor(B,M) by

(yμ)(b) = y(μ(by)) for μeM(B) and bεB.

Theorem 3.3. Let Xbe a weighted G-cone with smooth one dimensional quotient
and Q be a G-module.

(1) For every EeVecG(XcbQ\ E\χcl is isomorphic to a trivial G-vector bundle.
(2) The restriction map VECG(X,Q)-* VECG(XchQ) is bijective.

Proof. (1) Let E be the same as in Lemma 3.2. By Lemma 3.2, we may
assume E=BxFxQ&sa G-vector bundle. Since E\Xcl is isomorphic to the quotient
of E\B*F by the Γ-action, we investigate the Γ-action on E\gxF = BxFx Q.

The action o f y e Γ on E=BxFxQ can be expressed as

BxFxQ-+BxFxQ

with KyεM(B). One easily verifies that

Kyy' = γKγ'Kγ for 7, y' ε Γ.

Hence elements hy\=K~l satisfy the 1-cocycle condition hyy. = hy(γhy) and give rise
to an element of a group cohomology set Hl(Γ9M(B)). Since Hl(Γ9M(Λ)) = {*}
from [5, IV 5.6], there exists φeM(B) such that hy\g = φ~l(γφ) for all yeΓ. Then
the map

is a G x Γ-equivariant vector bundle isomorphism, the Γ-action on Q at the target
being trivial. This shows that E\χcl is isomorphic to a trivial G-vector bundle.

(2) By Corollary 1 .2 it suffices to prove the surjectivity. Let Ee VecG(Xcb Q). It
is trivial over Xcl by the above (1) and there is an open neighborhood U of OeΛ
such that E is trivial over π~t

 l(U) ([2, 6.2]). Let ψ be a transition function of E with
respect to trivializations over Xcl and n~ι\U\ It can be viewed as an equivariant
vector bundle automorphism of the trivial bundle over πc7

1(C/)nΛr

cί with fiber
Q. Let X:=X—π~l(Q). As is easily seen, π~l(U)rιX is an affine G-variety and
τι~l

v(U)r\Xcl is its closed G-subvariety containing all colsed G-orbits of π~ί(U)rιX'9
so ψ extends to an equivariant vector bundle automorphism \ji over π~1((/)nA r by
Equivariant Nakayama Lemma. Let E be the G-vector bundle over X obtained
from φ. Clearly E restricts to E, proving the surjectivity. Π
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REMARK. The statement (1) in Theorem 3.3 holds for X (instead of Xcl)

since the restriction map VECG(X, Q) -» VECG(Xcb Q) is injective by Corollary 1.2.

By virtue of Theorem 3.3 (2) we may take Xcl as the base space instead of X.
We set

Λ = SpecC(/)

where C[r]0 denotes the localized ring at 0, i.e.

φ 0} and C(0 the quotient field of C[f] Note that A is the schematic intersection
An A.

Theorem 3.4.

where φ(Z):=Moΐ(Zx AXchGLQ)G for an A-scheme Z.

Proof. This is a direct result from Theorem 3.3 (1). Let Ee VecG(XchQ).

There exist an open neighborhood U of OeA^Xcl//G and a trivialization

\l/v : E\π -λ ι((7) ̂  πc7 *( U) x Q as remarked in the proof of Theorem 3.3 (2). By Theorem

3.3 (l)Jhere is a trivialization ψ:E\Xel = Xcίx Q. Then ψoψϋ1 defines an element

for xeXcinπ^U), qeQ.

Take another open neighborhood V of 0 e A together with a trivialization ψv over
πdl(V) and another trivialization iff' over Xcl. Then i/^Ό^"1 defines an element

dΓ'e%2). We also have ae^(yl) and ae^(^i) defined by ^Ό^"1 and ψu°Ψvl>
r^, /^

respectively. Then ά' = άάα and this proves the theorem. Π

Since the morphism φ : B*ΓF -» ̂  is an isomorphism over A from Lemma

3.1, it induces the following isomorphisms:

φ : φ(y|) M(5)Γ and φ „ :

where /? = SpecC(,s). Thus we obtain an isomorphism

In the following sections we analyze the latter double coset.
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4. The decomposition property

Decompose

Q = ®q

i=\niWi as //-modules

where W{ are mutually non-isomorphic irreducible //-modules and nt is the
multiplicity of W{. Then since F^ G/ H, we have

M=Mor(/%GLβ)G £ GL(β)H £ f[GLni.

Note that M(B) has a natural grading induced from ®(B). We define

M(/?)r:={μeM(*)|^

where / denotes the constant map to the unit element of M. We set

A = SpecC[|>]], B=

where C[[Y|] denotes the ring of formal power series and C((s)) the ring of finite
Laurent series. We define M(B\ and M(B)τ

r etc. similarly to M(B\ and M(Bfr. The
main purpose of this section is to prove

Theorem 4.1. (The decomposition property).

and M(B)Γ = M(6)ΓM(B)\.

First, we show that M has the decomposition property if we forget the Γ-action,
i.e.

Proposition 4.2. M(6) = M(B)M(B)1 and M(6) = M(B)M(B)l.

Proof. Since M(B) = M M(B\, it suffices to show that M(6) = M(B)M(B).
Furthermore since M is isomorphic to the product of general linear groups, it is
sufficient to prove the proposition when M=GLn. We prove that

GLn(B) = GLn(B)GLn(B)

by induction on n. Note that an element of GLn(B) (resp. GLn(B\ GLn(B)) is an
invertible matrix whose entries are in C((̂ )) (resp. C[[^,5'~1]], C [[>]]).

The above identity is clear for n=\. Suppose n>2. Take A(s) = (aί}(s)}
e GLn(B) where a^s) e C((s)). By permuting the columns, we may assume that aί ^s)
is a non-zero finite Laurent series whose order at 0 is the smallest among entries
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in the first row. Multiplying the first column by an appropriate element of

C[[V]] and adding it toy'-th column, we can make aίj(s) = Q fory > 1. This procedure
is done by operating GLn(B) from the right hand side.

By operating GLn(B) from the left hand side, we can make the order of cij^s)

(2<j<n) at 0 as large as we want without changing ai3(s) (2</,y<«). In fact,

this can be done by multiplying the first row by an appropriate element of CJX y" *]

and adding it to y-th row. Applying the induction hypothesis to the matrix

^-i(*)M^))2<u<«> there exist Bn_,(s)eGLn_,(B) and Cn.,(s)eGLn_,(B) such
that

Define a column vector φ) by

From the above observation, we may assume that each entry of φ) belongs to

C[M] Let r be the order of aίί(s) at 0 and set

eGLtt(B).
/ \ yT ί \ I "^ '

Φ) Cn-ι(s)J

Then one sees A(s) = B(s)C(s).

The identity M(6) = M(B)M(8)ί can be proved in a similar way. Π

Proof of Theorem 4.1. For any A e M(6)Γ there exist A e M(B) and A e M(B)i

such that A = A A by Proposition 4.2. Define a map A : Γ -+ M(B) by A(y) — A~ l(yA)
for yeΓ. Clearly A satisfies the 1-cocycle condition. Since A is Γ-in variant,

Thus, A defines an element of H\Y,M(B)V\ Since Hi(Γ,M(B)1)= {*} ([5, IV 6.3]),
there exists AeM(B)l such that A(γ) = A~1(γA). Thus, A A ~ 1 e M(B)Γ and
A A e M(B)\. Hence A=(AA~ l)(AA) e M(B)ΓM(B)\.

The identity M(Bf = M(Bf M(B)\ can be proved in a similar way. Π

Finally we make an observation on the Γ-action on M, which will be used

in the next section. Take a point /0eF whose isotropy group is H. Evaluation at

/o gives an isomorphism

Ψ : M = Mor (F, GLQ)G -+ GL(Q)H.

Recall that the action of yeΓ on M is given by m-^m°y~l. Since the Γ-action

on F is G-equivariant and the isotropy group of /0 is //, y~1/o=^/o with some
element g in the normalizer of H in G. Therefore we have
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(y»*)(/o)=m(y ~ %) = mfe/o) = p(g)m(f0)p(g) ~1

where p:G^> GLQ is the homomorphism (i.e. rational representation) associated
with Q. This shows that the action of γ on M corresponds to the conjugation
by p(g)eGLQ on GL(β)H through the above isomorphism Ψ. Note that the
conjugation by ρ(gf is the identity since / = !.

Remember the decomposition β=Θ?=ι«i^ as //-modules. If q= 1 i.e.
Q ^ n W for some irreducible //-module W, then M ^ GLn.

Lemma 4.3. Suppose Q^nW as H-modules. Then the action of γeΓ on
M = GLn is equivalent to the conjugation by a diagonal matrix of GLn with elements
of d-th roots of unity.

Proof. We choose f0εF and fix the isomorphism Ψ:M=Mor(/%GL0G

-^GL(Q)H and geG such that y~lfo=gf0 for a generator yeΓ. Furthermore,
we fix an //-equivariant isomorphism φ\Q-+nW and identify GL(β)H with

GL(nW)H ^ GLn through the isomorphism φ. The y-action on GL(nW)H

corresponds to the conjugation by p(g) := φp(g)φ ~l e GL(n W). Hence the y-action
is an automorphism of GL(n W)H ^ GLn which fixes the center of GLn. It is known

that Aut(GLπ)/Int(GLw) ^ Z/2Z (n>2) and the non-trivial element is represented
by ιeλut(GLn) where /(^() = ίv4~ 1 for AεGLn (cf. [10, p.298]). However, i is not
identity on the center of GLn9 thus the y-action on GLn is an inner automorphism
of GLn. Hence we may think of p(g) as an element of GLn.

Since the conjugation by ρ(gf is the identity, ρ(gf is a scalar matrix. Hence
there is SeGLn such that Sp^S'1 is diagonal and the f-th diagonal entry of
Sρ(g)S ~l is written as Λ^α, where λi is a rf-th root of unity and α is a complex
number independent of /. The conjugation by ρ(g) is equivalent to that by

diag(λι9 9λj so the lemma has been proved. Π

5. The approximation property

Let M' be the commutator subgroup of M, which is the semisimple part of
M and isomorphic to ΠίtSLΠi. Note that M' is invariant under the Γ-action. In
this section we prove the approximation property for M' and deduce a few

consequences from it.

Theorem 5.1. (The approximation property).

M\B)\ = M'(B)\M'(B)Y

r for all r ̂  1.

The interaction between Lie groups and Lie algebras is necessary to prove

the theorem above. Let m and m' be the Lie algebras of M and M'

respectively. Then m = Mor(F,End0G s End(0H s Θjgl,, and m' s Φ^ln, Note
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that m' is Γ-invariant. The key result to prove Theorem 5.1 is

Lemma 5.2. Let r>\ and let A em' such that srAem'(B)Γ. Then there exists
g(s)eM'(B)\such that g(s) =

We take this lemma for granted for a while and prove Theorem 5.1.

Proof of Theorem 5.1. It suffices to show that for any g(s) e M'(Bfi, r>l,
there exists g(s)eM'(B)\ such that g(s)~^g(s)eM'(B)τ

r+l. Write g(s) = I+srA
+ O(sr+l) eM'(Bfr. Then A em' and srAem'(B)τ. Hence, the theorem follows
from Lemma 5.2. Π

Proof of Lemma 5.2. Let γ be a generator of Γ. We may reduce to the
case where m'^mΊθ θmJ, mj ^ slπ for each i and ym\=mt

2,'-,γm'l-i=m'h
ymj = m'1. Thus γ1 preserves each mj. We consider two cases.

Case (1) /=!.
In this case, m' ̂  sln and M' ^ SLn. In the following we identify m' with

δlw and M' with SLn. There is a standard decomposition slw = tπ0u+©u~ where
tn is the maximal toral subalgebra of slπ consisting of diagonal matrices with trace
zero and u+ (resp. u") is the nilpotent subalgebra of slπ consisting of upper (resp.
lower) triangular matrices with zero diagonal entries. By Lemma 4.3 we may
assume that the induced action of 76 Γ on m' is conjugation by a diagonal
matrix. Hence the Γ-action on tπ is trivial and u1 are Γ-invariant.

Given Ae$ln such that srA is Γ-invariant, we decompose A=
where A0etn, A+eu+, A_eu~. Since

we may reduce to the case where A e tn. Furthermore, we may reduce to the case
where m' = sI2 and A e t2 since tπ is isomorphic to a direct sum of t2 c sl2.

Let Λ=α( )et2, where α is a scalar. By Lemma 4.3 we may assume
\Q-lJ

that the action of γ on sI2 is the conjugation by a diagonal 2 x 2 matrix with
diagonal entries λ^ and λ2 where λt are rf-th roots of unity. From the Γ-invariance
of srA9 we have d\r. Set

O \\ /O 0\ Λ 0
I, σ? = 1 I, σλ =o oy \ι oy vo -i

Then σA and σ2 are nilpotent, [σl5σ2] = σ3 and the y-actions on them are:
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If rφd or the y-actions on σ^ and σ2 are not trivial (i.e. λ1^λ2)9 then there are
positive integers a, b such that Λr1? sbσ2 are Γ-invariant and [saσl,s

bσ2]=srσ3

since A f = l and d\r. Hence

g(s) := exp(α5ιflσ1)exp(/σ2)exp( — α^σ1)exp( — sbσ2)

is in SL2(B)\ and g(s) = I+asrσ3 + O(sr+ί), so it is the desired element. If r — d
and the y-actions on σί and σ2 are trivial, then one can easily check that

g(s) := exp( — α5 rσ2)exp(α/σ1)exp(σ2)exp( — asrσί)exp( — σ2)

is the desired element.
Case (2) />2.
In this case, d=klfor some positive integer k and each mj ^ sln is stable under the

action of Γl:={yjl\j=Q,l9 ',k-l}. Let A=Ai®--®Al where A^m^ ^ £>!„.
Since jM is Γ-invariant, Λ^ is Γ'-invariant. It follows from Case (1) that we
can find g^eSLJiBfi1 such that gl(s) = I+srAί + O(sr+l). Then g(s) = Ul

i=lgi(s),
where gi+ι(s)=(γgl)(s) for !</</— 1, is the desired element. Π

Denote the canonical map M^M/M' by τ. Since M^Πf= 1GLn. and
M' ̂  Πf=15LM., M I M' ^ (C*)q and τ is viewed as the determinant map on each
factor GLn.. Let Z be the center of M. Then Z is isomorphic to (C *)q and the
map τ restricted to Z induces an isomorphism of the Lie algebras. Note that Z
is invariant under the Γ-action. We define m(l?)^ :=m(/?)Γ nm(/?)Γ where m(/?)Γ

= {μem(β)|μ = O(/)}. Similar definition applies to m' and m/m'.

Proposition 5.3. For r>l, fftere w α commutative diagram of split exact
sequences :

0 -> m'(^)Γ

Γ -> m() r

r (m/m')() r

r ^ 0

I I I

1 -> M )̂̂  -» M(^)r

r

τ induces τtt tfflrf τ^, αwrf ίΛe vertical maps are isomorphisms induced from
exponential maps.t Moreover M(B)^ — M'(B)lZ(B)l.

Proof. Exactness of the upper sequence, commutativity of the diagram and
isomorphisms of exponential maps are clear. The existence of a splitting map of
T* follows from the fact that the canonical map m -» m/m' ^ Cq is an isomorphism
on the Lie algebra 3 of the center Z. This implies that τ^ also has a splitting
and τfl is an isomorphism on %(B)Γ

r. Since %(B)τ

r ^ Z(B)τ

r via the exponential map,
it follows that τ* is an isomorphism on Z(B)Y

r. Thus exactness of the lower
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sequence and the last statement follow. Π

Lemma 5.4. M(B)\ = M(B)\M(B)τ

r for all r > 1 .

Proof. From Proposition 5.3, M(Bfr = M'(B)τ

rZ(B}τ

r for r>l. Since M1 has

the approximation property, we reduce to the case where M=Z^(C*)ί.

Let z^=(zί(sl'"9zq(s))eZ(B)\ where zt(s} = \ +Σr

j-[aijs
j+O(sr) (α0 eC) for

\<i<q. Define z = (zί(s\'",zq(s)) by £,{*)= 1 +ΣJ I fo/ for \<i<q. Since the
action of γ e Γ on M ^ GL(Q)H is a conjugation by an element of GLβ, the
Γ-action preserves the grading of Z(B)<^M(B\ Hence zeZ(B)\ and z~lz

Lemma 5.5. For r>\, M(B)l and M(B)\M(Bfr are both normal subgroups of
M(B)\.

Proof. It is easy to see that M(B)* is normal, so we prove that M(B)\M(Bfi is

normal. From Proposition 5.3, M(B)\ = M'(B)\Z(B)\. On the other hand
M(B)\M(Bfr => M\B)\M'(B)Γ

r=M'(B)\ by Theorem 5.1. Since Z(B)\ is the center
of M(B)\ and M'(B)\ is contained in M(B)\M(B)τ

r, it follows that M(B)\M(Bfr is

a normal subgroup of M(B)\. Π

6. Moduli of vector bundles

In this section we analyze the set VECG(X, Q) = VECG(Xch Q) using the results in
the previous sections, in particular we prove the Theorem (1) in the introduction.

Let &(A):=Mor(XchEndQ)G. It is a free 0(Λ)-module of rank dimEnd(β)H

= dimm by Lemma 2.2 (2). Note that the map φ:B*ΓF-+Xcl induces an
(P(Λ)-module homomorphism φ$ : &(A) -> m(Bf.

Proposition 6.1. Let {At} (!</<dimm) be a homogeneous basis of &(A) over
G(A) and let A\ := Ai \ F e m = Mor (F,Endβ)G. Write deg A{ = kid^Γai where 0 < a{ < d.

Then

(1) {saiA'i} is an ®(A)-module basis of m(B)τ.

(2) φtA^tWAb

Hence φ$ : &(A) -> m(̂ )Γ is an injection of free Θ(A) modules and is of full rank.

Proof. (1) The set {A$ is a basis of m over C by Lemma 2.2 (2). Since
srAf

iem(B)Γ if and only if r = a{ modrf, any element of m(B)Γ is a linear combination
of ^A\ over Θ(A). Suppose that ΣJKt^A'^Q for fi(f)^Θ(A\ where we may
assume f^t) are homogeneous. Then Σf£ϊ)Ai = Q by evaluating the identity at
s = l. Since the set {A(} is a basis of m, /ί(l) = 0 for all / and hence /f(ί) are
identically 0 since they are homogeneous.
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(2) For beB,feF, we have

This proves that φ9A~ίki(ίaiA^ on B and bence on B by continuity. Π
Let <£(A) := Mor (A x ^A^Endβ)0. Since

it inherits a grading from &(Xd). Let CE(Λ)Γ be the ideal of 1£(A) generated by
homogeneous elements of degree >r. Note that ty(A) = Moΐ(A xAXel9GLQ)G is a
subset of H(A) and set ^{A)r:={Ae^(A)\A-lE^(A)r}. Then we have a
commutative diagram

- M(β)r

Γ

exp exp

<&(A\ -
^tf

where the vertical maps are isomorphisms incuced from the exponential map EndQ

Lemma 6.2.

(1) For any sufficiently larger r we have φ^β(A)r = M(B)^9 in particular

(2}

Proof. (1) Since 1£(A) = Θ(A)®Φ(Aj£(A) and m(B)τ ' = Θ(A)® Φ(A}®m(B)τ \ it
follows from Proposition 6.1 that φβ(A)r = m(Bfi for any sufficiently large r. This
together with the above diagram proves (1).

(2) It follows from (1) that M(B)\φ^(A)l ^ M(B)\M(B)τ

r for a sufficiently
large r. On the other hand M'(B)\ = M'(B)\M'(Bfr for any r>\ by Theorem

5.1. Hence (2) follows. Π

Remember that

Proposition 6.3. The canonical map

is a bijection.
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Proof. The injectivity is easy. We show the surjectivity. Remember that

5φ = <P(Λ)\%ί) / «Ptf) ^M(B)Γ\M(Bf I φ J$(A).

Since M has the decomposition property (Theorem 4.1), the latter is isomorphic to

)\ * M(B)\\M(B)\/φ

Similarly, Z)φ £ M(B)\\M(B)\/φ^Ά)^ Thus the canonical inclusion /5φ c;
reduces to an inclusion

M(B)\\M(B)\/φ^>(Ά)l <5 M^tfXM^tf/φ^Λ)!.

Here M(£tf = M(/?tfM(#)r

Γ for all r>l by Lemma 5.4 and φJMA)ι ==> ̂ )Γ for a
sufficiently large r by Lemma 6.2 (1). This implies the surjectivity. Π

Proposition 6.4.

^ (Cp, +) (Cp as a vector group under addition).

Proof. It follows from the proof of Proposition 6.3 that

For a sufficiently large r, this double coset is isomorphic to

M(B)\\M(B)\IM(Bfrφi^(A)l (by 6.2 (1))

S M(B)\M(Bf,\M(B}\ I φ ̂ (A), (by 5.5)

^M(B)\IM(B)\M(B)Γ

rφ^(A)ί (by 5.5)

S M(B)\ / M(B)\φ ^(A), (by 6.2 (1))

)ί / M'(B}\) I \_(M(B)\φ &(A^ / M'(B)[] (by 6.2 (2))

In the last isomorphism we use Proposition 5.3 and the fact that τ^ is nothing
but the determinant map on each factor so that τ.,. is trivial on M(B)\.

Since the exponential map induces an isomorphism (m / 'm%δ)[-» (A/ / M')(B)\

and τ and φ commute with the exponential maps, we have
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The latter set has a natural vector group structure induced from (m / tn%#)[ and
it is finite dimensional by Proposition 6.1, thus it is isomorphic to Cp for some/7. Π

The reader will find that the former part of the Theorem (1) in the introduction
will follow from Theorems 3.3 (2), 3.4 and Propositions 6.3, 6.4.

Here is a formula to compute the dimension p in Proposition 6.4.

Theorem 6.5. Let Bi (1 <i<q) be homogeneous elements of(^(A)ί which project
to a basis ofm / m' and have minimal degrees possible. Then p = Σf = ^ [(deg Bi — 1 ) / rf] .

REMARK. We note that ni—\ for all / (see §4 for n^ if and only if m' = 0,
and in this case <7 = dimm. The condition that «, = ! for all / is called in [7] that
Q is multiplicity free with respect to H.

Proof. Write deg Bt = M+ £ί where 0<bt<d. Then sbiB\ (where B\ = B{\F E m)
are elements of m(B)[ which project to a basis of (m/m')(B)\ over (9(A\ Since
the Bt have minimal degrees possible, the set

projects to a C-basis of (m/m')(B)\/τ^φ^&(A)v. This shows that /7 = Σ?=1fcί

D

Finally we complete the proof of the Theorem (1) in the introduction, i.e. we
prove

Theorem 6.6. There is a G vector bundle μ : % -> X x VECG( X, Q) such that
for every £e VecG(X,Q) the G-vector bundle μ~ l(Xx [£"]) is an element of VecG(X,Q)
isomorphic to E.

Proof. Remember that $(B)\ = (m/m')(/?)^ via τ# (see Proposition 5.3 and its
proof). Let Ct (!</</?) be elements of 3(/?)̂  which project to a C-basis of
(m / m ί̂ / τ^φJ&(A) i . We identify VECG(Xcl, Q) with C p by these generators. By
Lemma 6.2 (1) there is a positive integer r such that φ^β(A)r = M(Bf. We fix

such an r and define

Let c = (c1, ,cp)ECp and C^Σ^^Ci. Then

exprCc6Z(Λ)ϊ c M(S)\ c M(S)Γ.

We consider the element φ~le\prCeeMor(A xAXchGLQ)G. As observed in the
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proof of Theorem 3.3 (2) the element extends to an element of Mor(A xAX,GLQ)G

which we denote by ξc.

Let Bc:={beB\det(exprCc)(b)^Q} and AC:=BC/Γ. For all cεCp, Ac is an

open subset of A containing the origin. We set Xc:=AcxAX. We glue 2 trivial

G- vector bundles (with fibre Q) over lί:=XxCp and W:={(x,c)eXxCp\xeXe}
via the following transition function

Ψ:ftnU'-»GLβ

It is easy to see that the G- vector bundle over XxCp defined by Ψ has the

required property. Π

7. The structure of VECG(X9Q)

In this section, we complete the proof of the theorem in the introduction, i.e.
we prove

Theorem 7.1. Let Q, Qι and Q2 be G-modules.

(1) Whitney sum induces an epimorphism of vector groups:

WS: VECG(X&)xVECG(X,Q2}-+ VECG(X,Q,®Q2).

7/Ήom(β1,β2)
H = {°}> tflen WS is an isomorphism.

(2) Let E^E2 E VecG(X, Q\ Then E^@E2 ^ £3ΘΘQ where [£3] := [EJ + [E2].

(3) The stabilization map

Stab:VECG(X,Q)-*VECG(X,Q®Q)

is an isomorphism.

Proof. (1) Let m^Mor^Endβ^ for /= 1,2 and m = Mor(F,End(Qί®Q2))G.
The additive structures of (mjmy(6)\ and (m / m')(B)\, which induce the vector group

structures on VECG(X,Qύ and VECG(X9Q^®Q^9 come from the ones of Endg*
and End(Q1®Q2\ respectively. While, the Whitney-sum map WS comes from
the natural homomorphism EndQ1xEndQ2-+End(Qi®Q2). Hence, WS is a

homomorphism of vector groups.
Since the natural map mί/m\ xm2/m'2 -nn/m' is surjective and mjm'i ^ fa

etc., the induced map (mί/m\)(B)Γ

1x(m2/m'2)(B)Γ

ί -+ (m / rh')(B)\ is also surjecitve.
Thus, WS is an epimorphism.

If Hom(β1,22)
H = {0}, then the natural map mί x τn2 -> rn is an isomorphism,
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which implies that WS is an isomorphism.

(2) Let m = Mor(/%End0G and m = Moτ(F,End(Q®Q))G. Let Aί,A2em(B)Γ

l

be elements which represent lEί]9\_E2']eVECG(X9Q) respectively. Every element
AEMor(B,End(Qi®Q2)

H) can be expressed as

(A A \
A = ( n 12 where AijGMor(B9Hom(QpQi)

H).
\A21 A22J

Using this expression for βι = β2 = β» one sees that

and
o o.

represent [Eι~]@[E2~\ and ([/sj-f \_E2~])®®Q respectively. Since ϊ : m - > m / m ' is
the trace map on each factor of m = End(gφβ)H ^ ©$!„.+„., we have
τ^A3) = τ^A3). This means that [Eί]®\_E2]=([E1']

(3) The stabilization map is induced from

This induces an isomorphism m / m' -» m / m'. In fact, the inverse is induced from

A B

c

This implies that the map Stab is an isomorphism. Π

REMARK. Besides Whitney sum there are some bundle operations such as
tensor product and exterior power. One can see that tensor product induces a
(not necessarily surjective) homomorphism of vector groups:

If Q2 = Cm (the trivial G-module of dimension m), then VECG(X,Q2) = {*} and the
above map is nothing but m-fold Whitney sum; so it is an isomorphism in this
case. One can also see that /-fold tensor or exterior product induces a (not

necessarily surjective) homomorphism:

®': VECG(X,Q) -> VECG(X,®{Q\ Λ': VECG(X,Q)
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8. Example

We give an example of a non-tirvial moduli of G-vector bundles over a
weighted G-cone with smooth one dimensional quotient. This example was first
treated by [8] (see also [9]).

Let G be a dihedral group Dn = Z /2ZIXZ /nZ. Let τ and λ be generators
of Z/2Z and Z/nZ, respectively. For a positive integer m we denote by Vm the
2-dimensional G-module defined by

where (a,b) e Vm( = C2) and λ is identified with e\p(2π^/— l/n).
and if m<n, Vm = Vn~ml so we may assume 2m <n.

Let A" be a G-invariant affine cone defined by

Note that V—

X:=
{(a,b9c)

n = bn = cn}

n :even

n: odd.

Then

n:even

\C[x,y,z-]/(xy-z2,xn-y\yn-zn) n:odd

and where

t =
xy n:even

n : odd.

Henece 3Γ is a weighted G-cone with smooth one dimensional quotient.

Theorem 8.1. Let G = Dn,2m<n and X be as above. Then VECG(X, VJ^

where

min{m— 1,«/2— m~ 1}
p= - 0 n=2m

min{2m — I9n — 2m — 1} n: odd.

Proof. We apply Theorem 6.5. The principal isotropy group H of X is
Z/2Z (the second factor of G = Z/nZx\Z/2Z) and Vm is multiplicity free with
respect to //. Hence it suffices to see the homogeneous generators of
Mor(A;EndFJG as an 6'(Ar)G-module as remarked after Theorem 6.5. Since
dimEnd(FJH = 2, the module Mor(ΛΓ,EndFJG is of rank 2 (hence q = 2 in Theorem
6.5). It is not hard to see that the generators are given by
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0

0

0 x2m

2m I

Since degΛ^O and degΛ2 = min{2ra,«-2w}, Bί and B2 in Theorem 6.5 are tA±
and A2 if nφlm, and M j and L42 if n = 2m. Noting that degf = 2 or 1 according
as n is even or odd, one sees that the theorem follows from Theorem 6.5. Π

REMARK. Let F£CG(A;Fm;C):={[£]e VECG(X,Vm)\[E®®c] is trivial}. It
is isomorphic to a C-vector group and its dimension is computed in [8], which agrees
with that of VECG(X,Vm\ Thus, VECG(X,Vm}=VECG(X,Vm\C\ i.e. £ΘΘC is
isomorphic to a trivial bundle for any Ee VecG(X,V^.
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