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Abstract

Diverse behaviors of animals and their transitions emerge from the complex inter-
actions between the brain and the body, leads to self-organization of attractors and
their transitions in the dynamical system with constraints of the structure of the body
and the brain. This thesis investigates how the brain activities relate to the macro-
scopic structure of the brain and affect to behavioral dynamics using computational
model with complex network theory. First, simulations are conducted using a spik-
ing neural network model to examine how the macroscopic network in the brain is
related to the complexity of activity in each region and to functional networks, which
is estimated by phase coherence between neural activity in each region. The results
of the study showed the following. Local over-connectivity of a neuron group in
the network model (1) increases the firing rate of neurons, and therefore, enhances
the strength of the connections from excitatory to inhibitory neurons; (2) decreases
the complexity of neural activity, while increasing the intensity of specific frequency
components of neural activity in a neuron group; (3) increases functional connectiv-
ity derived from the synchronization of neural activity.

Second, we conducted a series of simulations using non-linear oscillator net-
works with different macroscopic networks and a musculoskeletal model (i.e., a
snake-like robot) as a physical body, to understand how the coupled neural and
behavioral dynamics affect the emergence as well as transitions of behaviors. A
behavior analysis (behavior clustering) and network analysis for the classified be-
havior were then applied. The former consisted of feature vector extraction from
the motions and classification of the behaviors that emerged from the coupled dy-
namics. The coupled dynamics underlying the classified behaviors were revealed by
estimating the functional networks using mutual information and transfer entropy.
The results showed the following. (1) The number of behaviors and their duration

depended on the sensor ratio to control the balance of strength between the body



and brain dynamics, as well as on structural properties of certain non-linear oscilla-
tor networks. (2) Two types of functional networks underlie two types of behaviors,
with different durations, by utilizing complex network theory, a clustering coeffi-
cient, and the shortest path length with a negative and a positive relationship with
the duration periods of behaviors. Finally, we discuss relationship of our results

with those of previous studies and propose future directions.
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Overview of spiking neural network model. A network is created
using 100 neuron groups with macroscopic connections between neu-
ron groups based on the Watts and Strogatz model [118]. The black
nodes and green edge represent the neuron groups and macroscopic
connections, respectively. (a) A lattice network, where each node is
connected with neighboring nodes, has local over-connectivity. All
connections are rewired with rewiring probability pws, and pws in-
creases randomness. (b) A small-world network with a large number
of clusters and shorter path length compared with other networks. (c)
A random network where nodes are completely randomly connected
to each other. (d) Each neuron group contains 800 excitatory (red dots)
and 200 inhibitory (blue dots) spiking neurons, and each neuron has

intra- (black line with arrow) and inter-connections (green line with

ATTOW ). coiiitiie st bbb bbb bbb bbb

Time schedule for simulation. Each colored area indicates the time
at which the event occurred. Neural activities during 1110 s to 1200
s were analyzed to determine the relationship among the structural

properties of the synaptic network, neural activity, and the functional
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Examples of the clustering coefficient, degree centrality, and path length.

(a) Clustering coefficient of the ith node. The clustering coefficient in-
dicates the density of the number of closed triplet connections (red
and blue connections) between nodes in a network (Section 3.3.3).
Here, the dashed line indicates a possible connection. (b) The path
length from the ith node to the jth node. Path length represents the
distance of an arbitrary route from node i to node j, and the shortest
path length represents the distance of the shortest route fromito j (red

line). (c) Degree centrality of the ith node. Degree centrality refers to
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the standard deviation. ... 28

3.6 Amplitude of each frequency spectrum sampled from the LAP of the
10 neuron groups with low complexity (blue) and high complexity
(red) in a network. The peak envelopes are used to plot the curve
in the figure. Color curves and color-shaded areas represent average
and standard deviation values for ten simulations, respectively. (a)
The lattice network (pws = 0.0) during self-organization by STDP (0-
100 s). (b) The random network (pws = 1.0) during self-organization
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relation of fired inhibitory neurons in a neuron group with the lowest
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ron group in the network, and its color indicates the average firing
rate of excitatory and inhibitory neurons. The x-axis indicates the de-
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Chapter 1

Introduction

1.1 Background

The brain is a complex network, comprised of anatomical connections between brain
regions. It shows various dynamics, which causes different rhythmic synchronized
and desynchronized patterns among brain regions. Diverse behaviors and behav-
ioral transitions emerge from the coupling of dynamics between the body and such
neural dynamics in the environment. Additionally, recent studies have implied that
cognitive functions and behaviors arise from the dynamically changing interactions
between brain regions, rather than from neural activity in only one specific area in
the brain [29, 15]. How these complex and nonlinearly coupled dynamics between
the neural dynamics in the network and body dynamics relates to emergence of be-
haviors is fundamental question in neuroscience and developmental science. To ad-
dress this issue, we have to understand what kind of neural activity in the network
is organized and how it contributes the emergence of behaviors through interaction
with body dynamics from the perspective of the complex system.

The brain can be considered as a complex network that consists of anatomi-
cal connections between brain regions (i.e., an anatomical network). Many stud-
ies using brain-imaging technique with complex network theory have shown that
the anatomical network has specific complex network structural properties [101, 30,
55]. On the contrary, several studies about the brain of autism spectrum disorder
(ASD) show that the structures in anatomical network [95], and the brain activity
itself [14, 43] are atypical. ASD is a neurodevelopmental disorder characterized by

impairments in social interaction, repetitive behavior, and sensory abnormalities.
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Altogether, these studies have been suggesting that the unique structural properties
of the brain are closely related to the brain activity itself. However, it remains un-
clear how the macroscopic network structure affects neural activity and relates to
the emergence of behaviors.

Several studies discuss the importance of brain dynamics for the emergence of
varied and complex behaviors from the perspective of the development of fetus and
infant. Hadders-Algra [48, 49, 47] discussed the importance of subplate, which con-
tributes to building thalamocortical pathways, for development of diverse behaviors
based on the similarity of the timing of appearance of the subplate and the timing
of emergence of general movement (GM), which is the various and complex spon-
taneous whole-body movement of the fetus. Further, Spittle et al. [99] showed that
the infant with an abnormality in the volume of white matter has an abnormality on
the GM. These studies imply that the brain dynamics in the cortex may contribute to
emergence of diverse behaviors through interaction with body dynamics. However,
it is still not clear how the diverse behaviors and their transitions emerge through
the interaction between the brain and the body dynamics, which have different con-
straints and time scales.

Several studies have proposed a computational model to understand how the
network structure of the brain relates to brain activities [79, 90, 120, 58]. For instance,
Izhikevich and Edelman [58] constructed a large-scale model using spiking neurons,
based on detailed data of mammalian thalamocortical systems, to investigate the
complex dynamics caused by a neuronal process in the brain. They showed that,
in the model, brain-like spontaneous activity occurs over various frequency bands.
However, since these models were constructed based on detailed brain data, which
involves a large number of parameters, it is difficult to understand which factors are
dominant in inducing complex brain dynamics. Furthermore, models do not involve
a physical body; therefore, it is difficult to use a model to gain understanding of the
relation between change in neural activity within behaviors that emerge from the
coupled dynamics between the brain and body.

A dynamical system approach has been used to explain the complex interaction
between the brain and the body in an environment for artificial intelligence [9], cog-

nitive science [92, 88, 106], and developmental psychology [93, 10, 110]. Kuniyoshi
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and Suzuki [67] constructed a computational model consisting of musculoskeletal
and neural systems based on chaotic dynamics. This model showed that the emer-
gence of adaptive behaviors through interaction with the environment. As an exten-
sional of their model [67], a detailed infant [66] and fetus models [78, 119] have also
been proposed. These studies showed that the interaction between the body and the
neural system within the environment is important for emergence of infant- or fetus-
like whole-body movements. However, these studies did not focus on the coupled
dynamics between the brain and body that underline these emergent behaviors and
their transitions. Furthermore, some models have not expressed coupled dynamics

between the brain and body (detailed in Section 2.2.2).

1.2 Problem Statement and Thesis Objectives

In this thesis, we address the following main question from a dynamical system
approach by using information theory and complex network theory.

How do coupled dynamics between the neural dynamics in the complex net-
work and the body dynamics affect to emergence of behaviors?

We break this main question into two sub-questions which will be addressed in

the main part of this thesis:

* How is the macroscopic structure of the brain related to neural dynamics?

* How does the interaction between neural dynamics in the network and body

dynamics affect the emergence of behaviors?

In order to address each of the above questions, we construct simulation models
to express the dynamic properties of the brain and the body, and their interactions
under the constraints of a macroscopic network. We then adjust the structural prop-
erties of the macroscopic network in the brain and ratio of the brain to body dynam-
ics affecting the coupled dynamics. This approach would enable us to understand
more clearly how different macroscopic networks affect neural activity and how this
neural activity influences the emergence of behaviors through interaction with the

body. The first question is addressed using a spiking neural network model, which
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can express the complex neural activities consisting of multiple frequency compo-
nents (orange area in Figure 1.1), in Chapter 3. In this model, we control the struc-
tural properties of the macroscopic network structure using Watts and Strogatz (WS)
model [118], which can gradually modify the structural properties of the network
by changing one parameter. The second question is addressed by using non-linear
oscillator networks and a musculoskeletal model, which together represent the cou-
pled dynamics of the brain and body (green area in Figure 1.1) in Chapter 4. Here,
we control the sensory ratio to control the degree of interaction between the brain
and body. Different macroscopic network structures are also applied to elucidate
how structural properties of the brain affect the coupled dynamics and the emer-

gence of behaviors.

// Brain \\
Macroscopic network 2
Macroscopic network 1

Macroscopic
network

Behavior

< N
=
J Behavior

Emergence of
behaviors and their
transitions

Behavior

Figure 1.1: Overview of research topic in the thesis

1.3 Structure of the Thesis

In Chapter 2, an overview of previous related work is given. This includes rele-
vant studies on the structural and dynamic properties of the brain, the relationship
between the brain and body in terms of the emergence of behaviors, and a com-

putational model for the brain dynamics or the emergence of behaviors. Chapter 3
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presents our work on the computational model, using spiking neurons, to explain
how the macroscopic anatomical network relates to the complexity of brain activities
and the functional network. Chapter 4 addresses the issue of how structural prop-
erties of the anatomical network relates to the emergence of the behaviors and their
transitions, which arise from the interaction between the network and the body in an
environment, using oscillator networks and a musculoskeletal model. Furthermore,
in this chapter, we showed how functional networks underlying the coupled dy-
namics between the brain and body changes according to the behaviors themselves
and transitions between these behaviors. In Chapter 5, we summarize our results
and contributions to understanding the relationship among the structural proper-
ties of the network, emergence of behaviors, and their dynamics. Finally, we discuss
the future directions and conclude our work. Appendices give additional data for a

deeper understanding about the results presented in Chapters 3 and 4.






Chapter 2

Related works

2.1 Anatomical and Functional Network Structures in the Brain

The brain is a complex network composed of a numerous neuron and their connec-
tions, which are modified based on activation of these neurons. Complex network
theory shows that a macroscopic anatomical brain network, which is constructed
based on the anatomical connections between brain regions, has the structural prop-
erties of a complex network, such as a small-world network [102, 18, 52]. A small-
world network has a high clustering coefficient and low shortest path length. The
clustering coefficient refers to the density of the number of closed triangles con-
structed by connections between nodes in the network, and the shortest path length
indicates the averaged shortest distance between arbitrary nodes in the network (de-
tailed in Section 3.3.3). Several studies have shown that a high clustering coefficient
and low shortest path length in the network contributed to local and global informa-
tion transmission from one node to other nodes [69, 75, 76]. Therefore, the brain has
an efficient structure for transmitting information to local and global brain regions
using the properties of a small-world network [8]. Furthermore, several studies have
shown that the anatomical network have other structural properties such as being
scale-free network [6], which has a heavy-tailed distribution of the degree of nodes,
or being rich-club network [117], which has connections between the nodes of high
degree, and not only the small-world network [1, 31, 116, 103]. However, it is unclear
how the structural properties of such types of complex networks affect the macro-
scopic activity of a brain region, the microscopic activities of individual neurons,

and emergence of behaviors.
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The relationship between brain activities in the different brain regions, which
can be estimated by various statistical methods (e.g., phase coherence, mutual infor-
mation, and many other statistical indexes), results in a functional network, which
differer from the anatomical network [86, 25, 24, 3]. Several studies have shown that
the functional network dynamically changes spontaneously or according to tasks at
hand or the situation [13, 25, 12, 91, 98]. Spadone et al. [98] compared the func-
tional network between during a visuospatial attention task and the resting state,
using functional magnetic resonance imaging (fMRI), and showed increased con-
nectivity between visual cortex and dorsal attention regions. Furthermore, Betti et
al. [13] showed the increased functional connectivity between visual and language
networks while watching a movie using magnetoencephalography (MEG). There-
fore, the structure of the functional network may express changes in the coupled
dynamics, including in the sensory-motor system and nervous system. However,
how this functional network relates to the emergence of behaviors and behavioral
transitions, which result from the from the coupled dynamics between the body and

brain, with different macroscopic network structures, is not clear.

2.2 Complexity of Brain Activities

2.21 Imaging Studies

The brain shows various dynamics from in spatiotemporally complex interactions
among the neurons or regions in the brain. Buzsaki and Draguhn [20] and Buzsaki
and Watson [21] showed that the brain exhibits rhythmic neural activities (oscilla-
tions) with different frequencies and scales, which cause various rhythmic patterns,
such as synchronized and desynchronized patterns among brain activities.
Complexity has been used to characterize the dynamics of biological signals
that consists of multiple frequency components. This complexity represents the un-
predictability of time-series signals on multiple time scales, based on sample en-
tropy, which is called multiscale entropy (MSE). Studies on autism spectrum disor-
der (ASD) have suggested that the complexity of the brain activity is closely related
to certain structural properties of anatomical and functional networks. Bosl etal. [14]

showed that the complexity of EEG signals during the resting state in ASD children
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is lower than that of typical developing (TD) children in certain brain regions. Sev-
eral studies have discussed that this atypical dynamical property can be due to an
atypical structure. Solso et al. [95] showed that ASD brain have excessive connection
in certain local regions. Moreover, Courchesne [28] have discussed disconnection of
the long-range shortcut paths between regions, based on the existing studies (i.e.,

the ASD brain has a high clustering coefficient and high shortest path length).

2.2.2 Computational Model for Relationship between Connectivity and
the Complexity of Neural Activities

Computational studies have shown the relationship between the complexity of a
brain activity and an anatomical network. Friston [37] observed that the complex-
ity of neural activity was reduced if the strength of the connections between neuron
groups in a network is increased. Nakagawa et al. [79] showed that MSE at slow time
scales decreased with the reduction in the strength of connections between neuron
groups in a network. However, these studies did not consider any macroscopic net-
work structures. Sporns et al. [100] showed that a small-world-like network struc-
ture emerges through the optimization of connections between neuron models, to
maximize the functional segregation of network activity. However, since they used
a simple linear neuron model, it is difficult to determine how the structural prop-
erties of a complex network relate to the complexity of neural activity that consists
of multiple frequency components. Furthermore, they did not consider the neural
plasticity in the network model. Synaptic connections can be modified by spiking
the activities of neurons, e.g., spike timing-dependent plasticity (STDP) [96], in bio-
logical neural networks. Therefore, neural activity leads to changes in macroscopic
structural properties, and this changed structure then affect brain activities.

A computational model, based on an actual anatomical structure, has also been
used to understand brain activities. Schmidt et al. [90] constructed a network model
using Kuramoto oscillators [68], where their connectivity was in accordance with
the diffusion tensor imaging (DTI) data of human brains. They showed that a brain
region with a high degree of anatomical connectivity exhibits high synchronization
with other brain regions. However, such an oscillator model tends to converge to a

specific frequency; thus, it is difficult to express brain signals composed of multiple
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frequency bands. In contrary, a spiking neural network model can express various
frequency signals more naturally. Izhikevich and Edelman [58] created a large-scale
corticostriatal model, using spiking neurons based on detailed brain data to under-
stand the dynamics of the brain. They observed brain-like spontaneous activity over
various frequency bands. However, the network models based on detailed brain
data cannot be standardized because they contain a large number of parameters.
Hence, it is difficult to understand which factors are important to induce complex

brain dynamics.

2.3 Dynamics between the Brain and Body

2.3.1 Relationship with Diverse Behaviors

From an organism to survive in the complex environments, it is important to use
appropriate behaviors from among a diverse repertoire of behaviors. Moreover,
from the viewpoint of the motor development, the diversity of spontaneous move-
ment patterns observed in early childhood affects subsequent motor development.
Hadders-Algra [50] showed that children with atypical motor development have
limited movement variability. They argued that it may be due to differences in cere-
bral connectivity.

Many studies have addressed the importance of anatomical and functional net-
works to understand how cognitive functions and motor behaviors develop [7, 17,
59, 34, 111, 81]. Connectivities in networks change during brain development, and
changed connectivity induces a different relationship of dynamics between the brain
and the body. The first movement of the fetus is starting at 7 week postmenstrual
age (PMA) with the development of the spinal cord [82]. This movement changes to
use whole part but slow and simple movement pattern [72]. At 9 to 10 weeks PMA,
the general movement (GM), which is a varied and complex spontaneous whole-
body movements, can be observed [72]. This period coincides with the appearance
of synaptic activity in the cortical subplate, which contributes to building thalam-
ocortical pathways [104, 64]. Based on these studies, Hadders-Algra [49, 48] has
discussed the relationship between the emergence of the GM of the fetus and the

cortical subplate. These studies imply that the emergence of behaviors from body
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dynamics be changed by forming coupled dynamics through the interaction with
brain dynamics. However, the understanding of how diverse behaviors and their

transitions emerge from the dynamics of the brain and the body is not clear.

2.3.2 Dynamical System and Chaotic Itinerancy

As a dynamical system approach, Kelso [61] used the metastability concept to ex-
plain the emergence of behavior patterns and their transitions. From this viewpoint,
behavioral patterns are self-organized as an attractor from the interaction between
the brain and body in an environment. Furthermore, transitions between behavioral
patterns correspond to the trajectories of attractors in a state space.

Chaotic itinerancy, which represents the transitions among multiple attractors in
a high-dimensional state space, has been proposed to explain the dynamics of the
brain. This concept is similar to metastability but is more theoretical and focuses
on the instability of attractors. Chaotic itinerancy is observed in coupled map lat-
tice (CML) and global coupled map (GCM) models, which have been proposed to
constitute complex nonlinear systems [60]. Based on these phenomena, Tsuda et al.
proposed a computational model to describe chaotic itinerancy in the brain [115, 114,
83], which shows that these transitory dynamics can be regarded as a chaotic switch
between the synchronized and desynchronized states of neurons. Their model is also
used to explain the relationship between chaotic itinerancy and cognitive functions
at the conceptual level [113, 112]. Several studies have shown that the dynamics of
the olfactory systems of animals and EEG signals of the human brain during sleep
exhibit chaotic itinerancy [36, 35]. The model proposed in these studies provides
a theoretical infrastructure for the one of the issues of dynamic interaction in this
thesis for emergence of behaviors and transitions of behaviors, from the coupled
dynamics of the brain and body. However, it is unclear how chaotic itinerancy can
emerge from the interaction between the brain and body, and how chaotic itinerancy

influences transitions behaviors.
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2.3.3 Computational Model for Emergence of Behaviors

Inspired by the concept of chaotic itinerancy, Kuniyoshi and Suzuki [67] showed
the emergence of adaptive behaviors from the coupled chaotic elements throughout
the body in an environment. In their model, adaptive behaviors emerge through
a mathematical model of the CML and GCM of chaotic elements. Each CML re-
ceives feedback signals from the muscles of the body and sends output signals to
these muscles. These CMLs globally interact through a GCM. Furthermore, they
show different movement patterns, including a goal-directed behavior that emerged
through body constraints, such as the alignment of muscles or an object attached
to the body. As extensions this model, Kuniyoshi and Sangawa [66] and Mori and
Kuniyoshi [78] constructed more complicated models, i.e., that of the body of a fetus
consisting of 198 muscles with tactile sensors. In these models, the musculoskeletal
and neural systems interact with each other in the uterine environment. As a result,
certain types of ordered movements and their transitions were observed. The above-
mentioned studies [67, 66, 78] showed the importance of embodiment with regard
to the spontaneous emergence of both behaviors and their transitions.

Yamada et al. [119] constructed a detailed brain-body-environment system of a
fetus to understand cortical learning via sensorimotor experience in a uterine envi-
ronment. In this model, more detailed anatomical and physiological data were used
for a musculoskeletal system, tactile sensor, vision sensors, a uterine environment,
and a cortical model. The cortical model was constructed using 2.6 million spiking
neurons and 5.3 billion synaptic connections, based on DTI data. They showed that
biologically reasonable whole-body movement and cortical dynamics emerge from
the interaction among the brain, body, and environment.

However, the abovementioned models have not been sufficient to explain the re-
lationship between the brain and body for emergence behaviors. Figure 2.1 shows
the differences in the network structure of the proposed model from that of these ex-
isting models. In previous studies [67, 78], there was no connectivity exists between
the interface neurons. Furthermore, hidden neurons, which are considered as a cor-
tex to represent brain dynamics, are missing (Figure 2.1(a)). Hidden neurons are

present, but no connectivity is observed between the interface neurons in the model
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Figure 2.1: Graphical representation of previously proposed models [67, 78, 66, 119].
(@) No connectivity is found between the interface neurons [67, 78]. Furthermore,
the hidden neurons, which are considered as a cortex to represent brain dynamics,
are missing. (b) Hidden neurons are observed, but there is no connectivity is found
between the interface neurons [66]. (c) Constant input from the hidden neurons is
provided to the interface neurons, and the hidden neurons have no influence on the
body to generate motor behavior [119].

proposed by Kuniyoshi and Sangawa [66] (Figure 2.1(b)). In the case of a detailed
fetal simulation [119], constant input is provided to the interface neurons, which
means that there is no influence from the hidden neurons on the body to generate a
motor behavior (Figure 2.1(c)). The neural architectures described in previous mod-
els [66, 119] consider biological brain structure. Therefore, the difference between
the interface and the hidden neurons is not clear, which could make analysis of the
network analysis underlying the emerging behavior intractable because of compli-
cated connections among neurons. For this reason, this issue has not been addressed

to date.
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Chapter 3

Complexity of Neural Activity in

Macroscopic Cluster Organization

3.1 Problem Statement

In this chapter, we address the issue of how the macroscopic network in the brain
is related to the complexity of neural activity for each region. As we mentioned in
Chapter 2, several studies have discussed about the relationship between the com-
plex dynamics of brain activities, which has multiple frequency components, and
structural properties of the macroscopic network of the brain. Several studies have
shown the relationship between connections and complexity of neural activity of the
brain using computation models [37, 79, 100]. However, these studies have not al-
lowed investigation of the relationship among the macroscopic network structure,
the complexity of brain activities and functional networks, due to the inability to
express the multiple frequency components of neural activities, absence of macro-
scopic structure, or lack of plasticity of connections in the brain.

In order to overcome the abovementioned problems, we construct a network
model consisting of multiple neuron groups, each of which consists of spiking neu-
rons, and their macroscopic connections. We then self-organize the network model
under different structural properties of a macroscopic network, based on the WS
model. The WS model can control the clustering coefficient and path length of the
network without changing the number of connections. This approach allows us to
identify dominant structural properties that may affect the complexity of brain ac-

tivity. We hypothesize that a macroscopic network with high clustering coefficient
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Figure 3.1: Hypothesis and assumptions about relationships among the fundamen-
tal network, synaptic network, the complexity of neural activity. The black node and
empty black circle represent a neuron group and a neuron in the group, respectively.
The black and green lines indicate an intraconnection between neurons in a neuron
group, and an interconnection between neurons in different neuron groups, respec-
tively. The red and blue dots show neuron groups with and without high clustering
coefficient and high shortest path length, respectively.

and high shortest path length causes low complexity of brain activity in each region.
The main procedures and analyses for verifying our hypothesis are as follows (see

Figure3.1):

1. Construct neuron groups consisting of spiking neurons that have weighted
connections to randomly selected neurons in the same neuron group (intra-
connections). We assume that a neuron group and the intraconnections inside
it correspond to a brain region and its intraconnections within the regions, re-

spectively.

2. Determine the initial macroscopic network structure of neuron groups (funda-
mental network) based on the WS model (Figure 3.1(a)). Then, if an edge exists
between two neuron groups in the fundamental network, construct synaptic
connections from the neurons in the group to the neurons in another group
(interconnections). We assume that the average of interconnections between
neuron groups correspond to the long-range interconnectivity between brain

regions (synaptic network, Figure 3.1(b)).
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Figure 3.2: Overview of spiking neural network model. A network is created us-
ing 100 neuron groups with macroscopic connections between neuron groups based
on the Watts and Strogatz model [118]. The black nodes and green edge represent
the neuron groups and macroscopic connections, respectively. (a) A lattice network,
where each node is connected with neighboring nodes, has local over-connectivity.
All connections are rewired with rewiring probability ps, and pws increases ran-
domness. (b) A small-world network with a large number of clusters and shorter
path length compared with other networks. (c) A random network where nodes are
completely randomly connected to each other. (d) Each neuron group contains 800
excitatory (red dots) and 200 inhibitory (blue dots) spiking neurons, and each neuron
has intra- (black line with arrow) and inter-connections (green line with arrow).

3. Apply a plasticity rule to synaptic weights and self-organize the network (Fig-
ure 3.1(c)). If an edge does not exist between two neuron groups in the fun-
damental network, the weights between them remain zero to retain the given

small-world structure.

4. Analyze the complexity of the activity and structural properties of the self-
organized synaptic network using MSE and complex network theory to show

their relationship (Figure 3.1(d)).

5. Investigate the frequency characteristics, firing rate, and intraconnections in
each neuron group to explore the possible mechanisms of decrease in the com-

plexity of neural activity (Figure 3.1).

3.2 Spike Neural Network Model

3.2.1 Neuron Model

In this study, we utilize the Izhikevich spiking neuron model. This model can re-

produce various firing patterns of cortical neurons, and their synchronization can
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produce activity patterns on various frequencies. Moreover, since this model has a
low computation cost, a large-scale network can be constructed. The equations for

the neuron model are given by

dv
_ 2
= 0.040 +50+140 — u + ippic T Lsynapse: (3.1)
@y
; = a(bv — u), (3-2)
|
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where v and u denote the membrane potential and a recovery variable, respectively.
Variables a and b represent the time scale and sensitivity of the recovery variable u,
respectively. Variables c and d denote the reset value of membrane potential and the
recovery variable after spiking, respectively. Furthermore, Iiynic and Isynapse represent
a tonic input and a synaptic current, respectively. Here, synaptic current, which
corresponds to a weight of the connection of presynaptic neuron, is injected if a
presynaptic neuron is fired. In this study, the firing of excitatory and inhibitory
neurons increases and suppresses the firing of postsynaptic neurons, respectively.

These parameters are the same as used in a previous study [57].

3.2.2 Construction of a Fundamental Network using the Watts and Stro-
gatz Model

The interconnections in the synaptic network are generated based on the edges of
the fundamental network. In order to modify the structural properties of intercon-
nections without changing the number of connections, the WS model was used to
construct the fundamental network. The WS model is one of the methods used to
construct a small-world network, and it can generate a network with different clus-
tering coefficients and the average of shortest path length by changing one parame-

ter, pws. The procedure to construct fundamental network was as follows:

1. Begin with a lattice (regular) network, where each neuron group is connected
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to k nearest neuron groups (Figure 3.2(a)). The lattice network has large num-

ber of clusters and a long path length.

2. Rewire each edge randomly according to the rewiring probability, pws. This
procedure creates a shortcut between neuron groups (the red line in Figure 3.2(b)).
The network structure becomes random, and the number of clustering and av-
erage path length decrease if ps increases (Figure 3.2(c)). The value of pws

for a small-world network is typically between 0.01 and 0.1.

3.2.3 Self-organization in a Spike Neural Network Model

In this study, we assume that intra and interconnections between neurons have
plasticity; therefore, the synaptic network is self-organizing. Here, we apply an
STDP [97] rule to update the weights of connections. The STDP rule, which is con-
sidered a biologically plausible rule [74], modify the connection weights w, based on

the firing times of pre and postsynaptic neurons. The update value of weight, Aw, is

given as
[l
EA+ exp(—At/14) ifAt =0
Aw = (3.4)
EA_ exp(at/1-) if At <O,
At = tpost - tpre, (35)

where At represents the difference between the firing times of presynaptic, tr, and
postsynaptic neurons, tpest. This difference is calculated when a neuron fires, and
the connection weight between neurons is updated based on equation (3.4). Here,
At = 0 and At < 0 denote long-time potentiation (LTP) and long-time depression

(LTD), respectively. Time constant 7+ (7-) controls the LTP (LTD) decay, and A+

(A-) represents the LTP (LTD) intensity constant.
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Table 3.1: Parameters of the simulation model used in this study.

parameters | values | descriptions notes
Dintra,exc [0,20] | Transfer delay of excitatory synapse in neuron group (uniform dist., ms)
Dintra,inh 1 Transfer delay of inhibitory synapse in neuron group (ms)

Tionic 20 Tonic input (mV)

T+ 20 Time constant of LTP (ms)

T— 20 Time constant of LTD (ms)

A+ 0.1 Amplitude of update weight (LTP) -

A- -0.12 | Amplitude of update weight (LTD) -
Winit,exc 6.0 Initial weight of excitatory synapse -
Winit,inh -5.0 Initial weight of inhibitory synapse -
Wupper 10.0 Maximum value of weight -

Ng 800 Number of excitatory neurons in a neuron group -

NI 200 Number of inhibitory neurons in a neuron group -

N 1000 | Number of neurons in a neuron group = Ng + N;
Cintra 100 Number of intraconnections of a neuron -
Dinter,exc [10,30] | Transfer delay of excitatory synapse between neuron groups | (uniform dist., ms)
Ngroup 100 Number of neuron groups -
k 6 Number of edges for each neuron group -
Cinter 3 Number of interconnections of a excitatory neuron -

Pws [0.0,1.0] | Rewiring probability -

tstep 1 Time step (ms)

Tiotal 1200 | Total simulation time (s)

Tronic 1100 | Time length of tonic input (s)
Tstop 1000 | Time length of self-organization through STDP (s)
Nisim 10 Number of independent simulations -

3.2.4 Parameters and Simulation Setting

Table. 3.1 shows model parameters used in this study. We set the parameters based
on previous studies [57, 121, 56]. The model consists of Ngroup (= 100) neuron groups,
and each neuron group has Ng (= 800) excitatory neurons and Nj (= 200) inhibitory
neurons. Here, an excitatory neuron is intraconnected with Cintra (= 100) randomly
selected neurons in the same group and interconnected with Cinter (= 3) randomly
selected neurons of the connected neuron group. An inhibitory neuron is intracon-
nected with Cintra (= 100) randomly selected excitatory neurons in the same group;
however, there are no interconnections for inhibitory neurons. Cintra and Cinter are
fixed through simulation. Ngrup and k (= 6) are experimentally determined, so that
the fundamental network differs in its structural properties according to the rewiring
probability pws. In this study, we conducted simulations using {0.0, 0.002, 0.005,
0.01, 0.02,0.05,0.1,0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} as the values of pws.

Figure 3.3 shows the schedule of simulation. The total simulation time was 1200
s, and one time step was 1 ms. The duration for self-organization through STDP

was 1000 s. Furthermore, the tonic input duration, Tonic, was 1100 s, to drive neural
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Figure 3.3: Time schedule for simulation. Each colored area indicates the time at
which the event occurred. Neural activities during 1110 s to 1200 s were analyzed to
determine the relationship among the structural properties of the synaptic network,
neural activity, and the functional network.

activity after self-organization. Then, the activity without any external inputs, such
as a resting state, for a period of 1100 s to 1200 s was analyzed as the neural activity
of the network model. The simulation was independently conducted ten times for

each pws.

3.3 Analysis method for neural activity

3.3.1 The Complexity of Neural Activity

In this study, the neural activity of a neuron group is represented by the local av-
eraged potential (LAP) [19]. LAP is the average of the membrane potentials of the
excitatory neurons within a neuron group. The LAP is not directly equivalent to the
local field potential, which is recorded in the extracellular space around neurons,
or to the EEG signals in the brain, which are typically used as an index for electric
potentials. Nevertheless, LAP directly reflects the group activity of neurons, there-
fore, it can be used to indicate the synchronous activity of a neuron group. LAP is

calculated as

1 Ne
LAPi(t) = N 2 vi (D), (3.6)
j=1

where v;; indicates the membrane potential of the jth excitatory neuron in the ith
neuron group.
MSE analysis was proposed to discern the complexity (degree of irregularity)

of biological signals composed of multiple time scales [27, 26]. The procedure for
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calculating the MSE was as follows:

1. An original signal x(t), is down sampled by multiple time scales to obtain

coarse-grained signals, y(t).

yo=1 S x) as<t<ne, (3.7)

i=(t—1)€+1
where € indicates the scale factor.

2. Sample entropy is calculated for each coarse-grained signal.

SampEn(r, m, N) = —In[Cp41(r)/ Cn(1)], (3.8)

number of pairs(i, j) (|2 — Z’}ql <ri/=}j)

Cnr) = (N —m+ DN —m) '

(3.9)

wherez! = {yi, yi+1,* ", Yi+m -1} denotes a subsequence of the coarse-grained

signals from the ith to the (i + m — 1)th data point of y(t), m denotes the length

of the subsequence, Y = {y1,"**,yi, - -+ ,yn} denotes the coarse-grained sig-

nals, and N denotes the length of Y.

In this study, a LAP signal is used for x(#), and MSE is calculated for each neuron

group. Furthermore, we used m = 2 and r = 0.15, which are commonly used for

MSE analysis.

3.3.2 Neural Activation in Neuron Groups

We analyzed the frequency properties of LAP signals to determined how different
frequency components of neural activity influence the functional network or MSE
values. We obtained the peak frequency with the highest intensity as robust fre-
quency components in neural activity through the decomposition of the LAP sig-
nals into the frequency domain using fast Fourier transform (FFT). Furthermore,
we use a band-phase-randomized surrogate method [70] to clarify which frequency
bands mainly contribute to a decrease in MSE (i.e., sample entropy increases if a

specific frequency component that mainly contributes to a decrease in complexity
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(@)

efficient Degr trality

Figure 3.4: Examples of the clustering coefficient, degree centrality, and path length.
(a) Clustering coefficient of the ith node. The clustering coefficient indicates the den-
sity of the number of closed triplet connections (red and blue connections) between
nodes in a network (Section 3.3.3). Here, the dashed line indicates a possible connec-
tion. (b) The path length from the ith node to the jth node. Path length represents
the distance of an arbitrary route from node i to node j, and the shortest path length
represents the distance of the shortest route from i to j (red line). (c) Degree central-
ity of the ith node. Degree centrality refers to the number of connections of a node
(red connections).

is surrogated). In order to obtain surrogate signals, FFT is used to transform the
time series into frequency domains, and then, the amplitude adjusted Fourier trans-
form method (AAFT) [108] is used to randomize the phase relationship in specific
frequency bands. Thereafter, a surrogate time series with the original amplitude is
obtained through inverse FFT.

Moreover, we evaluated the firing rates and a periodic firing pattern to under-
stand how the microscopic activation of neurons affects the complexity of the neural
activity in a neuron group. Here, periodicity was evaluated by autocorrelation of

the number of fired neurons within a non-overlapped time-window of 5 ms.

3.3.3 Graph Analysis of Network Structure

In order to elucidate how the structural properties of the synaptic network affect the
complexity of neural activity, we considered the following features of the network,
using complex network theory. The graph to be analyzed consisted of 100 nodes that
correspond to neuron groups. The average weight of the interconnections of neurons

between neuron groups corresponds to the weight of the edge between nodes in the
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graph. We investigated the clustering coefficient, shortest path length, and degree

centrality of the weighted directed networks.

* Clustering coefficient: The proportion of connections with the shape of a closed
triplet over all possible combinations of triplets formed by three nodes in a

network (Figure 3.4(a)). This is defined as follows:

number of closed triangles

;= : 1
" number of possible triangles (3.10)
As we consider a directed weighted network, we use the following extended

equation [33]:

CE) = RS+ RDVER, (3.11)

where R = {r;;} is the weight matrix of the connectivity of nodes, r;; represents

the weight of the connection from the ith node to the jth node, d'?* = gin 4+

4

t
d?u denotes the total of the in-degree and out-degree of the ith node, and 4,

denotes the number of bilateral connections of the ith node. A node with a high

clustering coefficient indicates that the node interacts with neighboring nodes

more locally, which may induce a synchronized behavior between nodes [75,

76].

* Average shortest path length: The shortest path length is defined as the min-
imum number of steps required to pass from one node to another node in a
network (Figure 3.4(b)). We use the following equation to calculate the aver-
age shortest path length:

SG,j)

L= i;:jm, (3.12)

S — (3.13)
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where s;; and S(i, j) represent the path length and shortest path length from

the ith node to the jth node, respectively. N denotes number of nodes.

* Degree centrality: This refers to the number of connections of a node (Fig-

ure 3.4(c)). The equation for a directed weighted connection is as follows:

G; = Z Tij. (3.14)
i/=]

We show the relationship between these complex network measures and MSE. In
addition, intraconnections are organized under inputs from interconnections, which
are specified in accordance with the fundamental network. Hence, this self-organization
of interconnections and intraconnections may affect the complexity of the activity of
a neuron group. Therefore, we investigated the average intraconnection in a neu-
ron group and examined its relationship with the structural properties and MSE of

activity for each neuron group after self-organization.

3.4 Results

In our model, we observed spontaneous activity in the self-organized synaptic net-
work even after stopping the tonic input. However, the network did not show spon-
taneous activity if we did not use STDP for self-organization; these were also re-
ported in previous studies [56, 58]. In this study, we assumed that the spontaneous
activity corresponds to the brain activity in the resting state. Hereafter, we mainly
analyzed the spontaneous activity.

We present the result of the analyses in this section. The main results are as

follows:

1. The analysis of MSE showed that the different levels of complexity in each neu-
ron group and the average complexity of all neuron groups in the a network

decreased if pivs of the fundamental network decreased.
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Figure 3.5: The relationship between sample entropy and pws of the WS model.
The x-axis in all graphs represents pws (the rewiring probability of the Watts and
Strogatz model [118]). (a)-(f) Average sample entropy of all neuron groups with ten
independent simulations at scale factors (€ in equation 3.7) of MSE at 1, 10, 20, 40,
60, and 80. The error bars indicate the standard deviation.

2. The analysis of neural activity in neuron groups with different levels of com-
plexity showed that a neuron group with low complexity has a periodical fir-
ing pattern and increased signal amplitude in two frequency bands (20-40 and

40-60 Hz) of neural activity (Section 3.4.2).

3. The complex network analyses for each neuron group showed that the com-
plexity of a neuron group is negatively related to the local over-connectivity

(the clustering coefficient and degree centrality were high) (Section 3.4.3).

3.4.1 Relationship between MSE and the WS Model

Figure 3.5 shows the relationship between the average sample entropy of a LAP sig-
nal and the pws of the fundamental network (see Section 3.3.1 for the method). As
shown in the figure, the average of sample entropy of all neuron groups increased if
pws increased at any time scale, and decreased if the scale factor of MSE is large (see

Figure A.1 for curves of sample entropy on all scale factors). Therefore, the average
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Figure 3.6: Amplitude of each frequency spectrum sampled from the LAP of the 10
neuron groups with low complexity (blue) and high complexity (red) in a network.
The peak envelopes are used to plot the curve in the figure. Color curves and color-
shaded areas represent average and standard deviation values for ten simulations,
respectively. (a) The lattice network (pws = 0.0) during self-organization by STDP
(0-100 s). (b) The random network (pws = 1.0) during self-organization by STDP (0-
100 s). (c) The lattice network (pws = 0.0) after self-organization by STDP (1100-1200
s). (d) The random network (pws = 1.0) after self-organization by STDP (1100-1200

s).

of sample entropy decreased if the fundamental network has a high clustering coef-
ficient and a large shortest path length. Furthermore, since the down sampling with
a large scale factor in equation (3.7) acts as a low-pass filter, the lower frequency
components have lower complexity than the higher frequency components of the
neural activity. Moreover, as shown in Figure 3.5, variance of the average sample
entropy of the synaptic network appears even, although the same fundamental net-
work is used for the lattice network. This result indicates that the interconnections
and neural activities in several neuron groups differ from those in the initial network

through self-organization.

3.4.2 Neural Activities in Neuron Groups with Different Levels of the
Complexity

The frequency components of neural activity and the complexity of surrogate data in
specific frequency bands are shown in Figures 3.6 and 3.7, respectively (see the first

paragraph in Section 3.3.2 for the method). These figures shows a robust frequency
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Figure 3.7: The difference in summation of MSE for 80 scale factors between the
band-phase-surrogate LAP signal in specific frequency bands and the original LAP
signal. The x-axis indicates the frequency band for the surrogate, and the y-axis
indicates the difference in summation of MSE for 80 scale factors between surro-
gate and original data. The number on above each violin plot denotes the average
value. Surrogate was performed 100 times for each neuron group that has the lowest
complexity in the lattice network for each of the 10 simulations. See Table. A.1 for
statistical differences, based on the Tukey-Kramer test.
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of neural activity and their relationship with complexity of neural activity. Figure 3.6
shows the spectra in neuron groups with high and low complexity (summation of
MSE for 80 scale factors) during (0-100 s) and after self-organization (1100-1200 s)
in a lattice and random network. As shown in Figure 3.6(a) and (b), both networks
show similar frequency distributions during self-organization. However, as shown
in Figure 3.6(c), after self-organization, neuron groups with low complexity in the
lattice network show increased signal amplitude in two frequency bands (20-40 and
40-60 Hz), as compared with the neuron group with high complexity in the network
(see Figure A.2 for data distribution and statistical differences). In contrast, as shown
in Figure 3.6(d), increased signal amplitude appears in both neuron groups in the
random network but has similarly shaped curves to the neuron groups with high
complexity in the lattice network. Therefore, frequency properties in neuron groups
in a random network, which shows higher average and lower standard deviation of
sample entropy than the lattice network (see Figure 3.5), is similar to those of neuron
group with high complexity in the lattice network. This result indicates that the self-
organization of synaptic connections is affected by the initial macroscopic network
structure, as result of neural activities in different frequency bands.

We show the relationship between the complexity and peak frequency of neural
activity in all neuron groups in Figure A.4. The figure shows the peak frequency
and their amplitude in the three frequency bands (0-20, 20-40 and 40-60 Hz) in
which many changes occurred in Figure 3.6. We observed the same tendency with
Figure 3.6 that amplitude increases as the complexity of neural activity decreases in
20-40 Hz and 40-60 Hz bands.

Figure 3.7 shows the summation of MSE for 80 scale factors between the origi-
nal LAP signals and the band-phase-randomized surrogate signals using AAFT in
different frequency bands (see the first paragraph in Section 3.3.2 for the method).
In this study, the surrogates were conducted 100 times for each LAP signal in a
neuron group with the lowest complexity in the lattice network for each of the 10
simulations (i.e., 10 original signals and 1000 surrogate signals). As shown in the
figure, the surrogate signals in 0-20 Hz, 20-40 Hz and 40-60 Hz bands had larger
complexity than the original signal and surrogate signals in 60-80 Hz bands. This

result indicated that frequency bands under 60 Hz, especially, the 0-20 Hz frequency
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Figure 3.8: Autocorrelation of the number of fired neurons sampled in non-
overlapping time windows of Aty = 5 ms in a lattice network (pws = 0.0). The x-
axis represents the lag of the window, and the y-axis represents the autocorrelation.
The black curves and blue shaded area represent the average and standard devia-
tion for ten simulations, respectively. (a) Autocorrelation of fired excitatory neurons
in a neuron group with the lowest complexity during the later period (1100-1102 s).
(b) Autocorrelation of fired inhibitory neurons in a neuron group with the lowest
complexity during the later period (1100-1102 s). (c) Autocorrelation of fired excita-
tory neurons in a neuron group with the highest complexity during the later period
(1100-1102 s). (d) Autocorrelation of fired inhibitory neurons in a neuron group with
the highest complexity during the later period (1100-1102 s). The dashed line and
solid line represent the 95% and 99% confidence intervals, respectively.

bands, largely contributed to a decrease in MSE (see Table. A.1 for statistical dif-
ferences with Tukey-Kramer test for unequal sample sizes). Figure 3.8 shows the
autocorrelation of the numbers of firing excitatory and inhibitory neurons to com-
pare the degree of periodicity of the firing pattern between different neuron groups
with the highest and lowest MSE in the lattice network (see the second paragraph
in Section 3.3.2 for the method). As shown in the figure, curves of autocorrelation

in the neuron group with the lowest complexity showed more periodic pattern with
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Figure 3.9: Relationship between the connectivity structure and the complexity of
neural activity. Each marker corresponds to a neuron group in the network, and its
color indicates the summation of the sample entropy for all 80 scale factors. The x-
axis indicates the degree centrality, and the y-axis indicates the clustering coefficient.

higher value than that of the neuron group with the highest complexity, in both neu-
ron types (Figures 3.8(c) and (d)). These results indicate that the neuron group with
low complexity not only has higher signal amplitude in the two frequency bands,
but also has a more periodical firing pattern of neurons than the neuron group with

high complexity.

3.4.3 Relationship between Neural Activity and Structural Properties

In order to clarify the factor that induced different values of the complexity of neu-
ral activity among neuron groups, we used complex network analysis for each neu-
ron group after self-organization (see Section 3.3.3 for the method). Here, we only
showed the results of one simulation when the pws of fundamental network was
0.0, 0.1, and 1.0; see Figures A.3-A.7 for all values of pws of ten simulations. Fig-
ure 3.9 shows the relationship between the structural properties and complexity of

neural activity for each neuron group in the synaptic network. As shown in the
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figure, the complexity of neural activity decreases if the clustering coefficient and
degree centrality are increased. Since the cluster organizations of neuron groups
originate from the lattice network in the WS model, they are constructed by neigh-
boring (or local) neuron groups. Hereafter, we define the local over-connectivity
for the structural property in which the clustering coefficient and degree central-
ity are large. In contrast, the shortest path length is not related to the complexity
(see Figure A.7). Furthermore, we conducted experiments on the complexity index
for the network before the self-organization by STDP to clarify the role of the self-
organization, when no spontaneous activity without tonic input occurs prior to self-
organization. We analyzed the activity for all network structures that we adopted
above, with the random tonic inputs and the fixed initial weights. We show the
results of the complexity index with clustering coefficient and degree centrality in
Figure A.8. We found no clear relationship between the complexity of neural ac-
tivity with tonic input (i.e., neural activities in the network are induced by external
input instead of by spontaneous activation) and structural properties of the synaptic
network without STDP as compared to the activity after self-organization by STDP
(Figure A.3). Therefore, the relationship between the structural properties and com-
plexity must be induced by the self-organization under the macroscopic structure
via STDP.

Figure 3.10 shows how complexity relates to peak frequency of neural activity
(see Section 3.3.1 and 3.3.2 for the method). Since LAP signals had two intensity
peaks, around 30 and 50 Hz (see Figure 3.6), and the surrogate test showed a large
difference in the 0-20 Hz band (see Figure 3.7), we investigated peak frequency in
three frequency bands (0-20 Hz, 20-40 and 40-60 Hz). As shown in Figure 3.10(b)
and (c), amplitude increased when the complexity of neural activity decreased in
the 20-40 Hz and 40-60 Hz bands. Moreover, in the 40-60 Hz band, the peak fre-
quency increased if the complexity of neural activity decreased. However, as shown
in Figure 3.10(a), amplitude decreased if the complexity of neural activity decreases
in the 0-20 Hz. Therefore, the robust frequency components of neural activity in the
neuron groups with low complexity shifted from the low frequency bands (0-20 Hz)
to the high frequency bands (20-40 Hz and 40-60 Hz).

Hereafter, we focus on the activation of neurons and intraconnections in a neuron



3.4. Results 35

(b)

—~
o
I~

o o
© . 2 8 2
© = = O & >
-] =) “ .
2 .| 8 2 2 8
h—y L= — " :k - A
=3 i £ 2 sAvy £
< nos ' 1Y y Q E A za - Q
. i [T O < P " . e o
¥ - .‘-“1 Sl
LT3 . “ L L -
1 1w L 1 £
Frequency[Hz] Frequency[Hz]

@ Lattice network {p,s = 0.0}

r
¢ -
Bm ik &

Amplitude
& i & &
e
e, e
[ L
n
vk IR
e e
L xS »
. B 0 ne
¥l a L & 2
Complexity

Frequency[Hz]
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Figure 3.12: Relationship among the weight of intraconnection, structural proper-
ties of the synaptic network, and the complexity of neural activity. (a) Relationship
among the weight of intraconnection from excitatory to excitatory neuron, cluster-
ing coefficient based on the interconnection, and the complexity. (b) Relationship
among the weight of intraconnection from excitatory to inhibitory neuron, cluster-
ing coefficient based on the interconnection, and the complexity. (c) Relationship
among the weight of intraconnection from excitatory to excitatory neuron, degree
centrality based on the interconnection, and the complexity. (d) Relationship among
the weight of intraconnection from excitatory to inhibitory neuron, degree central-
ity based on the interconnection, and the complexity. Each marker corresponds to a
neuron group in the network, and its color indicates the summation of the sample
entropy for all 80 scale factors. The x-axis indicates the average weight of intercon-
nection, and the y-axis the structural properties of interconnection.
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group. As shown in Figure 3.11, the firing rates of excitatory and inhibitory neurons
in a neuron group with local over-connectivity increased. Figure 3.12 shows the av-
erage of the weights of intraconnections from excitatory neurons to excitatory neu-
rons and the intraconnections from excitatory neurons to inhibitory neurons. Here,
we omit a value for the average weight of intraconnections from the inhibitory neu-
rons to excitatory neurons because the weight of those connections were not changed
by STDP. According to Figure 3.12, the average of the weights of the connections
from excitatory neuron to another excitatory (inhibitory) neuron positively (nega-
tively) relates to the average sample entropy and negatively (positively) relates to
local over-connectivity of the synaptic network. Therefore, the neuron groups with
low complexity with local over-connectivity have increased firing rates of both type
of neurons, and have a small weight of intraconnections from excitatory to excita-
tory neurons and a large weight of intraconnections from excitatory to inhibitory

neurons.

3.5 Discussion

We constructed a spiking neural network model which consisted of multiple spiking
neuron groups, to understand how the macroscopic fundamental network struc-
ture (inter-neuron groups) affects its self-organization of the microscopic (synap-
tic) network and its activity using complexity of neural activity. We only modu-
lated the rewiring probability of the WS model to control the structural properties
of the macroscopic fundamental network. Our simulation showed that the com-
plexity of the neural activity decreased with changed intraconnections in a neuron
group, through the self-organization under the macroscopic structure. Our complex
network analyses implied that a higher clustering coefficient and degree centrality
(local over-connectivity) of a neuron group caused the lower complexity of neural

activity.
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3.5.1 Hypothetical Mechanism of Low Complexity Caused by Local Over-

connectivity

According to Figure 3.9, the complexity of neural activity in a neuron group de-
creases if the degree of local over-connectivity (the clustering coefficient and degree
centrality) increases. We suppose that this can be ascribed to changes in intracon-
nections through self-organization under the macrostructure cause this result. As
shown in Figure 3.12, intraconnections of a neuron group with low complexity of
neural activity have increased average weight from excitatory to inhibitory neu-
rons and decreased average weights from excitatory to excitatory neurons. This im-
plies that a microstructure that suppresses the activity of excitatory neurons appears
through a self-organization under local over-connectivity in the macroscopic net-
work. However, as shown in Figure 3.11, a neuron group with local over-connectivity
shows increased firing rates of excitatory and inhibitory neurons, i.e., a neuron group
takes excessive input from other neuron groups. We speculate that intraconnections
might be self-organized through STDP to sustain a certain amount of neural activity
(homeostasis) against excessive input from other neuron groups. As a result of self-
organization, the activation of the inhibitory neurons increases, which might cause
periodical activity, with two peaks, within frequency bands (see Figure 3.6 and 3.8).
Several studies have shown that inhibitory activation induces periodic patterns of
brain activity [45, 89].

Based on these results, we speculate a possible mechanism for low complexity
of neural activity in a neuron group with local over-connectivity, as follows (see

Figure 3.13):

1. The firing rates of neurons in a neuron group with local over-connectivity
is increased by excessive input from the connected neuron groups (see Fig-
ures 3.11). Consequently, to sustain a certain amount of the activation of neu-
rons in the neuron group, strong intraconnection from excitatory to inhibitory
neurons and weak intraconnections from excitatory neuron to excitatory neu-

rons are self-organized through STDP (see Figures 3.12 and 3.13(a)).

2. The increased activation of inhibitory neurons induces the oscillation of exci-

tatory neurons, and therefore, the intensity of the several specific frequency
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Figure 3.13: Schematic representation of a possible mechanism of reduction of com-
plexity of neural activity in a neuron group with local over-connectivity. The red
and blue solid circles represent excitatory and inhibitory neurons, respectively. The
transparency of color of solid circles represents the firing rate of neurons. The black
and green lines with arrows represent intraconnection between neurons in the same
neuron group and interconnection between neurons in different neuron groups, re-
spectively. The thickness of a line with an arrow represents the weight of connec-
tivity. (a) A fundamental network and a neuron group with local over-connectivity.
The green line without an arrow represents the edge between neuron groups. (b)
Relationship between the strength of connectivity from inhibitory neurons to excita-
tory neurons, with the firing time of neurons. The vertical black bar on the time axis
indicates the firing of a neuron. The firing rate of inhibitory neurons with a strong
connectivity from excitatory neurons increases, and therefore, inhibitory neurons
strongly affect other excitatory neurons. The excitatory neurons that are strongly
influenced by inhibitory neurons show a synchronous firing pattern and therefore
induce periodical oscillation of neural activity; (c) A LAP signal of neural activity in
a neuron group and the amplitude of frequency spectrum of the LAP signal.
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components of neural activity increases (see Figures 3.6 and 3.13(b)).

3. The specific frequency components of signals become robust, and neural activ-
ity becomes periodic (see Figure 3.8). As a result, complexity decreases (Fig-

ures 3.10 and 3.13(c)).

The results of the band-phase-randomized surrogate test (see Figure 3.7) supports
our speculation that the specific frequency components of neural activity contribute

to reducing the complexity of neural activity.

3.5.2 Relationship to Studies on ASD

In this study, we found the reduced complexity of neural activity in a neuron group
with local over-connectivity in the synaptic network. This result may relate to the
lower complexity of EEG signals in ASD children (2 to 24 months) [14]. Therefore,
in our model, a neuron group with local over-connectivity in the synaptic network
shows the ASD-like low complexity of neural activity, as shown in Figure 3.9. How-
ever, another study showed that MEG signals in several regions of the brains of ASD
children (6-15 years) have high complexity [43]. We speculate that developmental
changes in the anatomical network structure cause this discrepancy. Solso et al. [95]
showed that over-connectivity was mainly observed in the extremely early stages of
development of ASD children, but not in ASD children aged 3-4 years. Hence, our
model shows the possibility that the reduction of complexity of neural activity in
ASD children aged 2-24 months is caused by local over-connectivity. On the other
hand, in ASD children aged 6-15 years, who were the research targets in the study of
Ghabari et al. [43], fluctuations in the complexity of brain activity may be caused by
other factors other than local over-connectivity. Future studies may clarify the exact
relationship between the complexity of brain activity and the anatomical network in

ASD by using a computational model that includes the developmental changes.
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Chapter 4

Chaotic Itinerancy from the
Coupled Dynamics within an

Embodiment System

4.1 Problem Statement

The main objective of this section is to comprehend the coupled dynamics underly-
ing emerging behaviors and their transitions, which occur through the interaction
between the brain and the body, in an environment. In particular, in this study, we
focus on how structural properties of a synaptic network and the ratio of the brain
to the body, affecting coupled dynamics, influence the diversity of emergence of be-
haviors. Further, we analyze the functional network within the coupled dynamics
in each behavior from the perspective of the information theory and the complex
network theory to understand how the coupled dynamics induce the emergence of
behaviors and their transitions. As we mentioned in Section 2.3.1, several studies
discussed the importance of anatomical and functional networks for the emergence
of behaviors or cognitive functions [7, 17, 59, 34, 111, 81]. Additionally, some stud-
ies have suggested the importance of organization of connections between the body
and brain for generating diverse behaviors during development [50, 49].

The complex relationship between the brain and body can be expressed as a non-
linear dynamical system. This complex system often shows a phenomenon, called

chaotic itineracy, in a state space, where the state of the system transits along a
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certain trajectory consisting of stable and unstable attractors, as mentioned in Sec-
tion 2.3.2. From this perspective, the diverse behavior of animals and the sponta-
neous transitions between behaviors could be explained by a complex coupled dy-
namical system consisting of the brain and physical body. Inspired by this concept,
several studies have shown the importance of the interaction between the body and
brain in the environment using computational models [67, 78, 66, 119]. However, as
mentioned in Section 2.3.3, these models only partially succeed in representing the
coupled dynamics between the brain and the body. That is, these models are not
sufficient to investigate the relationship between the brain and body for emerging
behaviors.

In this study, we conduct simulations using a synaptic network with a nonlin-
ear oscillator (brain) and a musculoskeletal model (body), which are connected to
each other to induce coupled dynamics between the brain and body. To focus on
the role of the brain and body dynamics for emergence of behaviors and transition
of behaviors, we use a simple body structure (i.e., a snake-like robot) and a non-
linear oscillator model, without self-organization, instead of a spiking neural net-
work with self-organization as we used in the previous chapter. Using this approach,
the coupled dynamics between a network and a body is feasible and can be infor-
matively analyzed. We suppose that the number of emerged behaviors is affected
by the structural properties of the synaptic networks under different macroscopic
structural properties and the ratio of the brain to the body for coupled dynamics.
Further, we hypothesize that different interactions within the functional network in-
duce stable or unstable behaviors. Herein, the functional network is estimated based
on the causality between the neurons in the synaptic network.

The main procedures and analyses for verifying our hypothesis are as follows

(see Figure 4.1):

1. Determine the structure of the fundamental network based on the complex
network model (Figure 4.1(a)). Then, if an edge exists between two nodes in
the fundamental network, construct synaptic connections between nonlinear
oscillators (synaptic network, Figure 4.1(b)). We assume that a nonlinear oscil-

lator and their connections correspond to a brain region and the connectivity
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Figure 4.1: Hypothesis and assumptions about relationship among the synaptic and
functional network, body, emergence of behaviors, and their transitions in this study.
The black node represents non-linear oscillator, signifying the dynamics of brain
regions. The green and orange lines indicate synaptic and functional connections
between oscillators, respectively. The blue dots and their black lines with arrow rep-
resent attractors, which self-organized behaviors from the coupled dynamics, and
their transitions. The curved arrows in (c) indicate a ratio between the brain and
body dynamics on the coupled dynamics.
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between regions. Furthermore, we suppose that the initial weight of connec-

tion in the synaptic network is given and is fixed.

2. Interact the network model with the musculoskeletal model to allow emer-
gence of behaviors and transitions of behaviors (Figure 4.1(d)). The sensory
ratio is modified to adjust the ratio between the brain and body dynamics for

coupled dynamics (Figure 4.1(c)).

3. Classify behaviors, which are characterized by the clustering method, as the
stable or unstable behaviors based on relative stability (defined per duration
of behavior). We assume these stable and unstable behaviors correspond to a
behavioral attractor and the transition between attractors (Figure 4.1 (e)), re-

spectively.

4. Analyze the functional network for each classified behavior using transfer en-
tropy and complex network theory to determine the coupled dynamics under-

lying these behaviors and their transitions (Figure 4.1(f)).

4.2 Model

4.21 Synaptic Network with Nonlinear Oscillators

Figure 4.2 (c) shows the overview of the network model and their connections with
the body in this study. The network consists of multiple nonlinear oscillators, which
are connected to each other based on the fundamental network (synaptic network).
In this study, we utilize the Bonhoeffer-van der Pol (BVP) equation as a nonlinear
oscillator to express the synchronized and desynchronized dynamics between the
rhythmic activities of the brain regions. A previous study has shown that the in-
teraction between BVP equations induce chaotic dynamics [4]. The oscillators are
separated into interface neurons, which are directly connected to the robot muscle
and other neurons, and the hidden neurons, which are only connected to other neu-

rons. The interface neurons receive and send sensory feedback on muscle lengths
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Figure 4.2: Overview of snake-like robot with a synaptic network with nonlinear
oscillator. (a) Snake-like robot. (b) Physical model of the snake-like robot. (c) A
graphical representation of the model in this study. The sensor and actuator connect
with the interface neurons. Additionally, interface and hidden neurons (oscillator)
are interacting with each other and other neurons in the same layer, through synap-
tic connections. That is, brain dynamics (hidden neurons) affect the behavior of the
body, and body dynamics also affect brain dynamics through interface neurons. The
variable of a adjusts the ratio of body dynamics to brain dynamics in coupled dy-

namics.
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and signals to adjust the length of the muscle, respectively. The dynamics of oscilla-

tors and their interactions are expressed as follows:

dx 1,
_ _ —y +2) +6(5 —x), (4.1)
T cx 3%
dy 1
T = C(x — by + a) + €5y, (4.2)
N
Ea[ +1—a)lsV wjixj  if interface neuron, or
S=8, . 4.3)
- K j=1j/=i
K Sjm1i/=i Wik S

where a, b, and c control the dynamics of neuron; z is a tonic input; and 6 and €
control the strength of the excitatory and inhibitory influences from other neurons,
respectively. Each neuron has a connection weight w, and K represents the number
of connections for each neuron. Finally, a controls the strength of the ratio between
the body and the network, while I is the sensory feedback value from the muscu-

loskeletal model. The movement of the robot is generated by spontaneous activation

of the synaptic network without sensory input, if @ = 0.0. Each interface neuron is

independently activated using the sensory feedback from the body only (i.e., no in-

teraction in the network) if a = 1.0. In our simulation, we usea = 0.7, b = —0.2,
c=20,06=0.01,€=0.015 a = {0.0,0.1,0.3,0.5,0.7,0.9,1.0}, and z = 0.4, 0.45, 0.5,
or 0.55. The network consists of 26 interfaces and 174 hidden neurons. In this study,
we utilized the following weight types for w:

[

E1 if j, i are connected, or

* Uniform weights: w;; =
0 else

* Randomly distributed weights: the weights are randomly distributed in [—1.0;1.0]

and normalized to zN |wi| =1.
i=17=]



4.2. Model 47

4.2.2 Complex Networks for Fundamental Network

In this study, we utilize different structure of complex networks for fundamental
network.

Small-world Network

See Section 3.2.2.

Scale-free Network

A scale-free network is defined as a network in which the number of node connec-
tions follows the power-law distribution given by P(k) ~ k™Y, where k is the number
of connections for each node, and y is typically between 2 and 3. In this study, we
constructed a scale-free network based on the BarabasiAlber (BA) [6] model as fol-

lows:
1. Begin with an initial number of nodes (o).

2. Add a new node with m(< mo) connections to the already existing nodes with

probability P(k;), where

_ki+1

P(k;) = Skt 1

(4.4)

3. Repeat Step 2 until the prespecified number of nodes has been added.

4.2.3 Network Structures of Nonlinear Oscillators

We utilized the following network types and parameters of the fundamental net-

works in our experiments.

1. Regular network: m = 2;
2. Small world network (WS model): p = 0.01 or 0.05;
3. Random network (based on WS model): p = 1.0; and

4. Scale-free network (BA model): mo = 2.
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In order to know structural properties of the synaptic network in this study, we
investigated the clustering coefficient, shortest path length, and degree centrality as
we explained in Section 3.3.3. In this study, we assumed that information is trans-
mitted from one neuron to another, regardless of whether the weight between the
oscillator has a positive or negative value. Hence, we use the absolute value of
weights to calculate the clustering coefficient and the shortest path length. Figure 4.3
shows the clustering coefficient and shortest path length of each synaptic network
in this study. As shown in the figure, a randomly distributed weighted network
shows a longer shortest path length and a smaller clustering value, implying that
randomly distributed weighted networks require more time to transmit informa-
tion from one node to another node using less interaction among the neighboring
nodes. Figures 4.4 presents the maximum degree centraility of each synaptic net-
work. A larger value implies that the network has a hub node, which has more
degrees than other nodes. Several studies have showed that a hub node plays an
important role in maintaining the connectivity of the network [2] and in efficiently
model (p=0. information [63]. We expected that there. would be a difference in in-
formation transmission within the network caused by structural differences which

influence the stability of the behavior in chaotic itinerancy.

4.2.4 Snake-like Robot

We utilized a snake-liked robot for our simulations because the model has a simple
body which makes it possible to analyze the relationship between the emergent be-
havior and the underlying network structure, but still it shows variational behaviors.
We constructed a model of the snake-like robot using open dynamics engine [94].
Figure 4.2 shows the model and the appearance of the snake-like robot. The robot
consists of multiple links connected by hinge joints and two-joint muscles, allowing
it to exhibit synchronized behaviors. Each muscle fiber is stretched and compressed
to move the robot body based on the muscle model shown in a previous study [51].
Each muscle is connected to an interface neuron that receives the muscle lengths as
sensory feedback values. Furthermore, we restricted the movement of the robot to

two dimensions using a hinge joint to simplify the analysis of the behaviors and its



4.2. Model 49
‘qc'_; (Uniform weight)
S 82 0.5 0.486 0.434 0.014 0.079

0% o4 - =
o
© S 0.3}
2o 02 |
<= 0.1t = |
L 0.0l . |
2 ‘ ‘ ‘ ‘
2 WS model WS model Rand Scalef
S Regular L (p=005) network  network
network p=v. p=v.
(a)
c (Random weight)
-g 8-27 0.172 0.166 0.146 0.003 0.011
05 0.4
g3 03]
(% 0.2}
£y T T T
E 0.0l ‘ ‘ | ‘ .
S Regular WS model WS model Random Scale free
© network  (P=0.01)  (p=0.05)  network  network
(b)
< 30 (Uniform weight)
2 25.377 15.43 7.998 3.984 3.364
@ 25¢
S 20]
g ‘g 15}
> 10t E
<@ 5l
s 0 ‘ ‘ ‘ ‘
% R | WS model WS model Random Scale free
nstg\]/yoili (p=0.01)  (p=0.05) network network
(c)
= (Random weight)
?8000— 64.687 53.171 24.668 12.511 18.364
(]
g)g 6000+
g 8 4000}
= 2000}
<8 9
% Regular WS model WS model Random Scale free
network (p=0.01) (p=0.05) network network

(d)

Figure 4.3: Complex network properties of synaptic networks employed in the ex-
periments. The number in each box plot denotes the value of the median of 100
measurements for different experimental settings for each network type. (a) Average
clustering coefficient for the uniform weights. (b) Average clustering coefficient for
the randomly distributed weights. (c) Average shortest path length for the uniform
weights. (d) Average shortest path length for the randomly distributed weights.
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Figure 4.4: Maximum node degree of the synaptic network employed in the exper-
iments. The number in each box plot denotes the value of the median of 100 mea-
surements for different experimental settings for each network type. (a) Uniform
weights and (b) randomly distributed weights.
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interpretations. The parameters of this snake-like robot are shown in Table 4.1 shows

the parameters of this snake-like robot.

Table 4.1: Setting of the snake-like robot.

Link height Link width Link length Gap between two bodies
0.1 [m] 0.1 [m] 0.1 [m] 0.02 [m]
Linkmass | Number of links | No. of single-joint muscles | No. of double-joint muscles
0.6 [kg] 15 0 26

4.2,5 Parameters and Simulation Setting

We conducted experiments using the above-mentioned network structure. Sensor
ratio ain Eq (4.3)issetas {0.0,0.1,0.3,0.5,0.7,0.9,1.0 }. Furthermore, we used {0.4,0.45,0.5,0.55}
as the values of tonic input. The simulation was independently conducted 100 times
for each condition, and the simulation time was 2000 s for each condition. In this
study, we excluded the first 50 s from the analysis to avoid excessive unstable be-

haviors of the snake-like robot.

4.3 Method for analysis of the Neural and Behavioral Dy-

namics

4.3.1 Analysis of the Behavior Pattern

In order to distinguish repetitive behaviors, we constructed a feature vectors using
correlation coefficients between the hinge joint angles within overlapped time win-
dows, and then, applied a clustering method to the feature vectors. The procedure

is presented as follows:

1. Calculate a feature vector that consists of correlation coefficients for all possible
joint angle combinations within an overlapped time window. This vector is

calculated as follows:

R = [r'2 13, (LK 23 (24 k1] (4.5)



52

Chapter 4. Chaotic Itinerancy from the Coupled Dynamics

G b
1/ 2/-~-/rn_1,1'n ]/ (4.6)

where r is a correlation coefficient; k is the number of joint angles; and i and j

are the indices of the joint angles.

i 5, (0 - 00 - o)
n = fﬁ-—ﬁ—f—z—_ﬁ =Nt 7 ]_ ’ (47)
I=nxts 6,-6 ) | E—— (91 -0)

where 6 is the joint angle; 6 is the mean of the joint angles in a time window; n
is an index of the window position; and At and s denote the sizes of the time

window and the shifting time, respectively.

. Reduce the number of the dimensions of the feature vectors using the Lapla-

cian eigenmaps for clustering [11]. Laplacian eigenmaps are manifold unsu-
pervised learning algorithms for nonlinear dimension reduction, which projects
each sample point into a low-dimensional space based on Laplacian eigen-
maps to retain the local geometric properties in the k-nearest neighbor points

for each point.

. Apply the density-based spatial clustering of applications with noise (DBSCAN) [32]

to find clusters. DBSCAN can determine the arbitrary number of clusters with
arbitrary shapes based on the density of a given set of points in space.This al-
gorithm considers it as one cluster if the distance between the data is less than
a parameter &, and the number of data points is more than a minimum number

of points.

. Measure the duration of each behavior and classify the behavior pattern based

on whether the durations are shorter or longer than a threshold value, which
is determined by the Otsu method [84]. Hereafter, we classify these behaviors

as unstable (less than the threshold) or stable (longer than the threshold).
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4.3.2 Functional Network within Behaviors

We estimated the functional network for each behavior in order to understand the
dynamic properties of the synaptic network for emergence and transitions of behav-
iors. In this study, we used transfer entropy to estimate a functional network and
information flows between the neurons or the brain (nonlinear oscillator) and body
(musculoskeletal model).

The transfer entropy (TE) from one neuron y to another neuron x is given as

follows:

® Q)
® O Xpt1 | Xn )

Ty—x = > p(xn+1,%n ,Yn )10g p(xn+1|x(k)) / 4.8)

where [ and k denote the given historical lengths used to predict the future state and
t indicates the current time step. In this study, | = k = 1. The Java Information Dy-
namics Toolkit (JIDT) [71] was used to calculate the TE using the Kraskov, Stogbauer,
and Grassberger (KSG) method [65]. The KSG method has a greater accuracy for a
smaller number of samples than does other methods. The extracted functional net-
work structure was then analyzed to answer the following three questions: (1) What
is the nature of the spatial interactions between the neurons (local or global)? (2)
How complex is the network structure (high or low complexity)? (3) How strongly
are the neurons connected to the environment through the body?

The procedures used to answer to these questions are as follows:

1. Apply the infinite relational model (IRM) [62] to visualize the structure of func-
tional network. The IRM is nonparametric Bayesian model to discover clusters
in the observed relational data. The generative model for the IRM is defined

as below:

zly~  CRP(y)
n(a,b)|B~  Beta(B, B) (4.9)

R@,j)|z,n ~ Bernouli(n(zi, z)),
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here, R(i, j) is a relationship between two elements of i and j in a relational

data R. The variable z is latent variable and n(a, b) is a relationship between

two clusters of a and b. The CRP, Beta and Bernouli in the equation represent
Chinese Restaurant Process [85], Beta distribution and Bernoulli distribution,
respectively. The variable y and B represent hyper-parameter for frequency of
the new cluster using the Dirichlet process and the noise of the relationship
among the elements in a cluster, respectively. In this study, we use y = 1 and

B = 7. The procedures used to visualize the structure of functional network

using IRM are as follows:

(a) Estimate mutual information to extract subnetworks, such as brain re-
gions. The mutual information (MI) between two neurons (x and y) can

be calculated as follows:

Pl y)
I(X;Y) = 5 Pxy(x, y)log Py (X)Py(y) (4.10)
Xy

The KSG method using JIDT was used to estimate MI.

(b) Binarize the result of (a) to apply the IRM, as this model handle binary
values. The value of the threshold to be binarized is determined by the
Otsu method [84].

(c) Rearrange a matrix consisting of relational data variables to a diagonal
sequence of submatrices (cluster), which may correspond to the subnet-

works.

(d) Overlay TE values on the result of (c) to extract the final subnetwork struc-

ture.

2. Calculate the complex network properties for the functional network to deter-

mine the global properties of the network.

3. Calculate the average of the two TEs from (to) the hidden neurons to (from)
the interface neuron to understand the relationship between the body and the

functional network.
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4.4 Results

441 Movement of the Snake-like Robot

In our simulation, the model shows more than four different stable behaviors: crawl-
ing movement (forward crawling, backward crawling) and bending (hold a position,
sidewinding). Figures 4.5 and 4.6 show examples of these behavior. These behaviors

and their transitions emerged with different durations.

925.0 s 925.5 s 926.0 s

928.0 s

Figure 4.5: Example of forward crawling movement of the robot.

11750 s 1176.0 s 1176.5 s

Figure 4.6: Example of bending movement of the robot.

In this study, we reduced the 91 dimensions of the feature vector to three dimen-
sions using 350 k-nearest points to avoid curse of dimensionality. After dimension-
ality reduction, we clustered each point with € = 0.16, and the minimum number of

points was set to 10. We observed the clusters that correspond to one behavior in the
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low-dimensional space of behaviors and their transitions, as chaotic itinerancy (see

Figure4.7).

4.4.2 Relationship between Various Movements and the Synaptic Net-

work

Figures 4.8 and 4.9 show the average number of behaviors, average number of stable
behaviors, and the maximum duration of one behavior in each network structure
for the uniform and randomly distributed weights, respectively. Since there is no
marked differences resulted from using different tonic input values, we only show
the results for tonic input = 0.45 (see Figures B -B for the effect of the tonic input).
The threshold to determine the stable or unstable movement was determined as
101.5 s according to Otsu method. The x-axis indicates the sensor ratio a in Eq (4.3).
Different peak positions were observed according to the network type.

As shown in Figures 4.8(a) and 4.9(a), the number of behaviors decreased if the
sensor ratio increased. However, as shown in Figures 4.8(b) and 4.9(b), the peak
of number of stable behaviors appeared near the center of the sensor ratio range,
whereas only a small number of behaviors emerged if the sensor ratio = 1.0 or = 0.0.
Furthermore, as shown in Figures 4.8(c) and 4.9(c), more stable behaviors emerged
when the value of the sensor ratio was high.

These results indicated that network dynamics facilitate the emerge of diverse
behaviors, but too strong dynamics of a network destabilizes the body, making it
unable to sustain the current behavior. This result suggests the importance of bal-
ance between the synaptic network and the body of the robot for the emergence of
diverse behaviors. Furthermore, there were statistically significant differences be-

tween network types.

4.4.3 Analysis of the Functional Network

Figure 4.10 shows the differences between a synaptic network and two functional
networks for a stable and unstable behavior in one simulation. As shown in the
tigure, different network structures emerged with different behaviors, even though

the structure of the synaptic network was fixed. A longer (shorter) behavior has
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Figure 4.7: Example of the feature vector and transitions of the state vector in the
dimensionally-reduced space by Laplacian eigenmaps (WS model (p = 0.05) with
randomly distributed weights, a tonic input of 0.4, and a sensor ratio of 0.3). (a) The
blue dots represent an unstable behavior. The dots with other colors represent stable
behaviors. The bar graphs show the histogram of data points along the x and y axes.
(b) The black circle represents current state in the feature space.
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Figure 4.8: Number of behaviors and maximum duration of behavior for a uniform
weight. The tonic input is 0.45. (a) Number of behaviors, (b) number of stable be-
haviors, and (c) maximum duration of behaviors. The x-axis indicates the sensor
ratio required a in Eq (4.3) to control the proportional influences between the body
and the network. *** p < 0.001, ** p < 0.01, * p < 0.05, - p < 0.1 indicate statistically
significant differences between the synaptic networks through the ANOVA test.
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Figure 4.9: Number of behaviors and maximum duration of behavior for a ran-
domly distributed weight. The tonic input is 0.45. (a) Number of behaviors, (b)
number of stable behaviors, and (c) maximum duration of behaviors. The x-axis in-

dicates the sensor ratio required a in Eq (4.3) to control the (yroyortional influences
between the body and the network. ***p'< 0.001, ** p < 0.01, * p < 0.05, - p < 0.1

indicate a statistically significant differences between the synaptic networks through
the ANOVA test.
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small (large) subnetworks with less (large) interaction among them. Furthermore,
the interface neurons were sparsely (densely) distributed in the subnetworks.

Figures 4.11 and 4.12 show the structure properties of the functional network and
the interaction between the interface and hidden neurons in terms of the stability of
the periodic behavior. Since tendency was same, regardless of whether the synaptic
network was used with a uniform or random weight, we only plot the results of a
synaptic network with a uniform weight.

Figure 4.11 shows the relationship between the sustainability of the periodic be-
havior and structural properties of functional network, regardless of the structure
of the synaptic network. As shown in the figure, sustainability shows a positive
and negative relationship with the shortest path length and clustering coefficient,
respectively. The high value of shortest path length and a small value of the cluster-
ing coefficient in the network indicate that the network is not a complex network.
Figure 4.12 shows the transfer entropy from the hidden to the interface neurons re-
gardless of the structure of the synaptic network, indicating how the body dynamics
influence on the network.

Since there were no differences in terms of transfer entropy from hidden neurons
to interface neuron and from interface neurons to hidden neurons, we only plot the
transfer entropy from hidden neurons to interface neurons. As shown in the figure,
the transfer entropy between the interface and hidden neurons decreases if duration
of the movement increases. The above results indicate that a vigorous interaction
between many hidden neurons may induce a transition from the current behavior to
another behavior. Moreover, the absence of differences may indicate that a common
structural feature of the functional network is related to the sustainability of the

behavior, irrespective of the structure of the synaptic network.

4.5 Discussion

45.1 Role of the Body and Brain Dynamics in Bodily Chaotic Itinerancy

Our simulation showed that emergence of behaviors and their transitions occur with
interactions between the musculoskeletal model and synaptic network. Figures 4.8

and 4.9 shows how the sensor ratio and the type of the synaptic network structure
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Figure 4.10: Estimated functional network structures for different movement dura-
tions: 329.5 s (longer) and 32.5 s (shorter). (a), (b) Number of neurons in each subnet-
work for 329.5 s and 32.5 s, respectively. The red and black bars indicate hidden and
interface neurons. (c) Synaptic network with a musculoskeletal movement and two
different functional networks. Each node indicates an IRM-extracted subnetwork,
and the node sizes indicate the number of neurons in each subnetwork.
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Figure 4.11: Structural property of the functional network for the uniform weights.
Each red line in the figure indicates a correlation. (A) Average clustering coefficient
and (B) average shortest path length.
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Figure 4.12: Interaction between the body and the network in terms of the duration
of periodic movements for the uniform weights. The red line in the figure indicates
a correlation: average of transfer entropy from the interface neurons to hidden neu-
rons.

influence the number of movements and the duration of the most stable movement.
As shown in Figures 4.8(a), (b) and 4.9(a), (b), many unstable behaviors emerged
if the sensor ratio was 0.0. However, the number of unstable behaviors decreased,
while the number of stable behaviors increased, if the sensor ratio increased. These
results indicate that the network dynamics contribute to generating various behav-
iors, while the dynamics per se cannot stabilize the movements because of the strong
chaotic dynamics of the network. Additionally, the body dynamics from the sensory
feedback may provide stability to sustain the current behavior. The maximum du-
ration of the behavior shown in Figures 4.8(c) and 4.9(c) may support this concept.
However, as shown in the Figures 4.8(b), (c) and 4.9(b), (c), the maximum duration
and number of stable behaviors decrease if the sensor ratio exceeds 0.5. We speculate
that the attractor for convergence to one behavior is weakened, because synchronic-
ity is weakened by loose connections between neurons if the sensor ratio is high. The
findings of a study of spontaneous activation in the neocortex [73] might be related
to the above interpretation of the role of the body and the brain for the emergence of

behaviors. They showed that the activation pattern for encoding sensor information
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is already observed in the spontaneous activations of neocortical activities in rat ex-
periments, and proposed that neocortical activation is constrained by sensory input.
Therefore, the sensory feedback may act as a trigger for self-organization of stable
behaviors into a subspace in one of the possible states determined by a non-linear

oscillator network.

4.5.2 Network Structure of Functional Network Underlying Behaviors and

Transition of Behaviors

As shown in Figures 4.10 and 4.11, in unstable behavior, neurons in a functional net-
work interact with each other through one vast subnetwork with a large value of
the clustering coefficient and the shortest path length. This result indicates that the
transitions between behaviors or exploration of behavior occur via a functional net-
work with a small value of the shortest path length, which can transmit information
rapidly, and a large value of the clustering coefficient, which indicates high frequent
interactions between neurons. On the other hand, in the case of a stable behavior,
a functional network has less complex network properties and has a broad-range,
distributed interaction neuron of neurons in subnetworks that locally interact with
the body. Furthermore, as shown in the Figure 4.12, the transfer entropy in the func-
tional network during stable behavior is low (i.e., interaction between neurons is
less). These positive and negative relationships between the structural property of
the network and the duration of the behavior indicate the probability of transition
from the current behavior to a different behavior by examining the current struc-
ture of the functional network. This finding can suggest a mechanism of chaotic
itinerancy in terms of the spontaneous activities of animal from aspects of neural
activities, such as a default mode network [16] (a network consisting of activation
signals among several brain areas of the cortex when a person is in a resting state).
Hermundstad et al. [53] showed that the shortest path length decreased when the
task to be concentrated on is given. Therefore, we speculate the functional network
for stable and unstable behaviors corresponding to unfocused (unconscious) and

focused states (conscious).
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4.5.3 Influence of the Network Types on the Number and Duration of

Behaviors

As shown in Figure 4.8, statistically significant differences were observed between
the structure of synaptic networks. We speculate that these differences were caused
by the existing the hub node, which has larger node degree than that other nodes, in
the network. As shown in Figure 4.4, scale-free and random networks demonstrate
a large value of maximum degree centrality than other network types (i.e. a hub
node is existing in the network). Several studies showed that this hub node plays an
important role in maintaining network dynamics [2]. In this regard, the hub node
may help to maintain the chaotic dynamics in the network. This result may relate
to the result in the Figure 3.5 that shows the large complexity at the large value of
pws. That is, the random network, which has a hub node, shows large complexity.
As shown in the Figure 4.8 (a), the value of sensor ratio at which start the rapid
decreasing the number of behavior patterns on random and scale-free networks is
larger than other networks. This result also supports our speculation.

Nevertheless, this result showed that the type of synaptic network affects the
emergence of diverse behaviors. Furthermore, the simulation revealed differences
between networks with the uniform and randomly distributed weights. We also
consider that these results are due to the structural properties of the synaptic net-
work. As shown in the Figure 4.3, a randomly distributed weighted network has a
large shortest path length and a small clustering coefficient. Therefore, the network
requires more time to transmit information from one neuron to another neuron, and
has less interaction among the neighboring neurons.

Results obtained with the functional network showed that the functional net-
work has common structural properties related to the stability of the behavior, re-
gardless of the type of synaptic network. However, the structural properties of
the synaptic network and the sensor ratio relate are related to the frequency of the
emerging behaviors. This may be involved in how the connectivity between the
body and brain dynamics is formed through the subplate; the structural properties
of the synaptic network are important for the emergence of the diverse behaviors

as we mentioned in the Section 2.3.1. Therefore, a balance of the two dynamics of
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both the body and the network determines the property of the chaotic itinerancy of
the behavior in an embodiment system. If either side of the coupled dynamics dom-
inates the other, the diversity of the behavior disappears. In contrast, the number
of emerging movements tended to increase as the sensor ratio is differed with re-
spect to the structure of the non-linear oscillator networks, and particularly with the
distribution of node degree. Moreover, the general movement, which is a diverse
behavior in early childhood, and the change in diverse behaviors with age [105],
may also be related to this finding in terms of behavioral dynamics. More analyses

are needed to verify these speculations.
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Chapter 5

Conclusion

5.1 Summary and Contributions

In this thesis, we presented insights into how neural activity changes according to
the structural properties of the macroscopic network, and how it affects the emer-
gence of behaviors through interaction with body dynamics. Furthermore, we also
showed how coupled dynamics changes according to emerging behaviors and their
transitions. We constructed a spiking neural network model with different macro-
scopic networks and compared structural properties and the complexity of neural
activities in each neuron group in the model. We also investigated the dynamics
underlying emergent behaviors and their transitions, which are derived from the
coupled dynamics between the musculoskeletal model and the oscillator network
model with different macroscopic networks.

In summary, the following contributions have been made in this thesis:

* Relationship among the structural properties of a macroscopic anatomical
network, the complexity of neural activity (Chapter 3): We constructed a neu-
ral network using multiple neuron groups that consisted of spiking neurons
and changed the clustering coefficient and shortest path length in the network
using the WS model. Then, we analyzed their spontaneous activity using MSE.
Using complex network theory analysis and neural activity for each neuron
group in a synaptic network, we showed that the local over-connectivity in the
synaptic network decreased complexity and enhanced the intensity of specific

frequency components of brain activity.
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* Relationship between the brain and body dynamics for emergence of behav-
iors (Chapter 4): We constructed a simulation using a musculoskeletal model
and a nonlinear oscillator network to represent the body and brain dynamics,
respectively. We showed that the number of emergent behaviors is increased
and restricted by the sensor ratio, and the degree of increase is changed by the
structural properties of the synaptic network, especially the degree centrality

of the nodes.

* Coupled dynamics within emergence of behaviors and their transitions (Chap-
ter 4): We analyzed the dynamics behind the emergent behaviors and their
transitions from the embodiment model using information and complex net-
work theories. Our results of the analysis of a functional network showed that
the clustering coefficient and the shortest path length in the functional net-
work have a negative and positive relation with the duration of the behavior,

respectively, regardless of the structure of the synaptic network.

5.2 Directions for Future work

5.2.1 Extension of Parameters of Macro- and Microscopic Network Model

In order to focus on the topological structure of a macroscopic network, we used
the WS model to construct a fundamental network in Chapter 3. However, it is
well known that anatomical and functional network have other structural proper-
ties, such as being scale-free network [30] or rich-club network [55], which has con-
nections between the high degree of nodes. As shown in Figure 3.9, our results
showed that the degree centrality in a synaptic network strongly affects induction
of differences in complexity of neural activity. Investigating neural activities when
such network structures are used as a fundamental network would be interesting
point. Furthermore, a neuron group in our model had a randomly connected struc-
ture; however, the cortex has various layer structures. Moreover, several studies
on ASD have discussed that the atypical balance of excitatory to inhibitory neurons
in the cortex induces atypical connectivity and activity in the brains with ASD [23,

80, 44]. In future, we should include these kinds of parameters or structures in our



5.2. Directions for Future work 69

model. We expect that using these approaches would be a step forward to increasing

understanding of the relationship between the structure and activity of the brain.

5.2.2 Role of Subnetworks and Dynamical Changing

Even though we showed that a subnetwork with interface neurons locally interacts
with the body in the case of a stable behavior, the roles of other subnetworks are not
clear, as discussed in Chapter 4. As we have mentioned earlier in Chapter 2, based on
fMRI studies, each local network in the brain has a variable connectivity to perform
different tasks [3]. Cole et al. [25] showed that the frontoparietal brain network acts
as a hub region with a wide variety of connectivity and could be used to identify the
current task and could be involved in transiting to another state, to switch to a novel
task. We expect that some subnetworks in our simulation to act as a hub or play a
different role, such as inhibiting or suppressing the activation of other subnetworks.
Furthermore, the result of this research shows that a different functional network
with subnetworks emerges with each behavior in a behavioral chaotic itinerancy.
Analyses of such networks, focusing on the temporal changes of multiple variables,
using limited penetrable horizontal visibility graphs and multiscale analysis, have
recently been conducted [39, 41, 40, 38, 42]. Investing the dynamic fluctuation of
the subnetwork structure with reference to such a method would also be interest-
ing. Understanding this type of relationship would shed light on the mechanism of

chaotic itinerancy within neural and behavioral dynamics.

5.2.3 Learning Method and Self-organization of Networks for Tasks us-
ing Coupled Dynamics

In the current model, we have not yet introduced any learning methods to adapt
to a new environment or task, because the purpose of our research was to under-
stand the role and potential of the coupled dynamics of the body and the brain itself
for the emergence of spontaneous behaviors. However, the brains of humans and
animals, as self-organizing systems, might be reconstructed via their experiences
and information from the external environment. These changes influence their be-

havior and induce different experiences. How synaptic and functional networks
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change through the interplay between behavior and a self-organized system in an
environment and how it influences behaviors are interesting topics in developmen-
tal science. Several studies have shown that changes in synaptic [5] and functional
networks [77, 87] occur in the brain according to age. These changes may play an
important role in the emergence of behavior and functions of a human [22]. An-
other important future issue is understanding how various spontaneously emerg-
ing behaviors observed in the current model can be used to adapt to the environ-
ment or help motor development. Several studies have shown that having access
to a diversity of behavior is effective for rapid learning of a new behavior, rather
than noise-like behaviors [54, 107, 46]. These studies also discussed the relationship
between the diversity of the behavior in early infancy and subsequent motor devel-
opment [50]. We expect that using our approach with learning methods, such as
reinforcement of learning for goal-directed behaviors, or Hebbian learning to learn
corresponding behavior to the environment, will not only provide new insights into
development and higher cognitive functions, but could also be adapted to engineer-

ing applications, such as the generation of robot behavior.

5.2.4 Effect of Morphology of Body and Environment

We used a simplified body and environment in our attempt to reveal the role of
the structural properties of synaptic and functional networks for the emergence of
diverse behaviors. However, in a developmental process, both the brain and the
body change, and different behaviors are observed according to age (e.g., crawling,
standing, or grabbing an object using one or two hands in humans). Several stud-
ies have shown the importance of both the physical body and the environment for
the emergence of behaviors. For example, in an experimental study, Thelen and
Smith [109] demonstrated the reappearance of a stepping movement in an infant
following change in the body and the environment. In a simulation-based study re-
garding the morphological aspects of the body, Mori and Kuniyoshi [78] showed that
a human-like distribution of tactile sensors induces human-like behaviors. There-
fore, we expect that implementing such morphological changes will induce different

behaviors and lead to a deeper understanding of the relationship of the brain, body,
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and environment. Furthermore, we also expect that using multiple sensors will in-
duce the emergence of a subnetwork with a specific role, such as a motor area or a

sensory area in the brain.
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Figure A.l: Multiscale entropy (MSE)-based complexity curves of each neuron
group in a synaptic network. (a) Lattice network (pws = 0.0). (b) A small-world
network (pws = 0.1). (c) A random network (pws = 1.0). The y-axis indicates sam-
ple entropy, and the x-axis indicates scale factor &.
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Appendix A. Data for all pws
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Figure A.2: The differences of peak amplitude of spontaneous neural activity in
some frequency bands between neuron groups with low and high complexity when
pws = 0.0. We used 10 neuron groups with high and low complexity in each sim-
ulation as comparison data. The number on above each violin plot denotes the av-
erage value for ten simulations. Wilcoxon signed-rank test was used for statistical
test. (a) Amplitude in the 20-40 Hz band (Wilcoxon signed-rank test, statistic=6.0, p-
value=4.6706e-18); (b)) Amplitude in the 40-60 Hz band (Wilcoxon signed-rank test,
statistic=11.0, p-value=5.4302e-18).
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Figure A.3: Relationship between the connectivity structure and the complexity of
neural activity. Each marker corresponds to a neuron group in the network, and its
color indicates the summation of the sample entropy for all 80 scale factors. The x-
axis indicates the degree centrality, and the y-axis indicates the clustering coefficient.
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Figure A.4: Relationship between the peak frequency and the complexity of neural
activity. (a) Relationship in the 0-20 Hz band. (b) Relationship in the 20-40 Hz band.
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in the network, and its color indicates the summation of the sample entropy for all
80 scale factors. The x-axis indicates the peak frequency of the neural activity, and
the y-axis indicates the amplitude.

(@) (b)
- =) 8 = %
% [ $ % (L]
E - _',:‘h 3 ,EE s ,JE
e — )

) . [ =
8 '&f??.:‘ Horark Q Q9 6w Q
O &= ;A.*:’ }.‘_- PLY - e . 6 "(B' O &3 -Ei
g . - -{!“ :ﬁ b e o ;’ 8’ iz an ;)
< [ - N :-' [ > BT |
5 - arn 4 Y TR . £ o £
W » E ,)'v!“fl. ol iC B an = LE
3 bt i el ass ¢ 3
O | Sl SN . O .. "

s = - L w 121} e &= w L aw L]
Degree centrality Degree centrality

Figure A.5: Relationship between the connectivity structure and the firing rate of ex-
citatory and inhibitory neurons. Each marker corresponds to a neuron group in the
network, and its color indicates the average firing rate of excitatory and inhibitory
neurons. The x-axis indicates the degree centrality, and the y-axis indicates the clus-
tering coefficient. (a) Relationship between structural properties and firing rate of
excitatory neurons. (b) Relationship between structural properties and firing rate of
inhibitory neurons.
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Figure A.6: Relationship among the weight of intraconnection, structural properties,
and complexity of neural activity. (a) Relationship among the weight of intraconnec-
tion from excitatory to excitatory neuron, clustering coefficient based on the inter-
connection, and complexity. (b) Relationship among the weight of intraconnection
from excitatory to inhibitory neuron, clustering coefficient based on the interconnec-
tion, and complexity. (c) Relationship among the weight of intraconnection from
excitatory to excitatory neuron, degree centrality based on the interconnection, and
complexity. (d) Relationship among the weight of intraconnection from excitatory to
inhibitory neuron, degree centrality based on the interconnection, and complexity.
Each marker corresponds to a neuron group in the network, and its color indicates
the summation of the sample entropy for all 80 scale factors. The x-axis indicates
the average of weight of interconnection, and the y-axis the structural properties of
interconnection.
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Figure A.7: Relationship between shortest path length and complexity for each neu-
ron group. The x-axis is the shortest path length, and the y-axis is the summation of
the sample entropy for all 80 scale factors.

Table A.1: Statistical comparisons with Tukey-Kramer test among MSE of LAP sig-
nals and MSE of band-pass randomized surrogate LAP signals in a specific fre-
quency bands. In the table, Meandiff indicates the difference in mean value between
the compared groups. Lower and Upper mean lower limit and upper limit of confi-
dence interval, respectively.

Compared groupl Compared group2 Meandiff Lower Upper p-value

0-20 Hz 20-40 Hz -1.909 -2179 -1.639 0.001
0-20 Hz 40-60Hz -1.748 -2.018 -1.478 0.001
0-20 Hz 60-80Hz -4.029 -4299 -3.759 0.001
0-20 Hz original -4.037 -5956 -2.119 0.001
20-40 Hz 40-60Hz 0.160 -0.109  0.430 0.482
20-40 Hz 60-80Hz -2120 -2.390 -1.850 0.001
20-40 Hz original -2128 -4.046 -0.210 0.021
40-60Hz 60-80Hz -2.281 -2551 -2.011 0.001
40-60Hz original -2.289 -4207 -0.371 0.009

60-80Hz original -0.008 -1.926 1.91 0.9




78 Appendix A. Data for all pyys

8.7 ° 60
I L] L ®

0.6 ® o
3 . R
G - l 55
O 0.5 58 & i -
% S & @ ' | o hy
o 0.4 8 i E " l 50 é
O ® e ‘ ' a
z = :
- — (-] @ - ‘ ' 45 O
| -
) 02{ o 8§ o o | 8 i ° ! - E 8 O
-— e @ o) [ ] ’ ® o °
g 0.1 : E  § l P20 B ’ g

N . & R R B B f
oy e © R | E | g 40
ERNER AR R R LA AERE

00{ ® @ o)

40 60 80 100 120 140

Degree centrality

Figure A.8: Relationship between the connectivity structure without STDP and the
complexity of neural activity with the tonic input. Duration for tonic input was set
as 100 s. Here, we used the same initial weights of the synaptic networks in the Fig-
ure A.3 and fixed the weights during the tonic input. Each marker corresponds to
a neuron group in the network, and its color indicates the summation of the sam-
ple entropy for all 80 scale factors. The x-axis indicates the degree centrality, and
the y-axis indicates the clustering coefficient. There is no clear relationship between
the complexity and structural properties of synaptic network compared to the Fig-
ure A.3.

Table A.2: Correlation coefficient among the complexity, structural properties of
synaptic and functional networks for all values of pwsof ten simulations. In the
table, Clusterings and Clusteringr represent clustering coefficient of synaptic and
functional networks in each frequency bands, respectively. Degrees and Degreer
represent degree centrality of synaptic and functional networks in each frequency
bands, respectively. In all cases, p-value < 2.2e-16.

Frequency bands of functional network

Compared componentsl Compared components2 0-20Hz  20-40 Hz  40-60 Hz 0-1000 HZ

Complexity Clusteringg -0.6646089 -0.6583268  -0.282451  0.5503528
Complexity Degreer -0.7022768 -0.6727727 -0.3539034 -0.7220229
Clusteringr Clusterings 0.5108812  0.7596675 0.256991 0.6164434

Degreer Degrees 0.5223337  0.6506093  0.2799739  0.7126037
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Figure B.1: Number of movement patterns for uniform weights. The tonic input for
each graphis 0.4 (A), 0.45 (B), 0.5 (C),or 0.55 (D). The x-axis indicates the sensor ratio
necessary d in Eq (4.3) to control the proportional influences between the body and
the network. *** p < 0.001, ** p < 0.01,* p < 0.05and - p < 0.1 indicate a statistically
significant differences between the wired networks through the ANOVA test.
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Figure B.3: Number of stable movement patterns for uniform weights. The tonic
input for each graph is 0.4 (A), 0.45 (B), 0.5 (C),or 0.55 (D). The x-axis indicates the
sensor ratio necessary a in Eq (4.3) to control the proportional influences between
the body and the network. *** p < 0.001, ** p < 0.01, * p < 0.05and - p < 0.1
indicate a statistically significant differences between the wired networks through

the ANOVA test.
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Figure B.5: Maximum duration of the movement pattern for uniform weights. The
tonic input for each graphis 0.4 (A), 0.45 (B), 0.5 (C),or 0.55 (D). The x-axis indicates
the sensor ratio necessary ain Eq (4.3) to control the proportional influences between
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indicate a statistically significant differences between the wired networks through
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Figure B.6: Maximum duration of the movement patterns for randomly distributed
weights. The tonic input for each graph is 0.4 (A), 0.45 (B), 0.5 (C),or 0.55 (D). The
x-axis indicates the sensor ratio necessary a in Eq (4.3) to control the proportional
influences between the body and the network. *** p < 0.001, * p < 0.01, *p <
0.05 and - p < 0.1 indicate a statistically significant differences between the wired
networks through the ANOVA test.
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