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Abstract

A stream cipher is often used as a cryptographic scheme for processing communication data at

a high speed. Therefore, it is important to evaluate the security of stream ciphers in keeping

with the background that high-speed data processing is required with the development of the

advanced information and communications society.

This dissertation presents a study on statistical cryptanalysis of stream ciphers, and focuses

particularly on RC4. First of all, we investigate certain events with statistical weakness known as

a bias or a correlation involving the secret key, the internal state, or the pseudorandom number

sequence called the keystream of RC4. We then apply new events with statistical weakness to

the existing attacks, for example, a plaintext recovery attack, a key recovery attack, and a state

recovery attack, and attempt to improve them. Finally, we propose a countermeasure to avoid

the occurrence of the events with statistical weakness, especially in WPA-TKIP, which uses

RC4 stream cipher for encryption/decryption. Our purpose in this dissertation is to contribute

to security evaluations of stream ciphers through cryptanalysis of RC4 in the future.

In Chapter 4, we focus on Glimpse Correlations between the keystream and the internal

state. The existing Glimpse Correlations provide only cases with positive biases, and hold

generally on any round. We then refine the existing Glimpse Correlations from two approaches.

One is to investigate certain events with positive or negative biases on all values in addition to

a known value in the existing Glimpse Correlations. The other is to investigate certain events

with different biases on specific rounds from the new and existing Glimpse Correlations. As a

result of our investigation, we provide six events with several new biases, and prove these events

theoretically.

In Chapter 5, we investigate correlations between the unknown internal state and the public

RC4 key in WPA-TKIP, which are referred to as key correlations of the internal state variables.

One of the remarkable features of WPA-TKIP is that the first three bytes of the RC4 key

are set from the public parameters, and our investigation uses this feature. As a result of our

investigation, we provide 22 events with key correlations of the internal state variables, and

prove these events theoretically. Our theoretical proofs make clear how TKIP induces biases in

the internal state of generic RC4. We then discuss a countermeasure toward secure RC4 key

setting in WPA-TKIP in such a way that it can retain the security level of generic RC4. As

a result of our discussion, we demonstrate that the number of key correlations induced by our

refined RC4 key setting can be reduced by approximately 70% in comparison with that in the

original setting in WPA-TKIP.
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In Chapter 6, we investigate correlations between two bytes of the RC4 key and the keystream

in each round, where the RC4 key pairs are iterated every specific rounds. Such correlations are

referred to as the iterated RC4 key correlations. As a result of our investigation, we prove new

events with the iterated RC4 key correlations theoretically. Furthermore, we apply new events

with the iterated RC4 key correlations to the existing plaintext recovery attacks on WPA-TKIP.

As a result of our experiments, we achieve to recover the first 257 bytes of a plaintext on WPA-

TKIP from approximately 230 ciphertexts with a success probability of approximately 90.8%,

whose probability is approximately 6.0% higher than a success probability of the existing best

attack.

Finally, we conclude by summarizing our results and future works, and provide a direction to

construct secure stream ciphers generally based on our statistical cryptanalysis of RC4 stream

cipher.
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Chapter 1

Introduction

1.1 Motivation

Recently, with the development of the advanced information and communications society, the

use of mobile information and communication devices, e.g., smartphones and tablet computers,

has been widely spreading, and the public wireless LAN service area has also been widely

expanding. Thanks to this society, anyone can easily communicate a large amount of data via

the Internet at any time or place.

However, we must continuously deal with various problems related to the use of the Inter-

net. One of the problems is that threats of cyber-attacks by malicious third parties, called

adversaries, are increasing. Actually, we have many opportunities to deal with confidential

information in communications via the Internet, e.g., internet shopping, internet banking, and

electronic voting, and therefore need to take measures to ensure information security in or-

der to protect our confidential information from adversaries. One of the measures to ensure

information security includes cryptography.

1.1.1 Cryptography

For the formal definition of cryptography, we refer to the Handbook of Applied Cryptography by

Menezes et al. in [MOV96, Definition 1.1] as follows:

Cryptography is the study of mathematical techniques related to aspects of informa-

tion security such as confidentiality, data integrity, entity authentication, and data

origin authentication.

Cryptography is roughly divided into symmetric key cryptography and asymmetric key cryptog-

raphy. Symmetric key cryptography uses the same secret key for encryption and decryption.

It has a disadvantage that the same secret key must be pre-shared securely with the commu-

nication partner, but it has an advantage that the encryption/decryption processing can be

performed at a high speed by using only simple logical and arithmetic operations.

On the contrary, asymmetric key cryptography uses different keys (a secret key and a pub-

lic key) for encryption and decryption. It has an advantage that the different keys need not

1



CHAPTER 1. INTRODUCTION

be pre-shared with the communication partner, but it has a disadvantage that the encryp-

tion/decryption processing is performed at a lower speed than that in symmetric key cryptog-

raphy.

This dissertation will focus on symmetric key cryptography in keeping with the background

that it is required to increase communication speeds owing to the large scale of the advanced

information and communications society.

1.1.2 Symmetric Key Cryptography

Symmetric key cryptography is further divided into block ciphers and stream ciphers for ensuring

confidentiality of information. A block cipher divides a plaintext/ciphertext into fixed-length

blocks, and encrypts/decrypts one block at a time using the same secret key according to the

modes of operation, e.g., electronic codebook (ECB) mode, cipher-block chaining (CBC) mode,

cipher feedback (CFB) mode, and output feedback (OFB) mode (refer to [MOV96] for details).

Representative block ciphers include DES [oS77], AES [DR99], Camellia [AIK+01], MISTY

[Mat97], and SIMON/SPECK [BTCS+15].

A stream cipher generates an arbitrary-length pseudorandom number sequence called a

keystream using the secret key, and encrypts/decrypts one bit or one byte at a time by XOR-

ing the plaintext/ciphertext and the keystream. Representative stream ciphers include RC4

[Ano94], HC-128 [Wu08], Rabbit [BVZ08], Salsa20/12, [Ber08b], ChaCha20 [Ber08a, Ber08c],

SOSEMANUK [BBC+08], Grain v1 [HJMM08], MICKEY [BD08], and Trivium [Can08].

Stream ciphers have an advantage that the encryption/decryption processing can be per-

formed at a higher speed than that in block ciphers. Therefore, this dissertation will focus

on stream ciphers and particularly on RC4, which is one of the representative stream ciphers,

and is still widely used today. Our motivation in this dissertation is to contribute to security

evaluations of all stream ciphers through cryptanalysis of RC4.

1.1.3 RC4 Stream Cipher

RC4 stream cipher, designed by Ronald L. Rivest in 1987, is widely used in various security

protocols such as Secure Socket Layer/Transport Layer Security (SSL/TLS), Wired Equivalent

Privacy (WEP), and Wi-Fi Protected Access Temporal Key Integrity Protocol (WPA-TKIP).

SSL/TLS adopts RC4 as a standard stream cipher for confidentiality of information, and

provides secure communications via the Internet. The protocol allows client/server applications

to communicate in a way that is designed to prevent eavesdropping, tampering, or message

forgery [DA98, DR06, DR08, FKK11]. SSL was developed by Netscape Corporation in the

middle of 1990s [FKK11]. After that, the TLS working group of the Internet Engineering Task

Force (IETF) released TLS 1.0 as RFC 2246 in 1999 [DA98] and TLS 1.1 as RFC 4346 in 2006

[DR06]. Then, the current version TLS 1.2 was published as RFC 5246 in 2008 [DR08].

WEP and WPA-TKIP adopt RC4 for confidentiality of information, and provide secure

communications via Wi-Fi networks between clients and access points. In 1999, WEP was

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Encryption process by the RC4 stream cipher.

developed to achieve a equivalent level of confidentiality to wired local area network (LAN)

medium that does not use cryptographic schemes [Soc04]. A practical attack against WEP,

however, was proposed by Fluhrer et al. in 2001 [FMS01], and WEP is considered to be broken

today. In order to prevent the existing attack by Fluhrer et al. [FMS01], WEP had been

superseded by WPA in 2003 [Soc04]. WPA improves secret key setting in WEP, and adopts

TKIP as a countermeasure against the existing attack (refer to Sections 2.3 and 2.4 for details).

RC4 consists of two algorithms: a Key Scheduling Algorithm (KSA) and a Pseudo Random

Generation Algorithm (PRGA). The KSA generates a secret initial state to become an input of

the PRGA from a secret key, and then the PRGA outputs one byte of the keystream at a time.

After that, the keystream is XORed with a plaintext/ciphertext to obtain a ciphertext/plaintext

(see Figure 1.1).

After the disclosure of RC4 algorithms in 1994 [Ano94], RC4 has been intensively analyzed

over the past two decades, owing to its popularity and simplicity. There are mainly two ap-

proaches to the cryptanalysis of RC4. One is to demonstrate the existence of a certain event

with statistical weakness known as a bias or a correlation involving the secret key bytes, the

internal state variables, or the keystream bytes. Now, we refer to an event with significantly

higher or lower probability than the probability of random association as a positive bias or a

negative bias, respectively. The other approach is to recover a plaintext (a plaintext recovery

attack), an RC4 key (a key recovery attack), and an internal state (a state recovery attack) by

using various biases or correlations. In addition, many cryptanalyses on the security protocols

have been reported, such as plaintext recovery attacks on SSL/TLS and WPA-TKIP, and key

recovery attacks on WEP (refer to Chapter 3 for details).

Owing to the influence of the above cryptanalyses, the usage of RC4 cipher suites was

prohibited in all SSL/TLS versions in 2015 [Pop15], and was also recommended in neither WEP

nor WPA-TKIP. Actually, the IETF adopts ChaCha20 cipher suites from the current version

TLS 1.2 [DR08, LCM+16] as the TLS standard stream cipher, and abolishes RC4 cipher suites

from the next version TLS 1.3 [DR18]. Currently, however, approximately 15.1% of all web

browsers/servers for SSL/TLS continue to support RC4 cipher suites as of February 2019 [SSL],

and downgrade attacks in Wi-Fi networks remain as real threats [VP16, VSP17].

In summary, many people may continue to use RC4 in the security protocols, and we there-

fore need to pay attention to RC4 from now on.
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Figure 1.2: Visualization of our contributions.

1.2 Contributions

This dissertation deals with a study on statistical cryptanalysis of stream ciphers, and focuses

particularly on RC4. Our cryptanalysis will be further extended to security evaluations of

RC4-like stream ciphers, e.g., RC4+ [MP08a]，RC4A [PP04]，VMPC [Zol04]，NGG [NGG05]，
GGHN [GGHN05], and Spritz [RS14], and other stream ciphers [Wu08, BVZ08, Ber08b, Ber08a,

Ber08c, BBC+08, HJMM08, BD08, Can08]. Our contributions can be summarized as the fol-

lowing three chapters (see Figure 1.2).

Chapter 4: Refined Glimpse Correlations

Publications included in this chapter are a journal paper and an international conference paper

as follows:

• Ryoma Ito and Atsuko Miyaji. New Integrated Long-Term Glimpse of RC4. In Kyung-

Hyune Rhee and Jeong Hyun Yi, editors, Information Security Application - WISA 2014,

volume 8909 of Lecture Notes in Computer Science, pages 137–149. Springer Berlin Hei-

delberg, 2015. (Ref. [IM14a])

• Ryoma Ito and Atsuko Miyaji. Refined Glimpse Correlations of RC4. IEICE TRANSAC-

TIONS on Fundamentals of Electronics, Communications and Computer Sciences, E99-

A(1):3–13, January 2016. (Ref. [IM16a])

This chapter investigates two types of existing Glimpse Correlations: the Glimpse Theorem

and the Long-term Glimpse. In [Jen96], Jenkins discovered correlations between a keystream

byte and an internal state variable, which are known as the Glimpse Theorem. In [MG13],

Maitra and Sen Gupta proved the Glimpse Theorem completely, and presented other correlations
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between two consecutive keystream bytes and an internal state variable, which are known as the

Long-term Glimpse. The existing Glimpse Correlations provide only cases with positive biases,

and hold generally on any round. In this chapter, we refine the existing Glimpse Correlations

from the following two approaches: One is to find new positive or negative biases on all values

in addition to a known value. The other is to provide precise biases on specific rounds. As

a result, we discover six cases with several new biases, and prove these cases theoretically. In

the first approach, combining our new biases with the existing ones, the Long-term Glimpse is

integrated with positive biases. In the second approach, we successfully find that two correlations

on specific rounds become an impossible condition, whose probability is 0.

Chapter 5: Key Correlations of the Internal State Variables

Publications included in this chapter are two journal papers and two international conference

papers as follows:

• Ryoma Ito and Atsuko Miyaji. New Linear Correlations Related to State Information of

RC4 PRGA Using IV in WPA. In Gregor Leander, editor, Fast Software Encryption -

FSE 2015, volume 9054 of Lecture Notes in Computer Science, pages 557–576. Springer

Berlin Heidelberg, 2015. (Ref. [IM15c])

• Ryoma Ito and Atsuko Miyaji. How TKIP Induces Biases of Internal States of RC4. In

Emest Foo and Douglas Stebila, editors, Information Security and Privacy - ACISP 2015,

volume 9144 of Lecture Notes in Computer Science, pages 329–342. Springer International

Publishing, 2015. (Ref. [IM15a])

• Ryoma Ito and Atsuko Miyaji. Refined RC4 Key Correlations of Internal States in

WPA. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and

Computer Sciences, E99-A(6):1132–1144, June 2016. (Ref. [IM16b])

• Ryoma Ito and Atsuko Miyaji. Refined Construction of RC4 Key Setting in WPA. IE-

ICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer

Sciences, E100-A(1):138–148, January 2017. (Ref. [IM17])

This chapter discusses the weaknesses in WPA-TKIP. One of the remarkable features in

WPA-TKIP is that the first three bytes of the RC4 key are derived from public parameters, and

an existing work using this feature was reported by Sen Gupta et al. in [GMM+14]. They focused

on correlations between the known RC4 key bytes in WPA-TKIP and the keystream bytes, which

are referred to as key correlations of the keystream bytes, and improved an existing plaintext

recovery attack by Isobe et al. in [IOWM13] using their discovered key correlations. No study,

however, has focused on such correlations including the unknown internal state variables in

WPA-TKIP. We then investigate new correlations between the unknown internal state variables

and the first three bytes of the RC4 key in both generic RC4 and WPA-TKIP, which are referred

to as key correlations of the internal state variables, and provide theoretical proofs of 22 key

correlations we discovered. Our theoretical proofs make clear how TKIP induces biases in the
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internal state of generic RC4. Ideally, WPA-TKIP should be constructed in such a way that it

can retain the original security level of generic RC4. We then discuss secure RC4 key setting in

WPA-TKIP in such a way that it can retain the security level of generic RC4. If the RC4 key

setting in WPA-TKIP is refined, it can be difficult to induce key correlations of the keystream

bytes or the internal state variables. As a result, we present that the number of key correlations

induced by our refined RC4 key setting can be reduced by approximately 70% in comparison

with that in the original setting in WPA-TKIP. Our cryptanalysis would also be useful to

investigate a generic construction of a secret key setting including the public parameters in such

a way that it can retain the security level of the original encryption.

Chapter 6: Iterated RC4 Key Correlations of the Keystream Bytes

Publications included in this chapter are an international conference paper and a domestic

conference paper as follows:

• Ryoma Ito and Atsuko Miyaji. New Iterated RC4 Key Correlations. In Willy Susilo and

Guomin Yang, editors, Information Security and Privacy - ACISP 2018, volume 10946

of Lecture Notes in Computer Science, pages 154–171. Springer International Publishing,

2018. (Ref. [IM18a])

• Ryoma Ito and Atsuko Miyaji. Plaintext Recovery Attacks against WPA-TKIP Using

Iterated RC4 Key Correlations. In IEICE Japan Technical Report - ISEC 2018, ISEC

2018–48, pages 379–386, 2018–7. (Ref. [IM18c])

This chapter investigates key correlations of the keystream bytes, and then discusses signifi-

cant improvements for plaintext recovery on WPA-TKIP from the existing attacks. We discuss

new correlations between the RC4 key pair and a keystream byte in each round, where the RC4

key pairs in the correlations are iterated every specific rounds. Such correlations are referred

to as the iterated RC4 key correlations. We further discuss how to apply key correlations of

the keystream bytes to the plaintext recovery attack from the following three approaches. The

first is to extend an existing attack by Isobe et al. in [IOWM13] in the same way as an existing

attack by Sen Gupta et al. in [GMM+14]. In this approach, we achieve significant improvement

for recovering eight bytes of a plaintext on WPA-TKIP using our iterated RC4 key correlations

from the existing attack in [IOWM13]. The second is to improve an existing attack by AlFardan

et al. in [ABP+13] using key correlations of the keystream bytes. In this approach, we achieve

significant improvement for recovering five bytes of a plaintext on WPA-TKIP from existing

attacks in [IOWM13, ABP+13, PPS14]. The last is to optimize the plaintext recovery of the

first 257 bytes on WPA-TKIP by combining ours and the existing attacks. In this approach, we

achieve to recover the first 257 bytes of a plaintext on WPA-TKIP from approximately 230 ci-

phertexts with a success probability of approximately 90.8%, whose probability is approximately

6.0% higher than a success probability of an existing attack by Paterson et al. in [PPS14]. Our

result implies that WPA-TKIP further lowers the security level of generic RC4.
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1.3 Organization of This Dissertation

The remainder of this dissertation is organized as follows:

• Chapter 2 describes the outline of stream cipher, the description of RC4, the secret

key setting in WEP and WPA-TKIP, and statistical methods as preliminaries for our

cryptanalysis and discussions.

• Chapter 3 describes some useful theorems, lemmas, and attack procedures in the previous

works, which are used in our cryptanalysis and discussions.

• Chapter 4 presents new results on the Refined Glimpse Correlations. We first show our

experimental observations of the Glimpse Correlations, and then demonstrate theoretical

proofs of the new results. We finally show our experimental evaluations to confirm the

accuracy of our proofs.

• Chapter 5 presents new results on key correlations of the internal state variables. We

first show our experimental observations of the key correlations, and then demonstrate

theoretical proofs of the new results. Next, we show our experimental evaluations to

confirm the accuracy of our proofs, and finally discuss secure RC4 key setting in WPA-

TKIP.

• Chapter 6 presents new results on iterated RC4 key correlations of the keystream bytes.

We first show our experimental observations of the iterated RC4 key correlations, and

then demonstrate theoretical proofs of the new results. Next, we show our experimental

evaluations to confirm the accuracy of our proofs, and finally discuss improvements for

plaintext recovery on WPA-TKIP.

• Chapter 7 concludes this dissertation by summarizing our results and future works.

7



Chapter 2

Preliminaries

2.1 Stream Cipher

A stream cipher is a function that outputs an arbitrary-length keystream from a secret key and

an initialization vector (IV) as inputs, and provides confidentiality of information. Generally,

the XOR operation is used for encryption/decryption by stream ciphers, and thus a cipher-

text/plaintext is derived by XORing a plaintext/ciphertext and a keystream. For the formal

definition of a stream cipher, we refer to the doctoral dissertation of Isobe in [Iso13] as follows:

Definition 2.1 ([Iso13, Definition 6]). A stream cipher is a function such that a mapping

S : {0, 1}k × {0, 1}c = {0, 1}ℓ, where k is a key size, c is an IV size, and ℓ is a keystream size.

2.1.1 Security Level

Because the stream cipher works as a pseudorandom generator, its security level must satisfy

the following definition of the pseudorandom generator (refer to [KL07] for details):

Definition 2.2 ([KL07, Definition 3.15]). Let ℓ(·) be a polynomial and let G be a deterministic

polynomial-time algorithm such that upon any input s ∈ {0, 1}n, algorithm G outputs a string

of length ℓ(n). We say that G is a pseudorandom generator if the following two conditions

hold:

1. Expansion: For every n, it holds that ℓ(n) > n.

2. Pseudorandomness: For all probabilistic polynomial-time distinguishers D, there exists a

negligible function negl such that:

|Pr[D(r) = 1]− Pr[D(G(s)) = 1]| ≤ negl(n), (2.1)

where r is chosen uniformly at random from {0, 1}ℓ(n), the seed s is chosen uniformly at

random from {0, 1}n, and the probabilities are taken over the random coin used by D and

the choice of r and s.
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2.1.2 Attack Scenarios

We describe the following attack scenarios of stream ciphers (refer to [KL07, MOV96] for details):

Ciphertext-only Attack: An adversary obtains only a ciphertext, and tries to determine the

corresponding plaintext.

Known Plaintext Attack: An adversary obtains one or more pairs of plaintexts/ciphertexts

encrypted under the same secret keys, and tries to determine the corresponding plaintext

from another obtained ciphertext.

Chosen Plaintext Attack: An adversary has the ability to obtain the corresponding cipher-

text(s) of arbitrary plaintext(s), and tries to determine the corresponding plaintext from

an obtained ciphertext.

Chosen Ciphertext Attack: An adversary has the ability to obtain the corresponding plain-

text(s) of arbitrary ciphertext(s), and tries to determine the corresponding plaintext from

another ciphertext obtained without using the ability.

Note that an adversary has the ability to obtain the corresponding keystream by XORing a pair

of plaintext and ciphertext, except under the scenario of the ciphertext-only attack.

2.1.3 Goals of Attack

We describe the following goals of attack on stream ciphers:

Distinguishing Attack: An adversary distinguishes a keystream from a true random number

sequence. The aim of the attack is to confirm whether the stream cipher satisfies the

pseudorandomness described in Definition 2.2.

Predicting Attack: An adversary predicts an unknown keystream bit/byte by using the

knowledge of known keystream bits/bytes under the scenario of the known plaintext at-

tack. The aim of the attack is to confirm whether the stream cipher satisfies the pseudo-

randomness described in Definition 2.2.

Key Recovery Attack: An adversary derives a secret key from a keystream under the scenario

of the known plaintext attack. If the secret key can be obtained with less than the

computational complexity of an exhaustive key search, then the stream cipher is regarded

as insecure.

State Recovery Attack: An adversary derives an internal state from a keystream under the

scenario of the known plaintext attack. This is equivalent to the key recovery attack

essentially. Once the internal state is recovered at any stage of the keystream generation,

the adversary can obtain the entire subsequent keystream.
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2.2 Description of RC4

RC4 consists of the KSA and the PRGA. Both the KSA and the PRGA have two 8-bit indices

{i, j} and a secret internal state S, which is a permutation of all possibleN bytes {0, 1, 2, . . . , N−
1} (typically, N = 28). The KSA generates the initial state S0(= SK

N ), which becomes an input

of the PRGA from a secret keyK of ℓ bytes. Once the initial state S0 is generated from the KSA,

the PRGA outputs a keystream byte {Z1, Z2, . . . , Zr} in each round, where r is the number of

rounds. After that, the keystream byte Zr is XORed with a plaintext byte Pr to generate a

ciphertext byte Cr. Figure 2.1 shows the encryption/decryption process by RC4 stream cipher.

We describe the KSA and the PRGA as Algorithms 1 and 2. {SK
i , i, jKi } and {Sr, ir, jr}

are {S, i, j} in the i-th and the r-th round of the KSA and the PRGA, respectively. The Swap

function takes two 8-bit input variables, mutually exchanges the values of the variables, and

outputs the exchanged variables. tr is an 8-bit index of a keystream byte as Sr[ir] + Sr[jr]. All

additions are arithmetic addition modulo N . We use these notations throughout the remainder

of this dissertation.

Figure 2.1: Encryption/decryption process by RC4 stream cipher.

Algorithm 1 KSA

Input: ℓ-byte key K

Output: initial state S0 ← SK
N

1: for i = 0 to N − 1 do

2: SK
0 [i] ← i

3: end for

4: jK0 ← 0

5: for i = 0 to N − 1 do

6: jKi+1 ← jKi + SK
i [i] +K[i mod ℓ]

7: Swap(SK
i [i], SK

i [jKi+1])

8: SK
i+1 ← SK

i

9: end for

Algorithm 2 PRGA

Input: initial state S0

Output: keystream bytes {Z1, Z2, . . . , Zr}
1: r ← 0, i0 ← 0, j0 ← 0

2: loop

3: r ← r + 1, ir ← ir−1 + 1

4: jr ← jr−1 + Sr−1[ir]

5: Swap(Sr−1[ir], Sr−1[jr])

6: Sr ← Sr−1

7: tr ← Sr[ir] + Sr[jr]

8: Zr ← Sr[tr]

9: end loop
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2.3 Secret Key Setting in WEP

WEP adopts RC4 stream cipher for confidentiality of information, and uses a 64-bit or 128-bit

per-packet key K which concatenates a 24-bit (3-byte) IV and a 40-bit or 104-bit (5-byte or

13-byte) WEP key. For example, the per-packet key setting with the 104-bit WEP key is as

follows:

K = K[0]||K[1]||K[2]||K[3]|| . . . ||K[15] = IV[0]||IV[1]||IV[2]||K ′[0]|| . . . ||K ′[12],

where IV[i] is the i+1-th byte of the IV, and K ′[j] is the j+1-th byte of the WEP key. The IV

is automatically generated for each packet by a transmitter-side system. The reason why the

IV is used is that the packets may be lost owing to transmission/reception errors in the wireless

networks. The WEP key is secretly pre-shared between all users and the access point, and is

not frequently updated.

WEP also adopts Cyclic Redundancy Check 32 (CRC32) for the integrity of information, and

generates an Integrity Check Value (ICV) from the plaintext data. Figure 2.2 shows the WEP

encapsulation process [Soc04]. The transmitters generate the per-packet key, which becomes

an input of RC4, and encrypt each packet by XORing the plaintext data appending the ICV

and the keystream generated from RC4. Then, the transmitters append the corresponding IV

to the ciphertext data, and transmit the result to the receivers. After the receivers receive the

packet, they generate the corresponding per-packet key from the IV appended to the packet, and

decrypt by XORing the ciphertext data and the keystream generated from RC4. The receivers

can check the integrity of the information by computing the ICV of the decrypted data using

CRC32 and by verifying whether it matches the ICV included in the packet.

Note that the IV appended to the packet remains in plaintext. Therefore, anyone can easily

obtain the IVs by intercepting the packets on wireless networks.

Figure 2.2: WEP encapsulation process.
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2.4 Secret Key Setting in WPA-TKIP

WPA-TKIP adopts RC4 stream cipher for confidentiality of information, and improves a 16-

byte RC4 key setting in WEP. It includes a temporal key hash function [HWF02], a MICHAEL

algorithm [FM02], and a key management scheme based on IEEE 802.1X [Soc04]. Figure 2.3

shows the TKIP encapsulation process [Soc04].

The key management scheme generates a 16-byte Temporal Key (TK) after the IEEE 802.1X

authentication. After that, the temporal key hash function outputs a 16-byte per-packet RC4

key (K = RC4KEY) from the TK, a 6-byte Transmitter Address (TA), and a 48-bit IV, which is

often called the TKIP sequence counter (TSC). The temporal key hash function consists of two

phases: The first phase (Phase 1) mixes the TK with the TA and the most significant 32-bit IV

(IV32). The output of Phase 1 is cached, and it can be reused to process subsequent packets

associated with the same TK and the same TA. The second phase (Phase 2) mixes the output

of Phase 1 with the TK and the least significant 16-bit IV (IV16). The 48-bit IV value must be

different for each packet encrypted under the same TK and the same TA.

We describe Phase 1 and Phase 2 as Algorithms 3 and 4, respectively. P1K and PPK are

treated as arrays of 16-bit words. TK, TA, and RC4KEY are treated as arrays of 8-bit words. The

S function is a bijective nonlinear S-box defined by a table lookup in [HWF02]; it takes a 16-bit

input and outputs a 16-bit value. The Mk16 function takes two 8-bit inputs, and outputs a 16-bit

word such that Mk16(X, Y) = 256 ∗ X+ Y, which is equivalent to Mk16(X, Y) = X || Y. The Hi16

and Lo16 functions take a 32-bit input, and output the most and the least significant 16 bits,

respectively. The Hi8 and Lo8 functions are similar to the Hi16 and Lo16 functions, but the

input size is 16 bits and the output size is 8 bits. Both RotR1 and ≫ denote a cyclic right-shift

by one.

TKIP uses the MICHAEL algorithm to generate a Message Integrity Code (MIC) for the

integrity of information [FM02]. The algorithm takes a MIC key, the TA, the receiver address

(RA), and the message as inputs, and outputs the plaintext data concatenated with a MIC-tag.

Figure 2.3: TKIP encapsulation process.
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Algorithm 3 Phase 1 of the temporal key hash function
Input: TK, TA, IV32
Output: P1K

Phase1 STEP1 :

P1K[0] = Lo16(IV32)
P1K[1] = Hi16(IV32)
P1K[2] = Mk16(TA[1], TA[0])
P1K[3] = Mk16(TA[3], TA[2])
P1K[4] = Mk16(TA[5], TA[4])

Phase1 STEP2 :

for i = 0 to 7 do
j = 2 ∗ (i & 1)
P1K[0] = P1K[0] + S[P1K[4]⊕ Mk16(TK[ 1+ j], TK[ 0+ j])]
P1K[1] = P1K[1] + S[P1K[0]⊕ Mk16(TK[ 5+ j], TK[ 4+ j])]
P1K[2] = P1K[2] + S[P1K[1]⊕ Mk16(TK[ 6+ j], TK[ 8+ j])]
P1K[3] = P1K[3] + S[P1K[2]⊕ Mk16(TK[13+ j], TK[12+ j])]
P1K[4] = P1K[4] + S[P1K[3]⊕ Mk16(TK[ 1+ j], TK[ 0+ j])] + i

end for

This output is fragmented before inputting it in the WEP encapsulation process for encrypting

the plaintext data and computing the ICV (see Section 2.3). The receivers can verify the MIC-

tag after decryption of the received ciphartext data, ICV checking, and defragmentation of the

decrypted plaintext data, and can discard any received data with invalid MIC.

One of the remarkable features of TKIP is that the first three bytes of the RC4 key {K[0],

K[1], K[2]} are derived from the IV16 (see PHASE2 STEP3 in Algorithm 4) as follows:

K[0] = (IV16 ≫ 8) & 0xFF, (2.2)

K[1] = ((IV16 ≫ 8) | 0x20) & 0x7F, (2.3)

K[2] = IV16 & 0xFF. (2.4)

Note that the first three bytes of the RC4 key {K[0], K[1], K[2]} in WPA-TKIP are known

because the IV can be obtained by observing packets.
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Algorithm 4 Phase 2 of the temporal key hash function
Input: PiK, TK, IV16
Output: RC4KEY

Phase2 STEP1 :

PPK[0] = P1K[0]
PPK[1] = P1K[1]
PPK[2] = P1K[2]
PPK[3] = P1K[3]
PPK[4] = P1K[4]
PPK[5] = P1K[4] + IV16

Phase2 STEP2 :

PPK[0] = PPK[0] + S[PPK[5]⊕ Mk16(TK[ 1], TK[ 0])]
PPK[1] = PPK[1] + S[PPK[0]⊕ Mk16(TK[ 3], TK[ 2])]
PPK[2] = PPK[2] + S[PPK[1]⊕ Mk16(TK[ 5], TK[ 4])]
PPK[3] = PPK[3] + S[PPK[2]⊕ Mk16(TK[ 7], TK[ 6])]
PPK[4] = PPK[4] + S[PPK[3]⊕ Mk16(TK[ 9], TK[ 8])]
PPK[5] = PPK[5] + S[PPK[4]⊕ Mk16(TK[11], TK[10])]
PPK[0] = PPK[0] + RotR1(PPK[5]⊕ Mk16(TK[13], TK[12]))
PPK[1] = PPK[1] + RotR1(PPK[0]⊕ Mk16(TK[15], TK[14]))
PPK[2] = PPK[2] + RotR1(PPK[1])
PPK[3] = PPK[3] + RotR1(PPK[2])
PPK[4] = PPK[4] + RotR1(PPK[3])
PPK[5] = PPK[5] + RotR1(PPK[4])

Phase2 STEP3 :

RC4KEY[0] = Hi8(IV16)
RC4KEY[1] = (Hi8(IV16) | 0x20) & 0x7F

RC4KEY[2] = Lo8(IV16)
RC4KEY[3] = Lo8((PPK[5]⊕ Mk16(TK[1], TK[0])) ≫ 1)
for i = 0 to 0 do
RC4KEY[4+ (2 ∗ i)] = Lo8(PPK[i])
RC4KEY[5+ (2 ∗ i)] = Hi8(PPK[i])

end for
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2.5 Statistical Cryptanalysis of RC4 Stream Cipher

2.5.1 Probability Distributions

We describe the formal definition of probability distributions which are used in our statistical

cryptanalysis of RC4 stream cipher (refer to [DS12] for details).

Definition 2.3 ([DS12, Definition 5.2.1]). A random variable X has the bernoulli distribu-

tion with parameter p (0 ≤ p ≤ 1) if X can take only the values 0 and 1 and the probabilities

are

Pr(X = 1) = p and Pr(X = 0) = 1− p. (2.5)

The probability function of X can be given by

f(x | p) =




px(1− p)1−x for x = 0, 1,

0 otherwise.
(2.6)

Definition 2.4 ([DS12, Definition 5.6.1]). A random variable X has the normal distribution

with mean µ and variance σ2 (−∞ < µ < ∞ and σ > 0) if X has a continuous distribution

with the following probability density function:

f(x | µ, σ2) =
1

(2π)1/2σ
exp

[
−1

2

(
x− µ

σ

)2]
for −∞ < x < ∞. (2.7)

Definition 2.5 ([DS12, Definition 5.6.2]). The normal distribution with mean 0 and variance 1

is called the standard normal distribution. The probability density function of the standard

normal distribution is usually denoted by the symbol ϕ, and the cumulative distribution function

is denoted by the symbol Φ. Thus,

ϕ(x) = f(x | 0, 1) = 1

(2π)1/2
exp

(
−1

2
x2

)
for −∞ < x < ∞. (2.8)

and

Φ(x) =

∫ x

−∞
ϕ(u)du for −∞ < x < ∞. (2.9)

Definition 2.6 ([DS12, Definition 5.9.1]). A discrete random vector X = (X1, . . . , Xk) whose

probability function is given by the following equation has the multinomial distribution with

parameters n and p = (p1, . . . , pk):

f(x | n,p) = Pr(X = x) = Pr(X1 = x1, . . . , Xk = xk)

=




n!

x1!x2! · · · xk!
px1
1 px2

2 · · · pxk
k if x1 + x2 + · · ·+ xk = n,

0 otherwise.
(2.10)
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2.5.2 Confidence Interval for Population Mean

We would like to investigate the occurrence probability of certain events in RC4 stream cipher

by experiments using all secret keys. Such probability can be regarded as the population mean.

However, it is impossible to investigate population mean accurately from the perspective of

time complexity because secret key space is too large (typically, RC4 has secret key space of

size 2128). Therefore, we estimate confidence interval for population mean from sample mean,

which is defined as Definition 2.7.

Definition 2.7 ([DS12, Definition 5.6.2]). Let X1, . . . , Xn be random variables. The average of

these n random variables, 1
n

∑n
i=1 Xi, is called their sample mean and is commonly denoted

Xn.

Before showing the definition of confidence interval for population mean, we describe the

central limit theorem as Theorem 2.1.

Theorem 2.1 ([DS12, Theorem 6.3.1]). (Central Limit Theorem) If the random variables

X1, . . . , Xn form a random sample of size n from a given distribution with mean µ and variance

σ2 (0 < σ2 < ∞), then for each fixed number x,

lim
n→∞

Pr

[
Xn − µ

σ/n1/2
≤ x

]
= Φ(x), (2.11)

where Φ denotes the cumulative distribution function of the standard normal distribution.

The central limit theorem shows that if a large amount of random sample is taken from any

distribution with mean µ and variance σ2, then the distribution of the random variable Xn−µ
σ/n1/2 will

be approximately the standard normal distribution (see Definition 2.5). From the theorem, we

can derive α% confidence interval for population mean from the table of the standard normal

distribution function, where α is the confidence coefficient. In this dissertation, we use 95%

confidence interval for population mean µ, which is defined as Definition 2.8.

Definition 2.8 ([Dev11, Definition in Chapter 7]). If, after observing X1 = x1, X2 = x2, . . . , Xn =

xn, we compute the observed sample mean xn and then the resulting fixed interval is called a

95% confidence interval for population mean µ. This confidence interval can be expressed

as

xn − 1.96 · σ√
n
< µ < xn + 1.96 · σ√

n
with 95% confidence. (2.12)

A concise expression for the interval is xn ± 1.96 · σ/
√
n, where − gives the left endpoint (lower

limit) and + gives the right endpoint (upper limit).

We consider whether the certain event occurs or not. Let X = 0 if the event does not occur,

and let X = 1 if the event occurs. Then, the random variable X has the bernoulli distribution

with parameter p = Pr(X = 1) (see Definition 2.3).

Now, we describe the law of large numbers as Theorem 2.2.
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Theorem 2.2 ([DS12, Theorem 6.2.4]). (Law of Large Numbers) Suppose that X1, . . . , Xn

form a random sample from a distribution for which the mean is µ and for which the variance

is finite. Let Xn denote the sample mean. Then

Xn
p−→ µ. (2.13)

From the theorem, if a large amount of random sample is taken from the bernoulli distribution,

the parameter p converges to the observed sample mean xn, and therefore its standard deviation

σ =
√

p(1− p) converges to
√
xn(1− xn) (refer to [DS12] for details).

In summary, we use the following equations instead of Equation (2.12) to estimate 95%

confidence interval for population mean µ in our statistical cryptanalysis of RC4 stream cipher:

xn − 1.96 ·
√
xn(1− xn)√

n
< µ < xn + 1.96 ·

√
xn(1− xn)√

n
. (2.14)

Hereinafter, the lower and upper limit in 95% confidence interval for population mean µ are

denoted by µlower and µupper, respectively.

2.5.3 Experiments for Statistical Cryptanalysis

Experimental Environments

The followings are our experimental environments in Chapters 4–6:

• Intel R⃝ CoreTM i3-3230M CPU with 2.60 GHz, 4.0 GB memory, C language, and gcc 4.6.3

compiler.

• Intel R⃝ CoreTM i3-3220M CPU with 3.30 GHz, 4.0 GB memory, C language, and gcc 4.8.2

compiler.

• Intel R⃝ CoreTM i5-3320M CPU with 2.60 GHz, 8.0 GB memory, C language, and gcc 4.8.2

compiler.

• Intel R⃝ Xeon R⃝ E5-1680 v3 CPU with 3.20 GHz, 32.0 GB memory, C language, and gcc

5.4.0 compiler.

Experimental Evaluations: Percentage of Relative Error

In order to check the accuracy of our theoretical values, we use the percentage of the relative

error ϵ defined as Definition 2.9.

Definition 2.9. The percentage of the relative error is determined by using the following for-

mula:

ϵ =
|experimental value− theoretical value|

experimental value
× 100(%).

17
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The experimental value is treated as the sample mean. Then, we estimate the lower and up-

per limit in 95% confidence interval for population mean µlower and µupper from the experimental

value. Next, we compute the percentage of the relative error ϵlower and ϵupper from µlower and

µupper as the experimental value, respectively. Finally, we evaluate the accuracy of our theoret-

ical value using the maximum of the percentage of the relative error ϵmax = max(ϵlower, ϵupper).

18



Chapter 3

Previous Works

We consider two approaches to the cryptanalysis of RC4. One is to demonstrate the existence of

a certain event with statistical weakness, known as a bias or a correlation, involving the RC4 key

bytes, internal state variables, or keystream bytes (a distinguishing attack). Now, we refer to an

event with significantly higher or lower probability than the probability of random association
1
N

as a positive bias or negative bias, respectively. The other approach is to attack RC4 itself

using biases or correlations in order to recover the plaintext bytes (a plaintext recovery attack),

the RC4 key bytes (a key recovery attack), or the internal state variables (a state recovery

attack). In addition, many cryptanalyses on security protocols have been reported, such as

distinguishing attacks on WPA-TKIP, plaintext recovery attacks on SSL/TLS and WPA-TKIP,

and key recovery attacks on WEP.

This chapter describes some useful theorems, lemmas, and attack procedures, which are used

later in our cryptanalysis and discussions. Almost all theorems and lemmas in this chapter use

the symbol of approximate equation “≈”, which should be mathematically confirmed. In fact,

those proofs seem to be neither complete, theoretical, nor precise. Ideally, we should check all

approximations in practice because some approximations may be correct and others may be

incorrect. Now, we should note this facts and list the previous results.

3.1 Distinguishing Attacks: Biases and Correlations

A distinguishing attack is to distinguish a keystream byte from a true random number sequence,

and aims to confirm the pseudorandomness of an output generated from stream ciphers. This

section describes the previous works on distinguishing attacks with respect to the following

aspects:

Section 3.1.1: Short-term Biases in the Keystream Bytes in [MS01, Mir02, GMPS14, Man01,

SGPM15, IOWM13, GMM+14]

Section 3.1.2: Long-term Biases in the Keystream Bytes in [FM00, Man05]

Section 3.1.3: Glimpse Correlations in [Jen96, MG13]
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Section 3.1.4: Key Correlations of the Internal State Variables in [Roo95, PM07, MP08b]

Section 3.1.5: Key Correlations of the Keystream Bytes in [SVV10, Sar14, GMM+14]

Although many other attacks have been reported, e.g., in [BMPdM18, DS18, GMPS11, JBIO16,

MPG11, MPS+13, PM09, Sar15, SV17, VP15], we will not describe these attacks in this section

because these are out of our cryptanalysis and discussions in this dissertation.

3.1.1 Short-term Biases in the Keystream Bytes

In [MS01], Mantin and Shamir presented that the second keystream byte Z2 is biased toward 0

as Theorem 3.1.

Theorem 3.1 ([MS01, Theorem 1]). Assume that the initial state S0 is randomly chosen from a

set of all possible permutations of {0, . . . , N−1}. Then, the probability that the second keystream

byte Z2 is biased toward 0 is approximately 2
N
.

Mantin and Shamir further presented the number of samples to distinguish two distributions

with a constant probability of success as Theorem 3.2.

Theorem 3.2 ([MS01, Theorem 2]). Let X and Y be two distributions, and assume that the

event e occurs in X with probability p and Y with probability p · (1 + q). Then, for small p and

q, O( 1
p·q2 ) samples suffice to distinguish X from Y with a constant probability of success.

Let X be a distribution of the second byte of a true random number sequence, and let Y be

a distribution of the second byte of the keystream Z2 generated from RC4. Then, the number

of samples to distinguish X from Y is O(N) because p = 1
N

and q = 1.

In [Mir02], Mironov experimentally presented a bias in a distribution of the first byte of

the keystream Z1. Subsequently, Sen Gupta et al. provided a theoretical value of the bias in

[GMPS14] as Theorem 3.3. The proof of Theorem 3.3 uses Lemma 3.1, presented by Mantin in

[Man01].

Lemma 3.1 ([Man01, Theorem 6.2.1]). In the initial state of the PRGA, for 0 ≤ u ≤ N − 1

and 0 ≤ v ≤ N − 1, we have

Pr(S0[u] = v) =




1

N

((
1− 1

N

)v

+

(
1−

(
1− 1

N

)v)(
1− 1

N

)N−u−1)
when v ≤ u,

1

N

((
1− 1

N

)N−u−1

+

(
1− 1

N

)v)
when v > u.

Theorem 3.3 ([GMPS14, Theorem 13]). The probability distribution of the first keystream byte
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is given as

Pr(Z1 = v) = Qv +
∑
X∈Lv

∑
Y ∈Tv,X

Pr(S0[1] = X ∧ S0[X] = Y ∧ S0[X + Y ] = v),

with Qv =





Pr(S0[1] = 1 ∧ S0[2] = 0) when v = 0,

Pr(S0[1] = 0 ∧ S0[0] = 1) when v = 1,

Pr(S0[1] = 1 ∧ S0[2] = v) + Pr(S0[1] = v ∧ S0[v] = 0)

+ Pr(S0[1] = 1− v ∧ S0[1− v] = v) otherwise,

where v ∈ {0, . . . , N−1}, Lv = {0, . . . , N−1}\{1, v}, and Tv,X = {0, . . . , N−1}\{0, X, 1−X, v}.

In [MPG11], Maitra et al. presented that the 3rd to the 255th bytes of the keystream {Z3,

Z4, . . . , Z255} are biased toward 0. Subsequently, Sen Gupta et al. provided a complete proof

of the biases in [GMPS14] as Theorem 3.4. The proof of Theorem 3.4 uses Lemmas 3.2 and 3.3,

presented by Sen Gupta et al. in [GMPS14].

Lemma 3.2 ([GMPS14, Lemma 1]). After the first round of the PRGA, for 0 ≤ u ≤ N − 1

and 0 ≤ v ≤ N − 1, the probability distribution of the internal state S1 is given as

Pr(S1[u] = v) =




Pr(S0[1] = 1) +
∑

X ̸=1 Pr(S0[1] = X ∧ S0[X] = 1), u = 1, v = 1;
∑

X ̸=1,v Pr(S0[1] = X ∧ S0[X] = v), u = 1, v ̸= 1;

Pr(S0[1] = u) +
∑

X ̸=u Pr(S0[1] = X ∧ S0[u] = u), u ̸= 1, v = u;
∑

X ̸=u,v Pr(S0[1] = X ∧ S0[u] = v), u ̸= 1, v ̸= u.

Lemma 3.3 ([GMPS14, Theorem 1]). After the u−1-th round of the PRGA, for 3 ≤ u ≤ N−1

and 0 ≤ v ≤ N − 1, we have

Pr(Su−1[u] = v) ≈ Pr(S1[u] = v)

(
1− 1

N

)u−2

+
u−1∑
t=2

u−t∑
w=0

Pr(S1[t] = v)

w! ·N

(
u− t− 1

N

)w(
1− 1

N

)u−3−w

.

Theorem 3.4 ([GMPS14, Theorem 14]). For 3 ≤ r ≤ 255, the probability that the r-th

keystream byte Zr is biased toward 0 is given as

Pr(Zr = 0) ≈ 1

N
+

cr
N2

,

where cr =




N

N − 1
· (N · Pr(Sr−1[r] = r)− 1)− N − 2

N − 1
for r = 3,

N

N − 1
· (N · Pr(Sr−1[r] = r)− 1) otherwise.

In [SGPM15], Sarkar et al. presented that the 256th and the 257th bytes of the keystream

{Z256, Z257} are biased toward 0, and provided complete proofs as Theorems 3.5 and 3.6,
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respectively.

Theorem 3.5 ([SGPM15, Theorem 5]). When N = 256, the probability that the N-th keystream

byte ZN is biased toward 0 is given as

Pr(ZN = 0) ≈ 1

N
− 0.37

N
.

Theorem 3.6 ([SGPM15, Theorem 6]). When N = 256, the probability that the N + 1-th

keystream byte ZN+1 is biased toward 0 is given as

Pr(ZN+1 = 0) ≈ 1

N
+

0.36

N
.

In [IOWM13], Isobe et al. presented four biases in the first 255 bytes of the keystream. They

first proved a conditional bias, by which Z1 is biased toward 0 when Z2 = 0 as Theorem 3.7.

Subsequently, they proved that Z3 is biased toward 131 as Theorem 3.8, Zr are biased toward

r for 3 ≤ r ≤ N − 1 as Theorem 3.9, and extended keylength-dependent biases by which Zr are

biased toward −r when r = x · ℓ (x = 1, 2, . . . , 7) as Theorem 3.10, where ℓ is the key size. They

further provided a set of the strongest short-term biases in the first 257 bytes of the keystream

{Z1, Z2, . . . , Z257} as listed in Table 3.1.

Theorem 3.7 ([IOWM13, Theorem 6]). Pr(Z1 = 0 | Z2 = 0) is given as

Pr(Z1 = 0 | Z2 = 0) ≈ 1

2
·
(
Pr(S0[1] = 1 + (1− Pr(S0[1] = 1)) · 1

N

)
+

1

2
· 1

N
.

Theorem 3.8 ([IOWM13, Theorem 7]). Pr(Z3 = 131) is given as

Pr(Z3 = 131) ≈ Pr(S0[1] = 131) · Pr(S0[2] = 128) + (1− Pr(S0[1] = 131) · Pr(S0[2] = 128)) · 1

N
.

Theorem 3.9 ([IOWM13, Theorem 8]). For 3 ≤ r ≤ N − 1, Pr(Zr = r) is given as

Pr(Zr = r) ≈ pr−1,0 ·
1

N
+ pr−1,r ·

1

N
· N − 2

N

+

(
1− pr−1,0 ·

1

N
− pr−1,r ·

1

N
− (1− pr−1,0) ·

1

N
· 2
)
· 1

N
,

where pr−1,0 = Pr(Sr−1[r] = 0) and pr−1,r = Pr(Sr−1[r] = r).

Theorem 3.10 ([IOWM13, Theorem 9]). When r = x · ℓ (x = 1, 2, . . . , 7), Pr(Zr = −r) is

given as

Pr(Zr = −r) ≈ 1

N2
+

(
1− 1

N2

)
· γr + (1− δr) ·

1

N
,

where γr =
1
N2 ·

(
1− r+1

N

)y ·∑N−1
y=r+1

(
1− 1

N

)
·
(
1− 2

N

)y−r·
(
1− 3

N

)N−y+2r−4
, δr = Pr(Sr−1[r] = 0).

In [GMM+14], Sen Gupta et al. presented that a distribution of K[0]+K[1] has biases from

a relation between K[0] and K[1] in WPA-TKIP as Theorem 3.11 and Table 3.2.
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Table 3.1: Set of the strongest short-term biases in the first 257 bytes of the keystream.
r Strongest known bias of Zr Theoretical Value Reference

1 Z1 = 0 | Z2 = 0 2−8 · (1 + 2−1.009) [IOWM13]
2 Z2 = 0 2−8 · (1 + 20) [MS01]
3 Z3 = 131 2−8 · (1 + 2−8.089) [IOWM13]
4 Z4 = 0 2−8 · (1 + 2−7.581) [GMPS14]

5–15 Zr = r max: 2−8 · (1 + 2−7.627) [IOWM13]
min: 2−8 · (1 + 2−7.737)

16 Z16 = 240 2−8 · (1 + 2−4.671) [GMPS11]
17–31 Zr = r max: 2−8 · (1 + 2−7.759) [IOWM13]

min: 2−8 · (1 + 2−7.912)
32 Z32 = 224 2−8 · (1 + 2−5.176) [IOWM13]

33–47 Zr = 0 max: 2−8 · (1 + 2−7.897) [GMPS14]
min: 2−8 · (1 + 2−8.050)

48 Z48 = 208 2−8 · (1 + 2−5.651) [IOWM13]
49–63 Zr = 0 max: 2−8 · (1 + 2−8.072) [GMPS14]

min: 2−8 · (1 + 2−8.224)
64 Z64 = 192 2−8 · (1 + 2−6.085) [IOWM13]

65–79 Zr = 0 max: 2−8 · (1 + 2−8.246) [GMPS14]
min: 2−8 · (1 + 2−8.398)

80 Z80 = 176 2−8 · (1 + 2−6.574) [IOWM13]
81–95 Zr = 0 max: 2−8 · (1 + 2−8.420) [GMPS14]

min: 2−8 · (1 + 2−8.571)
96 Z96 = 160 2−8 · (1 + 2−6.970) [IOWM13]

97–111 Zr = 0 max: 2−8 · (1 + 2−8.592) [GMPS14]
min: 2−8 · (1 + 2−8.741)

112 Z112 = 144 2−8 · (1 + 2−7.300) [IOWM13]
113–255 Zr = 0 max: 2−8 · (1 + 2−8.763) [GMPS14]

min: 2−8 · (1 + 2−10.052)
256 Z256 = 0 2−8 · (1− 2−9.434) [SGPM15]
257 Z257 = 0 2−8 · (1 + 2−9.474) [SGPM15]

Theorem 3.11 ([GMM+14, Theorem 1]). For 0 ≤ v ≤ N−1, a distribution of K[0]+K[1] = v

in WPA-TKIP is given by

Pr(K[0] +K[1] = v) = 0 when v is odd,

Pr(K[0] +K[1] = v) = 0 when v is even and v ∈ [0, 31] ∪ [128, 159],

Pr(K[0] +K[1] = v) =
2

N
when v is even and v ∈ [32, 63] ∪ [96, 127] ∪ [160, 191] ∪ [224, 255],

Pr(K[0] +K[1] = v) =
4

N
when v is even and v ∈ [64, 95] ∪ [192, 223].

Sen Gupta et al. further presented new biases in WPA-TKIP by using the distribution of

K[0] + K[1] in Theorem 3.11. They first proved a bias in a distribution of the initial round

of the internal state variables S0[1] as Lemma 3.4. Subsequently, they showed experimentally

that Theorems 3.3 and 3.4 for WPA-TKIP, which present the distribution of Z1 and the biases
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Table 3.2: Probability distribution of K[0] +K[1] in WPA-TKIP.
K[0] K[1] (depends on K[0]) K[0] +K[1] (only even) K[0] +K[1] Prob.
Range Value Range Value Range (only even) (0 if odd)
0–31 K[0] + 32 32–63 2K[0] + 32 32–95 0–31 0
32–63 K[0] 32–63 2K[0] 64–127 32–63 2/256
64–95 K[0] + 32 96–127 2K[0] + 32 160–223 64–95 4/256
96–127 K[0] 96–127 2K[0] 192–255 96–127 2/256
128–159 K[0]− 96 32–63 2K[0]− 96 160–223 128–159 0
160–191 K[0]− 128 32–63 2K[0]− 128 192–255 160–191 2/256
192–223 K[0]− 96 96–127 2K[0]− 96 32–95 192–223 4/256
224–255 K[0]− 128 96–127 2K[0]− 128 64–127 224–255 2/256

of Zr = 0 for 3 ≤ r ≤ 255, are demonstrated by using Lemma 3.4. In addition, they provided

a precise proof of Theorem 3.9 as Theorem 3.12, which presents the biases of Zr = r for

3 ≤ r ≤ 255 in both generic RC4 and WPA-TKIP.

Lemma 3.4 ([GMM+14, Theorem 2]). In WPA-TKIP, the probability distribution of (S0[1] = v)

for v = 0, 1, . . . , N − 1 is given as

Pr(S0[1] = v) ≈ α · Pr(K[0] +K[1] = v − 1)

+ (1− α) · (1− Pr(K[0] +K[1] = v − 1)) · Pr(S0[1] = v)RC4

+
(1− α)

N − 1
·
∑
x̸=v

Pr(K[0] +K[1] = x− 1) · Pr(S0[1] = x)RC4,

where α = 1/N + (1 − 1/N)N+2, and both Pr(S0[1] = v)RC4 and Pr(S0[1] = x)RC4 are given by

Lemma 3.1.

Theorem 3.12 ([GMM+14, Theorem 3]). For 3 ≤ r ≤ N − 1, the probability that Zr = r is

given as

Pr(Zr = r) ≈ 1

N
+ Pr(S0[1] = r) · 1

N

(
1− 1

N

)(
1− r − 2

N

)(
1− 2

N

)r−3

.

3.1.2 Long-term Biases in the Keystream Bytes

In [FM00], Fluhrer and McGrew presented long-term biases of two consecutive keystream bytes

with the condition of index i = r mod N , which are called the Fluhrer–McGrew digraph biases.

They consist of 12 positive or negative digraphs as listed in Table 3.3.

In [Man05], Mantin presented a different type of digraph bias in the keystream. Assuming A

and B are two consecutive keystream bytes, the digraph AB tends to repeat with short (G-byte)

gaps S in the keystream, e.g., ABAB, ABCAB, and ABCDAB, where the gap S is given as

nothing, C, and CD, respectively. This is why it is called the Digraph Repetition Bias or the

ABSAB Bias. The ABSAB Bias is described as the following equation:

Zr ∥ Zr+1 = Zr+2+G ∥ Zr+3+G for G ≥ 0, (3.1)
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Table 3.3: Fluhrer–McGrew digraph biases with the condition of index i = r mod N .
Condition of index i Digraph (Zr, Zr+1) Probability

i = 1 (0, 0) N−2 · (1 + 2 ·N−1)
i ̸= 1, N − 1 (0, 0) N−2 · (1 +N−1)
i ̸= 0, 1 (0, 1) N−2 · (1 +N−1)
i ̸= N − 2 (i+ 1, N − 1) N−2 · (1 +N−1)
i ̸= 1, N − 2 (N − 1, i+ 1) N−2 · (1 +N−1)
i ̸= 0, N − 3, N − 2, N − 1 (N − 1, i+ 2) N−2 · (1 +N−1)
i = N − 2 (N − 1, 0) N−2 · (1 +N−1)
i = N − 1 (N − 1, 1) N−2 · (1 +N−1)
i = 0, 1 (N − 1, 2) N−2 · (1 +N−1)
i = 2 (N/2 + 1, N/2 + 1) N−2 · (1 +N−1)
i ̸= N − 2 (N − 1, N − 1) N−2 · (1−N−1)
i ̸= 0, N − 1 (0, i+ 1) N−2 · (1−N−1)

where ∥ is the symbol of concatenate operation. The probability of the ABSAB Bias is given

as Theorem 3.13.

Theorem 3.13 ([Man05, Theorem 1]). For small values of G, the probability of the keystream

pattern ABSAB where S is a G-word string is (1 + e(−4−8G)/N/N) · 1/N2.

Mantin further estimated discrimination of two distributions in a set of independent events

as Theorem 3.14, and the number of samples to distinguish such distributions with a constant

probability of success as Theorem 3.15.

Theorem 3.14 ([Man05, Lemma 3]). Let X and Y be two distributions, and assume that

independent events {Ei : 1 ≤ i ≤ k} occur in X with probabilities pX (Ei) = pi and Y with

probabilities pY(Ei) = (1 + bi)pi. Then, discrimination of the distributions is
∑

i pib
2
i .

Theorem 3.15 ([Man05, Lemma 4]). The number of samples to distinguish two distributions

that have discrimination D with success probability 1 − α (for both directions) is (1/D) · (1 −
2α) · log2

(
1−α
α

)
.

3.1.3 Glimpse Correlations

In [Jen96], Jenkins experimentally presented two types of correlations between a keystream byte

Zr and an internal state variable Sr[ir] or Sr[jr]. The first correlation holds when Sr[ir]+Sr[jr] =

jr, and then the r-th byte of the keystream becomes

Zr = Sr[Sr[ir] + Sr[jr]] = Sr[jr] = jr − Sr[ir]. (3.2)

The second correlation holds when Sr[ir] + Sr[jr] = ir, and then the r-th byte of the keystream

becomes

Zr = Sr[Sr[ir] + Sr[jr]] = Sr[ir] = ir − Sr[jr]. (3.3)

These correlations are known as the Glimpse Theorem or the Jenkins’ Correlation. Maitra and

Sen Gupta provided a proof of the Glimpse Theorem, and we introduce their proof.

25



CHAPTER 3. PREVIOUS WORKS

Theorem 3.16 ([MG13, Theorem 1]). After the r-th round of the PRGA for r ≥ 1, we have

Pr(Zr = jr − Sr[ir]) = Pr(Zr = ir − Sr[jr]) ≈
2

N
.

Proof. To provided this result, one needs to use the paths ir = Sr[ir] + Sr[jr] and jr = Sr[ir] +

Sr[jr], respectively. Note that

ir = Sr[ir] + Sr[jr] ⇒ Zr = Sr[ir] = ir − Sr[jr], and

jr = Sr[ir] + Sr[jr] ⇒ Zr = Sr[jr] = jr − Sr[ir].

Thus, one may evaluate Pr(Sr[jr] = ir − Zr) as

Pr(Zr = ir − Sr[jr] | ir = Sr[ir] + Sr[jr]) · Pr(ir = Sr[ir] + Sr[jr])

+ Pr(Zr = ir − Sr[jr] | ir ̸= Sr[ir] + Sr[jr]) · Pr(ir ̸= Sr[ir] + Sr[jr])

≈ 1 · 1

N
+

1

N
·
(
1− 1

N

)
≈ 2

N
,

where it is assumed that the desired event (Sr[jr] = ir − Zr) occurs with the probability of

random association 1
N

if ir ̸= Sr[ir] + Sr[jr]. One may prove the bias in (Sr[ir] = jr − Zr)

similarly.

In [MG13], Maitra and Sen Gupta further presented two types of correlations between two

consecutive keystream bytes {Zr, Zr+1} and an internal state variable Sr[r + 1] as Theorems

3.17 and 3.18, and we introduce their proofs. These correlations are known as the Long-term

Glimpse. The Glimpse Theorem and the Long-term Glimpse are collectively referred to as the

Glimpse Correlations.

Theorem 3.17 ([MG13, Theorem 2]). After the r-th round of the PRGA for r ≥ 1, we have

Pr(Sr[r + 1] = N − 1 | Zr+1 = Zr) ≈
2

N
.

Proof. We first prove Pr(Zr+1 = Zr | Sr[r + 1] = N − 1) ≈ 2
N
, and then apply Bayes’ theorem

to obtain the probability of the target event. The condition (Sr[r + 1] = N − 1) and the path

(jr = r + 1) results in jr+1 = jr + Sr[r + 1] = r + 1 +N − 1 = r, which eventually gives

tr+1 = Sr+1[ir+1] + Sr+1[jr+1]

= Sr[jr+1] + Sr[ir+1]

= Sr[r] + Sr[r + 1]

= Sr[ir] + Sr[jr] = tr.

Thus, Zr+1 = Sr+1[tr+1] = Sr+1[tr] is equal to Zr = Sr[tr] in almost all cases, except when tr

equals either ir+1 or jr+1, the only two locations that get swapped in transition from Sr to Sr+1.

26



CHAPTER 3. PREVIOUS WORKS

Figure 3.1: The scenario for (Zr+1 = Zr | Sr[r + 1] = N − 1 ∧ jr = r + 1)

Thus,

Pr(Zr+1 = Zr | Sr[r + 1] = N − 1 ∧ jr = r + 1) ≈ 1.

This scenario is as illustrated in Figure 3.1

We now evaluate Pr(Zr+1 = Zr | S − r[r + 1] = N − 1) as

Pr(Zr+1 = Zr | Sr[r + 1] = N − 1 ∧ jr = r + 1) · Pr(jr = r + 1)

+ Pr(Zr+1 = Zr | Sr[r + 1] = N − 1 ∧ jr ̸= r + 1) · Pr(jr ̸= r + 1)

≈ 1 · 1

N
+

1

N
·
(
1− 1

N

)
≈ 2

N
.

Applying Bayes’ theorem to the above result, we obtain

Pr(Sr[r + 1] = N − 1 | Zr+1 = Zr) · Pr(Zr+1 = Zr)

= Pr(Zr+1 = Zr | Sr[r + 1] = N − 1) · Pr(Sr[r + 1] = N − 1)

≈ 2

N
· 1

N
.

Assuming pseudorandomness of the keystream bytes, we obtain Pr(Zr+1 = Zr) ≈ 1
N

(experi-

mentally verified over a billion trials). Therefore, we obtain Pr(Sr[r+1] = N−1 | Zr+1 = Zr) ≈
2
N
.

Before introducing the proof of Theorem 3.18, we introduce a simple corollary of the Glimpse

Theorem as Corollary 3.1 and its proof by Maitra and Sen Gupta.

Corollary 3.1 ([MG13, Corollary 1]). After the r-th round of the PRGA for r ≥ 1, we have

Pr(Sr[r + 1] = N − 1 | Zr+1 = r + 2) ≈ 2

N
.

Proof. In a state transition between rounds r and r + 1 of the PRGA, we have ir+1 = r + 1,

and Sr+1[jr+1] = Sr[ir+1] = Sr[r + 1], due to the swap operation in the r-th round. Thus, by
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the Glimpse Theorem (Theorem 3.16), we have

Pr(Sr[r + 1] = r + 1− Zr+1) ≈
2

N
.

When Zr+1 = r + 2, we obtain the probability of the target event.

Theorem 3.18 ([MG13, Theorem 3]). After the r-th round of the PRGA for r ≥ 1, we have

Pr(Sr[r + 1] = N − 1 | Zr+1 = Zr ∧ Zr+1 = r + 2) ≈ 3

N
.

Proof. We define the main events as follows:

A := (Sr[r + 1] = N − 1), B := (Zr+1 = Zr), C := (Zr+1 = r + 2).

The target event seems a simple combination of Theorem 3.17 and Corollary 3.1. However, it is

not actually the case. Pr(A | B ∧C) is difficult to compute because the events B and C are not

independent. To avoid this problem, we further define a new event B′ := (Zr = r + 2). Then,

Pr(A | B ∧ C) = Pr(A | B′ ∧ C) because the events (B ∧ C) and (B′ ∧ C) are the same, and

therefore we will compute the target probability easily. Note here that

Pr(A | B′ ∧ C) =
Pr(A ∧ B′ ∧ C)

Pr(B′ ∧ C)
=

Pr(C | B′ ∧ A) · Pr(B′ | A) · Pr(A)
Pr(B′ ∧ C)

.

Now, we first compute Pr(C | B′ ∧ A). Note that the event A implies Zr+1 = Sr+1[Sr+1[r +

1] + Sr[r + 1]] = Sr+1[Sr+1[r + 1] − 1], and the event B′ implies Zr = Sr[tr] = r + 2. We then

consider the following two paths: Sr+1[r+1] = r+2 (Path 1) and Sr+1[r+1] = tr +1 (Path 2).

Path 1: We have Zr+1 = Sr+1[(r + 2)− 1] = Sr+1[r + 1] = r + 2 with probability 1.

Path 2: We have Zr+1 = Sr+1[(tr + 1) − 1] = Sr+1[tr] = Sr[tr] = r + 2 with probability

approximately 1, except when tr is equal to either ir+1 or jr+1.

In almost all other cases, we assume that the event C occurs with probability of random asso-

ciation 1
N
. Therefore, we compute Pr(C | B′ ∧ A) as

Pr(C | B′ ∧ A ∧ (Sr+1[r + 1] = r + 2)) · Pr(Sr+1[r + 1] = r + 2))

+ Pr(C | B′ ∧ A ∧ (Sr+1[r + 1] = tr + 1)) · Pr(Sr+1[r + 1] = tr + 1))

+
∑

X ̸=r+2,tr+1

Pr(C | B′ ∧ A ∧ (Sr+1[r + 1] = X)) · Pr(Sr+1[r + 1] = X))

≈ 1 · 1

N
+ 1 · 1

N
+

(
1− 2

N

)
· 1

N
≈ 3

N
.

Next, we assume that the event (B′ | A) occurs with probability of random association 1
N

because no study has been reported on correlations between Sr[r + 1] and Zr in the literature,
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and we further assume Pr(A) ≈ 1
N

according to pseudorandomness of stream ciphers. Thus,

Pr(A ∧ B′ ∧ C) = Pr(C | B′ ∧ A) · Pr(B′ | A) · Pr(A) ≈ 3

N
· 1

N
· 1

N
.

Finally, We assume that Pr(B′ ∧ C) = Pr(B′) · Pr(C) ≈ 1
N
· 1
N
, and therefore we obtain the

probability of the target event as Pr(A | B ∧ C) = Pr(A | B′ ∧ C) ≈ 3
N
.

3.1.4 Key Correlations of the Internal State Variables

In [Roo95], Roos experimentally presented significant correlations between the initial state vari-

ables S0 and the RC4 key bytes K as Equation (3.4), and provided the experimental results as

listed in Table 3.4. Such correlations are called the Roos Biases.

S0[i] =
i(i+ 1)

2
+

i∑
x=0

K[x] for 0 ≤ i ≤ 47. (3.4)

In [PM07], Paul and Maitra provided a complete proof of the Roos Biases as Theorem 3.19.

The proof of Theorem 3.19 uses Lemmas 3.5 and 3.6. They further provided the theoretical

result of the Roos Biases as listed in Table 3.5.

Lemma 3.5 ([PM07, Lemma 1]). Assume that the index jKr takes its values from {0, 1, . . . , N−
1} uniformly at random at each round of the KSA. Then,

Pr(jKi+1 =
i∑

x=0

SK
0 [x] +

i∑
x=0

K[x]) ≈
(
1− 1

N

)1+
i(i+1)

2

+
1

N
.

Table 3.4: Experimental observations of the Roos Biases.

i Pr(S0[i] =
i(i+1)

2
+
∑i

x=0 K[x])

0–7 0.370 0.368 0.362 0.358 0.349 0.340 0.330 0.322
8–15 0.309 0.298 0.285 0.275 0.260 0.245 0.229 0.216
16–23 0.203 0.189 0.173 0.161 0.147 0.135 0.124 0.112
24–31 0.101 0.090 0.082 0.074 0.064 0.057 0.051 0.044
32–39 0.039 0.035 0.030 0.026 0.023 0.020 0.017 0.014
40–47 0.013 0.012 0.010 0.009 0.008 0.007 0.006 0.006

Table 3.5: Theoretical probabilities of the Roos Biases.

i Pr(SK
N [i] = i(i+1)

2
+
∑i

x=0 K[x])

0–7 0.371 0.368 0.364 0.358 0.351 0.343 0.334 0.324
8–15 0.313 0.301 0.288 0.275 0.262 0.248 0.234 0.220
16–23 0.206 0.192 0.179 0.165 0.153 0.140 0.129 0.117
24–31 0.107 0.097 0.087 0.079 0.071 0.063 0.056 0.050
32–39 0.045 0.039 0.035 0.031 0.027 0.024 0.021 0.019
40–47 0.016 0.015 0.013 0.011 0.010 0.009 0.008 0.008
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Corollary 3.2 ([PM07, Corollary 1]). If the initial permutation is the identity permutation,

i.e., SK
0 [i] = i for 0 ≤ i ≤ N − 1, then

Pr(jKi+1 =
i(i+ 1)

2
+

i∑
x=0

K[x]) ≈
(
1− 1

N

)1+
i(i+1)

2

+
1

N
.

Lemma 3.6 ([PM07, Lemma 2]). Assume that the index jKr takes its values from {0, 1, . . . , N−
1} uniformly at random at each round of the KSA. Then,

Pr(SK
N [i] = SK

0 [jKi+1]) ≈
(
1− i

N

)
·
(
1− 1

N

)N−1

.

Theorem 3.19 ([PM07, Theorem 1]). Assume that the index jKr takes its values from {0, 1, . . . , N−
1} uniformly at random at each round of the KSA. Then,

Pr

(
SK
N [i] = S0

[ i∑
x=0

SK
0 [x] +

i∑
x=0

K[x]

])
≈

(
1− i

N

)
·
(
1− 1

N

)[
i(i+1)

2
+N ]

+
1

N
.

Corollary 3.3 ([PM07, Corollary 2]). The probability that the initial permutation S0 is biased

toward the secret key is given by

Pr(S0[i] =
i(i+ 1)

2
+

i∑
x=0

K[x]) ≈
(
1− i

N

)
·
(
1− 1

N

)[
i(i+1)

2
+N ]

+
1

N
.

In [MP08b], Maitra and Paul extended the Roos Biases as Equation (3.5), and provided a

theoretical proof of the biases as Theorem 3.20. The extended Roos Biases are called the Nested

Roos Biases. The proof of Theorem 3.20 uses Lemmas 3.7 and 3.8.

S0[S0[i]] =
i(i+ 1)

2
+

i∑
x=0

K[x]. (3.5)

Lemma 3.7 ([MP08b, Lemma 5]). Let fi =
i(i+1)

2
+
∑i

x=0 K[x] for 0 ≤ i ≤ 31, we have

Pr((SK
i+1[S

K
i+1[i]] = fi) ∧ (SK

i+1[i] ≤ i)) ≈
(

1

N
·
(
1− 1

N

) i(i+1)
2

)
·
(
i

(
1− 2

N

)i−1

+

(
1− 1

N

)i)
.

Lemma 3.8 ([MP08b, Lemma 6]). Let fi =
i(i+1)

2
+

∑i
x=0 K[x] and pr(i) = Pr((SK

r [SK
r [i]] =

fi) ∧ (SK
r [i] ≤ r − 1)) for 0 ≤ i ≤ 31 and y + 2 ≤ r ≤ N , we have

pr(i) =

(
1− 2

N

)
pr−1(i) +

1

N
·
(
1− y

N

)
·
(
1− 1

N

) i(i+1)
2

+2r−3

.
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Theorem 3.20 ([MP08b, Theorem 2]). Let fi =
i(i+1)

2
+
∑i

x=0 K[x], for 0 ≤ r ≤ 31, we have

Pr(S0[S0[i]] = fi) ≈
i

N
·
(
1− 1

N

) i(i+1)
2

+2(N−2)

+
1

N
·
(
1− 1

N

) i(i+1)
2

−i+2(N−1)

+

(
1− i+ 1

N

)
·
(
1− i

N

)
·
(
1− 1

N

) i(i+1)
2

+2N−3

.

3.1.5 Key Correlations of the Keystream Bytes

In [SVV10], Sepehrdad et al. investigated key correlations of the keystream bytes Zr by using

a linear form

(a0 ·K[0] + · · ·+ aℓ−1 ·K[ℓ− 1] + aℓ · Z1 + · · ·+ a2ℓ−1 · Zℓ) mod N = b, (3.6)

where ai ∈ {−1, 0, 1} for 0 ≤ i ≤ 2ℓ−1. The number of equations is approximately N ·32ℓ = 258.7

for N = 256 and ℓ = 16, which is too large for an exhaustive search. Then, they reduced the

RC4 key size to ℓ = 5 bytes, and obtained approximately 223.8 equations for an exhaustive

search. They showed 18 key correlations of the keystream bytes (including the existing ones)

with the RC4 key length of 5 bytes as listed in Table 3.6, which have been experimentally

confirmed with the RC4 key length of 16 bytes.

In [Sar14], Sarkar theoretically proved the key correlations of the keystream bytes {Z1, Z3, Z4}
reported in [SVV10] as Theorem 3.21, Proposition 3.1, and Proposition 3.2. We introduce their

proofs.

Table 3.6: Experimentally observed key correlations of the keystream bytes.
Key Correlations Probability Reference

Z1 +K[0] +K[1] = 0 1.35779/N [Kle08]
Z1 −K[0] = 0 1.11784/N [MP08b]
Z2 = 0 2.01825/N [MS01]
Z2 +K[0] +K[1] +K[2] = −1 1.36095/N [Kle08]
Z1 −K[0]−K[1] = 1 1.04237/N [SVV10]
Z1 −K[0] +K[1] = −1 1.04969/N [SVV10]
Z3 +K[0] +K[1] +K[2] +K[3] = −3 1.35362/N [Kle08]
Z3 −K[0] +K[3] = −3 1.04620/N [SVV10]
Z1 −K[0]−K[1]−K[2] = 3 1.33474/N [Roo95]
Z2 −K[0]−K[1]−K[2] = 3 0.64300/N [SVV10]
Z3 −K[0]−K[1]−K[2] = 3 1.13555/N [MP08b]
Z2 +K[1] +K[2] = −3 1.36897/N [SVV10]
Z2 −K[1]−K[2] = 3 1.36733/N [SVV10]
Z1 −K[2] = 3 1.14193/N [SVV10]
Z1 +K[0] +K[1]−K[2] = 3 1.14116/N [SVV10]
Z4 −K[0] +K[4] = −4 1.04463/N [SVV10]
Z4 +K[0] +K[1] +K[2] +K[3] +K[4] = −6 1.35275/N [Kle08]
Z4 −K[0]−K[1]−K[2]−K[3] = 10 1.11432/N [MP08b]
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Theorem 3.21 ([Sar14, Theorem 4]). For any arbitrary secret key K, a key correlation of the

keystream byte Z1 is given by

Pr(Z1 = K[0]−K[1]− 1) ≈ α1 +
1

N
(1− α1),

where α1 =
1
N2 · (1− 2

N
) · (1− 1

N
)N−2

∑N−1
x=2 (1−

1
N
)x · (1− 1

N
)x−2 · (1− 2

N
)N−x−1.

Proof. The major path for the target event is considered as follows:

• We assume that K[0] ̸= 0, 1 and K[1] = N − 1. This occurs with probability 1
N

(
1− 2

N

)
.

• After the second round of the KSA, SK
2 [1] = 0 since jK2 = K[0] + K[1] + 1 = K[0] −

(K[1] + 1) = K[0].

• From the third to the final round of the KSA, none of jK values equal to 1. This occurs

with probability approximately (1− 1
N
)N−2.

• For x ∈ [2, N−1], we assume that SK
x [x] = x. This occurs with probability approximately

(1− 1
N
)x.

• From the third to the x-th round of the KSA, the jK values do not touch the indices 0.

This occurs with probability approximately (1− 1
N
)x−2.

• In the x+1-th round of the KSA, jKx+1 becomes 0 with probability 1
N

when i = x. Due to

the swap operation, SK
x+1[0] = x.

• For the remaining N−x−1 rounds of the KSA, none of jK values should touch the indices

{0, x}. This occurs with probability approximately (1− 2
N
)N−x−1.

• Finally, after the KSA, we have S0[0] = x, S0[1] = 0, and S0[x] = K[0].

If all the individual events hold, Z1 is always equal to K[0]−K[1]− 1 = K[0] as K[1] = N − 1.

We assume that all the individual events in the above path to be mutually independent, we

obtain the probability of all events hold is α1 =
1
N2 · (1− 2

N
) · (1− 1

N
)N−2

∑N−1
x=2 (1−

1
N
)x · (1−

1
N
)x−2 · (1− 2

N
)N−x−1 = 0.000194 when N = 256. Experimentally we have α1 = 0.000185(±6%),

which supports this result.

For the complimentary path, we assume that Z1 is equal to K[0] − K[1] − 1 with prob-

ability 1
N

= 0.003906 of random association. Our experiments show that this probability is

0.003845(±1%) for the complimentary path, which supports our assumption.

Adding the contribution from both paths, we obtain Pr(Z1 = K[0]−K[1]−1) = α1+
1
N
(1−

α1) =
1.05
N

= 0.004101, when N = 256.

Proposition 3.1 ([Sar14, Theorem 8]). For any arbitrary secret key K, a key correlation of

the keystream byte Z3 is given by

Pr(Z3 = K[0]−K[3]− 3) ≈ α3 +
1

N
(1− α3),

32



CHAPTER 3. PREVIOUS WORKS

where α3 =
N3−11N2+42N−55

N4 · (1− 1
N
)N−4 · N2−3N+2

N2 ) · 1
N

∑N−1
x=4 (1−

1
N
)x · (1− 1

N
)x−4 · (1− 2

N
)N−x−1.

Proof. The major path for the target event is considered as follows:

• We assume that K[0] ̸∈ {1, 2, 3}, 3 + K[0] + K[1] + K[2] ̸∈ {0, 1, 3}, K[2] ̸= N − 2,

3+K[1]+K[2] = 0, 1+K[0]+K[1] ̸∈ {2, 3}, K[1] ̸= N−1, and −K[1]−K[2]−K[3] = 6.

This occurs with probability N3−11N2+42N−55
N4 .

• Due to above conditions, after the third round of the KSA, SK
3 [2] = 3+K[0]+K[1]+K[2]

and SK
3 [3] = 3, and then jK4 = 6 +K[0] +K[1] +K[2] +K[3] = K[0] because −K[1] −

K[2]−K[3] = 6. Hence, we have SK
4 [3] = 0.

• From the fifth to the final round of the KSA, none of jK values equal to 3. This occurs

with probability approximately (1− 1
N
)4.

• For x ∈ [4, N−1], we assume that SK
x [x] = x. This occurs with probability approximately

(1− 1
N
)x.

• From the fifth to the x-th round of the KSA, jK values do not touch the indices 2. This

occurs with probability approximately (1− 1
N
)x−4.

• In the x+1-th round of the KSA, jKx+1 becomes 2 with probability 1
N

when i = x. Due to

the swap operation, SK
x+1[2] = x.

• For the remaining N−x−1 rounds of the KSA, none of jK values should touch the indices

{2, x}. This occurs with probability approximately (1− 2
N
)N−x−1.

• After the KSA, we have S0[2] = x, S0[3] = 0, and S0[x] = 3 + K[0] + K[1] + K[2] =

−3 +K[0]−K[3].

• Let S0[1] + S0[2] ̸= 3 and S0[1] ̸∈ {2, 3}. This occurs with probability approximately
N2−3N+2

N2 .

If all the individual events hold, Z3 is always equal to K[0]−K[3]− 3.

We assume that all the individual events in the above path to be mutually independent, we

obtain the probability of all events as α3 =
N3−11N2+42N−55

N4 · (1− 1
N
)N−4 · N2−3N+2

N2 ) · 1
N

∑N−1
x=4 (1−

1
N
)x · (1 − 1

N
)x−4 · (1 − 2

N
)N−x−1 = 0.000187 when N = 256. Experimentally we have α3 =

0.000185(±6%), which supports this result.

For the complimentary path, we assume that Z3 is equal to K[0] − K[3] − 3 with prob-

ability 1
M

= 0.003906 of random association. Our experiments show that this probability is

0.003904(±1%) for the complimentary path.

Adding the contribution from both paths, we obtain Pr(Z3 = K[0]−K[3]−3) = α3+
1
N
(1−

α3) =
1.05
N

= 0.004101, when N = 256.
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Proposition 3.2 ([Sar14, Theorem 9]). For any arbitrary secret key K, a key correlation of

the keystream byte Z4 is given by

Pr(Z4 = K[0]−K[4]− 4) ≈ α4 +
1

N
(1− α4),

where α4 =
N4−18N3+124N2−385N+452

N5 · (1− 1
N
)N−5 · N3−8N2+21N−18

N3 · 1
N

∑N−1
x=5 (1−

1
N
)x · (1− 1

N
)x−5 ·

(1− 2
N
)N−x−1.

Proof. The major path for the target event is considered as follows:

• We assume that K[0] ̸∈ {1, 2, 3, 4}, −4+K[0]−K[4] ̸∈ {0, 1, 2}, 1+K[0]+K[1] ̸∈ {2, 3, 4},
3 + K[0] + K[1] + K[2] ̸∈ {3, 4}, 6 + K[0] + K[1] + K[2] + K[3] ̸= 4, K[1] ̸= N − 1,

K[2]+K[3] ̸= N−5, K[3] ̸= N−3, K[1]+K[2] ̸= N−3, K[1]+K[2]+K[3] ̸= N−6, and

−K[1]−K[2]−K[3]−K[4] = 10. This occurs with probability N4−18N3+124N2−385N+452
N5 .

• Due to above conditions, after fourth round of the KSA, SK
4 [3] = 6+K[0]+K[1]+K[2]+

K[3] and SK
4 [4] = 4, and then jK5 = K[0] because −K[1] − K[2] − K[3] − K[4] = 10.

Hence, we have SK
5 [4] = 0.

• From the sixth to the final round of the KSA, none of jK values equal to 4. This occurs

with probability approximately (1− 1
N
)N−5.

• For x ∈ [5, N−1], we assume that SK
x [x] = x. This occurs with probability approximately

(1− 1
N
)x.

• From the sixth to the x-th round of the KSA, jK values do not touch the indices 3. This

occurs with probability approximately (1− 1
N
)x−5.

• In the x+1-th round of the KSA, jKx+1 becomes 3 with probability 1
N

when i = x, Due to

the swap operation, SK
x+1[3] = x.

• For the remaining N−x−1 rounds of the KSA, none of jK values should touch the indices

{3, x}. This occurs with probability approximately (1− 2
N
)N−x−1.

• After the KSA, we have SK
N [3] = x, SK

N [4] = 0, and SK
N [x] = 6+K[0]+K[1]+K[2]+K[3] =

K[0]−K[4]− 4.

• S0[1]+S0[2] ̸= 3, S0[1]+S0[2] ̸= 4, S0[1]+S0[2]+S0[3] ̸= 4, S0[1] ̸∈ {2, 3, 4}, S0[1]+S0[2] ̸=
x, and S0[1]+S0[2]+S0[3] ̸= x. This occurs with probability approximately N3−8N2+21N−18

N3 .

If all the individual events hold, Z4 is always equal to K[0]−K[4]− 4.

We assume that all individual events in the above path to be mutually independent, we

obtain the probability of all events as α4 =
N4−18N3+124N2−385N+452

N5 · (1− 1
N
)N−5 · N3−8N2+21N−18

N3 ·
1
N

∑N−1
x=5 (1 −

1
N
)x · (1 − 1

N
)x−5 · (1 − 2

N
)N−x−1 = 0.000179 when N = 256. Experimentally we

have α4 = 0.000178(±7%), which supports this result.
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Table 3.7: Experimentally observed key correlations of the keystream bytes in both generic RC4
and WPA-TKIP.

Key Correlations RC4 WPA-TKIP

Z1 = −K[0]−K[1] 0.005264 0.005338
Z1 = K[0] 0.004325 0.004179
Z1 = K[0] +K[1] +K[2] + 3 0.005220 0.004633
Z1 = K[0] +K[1] + 1 0.004025 0.003760
Z1 = K[0]−K[1]− 1 0.004083 0.003905
Z1 = K[2] + 3 0.004428 0.003902
Z1 = −K[0]−K[1] +K[2] + 3 0.004424 0.003903
Z2 = −K[0]−K[1]−K[2]− 1 0.005298 0.005303
Z2 = −K[1]−K[2]− 3 0.005303 0.005314
Z2 = K[1] +K[2] + 3 0.005304 0.005315
Z2 = K[0] +K[1] +K[2] + 3 0.002507 0.002503
Z3 = K[0] +K[1] +K[2] + 3 0.004401 0.004405
Z256 = −K[0] 0.004427 0.004429
Z256 = −K[1] 0.003907 0.004036
Z257 = −K[0]−K[1] 0.004096 0.004094

For the complimentary path, we assume that Z4 is equal to K[0] − K[4] − 4 with prob-

ability 1
N

= 0.003906 of random association. Our experiments show that this probability is

0.003902(±1%) for the complimentary path.

Thus, Pr(Z4 = K[0] −K[4] − 4) = α4 +
1
N
(1 − α4) =

1.04
N

= 0.004062, when N = 256. We

obtain experimentally Pr(Z4 = K[0]−K[4]− 4) = 0.004077 = 1.04
N

.

In [GMM+14], Sen Gupta et al. investigated significant correlations between the keystream

bytes Zr and the known RC4 key bytes {K[0], K[1], K[2]} in WPA-TKIP by using a linear form

Zr = a ·K[0] + b ·K[1] + c ·K[2] + d (3.7)

for a, b, c ∈ {0,±1} and d ∈ {0,±1,±2,±3} for r ≥ 1. They experimentally observed the most

significant key correlations of the keystream bytes (including the existing ones), as listed in

Table 3.7. Actually, these key correlations can be updated to the set of the strongest short-term

biases for the keystream bytes (see Table 3.1).

3.2 Plaintext Recovery Attacks

A plaintext recovery attack aims to recover a plaintext under the scenario of the ciphertext-only

attack in the broadcast setting, where the same plaintext is encrypted with different randomly

chosen keys. This section describes the previous works on plaintext recovery attacks in the

broadcast setting with respect to the following aspects:

Section 3.2.1: Plaintext Recovery Attacks on Generic RC4 in [MS01, IOWM13, ABP+13]

Section 3.2.2: Plaintext Recovery Attacks on WPA-TKIP in [GMM+14, PPS14]
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Although many other attacks have been reported, e.g., in [GPdM15, IOWM14, MPG11, OIWM13,

OIWM15, PS18, VP15, WIOM17], we will not describe these attacks in this section because

these are out of our cryptanalysis and discussions in this dissertation.

3.2.1 Plaintext Recovery Attacks on Generic RC4

The Mantin-Shamir (MS) attack

In [MS01], Mantin and Shamir first presented the plaintext recovery attack in the broadcast

setting, and demonstrated how to recover the second byte of a plaintext in the broadcast setting

as Theorem 3.22.

Theorem 3.22 ([MS01, Theorem 3]). Let P be a plaintext and C(1), . . . , C(k) be k ciphertexts

obtained by the RC4 encryptions of P with different randomly chosen keys. Then, if k = Ω(N),

the second byte of the plaintext P2 can be reliably extracted from C(1), . . . , C(k).

If Z
(i)
2 = 0, then P2 has the same value as C

(i)
2 because P2 is XORed with Z

(i)
2 to output

C
(i)
2 in the RC4 encryptions. From Theorem 3.1, the event (Z2 = 0) occurs with relatively high

probability in comparison with the other events. Thus, we can recover P2 by exploiting the most

frequent value in the distribution of C
(1)
2 , . . . , C

(k)
2 . From Theorem 3.2, the number of samples

for recovering P2 requires more than O(N) ciphertexts encrypted with randomly chosen keys.

The Isobe-Ohigashi-Watanabe-Morii (IOWM) attack

In [IOWM13], Isobe et al. demonstrated a practical plaintext recovery attack by using their

provided set of the strongest short-term biases (see Table 3.1), given by the following four steps:

Step 1. Randomly generate a target plaintext P .

Step 2. Obtain 2x ciphertexts C by encrypting P with different randomly chosen keys.

Step 3. Exploit the most/least frequent value in the distribution of Cr.

Step 4. Recover Pr by using the set of the strongest short-term biases of the keystream bytes.

According to their experimental results, the first 257 bytes of the plaintext can be recovered

with probability more than 80% by using 232 ciphertexts in the broadcast setting.

The AlFardan-Bernstein-Paterson-Poettering-Schuldt (ABPPS) attack

In [ABP+13], AlFardan et al. proposed a plaintext recovery algorithm that considers all possible

short-term biases at the same time, given by the following four steps:

Step 1. Estimate the accurate distributions of the keystream bytes Zr in the first 257 rounds:

pr,k := Pr(Zr = k) for k = 0x00, ..., 0xFF,

where the probability is taken from randomly chosen keys.
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Algorithm 5 Short-term bias attack in [ABP+13]

Input: {Cj}1≤j≤S: S ciphertexts by encrypting the same plaintext P ,
r: the number of rounds,
pr,k: the accurate distribution of the keystream Zr at round r.

Output: P ∗
r : estimate for plaintext byte Pr.

1: N0x00 ← 0, . . . , N0xFF ← 0
2: for j from 1 to S do
3: NCj,r

← NCj,r
+ 1

4: end for
5: for µ from 0x00 to 0xFF do
6: for k from 0x00 to 0xFF do
7: N

(µ)
k ← Nk⊕µ

8: end for
9: λµ ←

∑0xFF
k=0x00 N

(µ)
k log pr,k

10: end for
11: P ∗

r ← argmaxµ∈{0xFF,...,0xFF} λµ

Step 2. Assuming that we obtain S ciphertexts {C1, . . . , CS} for the attack in the broadcast

setting. Let Cj,r be the r-th round of ciphertext Cj. For any candidate plaintext byte µ

in each round, the vector (N
(µ)
0x00, ..., N

(µ)
0xFF) with

N
(µ)
k = |{j | Cj,r = k ⊕ µ}1≤j≤S| for k = 0x00, ..., 0xFF

represents the induced distribution of the keystream bytes Zr obtained from {Cj,r}1≤j≤S

and µ.

Step 3. Calculate the probability λµ that the candidate plaintext byte µ is correctly encrypted

into the ciphertext bytes {Cj,r}1≤j≤S as

λµ =
S!

N
(µ)
0x00! · · ·N

(µ)
0xFF!

∏
k∈{0x00, . . . , 0xFF}

p
N

(µ)
k

r,k ,

where λµ follows the multinomial distribution with parameter S and (pr,0x00, . . . , pr,0xFF)

(see Definition 2.6).

Step 4. Determine the maximum-likelihood plaintext byte value P ∗
r by calculating λµ for all

0x00 ≤ µ ≤ 0xFF and then distinguishing µ such that λµ is the maximum value.

The details of the ABPPS attack are described as Algorithm 5.

3.2.2 Plaintext Recovery Attacks on WPA-TKIP

The Sen Gupta-Maitra-Meier-Paul-Sarkar (SMMPS) attack

In [GMM+14], Sen Gupta et al. presented that their exploited key correlations of the keystream

bytes (see Table 3.7) can improve the plaintext recovery attack on WPA-TKIP in the same way
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Table 3.8: Experimental results for recovering four bytes of a plaintext on WPA-TKIP. The
probability of success in each case is approximately 100%.

Round Key correlations # of ciphertexts

1
Z1 = −K[0]−K[1] 5 · 213 ≈ 215.322

Z1 = K[0] +K[1] +K[2] + 3
3 Z3 = K[0] +K[1] +K[2] + 3 219

256 Z256 = −K[0] 219

257 Z257 = −K[0]−K[1] 221

as the IOWM attack in [IOWM13] when the key correlations induce higher biases than certain

events used in the IOWM attack.

Table 3.8 shows their experimental results for the plaintext recovery attack on WPA-TKIP.

Their results show significant improvement for recovering four bytes of a plaintext {P1, P3, P256,

P257}, where the IOWM attack requires approximately 230 ciphertexts encrypted by randomly

chosen keys to achieve the same probability of success.

The Paterson-Poettering-Schuldt (PPS) attack

In [PPS14], Paterson et al. extended the ABPPS attack in [ABP+13] by using all the IV pairs

in WPA-TKIP. Let the least and the most significant 8-bit IV16 be denoted by IV0 and IV1,

respectively, and IV = (IV0, IV1). Their extended attack algorithm consists of the following five

steps:

Step 1. Estimate accurate distributions of the keystream bytes Zr in the first 257 rounds on a

per (IV0, IV1) pair basis:

pIV,r,k := Pr(Zr = k) for IV = (0x00, 0x00), . . . , (0xFF, 0xFF) and k = 0x00, ..., 0xFF,

where the probability is taken from randomly chosen keys.

Step 2. Assuming that we obtain S ciphertexts {C1, . . . , CS} for the attack in the broadcast

setting. Let T = S/216, let SIV be the bin of ciphertexts associated with a particular IV =

(IV0, IV1) pair and have members CIV,j for j = 1, . . . , T , and let CIV,j,r be the r-th round of

CIV,j. For any candidate plaintext byte µ in each round, the vector (N
(µ)

IV,0x00
, . . . , N

(µ)

IV,0xFF
)

with

N
(µ)

IV,k
= |{j | CIV,j,r = k ⊕ µ}1≤j≤T | for k = 0x00, ..., 0xFF

represents the induced distribution of the keystream bytes Zr obtained from {CIV,j,r}1≤j≤T

and µ.

Step 3. Calculate the probability λIV,µ that the candidate plaintext byte µ is encrypted into

the ciphertext bytes {CIV,j,r}1≤j≤T as

λIV,µ =
T !

N
(µ)

IV,0x00
! · · ·N (µ)

IV,0xFF
!

∏
k∈{0x00, . . . , 0xFF}

p
N

(µ)

IV,k

IV,r,k
,
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Algorithm 6 Short-term bias attack in [PPS14]

Input: {CIV,j}1≤j≤T : S = 216 · T ciphertexts by encrypting the same plaintext P ,
r: the number of rounds,
pIV,r,k: the accurate keystream distribution of the keystream Zr at round r.

Output: P ∗
r : estimate for plaintext byte Pr.

1: N(0x00, 0x00), 0x00 ← 0, . . . , N(0xFF, 0xFF), 0xFF ← 0
2: for IV from (0x00, 0x00) to (0xFF, 0xFF) do
3: for j from 1 to T do
4: k ← CIV,j,r

5: NIV,k ← NIV,k + 1
6: end for
7: end for
8: for IV from (0x00, 0x00) to (0xFF, 0xFF) do
9: FIV ←

∑
0x00≤j≤0xFF log((NIV,j)!)

10: for µ from 0x00 to 0xFF do
11: for k from 0x00 to 0xFF do
12: N

(µ)

IV,k
← NIV,k⊕µ

13: end for
14: λIV,µ ← −FIV +

∑0xFF
k=0x00 N

(µ)

IV,k
log pIV,r,k

15: end for
16: end for
17: for µ from 0x00 to 0xFF do
18: λµ ←

∑
(0x00, 0x00)≤IV≤(0xFF, 0xFF) λIV,µ

19: end for
20: P ∗

r ← argmaxµ∈{0xFF,...,0xFF} λµ

where λIV,µ follows the multinomial distribution with parameter T and (pIV,r,0x00, . . . , pIV,r,0xFF)

(see Definition 2.6).

Step 4. Further calculate the probability λµ that the candidate plaintext byte µ is encrypted

into the ciphertext bytes {CIV,j,r}1≤j≤T across all bins SIV as

λµ =
∏

(0x00, 0x00)≤IV≤(0xFF, 0xFF)

λIV,µ.

Step 5. Determine the maximum-likelihood plaintext byte value P ∗
r by calculating λµ for all

0x00 ≤ µ ≤ 0xFF and then distinguishing µ such that λµ is the maximum value.

The details of the PPS attack are described as Algorithm 6.

3.3 Key Recovery Attacks

A key recovery attack is to recover a secret key from a keystream under the scenario of the

known plaintext attack, and aims to confirm the difficulty in recovering a secret key in the

ciphers. This section describes the previous works on the key recovery attacks with respect to

the following aspects:
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Section 3.3.1: Key Recovery Attack Using the Roos Biases in [PM07]

Section 3.3.2: Key Recovery Attack Using Key Correlations of the Keystream Bytes in [SVV10]

Section 3.3.3: Key Recovery Attack on WEP Using Weak IVs in [FMS01]

Section 3.3.4: Key Recovery Attack on WEP without Using Weak IVs in [Kle08]

Although many other attacks have been reported, e.g., in [PM09, SVV11, SSVV13, TWP08,

TAO+10, VV07], we will not describe these attacks in this section because these are out of our

cryptanalysis and discussions in this dissertation.

3.3.1 Key Recovery Attack Using the Roos Biases

In [PM07], Paul and Maitra proposed an attack algorithm for recovering the RC4 key bytes

from the knowledge of the internal state variables by using certain events with the Roos biases

(see Theorem 3.19). If the internal state at any round of the KSA is known, then we can recover

the RC4 key bytes by solving simultaneous equations based on the Roos biases in much less

time than the exhaustive key search algorithm.

Before showing their attack algorithm, we introduce the following example (refer to [PM07]

for details):

Example 3.1 ([PM07, Example 2]). Assume that the RC4 key size is five bytes. Let fi =
i(i+1)

2
+
∑i

x=0 K[x]. We would consider all possible sets of five equations chosen from 16 equations

of the form S[i] = fi for 0 ≤ i ≤ 15, and then try to solve them. One such set would correspond

to i = 0, 1, 2, 3, and 13. Let the values of the corresponding S[i] be 246, 250, 47, 204, and 185,

respectively. Then, we can form the following equations:

K[0] = 246 (3.8)

K[0] +K[1] + (1 · 2)/2 = 250 (3.9)

K[0] +K[1] +K[2] + (2 · 3)/2 = 47 (3.10)

K[0] +K[1] +K[2] +K[3] + (3 · 4)/2 = 204 (3.11)

K[0] + · · ·+K[13] + (13 · 14)/2 = 185 (3.12)

From the first four equations, we simply obtain K[0] = 246, K[1] = 3, K[2] = 51, and

K[3] = 154. Because the key size is five bytes, K[5] = K[0], . . . , K[9] = K[4], K[10] =

K[0], . . . , K[13] = K[3]. Let s be the sum of the key bytes K[0] + · · · + K[4], we can rewrite

Equation (3.12) as

2s+K[0] +K[1] +K[2] +K[3] + 91 = 185 (3.13)

Subtracting Equation (3.11) from Equation (3.13) and solving for s, we obtain s = 76 or 204.

Taking the value s = 76, we obtain

K[0] +K[1] +K[2] +K[3] +K[4] = 76 (3.14)
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Algorithm 7 key recovery attack in [PM07]

Input: l: the number of key bytes.
m (≤ l): the number of key bytes to be solve from equations.
n (≥ m): the number of equations to be tried.
SK
r [x]: the internal state bytes, 0 ≤ x ≤ r − 1 and round r for n ≤ r ≤ N .

Output: The recovered key bytes K[0], K[1], . . . , K[l − 1], if they are found.
Otherwise, the algorithm halts after trying all the system of equations.

1: for each distinct tuple {x1, x2, . . . , xm}, 0 ≤ xq ≤ n− 1, 1 ≤ q ≤ m do
2: if the tuple belongs to m equations then
3: Arbitrarily select any m variables presented in the system;
4: Solve for the m variables in terms of the remaining l −m variables;
5: for each possible assignment of the l −m variables do
6: Find values of the other m key bytes;
7: if the correct key bytes are found then
8: return K[0], K[1], . . . , K[l − 1];
9: end if
10: end for
11: end if
12: end for

Subtracting Equation (3.11) from Equation (3.14), we obtain K[4] = 134. On the contrary,

Taking the value s = 204 does not give the correct key, as can be verified by running the KSA

and observing the initial state S0.

We now present their attack algorithm for recovering the RC4 key bytes from the initial

state obtained after the completion of the KSA as Algorithm 7.

Paul and Maitra theoretically analyzed the key recovery attacks from the knowledge of the

internal state. They demonstrated the attack with an optimized success probability of 2−2.43

and a time complexity of 275.5. However, they also demonstrated the attack with an optimized

time complexity of 232.2 and a success probability of 2−10.7.

3.3.2 Key Recovery Attack Using Key Correlations of the Keystream

Bytes

In [SVV10], Sepehrdad et al. experimentally observed key correlations of the keystream bytes,

and summarized a list including the previous and their new key correlations as listed in Table

3.9. They further applied a list of useful key correlations of the keystream bytes in Table 3.9 to

a theoretical key recovery attack on generic RC4. The success probability that all of the RC4

key bytes are recovered is

p ≈
l−1∏
i=0

(
1−

ni∏
j=1

(1− pi,j)

)
, (3.15)

where i is an index of a key byte, ni is the number of equations in the i-th index to be tried, and

pi,j is the probability of the j-th equation in the i-th index for the target key byte. In addition,

let m =
∏l−1

i=0 ni be the number of combinations of key correlations to solve the simultaneous
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Table 3.9: Useful key correlations of the keystream bytes for a theoretical key recovery attack
on generic RC4 for ℓ = 16. Let K[i] = K[0] + · · ·+K[i].

Equation Probability Reference

Z1 = K[0] 1.10873/N [MP08b]
Z1 = −K[1] 1.36467/N [VV07]
Z1 = K[1] + 1 1.04237/N [SVV10]
Z2 = K[2] + 3 0.64300/N [SVV10]
Z2 = −K[2]− 1 1.36036/N [VV07]
Z3 = K[2] + 3 1.12742/N [MP08b]

...
...

...
Z14 = −K[14] + 165 1.22758/N [VV07]
Z15 = K[14] + 105 1.06444/N [MP08b]
Z15 = −K[15] + 151 1.06444/N [VV07]
Z16 = K[15] + 120 1.07519/N [MP08b]
Z16 = K[15] +K[0] + 152 1.01838/N [SVV10]
Z16 = −K[15]−K[0] + 104 1.01242/N [SVV10]
Z16 = −K[15]−K[0] + 136 1.19880/N [VV07]
Z17 = K[15] +K[0] + 120 1.07519/N [MP08b]

...
...

...
Z30 = −K[15]−K[14] + 77 1.04582/N [VV07]
Z31 = K[15] +K[14] + 209 1.02118/N [MP08b]
Z31 = −2K[15] + 77 1.03963/N [VV07]
Z32 = 2K[15] + 240 1.03833/N [MP08b]
Z32 = 2K[15] +K[0] + 48 1.00900/N [SVV10]
Z32 = −2K[15]−K[0] + 208 1.00620/N [MP08b]
Z32 = −2K[15]−K[0] + 240 1.03403/N [VV07]

...
...

...
Z46 = −2K[15]−K[14] + 57 1.00900/N [SVV10]
Z47 = −3K[15] + 199 1.00620/N [MP08b]

equations. Then, the time complexity of the attack is given by

c ≈ O(m2) (3.16)

because the time complexity of simultaneous linear equations with m unknowns is computed in

a triangular form.

As a result, Sepehrdad et al. theoretically analyzed the key recovery attack from useful

key correlations of the first 48-byte keystream bytes. They demonstrated the attack with an

optimized success probability of 2−87.90 and a time complexity of 238.09. However, they also

demonstrated the attack with an optimized time complexity of 1 and a success probability of

2−122.06.
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3.3.3 Key Recovery Attack on WEP Using Weak IVs

In [FMS01], Fluhrer et al. proposed a key recovery attack on WEP using the property of certain

specific IV values, called weak IVs. In their attack, called the FMS attack, a byte of the RC4

key K[A + 3] can be derived when the first three bytes of the IV value are IV[0] = A + 3,

IV[1] = 255, and IV[2] = X, respectively. They regarded such IVs as weak IVs.

We introduce the FMS attack to derive K[3] as the following example (refer to [FMS01,

VV07] for details):

Example 3.2. In order to derive K[3], we collect a large number of encrypted packets with

IV[0] = 3, IV[1] = 255, and IV[2] = X. When the above IV values are used, an internal state

in the first four rounds of the KSA is transited as Figure 3.2. Assume that the values of SK
4 [0],

SK
4 [1], and SK

4 [3] are never swapped during the subsequent N − 4 rounds of the KSA, whose

probability is
(
1− 3

N

)N−4 ≈ 5.127(%). When the above assumptions are used, an internal state

in the first two rounds of the PRGA is also transited as Figure 3.3, and the third byte of the

RC4 key K[3] is given by

SK
3 [X + 6 +K[3]] = Z1

X + 6 +K[3] = SK
3 [Z1]

−1

K[3] = SK
3 [Z1]

−1 − (X + 6), (3.17)

where SK
r [x]−1 is the index of the value x in the internal state variable SK

r . We can now easily

recover the third byte of the RC4 key K[3] from Equation (3.17) because the first byte of the

keystream Z1 can be recovered: Z1 = C1 ⊕ P1 = C1 ⊕ 0xAA where C1 is the first byte of the

ciphertext and P1 = 0xAA is the first constant byte of the plaintext, which is the LLC header.

We can recover the remaining WEP key bytes {K[4], K[5], . . . , K[15]} in the same way as

Figure 3.2: State transition diagram in the first four rounds of the KSA (Example 3.2).
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Figure 3.3: State transition diagram in the first two rounds of the PRGA (Example 3.2).

in Example 3.2. Now, we can generalize the FMS attack as the following function fFMS:

K[x] = fFMS(K[0], . . . , K[x− 1], Z1) = SK
x [Z1]

−1 − SK
x [x]− jKx

= SK
x [Z1]

−1 −
x∑

j=1

SK
j [j]−

x−1∑
i=0

K[i], (3.18)

which holds with the success probability

PFMS(x) =

(
1− 3

N

)N−x−1

(3.19)

for recovering the RC4 key byte K[x]. As a result, Fluhrer et al. presented that all the WEP key

bytes can be recovered with high probability of success by observing approximately 4,000,000–

6,000,000 packets.

3.3.4 Key Recovery Attack on WEP without Using Weak IVs

In [Kle08], Klein improved the existing key recovery attack on WEP with the Klein attack,

which does not need any weak IVs. Klein first presented a practical application of the Glimpse

Theorem as the following theorem:

Theorem 3.23 ([Kle08, Theorem 1]). After the r-th round of the PRGA for r ≥ 1, we have

Pr(Zr + Sr[jr] = c) ≈




2

N
when c = ir,

N − 2

N(N − 1)
when c ̸= ir.

(3.20)

Klein also presented a strong correlation with the following five steps:

Step 1. Sr[jr] = ir − Zr with probability approximately 2
N

from Theorem 3.23.

Step 2. Sr−1[ir] = Sr[jr] with probability 1 from 5th step of Algorithm 2.

Step 3. SK
r+1[r] = Sr−1[ir] with probability approximately

(
1 − 1

N

)N−2
. This means that the

value of SK
r+1[r] in the KSA is never swapped during N − 2 rounds up to Sr−1[ir] in the

PRGA.
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Step 4. SK
r [jKr+1] = SK

r+1[r] with probability 1 from 7th step of Algorithm 1.

Step 5. jKr+1 = jKr + SK
r [r] +K[r] with probability 1 from 6th step of Algorithm 1.

By summarizing the above steps, we can generalize the Klein attack as the following function

fKlein:

K[r] = fKlein(K[0], . . . , K[r − 1], Zr) = SK
r [ir − Zr]

−1 − jKr − SK
r [r], (3.21)

which holds with the success probability

PKlein ≈
(
1− 1

N

)N−2

· 2

N
+

(
1−

(
1− 1

N

)N−2)
· N − 2

N(N − 1)
≈ 1.36

N
(3.22)

for recovering an arbitrary RC4 key byte K[r].

Note that a significant limitation of the Klein attack is that we must know the value of the

r-th round of the keystream to recover the RC4 key byte K[r].

3.4 State Recovery Attacks

A state recovery attack recovers an internal state from a keystream under the scenario of the

known plaintext attack, and aims to confirm the difficulty in recovering an internal state in

the ciphers. This section describes the previous work on the state recovery attack reported

in [KMP+98]. Although many other attacks have been reported, e.g., in [DMPS11, GS16,

MP08b, SOM03], we will not describe these attacks in this section because these are out of our

cryptanalysis and discussions in this dissertation.

In [KMP+98], Knudsen et al. presented a basic recursive algorithm to recover the internal

state. At every round r, we have the following four unknown internal state variables:

Sr[ir+1], Sr[jr+1], jr+1, tr+1 for r ≥ 0. (3.23)

One can simply simulate the PRGA, and guess these unknown values in order to continue the

simulation if necessary. The recursion steps backward when a contradiction is reached owing to

previous wrong guesses. In addition, assuming that certain values are a priori known (guessed,

given, or derived somehow), we can significantly reduce the complexity of the attack.

We now present the details of their algorithm to recover the internal state as Algorithm 8. In

this algorithm, let at denote the number of variables in the initial state, which were assigned a

value at round r. As a result, their complete state recovery attack on RC4 requires a complexity

of approximately 2779.
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Algorithm 8 State recovery attack in [KMP+98]

Step 1. It is checked whether Sr−1[ir] has been assigned a value:
if it has, then
proceed to step 2.

else if it has not, then
assign, one by one, the 2n − ar remaining values to Sr−1[ir], increment and go to step 2.

end if
Step 2. It is checked whether Zr has a value which has been used in an assignment:
if it has, then
we can calculate the expected value of Sr[jr] from 6-th step of Algorithm 2.
if this does not lead to a contradiction, then
proceed to round r + 1 and go to step 1.

end if
else if it has not, then
go to step 3.

end if
Step 3. It is checked whether Sr−1[jr] has already been assigned a value:
if it has not, then
assign, one by one, the 2n − ar remaining values to Sr−1[jr] and update ar. Subsequently,
it can be checked whether the given values of ir, jr, and Zr lead to a contradiction.
if they do not, then
proceed to time r + 1 and go to step 1.

end if
end if

46



Chapter 4

Refined Glimpse Correlations

In [Jen96], Jenkins found correlations between a keystream byte Zr and an internal state variable

Sr[ir] or Sr[jr], which are known as the Glimpse Theorem. These correlations induce biases with

probability approximately 2
N

(see Theorem 3.16). The Glimpse Theorem was often used for

key recovery attacks on WEP [Kle08, TAO+10, TWP08]. In [MG13], Maitra and Sen Gupta

presented a complete proof of the Glimpse Theorem, and extended the Glimpse Theorem to

the following two types of correlations between two consecutive keystream bytes {Zr, Zr+1} and

an internal state variable Sr[r + 1], which are known as the Long-term Glimpse: The first is

that Sr[r+1] = N − 1 occurs with probability approximately 2
N

when Zr+1 = Zr (see Theorem

3.17). The second is the occurrence of its special case where Zr+1 = r+ 2 as well as Zr+1 = Zr,

and the probability of Sr[r + 1] = N − 1 is increased to approximately 3
N

(see Theorem 3.18).

Theorems 3.16–3.18 are collectively referred to as the Glimpse Correlations.

The Glimpse Correlations provide only cases with positive biases. However, there may exist

a dual case of a positive bias, where a dual case means a negative bias in these cases. One of

our motivations in this chapter is to find dual cases of the Glimpse Correlations. Furthermore,

Theorems 3.16–3.18 deal with correlations in each round all together. There may be room for

improvement on correlations in a specific round. The other motivation is to provide correlations

in specific rounds, such as r = 1, 2, and more precisely.

This chapter investigates the existing Glimpse Correlations in more detail from the following

two approaches: One is to find dual cases of the existing Glimpse Correlations, and the other is

to provide precise biases on specific rounds r = 1, 2, . . . , 256. As a result, we find the existence

of several events with new biases, and prove the events theoretically. Our contributions in this

chapter can be summarized as the following six theorems and one corollary:

• Theorem 4.1 presents a dual case of Theorem 3.17 when Zr+1 = Zr.

• Theorem 4.2 is a special case of Theorem 4.1 when Zr+1 = r+ x for x ∈ [0, N − 1] as well

as Zr+1 = Zr.

• Theorem 4.3 presents a new positive bias on the Long-term Glimpse when Zr+1 = r+1+x

for x ∈ [0, N − 1] as well as Zr+1 = Zr.

• Corollary 4.1 integrates the Long-term Glimpse with positive biases when Zr+1 = Zr.
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• Theorem 4.4 presents that Pr(S1[2] = 0) is approximately 2
N

when r = 1 in Theorem 4.1.

• Theorem 4.5 presents an impossible condition of Theorem 4.1 when r = 2.

• Theorem 4.6 presents an impossible condition of Theorem 3.16 when r = 2.

The remainder of this chapter is organized as follows: Section 4.1 discusses new Glimpse

Correlations observed in our experiments. Section 4.2 presents the theoretical proofs of newly

observed Glimpse Correlations. Section 4.3 demonstrates the experimental simulations in order

to confirm the accuracy of the theoretical proofs. Section 4.4 concludes this chapter.

4.1 Experimental Observations

This section presents our experimental observations of new Glimpse Correlations. In the first

part of our observations, we focus on a relation between positive and negative biases. The

existing Glimpse Correlations provide cases with a positive bias. These cases may implicitly

mean that there exist cases with a negative bias explicitly. We refer to such a case with a

negative bias as a dual case of the positive bias. In order to observe dual cases of the existing

Glimpse Correlations, we have performed experiments using 216 randomly chosen keys of 16

bytes and 216 keystream bytes for each key. Figure 4.1 shows the experimental distribution of

the value of Sr[r + 1] when Zr+1 = Zr. The horizontal and vertical lines represent the value of

Sr[r+1] and the probability induced the value of Sr[r+1] when Zr+1 = Zr, respectively. From

the figure, we observe that there exists the dual case of Theorem 3.17 when Sr[r+1] = 0, which

is shown in Theorem 4.1. Figure 4.2 shows the experimental distribution of the value of Sr[r+1]

when Zr+1 = r + 2 as well as Zr+1 = Zr. The horizontal and vertical lines are similar to those

in Figure 4.1. From the figure, we observe that there exists the dual case of Theorem 3.18 when

Sr[r + 1] = 0, which is shown in Theorem 4.2. Furthermore, Figure 4.3 shows that our careful

observation successfully finds new positive biases on Sr[r+1]. The horizontal and vertical lines

represent the value of x and the probability induced Sr[r + 1] = N − x when Zr+1 = r + 1 + x

as well as Zr+1 = Zr, respectively. Figure 4.3 indicates new biases on Sr[r + 1] = N − x when

Zr+1 = r + 1 + x as well as Zr+1 = Zr for x ∈ [2, N − 1], which are shown in Theorem 4.3.

In the second part of our observations, we focus on the Glimpse Correlations in specific

rounds. The existing Glimpse Correlations hold generally in any round. As a result, the previous

estimation on correlations may be rather rough. Therefore, by further examining correlations

in each round in more detail, we find new precise biases in specific rounds. In the experiments

for finding new precise biases in the first 256 rounds, 232 randomly chosen keys of 16 bytes are

executed. As a result, we find new precise biases on r = 1 and r = 2, which are shown in

Theorems 4.4 and 4.5. Theorem 4.4 presents a positive bias that S1[2] = 0 occurs with the

probability of approximately 2
N

when Z2 = Z1. The condition of Theorem 4.4 is included in

that of Theorem 4.1, whereas Theorem 4.1 presents a negative case. Theorem 4.5 also examines

a case of r = 2 in Theorem 4.1, and presents that S2[3] = 0 never occurs. Finally, Theorem 4.6

presents that an event in Theorem 3.16 never occurs when Z2 = 1, 2, or 129 holds.
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Figure 4.1: Bias in the value of Sr[r + 1] when Zr+1 = Zr.

Figure 4.2: Bias in the value of Sr[r + 1] when Zr+1 = Zr ∧ Zr+1 = r + 2.

Figure 4.3: Bias in Sr[r + 1] = N − x when Zr+1 = Zr ∧ Zr+1 = r + 1 + x.
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4.2 New Results

This section provides six theorems and their proofs. In our proofs, we often assume that the

certain event occurs with probability approximately 1
N
, which is called the probability of random

association. This is because it is difficult to demonstrate all events in the state transition of

RC4, and it is a natural assumption based on the pseudorandomness of stream ciphers. The

correctness of this assumption can be confirmed by experimental evaluations in Section 4.3. If

this assumption is correct, the relative error between the experimental and theoretical value in

each theorem will be small enough, and vice versa. Owing to this assumption, we often use the

symbol of the approximate equation “≈” throughout this section.

4.2.1 Dual Cases of the Existing Long-term Glimpse

This subsection provides Theorems 4.1 and 4.2, which are dual cases of Theorems 3.17 and

3.18, and their proofs. Theorem 4.1 presents that an event (Sr[r + 1] = 0) yields a negative

bias when Zr+1 = Zr. Theorem 4.2 is a special case of Theorem 4.1, and presents that an event

(Sr[r + 1] = 0) yields a negative bias when Zr+1 = r + x (x ∈ [0, N − 1]) as well as Zr+1 = Zr.

These are the revised versions of [IM16a, Theorems 2 and 3].

Theorem 4.1. After the r-th round of the PRGA for r ≥ 1, we have

Pr(Sr[r + 1] = 0 | Zr+1 = Zr) ≈




2

N2
when r = 0 mod N,

3

N2
− 2

N3
when r = 1 mod N,

2

N2
− 3

N3
when r = N − 3 mod N,

3

N2
+

1

N3
when r = N − 2 mod N,

1

N2
+

1

N3
when r = N − 1 mod N,

2

N2
− 2

N3
when r is even and r ̸= 0, N − 2 mod N,

2

N2
− 4

N3
when r is odd and r ̸= 1, N − 3, N − 1 mod N.

Proof. We define the main events as follows:

Ar := (Sr[r + 1] = 0), Br := (Zr+1 = Zr).

Note that

Pr(Ar | Br) =
Pr(Ar ∧ Br)

Pr(Br)
=

Pr(Ar) Pr(Br | Ar)

Pr(Br)
.

Assuming that the events Ar and Br occur with probability approximately 1
N

(random associ-
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ation). We thus have Pr(Ar | Br) ≈ Pr(Br | Ar), and therefore

Pr(Ar | Br) ≈
N−1∑
k=0

Pr(Br ∧ (jr = k) | Ar)

=
N−1∑
k=0

Pr(jr = k | Ar) · Pr(Br | Ar ∧ (jr = k))

≈ 1

N

N−1∑
k=0

Pr(Br | Ar ∧ (jr = k)),

where assuming that an event (jr = k | Ar) occurs with probability approximately 1
N

(random

association).

Next, when the event Ar occurs, we have

jr+1 = jr + Sr[ir+1] = jr + Sr[r + 1] = jr.

Then, we consider three paths: jr = r (Path 1), jr = r+1 (Path 2), and jr = k ̸= r, r+1 (Path

3). Let X = Sr[r] ̸= 0.

Path 1. Figure 4.4 shows a state transition diagram in Path 1. From the figure, the events Ar

and (jr = r) imply

tr = 2X, tr+1 = X, Zr = Sr[2X], Zr+1 = Sr+1[X].

Note that X ̸= 0 ⇒ 2X ̸= X, and then we have

{Br | Ar ∧ (jr = r)} = {Sr[2X] = Sr+1[X] | Ar ∧ (jr = r)}
⇔ {(2X,X) = (r, r + 1)} ∨ {(2X,X) = (r + 1, r)}.

When (2X,X) = (r, r + 1), we have r = 2X = X +X = X + r + 1, so that X = N − 1

and r = N − 2. Note here that an event (X = N − 1) occurs with probability 1
N−1

only

when r = N − 2.

On the other hand, when (2X,X) = (r + 1, r), we have r + 1 = 2X = X +X = X + r,

so that X = 1 and r = 1. Note here that an event (X = 1) occurs with probability 1
N−1

only when r = 1.

Therefore, we obtain

Pr(Br | Ar ∧ (jr = r))

=




Pr(X = 1 | Ar ∧ (jr = r)) =
1

N − 1
when r = 1 mod N,

Pr(X = N − 1 | Ar ∧ (jr = r)) =
1

N − 1
when r = N − 2 mod N,

0 otherwise.
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Path 2. Figure 4.5 shows a state transition diagram in Path 2. From the figure, the events Ar

and (jr = r + 1) imply

tr = X, tr+1 = 0, Zr = Sr[X], Zr+1 = Sr+1[0].

In this case, Sr[x] = Sr+1[x] for all x = 0, 1, . . . , N − 1, and then the event Br implies

X = 0, which contradicts X ̸= 0. Therefore, we obtain

Pr(Br | Ar ∧ (jr = r + 1)) = 0.

Path 3. Figure 4.6 shows a state transition diagram in Path 3. Let Y = Sr[jr] ̸= 0 and X ̸= Y .

From the figure, the events Ar and (jr = k ̸= r, r + 1) imply

tr = X + Y, tr+1 = Y, Zr = Sr[X + Y ], Zr+1 = Sr+1[Y ].

Note that X ̸= 0 ⇒ X + Y ̸= Y , and then we have

{Br | Ar ∧ (jr = k)} = {Sr[X + Y ] = Sr+1[Y ] | Ar ∧ (jr = k)}
⇔ {(X, Y ) = (r + 1− k, k)} ∨ {(X, Y ) = (k − r − 1, r + 1)},

and vice versa if X ̸= 0, Y ̸= 0, and X ̸= Y . Note that (r + 1− k, k) = (k − r − 1, r + 1)

if and only if k = r + 1, and thus we have (r + 1− k, k) ̸= (k − r − 1, r + 1) if k ̸= r + 1.

When (X, Y ) = (r + 1 − k, k), where k ̸= r, r + 1, we have r + 1 − k ̸= 0, k ̸= 0, and

r + 1− k ̸= k, which are equivalent to k ̸= r + 1, k ̸= 0, and 2k ̸= r + 1. Note here that

2k ̸= r + 1 holds if r is even, and then we have



k ̸= r, r + 1 when r = 0 mod N,

k ̸= 0, r, r + 1 when r is even and r ̸= 0 mod N.

On the other hand, 2k ̸= r + 1 implies k ̸= r+1
2
, N+r+1

2
if r is odd, so that k ̸= 0, r, r +

1, r+1
2
, N+r+1

2
if r is odd. Note here that this constraint can be redundant as follows:

{k =
r + 1

2
= r} ⇔ {(k = 1) ∧ (r = 1)},

{k =
r + 1

2
= r + 1} ⇔ {(k = 0 = r + 1) ∧ (r = N − 1)},

{k =
N + r + 1

2
= r} ⇔ {(k =

N + 2

2
) ∧ (r = 1)},

{k =
N + r + 1

2
= r + 1} ⇔ {(k = 0 = r + 1) ∧ (r = N − 1)},
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Figure 4.4: State transition diagram in Path 1 (Theorems 4.1 and 4.2).

Figure 4.5: State transition diagram in Path 2 (Theorems 4.1 and 4.2).

Figure 4.6: State transition diagram in Path 3 (Theorems 4.1 and 4.2).
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and thus we have (X, Y ) = (r + 1− k, k), where





k ̸= 0, r, r + 1,
N + 2

2
when r = 1 mod N,

k ̸= r, r + 1 when r = N − 1 mod N,

k ̸= 0, r, r + 1,
r + 1

2
,
N + r + 1

2
when r is odd and r ̸= 1, N − 1 mod N.

Next, we consider (X, Y ) = (k− r−1, r+1), where k ̸= r, r+1. Then, we have k ̸= r−1,

r ̸= N − 1, and k ̸= 2(r + 1), which imply k ̸= r − 1, r, r + 1, N − 1, 2(r + 1). Note here

that N − 1 ̸= 2(r + 1) and this constraint can be redundant as follows:

{k = r − 1 = N − 1} ⇔ {r = 0},
{k = r − 1 = 2(r + 1)} ⇔ {(k = N − 4) ∧ (r = N − 3)},

{k = r = 2(r + 1)} ⇔ {(k = N − 2) ∧ (r = N − 2)},
{k = r + 1 = N − 1} ⇔ {r = N − 2},

{k = r + 1 = 2(r + 1)} ⇔ {(k = 0) ∧ (r = N − 1)},

and thus we have (X, Y ) = (k − r − 1, r + 1), where




k ̸= r − 1, r, r + 1, 2(r + 1) when r = 0 mod N,

k ̸= r − 1, r, r + 1, N − 1 when r = N − 3 mod N,

k ̸= r − 1, r, r + 1 when r = N − 2 mod N,

k ̸= r − 1, r, r + 1, 2(r + 1), N − 1 when r ̸= 0, N − 3, N − 2, N − 1 mod N,

and (X, Y ) = (k − r − 1, r + 1) is not feasible when r = N − 1 mod N .

In summary, the event Br occurs under the events Ar and (jr = k ̸= r, r + 1) if and only

if we have the following seven cases:

(i) When r = 0 mod N :



(X, Y ) = (r + 1− k, k), where k ̸= 0, 1,

(X, Y ) = (k − r − 1, r + 1), where k ̸= 0, 1, 2, N − 1.

(ii) When r = 1 mod N :



(X, Y ) = (r + 1− k, k), where k ̸= 0, 1, 2, N−2

2
,

(X, Y ) = (k − r − 1, r + 1), where k ̸= 0, 1, 2, 4, N − 1.
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(iii) When r = N − 3 mod N :




(X, Y ) = (r + 1− k, k), where k ̸= 0, N − 3, N − 2, N−2

2
, N − 1,

(X, Y ) = (k − r − 1, r + 1), where k ̸= N − 4, N − 3, N − 2, N − 1.

(iv) When r = N − 2 mod N :




(X, Y ) = (r + 1− k, k), where k ̸= 0, N − 2, N − 1,

(X, Y ) = (k − r − 1, r + 1), where k ̸= N − 3, N − 2, N − 1.

(v) When r = N − 1 mod N :

(X, Y ) = (r + 1− k, k), where k ̸= 0, N − 1.

(vi) When r is even and r ̸= 0, N − 2 mod N :



(X, Y ) = (r + 1− k, k), where k ̸= 0, r, r + 1,

(X, Y ) = (k − r − 1, r + 1), where k ̸= r − 1, r, r + 1, 2(r + 1), N − 1.

(vii) When r is odd and r ̸= 1, N − 3, N − 1 mod N :



(X, Y ) = (r + 1− k, k), where k ̸= 0, r, r + 1, r+1

2
, N+r+1

2
,

(X, Y ) = (k − r − 1, r + 1), where k ̸= r − 1, r, r + 1, 2(r + 1), N − 1.

As a result, we obtain

N−1∑
k=0

(k ̸=r,r+1)

Pr(Br | Ar ∧ (jr = k))

=




2N − 6

(N − 1)(N − 2)
when r = 0, N − 2 mod N,

2N − 9

(N − 1)(N − 2)
when r = 1, N − 3 mod N,

1

N − 1
when r = N − 1 mod N,

2N − 8

(N − 1)(N − 2)
when r is even and r ̸= 0, N − 2 mod N,

2N − 10

(N − 1)(N − 2)
when r is odd and r ̸= 1, N − 3, N − 1 mod N,

because Pr((X, Y ) = (x, y) | Ar ∧ (jr = k)) = 1
(N−1)(N−2)

, for x, y = 1, 2, . . . , N − 1, and

x ̸= y.
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In summary,

Pr(Ar | Br)

=
1

N

N−1∑
k=0

Pr(Br | Ar ∧ (jr = k))

=
1

N

[
Pr(Br | Ar ∧ (jr = r)) + Pr(Br | Ar ∧ (jr = r + 1)) +

N−1∑
k=0

(k ̸=r,r+1)

Pr(Br | Ar ∧ (jr = k))

]

=





2N − 6

N(N − 1)(N − 2)
when r = 0 mod N,

1

N(N − 1)
+

2N − 9

N(N − 1)(N − 2)
when r = 1 mod N,

2N − 9

N(N − 1)(N − 2)
when r = N − 3 mod N,

1

N(N − 1)
+

2N − 6

N(N − 1)(N − 2)
when r = N − 2 mod N,

1

N(N − 1)
when r = N − 1 mod N,

2N − 8

N(N − 1)(N − 2)
when r is even and r ̸= 0, N − 2 mod N,

2N − 10

N(N − 1)(N − 2)
when r is odd and r ̸= 1, N − 3, N − 1 mod N.

Note that

1

N − 1
=

1

N
+

1

N(N − 1)
,

1

N − 2
=

1

N
+

2

N(N − 2)
.

It then follows that

1

N(N − 1)
=

1

N2
+

1

N2(N − 1)
=

1

N2
+

1

N3
+

1

N3(N − 1)
=

1

N2
+

1

N3
+ o(

1

N3
),

1

N(N − 1)(N − 2)
=

1

N2(N − 1)
+

2

N2(N − 1)(N − 2)

=
1

N3
+

1

N3(N − 1)
+

2

N2(N − 1)(N − 2)
=

1

N3
+ o(

1

N3
).
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In summary, we obtain

Pr(Ar | Br) ≈





2

N2
when r = 0 mod N,

3

N2
− 2

N3
when r = 1 mod N,

2

N2
− 3

N3
when r = N − 3 mod N,

3

N2
+

1

N3
when r = N − 2 mod N,

1

N2
+

1

N3
when r = N − 1 mod N,

2

N2
− 2

N3
when r is even and r ̸= 0, N − 2 mod N,

2

N2
− 4

N3
when r is odd and r ̸= 1, N − 3, N − 1 mod N.

Remark 4.1. The previous result of Theorem 4.1 was given as

Pr(Sr[r + 1] = 0 | Zr+1 = Zr) ≈
2

N2

(
1− 1

N

)
.

For the purpose of comparison between the previous and revised result, the averaged result of

Theorem 4.1 is given as

1

N

N−1∑
r=0 mod N

Pr(Sr[r + 1] = 0 | Zr+1 = Zr) =
2

N2
− 1

N3
+ o(

1

N3
) ≈ 2

N2
− 1

N3
.

After the revision, we improve the percentage of the relative error between the experimental and

theoretical value from 0.379 % to 0.182 % (see Section 4.3). This is the result of strict analysis of

the occurrence probability of the target event in each round. However, even if we apply the target

events with either the previous or revised theoretical value to the existing attacks, no difference

will be made in the efficiency of the attacks because either relative error is small enough.

Theorem 4.2 ([IM16a, Theorem 3]). After the r-th round of the PRGA for r ≥ 1 and ∀x ∈
[0, N − 1], we have

Pr(Sr[r + 1] = 0 | (Zr+1 = Zr) ∧ (Zr+1 = r + x)),
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which is given as

1

N

N−1∑
r=0 mod N

Pr(Sr[r + 1] = 0 | (Zr+1 = Zr) ∧ (Zr+1 = r + x)) ≈





1

N
+

1

N3
when x = 1,

2

N2
when x = N − 1,

1

N2
otherwise.

Proof. We define the main events as follows:

Ar := (Sr[r + 1] = 0), Br := (Zr+1 = Zr), Cr := (Zr+1 = r + x).

Pr(Ar | Br ∧ Cr) is difficult to compute because the events Br and Cr are not independent. To

avoid this problem, we further define a new event B′
r := (Zr = r+x). Then, Pr(Ar | Br ∧Cr) =

Pr(Ar | B′
r ∧Cr) because the events (Br ∧Cr) and (B′

r ∧Cr) are the same, and therefore we will

compute the target probability easily. Note here that

Pr(Ar | B′
r ∧ Cr) =

Pr(Ar ∧ B′
r ∧ Cr)

Pr(B′
r ∧ Cr)

=
Pr(Cr | B′

r ∧ Ar) · Pr(B′
r | Ar) · Pr(Ar)

Pr(B′
r ∧ Cr)

.

Assuming that the events Ar, B
′
r, and Cr are mutually independent, and occur with probability

approximately 1
N

(random association), respectively. We thus have Pr(Ar | B′
r ∧ Cr) ≈ Pr(Cr |

B′
r ∧ Ar), and therefore

Pr(Cr | B′
r ∧ Ar) =

N−1∑
k=0

Pr(Cr ∧ (jr = k) | B′
r ∧ Ar)

=
N−1∑
k=0

Pr(jr = k | B′
r ∧ Ar) · Pr(Cr | B′

r ∧ Ar ∧ (jr = k))

≈ 1

N

N−1∑
k=0

Pr(Cr | B′
r ∧ Ar ∧ (jr = k)),

where assuming that an event (jr = k | B′
r ∧ Ar) occurs with probability approximately 1

N

(random association).

Next, when the event Ar occurs, we have

jr+1 = jr + Sr[ir+1] = jr + Sr[r + 1] = jr.

Then, we consider three paths: jr = r (Path 1), jr = r+1 (Path 2), and jr = k ̸= r, r+1 (Path

3). These paths are the same as in the proof of Theorem 4.1, and the proof itself is similar to

that of Theorem 4.1. Let X = Sr[r] ̸= 0.

Path 1. Figure 4.4 shows a state transition diagram in Path 1. From the figure, the events Ar,
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B′
r, and (jr = r) imply

tr = 2X, tr+1 = X, Zr = Sr[2X] = r + x, Zr+1 = Sr+1[X].

Note that X ̸= 0 ⇒ 2X ̸= X, and then we have

{Cr | B′
r ∧ Ar ∧ (jr = r)} = {Sr+1[X] = r + x | B′

r ∧ Ar ∧ (jr = r)}
⇔ {(2X,X) = (r, r + 1)} ∨ {(2X,X) = (r + 1, r)}.

When (2X,X) = (r, r + 1), we have r = 2X = X +X = X + r + 1, so that X = N − 1

and r = N − 2. Note here that the event B′
r implies the event (Sr+1[X] = N − 1) occurs

with probability 1
N−1

when r = N − 2 and x = 1.

On the other hand, when (2X,X) = (r + 1, r), we have r + 1 = 2X = X +X = X + r,

so that X = 1 and r = 1. Note here that the event B′
r implies the event (Sr+1[X] = 0)

occurs with probability 1 when r = 1 and x = N − 1.

Therefore, we obtain

Pr(Cr | B′
r ∧ Ar ∧ (jr = r))

=




Pr(Sr+1[X] = 0 | B′
r ∧ Ar ∧ (jr = r)) = 1 when r = 1 mod N and x = N − 1,

Pr(Sr+1[X] = N − 1 | B′
r ∧ Ar ∧ (jr = r)) =

1

N − 1
when r = N − 2 mod N and x = 1,

0 otherwise.

Path 2. The event Cr never occurs in Path 2 as we discussed in the proof of Theorem 4.1.

Therefore, we obtain

Pr(Cr | B′
r ∧ Ar ∧ (jr = r + 1)) = 0.

Path 3. Figure 4.6 shows a state transition diagram in Path 3. Let Y = Sr[jr] ̸= 0 and X ̸= Y .

From the figure, the events Ar, B
′
r, and (jr = k ̸= r, r + 1) imply

tr = X + Y, tr+1 = Y, Zr = Sr[X + Y ] = r + x, Zr+1 = Sr+1[Y ].

Note that X ̸= 0 ⇒ X + Y ̸= Y , and then we have

{Cr | B′
r ∧ Ar ∧ (jr = k)} = {Sr+1[Y ] = r + x | B′

r ∧ Ar ∧ (jr = k)}
⇔ {(X + Y, Y ) = (r + 1, k)} ∨ {(X + Y, Y ) = (k, r + 1)},

and vice versa if X ̸= 0, Y ̸= 0, and X ̸= Y .

When (X + Y, Y ) = (r + 1, k), we have Sr[X + Y ] = Sr[r + 1] = r + x = 0 under

the occurrence of the events Ar and B′
r. Note here that an event (Y = k) occurs with

probability 1
N−2

when r = N − x for all x.
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On the other hand, when (X +Y, Y ) = (k, r+1), we have Sr[X +Y ] = Sr[k] = r+x = Y

under the occurrence of the events Ar and B′
r. Note here that an event (Y = r+1) occurs

with probability 1
N−2

when x = 1 for all r.

Therefore, we obtain

Pr(Cr | B′
r ∧ Ar ∧ (jr = k))

=





Pr(Sr+1[Y ] = 0 | B′
r ∧ Ar ∧ (jr = k)) =

1

N − 2
when r = N − x mod N for all x,

Pr(Sr+1[Y ] = r + 1 | B′
r ∧ Ar ∧ (jr = k)) =

1

N − 2
when x = 1 for all r,

0 otherwise.

In summary, we obtain

Pr(Ar | Br ∧ Cr) ≈
1

N

N−1∑
k=0

Pr(Cr | B′
r ∧ Ar ∧ (jr = k))

=
1

N

[
Pr(Cr | B′

r ∧ Ar ∧ (jr = r)) + Pr(Cr | B′
r ∧ Ar ∧ (jr = r + 1))

+
N−1∑
k=0

(k ̸=r,r+1)

Pr(Cr | B′
r ∧ Ar ∧ (jr = k))

]
,

which is given as

1

N

N−1∑
r=0 mod N

Pr(Sr[r + 1] = 0 | (Zr+1 = Zr) ∧ (Zr+1 = r + x))

≈




1

N
+

1

N2(N − 1)
≈ 1

N
+

1

N3
when x = 1,

2

N2
when x = N − 1,

1

N2
otherwise.

Remark 4.2. The previous result of Theorem 4.2 is as follows:

Pr(Sr[r + 1] = 0 | Zr+1 = Zr ∧ Zr+1 = r + x) ≈




1

N

(
1− 2

N2

)
when x = 1,

2

N2

(
1− 1

N

)
when x = N − 1,

1

N2

(
1− 2

N

)
otherwise.

After the revision, we improve the percentage of the relative error between the experimental and
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theoretical value from 0.415 % to 0.410 % when x = 1, from 0.931 % to 0.541 % when x = N−1,

and from 0.783 % to 0.004 % otherwise (see Section 4.3). This is the result of revision in the

same way as the proof of Theorem 4.1. However, even if we apply the target events with either

the previous or revised theoretical value to the existing attacks, no difference will be made in the

efficiency of the attacks because either relative error is small enough.

4.2.2 New Positive Bias and Integrated Long-term Glimpse

This subsection provides Theorem 4.3, which presents a new positive bias on Sr[r + 1], and its

proof. This is the revised version of [IM16a, Theorem 4]. Then, we integrate our new results

and the existing Long-term Glimpse as Corollary 4.1 by combining the results of Theorems 3.18,

4.2, and 4.3.

Theorem 4.3 ([IM16a, Theorem 4]). After the r-th round of the PRGA for r ≥ 1 and ∀x ∈
[2, N − 1], we have

Pr(Sr[r + 1] = N − x | (Zr+1 = Zr) ∧ (Zr+1 = r + 1 + x)),

which is given as

1

N

N−1∑
r=0 mod N

Pr(Sr[r + 1] = N − x | (Zr+1 = Zr) ∧ (Zr+1 = r + 1 + x)) ≈ 2

N

(
1− 1

N
+

2

N2

)
.

Proof. We define the main events as follows.

Ar := (Sr[r + 1] = N − x), Br := (Zr+1 = Zr),

B′
r := (Zr = r + 1 + x), Cr := (Zr+1 = r + 1 + x).

The proof itself is similar to that of Theorem 4.2. We thus have

Pr(Ar | Br ∧ Cr) ≈
1

N

N−1∑
k=0

Pr(Cr | B′
r ∧ Ar ∧ (jr = k)).

Then, we consider three paths: jr = r (Path 1), jr = r+ 1 (Path 2), and jr ̸= r, r+ 1 (Path 3).

Let X = Sr[r], W = Sr[jr+1], and X ̸= W .

Path 1. Figure 4.7 shows a state transition diagram in Path 1. From the figure, the events Ar,

B′
r, and (jr = r) imply

tr = 2X, tr+1 = N − x−W, Zr = Sr[2X] = r + 1 + x, Zr+1 = Sr+1[N − x+W ].

61



CHAPTER 4. REFINED GLIMPSE CORRELATIONS

Figure 4.7: State transition diagram in Path 1 (Theorem 4.3).

Note that tr and tr+1 are independent, and then we have

{Cr | B′
r ∧ Ar ∧ (jr = r) = {Sr+1[N − x+W ] = r + 1 + x | B′

r ∧ Ar ∧ (jr = r)}
⇔ {(tr, tr+1) = (r + 1, jr+1)} ∨ {(tr, tr+1) = (jr+1, t+ 1)} ∨ {tr = tr+1}.

(i) When (tr, tr+1) = (r+1, jr+1), we have Sr[tr] = Sr[r+1] = r+1+x = N−x under the

occurrence of the events Ar and B′
r, so that Sr+1[tr+1] = Sr[tr] = r+ 1+ x = N − x.

Note here that events (tr = r + 1) ∧ (tr+1 = jr+1) occur with probability 1
(N−1)(N−2)

when r = N − 2x− 1 for all x ∈ [2, N − 1].

(ii) When (tr, tr+1) = (jr+1, r + 1), we have Sr[tr] = Sr[jr+1] = r + 1 + x = W under the

occurrence of the events Ar and B′
r, so that Sr+1[tr+1] = Sr[tr] = r + 1 + x = W .

Note here that events (tr = jr+1) ∧ (tr+1 = r + 1) occur with probability 1
N−2

for all

r and x ∈ [2, N − 1].

(iii) When tr = tr+1, we have Sr[tr] = Sr+1[tr+1] = r + 1 + x except when tr = r + 1 or

jr+1. Note here that an event (tr = tr+1) occurs with probability 1
N

(
1− 2

N

)
for all r

and x ∈ [2, N − 1].

Therefore, we obtain

Pr(Cr | B′
r ∧ Ar ∧ (jr = r)) =




2

N
− 1

N2
+

3

N3
+ o(

1

N3
) when r = N − 2x− 1,

2

N
− 1

N2
+

2

N3
+ o(

1

N3
) otherwise.

Path 2. Figure 4.8 shows a state transition diagram in Path 2. From the figure, the events Ar,

B′
r, and (jr = r + 1) imply

tr = N−x+X, tr+1 = N−x−W, Zr = Sr[N−x+X] = r+1+x, Zr+1 = Sr+1[N−x+W ].
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Figure 4.8: State transition diagram in Path 2 (Theorem 4.3).

Note that X ̸= W ⇒ N − x+X ̸= N − x+W , and then we have

{Cr | B′
r ∧ Ar ∧ (jr = r + 1) = {Sr+1[N − x+W ] = r + 1 + x | B′

r ∧ Ar ∧ (jr = r)}
⇔ {(tr, tr+1) = (r + 1, jr+1)} ∨ {(tr, tr+1) = (jr+1, t+ 1)}.

From the discussion of (i) and (ii) in Path 1, we obtain

Pr(Cr | B′
r ∧ Ar ∧ (jr = r + 1)) =




1

N
+

1

N2
+

3

N3
+ o(

1

N3
) when r = N − 2x− 1,

1

N
+

1

N2
+

2

N3
+ o(

1

N3
) otherwise.

Path 3. Figure 4.9 shows a state transition diagram in Path 3. Let Y = Sr[jr] ̸= N − x and

X ̸= W ̸= Y . From the figure, the events Ar, B
′
r, and (jr = k ̸= r, r + 1) imply

tr = X+Y, tr+1 = N −x−W, Zr = Sr[X+Y ] = r+1+x, Zr+1 = Sr+1[N −x+W ].

Note that tr and tr+1 are independent, and then we have

{Cr | B′
r ∧ Ar ∧ (jr = r) = {Sr+1[N − x+W ] = r + 1 + x | B′

r ∧ Ar ∧ (jr = r)}
⇔ {(tr, tr+1) = (r + 1, jr+1)} ∨ {(tr, tr+1) = (jr+1, t+ 1)} ∨ {tr = tr+1}.

From the discussion of (i)–(iii) in Path 1, we obtain

Pr(Cr | B′
r ∧ Ar ∧ (jr = k)) =




2

N
− 1

N2
+

3

N3
+ o(

1

N3
) when r = N − 2x− 1,

2

N
− 1

N2
+

2

N3
+ o(

1

N3
) otherwise.
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Figure 4.9: State transition diagram in Path 3 (Theorem 4.3).

In summary, we obtain

Pr(Ar | Br ∧ Cr) ≈
1

N

N−1∑
k=0

Pr(Cr | B′
r ∧ Ar ∧ (jr = k))

=
1

N

[
Pr(Cr | B′

r ∧ Ar ∧ (jr = r)) + Pr(Cr | B′
r ∧ Ar ∧ (jr = r + 1))

+
N−1∑
k=0

(k ̸=r,r+1)

Pr(Cr | B′
r ∧ Ar ∧ (jr = k))

]
,

which is given as

1

N

N−1∑
r=0 mod N

Pr(Sr[r + 1] = N − x | (Zr+1 = Zr) ∧ (Zr+1 = r + 1 + x)) ≈ 2

N

(
1− 1

N
+

2

N2

)
.

Remark 4.3. The previous result of Theorem 4.2 is as follows:

Pr(Sr[r + 1] = N − x | Zr+1 = Zr ∧ Zr+1 = r + 1 + x) ≈ 2

N

(
1− 1

N
+

1

N2

)
.

After the revision, we improve the percentage of the relative error between the experimental value

and the theoretical value from 0.387 % to 0.386 % (see Section 4.3). This is the result of revision

in the same way as the proof of Theorem 4.1, but its revision shows that there was almost no

effect of improving the relative error.
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Corollary 4.1 ([IM16a, Corollary 1]). (Integrated long-term Glimpse) After the r-th round

of the PRGA for r ≥ 1 and ∀x ∈ [0, N − 1], we have

Pr(Sr[r + 1] = N − x | (Zr+1 = Zr) ∧ (Zr+1 = r + 1 + x)) ≈





1

N
+

1

N3
when x = 0,

3

N
when x = 1,

2

N

(
1− 1

N
+

2

N2

)
otherwise.

4.2.3 Precise Biases on Specific Rounds

This subsection provides Theorems 4.4–4.6 and their proofs. Theorem 4.4 presents a precise

bias on r = 1 of Theorem 4.1, and an event (S1[2] = 0) yields a positive bias when Z2 = Z1.

Theorem 4.5 presents a precise bias on r = 2 of Theorem 4.1, and an event (S2[3] = 0) never

occurs when Z3 = Z2. Theorem 4.6 presents a precise bias on r = 2 of Theorem 3.16, and an

event (S2[j2] = i2 − Z2) never occurs when Z2 = 1, 2, or 129.

Theorem 4.4 ([IM16a, Theorem 5]). After the first round of the PRGA, we have

Pr(S1[2] = 0 | Z2 = Z1) ≈ Pr(S0[1] = 1) +
1

N

N−1∑
v=3

Pr(S0[1] = v).

Proof. We define main events as follows:

A := (S1[2] = 0), B := (Z2 = Z1),

where the target event (A | B) is the case of r = 1 in Theorem 4.1. The proof mainly follows

Theorem 4.1. Then, the probability of the event (B | A) can be decomposed into three paths:

j1 = 1 (Path 1), j1 = 0, 2 (Path 2), and j1 ̸= 0, 1, 2 (Path 3). Note that both j1 = S0[1] and

j2 = j1 + S1[2] = S0[1] hold when the event A occurs. Let X = S1[1] ̸= 0.

Path 1. When j1 = 1, S0[1] = X = 1. Then, the event B always occurs when the event A

occurs because Z2 = S2[X] = S2[1] = 0 and Z1 = S1[2X] = S1[2] = 0 (see Figure 4.4).

Therefore, we obtain

Pr(B | A ∧ (j1 = 1)) = 1.

Path 2. When j1 = 0, S0[1] = S1[0] = 0. On the other hand, when j1 = 2, S0[1] = S1[2] = 2.

These facts are inconsistent with the assumption that the event A occurs, and then the

event B never occurs. Therefore, we obtain

Pr(B | A ∧ (j1 = 0, 2)) = 0.

Path 3. Let Y = S1[j1], and then j2 = S0[1] = S1[j1] = Y . When X + Y = 2, we have

Z1 = S1[2] = 0 and Z2 = S2[j2] = 0 because Z1 = S1[X + Y ] and Z2 = S2[Y ] from the
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discussion of Path 3 in the proof of Theorem 4.1 (see Figure 4.6), and thus the event

B occurs when the event A occurs. Assuming that the event (X + Y = 2) occurs with

probability approximately 1
N

(random association), and therefore we obtain

Pr(B | A ∧ (j1 ̸= 0, 1, 2)) = Pr(X + Y = 2) ≈ 1

N
.

In summary, we obtain

Pr(A | B) ≈ 1

N

N−1∑
k=0

Pr(B | A ∧ (jr = k)) ≈ Pr(j1 = 1) +
1

N

N−1∑
v=3

Pr(j1 = v)

= Pr(S0[1] = 1) +
1

N

N−1∑
v=3

Pr(S0[1] = v),

where Pr(S0[1] = v) follows Lemma 3.1.

Theorem 4.5 ([IM16a, Theorem 6]). After the second round of the PRGA, we have

Pr(S2[3] = 0 | Z3 = Z2) = 0.

Proof. We define main events as follows:

A := (S2[3] = 0), B := (Z3 = Z2),

where the event (A | B) is the case of r = 2 in Theorem 4.1. The proof mainly follows Theorem

4.1. Then, the probability of the event (B | A) can be decomposed into three paths: j2 = 2

(Path 1), j2 = 3 (Path 2), and j2 ̸= 2, 3 (Path 3). Note here that j2 = S0[1] + S1[2] and

j3 = j2 + S2[3] = j2 when the event A occurs. Let X = S2[2].

Path 1. The discussion of Path 1 in the proof of Theorem 4.1 shows that the event (Zr+1 =

Zr | Sr[r + 1] = 0) occurs only when either r = 1 or r = 254. Then, the event B never

occurs, and therefore we obtain

Pr(B | A ∧ (j2 = 2)) = 0.

Path 2. The event B never occurs in Path 2 as we discussed in the proof of Theorem 4.1.

Therefore, we obtain

Pr(B | A ∧ (j2 = 3)) = 0.

Path 3. Let Y = S2[j2] ̸= 0. The discussion of Path 3 in the proof of Theorem 4.1 shows that

the event (Zr+1 = Zr | Sr[r + 1] = 0) occurs when either (X + Y, Y ) = (r + 1, jr+1) or

(X+Y, Y ) = (jr+1, r+1). Then, the event (B | A) occurs when either (X+Y, Y ) = (3, j3)

or (X + Y, Y ) = (j2, 3) (see Figure 4.6).
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Case 1. We prove (X + Y, Y ) ̸= (3, j3). If the event (Y = j3) occurs, then S0[1] = 0

always holds because j3 = S0[1]+S1[2] and S1[2] = Y . In this case, S1[0] = S0[1] = 0

from the 5th step in Algorithm 2. This fact is inconsistent with the assumption of

Path 3 because S1[0] ̸= S2[3]. Therefore, we obtain (X + Y, Y ) ̸= (3, j3).

Case 2. We prove (X + Y, Y ) = (j2, 3). Similarly, if the event (X + Y = j2) occurs, then

S0[1] = X always holds because j2 = S0[1] + S1[2] and S1[2] = Y , and j1 = j2 always

holds because S0[1] = S1[j1] = X and S1[j2] = X. The fact that an event (j1 = j2)

means Y = 0 because j1 = S0[1] and j2 = S0[1] = S1[2] = j1 + Y . Therefore, we

obtain (X + Y, Y ) ̸= (j2, 3).

From Cases 1 and 2, the event B never occurs in Path 3, and therefore we obtain

Pr(B | A ∧ (j2 ̸= 2, 3)) = 0.

In summary, the event (B | A) never occurs, and we obtain

Pr(A | B) =
Pr(A ∧ B)

Pr(B)
=

Pr(A) Pr(B | A)
Pr(Br)

=
Pr(A) · 0
Pr(Br)

= 0.

Theorem 4.6 ([IM16a, Theorem 7]). After the second round of the PRGA, we have

Pr((S2[j2] = i2 − Z2) ∧ (Z2 = 1, 2, 129)) = 0.

Proof. We prove that none of the events (S2[j2] = 2−Z2)∧(Z2 = 1), (S2[j2] = 2−Z2)∧(Z2 = 2),

or (S2[j2] = 2− Z2) ∧ (Z2 = 129) occurs by reduction to absurdity. Through the proof, we use

i1 = 1 and i2 = 2 for simplicity, and often use facts that j1 = S0[1](= S1[j1]) and j2 = j1 +S1[2]

from the 4th step in Algorithm 2.

Event 1. If the events (S2[j2] = 2 − Z2) and (Z2 = 1) occur simultaneously, then S2[j2] =

2− 1 = 1 always holds. From the 4th and 5th steps in Algorithm 2, we have

S1[2] = S2[j2] = 1, (4.1)

S1[j1] = S0[1] = j1, (4.2)

j2 = j1 + S1[2] = j1 + 1. (4.3)

Furthermore, from the 6th and 7th steps in Algorithm 2 and Equation (4.1), we have

Z2 = S2[S2[i2] + S2[j2]] = S2[S1[j2] + 1] = 1. (4.4)

Combining Equations (4.1), (4.3), and (4.4), j2 = S1[j2]+1 = j1+1. Therefore, we obtain

S1[j2] = j1. (4.5)

Then, Equations (4.2) and (4.5) yield an inconsistent result of j1 = j2. Therefore, the
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events (S2[j2] = 2 − Z2) and (Z2 = 1) never occur simultaneously, and thus Pr((S2[j2] =

2− Z2) ∧ (Z2 = 1)) = 0.

Event 2. If the events (S2[j2] = 2−Z2) and (Z2 = 2) occur simultaneously, then S2[j2] = 2−2 =

0 always holds, which implies S1[2] = S2[j2] = 0 from the 4th and 5th steps in Algorithm

2. We prove that S0[2] is never swapped with S0[1] in the first round. Let us assume that

S0[2] is swapped with S0[1], which implies j1 = 2. By swapping, S0[1] = S1[2] = 0 and

S0[1] = j1 are also applied. Apparently, this is a contradiction to j1 = 2. Thus, S0[2] is

never swapped, and S0[2] = S1[2] = 0 holds. This yields that an event (Z2 = 2) occurs

under S0[2] = 0, which is, however, in conflict with the fact1 that the event (Z2 = 2) never

occurs when S0[1] = 2 or S0[2] = 0, 2. Therefore, the events (S2[j2] = 2−Z2) and (Z2 = 2)

never occur simultaneously, and thus Pr((S2[j2] = 2− Z2) ∧ (Z2 = 2)) = 0.

Event 3. If the events (S2[j2] = 2 − Z2) and (Z2 = 129) occur simultaneously, then S2[j2] =

2 − 129 = 129 always holds, which implies S1[2] = S2[j2] = 129 from the 4th and 5th

steps in Algorithm 2. S0[1] is never swapped with S0[2] in the first round because it is

necessary for swapping that all of j1 = 2, S0[1] = S1[2] = 129, and S0[1] = j1, which

induces a contradiction of j1 = 129 = 2. Because S0[2] is never swapped, S0[1] ̸= 2 and

S0[2] = S1[2] = 129. This yields that the event (Z2 = 129]) occurs under S0[1] ̸= 2 and

S0[2] = 129, which is, however, in conflict with the fact2 that the event (Z2 = 129) never

occurs when (S0[1] ̸= 2) ∧ (S0[2] = 129) or (S0[1] ̸= 2) ∧ (S0[2] = 0). Therefore, the

events (S2[j2] = 2−Z2) and (Z2 = 129) never occur simultaneously, and thus Pr((S2[j2] =

2− Z2) ∧ (Z2 = 129)) = 0.

In summary, we obtain

Pr((S2[j2] = i2 − Z2) ∧ (Z2 = 1, 2, 129)) = 0.

4.3 Experimental Evaluations

We have performed experiments to check the accuracy of the theoretical values in all theorems.

The number of samples for our experiments is at least O(N3) according to Theorem 3.2. This

is because each of the target events in all theorems has a relative bias with probability at least

O( 1
N
). Then, our experiments used N3 randomly chosen keys of 16 bytes and N3 keystream

bytes for each key. This means that N6 samples are used to check the accuracy of the theoretical

values in Theorems 4.1–4.3. On the other hand, our experiments used N5 samples randomly

chosen keys of 16 bytes to check the accuracy of the theoretical values in Theorems 4.4–4.6,

Therefore, the number of samples satisfies the condition to distinguish each of the target events

from random distribution with constant probability of success.

We have evaluated the percentage of the relative error ϵmax of the experimental values

compared with the theoretical values (see Section 2.5.3). Table 4.1 shows the experimental

1It is described in the proof of Theorem 3 in [Sar15].
2It is described in the proof of Theorem 1 in [SGPM15].
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Table 4.1: Comparison between experimental and theoretical values.
Results Experimental Value Theoretical Value ϵmax(%)

Theorem 4.1

when r = 0 mod N
0.000030728 0.000030518

0.686≈ 2
N2 +

3.53
N3 ≈ 2

N2 +
0
N3

when r = 1 mod N
0.000045546 0.000045657

0.245≈ 3
N2 − 3.86

N3 ≈ 3
N2 − 2

N3

when r = N − 3 mod N
0.000030431 0.000030339

0.304≈ 2
N2 − 1.45

N3 ≈ 2
N2 − 3

N3

when r = N − 2 mod N
0.000045737 0.000045836

0.218≈ 3
N2 − 0.66

N3 ≈ 3
N2 +

1
N3

when r = N − 1 mod N
0.000015217 0.000015318

0.667≈ 1
N2 − 0.70

N3 ≈ 1
N2 +

1
N3

when r is even and 0.000030524 0.000030398
0.415

r ̸= 0, N − 2 mod N ≈ 2
N2 +

0.11
N3 ≈ 2

N2 − 2
N3

when r is odd and 0.000030381 0.000030279
0.338

r ̸= 1, N − 3, N − 1 mod N ≈ 2
N2 − 2.29

N3 ≈ 2
N2 − 4

N3

for the averaged result
0.000030513 0.000030458

0.182≈ 2
N2 − 0.08

N3 ≈ 2
N2 − 1

N3

Theorem 4.2

when x = 1
0.003922408 0.003906310

0.410≈ 1
N
+ 1.06

N2 ≈ 1
N
+ 1

N3

when x = N − 1
0.000030683 0.000030518

0.541≈ 2
N2 +

2.78
N3 ≈ 2

N2 +
0
N3

when x ̸= 1, N − 1
0.000015259 0.000015259

0.004≈ 1
N2 +

0
N3 ≈ 1

N2 +
0
N3

Theorem 4.3
0.007812333 0.007782221

0.386≈ 2
N
− 0.01

N2 ≈ 2
N
− 2

N2 +
4
N3

Theorem 4.4
0.007801373 0.007751621

0.640≈ 2
N
− 0.73

N2 ≈ 2
N
− 4

N2

Theorem 4.5 0 0 –
Theorem 4.6 0 0 –

and theoretical values, and the percentage of the relative errors ϵmax. Note that a polynomial

expression evaluated the experimental value is also listed in each case. From the table, we can

see that ϵmax is small enough in each case, such as ϵmax ≤ 0.686 (%). A slight difference between

the experimental and theoretical value is due to assuming the probability of random association,

and its strict analysis remains an open problem. As a result, we have checked the accuracy of

the theoretical values in all theorems.

4.4 Chapter Conclusion

This chapter has precisely investigated the existing Glimpse Correlations from the following

two approaches. One is to examine possibilities of new events with positive or negative biases

on all values in addition to a known value. The other is to improve the conditions of the
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probability of known biases on specific rounds. As a result, we have proved cases with new

biases theoretically in addition to the existing Glimpse Correlations. In the first approach,

combining our new biases and known ones, the Long-term Glimpse can be integrated into

biases of Sr[r + 1] ∈ [0, N − 1] when Zr+1 = Zr. In the second approach, we have successfully

found that the events (S2[3] = 0 | Z3 = Z2) and ((S2[j2] = i2 − Z2) ∧ (Z2 = 1, 2, 129)) never

occur.
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Chapter 5

Key Correlations of the Internal State

Variables

In WPA-TKIP, the range of K[1] is limited to either from 32 to 63 or from 96 to 127, and

the value of K[0] + K[1] must be always even. Therefore, Sen Gupta et al. first presented in

[GMM+14] that a probability distribution of K[0] + K[1] has biases from a relation between

K[0] and K[1] in WPA-TKIP (see Theorem 3.11 and Table 3.2).

They also presented significant key correlations of the keystream bytes in WPA-TKIP such

as Z1 = −K[0]−K[1], Z3 = K[0] +K[1] +K[2] + 3, Z256 = −K[0], and Z257 = −K[0]−K[1].

Their observed key correlations can be updated to the existing set of the strongest short-term

biases in the keystream bytes (see Table 3.1). As a result, they extended the IOWM attack in

[IOWM13], particularly on WPA-TKIP, by using key correlations of the keystream bytes, and

improved the efficiency for the attack.

This chapter investigates key correlations of the unknown internal state variables {Sr[ir+1],

Sr[jr+1], jr+1, tr+1} in generic RC4 and WPA-TKIP. A significant difference between ours and

the previous work in [GMM+14] is whether the analysis target is the internal state variables or

the keystream bytes. Actually, key correlations of the internal state variables are applied to the

existing state recovery attacks, particularly on WPA-TKIP, and would improve the efficiency for

the attack. We further focus on a difference between generic RC4 and WPA-TKIP, and found

some different correlations. Such correlations reflect a difference of the probability distribution

of K[0] +K[1] in generic RC4 and WPA-TKIP.

Our motivation in this chapter is to prove key correlations of the internal state variables

theoretically. Our theoretical proofs of key correlations can clarify how TKIP induces biases in

the internal state. If we demonstrate how many correlations have been existed in the internal

state, the RC4 key setting in WPA can be redesigned securely while maintaining congruity with

TKIP. WPA-TKIP should have been designed in such a way that it can retain the security level

of generic RC4. Our cryptanalysis would be also useful to investigate a generic construction of

key setting including the known IV in such a way that it can retain the security level of the

original scheme.

Our contributions in this chapter can be summarized as the following 22 theorems:
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• Theorems 5.1 and 5.2 present Pr(S0[i1] = K[0]) in generic RC4 and WPA-TKIP, respec-

tively. Particularly, we emphasize that Pr(S0[i1] = K[0]) = 0 in WPA-TKIP.

• Theorems 5.3 and 5.4 present Pr(S0[i1] = K[0] − K[1] − 3) in generic RC4 and WPA-

TKIP, respectively. Theorems 5.5 and 5.6 present Pr(S0[i1] = K[0]−K[1]− 1) in generic

RC4 and WPA-TKIP, respectively. Theorems 5.7 and 5.8 present Pr(S0[i1] = −K[0] −
K[1] − 3) in generic RC4 and WPA-TKIP, respectively. Theorems 5.11 and 5.13 present

Pr(S1[i2] = −K[0] − K[1] + K[2] − 1) and Pr(S1[i2] = K[0] − K[1] + K[2] + x) for

x ∈ {−3,−1, 1}, respectively. These theorems only in WPA-TKIP provide approximately

twice the probability of random association 1
N
.

• Theorem 5.9 presents that Pr(S0[i1] = K[0]+K[1]+K[2]+3) is a relatively low probability

in comparison with the probability of random association 1
N

in generic RC4 and WPA-

TKIP.

• Theorem 5.10 presents that Pr(S1[i2] = K[0] + K[1] + K[2] + 3) is a relatively high

probability in comparison with the probability of random association 1
N

in generic RC4

and WPA-TKIP. It is induced by the Roos Biases as Theorem 3.19, that is Pr(S0[2] =

K[0] +K[1] +K[2] + 3) ≈
(
1− 2

N

)
·
(
1− 1

N

)N+3
+ 1

N
.

• Theorem 5.12 presents that Pr(S1[i2] = K[1] + K[2] + 3) is approximately twice the

probability of random association 1
N

in generic RC4 and WPA-TKIP.

• Theorem 5.14 presents that Pr(S1[i2] = K[0]−K[1] +K[2] + 3) shows a positive bias in

generic RC4 but a negative bias in WPA-TKIP.

• Theorem 5.15 presents that Pr(S255[i256] = K[0]) is a relatively high probability in com-

parison with the probability of random association 1
N

in generic RC4 and WPA-TKIP.

However, Theorem 5.16 presents that Pr(S255[i256] = K[1]) is a relatively high probability

only in WPA-TKIP.

• Theorem 5.17 presents Pr(Sr[ir+1] = K[0]+K[1]+1) in both generic RC4 and WPA-TKIP

for 0 ≤ r ≤ N , and its distribution reflects the probability distribution of K[0] +K[1].

• Theorems 5.18–5.22 provide theoretical analyses of the second round index j2.

We further discuss secure RC4 key setting in WPA-TKIP in such a way that it can retain the

security level of generic RC4. If the RC4 key setting is refined, it can be difficult to induce key

correlations including the keystream bytes Zr or the internal state variables {Sr[ir+1], Sr[jr+1],

jr+1, tr+1}. In order to investigate toward secure RC4 key setting in WPA-TKIP, we carefully

set an arbitrary three bytes of the RC4 key {K[x], K[y], K[z]} from the known IV in the same

72



CHAPTER 5. KEY CORRELATIONS OF THE INTERNAL STATE VARIABLES

way as the original setting in WPA-TKIP as follows:

K[x] = (IV16 ≫ 8) & 0xFF,

K[y] = ((IV16 ≫ 8) | 0x20) & 0x7F,

K[z] = IV16 & 0xFF.

As a result of our investigations, the number of key correlations induced by our refined setting,

e.g., (x, y, z) = (9, 10, 11), can be reduced by approximately 70% in comparison with that in

the original setting in WPA-TKIP.

The remainder of this chapter is organized as follows: Section 5.1 discusses new key cor-

relations of the internal state variables observed by our experiments. Section 5.2 presents the

theoretical proofs of newly observed key correlations. Section 5.3 demonstrates the experimental

simulations in order to confirm the accuracy of the theoretical proofs. Section 5.4 discuss secure

RC4 key setting in such a way that it can retain the security level of generic RC4. Section 5.5

concludes this chapter.

5.1 Experimental Observations

This section presents our experimental observations of new key correlations of the following

unknown internal state variables in generic RC4 and WPA-TKIP: Sr[ir+1], Sr[jr+1], jr+1, and

tr+1 for r ≥ 0. In [GMM+14], Sen Gupta et al. investigated key correlations of the keystream

bytes Zr by using a linear form

Zr = a ·K[0] + b ·K[1] + c ·K[2] + d (5.1)

for a, b, c ∈ {−1, 0, 1} and d ∈ {−3,−2,−1, 0, 1, 2, 3} for r ≥ 1. We then extend their linear

form in Equation (5.1) to

Xr = a · Zr+1 + b ·K[0] + c ·K[1] + d ·K[2] + e, (5.2)

where Xr ∈ {Sr[ir+1], Sr[jr+1], jr+1, tr+1}, a, b, c, d ∈ {−1, 0, 1}, and e ∈ {−3,−2,−1, 0, 1, 2, 3}
for r ≥ 0. Sen Gupta et al. extended the IOWM attack in [IOWM13], particularly on WPA-

TKIP, by using their observed key correlations, and improved the efficiency for the plaintext

recovery attack. Similarly, if we extend the state recovery attack, particularly on WPA-TKIP,

by using our observed key correlations, we will improve the efficiency for the attack.

We have performed experiments with all 4 ·34 ·7 equations defined by Equation (5.2) in each

round. Our experiments have used 232 randomly chosen keys of 16 bytes in generic RC4 and

WPA-TKIP. Tables 5.1 and A.1 summarize the lists of significant observations with probability

more than 0.0048 or less than 0.0020 in either generic RC4 or WPA-TKIP. We can see from the

tables that there exists a certain event with a bias only in WPA-TKIP but no bias in generic

RC4. Particularly, we emphasize that an target event (S0[i1] = K[0]) yields an impossible
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Table 5.1: New key correlations by Equation (5.2) in generic RC4 and WPA-TKIP.
Xr Key correlations RC4 WPA-TKIP Remarks

K[0] 0.001450 0 Theorems 5.1 and 5.2
K[0]−K[1]− 3 0.005337 0.007848 Theorems 5.3 and 5.4
K[0]−K[1]− 1 0.003922 0.007877 Theorems 5.5 and 5.6
−K[0]−K[1]− 3 0.005336 0.008437 Theorems 5.7 and 5.8

S0[i1]

K[0] +K[1] +K[2] + 3 0.001492 0.001491 Theorem 5.9
K[0] +K[1] +K[2] + 3 0.360357 0.361718 Theorem 5.10
−K[0]−K[1] +K[2]− 1 0.005305 0.008197 Theorem 5.11
K[1] +K[2] + 3 0.008157 0.008092 Theorem 5.12
K[0]−K[1] +K[2]− 3 0.005295 0.008163 Theorem 5.13
K[0]−K[1] +K[2]− 1 0.005290 0.008171 Theorem 5.13
K[0]−K[1] +K[2] + 1 0.005309 0.008171 Theorem 5.13

S1[i2]

K[0]−K[1] +K[2] + 3 0.005310 0.002838 Theorem 5.14
K[0] 0.137294 0.138047 Theorem 5.15

S255[i256] K[1] 0.003911 0.037189 Theorem 5.16
Sr[ir+1] K[0] +K[1] + 1 Figure 5.1 Theorem 5.17

K[2] 0.004428 0.005571 Theorem 5.18
−K[0]−K[1] +K[2]− 2 0.003921 0.004574 Theorem 5.19
−K[0]−K[1] +K[2] 0.003919 0.005573 Theorem 5.19
−K[0]−K[1] +K[2] + 2 0.003912 0.004545 Theorem 5.19
−K[0] +K[1] +K[2] 0.003921 0.005501 Theorem 5.20
−K[1] +K[2]− 2 0.003911 0.005479 Theorem 5.21
−K[1] +K[2] + 3 0.003899 0.005476 Theorem 5.21

j2

K[0]−K[1] +K[2] 0.003918 0.005618 Theorem 5.22

Figure 5.1: Observation of the event (Sr[ir+1] = K[0] +K[1] + 1).
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condition in WPA-TKIP, and thus the probability of the target event is 0. Then, the value of

S0[i1] varies from 0 to N − 1 except for K[0].

We will provide the theoretical proofs of significant key correlations listed in Table 5.1. In

the following proofs, we often use the Roos Biases (see Theorem 3.19), Nested Roos Biases

(see Theorem 3.20), and probability distribution of K[0] +K[1] (see Theorem 3.11), which are

denoted by αy = Pr(S0[y] =
y(y+1)

2
+
∑y

x=0 K[x]), βy = Pr(S0[S0[y]] =
y(y+1)

2
+
∑y

x=0 K[x]), and

γv = Pr(K[0] +K[1] = v), respectively.

5.2 New Results

This section provides 22 theorems and their proofs. In our proofs, we often assume that the

certain event occurs with probability approximately 1
N
, which is called the probability of random

association. This is because it is difficult to demonstrate all events in the state transition of

RC4, and it is a natural assumption based on the pseudorandomness of stream ciphers. The

correctness of this assumption can be confirmed by experimental evaluations in Section 5.3. If

this assumption is correct, the relative error between the experimental and theoretical value in

each theorem will be small enough, and vice versa. Owing to this assumption, we often use the

symbol of the approximate equation “≈” throughout this section.

5.2.1 Key Correlations of S0[i1]

This subsection provides Theorems 5.1–5.9 and their proofs. Theorems 5.1 and 5.2 present that

an event (S0[i1] = K[0]) yields a negative bias in generic RC4 and never occurs in WPA-TKIP,

respectively. Theorems 5.3 and 5.4 present that an event (S0[i1] = K[0] − K[1] − 3) yields

a positive bias in generic RC4 and occurs with twice the probability of random association
1
N

in WPA-TKIP, respectively. Theorems 5.5 and 5.6 present that an event (S0[i1] = K[0] −
K[1] − 1) yields a slight bias in generic RC4 and occurs with twice the probability of random

association 1
N
in WPA-TKIP, respectively. Theorems 5.7 and 5.8 present that an event (S0[i1] =

−K[0] −K[1] − 3) yields a positive bias in generic RC4 and occurs with twice the probability

of random association 1
N

in WPA-TKIP, respectively. Theorem 5.9 presents that an event

(S0[i1] = K[0] +K[1] +K[2] + 3) yields a negative bias in both generic RC4 and WPA-TKIP.

Note that Theorems 5.4, 5.6, and 5.8 mean that the first round of the internal state variable

S0[i1] can be guessed with twice the probability of random association 1
N

by using known K[0]

and K[1] in WPA-TKIP.

Theorem 5.1 ([IM16b, Theorem 1]). In the initial state of the PRGA, we have

Pr(S0[i1] = K[0])RC4 ≈
1

N

(
1− 1

N

)N−2

.

Proof. Figure 5.2 shows a state transition diagram in the first two rounds of the KSA. From

the 6th step in Algorithm 1, both jK1 = jK0 + SK
0 [0] + K[0] = 0 + 0 + K[0] = K[0] and
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Figure 5.2: State transition diagram in the first two rounds of the KSA.

Figure 5.3: State transition diagram in Path 1-1 (Theorem 5.1).

jK2 = jK1 +SK
1 [1]+K[1] = K[0]+K[1]+SK

1 [1]. The probability of the target event (S0[i1] = K[0])

can be decomposed into three paths: K[0] +K[1] = 0 (Path 1), K[0] +K[1] = 255 (Path 2),

and K[0] +K[1] ̸= 0, 255 (Path 3). Both Paths 1 and 2 are further divided into two subpaths:

K[0] = 1 (Paths 1-1 and 2-1) and K[0] ̸= 1 (Paths 1-2 and 2-2), respectively. In the following

proof, we use S0[1] instead of S0[i1] (i1 = 1) and SK
N [1] for simplicity.

Path 1-1. Figure 5.3 shows a state transition diagram in Path 1-1. After the second round of

the KSA, SK
2 [1] = K[0] always holds because jK1 = K[0] = 1 and jK2 = K[0] + K[1] +

SK
1 [1] = 0 + 0 = 0. Furthermore, SK

r [1] = SK
2 [1] for 3 ≤ r ≤ N when jKr ̸= 1 during

the remaining N − 2 rounds of the KSA, whose probability is approximately
(
1− 1

N

)N−2

because we assume that jKr = 1 for each round with probability approximately 1
N
(random

association). Therefore, we obtain

Pr(S0[1] = K[0] | Path 1-1) ≈
(
1− 1

N

)N−2

.

Path 1-2. Figure 5.4 shows a state transition diagram in Path 1-2. After the second round

of the KSA, SK
2 [0] = K[0] always holds because jK1 = K[0] ̸= 1 and jK2 = (K[0] +
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Figure 5.4: State transition diagram in Path 1-2 (Theorem 5.1).

Figure 5.5: State transition diagram in Path 2-1 (Theorem 5.1).

K[1]) + SK
1 [1] = 0 + 1 = 1. Then, the target event (S0[1] = K[0]) never occurs because

SK
r [1] ̸= K[0] always holds for r ≥ 2 from Algorithm 1. Therefore, we obtain

Pr(S0[1] = K[0] | Path 1-2) = 0.

Path 2-1. Figure 5.5 shows a state transition diagram in Path 2-1. After the second round of

the KSA, SK
2 [0] = K[0] always holds in the same way as the case of Path 1-2. Then, the

target event (S0[1] = K[0]) never occurs. Therefore, we obtain

Pr(S0[1] = K[0] | Path 2-1) = 0.

Path 2-2. Figure 5.6 shows a state transition diagram in Path 2-2. After the second round

of the KSA, SK
2 [1] = K[0] always holds in the same way as the case of Path 1-1. Then,

the target event (S0[1] = K[0]) occurs when Sr[1] = SK
2 [1] for 3 ≤ r ≤ N . Therefore, we

obtain

Pr(S0[1] = K[0] | Path 2-2) ≈
(
1− 1

N

)N−2

.
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Figure 5.6: State transition diagram in Path 2-2 (Theorem 5.1).

Path 3. Figure 5.2 shows a state transition diagram in Path 3. After the second round of the

KSA, SK
2 [0] = K[0] always holds in the same way as the cases of Paths 1-2 and 2-1. Then,

the target event (S0[1] = K[0]) never occurs. Therefore, we obtain

Pr(S0[1] = K[0] | Path 3) = 0.

The target event (S0[1] = K[0]) occurs only in either Paths 1-1 or 2-2. Both K[0] and K[1] are

generated uniformly at random, and therefore we obtain

Pr(S0[1] = K[0])RC4 = Pr(S0[1] = K[0] | Path 1-1) · Pr(Path 1-1)

+ Pr(S0[1] = K[0] | Path 2-2) · Pr(Path 2-2)

≈
(
1− 1

N

)N−2

· 1

N2
+

(
1− 1

N

)N−2

· 1

N
·
(
1− 1

N

)
=

1

N

(
1− 1

N

)N−2

.

Theorem 5.2 ([IM16b, Theorem 2]). In the initial state of the PRGA in WPA-TKIP, we have

Pr(S0[i1] = K[0])WPA = 0.

Proof. The target event (S0[i1] = K[0]) occurs when eitherK[0]+K[1] = 0 or 255, and Theorem

3.11 presents that neither K[0] +K[1] = 0 nor 255 in WPA-TKIP. Therefore, we obtain

Pr(S0[i1] = K[0])WPA = Pr(S0[i1] = K[0] | Path 1-1) · Pr(Path 1-1)

+ Pr(S0[i1] = K[0] | Path 2-2) · Pr(Path 2-2)

≈
(
1− 1

N

)N−2

· 0 +
(
1− 1

N

)N−2

· 0 = 0.

Theorem 5.3 ([IM16b, Theorem 3]). In the initial state of the PRGA, we have

Pr(S0[i1] = K[0]−K[1]− 3)RC4 ≈
2

N
α1 +

1

N

(
1− 2

N

)
(1− α1).
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Proof. The probability of the target event (S0[i1] = K[0] −K[1] − 3) can be decomposed into

two paths: K[1] = 126, 254 (Path 1) and K[1] ̸= 126, 254 (Path 2). In the following proof, we

use S0[1] instead of S0[i1] (i1 = 1) for simplicity.

Path 1. Because K[0]−K[1]− 3 = K[0] +K[1] + 1 when either K[1] = 126 or 254, the target

event (S0[1] = K[0]−K[1]− 3) occurs if and only if S0[1] = K[0] +K[1] + 1. Therefore,

we obtain

Pr(S0[1] = K[0]−K[1]− 3 | Path 1) = α1.

Path 2. Because K[0]−K[1]−3 ̸= K[0]+K[1]+1 when neither K[1] = 126 nor 254, the target

event (S0[1] = K[0]−K[1]−3) never occurs if S0[1] = K[0]+K[1]+1. On the other hand,

if S0[1] ̸= K[0]+K[1]+ 1, we then assume that the target event (S0[1] = K[0]−K[1]− 3)

occurs with probability approximately 1
N

(random association). Therefore, we obtain

Pr(S0[1] = K[0]−K[1]− 3 | Path 2) ≈ 1

N
(1− α1).

K[1] is generated uniformly at random, and therefore we obtain

Pr(S0[1] = K[0]−K[1]− 3)RC4 = Pr(S0[1] = K[0]−K[1]− 3 | Path 1) · Pr(Path 1)

+ Pr(S0[1] = K[0]−K[1]− 3 | Path 2) · Pr(Path 2)

≈ 2

N
α1 +

1

N

(
1− 2

N

)
(1− α1).

Before showing Theorems 5.4 and 5.6, we prove Lemma 5.1. Lemma 5.1 presents a proba-

bility distribution of K[0]−K[1] in WPA-TKIP.

Lemma 5.1 ([IM16b, Lemma 1]). For 0 ≤ v ≤ N − 1, a distribution of K[0] − K[1] = v in

WPA-TKIP is given by

Pr(K[0]−K[1] = v) =
1

4
when v ∈ {0, 96, 128, 224},

Pr(K[0]−K[1] = v) = 0 otherwise.

Proof. The value of K[0]−K[1] depends on that of K[0], and therefore the probability distri-

bution of K[0]−K[1] can be obtained directly from Table 5.2.

Theorem 5.4 ([IM16b, Theorem 4]). In the initial state of the PRGA in WPA-TKIP, we have

Pr(S0[i1] = K[0]−K[1]− 3)WPA

≈ 4

N
α1 +

1

4N

((
1− 1

N

)91

+

(
1− 1

N

)123

+

(
1− 1

N

)219

+

(
1− 1

N

)251)(
1− 4

N

)
.

Proof. Note that the range of K[1] is limited to either from 32 to 63 or from 96 to 127 in WPA-

TKIP (see Table 5.2). Then, as with the discussion in the proof of Theorem 5.3, the probability
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Table 5.2: Probability distribution of K[0]−K[1] in WPA-TKIP.
K[0] K[1] (depends on K[0]) K[0]−K[1]
Range Value Range Value

0–31 K[0] + 32 32–63 224
32–63 K[0] 32–63 0
64–95 K[0] + 32 96–127 224
96–127 K[0] 96–127 0
128–159 K[0]− 96 32–63 96
160–191 K[0]− 128 32–63 128
192–223 K[0]− 96 96–127 96
224–255 K[0]− 128 96–127 128

of the target event (S0[i1] = K[0]−K[1]−3) in WPA-TKIP can be decomposed into two paths:

K[1] = 126 (Path 1) and K[1] ̸= 126 (Path 2). In the following proof, we use S0[1] instead of

S0[i1] (i1 = 1) for simplicity.

Path 1. Because K[0] − K[1] − 3 = K[0] + K[1] + 1 when K[1] = 126, the target event

(S0[1] = K[0] − K[1] − 3) occurs if and only if S0[1] = K[0] + K[1] + 1. Therefore, we

obtain

Pr(S0[1] = K[0]−K[1]− 3 | Path 1) = α1.

Path 2. Because K[0] − K[1] − 3 ̸= K[0] + K[1] + 1 when K[1] ̸= 126, the target event

(S0[1] = K[0]−K[1]− 3) never occurs if S0[1] = K[0] +K[1] + 1. Now, we focus on the

probability distribution ofK[0]−K[1] in WPA-TKIP (see Lemma 5.1). Assuming that the

target event (S0[1] = K[0]−K[1]−3) occurs, S0[1] can be one of the following four values:

93, 125, 221, or 253. Then, the probability in Path 2 can be further decomposed into four

paths: K[0] − K[1] = 96 (Path 2-1), K[0] − K[1] = 128 (Path 2-2), K[0] − K[1] = 224

(Path 2-3), and K[0]−K[1] = 0 (Path 2-4).

Path 2-1. After the second round of the KSA, both SK
2 [1] = K[0] + K[1] + 1 ̸= 93

(we can compute the sum of K[0] and K[1] from Table 5.2) and SK
2 [93] = 93 from

Algorithm 1. After that, if SK
r [93] ̸= SK

2 [93] = 93 for 3 ≤ r ≤ 93, the target event

(S0[1] = K[0] − K[1] − 3 = 93) never occurs in the same way as the discussion of

Theorem 5.1 (Path 1-2 in the proof). If SK
r [93] = SK

2 [93] = 93, whose probability

is approximately
(
1 − 1

N

)91
because we assume that jKr = 93 for each round with

probability approximately 1
N

(random association), then we also assume that the

target event (S0[1] = K[0] − K[1] − 3) occurs with probability approximately 1
N

(random association). Therefore, we obtain

Pr(S0[1] = K[0]−K[1]− 3 | Path 2 ∧ Path 2-1) ≈ 1

N

(
1− 1

N

)91

.

The probabilities of the target event (S0[1] = K[0]−K[1]−3) under the conditions of
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Path 2-2, Path 2-3, and Path 2-4 can be obtained in the same way as the discussion

of Path 2-1. Therefore, we obtain

Pr(S0[1] = K[0]−K[1]− 3 | Path 2 ∧ Path 2-2) ≈ 1

N

(
1− 1

N

)123

,

Pr(S0[1] = K[0]−K[1]− 3 | Path 2 ∧ Path 2-3) ≈ 1

N

(
1− 1

N

)219

,

Pr(S0[1] = K[0]−K[1]− 3 | Path 2 ∧ Path 2-4) ≈ 1

N

(
1− 1

N

)251

.

The probability of these subpaths is taken from Lemma 5.1. In summary, we obtain

Pr(S0[1] = K[0]−K[1]− 3 | Path 2)

= Pr(S0[1] = K[0]−K[1]− 3 | Path 2 ∧ Path 2-1) · Pr(Path 2-1 | Path 2)

+ Pr(S0[1] = K[0]−K[1]− 3 | Path 2 ∧ Path 2-2) · Pr(Path 2-2 | Path 2)

+ Pr(S0[1] = K[0]−K[1]− 3 | Path 2 ∧ Path 2-3) · Pr(Path 2-3 | Path 2)

+ Pr(S0[1] = K[0]−K[1]− 3 | Path 2 ∧ Path 2-4) · Pr(Path 2-4 | Path 2)

≈ 1

4N

((
1− 1

N

)91

+

(
1− 1

N

)123

+

(
1− 1

N

)219

+

(
1− 1

N

)251)
.

Note that Pr(K[1] = 126) = 1
4
in WPA-TKIP (see Table 5.2). Therefore, we obtain

Pr(S0[1] = K[0]−K[1]− 3)

= Pr(S0[1] = K[0]−K[1]− 3 | Path 1) · Pr(Path 1)

+ Pr(S0[1] = K[0]−K[1]− 3 | Path 2) · Pr(Path 2)

≈ 4

N
α1 +

1

4N

((
1− 1

N

)91

+

(
1− 1

N

)123

+

(
1− 1

N

)219

+

(
1− 1

N

)251)(
1− 4

N

)
.

Theorem 5.5 ([IM16b, Theorem 5]). In the initial state of the PRGA, we have

Pr(S0[i1] = K[0]−K[1]− 1)RC4

≈ 1

N2

(
1− 1

N

)((
1− 1

N

)N−3

+ 1

)
+

1

N

(
1 +

2

N

)
α1 +

1

N

(
1− 2

N

)
(1− α1).

Proof. The probability of the target event (S0[i1] = K[0] −K[1] − 1) can be decomposed into

four paths: K[1] = 0 (Path 1), K[1] = 127 (Path 2), K[1] = 255 (Path 3), andK[1] ̸= 0, 127, 255

(Path 4). In the following proof, we use S0[1] instead of S0[i1] (i1 = 1) for simplicity.

Path 1. In the first two rounds of the KSA, both jK1 = K[0] and jK2 = K[0]+K[1]+SK
1 [1] (see

Figure 5.2). When K[0] = 1, both SK
2 [1] = 0 and K[0]−K[1]−1 = 0 always hold because

jK1 = 1 and SK
1 [1] = 0. After that, SK

r [1] = SK
2 [1] for 3 ≤ r ≤ N when jKr ̸= 1 during
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the remaining N − 2 rounds of the KSA, whose probability is approximately
(
1− 1

N

)N−2

because we assume that jK1 = 1 for each round with probability approximately 1
N
(random

association). Therefore, we obtain

Pr(S0[1] = K[0]−K[1]− 1 | Path 1 ∧K[0] = 1) ≈
(
1− 1

N

)N−2

.

On the other hand, when K[0] ̸= 1, both SK
2 [1] = K[0]+1 and K[0]−K[1]−1 = K[0]−1.

We then assume that the target event (S0[1] = K[0] −K[1] − 1) occurs with probability

approximately 1
N

(random association). Therefore, we obtain

Pr(S0[1] = K[0]−K[1]− 1 | Path 1 ∧K[0] ̸= 1) ≈ 1

N
.

K[0] is generated uniformly at random, and K[0] and K[1] are mutually independent. In

summary, we obtain

Pr(S0[i1] = K[0]−K[1]− 1 | Path 1)

= Pr(S0[i1] = K[0]−K[1]− 1 | Path 1 ∧K[0] = 1) · Pr(K[0] = 1 | Path 1)

+ Pr(S0[i1] = K[0]−K[1]− 1 | Path 1 ∧K[0] ̸= 1) · Pr(K[0] ̸= 1 | Path 1)

≈
(
1− 1

N

)N−2

· 1

N
+

1

N
·
(
1− 1

N

)
=

1

N

(
1− 1

N

)((
1− 1

N

)N−3

+ 1

)
.

Path 2. Because K[0] − K[1] − 1 = K[0] + K[1] + 1 when K[1] = 127, the target event

(S0[1] = K[0] − K[1] − 1) occurs if and only if S0[1] = K[0] + K[1] + 1. Therefore, we

obtain

Pr(S0[1] = K[0]−K[1]− 1 | Path 2) = α1.

Path 3. Because K[0] − K[1] − 1 = K[0] + K[1] + 1 when K[1] = 255, the target event

(S0[1] = K[0]−K[1]−1) occurs if and only if S0[1] = K[0]+K[1]+1. From the discussion

in Theorem 5.1, the event (S0[1] = K[0]) occurs if and only if either (K[0] + K[1] =

0) ∧ (K[0] = 1) or (K[0] +K[1] = 255) ∧ (K[0] ̸= 1). We assume that both K[1] = 255

and S0[1] = K[0] +K[1] + 1, and the target event (S0[1] = K[0]−K[1]− 1) occurs if and

only if either K[0] = 0 or 1. Therefore, we obtain

Pr(S0[1] = K[0]−K[1]− 1 | Path 3) = Pr(K[0] = 0, 1) · α1.

Path 4. Because K[0]−K[1]− 1 ̸= K[0] +K[1] + 1 when neither K[1] = 0, 127, nor 255, the

target event (S0[1] = K[0] − K[1] − 1) never occurs if S0[1] = K[0] + K[1] + 1. When

S0[1] ̸= K[0] +K[1] + 1, we assume that the target event (S0[1] = K[0]−K[1]− 1) occurs
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with probability approximately 1
N

(random association). Therefore, we obtain

Pr(S0[1] = K[0]−K[1]− 1 | Path 4) ≈ 1

N
· (1− α1).

K[1] is generated uniformly at random, and therefore we obtain

Pr(S0[1] = K[0]−K[1]− 1)

= Pr(S0[1] = K[0]−K[1]− 1 | Path 1) · Pr(Path 1)

+ Pr(S0[1] = K[0]−K[1]− 1 | Path 2) · Pr(Path 2)

+ Pr(S0[1] = K[0]−K[1]− 1 | Path 3) · Pr(Path 3)

+ Pr(S0[1] = K[0]−K[1]− 1 | Path 4) · Pr(Path 4)

≈ 1

N2

(
1− 1

N

)((
1− 1

N

)N−3

+ 1

)
+

1

N

(
1 +

2

N

)
α1 +

1

N

(
1− 2

N

)
(1− α1),

where α1 = Pr(S0[1] = K[0] +K[1] + 1) ≈
(
N−1
N

)N+2
+ 1

N
.

Theorem 5.6 ([IM16b, Theorem 6]). In the initial state of the PRGA in WPA-TKIP, we have

Pr(S0[i1] = K[0]−K[1]− 1)WPA

≈ 4

N
α1 +

1

4N

((
1− 1

N

)93

+

(
1− 1

N

)125

+

(
1− 1

N

)221

+

(
1− 1

N

)253)(
1− 4

N

)
.

Proof. The proof itself is similar to that of Theorem 5.4. Note that the range ofK[1] is limited to

either from 32 to 63 or from 96 to 127 inWPA-TKIP (see Table 5.2). Then, as with the discussion

in the proof of Theorem 5.5, the probability of the target event (S0[i1] = K[0] − K[1] − 1) in

WPA-TKIP can be decomposed into two paths: K[1] = 127 (Path 1) and K[1] ̸= 127 (Path 2).

In the following proof, we use S0[1] instead of S0[i1] (i1 = 1) for simplicity.

Path 1. Because K[0] − K[1] − 1 = K[0] + K[1] + 1 when K[1] = 127, the target event

(S0[1] = K[0] − K[1] − 1) occurs if and only if S0[1] = K[0] + K[1] + 1. Therefore, we

obtain

Pr(S0[1] = K[0]−K[1]− 1 | Path 1) = α1.

Path 2. Because K[0] − K[1] − 1 ̸= K[0] + K[1] + 1 when K[1] ̸= 127, the target event

(S0[1] = K[0] − K[1] − 1) never occurs if S0[1] = K[0] + K[1] + 1. Assuming that the

target event (S0[1] = K[0] − K[1] − 1) occurs, S0[1] can be one of the following values

from Lemma 5.1: 95, 127, 223, or 255. Then, the probability in Path 2 can be further

decomposed in four paths: K[0] −K[1] = 96 (Path 2-1), K[0] −K[1] = 128 (Path 2-2),

K[0] − K[1] = 224 (Path 2-3), and K[0] − K[1] = 0 (Path 2-4). The probabilities of

the target event (S0[1] = K[0] − K[1] − 1) under the conditions of all subpaths can be

computed in the same way as in the discussion in the proof of Theorem 5.4. Therefore,
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we obtain

Pr(S0[1] = K[0]−K[1]− 1 | Path 2 ∧ Path 2-1) ≈ 1

N

(
1− 1

N

)93

,

Pr(S0[1] = K[0]−K[1]− 1 | Path 2 ∧ Path 2-2) ≈ 1

N

(
1− 1

N

)125

,

Pr(S0[1] = K[0]−K[1]− 1 | Path 2 ∧ Path 2-3) ≈ 1

N

(
1− 1

N

)221

,

Pr(S0[1] = K[0]−K[1]− 1 | Path 2 ∧ Path 2-4) ≈ 1

N

(
1− 1

N

)253

.

The probabilities of these subpaths are taken from Lemma 5.1, and therefore we obtain

Pr(S0[1] = K[0]−K[1]− 1 | Path 2)

= Pr(S0[1] = K[0]−K[1]− 1 | Path 2 ∧ Path 2-1) · Pr(Path 2-1 | Path 2)

+ Pr(S0[1] = K[0]−K[1]− 1 | Path 2 ∧ Path 2-2) · Pr(Path 2-2 | Path 2)

+ Pr(S0[1] = K[0]−K[1]− 1 | Path 2 ∧ Path 2-3) · Pr(Path 2-3 | Path 2)

+ Pr(S0[1] = K[0]−K[1]− 1 | Path 2 ∧ Path 2-4) · Pr(Path 2-4 | Path 2)

≈ 1

4N

((
1− 1

N

)93

+

(
1− 1

N

)125

+

(
1− 1

N

)221

+

(
1− 1

N

)253)
.

Note that Pr(K[1] = 126) = 1
4
in WPA-TKIP (see Table 5.2). In summary, we obtain

Pr(S0[1] = K[0]−K[1]− 1)

= Pr(S0[1] = K[0]−K[1]− 1 | Path 1) · Pr(Path 1)

+ Pr(S0[1] = K[0]−K[1]− 1 | Path 2) · Pr(Path 2)

≈ 4

N
α1 +

1

4N

((
1− 1

N

)93

+

(
1− 1

N

)125

+

(
1− 1

N

)221

+

(
1− 1

N

)253)(
1− 4

N

)
.

Theorem 5.7 ([IM17, Theorem 1]). In the initial state of the PRGA in generic RC4, we have

Pr(S0[i1] = −K[0]−K[1]− 3)RC4 ≈
2

N
(α1 +

1

N
(1− α1)) +

1

N

(
1− 2

N

)
(1− α1).

Proof. The probability of the target event (S0[i1] = −K[0] −K[1] − 3) in generic RC4 can be

decomposed into two paths: K[0] +K[1] = 126, 254 (Path 1) and K[0] +K[1] ̸= 126, 254 (Path

2). These paths include all events in order to compute Pr(S0[i1] = −K[0] − K[1] − 3)RC4. In

the following proof, we use S0[1] instead of S0[i1] (i1 = 1) for simplicity.

Path 1. Because −K[0]−K[1]−3 = K[0]+K[1]+1, the target event (S0[1] = −K[0]−K[1]−3)

always occurs when S0[1] = K[0] +K[1] + 1. In addition, when S0[1] ̸= K[0] +K[1] + 1,
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we assume that the target event (S0[1] = −K[0] − K[1] − 3) occurs with probability

approximately 1
N

(random association). Therefore, we obtain

Pr(S0[1] = −K[0]−K[1]− 3 | Path 1) = α1 +
1

N
(1− α1).

Path 2. Because −K[0]−K[1]−3 ̸= K[0]+K[1]+1, the target event (S0[1] = −K[0]−K[1]−3)

never occurs if S0[1] = K[0]+K[1]+1. When S0[1] ̸= K[0]+K[1]+1, we assume that the

target event (S0[1] = −K[0]−K[1]−3) occurs with probability approximately 1
N

(random

association). Therefore, we obtain

Pr(S0[1] = −K[0]−K[1]− 3 | Path 2) ≈ 1

N
(1− α1).

K is generated uniformly at random in generic RC4, and therefore we obtain

Pr(S0[1] = K[0]−K[1]− 3)RC4 = Pr(S0[1] = K[0]−K[1]− 3 | Path 1) · Pr(Path 1)

+ Pr(S0[1] = K[0]−K[1]− 3 | Path 2) · Pr(Path 2)

≈ 2

N
(α1 +

1

N
(1− α1)) +

1

N

(
1− 2

N

)
(1− α1).

Before showing Theorem 5.8, we prove Lemma 5.2.

Lemma 5.2 ([IM17, Corollary 1]). For 0 ≤ v ≤ N − 1, a distribution of −K[0]−K[1] = v in

WPA-TKIP is given by

Pr(−K[0]−K[1] = v) = 0 if v is odd,

Pr(−K[0]−K[1] = v) = 0 if v is even and v ∈ [97, 128] ∪ [225, 256],

Pr(−K[0]−K[1] = v) =
2

256
if v is even and v ∈ [1, 32] ∪ [65, 96] ∪ [129, 160] ∪ [193, 224],

Pr(−K[0]−K[1] = v) =
4

256
if v is even and v ∈ [33, 64] ∪ [161, 192].

Proof. The value of −K[0] −K[1] depends on that of K[0], and therefore the probability dis-

tribution of −K[0]−K[1] can be obtained directly from Table 5.3.

Theorem 5.8 ([IM17, Theorem 2]). In the initial state of the PRGA in WPA-TKIP for 0 ≤
x ≤ N − 1, we have

Pr(S0[i1] = −K[0]−K[1]− 3)WPA

≈ 4

N

(
α1 +

1

N
(1− α1)

)
+

1

N

∑
x̸=2,130

Pr(−K[0]−K[1] = x)

(
1− 1

N

)x−5

.

Proof. The probability of the target event (S0[i1] = −K[0] −K[1] − 3) in WPA-TKIP can be

decomposed into two paths: −K[0]−K[1] = 2, 130 (Path 1) and −K[0]−K[1] ̸= 2, 130 (Path
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Table 5.3: Probability distribution of −K[0]−K[1] in WPA-TKIP.
K[0] K[1] (depends on K[0]) −K[0]−K[1] (only even)
Range Value Range Value Range

0–31 K[0] + 32 32–63 −2K[0]− 32 161–224
32–63 K[0] 32–63 −2K[0] 129–192
64–95 K[0] + 32 96–127 −2K[0]− 32 33–96
96–127 K[0] 96–127 −2K[0] 1–64
128–159 K[0]− 96 32–63 −2K[0] + 96 35–96
160–191 K[0]− 128 32–63 −2K[0] + 128 1–64
192–223 K[0]− 96 96–127 −2K[0] + 96 161–224
224–255 K[0]− 128 96–127 −2K[0] + 128 129–192

2). These paths include all events in order to compute Pr(S0[i1] = −K[0]−K[1]−3)WPA. Under

such conditions, we have

−K[0]−K[1] = x ⇔ K[0] +K[1] = N − x. (5.3)

In the following proof, we use S0[1] instead of S0[i1] (i1 = 1) for simplicity.

Path 1. Because −K[0] − K[1] − 3 = K[0] + K[1] + 1 from Equation (5.3), the target event

(S0[1] = −K[0] − K[1] − 3) always occurs when S0[1] = K[0] + K[1] + 1. In addition,

when S0[1] ̸= K[0]+K[1]+1, we assume that the target event (S0[1] = −K[0]−K[1]−3)

occurs with probability approximately 1
N

(random association). Therefore, we obtain

Pr(S0[1] = −K[0]−K[1]− 3 | Path 1) ≈ α1 +
1

N
(1− α1).

Path 2. Let −K[0]−K[1] = x. Because −K[0]−K[1]− 3 ̸= K[0] +K[1] + 1 from Equation

(5.3), the target event (S0[1] = −K[0] − K[1] − 3 (= x − 3) never occurs when S0[1] =

K[0] + K[1] + 1. After the second round of the KSA, both SK
2 [1] = K[0] + K[1] + 1 =

N − x + 1 and SK
2 [x − 3] = x − 3 from Equation (5.3) and Algorithm 1. Thereafter, if

SK
r [x − 3] ̸= SK

2 [x − 3] for 3 ≤ r ≤ x − 3, the target event (S0[1] = −K[0] − K[1] − 3)

never occurs. When SK
r [x − 3] = SK

2 [x − 3] = x − 3 is satisfied, whose probability is

approximately
(
1 − 1

N

)x−5
, we assume that the target event (S0[1] = −K[0] −K[1] − 3)

occurs with probability approximately 1
N

(random association) because Sx−2[1] may be

swapped from Sx−3[x− 3]. Therefore, we obtain

Pr(S0[1] = −K[0]−K[1]− 3 | Path 2) ≈ 1

N

(
1− 1

N

)x−5

.

In summary, we obtain

Pr(S0[1] = K[0]−K[1]− 3)WPA

= Pr(S0[1] = K[0]−K[1]− 3 | Path 1) · Pr(Path 1)
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+ Pr(S0[1] = K[0]−K[1]− 3 | Path 2) · Pr(Path 2)

≈ 4

N

(
α1 +

1

N
(1− α1)

)
+

1

N

∑
x̸=2,130

Pr(−K[0]−K[1] = x)

(
1− 1

N

)x−5

,

where Pr(−K[0]−K[1] = x) follows Lemma 5.2.

Theorem 5.9 ([IM17, Theorem 3]). In the initial state of the PRGA, we have

Pr(S0[i1] = K[0] +K[1] +K[2] + 3) ≈ 1

N

(
1− 2

N

)(
1− 1

N

)N−2

+
1

N2

(
3− 2

N

)
.

Proof. Both SK
1 [1] = 1 and SK

2 [2] = 2 with high probability from Algorithm 1, and we obtain

jK1 = K[0], (5.4)

jK2 = K[0] +K[1] + SK
1 [1] = K[0] +K[1] + 1, (5.5)

jK3 = K[0] +K[1] +K[2] + SK
1 [1] + SK

2 [2] (5.6)

= K[0] +K[1] +K[2] + 3. (5.7)

When the above equations hold, SK
3 [2] = K[0]+K[1]+K[2]+ 3 always holds from the 7th step

in Algorithm 1. Thus, the target event (S0[i1] = K[0] +K[1] +K[2] + 3) never occurs because

SK
r [i1] ̸= K[0] + K[1] + K[2] + 3 always holds for r ≥ 3. Then, the probability of the target

event (S0[i1] = K[0] + K[1] + K[2] + 3) can be decomposed into two paths: jK1 = 1, 2 (Path

1) and jK1 ̸= 1, 2 (Path 2). Path 2 is further divided into three subpaths: jK2 = 2 (Path 2-1),

jK2 ̸= 2 ∧K[2] = 254 (Path 2-2), and jK2 ̸= 2 ∧K[2] ̸= 254 (Path 2-3). These paths include all

events in order to compute Pr(S0[i1] = K[0] +K[1] +K[2] + 3). In the following proof, we use

S0[1] instead of S0[i1] (i1 = 1) for simplicity.

Path 1. When jK1 = 1, SK
1 [1] ̸= 1 from the 7th step in Algorithm 1. Thus, SK

3 [2] ̸= K[0] +

K[1] +K[2] + 3 always holds because jK3 ̸= K[0] +K[1] +K[2] + 3 from Equation (5.7).

Similarly, when jK1 = 2, SK
3 [2] ̸= K[0]+K[1]+K[2]+3 always holds. We then assume that

the target event (S0[1] = K[0] +K[1] +K[2] + 3) occurs with probability approximately
1
N

(random association). Therefore, we obtain

Pr(S0[1] = K[0] +K[1] +K[2] + 3 | Path 1) ≈ 1

N
.

Path 2-1. When jK2 = 2, SK
3 [2] ̸= K[0] +K[1] +K[2] + 3 always holds in the same way as the

discussion in Path 1. We then assume that the target event (S0[1] = K[0]+K[1]+K[2]+3)

occurs with probability approximately 1
N

(random association). Therefore, we obtain

Pr(S0[1] = K[0] +K[1] +K[2] + 3 | Path 2-1) ≈ 1

N
.

Path 2-2. Except in the above paths, Equations (5.4)–(5.7) always hold because we obtain
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both SK
1 [1] = 1 and SK

2 [2] = 2. When K[2] = 254, jK2 = jK3 = K[0] + K[1] + K[2] + 3

because K[2]+3 = 1. Thus, we obtain both SK
3 [1] = K[0]+K[1]+K[2]+3 and SK

3 [2] = 1

from the 7th step in Algorithm 1. After the third round of the KSA, SK
r [1] = SK

3 [1]

for 4 ≤ r ≤ N when jKr ̸= 1 during the remaining N − 3 rounds of the KSA, whose

probability is approximately
(
1− 1

N

)N−3
because we assume that jKr = 1 with probability

approximately 1
N

(random association). Therefore, we obtain

Pr(S0[1] = K[0] +K[1] +K[2] + 3 | Path 2-2) ≈
(
1− 1

N

)N−3

.

Path 2-3. As with the discussion in Path 2-2, Equations (5.4)–(5.7) always hold, and jK2 ̸= jK3
because K[2] ̸= 254. Therefore, the target event (S0[1] = K[0] +K[1] +K[2] + 3) never

occurs, and we obtain

Pr(S0[1] = K[0] +K[1] +K[2] + 3 | Path 2-3) = 0.

In summary, the target event (S0[1] = K[0] +K[1] +K[2] + 3) occurs only in Paths 1, 2-1, and

2-2, and we obtain

Pr(S0[1] = K[0] +K[1] +K[2] + 3)

= Pr(S0[1] = K[0] +K[1] +K[2] + 3 | Path 1) · Pr(Path 1)

+ Pr(S0[1] = K[0] +K[1] +K[2] + 3 | Path 2-1) · Pr(Path 2-1)

+ Pr(S0[1] = K[0] +K[1] +K[2] + 3 | Path 2-2) · Pr(Path 2-2)

≈ 1

N
· 2

N
+

1

N
· 1

N

(
1− 2

N

)
+

(
1− 1

N

)N−3

· 1

N

(
1− 1

N

)(
1− 2

N

)

=
1

N

(
1− 2

N

)(
1− 1

N

)N−2

+
1

N2

(
3− 2

N

)
,

where we assume that four events (jK1 = 1), (jK1 = 2), (jK2 = 2), and (K[2] = 254) occur with

probability approximately 1
N

(random association).

5.2.2 Key Correlations of S1[i2]

This subsection provides Theorems 5.10–5.14 and their proofs. Theorem 5.10 presents that an

event (S1[i2] = K[0]+K[1]+K[2]+3) occurs with relatively high probability in both generic RC4

andWPA-TKIP. It is induced by the Roos Biases, that is α2 = Pr(S0[2] = K[0]+K[1]+K[2]+3).

Theorems 5.11 and 5.13 present that four events of S1[i2] yield a positive bias in both generic

RC4 and WPA-TKIP. Theorem 5.12 presents that an event (S1[i2] = K[1] +K[2] + 3) occurs

with twice the probability of random association 1
N

in both generic RC4 and WPA-TKIP.

Theorem 5.14 presents that an event (S1[i2] = K[0] − K[1] + K[2] + 3) yields a positive bias

in generic RC4 but a negative bias in WPA-TKIP. Note that Theorems 5.10–5.13 mean that
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the second round of the internal state S1[i2] can be guessed in high probability by using known

RC4 key bytes {K[0], K[1], K[2]} in WPA-TKIP. In order to prove the following theorems, let

us denote the results of Theorems 5.9 and 5.10 as β = Pr(S0[1] = K[0] +K[1] +K[2] + 3) and

γ = Pr(S1[2] = K[0] +K[1] +K[2] + 3), respectively.

Theorem 5.10 ([IM17, Theorem 4]). After the first round of the PRGA, we have

Pr(S1[i2] = K[0] +K[1] +K[2] + 3) ≈ β · Pr(S0[1] = 2) + α2 ·
(
1− Pr(S0[1] = 2)

)
.

Proof. The probability of the target event (S1[i2] = K[0]+K[1]+K[2]+ 3) can be decomposed

into two paths: j1 = 2 (Path 1) and j1 ̸= 2 (Path 2). These paths include all events in order

to compute Pr(S1[i2] = K[0] + K[1] + K[2] + 3). Note that j1 = S0[1] from the 4th step in

Algorithm 2. In the following proof, we use S1[2] instead of S1[i2] (i2 = 2) for simplicity.

Path 1. In the condition of Path 1, the target event (S1[2] = K[0] +K[1] +K[2] + 3) always

occurs if and only if S0[1] = K[0] +K[1] +K[2] + 3 from the 5th step in Algorithm 2. We

assume that events (j1 = 2) and (S0[1] = K[0]+K[1]+K[2]+3) are mutually independent.

Therefore, we obtain

Pr(S1[2] = K[0] +K[1] +K[2] + 3 | Path 1) = β.

Path 2. In the condition of Path 2, the target event (S1[2] = K[0] +K[1] +K[2] + 3) always

occurs if and only if S0[2] = K[0] +K[1] +K[2] + 3 from the 5th step in Algorithm 2. We

assume that events (j1 ̸= 2) and (S0[2] = K[0]+K[1]+K[2]+3) are mutually independent.

Therefore, we obtain

Pr(S1[2] = K[0] +K[1] +K[2] + 3 | Path 2) = α2.

In summary, we obtain

Pr(S1[2] = K[0] +K[1] +K[2] + 3)

= Pr(S1[2] = K[0] +K[1] +K[2] + 3 | Path 1) · Pr(Path 1)

+ Pr(S1[2] = K[0] +K[1] +K[2] + 3 | Path 2) · Pr(Path 2)

≈ β · Pr(j1 = 2) + α2 ·
(
1− Pr(j1 = 2)

)

= β · Pr(S0[1] = 2) + α2 ·
(
1− Pr(S0[1] = 2)

)
,

where Pr(S0[1] = 2) follows Lemmas 3.1 and 3.4 in generic RC4 and WPA-TKIP.
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Theorem 5.11 ([IM17, Theorem 5]). After the first round of the PRGA, we have

Pr(S1[i2] = −K[0]−K[1] +K[2]− 1)

≈





2

N

(
γ +

1

N
(1− γ)

)
+

1

N

(
1− 2

N

)
(1− γ) for RC4,

4

N

(
γ +

1

N
(1− γ)

)
+

1

N

(
1− 4

N

)
(1− γ) for WPA-TKIP.

Proof. The probability of the target event (S1[i2] = −K[0]−K[1]+K[2]−1) can be decomposed

into two paths: K[0] +K[1] = 126, 254 (Path 1) and K[0] +K[1] ̸= 126, 254 (Path 2). These

paths include all events in order to compute Pr(S1[i2] = −K[0] − K[1] + K[2] − 1). In the

following proof, we use S1[2] instead of S1[i2] (i2 = 2) for simplicity.

Path 1. Because −K[0]−K[1] +K[2]− 1 = K[0] +K[1] +K[2] + 3, the target event (S1[2] =

−K[0]−K[1]+K[2]− 1) always occurs when S1[2] = K[0]+K[1]+K[2]+3. In addition,

when S0[1] ̸= K[0] +K[1] + 1, we assume that the target event (S1[2] = −K[0]−K[1] +

K[2] − 1) occurs with probability approximately 1
N

(random association). Therefore, we

obtain

Pr(S1[2] = −K[0]−K[1] +K[2]− 1 | Path 1) = γ +
1

N
(1− γ).

Path 2. Because −K[0]−K[1] +K[2]− 1 ̸= K[0] +K[1] +K[2] + 3, the target event (S1[2] =

−K[0]−K[1]+K[2]−1) never occurs when S1[2] = K[0]+K[1]+K[2]+3. When S1[2] ̸=
K[0]+K[1]+K[2]+3, we assume that the target event (S1[2] = −K[0]−K[1]+K[2]−1)

occurs with probability approximately 1
N

(random association). Therefore, we obtain

Pr(S1[2] = −K[0]−K[1] +K[2]− 1 | Path 2) =
1

N
(1− γ).

Note that the probability of K[0]+K[1] = 126 and 254 in WPA-TKIP is 2
N

from Theorem 3.11,

respectively. However, that in generic RC4 is 1
N

because K is generated uniformly at random.

In summary, we obtain

Pr(S1[2] = −K[0]−K[1] +K[2]− 1)

= Pr(S1[2] = −K[0]−K[1] +K[2]− 1 | Path 1) · Pr(Path 1)

+ Pr(S1[2] = −K[0]−K[1] +K[2]− 1 | Path 2) · Pr(Path 2)

≈




2

N

(
γ +

1

N
(1− γ)

)
+

1

N

(
1− 2

N

)
(1− γ) for RC4,

4

N

(
γ +

1

N
(1− γ)

)
+

1

N

(
1− 4

N

)
(1− γ) for WPA-TKIP.

Before showing Theorem 5.12, we prove Lemma 5.3. Lemma 5.3 presents that an event
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(S0[2] = K[1] +K[2] + 3) yields a positive bias in both generic RC4 and WPA-TKIP. In order

to prove the following theorems, let us denote the result of Lemma 5.3 as η = Pr(S0[2] =

K[1] +K[2] + 3).

Lemma 5.3 ([IM17, Lemma 1]). After the first round of the PRGA, we have

Pr(S0[2] = K[1] +K[2] + 3) ≈ 3

N

(
1− 1

N

)N−2

+
1

N

(
1− 2

N

)(
1− 3

N

)
+

3

N3

(
1− 2

N

)
.

Proof. The probability of the target event (S0[2] = K[1] + K[2] + 3) can be decomposed into

four paths: jK1 = 0 (Path 1), jK1 = 1 (Path 2), jK1 = 2 (Path 3), and jK1 ̸= 0, 1, 2 (Path 4).

Paths 1–3 are further divided into two subpaths: jK2 = 2 (Paths 1-1, 2-1, and 3-1) and jK2 ̸= 2

(Paths 1-2, 2-2, and 3-2). These paths include all events in order to compute Pr(S1[i2] =

−K[0] − K[1] + K[2] − 1). In the following proof, we assume that the values of index jK are

distributed with probability 1
N

(random association).

Path 1-1. Because K[0] = 0, SK
1 [1] = 1, and SK

2 [2] = 1, jK3 = K[1] +K[2] + 2 from Equation

(5.6). Then, SK
3 [0] = 0, SK

3 [1] = 2, and SK
3 [2] = K[1] + K[2] + 2 from the 7th step in

Algorithm 1. When K[1] +K[2] + 3 = 0 or 2, the target event (S0[2] = K[1] +K[2] + 3)

never occurs. On the other hand, when K[1]+K[2]+3 ̸= 0 and 2 are satisfied, we assume

that the target event (S0[2] = K[1] +K[2] + 3) occurs with probability approximately 1
N

(random association). Therefore, we obtain

Pr(S0[2] = K[1] +K[2] + 3 | Path 1-1) ≈ 1

N

(
1− 2

N

)
.

Similarly, we obtain the probability of the target event (S0[2] = K[1] +K[2] + 3) under

the conditions of Paths 2-1, 3-1, and 4.

Path 1-2. Because K[0] = 0, SK
1 [1] = 1, and SK

2 [2] = 2, jK3 = K[1] +K[2] + 3 from Equation

(5.6). Then, SK
3 [2] = K[1] +K[2] + 2 from the 7th step in Algorithm 1. After the third

round of the KSA, SK
r [2] = SK

3 [2] for 4 ≤ r ≤ N when jKr ̸= 2 during the remaining N −3

rounds of the KSA, whose probability is approximately
(
1− 1

N

)N−3
. Therefore, we obtain

Pr(S0[2] = K[1] +K[2] + 3 | Path 1-2) ≈
(
1− 1

N

)N−3

.

Similarly, we obtain the probability of the event S0[2] = K[1] + K[2] + 3 under the

conditions of Paths 2-2 and 3-2.

In summary, we get

Pr(S0[2] = K[1] +K[2] + 3)

= Pr(S0[2] = K[1] +K[2] + 3 | Path 1-1) · Pr(Path 1-1)

+ Pr(S0[2] = K[1] +K[2] + 3 | Path 1-2) · Pr(Path 1-2)
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+ Pr(S0[2] = K[1] +K[2] + 3 | Path 2-1) · Pr(Path 2-1)

+ Pr(S0[2] = K[1] +K[2] + 3 | Path 2-2) · Pr(Path 2-2)

+ Pr(S0[2] = K[1] +K[2] + 3 | Path 3-1) · Pr(Path 3-1)

+ Pr(S0[2] = K[1] +K[2] + 3 | Path 3-2) · Pr(Path 3-2)

+ Pr(S0[2] = K[1] +K[2] + 3 | Path 4) · Pr(Path 4)

≈ 3

N

(
1− 1

N

)N−2

+
1

N

(
1− 2

N

)(
1− 3

N

)
+

3

N3

(
1− 2

N

)
.

Theorem 5.12 ([IM17, Theorem 6]). After the first round of the PRGA, we have

Pr(S1[i2] = K[1] +K[2] + 3) ≈ η

(
1− 1

N

)
+

1

N2
.

Proof. The probability of the target event (S1[i2] = K[1] +K[2] + 3) can be decomposed into

two paths: j1 = 2 (Path 1) and j1 ̸= 2 (Path 2). These paths include all events in order to

compute Pr(S1[i2] = K[1] + K[2] + 3). In the following proof, we use S1[2] instead of S1[i2]

(i2 = 2) for simplicity.

Path 1. Because S1[2] = S0[1] from the 5th step in Algorithm 2, the target event (S1[2] =

K[1] +K[2] + 3) always occurs if and only if S0[1] = K[1] +K[2] + 3. We then assume

that K[1]+K[2]+3 = 2 (j1 = S0[1]) with probability 1
N

(random association). Therefore,

we obtain

Pr(S1[2] = K[1] +K[2] + 3 | Path 1) ≈ 1

N
.

Path 2. Because S1[2] = S0[2] from the 5th step in Algorithm 2, the target event (S1[2] =

K[1]+K[2]+3) always occurs if and only if S0[2] = K[1]+K[2]+3. We then assume that

both events (j1 ̸= 2) and (S0[2] = K[1] +K[2] + 3) are mutually independent. Therefore,

we obtain

Pr(S1[2] = K[1] +K[2] + 3 | Path 2) ≈ η.

In summary, we obtain

Pr(S1[2] = K[1] +K[2] + 3) = Pr(S1[2] = K[1] +K[2] + 3 | Path 1) · Pr(Path 1)

+ Pr(S1[2] = K[1] +K[2] + 3 | Path 2) · Pr(Path 2)

≈ η

(
1− 1

N

)
+

1

N2
.

Theorem 5.13 ([IM17, Theorem 7]). After the first round of the PRGA for x ∈ {−3,−1, 1},
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we have

Pr(S1[i2] = K[0]−K[1] +K[2] + x)

≈





2

N

(
γ +

1

N
(1− γ)

)
+

1

N

(
1− 2

N

)
(1− γ) for RC4,

4

N

(
γ +

1

N
(1− γ)

)
+

1

N

(
1− 4

N

)
(1− γ) for WPA-TKIP.

Proof. We can prove Theorem 5.13 in the same way as Theorem 5.11.

Theorem 5.14 ([IM17, Theorem 8]). After the first round of the PRGA, we have

Pr(S1[i2] = K[0]−K[1] +K[2] + 3)

≈





2

N

(
γ +

1

N
(1− γ)

)
+

1

N

(
1− 2

N

)
(1− γ) for RC4,

1

4N

((
1− 1

N

)N−2

+

(
4− 1

N

)
(1− γ)

)
for WPA-TKIP.

Proof. The probability of the target event (S1[i2] = K[0] − K[1] + K[2] + 3) in generic RC4

is proved in the same way as Theorem 5.11. The probability of the target event (S1[i2] =

K[0] − K[1] + K[2] + 3) in WPA-TKIP can be decomposed into two paths: K[0] = K[1]

(Path 1) and K[0] ̸= K[1] (Path 2). Path 1 is further divided into 2 subpaths: K[2] = 254

(Path 1-1) and K[2] ̸= 254 (Path 1-2). These paths include all events in order to compute

Pr(S1[i2] = K[0] − K[1] + K[2] + 3). In the following proof, we use S1[2] instead of S1[i2]

(i2 = 2) for simplicity.

Path 1-1. K[0]−K[1]+K[2]+3 = 1 and Equations (5.4), (5.5), and (5.7) always hold. Then,

SK
3 [2] = SK

2 [jK3 ] = SK
2 [jK2 ] = SK

1 [i1] = SK
1 [1] = SK

0 [1] = 1 (= K[0]−K[1]+K[2]+3) from

Algorithm 1 because jK3 = jK2 = K[0] +K[1] + 1 (note that K[2] = 254). After the third

round of the KSA, S1[2] = SK
3 [2] when the values of index j are not equal to 2 during the

subsequent N − 2 rounds, whose probability is approximately
(
1− 1

N

)N−2
. Therefore, we

obtain

Pr(S1[2] = K[0]−K[1] +K[2] + 3 | Path 1-1) ≈
(
1− 1

N

)N−2

.

Path 1-2. Because K[0]−K[1] +K[2] + 3 ̸= K[0] +K[1] +K[2] + 3 (note that K[1] ̸= 0, 128

in WPA-TKIP from Theorem 3.11), the target event (S1[2] = K[0] − K[1] + K[2] + 3)

never occurs when S1[2] = K[0] +K[1] +K[2] + 3. When S1[2] ̸= K[0] +K[1] +K[2] + 3,

we assume that the target event (S1[2] = K[0]−K[1] +K[2] + 3) occurs with probability

approximately 1
N

(random association). Therefore, we obtain

Pr(S1[2] = K[0]−K[1] +K[2] + 3 | Path 1-2) ≈ 1

N
(1− γ).
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Similarly, we obtain the probability of the target event (S1[2] = K[0]−K[1] +K[2] + 3)

under the condition of Path 2.

Note that Pr(K[0] = K[1]) = 1
4
in WPA-TKIP from Theorem 3.11. Therefore, we obtain

Pr(S1[2] = K[0]−K[1] +K[2] +3)WPA

= Pr(S1[2] = K[0]−K[1] +K[2] + 3 | Path 1-1) · Pr(Path 1-1)

+ Pr(S1[2] = K[0]−K[1] +K[2] + 3 | Path 1-2) · Pr(Path 1-2)

+ Pr(S1[2] = K[0]−K[1] +K[2] + 3 | Path 2) · Pr(Path 2)

≈ 1

4N

((
1− 1

N

)N−2

+

(
4− 1

N

)
(1− γ)

)
.

5.2.3 Key Correlations of S255[i256]

This subsection provides Theorems 5.15 and 5.16 and their proofs. Theorem 5.15 presents that

an event (S255[i256] = K[0]) occurs with high probability in generic RC4 and WPA-TKIP. On the

contrary, Theorem 5.16 presents that an event (S255[i256] = K[1]) occurs with high probability

only in WPA-TKIP.

Theorem 5.15 ([IM16b, Theorem 7]). After the 255-th round of the PRGA, we have

Pr(S255[i256] = K[0]) ≈ α0

(
1− 1

N

)255

+
1

N
(1− α0)

(
1−

(
1− 1

N

)255)
.

Proof. The probability of the target event (S255[i256] = K[0]) can be decomposed into two paths:

S0[0] = K[0] (Path 1) and S0[0] ̸= K[0] (Path 2). In the following proof, we use S255[0] instead

of S255[i256] (i256 = 0) for simplicity.

Path 1. The target event (S255[0] = K[0]) always occurs if and only if Sr[0] = S0[0] for 1 ≤
r ≤ 255, whose probability is approximately

(
1− 1

N

)255
because we assume that jr = 0 for

each round with probability approximately 1
N

(random association). Therefore, we obtain

Pr(S255[0] = K[0] | Path 1) ≈
(
1− 1

N

)255

.

Path 2. The target event (S255[0] = K[0]) never occurs when Sr[0] = S0[0] for 1 ≤ r ≤
255. Except when Sr[0] = S0[0] for 1 ≤ r ≤ 255, whose probability is approximately(
1−

(
1− 1

N

)255)
, we assume that the target event (S255[0] = K[0]) occurs with probability

approximately 1
N

(random association). Therefore, we obtain

Pr(S255[0] = K[0] | Path 2) ≈ 1

N

(
1−

(
1− 1

N

)255)
.
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In summary, we obtain

Pr(S255[0] = K[0]) = Pr(S255[0] = K[0] | Path 1) · Pr(Path 1)

+ Pr(S255[0] = K[0] | Path 2) · Pr(Path 2)

≈α0

(
1− 1

N

)255

+
1

N
(1− α0)

(
1−

(
1− 1

N

)255)
,

where α0 = Pr(S0[0] = K[0]) ≈
(
1− 1

N

)N
+ 1

N
.

Before showing Theorem 5.16, we prove Lemma 5.4 that an event (S0[0] = K[1]) occurs with

high probability only in WPA-TKIP.

Lemma 5.4 ([IM16b, Lemma 2]). In the initial state of the PRGA, we have

Pr(S0[0] = K[1]) ≈





1

N
− 1

N2

(
1− α0

)
for RC4,

1

4

(
3

N
+

(
1− 3

N

)
α0

)
for WPA-TKIP.

Proof. The probability of the target event (S0[0] = K[1]) can be decomposed into two paths:

K[1] = K[0] (Path 1) and K[1] ̸= K[0] (Path 2).

Path 1. The target event (S0[0] = K[1]) always occurs if and only if S0[0] = K[0]. Therefore,

we obtain

Pr(S0[0] = K[1] | Path 1) = α0.

Path 2. The target event (S0[0] = K[1]) never occurs when S0[0] = K[0]. When S0[0] ̸= K[0],

we assume that the target event (S0[0] = K[1]) occurs with probability approximately 1
N

(random association). Therefore, we obtain

Pr(S0[0] = K[1] | Path 2) ≈ 1

N
· (1− α0).

In summary, we obtain

Pr(S0[0] = K[1]) = Pr(S0[0] = K[1] | Path 1) · Pr(Path 1)

+ Pr(S0[0] = K[1] | Path 2) · Pr(Path 2)

≈




α0 ·
1

N
+

1

N
(1− α0) ·

(
1− 1

N

)
=

1

N
− 1

N2

(
1− α0

)
for RC4,

α0 ·
1

4
+

1

N
(1− α0) ·

3

4
=

1

4

(
3

N
+

(
1− 3

N

)
α0

)
for WPA-TKIP,

where α0 = Pr(S0[0] = K[0]) ≈
(
1− 1

N

)N
+ 1

N
.
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Lemma 5.4 reflects that the probability of the event (K[1] = K[0]) in WPA-TKIP, 1
4
, is

higher than that in generic RC4, 1
N
.

Theorem 5.16 ([IM16b, Theorem 8]). After the 255-th round of the PRGA, we have

Pr(S255[i256] = K[1]) ≈ δ

(
1− 1

N

)255

+
1

N
(1− δ)

(
1−

(
1− 1

N

)255)
,

where δ is Pr(S0[0] = K[1]) given as Lemma 5.4.

Proof. The proof itself is similar to that of Theorem 5.15, and uses the probability of the event

(S0[0] = K[1]) given as Lemma 5.4 instead of the probability of the event (S0[0] = K[0]).

Therefore, we obtain

Pr(S255[0] = K[1]) = Pr(S255[0] = K[1] | S0[0] = K[1]) · Pr(S0[0] = K[1])

+ Pr(S255[0] = K[1] | S0[0] ̸= K[1]) · Pr(S0[0] ̸= K[1])

≈ δ

(
1− 1

N

)255

+
1

N
(1− δ)

(
1−

(
1− 1

N

)255)
,

where δ is Pr(S0[0] = K[1]) given as Lemma 5.4.

5.2.4 Key Correlations of Sr[ir+1] for 0 ≤ r ≤ N

This subsection provides Theorem 5.17 and its proof. Theorem 5.17 presents Pr(Sr[ir+1] =

K[0] +K[1] + 1) for 0 ≤ r ≤ N , whose the experimental result is listed in Figure 5.1. Before

showing the proof of Theorem 5.17, we prove Lemmas 5.5 and 5.6, which are distributions of

the internal state in the first two rounds of the PRGA.

Lemma 5.5 ([IM16b, Lemma 3]). In the initial state of the PRGA for 0 ≤ x ≤ N − 1, we have

Pr(S0[x] = K[0] +K[1] + 1)

≈




(
1− 1

N

)N+2

+
1

N
when x = 1,

1

N2

(
1− 1

N

)2

when x = 0 for WPA-TKIP,

1

N

(
1− 1

N

)(
1

N

(
1− x+ 1

N

)
+

(
1− 1

N

)N−x−2)
otherwise.

Proof. When x = 1, the probability of the target event (S0[1] = K[0] + K[1] + 1) follows the

result in Theorem 3.19. Therefore, we obtain

Pr(S0[1] = K[0] +K[1] + 1) ≈
(
1− 1

N

)N+2

+
1

N
.

On the other hand, the probability of the target event (S0[x] = K[0] + K[1] + 1) for x ∈
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[0, N ]\{1} can be decomposed into two paths: SK
x [jKx+1] = K[0] + K[1] + 1 (Path 1) and

SK
x [jKx+1] ̸= K[0] +K[1] + 1 (Path 2).

Path 1. From the 7th step in Algorithm 1, SK
x+1[x] = K[0] + K[1] + 1 always holds because

SK
x+1[x] must be swapped from SK

x [jKx+1]. In addition, when SK
r [x] = SK

x+1[x] for x + 2 ≤
r ≤ N , whose probability is approximately

(
1− 1

N

)N−x−1
because we assume that jKr = x

for each round with probability approximately 1
N

(random association), the target event

(S0[x] = K[0] +K[1] + 1) always occurs. Therefore, we obtain

Pr(S0[x] = K[0] +K[1] + 1 | Path 1) ≈
(
1− 1

N

)N−x−1

.

Path 2. Let y be satisfied by SK
x [y] = K[0]+K[1]+1. In the same way as the discussion of Path

1, SK
x+1[x] ̸= K[0]+K[1]+1 always holds. After the x+1-th round, when x ≥ y, the target

event (S0[x] = K[0]+K[1]+1) never occurs because SK
r [x] ̸= K[0]+K[1]+1 always holds

for x + 1 ≤ r ≤ N from Algorithm 1. On the contrary, when x < y, whose probability is

1− x+1
N

, we assume that the target event (S0[x] = K[0]+K[1]+1) occurs with probability

approximately 1
N
(random association). In order to satisfy x < y, we must further consider

K[0] = 1, whose probability is 1
N
. When K[0] ̸= 1, SK

2 [1] = K[0] +K[1] + 1 always holds

from the discussion in Theorem 5.1. Thus, the target event (S0[x] = K[0] + K[1] + 1)

never occurs because SK
r [x] ̸= K[0]+K[1]+1 always holds for 2 ≤ r ≤ N from Algorithm

1. Therefore, we obtain

Pr(S0[x] = K[0] +K[1] + 1 | Path 2) =
1

N2

(
1− x+ 1

N

)
.

We assume that the event (SK
x [jKx+1] = K[0] +K[1] + 1) occurs with probability approximately

1
N

(random association). In summary, we obtain

Pr(S0[x] = K[0] +K[1] + 1) = Pr(S0[x] = K[0] +K[1] + 1 | Path 1) · Pr(Path 1)

+ Pr(S0[x] = K[0] +K[1] + 1 | Path 2) · Pr(Path 2)

≈ 1

N

(
1− 1

N

)(
1

N

(
1− x+ 1

N

)
+

(
1− 1

N

)N−x−2)
.

When x = 0 in WPA-TKIP, the target event (S0[0] = K[0] + K[1] + 1) never occurs under

the condition of SK
0 [jK1 ] = K[0] +K[1] + 1 (Path 1) because SK

0 [jK1 ] = K[0] from the 6th step

in Algorithm 1. In this case, K[1] ̸= 255 always holds in WPA-TKIP. Thus, the target event

(S0[0] = K[0] +K[1] + 1) occurs only under the condition of Path 2, whose probability is given

simply as 1
N2

(
1− 1

N

)2
.

Lemma 5.6 ([IM16b, Lemma 4]). After the first round of the PRGA for 0 ≤ x ≤ N − 1, we
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have

Pr(S1[x] = K[0] +K[1] + 1) =




β1 when x = 1,

α1γx−1 + (1− β1)ϵx otherwise,

where ϵx is Pr(S0[x] = K[0] +K[1] + 1) given as Lemma 5.5.

Proof. When x = 1, the probability of the target event (S1[1] = K[0] + K[1] + 1) follows the

result in Theorem 3.20 because S1[1] = S1[i1] = S0[j1] = S0[S0[1]] from the 4th and the 5th

steps in Algorithm 2. Therefore, we obtain

Pr(S1[1] = K[0] +K[1] + 1) = β1.

On the other hand, the probability of the target event (S1[x] = K[0] + K[1] + 1) for x ∈
[0, N − 1]\{1} can be decomposed into two paths: S0[1] = K[0] + K[1] + 1 (Path 1) and

S0[x] = K[0] +K[1] + 1 (Path 2).

Path 1. From the 5th step in Algorithm 2, the target event (S1[x] = K[0] +K[1] + 1) always

occurs if and only if j1 = x because S1[j1] must be swapped from S0[i1] = S0[1]. Although

events (S0[1] = K[0] + K[1] + 1) and (j1 = x) are not mutually independent, events

(S0[1] = K[0] +K[1] + 1) and (K[0] +K[1] + 1 = x) become independent by converting

j1 = x into j1 = S0[1] = K[0] +K[1] + 1 = x. Therefore, we obtain

Pr(S1[x] = K[0] +K[1] + 1 | Path 1) = Pr(K[0] +K[1] = x− 1).

Path 2. In the same way as the discussion of Path 1, the target event (S1[x] = K[0]+K[1]+1)

never occurs. When j1 ̸= x, S1[x] = S0[x] = K[0] + K[1] + 1 always holds, and S1[1] ̸=
K[0] + K[1] + 1 because S1[1] = S0[j1] ̸= S0[x] from the 5th step in Algorithm 2. We

assume that events (S0[x] = K[0] +K[1] + 1) and S1[1] ̸= K[0] +K[1] + 1 are mutually

independent. Therefore, we obtain

Pr(S1[x] = K[0] +K[1] + 1 | Path 2) = Pr(S1[1] ̸= K[0] +K[1] + 1).

In summary, we obtain

Pr(S1[x] = K[0] +K[1] + 1) = Pr(S1[x] = K[0] +K[1] + 1 | Path 1) · Pr(Path 1)

+ Pr(S1[x] = K[0] +K[1] + 1 | Path 2) · Pr(Path 2)

=α1γx−1 + (1− β1)ϵx,

where α1 = Pr(S0[1] = K[0] + K[1] + 1), β1 = Pr(S0[S0[1]] = K[0] + K[1] + 1), γx−1 =

Pr(K[0] + K[1] = x − 1), and ϵx = Pr(S0[x] = K[0] + K[1] + 1), which is given as Lemma

5.5.
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Theorem 5.17 ([IM16b, Theorem 9]). After the r-th round of the PRGA for 0 ≤ r ≤ N , we

have

Pr(Sr[ir+1] = K[0] +K[1] + 1)

≈





α1 when r = 0,

α1γ1 + (1− β1)ϵ2 when r = 1,

ϵ0

(
1− 1

N

)N−1

+
1

N
(1− ϵ0)

(
1−

(
1− 1

N

)N−1)
when r = N − 1,

ζ1

(
1− 1

N

)N−1

+
1

N
(1− ζ1)

(
1−

(
1− 1

N

)N−1)
when r = N ,

ζr+1

(
1− 1

N

)r−1

+
1

N

r−1∑
x=1

ηx

(
1− 1

N

)r−x−1

otherwise,

where ϵr = Pr(S0[r] = K[0]+K[1]+1) is given as Lemma 5.5, ζr = Pr(S1[r] = K[0]+K[1]+1)

is given as Lemma 5.6, and ηr = Pr(Sr[ir+1] = K[0] +K[1] + 1) is given as this theorem.

Proof. When r = 0 and 1, the probability of the target events (S0[i1] = K[0] +K[1] + 1) and

(S1[i2] = K[0]+K[1]+1) follow the result in Lemmas 5.5 and 5.6, respectively. When r = N−1

and N , both the target events (SN−1[iN ] = K[0] +K[1] + 1) and (SN [iN+1] = K[0] +K[1] + 1)

can be proved in the same way as the proof of Theorem 5.15. In other cases, the probability

of the target event (Sr[ir+1] = K[0] +K[1] + 1) for 2 ≤ r ≤ N − 2 can be decomposed in two

paths: S1[ir+1] = K[0] +K[1] + 1 (Path 1) and Sx[ix+1] = K[0] +K[1] + 1 for 1 ≤ x ≤ r − 1

(Path 2).

Path 1. The target event (Sr[ir+1] = K[0]+K[1]+1) always occurs when Sy[ir+1] = S1[ir+1] for

2 ≤ y ≤ r, whose probability is approximately
(
1− 1

N

)r−1
because we assume that jy = ir+1

for each round with probability approximately 1
N

(random association). Therefore, we

obtain

Pr(Sr[ir+1] = K[0] +K[1] + 1 | Path 1) ≈
(
1− 1

N

)r−1

.

Path 2. From the 5th step in Algorithm 2, the event (Sx+1[ir+1] = K[0]+K[1]+1) always occurs

if and only if jx+1 = ir+1 because Sx+1[jx+1] = Sx+1[ir+1] must be swapped from Sx[ix+1].

After the x+1-th round, the target event (Sr[ir+1] = K[0]+K[1]+1) occurs when Sy[ir+1] =

Sx+1[ir+1] for x + 2 ≤ y ≤ r, whose probability is approximately
(
1 − 1

N

)r−x−1
because

we assume that jy = ir+1 for each round with probability approximately 1
N

(random

association). Therefore, we obtain

Pr(Sr[ir+1] = K[0] +K[1] + 1 | Path 2) ≈ 1

N

(
1− 1

N

)r−x−1

.
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Note that the range of x varies depending on the value of r in Path 2. In summary, we obtain

Pr(Sr[ir+1] = K[0] +K[1] + 1) = Pr(Sr[ir+1] = K[0] +K[1] + 1 | Path 1) · Pr(Path 1)

+
r−1∑
x=1

Pr(Sr[ir+1] = K[0] +K[1] + 1 | Path 2) · Pr(Path 2)

≈ ζr+1

(
1− 1

N

)r−1

+
1

N

r−1∑
x=1

ηx

(
1− 1

N

)r−x−1

,

where ζr = Pr(S1[r] = K[0] + K[1] + 1) and ηr = Pr(Sr[ir+1] = K[0] + K[1] + 1), which is

recursive probability in this theorem.

5.2.5 Key Correlations of j2

This subsection provides Theorems 5.18–5.22 and their proofs. Theorem 5.18 presents that an

event (j2 = K[2]) yields a positive bias in both generic RC4 and WPA-TKIP. On the contrary,

Theorems 5.19–5.22 present that seven events on j2 yield positive biases only in WPA-TKIP but

not biases in generic RC4. Now, we present only the proof of Theorem 5.18 because Theorems

5.19–5.22 are proved in the same way as Theorem 5.18. In order to prove the following theorems,

let us denote the result of Theorem 5.10 as γ = Pr(S1[2] = K[0] +K[1] +K[2] + 3).

Theorem 5.18 ([IM17, Theorem 9]). After the second round of the PRGA, we have

Pr(j2 = K[2]) ≈




1

N
+

1

N
α1γ for RC4,

1

N
+

3

N
α1γ for WPA-TKIP.

Proof. The probability of the target event (j2 = K[2]) can be decomposed into two paths:

K[0] +K[1] = 126, 254 (Path 1) and K[0] +K[1] ̸= 126, 254 (Path 2). These paths include all

events in order to compute Pr(j2 = K[2]). Note that j2 = S0[1] + S1[2] from the 4th step in

Algorithm 2.

Path 1. Assuming that events (S0[1] = K[0] +K[1] + 1) and (S1[2] = K[0] +K[1] +K[2] + 3)

occur simultaneously, and we obtain

j2 = S0[1] + S1[2]

= (K[0] +K[1] + 1) + (K[0] +K[1] +K[2] + 3)

= 2K[0] + 2K[1] +K[2] + 4.

When the above condition is satisfied, the target event (j2 = K[2]) always occurs because

K[2] = 2K[0] + 2K[1] + K[2] + 4. On the other hand, when the above condition is

not satisfied, we assume that the target event (j2 = K[2]) occurs with probability 1
N

(random association). We also assume that events (S0[1] = K[0] +K[1] + 1) and (S1[2] =
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K[0] +K[1] +K[2] + 3) are mutually independent. Therefore, we obtain

Pr(j2 = K[2] | path 1) ≈ α1γ +
1

N
(1− α1γ).

Path 2. Because K[2] ̸= 2K[0] + 2K[1] +K[2] + 4, the target event (j2 = K[2]) never occurs

when events (S0[1] = K[0] + K[1] + 1) and (S1[2] = K[0] + K[1] + K[2] + 3) occur

simultaneously. When either S0[1] ̸= K[0] +K[1] + 1 or S1[2] ̸= K[0] +K[1] +K[2] + 3,

we assume that the target event (j2 = K[2]) occurs with probability approximately 1
N

(random association). Therefore, we obtain

Pr(j2 = K[2] | Path 2) ≈ 1

N
(1− α1γ).

Note that the probability of K[0]+K[1] = 126 and 254 in WPA-TKIP is 2
N

from Theorem 3.11,

respectively. On the other hand, that in generic RC4 is 1
N

because K is generated uniformly at

random. In summary, we obtain

Pr(j2 = K[2]) = Pr(j2 = K[2] | Path 1) · Pr(Path 1)

+ Pr(j2 = K[2] | Path 2) · Pr(Path 2)

≈




2

N

(
α1γ +

1

N
(1− α1γ)

)
+

1

N

(
1− 2

N

)
(1− α1γ) for RC4,

4

N

(
α1γ +

1

N
(1− α1γ)

)
+

1

N

(
1− 4

N

)
(1− α1γ) for WPA-TKIP,

=




1

N
+

1

N
α1γ for RC4,

1

N
+

3

N
α1γ for WPA-TKIP.

Theorem 5.19 ([IM17, Theorem 10]). After the second round of the PRGA for x ∈ {−2, 0, 2},
we have

Pr(j2 = −K[0]−K[1] +K[2] + x) ≈




1

N
for RC4,

1

N
+

1

N
α1γ when x = ±2 for WPA-TKIP,

1

N
+

3

N
α1γ when x = 0 for WPA-TKIP.

Theorem 5.20 ([IM17, Theorem 11]). After the second round of the PRGA, we have

Pr(j2 = −K[0] +K[1] +K[2]) ≈




1

N
for RC4,

1

N
+

3

N
α1γ for WPA-TKIP.
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Theorem 5.21 ([IM17, Theorem 12]). After the second round of the PRGA for x ∈ {−2, 3},
we have

Pr(j2 = −K[1] +K[2] + x) ≈





1

N
for RC4,

1

N
+

3

N
α1γ for WPA-TKIP.

Theorem 5.22 ([IM17, Theorem 13]). After the second round of the PRGA, we have

Pr(j2 = K[0]−K[1] +K[2]) ≈





1

N
for RC4,

1

N
+

3

N
α1γ for WPA-TKIP.

5.3 Experimental Evaluations

We have performed experiments to check the accuracy of the theoretical values in all theorems.

Our experiments used N5 samples generated from randomly chosen keys in generic RC4 and

WPA-TKIP. Because each of the target events in all theorems has a relative bias with a prob-

ability of at least O( 1
N
), the number of samples to distinguish each of the target events from

random distribution is at least O(N3) according to Theorem 3.2.

We have evaluated the percentage of the relative error ϵmax of the experimental values

compared with the theoretical values (see Section 2.5.3). Tables 5.4 and 5.5 show comparison

between the experimental and theoretical values, and the percentage of the relative error ϵmax

in both generic RC4 and WPA-TKIP, respectively.

We can see from Table 5.4 that ϵmax is small enough in each case in generic RC4, such as

ϵmax ≤ 0.735 (%). Therefore, we have checked the accuracy of the theoretical values in generic

RC4.

We can see from Table 5.5 that ϵmax is small enough in each case of S0[i1] and S1[i2] in WPA-

TKIP, such as ϵmax ≤ 1.013 (%). Therefore, we have checked the accuracy of the theoretical

values of S0[i1] and S1[i2] in WPA-TKIP. However, the theoretical values of j2 in WPA-TKIP

produce slightly big error ϵmax, such as 3.178 (%). We will continue to refine the theoretical

values in j2 in WPA-TKIP.

Figures 5.7 and 5.8 show comparison between the experimental and theoretical values in

Theorem 5.17 for generic RC4 and WPA-TKIP, and the percentage of the relative error ϵmax,

respectively. From the figures, these distributions almost match overall, but differences between

the experimental and theoretical values are considerable, such as ϵmax ≤ 64.028 (%). Let us

investigate why such differences are induced in generic RC4 and WPA-TKIP. As far as we

have checked experimentally, it has made clear that there exist big differences between the

experimental and theoretical result in Lemma 5.6. Therefore, we will refine the proof of Lemma

5.6 precisely, which remains an open problem.

102



CHAPTER 5. KEY CORRELATIONS OF THE INTERNAL STATE VARIABLES

Table 5.4: Comparison between experimental and theoretical values in generic RC4.
Key correlation Experimental value Theoretical value ϵmax (%)

K[0] 0.001449605 0.001445489 0.289
K[0]−K[1]− 3 0.005332558 0.005325263 0.139
K[0]−K[1]− 1 0.003922530 0.003909411 0.337
−K[0]−K[1]− 3 0.005333309 0.005344544 0.213

S0[i1]

K[0] +K[1] +K[2] + 3 0.001490745 0.001479853 0.735
K[0] +K[1] +K[2] + 3 0.360360690 0.362016405 0.460
−K[0]−K[1] +K[2]− 1 0.005305673 0.005320377 0.280
K[1] +K[2] + 3 0.008158548 0.008150313 0.103
K[0]−K[1] +K[2]− 3 0.005295155 0.005320377 0.479
K[0]−K[1] +K[2]− 1 0.005289180 0.005320377 0.592
K[0]−K[1] +K[2] + 1 0.005309594 0.005320377 0.206

S1[i2]

K[0]−K[1] +K[2] + 3 0.005310594 0.005302926 0.147
K[0] 0.138038917 0.138325988 0.208

S255[i256] K[1] 0.003909105 0.003893102 0.412
Sr[ir+1] K[0] +K[1] + 1 Figures 5.7 and 5.8

−K[0]−K[1] +K[2]− 2 0.003920799 0.003906250 0.374
−K[0]−K[1] +K[2] 0.003919381 0.003906250 0.338
−K[0]−K[1] +K[2] + 2 0.003910929 0.003906250 0.123
−K[0] +K[1] +K[2] 0.003920399 0.003906250 0.364
−K[1] +K[2]− 2 0.003910053 0.003906250 0.100
−K[1] +K[2] + 3 0.003897939 0.003906250 0.216
K[2] 0.004430372 0.004426926 0.080

j2

K[0]−K[1] +K[2] 0.003917895 0.003906250 0.300

Figure 5.7: Comparison between experimental and theoretical values in Theorem 5.17.
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Table 5.5: Comparison between experimental and theoretical values in WPA-TKIP.
Key correlation Experimental value Theoretical value ϵmax (%)

K[0] 0 0 –
K[0]−K[1]− 3 0.007823541 0.007788309 0.452
K[0]−K[1]− 1 0.007851853 0.007772441 1.013
−K[0]−K[1]− 3 0.008408305 0.008375244 0.395

S0[i1]

K[0] +K[1] +K[2] + 3 0.001491090 0.001479853 0.758
K[0] +K[1] +K[2] + 3 0.361751935 0.362723221 0.269
−K[0]−K[1] +K[2]− 1 0.008174625 0.008148630 0.320
K[1] +K[2] + 3 0.008173397 0.008150313 0.284
K[0]−K[1] +K[2]− 3 0.008140906 0.008148630 0.097
K[0]−K[1] +K[2]− 1 0.008147205 0.008148630 0.020
K[0]−K[1] +K[2] + 1 0.008150390 0.008148630 0.024

S1[i2]

K[0]−K[1] +K[2] + 3 0.002835497 0.002849060 0.482
K[0] 0.138038917 0.138325988 0.208

S255[i256] K[1] 0.037186225 0.037105932 0.217
Sr[ir+1] K[0] +K[1] + 1 Figures 5.7 and 5.8

−K[0]−K[1] +K[2]− 2 0.004573276 0.004427953 3.180
−K[0]−K[1] +K[2] 0.005562336 0.005471358 1.638
−K[0]−K[1] +K[2] + 2 0.004543826 0.004427953 2.553
−K[0] +K[1] +K[2] 0.005490766 0.005471358 0.356
−K[1] +K[2]− 2 0.005468425 0.005471358 0.056
−K[1] +K[2] + 3 0.005468472 0.005471358 0.055
K[2] 0.005560613 0.005471358 1.608

j2

K[0]−K[1] +K[2] 0.005607004 0.005471358 2.422

Figure 5.8: Percentage of relative error ϵmax between experimental and theoretical values in
Theorem 5.17.

104



CHAPTER 5. KEY CORRELATIONS OF THE INTERNAL STATE VARIABLES

5.4 Toward Secure RC4 Key Setting in WPA-TKIP

Many key recovery attacks on WEP have been proposed in [FMS01, VV07, Kle08, TWP08,

TAO+10, SSVV13] over the past two decades. One of the greatest factors to enable the attacks

is that the first three bytes of the RC4 key {K[0], K[1], K[2]} in WEP are derived from the

known IV. Actually, IV can be obtained easily by observing packets in wireless networks. For

example, Fluhrer et al. pointed out in [FMS01] that the remaining RC4 key bytes {K[3], K[4],

. . . , K[15]} are derived from the keystream bytes when specific IVs are used, and demonstrated

how to recover the RC4 key by observing approximately 4, 000, 000–6, 000, 000 packets (refer to

Section 3.3.3 for details).

WPA-TKIP improved the RC4 key setting to avoid the FMS attack in [FMS01]. However,

weaknesses in WPA-TKIP using the known IV have been also reported over past five years. For

example, Sen Gupta et al. presented key correlations of the keystream bytes Zr in [GMM+14],

Paterson et al. presented IV-dependent biases in [PPS14], and we presented key correlations of

the internal state variables {Sr[ir+1], Sr[jr+1], jr+1, tr+1} in this chapter. Ideally, WPA-TKIP

should be constructed in such a way that it can retain the security level of generic RC4.

This section investigated secure RC4 key setting in WPA-TKIP in such a way that it can

retain the security level of generic RC4. If the RC4 key setting is refined, it can be difficult

to induce IV-dependent biases and key correlations including the keystream bytes Zr or the

internal state variables {Sr[ir+1], Sr[jr+1], jr+1, tr+1}. In order to investigate secure RC4 key

setting in WPA-TKIP, we use the following linear forms

Zr+1 = b ·K[x] + c ·K[y] + d ·K[z] + e, (5.8)

Xr = a · Zr+1 + b ·K[x] + c ·K[y] + d ·K[z] + e, (5.9)

where Xr ∈ {Sr[ir+1], Sr[jr+1], jr+1, tr+1}, a, b, c, d ∈ {0,±1}, e ∈ {0,±1,±2,±3}, and x, y, z ∈
{0, 1, 2, . . . , 15} for r ≥ 0. Thus, we need to carefully set arbitrary three bytes of the RC4 key

{K[x], K[y], K[z]} (instead of {K[0], K[1], K[2]} in the original setting) derived from the known

IV as follows:

K[x] = (IV16 ≫ 8) & 0xFF, (5.10)

K[y] = ((IV16 ≫ 8) | 0x20) & 0x7F, (5.11)

K[z] = IV16 & 0xFF. (5.12)

We have performed experiments in order to examine all the equations defined by Equations

(5.8) and (5.9) in the first 256 rounds with 232 randomly chosen 16-byte RC4 keys in the setting

with 240 cases of {x, y, z} defined by Equations (5.10)–(5.12).

Table B.1 in Appendix B shows the number of key correlations induced by both the original

setting in WPA-TKIP and our proposed setting. We summarize the list of key correlations

including the keystream bytes Zr or unknown internal state variablesXr with more than 0.00395

or 0.0048 as positive biases and less than 0.00385 or 0.0020 as negative biases, respectively. From
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the table, we can confirm that the number of key correlations induced by the refined RC4 key

setting, e.g., (x, y, z) = (9, 10, 11), can be reduced by approximately 70% in comparison with

that in the original setting. Therefore, we have refined the RC4 key setting in WPA-TKIP.

5.5 Chapter Conclusion

This chapter has precisely investigated key correlations of the unknown internal state variables

in both generic RC4 and WPA-TKIP. Actually, key correlations of the internal state variables

could be effective for the state recovery attacks on WPA-TKIP because the correlations include

the known (IV-related) RC4 key bytes in WPA-TKIP. From our investigations, we have found

hundreds of correlations with positive or negative biases. Then, we have proved significant key

correlations theoretically, which are correlations of S0[i1], S1[i2], S255[i256], Sr[ir+1] for 0 ≤ r ≤
N , and j2. Particularly, we emphasize that the probability of the event (S0[i1] = K[0]) in

WPA-TKIP is 0 (see Theorem 5.2). Thus, the value of S0[i1] is varied from 0 to 255, except for

K[0]. As a result, our theoretical proofs have clarified how TKIP induces biases of the internal

state in generic RC4. We have further provided the secure RC4 key setting in WPA-TKIP.

Our proposed setting has reduced the number of key correlations by approximately 70% in

comparison with the original setting. We believe that our proposed setting will be adopted in

WPA-TKIP in the future.
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Chapter 6

Iterated RC4 Key Correlations of the

Keystream Bytes

In [SVV10], Sepehrdad et al. investigated key correlations of the keystream bytes experimentally.

Their investigations are limited to ℓ rounds. Thus, no correlations between K[r mod ℓ] and Zr

for r ≥ ℓ have been investigated, although K[r mod ℓ] may be iterated to use to produce Zr for

r ≥ ℓ.

This chapter focuses on key correlations of the keystream bytes, and investigates them in

detail. We first discuss new key correlations that events (Zr = K[0] − K[r mod ℓ] − r) for

arbitrary round r induce positive biases, where (K[0], K[r mod ℓ]) pairs in our key correlations

are iterated every ℓ rounds. Therefore, we hereinafter refer to the newly observed key correlations

as the iterated RC4 key correlations.

By combining our key correlations with the existing ones, e.g., Z1 = K[0] − K[1] − 1 and

Zx·ℓ = −x · ℓ (x = 1, 2, . . . , 7), we can integrate the iterated RC4 key correlations completely.

Our contributions can be summarized as follows:

• Theorem 6.1 presents that events (Zr = K[0]−K[r mod ℓ]− r) induce positive biases in

both generic RC4 and WPA-TKIP, except when r = 1, 2, x · ℓ (x = 1, 2, . . . , 7).

• Theorem 6.2 presents that an event (Z1 = K[0] − K[1] − 1) induces an negative bias in

only WPA-TKIP.

• Theorem 6.3 presents that an event (Z2 = K[0]−K[2]− 2) does not induce a bias in both

generic RC4 and WPA-TKIP.

We further discuss how to apply key correlations of the keystream bytes to the plaintext

recovery attack on WPA-TKIP as the following three approaches:

• Section 6.4.1 discusses how to extend the IOWM attack in [IOWM13] (see Section 3.2.1),

particularly on WPA-TKIP, using our iterated RC4 key correlations. In [GMM+14], Sen

Gupta et al. extended the IOWM attack, called the SMMPS attack (see Section 3.2.2),

and achieved significant improvement for recovering four bytes of a plaintext {P1, P3, P256,

P257} on WPA-TKIP. Their improvement can be achieved by using key correlations of the
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keystream bytes based on the first three bytes of the RC4 key {K[0], K[1], K[2]}, which
are known values in WPA-TKIP. In the same way as the SMMPS attack, we extend the

IOWM attack, and achieve significant improvement for recovering eight bytes of a plaintext

on WPA-TKIP using our iterated RC4 key correlations. In fact, the number of samples

for recovering P17, P18, P33, P34, P49, P50, P66, and P82 on WPA-TKIP can be reduced

to 217.727/223.178, 217.800/223.210, 218.955/223.770, 219.035/223.791, 220.297/224.114, 220.386/224.135,

221.869/224.479, and 223.505/224.820, respectively.

• Section 6.4.2 discusses how to extend the ABPPS attack in [ABP+13] (see Section 3.2.1),

particularly on WPA-TKIP using key correlations of the keystream bytes. Specifically,

our proposed algorithm considers key correlations of the keystream bytes instead of all

possible short-term biases only for round r ∈ {1, 3, 17, 18, 33, 34, 49, 50, 66, 82, 256, 257}.
By comparing our proposed algorithm with the existing attack algorithms in [IOWM13,

ABP+13, PPS14], we experimentally clarify which algorithm can effectively recover P1,

P3, P17, P18, P33, P34, P49, P50, P66, P82, P256, and P257 on WPA-TKIP. As a result, we

achieve significant improvement for recovering five bytes of a plaintext on WPA-TKIP

using our proposed algorithm. In fact, the number of samples for recovering P3, P18,

P34, P50, and P66 on WPA-TKIP can be reduced to 220/227, 224/228, 225/226, 226/228, and

228/229, respectively.

• Section 6.4.3 discusses how to optimize the plaintext recovery of the first 257 bytes on

WPA-TKIP. By combining our proposed attack in Section 6.4.2 with the existing attacks

(the IOWM attack, the ABPPS attack, the SMMPS attack, and the PPS attack), we

experimentally clarify whether the plaintext recovery of the first 257 bytes on WPA-TKIP

can be optimized or not. As a result, we achieve to recover the first 257 bytes of a

plaintext on WPA-TKIP from approximately 230 ciphertexts with a success probability

of approximately 90.8%, whose probability is approximately 6.0% higher than the success

probability of the PPS attack.

Our results imply that WPA-TKIP further lowers the security level of generic RC4.

The remainder of this chapter is organized as follows: Section 6.1 discusses the iterated RC4

key correlations observed by our experiments. Section 6.2 presents the theoretical proofs of

new iterated RC4 key correlations. Section 6.3 demonstrates the experimental simulations in

order to confirm the accuracy of the theoretical proofs. Section 6.4 discusses how to apply key

correlations of the keystream bytes to the plaintext recovery attack on WPA-TKIP. Section 6.5

concludes this chapter.

6.1 Experimental Observations

This section presents our experimental observations of new key correlations of the keystream

bytes in both generic RC4 and WPA-TKIP. In [SVV10], Sepehrdad et al. investigated key
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correlations of the keystream bytes Zr by using a linear form

(a0 ·K[0] + · · ·+ aℓ−1 ·K[ℓ− 1] + aℓ · Z1 + · · ·+ a2ℓ−1 · Zℓ) mod N = b, (6.1)

where ai ∈ {−1, 0, 1} for 0 ≤ i ≤ 2ℓ − 1. However, they did not investigate key correlations of

the keystream bytes over ℓ rounds.

We also focus on key correlations of the keystream bytes {Z1, Z3, Z4} proved by Sarkar in

[Sar14], and predict that there might exist correlations between (K[0], K[r mod ℓ]) pairs and

Zr. Then, we performed experiments for investigating correlations based on (K[0], K[r mod ℓ])

pairs with 256 bytes of the keystream generated from N4 randomly chosen keys.

Figures 6.1 and 6.2 show our experimental observations in generic RC4 and WPA-TKIP,

respectively. From our experimental observations, we have observed new key correlations of the

keystream bytes as follows:

Observation 6.1. For any arbitrary secret key K, the following key correlations of the keystream

Figure 6.1: Observations of the iterated RC4 key correlations in generic RC4.

Figure 6.2: Observations of the iterated RC4 key correlations in WPA-TKIP.
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bytes Zr in both generic RC4 and WPA-TKIP induce biases:

Zr = K[0]−K[r mod ℓ]− r.

Predictably, we demonstrate that there exist key correlations between (K[0], K[r mod ℓ])

pairs and Zr. (K[0], K[r mod ℓ]) pairs are iterated every ℓ rounds. Therefore, we refer to our

newly observed key correlations as iterated RC4 key correlations. By combining our key corre-

lations with the existing ones, we can integrate the iterated RC4 key correlations completely.

Our motivation is to prove the iterated RC4 key correlations theoretically.

6.2 New Results

This section provides Theorems 6.1–6.3 and their proofs, which are theoretical proofs of Obser-

vation 6.1. Theorem 6.1 presents that events (Zr = K[0]−K[r mod ℓ]−r) induce positive biases

in both generic RC4 and WPA-TKIP, except when r = 1, 2, x · ℓ (x = 1, 2, . . . , 7). Note that

Theorem 6.1 includes the precise proofs of Propositions 3.1 and 3.2. Theorem 6.2 presents that

an event (Z1 = K[0]−K[1]−1) induces a negative bias in only WPA-TKIP, and a positive bias

in generic RC4 as Theorem 3.21. Theorem 6.3 presents that an event (Z2 = K[0]−K[2]−2) does

not induce a bias in both generic RC4 and WPA-TKIP. As a result, by combining Theorems

6.1–6.3 with Theorems 3.21 and 3.10, Observation 6.1 can be proven completely.

The proof of Theorem 6.1 uses Lemma 3.1, which is denoted by ζu,v = Pr(S0[u] = v). Lemma

3.1 presents that the initial state S0 generated from the KSA is non-randomness [Man01].

In our proofs, we often assume that the certain event occurs with probability approximately
1
N
, which is called the probability of random association. This is because it is difficult to

demonstrate all events in the state transition of RC4, and it is a natural assumption based on

the pseudorandomness of stream ciphers. The correctness of this assumption can be confirmed

by experimental evaluations in Section 6.3. If this assumption is correct, the relative error

between the experimental and theoretical value in each theorem will be small enough, and vice

versa. Owing to this assumption, we often use the symbol of the approximate equation “≈”

throughout this section.

Theorem 6.1 ([IM18a, Theorem 7]). For any arbitrary secret key K and round r, except when

r = 1, 2, x · ℓ (x = 1, 2, . . . , 7), key correlations of the keystream bytes Zr in both generic RC4

and WPA-TKIP are given by

Pr(Zr = K[0]−K[r mod ℓ]− r) ≈ αr +
1

N
(1− αr),

where αr, βr, γr, and δr are given by

αr ≈
(
βr +

1

N(N − 1)
(1− βr)

)
· γr ·

(
δr +

1

N
(1− δr)

)
,
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βr ≈ 1

N
· N − r − 1

N
·

r∏
x=3

(N − x− 1)

r−3∏
x=0

(N − x)

,

γr ≈
(
1− 1

N

)N−r−1

· 1

N
·

N−1∑
x=r+1

(
1− 1

N

)x

·
(
1− 1

N

)x−r−1

·
(
1− 2

N

)N−x−1

,

δr ≈
(
1−

r∑
v=2

ζ1,v −
N−1∑
x=r+1

ζ1,x
N − r − 2

)
· N − r + 1

N − 1
.

Proof. We consider the following three phases to prove the major path for the target event. In

the following proof, fi =
i(i+1)

2
+
∑i

x=0 K[x mod ℓ] for i ≥ 0.

Phase 1. From the initial to the (r+1)-th round of the KSA, we assume that all the following

events occur:

jK1 = K[0] = f0 ̸∈ {1, 2, . . . , r − 1, r, fr−1},
jK2 = K[0] +K[1] + SK

1 [1] = f1 ̸∈ {2, 3, . . . , r − 1, r, f0, fr−1},

jK3 = K[0] +
2∑

x=1

(K[x] + SK
x [x]) = f2 ̸∈ {3, 4, . . . , r − 1, r, f0, fr−1},

...

jKr−1 = K[0] +
r−2∑
x=1

(K[x mod ℓ] + SK
x [x]) = fr−2 ̸∈ {r − 1, r, f0, fr−1},

jKr = K[0] +
r−1∑
x=1

(K[x mod ℓ] + SK
x [x]) = fr−1,

jKr+1 = K[0] +
r∑

x=1

(K[x mod ℓ] + SK
x [x]) = fr = f0.

Figure 6.3 shows a state transition when the above assumptions hold and r = 3. Note

that fr−1 = fr−1 − (fr − f0) = K[0] − K[r mod ℓ] − r when the above event (fr = f0)

occurs. Under the assumptions, both SK
r+1[r− 1] = K[0]−K[r mod ℓ]− r and SK

r+1[r] = 0

always hold simultaneously after the (r + 1)-th round of the KSA.

We now rewrite SK
x [x] into S1[x] for x ∈ [1, r − 1] as follows:

jK1 = K[0] = f0 ̸∈ {1, 2, . . . , r − 1, r, fr−1} w.p.
N − r − 1

N
,

jK2 = K[0] +K[1] + SK
1 [1] = f1 ̸∈ {2, 3, . . . , r − 1, r, f0, fr−1} w.p.

N − r − 1

N
,

jK3 = K[0] +
2∑

x=1

(K[x] + SK
1 [x]) = f2 ̸∈ {3, 4, . . . , r − 1, r, f0, fr−1} w.p.

N − r

N − 1
,

...
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Figure 6.3: State transition diagram of the major path in Phase 1 when r = 3.

jKr−1 = K[0] +
r−2∑
x=1

(K[x mod ℓ] + SK
1 [x]) = fr−2 ̸∈ {r − 1, r, f0, fr−1} w.p.

N − 4

N − r + 3
,

jKr = K[0] +
r−1∑
x=1

(K[x mod ℓ] + SK
1 [x]) = fr−1 w.p. 1,

jKr+1 = K[0] +
r∑

x=1

(K[x mod ℓ] + SK
1 [x]) = fr = f0 w.p.

1

N
.

This is because SK
1 [x] is never swapped during the first x rounds when all the individual

events occur. Note that the internal state in RC4 is a permutation, and then each of the

individual events occurs with the above described probability. Therefore, the probability

that all events occur simultaneously is given by

βr ≈
1

N
· N − r − 1

N
·

r∏
x=3

(N − x− 1)

r−3∏
x=0

(N − x)

.

On the other hand, if any individual event does not occur, we then assume that both

SK
r+1[r− 1] = K[0]−K[r mod ℓ]− r and SK

r+1[r] = 0 hold simultaneously with probability

approximately 1
N
(random association). The probability of random association in this case

is 1
N(N−1)

because the internal state in RC4 is a permutation. Therefore, the probability

in that case is given by 1
N(N−1)

(1− βr).

Phase 2. From the (r + 2)-th round to the end of the KSA, we assume that all the following

events occur:

• From the (r + 2)-th round to the end of the KSA, we assume that the values of jK
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Figure 6.4: State transition diagram of the major path in Phase 2 when r = 3.

are not equal to r. This event occurs with probability approximately (1− 1
N
)N−r−1.

• For an index x ∈ [r + 1, N − 1], we assume that SK
x [x] = x. This event occurs with

probability approximately (1− 1
N
)x.

• From the (r+2)-th to the x-th round of the KSA, we assume that the values of jK are

not equal to r − 1. This event occurs with probability approximately (1− 1
N
)x−r−1.

• At the (x + 1)-th round of the KSA, we assume that jKx+1 = r − 1. This event

occurs with probability approximately 1
N
. Thus, SK

x+1[r − 1] = x owing to the swap

operation.

• For the remaining N − x− 1 rounds of the KSA, we assume that the values of jK do

not touch the indices r− 1 and x. This event occurs with probability approximately

(1− 2
N
)N−x−1.

Figure 6.4 shows a state transition when the above assumptions hold and r = 3. Under

the above assumptions, all of S0[r− 1] = x, S0[r] = 0, and S0[x] = K[0]−K[r mod ℓ]− r

always hold simultaneously after the end of the KSA. Therefore, the probability that all

events occur simultaneously is given by

γr ≈
(
1− 1

N

)N−r−1

· 1

N
·

N−1∑
x=r+1

(
1− 1

N

)x

·
(
1− 1

N

)x−r−1

·
(
1− 2

N

)N−x−1

.

Phase 3. From the initial to the (r − 1)-th round of the PRGA, we assume that all of the

following events occur:

j1 = S0[1] ̸∈ {2, 3, . . . , r − 1, r, x},

j2 =
1∑

u=0

Su[u+ 1] ̸∈ {3, 4, . . . , r − 1, r, x},
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Figure 6.5: State transition diagram of the major path in Phase 3 when r = 3.

...

jr−2 =
r−3∑
u=0

Su[u+ 1] ̸∈ {r − 1, r, x},

jr−1 =
r−2∑
u=0

Su[u+ 1] ̸∈ {r, x}.

Figure 6.5 shows a state transition when the above assumptions hold and r = 3. We

note that the values of j do not touch the index r and x ∈ [r + 1, N − 1] from the initial

to the (r − 1)-th round of the PRGA. Under the above assumptions, Sr[r] = Sr−1[jr] =

Sr−1[jr−1] = Sr−2[r − 1] = S0[r − 1] = x and Sr[jr] = Sr−1[r] = S0[r] = 0 always hold

simultaneously after the (r − 1)-th round of the PRGA. After that, the PRGA outputs

Zr = Sr[Sr[r] + Sr[jr]] = Sr[x] = S0[x] = K[0]−K[r mod ℓ]− r.

As with the discussion in Phase 1, we now rewrite Su into S0 as follows:

j1 = S0[1] ̸∈ {2, 3, . . . , r − 1, r, x} w.p. 1−
r∑

v=2

ζ1,v −
N−1∑
x=r+1

ζ1,x
N − r − 2

,

j2 =
1∑

u=0

S0[u+ 1] ̸∈ {3, 4, . . . , r − 1, r, x} w.p.
N − r + 1

N − 1
,

...

jr−2 =
r−3∑
u=0

S0[u+ 1] ̸∈ {r − 1, r, x} w.p.
N − 3

N − r + 3
,

jr−1 =
r−2∑
u=0

S0[u+ 1] ̸∈ {r, x} w.p.
N − 2

N − r + 2
.

Note that the internal state in RC4 is a permutation, and then each of the individual
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events occurs with the above described probability1. Therefore, the probability that all

the above events occur simultaneously is given by

δr ≈
(
1−

r∑
v=2

ζ1,v −
N−1∑
x=r+1

ζ1,x
N − r − 2

)
·

r−1∏
y=2

(N − y)

r−2∏
y=1

(N − y)

=
(
1−

r∑
v=2

ζ1,v −
N−1∑
x=r+1

ζ1,x
N − r − 2

)
· N − r + 1

N − 1
.

On the other hand, if any individual event does not occur, we then assume that the

PRGA outputs Zr = K[0] − K[r mod ℓ] − r with probability approximately 1
N

(random

association). Therefore, the probability in that case is given by 1
N
(1− δr).

We assume that all events in the above three phases are mutually independent. Therefore, we

obtain the probability of the major path as

αr ≈
(
βr +

1

N(N − 1)
(1− βr)

)
· γr ·

(
δr +

1

N
(1− δr)

)
.

If any phase does not hold, we then assume that Zr = K[0]−K[r mod ℓ]− r with probability

approximately 1
N

(random association). In summary, we obtain

Pr(Zr = K[0]−K[r mod ℓ]− r) ≈ αr +
1

N
(1− αr).

Theorem 6.2 ([IM18a, Theorem 9]). For any arbitrary secret key K, a key correlation of the

keystream byte Z1 in WPA-TKIP is given by

Pr(Z1 = K[0]−K[1]− 1) ≈ 1

N
(1− α1),

where α1 ≈ 1
N2 · (1− 2

N
) · (1− 1

N
)N−2 ·

N−1∑
x=2

(1− 1
N
)x · (1− 1

N
)x−2 · (1− 2

N
)N−x−1.

Proof. The major path for the target event is as follows:

• We assume that K[0] ̸= 0, 1 and K[1] = 255. This event occurs with probability approxi-

mately 2
N
(1− 1

N
).

• After the second round of the KSA, SK
2 [1] = 0 because jK2 = K[0] +K[1] + 1 = K[0].

• From the third round to the end of the KSA, we assume that the values of jK are not

equal to 1. This event occurs with probability approximately (1− 1
N
)N−2.

• For an index x ∈ [2, N−1], we assume that SK
x [x] = x. This event occurs with probability

approximately (1− 1
N
)x.

1Pr(S0[1] = x) is an average probability because the range of x is from r + 1 to N − 1.
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• For the third to the x-th round of the KSA, we assume that the values of jK are not equal

to 0. This event occurs with probability approximately (1− 1
N
)x−2.

• At the (x + 1)-th round of the KSA, we assume that jKx+1 = 0. This event occurs with

probability approximately 1
N

(random association). Thus, SK
x+1[r − 1] = x owing to the

swap operation.

• For the remaining N − x− 1 rounds of the KSA, we assume that the values of jK do not

touch the indices 0 and x. This event occurs with probability approximately (1− 2
N
)N−x−1.

If all the individual events occur, S0[0] = x, S0[1] = 0, and S0[x] = K[0] always hold simulta-

neously after the end of the KSA, and then the PRGA outputs Z1 = K[0] = K[0] −K[1] − 1

as K[1] = 255. We assume that the individual events in the major path become mutually

independent. Therefore, all events occur with probability approximately α1 ≈ 1
N2 · (1− 2

N
) · (1−

1
N
)N−2

∑N−1
x=2 (1−

1
N
)x ·(1− 1

N
)x−2 ·(1− 2

N
)N−x−1. On the other hand, Theorem 3.11 presents that

the range of K[1] is limited to either from 32 to 63 or from 96 to 127 in WPA-TKIP [GMM+14].

Thus, the target event never occurs because K[1] ̸= 255 in WPA-TKIP.

We assume that Z1 = K[0]−K[1]−1 with probability approximately 1
N
(random association),

except for the major path. Therefore, we obtain Pr(Z1 = K[0]−K[1]− 1) ≈ 1
N
(1− α1).

Theorem 6.3 ([IM18a, Theorem 10]). For any arbitrary secret key K, a key correlation of the

keystream byte Z2 in both generic RC4 and WPA-TKIP is given by

Pr(Z2 = K[0]−K[2]− 2) ≈ 1

N
.

Proof. We prove the major path for the target event in the same way as the proof of Theorem

6.1 when r = 2. After the end of the KSA, S0[1] = x, S0[2] = 0, and S0[x] = K[0] −K[2] − 2

always hold simultaneously (see Phase 2 in the proof of Theorem 6.1). In addition, S0[1] ̸= 2

always hold because x ∈ [3, N − 1] during Phase 2 in the proof of Theorem 6.1.

Figure 6.6 shows a state transition diagram from the initial to the second round of the

PRGA. According to the state transition diagram, the PRGA outputs Z2 = 0. Then, the target

event occurs only when K[0] − K[2] − 2 = 0, whose probability is 1
N

because the RC4 key is

generated uniformly at random. Therefore, we obtain the probability of the major path as 1
N
α2.

We assume that the target event occurs with probability approximately 1
N

(random associ-

ation), except for the major path. In summary, we obtain

Pr(Z2 = K[0]−K[2]− 2) ≈ 1

N
α2 +

1

N
(1− α2) =

1

N
,

where α2 ≈ 1
N2 · (1− 3

N
) · (1− 1

N
)N−3

∑N−1
x=3 (1−

1
N
)x · (1− 1

N
)x−3 · (1− 2

N
)N−x−1.
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Figure 6.6: State transition diagram of the major path in the case of Z2.

6.3 Experimental Evaluations

We have performed experiments to check the accuracy of the theoretical values in all theorems.

Our experiments used N5 samples generated from randomly chosen keys in generic RC4 and

WPA-TKIP. Because each of the target events has a relative bias with a probability of at least

O( 1
N
), the number of samples to distinguish each of the target event from random distribution

is at least O(N3) according to Theorem 3.2.

We have evaluated the percentage of the relative error ϵmax of the experimental values

compared with the theoretical values (see Section 2.5.3). Figures 6.7–6.9 show comparisons

between the experimental and theoretical probabilities in generic RC4 and WPA-TKIP, and the

percentage of the relative error ϵmax, respectively. We can see that ϵmax is small enough in

each case in both generic RC4 and WPA-TKIP, such as ϵmax ≤ 0.456 (%). Therefore, we have

checked the accuracy of the theoretical values in all theorems.

Figure 6.7: Comparison between experimental and theoretical probabilities in generic RC4.

117



CHAPTER 6. ITERATED RC4 KEY CORRELATIONS OF THE KEYSTREAM BYTES

Figure 6.8: Comparison between experimental and theoretical probabilities in WPA-TKIP.

Figure 6.9: Percentage of relative error ϵmax between experimental and theoretical probabilities
in both generic RC4 and WPA-TKIP.

6.4 Applications to Plaintext Recovery on WPA-TKIP

6.4.1 Extension of the IOWM Attack

This subsection discusses how to extend the IOWM attack in [IOWM13], particularly on WPA-

TKIP, using our iterated RC4 key correlations. Our attack is similar to the SMMPS attack in

[GMM+14] (see Section 3.2.2). When the iterated RC4 key correlations induce higher biases

than certain events used in the IOWM attack, our attack can be improved in the same way as

the SMMPS attack.

We have compared the iterated RC4 key correlations with a set of the strongest biases in

[IOWM13] (see Table 3.1). As a result, the iterated RC4 key correlations of the keystream

bytes {Z17, Z18, Z33, Z34, Z49, Z50, Z66, Z82} induce higher biases than the corresponding

events used in the IOWM attack. Thus, we reduce the number of ciphertexts for recovering the

corresponding bytes of a plaintext on WPA-TKIP according to Theorem 3.2. Table 6.1 shows
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Table 6.1: Significant improvement for recovering eight bytes of a plaintext on WPA-TKIP.
Iterated RC4 key correlations Biases used in [IOWM13]

Event
# of

Event
# ofRound

Probability
ciphertexts

Probability
ciphertexts

17 Z17 = K[0]−K[1]− 17 2−8 · (1 + 2−4.863) 217.727 Z17 = 17 2−8 · (1 + 2−7.589) 223.178

18 Z18 = K[0]−K[2]− 18 2−8 · (1 + 2−4.900) 217.800 Z18 = 18 2−8 · (1 + 2−7.605) 223.210

33 Z33 = K[0]−K[1]− 33 2−8 · (1 + 2−5.477) 218.955 Z33 = 0 2−8 · (1 + 2−7.885) 223.770

34 Z34 = K[0]−K[2]− 34 2−8 · (1 + 2−5.518) 219.035 Z34 = 0 2−8 · (1 + 2−7.896) 223.791

49 Z49 = K[0]−K[1]− 49 2−8 · (1 + 2−6.149) 220.297 Z49 = 0 2−8 · (1 + 2−8.057) 224.114

50 Z50 = K[0]−K[2]− 50 2−8 · (1 + 2−6.193) 220.386 Z50 = 0 2−8 · (1 + 2−8.068) 224.135

66 Z66 = K[0]−K[2]− 66 2−8 · (1 + 2−6.934) 221.869 Z66 = 0 2−8 · (1 + 2−8.239) 224.479

82 Z82 = K[0]−K[2]− 82 2−8 · (1 + 2−7.752) 223.505 Z82 = 0 2−8 · (1 + 2−8.410) 224.820

significant improvement for recovering eight bytes of a plaintext on WPA-TKIP in comparison

with the IOWM attack.

To summarize our results, by using our iterated RC4 key correlations instead of the corre-

sponding events used in the IOWM attack, the number of ciphertexts for recovering P17, P18,

P33, P34, P49, P50, P66, and P82 on WPA-TKIP can be reduced to 217.727/223.178, 217.800/223.210,

218.955/223.770, 219.035/223.791, 220.297/224.114, 220.386/224.135, 221.869/224.479, and 223.505/224.820, re-

spectively.

6.4.2 Extension of the ABPPS Attack

This subsection discusses how to extend the ABPPS attack in [ABP+13], particularly on WPA-

TKIP, using key correlations of the keystream bytes. We propose a plaintext recovery algorithm

that considers key correlations of the keystream bytes instead of all possible short-term biases

only for round r ∈ {1, 3, 17, 18, 33, 34, 49, 50, 66, 82, 256, 257} as the following four steps:

Step 1. Estimate the accurate distributions of the keystream bytes Zr in the first 257 rounds:

pr,k :=




Pr(Zr = −K[0]−K[1] + k) when r = 1, 257,

Pr(Zr = K[0] +K[1] +K[2] + k) when r = 3,

Pr(Zr = K[0]−K[1] + k) when r = 17, 33, 49,

Pr(Zr = K[0]−K[2] + k) when r = 18, 34, 50, 66, 82,

Pr(Zr = −K[0] + k) when r = 256,

Pr(Zr = k) otherwise,

where k = 0x00, . . . , 0xFF and pr,k is taken from randomly chosen keys.

Step 2. Assuming that we obtain S ciphertexts {C1, . . . , CS} for the attack in the broadcast

setting. Let Cj,r be the r-th round of ciphertext Cj. For any candidate plaintext byte µ
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in each round and k = 0x00, ..., 0xFF, the vector (N
(µ)
0x00, ..., N

(µ)
0xFF) with

N
(µ)
k =





|{j | Cj,r = (−K[0]−K[1] + k)⊕ µ}1≤j≤S| when r = 1, 257,

|{j | Cj,r = (K[0] +K[1] +K[2] + k)⊕ µ}1≤j≤S| when r = 3,

|{j | Cj,r = (K[0]−K[1] + k)⊕ µ}1≤j≤S| when r = 17, 33, 49,

|{j | Cj,r = (K[0]−K[2] + k)⊕ µ}1≤j≤S| when r = 18, 34, 50, 66, 82,

|{j | Cj,r = (−K[0] + k)⊕ µ}1≤j≤S| when r = 256,

|{j | Cj,r = k ⊕ µ}1≤j≤S| otherwise,

represents the induced distribution of the keystream bytes Zr obtained from {Cj,r}1≤j≤S

and µ.

Step 3. Calculate the probability λµ that that the candidate plaintext byte µ is correctly

encrypted into the ciphertext bytes {Cj,r}1≤j≤S as

λµ =
S!

N
(µ)
0x00! · · ·N

(µ)
0xFF!

∏
k∈{0x00, . . . , 0xFF}

p
N

(µ)
k

r,k ,

where λµ follows the multinomial distribution with parameter S and (pr,0x00, . . . , pr,0xFF)

(see Definition 2.6).

Step 4. Determine the maximum-likelihood plaintext byte value P ∗
r by calculating λµ for all

0x00 ≤ µ ≤ 0xFF and then distinguishing µ such that λµ is the maximum value.

The details of our proposed attack are described as Algorithm 9.

We have performed experiments in order to compare the number of ciphertexts for recovering

12 bytes of a plaintext {P1, P3, P17, P18, P33, P34, P49, P50, P66, P82, P256, P257} by our proposed

attack and the existing attacks (the IOWM attack, the ABPPS attack, and the PPS attack).

Our experimental results are described as Table 6.2. We summarize the list of the number of

ciphertexts with the success probability of 100% in each case. From the table, we can achieve

significant improvement for recovering five bytes of a plaintext on WPA-TKIP by our proposed

attack. In fact, the number of samples for recovering P3, P18, P34, P50, and P66 on WPA-TKIP

can be reduced to 220/227, 224/228, 225/226, 226/228, and 228/229, respectively.

6.4.3 Optimization of Plaintext Recovery on WPA-TKIP

This subsection discusses how to optimize the plaintext recovery of the first 257 bytes on WPA-

TKIP. We assumed that the plaintext recovery of the first 257 bytes on WPA-TKIP can be

optimized by combining the best approach for each round from our proposed attack in Section

6.4.2 and the existing attacks (the IOWM attack, the ABPPS attack, the SMMPS attack, and

the PPS attack).

We have performed experiments in order to compare the probabilities of success for recover-

ing the first 257 bytes of a plaintext by our proposed attack, the PPS attack, and the optimized
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Algorithm 9 Our proposed plaintext recovery attack

Input: {Cj}1≤j≤S: S ciphertexts by encrypting the same plaintext P ,
r: the number of rounds,
pr,k: the accurate distribution of the keystream Zr at round r.

Output: P ∗
r : estimate for plaintext byte Pr.

1: N0x00 ← 0, . . . , N0xFF ← 0
2: for j from 1 to S do
3: if r ∈ {1, 257} then
4: NCj,r

← NCj,r−(−K[0]−K[1]) + 1
5: else if r = 3 then
6: NCj,r

← NCj,r−(K[0]+K[1]+K[2]) + 1
7: else if r ∈ {17, 33, 49} then
8: NCj,r

← NCj,r−(K[0]−K[1]) + 1
9: else if r ∈ {18, 34, 50, 66, 82} then
10: NCj,r

← NCj,r−(K[0]−K[2]) + 1
11: else if r = 256 then
12: NCj,r

← NCj,r−(−K[0]) + 1
13: else
14: NCj,r

← NCj,r
+ 1

15: end if
16: end for
17: for µ from 0x00 to 0xFF do
18: for k from 0x00 to 0xFF do
19: N

(µ)
k ← Nk⊕µ

20: end for
21: λµ ←

∑0xFF
k=0x00 N

(µ)
k log pr,k

22: end for
23: P ∗

r ← argmaxµ∈{0xFF,...,0xFF} λµ

Table 6.2: Experimental comparison of the number of ciphertexts for recovering 12 bytes of a
plaintext on WPA-TKIP by our proposed attack and the existing attacks. The probability of
success in each case is 100%.

# of ciphertexts
r

Our proposed attack The existing attacks

1 217 216

3 220 227

17 223 223

18 224 228

33 224 223

34 225 226

49 226 224

50 226 228

66 228 229

82 229 229

256 219 219

257 222 222
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Figure 6.10: Success probabilities for recovering the first 257 bytes of a plaintext by our proposed
attack, the PPS attack, and the optimized attack from 222, 223, . . . , 230 ciphertexts in each cases.

attack from 222, 223, . . . , 230 ciphertexts in each cases. Figure 6.10 shows our experimental re-

sults. The horizontal and vertical lines represent the number of ciphertexts with a logarithmic

scale and the probabilities of success in each attack, respectively. The blue, red, and green lines

represent the experimental results in our proposed attack, the PPS attack, and the optimized

attack, respectively. From the figure, we see that the optimized attack can recover the first 257

bytes of a plaintext on WPA-TKIP with the highest probability of success in the attacks. As a

result, we can achieve to recover the first 257 bytes of a plaintext on WPA-TKIP from approx-

imately 230 ciphertexts with the success probability of approximately 90.8%, whose probability

is approximately 6.0% higher than the success probability of the PPS attack.

6.5 Chapter Conclusion

This chapter has focused on key correlations of the keystream bytes, and has investigated

correlations between (K[0], K[r mod ℓ]) pairs and Zr based on the previous works in [SVV10,

Sar14]. Then, we have provided theoretical proofs of newly observed key correlations of the

keystream bytes. Combining our key correlations with the previous ones, they can be integrated

as iterated RC4 key correlations, i.e., Zr = K[0]−K[r mod ℓ]− r for any arbitrary round r.

Furthermore, this chapter has discussed the extend IOWM attack, the extend ABPPS at-

tack, and the optimized plaintext recovery attack on WPA-TKIP. The first attack has achieved

significant improvement for recovering eight bytes of a plaintext {P17, P18, P33, P34, P49, P50,

P66, P82} using our iterated RC4 key correlations in the same way as the SMMPS attack. the

second attack has achieved significant improvement for recovering five bytes of a plaintext {P3,

P18, P34, P50, P66} using key correlations of the keystream bytes (including ours and the previous

ones [GMM+14]). The third attack has optimized the plaintext recovery of the first 257 bytes
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by combining the best approach for each round. As a result, the optimized attack has achieved

to recover the first 257 bytes of a plaintext on WPA-TKIP from approximately 230 ciphertexts

with the success probability of approximately 90.8%, whose probability is approximately 6.0%

higher than the success probability of the PPS attack.
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Chapter 7

Conclusion and Future Works

We conclude this dissertation in this chapter. This dissertation has presented a study on statis-

tical cryptanalysis of stream ciphers, and focused particularly on RC4 in Chapters 4–6.

Section 7.1 revisits the individual chapters by summarizing our results on statistical crypt-

analysis of RC4 stream cipher. Section 7.2 discusses future works for statistical cryptanalysis

of stream ciphers. This dissertation ends in Section 7.3.

7.1 Summary of Our Results

We firmly believe that our study has improved the awareness about the threat of information

security to many people and has proposed the analysis methods of all existing and future stream

ciphers toward the realization of secure communications. Our results in this dissertation can be

summarized as follows:

Refined Glimpse Correlations

We have presented the Refined Glimpse Correlations. The existing Glimpse Correlations include

the Glimpse Theorem by Jenkins in [Jen96] and the Long-term Glimpse by Maitra and Sen

Gupta in [MG13], which are correlations between the keystream bytes and the internal state

variables. They provided only cases with positive biases, and dealt with correlations on each

round all together. Then, we have investigated to find dual cases of the existing Glimpse

Correlations and cases with precise biases on specific rounds. As a result of our investigations,

we have refined the existing Glimpse Correlations by demonstrating the existence of events with

two dual cases, a new positive bias, and three precise biases on the first and second round, and

have presented their theoretical proofs.

Key Correlations of the Internal State Variables

We have presented the Key Correlations of the Internal State Variables. The existing key cor-

relations in WPA-TKIP included only cases of the keystream bytes by Sen Gupta et al. in
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[GMM+14], which are called key correlations of the keystream bytes. Then, we have inves-

tigated to find cases of the unknown internal state variables in WPA-TKIP and cases with

different biases between generic RC4 and WPA-TKIP. As a result of our investigations, we have

demonstrated hundreds of key correlations of the internal state variables experimentally, and

have presented theoretical proofs for 22 cases. Furthermore, our investigations have clarified

how TKIP induces biases of the internal state of generic RC4 by demonstrating several cases

with different biases between generic RC4 and WPA-TKIP.

Toward Secure RC4 Key Setting in WPA-TKIP

We have discussed the Toward Secure RC4 Key Setting in WPA-TKIP in such a way that it can

retain the security level of generic RC4. The existing work by Sen Gupta et al. in [GMM+14]

and our investigations in Chapter 5 have clarified how TKIP induces key correlations of the

keystream bytes and the internal state variables of generic RC4. Then, we have investigated

to find the refined three bytes of the RC4 key derived from the known IV. As a result of our

investigations, we have reduced the number of key correlations induced by the refined RC4 key

setting by approximately 70% in comparison with the original setting in WPA-TKIP.

Iterated Key Correlations of the Keystream Bytes

We have presented the Iterated Key Correlations of the Keystream Bytes. The existing key

correlations by Sepehrdad et al. in [SVV10] were limited to ℓ rounds, and no correlations between

K[r mod ℓ] and Zr for r ≥ ℓ have been investigated, although K[r mod ℓ] may be iterated to use

to produce Zr for r ≥ ℓ. Then, we have investigated to find correlations betweenK[r mod ℓ] and

Zr for r ≥ ℓ. As a result of our investigations, we have demonstrated the iterated key correlations

between (K[0], K[r mod ℓ]) pairs and Zr for the first 256 rounds, and have presented theoretical

proofs for them.

Improvement for Plaintext Recovery on WPA-TKIP

We have discussed three attacks toward the Improvement for Plaintext Recovery on WPA-TKIP

using key correlations of the keystream bytes, which include the iterated key correlations and

the existing ones in [GMM+14]. The first attack has extended the existing attack by Isobe

et al. in [IOWM14], and has achieved significant improvement for recovering eight bytes of a

plaintext in the same way as the existing attack by Sen Gupta et al. in [GMM+14]. The second

attack has extended the existing attack by AlFardan et al. in [ABP+13], and has achieved

significant improvement for recovering five bytes of a plaintext. The third attack has optimized

the plaintext recovery of the first 257 bytes by combining the best approach from among a

plurality of attacks for each round. As a result, we have demonstrated significant optimization

for recovering the first 257 bytes of a plaintext from approximately 230 ciphertexts with the

success probability of approximately 90.8%, whose probability is approximately 6.0% higher

than the success probability of the existing attacks.
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7.2 Future Works

Further Improvement for Plaintext Recovery on WPA-TKIP

We discuss the Further Improvement for Plaintext Recovery on WPA-TKIP in the following

direction. AlFardan et al. and Paterson et al. proposed plaintext recovery algorithms on generic

RC4 and WPA-TKIP using not only short-term biases but also long-term biases in [ABP+13]

and [PPS14], respectively. We then would contribute to an improvement for the plaintext

recovery attack on WPA-TKIP by extending the long-term bias attacks in [ABP+13, PPS14]

using key correlations of the keystream bytes as we discussed in Chapter 6.

Improvements for Key Recovery on Generic RC4, WEP, and WPA-TKIP

We discuss the Improvements for Key Recovery on Generic RC4, WEP, and WPA-TKIP in

the following directions. Klein proposed a key recovery algorithm on WEP using a practical

application of the Glimpse Theorem in [Kle08] (see Section 3.3.4). No study, however, has been

reported on any key recovery algorithm using the other Glimpse Correlations, which include the

Long-term Glimpse in [MG13] and our refined Glimpse Correlations. We then would contribute

to an improvement for recovering full bytes of an RC4 key on WEP using a practical application

of the Glimpse Correlations in the same way as the existing attack in [Kle08]. Furthermore,

Sepehrdad et al. discovered new key correlations of the keystream bytes experimentally, and

applied their key correlations to the theoretical key recovery attack on generic RC4 in [SVV10]

(see Section 3.3.2). We then would contribute to an improvement for recovering full bytes of an

RC4 key on generic RC4 and WPA-TKIP by using the iterated key correlations of the keystream

bytes in the same way as the existing attack in [SVV10].

Improvement for State Recovery on Generic RC4 and WPA-TKIP

We discuss the Improvement for State Recovery on Generic RC4 and WPA-TKIP in the follow-

ing direction. Knudsen et al. proposed a basic recursive algorithm to recover the internal state

by guessing the unknown internal state variables {Sr[ir+1], Sr[jr+1], jr+1, tr+1} in [KMP+98] (see

Section 3.4). Furthermore, we demonstrated hundreds of key correlations of the unknown inter-

nal state variables in generic RC4 and WPA-TKIP in Chapter 5. We then would contribute to

an improvement for recovering the internal state in generic RC4 and WPA-TKIP by efficiently

guessing the unknown internal state variables using our key correlations.

Toward Secure Stream Ciphers

We discuss the Toward Secure Stream Ciphers in the following direction. Recently, the IV is often

used for initialization of the internal state in representative stream ciphers, which include HC-

128 [Wu08], Rabbit [BVZ08], Salsa20/12, [Ber08b], ChaCha20 [Ber08a, Ber08c], SOSEMANUK

[BBC+08], Grain v1 [HJMM08], MICKEY [BD08], and Trivium [Can08]. The IV values are

known for adversaries, and therefore the usage of the IV values may inhibit the secure operation
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of the stream ciphers as well as the IV setting in WPA-TKIP (see Chapter 5). We proposed

secure RC4 key setting in WPA-TKIP in such a way that it can retain the security level of

generic RC4 in Section 5.4. We then would contribute to securely operating stream ciphers

by investigating secure IV setting in the stream ciphers in the same way as the discussion in

Section 5.4.

7.3 Concluding Remarks

As mentioned in Chapter 1, stream ciphers can encrypt/decrypt faster than block ciphers.

Therefore, stream ciphers continue to be important in order to suppress reduction in data

communication speed over networks from increase in data communication quantity.

Looking back on our study, it became clear that there exist many statistical weaknesses

in RC4 stream cipher. In other words, it is not appropriate to use RC4 as a cryptographic

scheme. Despite this situation, RC4 is still widely used in essential security protocols for secure

communications over networks such as SSL/TLS, WEP, WPA-TKIP. Particularly, according

to a survey report by Information-technology Promotion Agency (IPA) in 2016 [IPA], there

exist only 12.2 % of 5000 clients (questionnaire respondents) who intentionally avoid using RC4

for secure communications over the Wi-Fi networks. This fact demonstrates that most of the

clients have low level of awareness about threats of information security. We believe that this

dissertation will be a warning to many clients using the Internet and Wi-Fi networks, and that

their awareness about threats of information security will be improved.

Our motivation in this dissertation was to contribute to security evaluations of all stream

ciphers through cryptanalysis of RC4. As mentioned in Section 7.2, the IV is often used for

initialization of the internal state in representative stream ciphers. Several works on cryptanal-

ysis using IV have been reported so far [EJT07, FKM08, JM04, Mai16], however, there are few

stream ciphers which has sufficiently analyzed the IV setting when designing a cryptographic

scheme. Once a cryptographic scheme is designed and put into practical use, it is not easy to

change its specification. Therefore, we need to analyze including the IV setting when design-

ing a cryptographic scheme in order to ensure the highest security level. We believe that this

dissertation will provide an opportunity to sufficiently analyze the IV setting for designers and

will contribute toward the realization of secure communications.
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Appendix A

Newly Observed Key Correlations of

State Variables

Table A.1: New key correlations by Equation (5.2) in generic RC4 and WPA-TKIP.

Xr Key correlations RC4 WPA-TKIP

S0[i1] −Z1 + 1 0.007584 0.007660

(= j1) −Z1 −K[0] +K[1] + 1 0.003906 0.004847

−Z1 +K[0]−K[1] + 1 0.003907 0.004843

−K[0]−K[1]−K[2] 0.005361 0.005360

−K[0]−K[1]− 3 0.005336 0.008437

−K[0]−K[1]− 2 0.002487 0.002605

−K[0]−K[1]− 1 0.003901 0.002613

−K[0]−K[1] 0.002469 0.002619

−K[0]−K[1] + 1 0.005350 0.002600

−K[0]−K[1] + 2 0.002498 0.002601

−K[0]−K[1] + 3 0.005331 0.002605

−K[0]− 3 0.003915 0.002481

−K[0]− 2 0.003895 0.002461

−K[0]− 1 0.003823 0.005254

−K[0] 0.003897 0.002458

−K[0] + 1 0.003918 0.002486

−K[0] + 2 0.003902 0.005340

−K[0] + 3 0.003293 0.002486

−K[0] +K[1]− 3 0.005334 0.005240

−K[0] +K[1]− 2 0.002480 0.002341

−K[0] +K[1]− 1 0.005331 0.005229

−K[0] +K[1] 0.002481 0.002677

−K[0] +K[1] + 1 0.005340 0.005446

K[1] + 1 0.006765 0.005756

140



APPENDIX A. NEWLY OBSERVED KEY CORRELATIONS OF STATE VARIABLES

Xr Key correlations RC4 WPA-TKIP

K[1] + 2 0.002479 0.002884

K[0]−K[1]− 3 0.005337 0.007848

K[0]−K[1]− 2 0.002476 0.002061

K[0]−K[1]− 1 0.003922 0.007877

K[0]−K[1] 0.002485 0.002404

K[0]−K[1] + 1 0.005324 0.002221

K[0]−K[1] + 2 0.002493 0.002658

K[0]−K[1] + 3 0.005333 0.002640

K[0]− 3 0.003923 0.002499

K[0]− 2 0.003920 0.002493

K[0]− 1 0.003915 0.002494

K[0] 0.001450 0

K[0] + 1 0.003912 0.002464

K[0] + 2 0.003915 0.002475

K[0] + 3 0.003913 0.002471

K[0] +K[1]− 3 0.002486 0.002356

K[0] +K[1]− 2 0.002499 0.002339

K[0] +K[1]− 1 0.002491 0.002337

K[0] +K[1] + 1 0.365895 0.368730

K[0] +K[1] + 2 0.002470 0.002309

K[0] +K[1] + 3 0.002475 0.002291

K[0] +K[1] +K[2] + 3 0.001492 0.001491

Z1 −K[0]−K[1]−K[2]− 2 0.005326 0.004753

S1[i2] −Z2 −K[0] +K[1] 0.003905 0.004957

−Z2 −K[0] +K[1] + 2 0.003906 0.004839

−Z2 −K[1] +K[2]− 3 0.005314 0.005327

−Z2 0.007768 0.007791

−Z2 + 2 0.007751 0.007749

−Z2 +K[1] +K[2] + 3 0.005317 0.005328

−Z2 +K[0]−K[1] 0.003907 0.004958

−Z2 +K[0]−K[1] + 2 0.003906 0.004839

−K[0]−K[1]−K[2]− 2 0.002478 0.002464

−K[0]−K[1]−K[2] + 1 0.005348 0.005351

−K[0]−K[1]−K[2] + 2 0.002513 0.002499

−K[0]−K[1]−K[2] + 3 0.005281 0.005290

−K[0]−K[1] + 3 0.005329 0.004036

−K[0]−K[1] +K[2]− 3 0.005307 0.002491

−K[0]−K[1] +K[2]− 2 0.002513 0.002473

−K[0]−K[1] +K[2]− 1 0.005305 0.008197

−K[0]−K[1] +K[2] 0.002507 0.002499
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Xr Key correlations RC4 WPA-TKIP

−K[0]−K[1] +K[2] + 1 0.005317 0.002491

−K[0]−K[1] +K[2] + 2 0.002512 0.002473

−K[0]−K[1] +K[2] + 3 0.005305 0.002474

−K[0]−K[2]− 3 0.003905 0.004635

−K[0] +K[2]− 3 0.003908 0.002489

−K[0] +K[2]− 2 0.003904 0.005311

−K[0] +K[2]− 1 0.003905 0.002522

−K[0] +K[2] 0.003904 0.002477

−K[0] +K[2] + 1 0.003906 0.005326

−K[0] +K[2] + 2 0.003903 0.002489

−K[0] +K[2] + 3 0.003926 0.002504

−K[0] +K[1]−K[2]− 3 0.005293 0.004616

−K[0] +K[1]−K[2]− 2 0.002517 0.002486

−K[0] +K[1]−K[2]− 1 0.005296 0.005885

−K[0] +K[1]−K[2] 0.002515 0.002482

−K[0] +K[1]−K[2] + 1 0.005301 0.005279

−K[0] +K[1]−K[2] + 2 0.002519 0.002510

−K[0] +K[1]−K[2] + 3 0.005300 0.005289

−K[0] +K[1] + 1 0.003905 0.005001

−K[0] +K[1] +K[2]− 3 0.005308 0.005322

−K[0] +K[1] +K[2]− 2 0.002506 0.002489

−K[0] +K[1] +K[2]− 1 0.005305 0.005333

−K[0] +K[1] +K[2] 0.002506 0.002488

−K[0] +K[1] +K[2] + 1 0.005306 0.005326

−K[0] +K[1] +K[2] + 2 0.002510 0.002492

−K[0] +K[1] +K[2] + 3 0.005310 0.004261

−K[1]−K[2]− 3 0.006748 0.006767

−K[2]− 3 0.003903 0.004966

−K[2]− 2 0.003899 0.002481

−K[2]− 1 0.006127 0.007571

−K[2] 0.003896 0.002477

−K[2] + 1 0.003915 0.005308

−K[2] + 2 0.003888 0.002487

−K[2] + 3 0.003904 0.005306

K[2]− 3 0.003910 0.005309

K[2]− 2 0.003899 0.002486

K[2]− 1 0.003910 0.005321

K[2] 0.003900 0.002475

K[2] + 1 0.003909 0.005331

K[2] + 2 0.003906 0.002479
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Xr Key correlations RC4 WPA-TKIP

K[2] + 3 0.006219 0.003886

K[1] +K[2] + 3 0.008157 0.008172

K[0]−K[1]−K[2]− 2 0.002503 0.002488

K[0]−K[1]−K[2]− 1 0.005309 0.005895

K[0]−K[1]−K[2] 0.002518 0.002495

K[0]−K[1]−K[2] + 1 0.005302 0.005314

K[0]−K[1]−K[2] + 2 0.002517 0.002501

K[0]−K[1]−K[2] + 3 0.005308 0.005318

K[0]−K[1] + 2 0.003918 0.004707

K[0]−K[1] +K[2]− 3 0.005295 0.008163

K[0]−K[1] +K[2]− 2 0.002517 0.002497

K[0]−K[1] +K[2]− 1 0.005290 0.008171

K[0]−K[1] +K[2] 0.002524 0.002497

K[0]−K[1] +K[2] + 1 0.005309 0.008171

K[0]−K[1] +K[2] + 2 0.002518 0.002500

K[0]−K[1] +K[2] + 3 0.005310 0.002838

K[0] +K[2]− 3 0.003908 0.002491

K[0] +K[2]− 2 0.003905 0.002480

K[0] +K[2]− 1 0.003912 0.002496

K[0] +K[2] 0.003902 0.002479

K[0] +K[2] + 1 0.003918 0.002497

K[0] +K[2] + 2 0.003903 0.002475

K[0] +K[2] + 3 0.003914 0.002835

K[0] +K[1]−K[2]− 3 0.005312 0.005340

K[0] +K[1]−K[2]− 2 0.002493 0.002484

K[0] +K[1]−K[2] 0.002511 0.002485

K[0] +K[1]−K[2] + 1 0.005291 0.005295

K[0] +K[1]−K[2] + 2 0.002517 0.002489

K[0] +K[1]−K[2] + 3 0.005304 0.005309

K[0] +K[1] +K[2]− 3 0.002500 0.002495

K[0] +K[1] +K[2]− 2 0.002502 0.002491

K[0] +K[1] +K[2]− 1 0.002507 0.002503

K[0] +K[1] +K[2] 0.002505 0.002493

K[0] +K[1] +K[2] + 3 0.360357 0.361718

Z2 −K[1]−K[2]− 3 0.005323 0.005333

Z2 +K[1] +K[2] + 3 0.005322 0.005332

S2[i3] −Z3 −K[0] +K[1] + 3 0.003906 0.004878

−Z3 + 3 0.007825 0.007819

−Z3 +K[0]−K[1] + 3 0.003907 0.004877

−K[0]−K[1] + 2 0.005335 0.005539
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−K[0] +K[1] + 3 0.003901 0.004983

K[0]−K[1] + 3 0.003888 0.004690

S3[i4] −K[0]−K[1]−K[2] 0.005324 0.005325

−K[0]−K[1] + 3 0.006721 0.005513

−K[0] +K[1] + 2 0.003900 0.004975

S28[i29] −Z29 −K[0] +K[1]− 3 0.003906 0.004861

S29[i30] −Z30 −K[0] +K[1]− 2 0.003906 0.004863

S30[i31] −Z31 −K[0] +K[1]− 1 0.003907 0.004863

S31[i32] −Z32 −K[0] +K[1] 0.003906 0.004862

−K[0] +K[1] 0.003911 0.004784

K[1] + 2 0.003924 0.004674

S32[i33] −Z33 −K[0] +K[1] + 1 0.003907 0.004860

−K[0] +K[1] + 1 0.003997 0.005974

K[1] + 1 0.003900 0.005814

S33[i34] −Z34 −K[0] +K[1] + 2 0.003906 0.004860

−K[0] +K[1] + 2 0.003905 0.005890

S34[i35] −Z35 −K[0] +K[1] + 3 0.003907 0.004863

−K[0] +K[1] + 3 0.003905 0.004607

K[0] +K[1] 0.003915 0.005239

S36[i37] K[1] + 3 0.003906 0.005737

S54[i55] −K[0] + 2 0.003894 0.005066

S65[i66] K[0] +K[1] +K[2] + 2 0.004975 0.004952

S92[i93] −Z93 +K[0]−K[1]− 3 0.003904 0.004877

K[0]−K[1]− 3 0.003897 0.005208

S93[i94] −Z94 +K[0]−K[1]− 2 0.003906 0.004877

S94[i95] −Z95 +K[0]−K[1]− 1 0.003907 0.004875

K[0]−K[1]− 1 0.003903 0.005201

S95[i96] −Z96 +K[0]−K[1] 0.003906 0.004878

S96[i97] −Z97 +K[0]−K[1] + 1 0.003906 0.004875

S97[i98] −Z98 +K[0]−K[1] + 2 0.003906 0.004875

S98[i99] −Z99 +K[0]−K[1] + 3 0.003906 0.004876

S120[i121] K[1]− 3 0.003906 0.004723

S122[i123] K[1]− 2 0.003906 0.004703

S124[i125] −Z125 −K[0] +K[1]− 3 0.003908 0.004874

−Z125 +K[0] +K[1]− 3 0.003906 0.004872

−K[0] +K[1]− 3 0.003900 0.005076

K[1]− 1 0.003906 0.004682

K[0]−K[1]− 3 0.003900 0.004927

S125[i126] −Z126 −K[0] +K[1]− 2 0.003907 0.004876
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−Z126 +K[0]−K[1]− 2 0.003907 0.004876

S126[i127] −Z127 −K[0] +K[1]− 1 0.003906 0.004874

−Z127 +K[0]−K[1]− 1 0.003906 0.004876

−K[0]−K[1]− 3 0.004765 0.005734

−K[0] +K[1]− 1 0.003898 0.005069

K[0]−K[1]− 1 0.003901 0.004923

S127[i128] −Z128 −K[0] +K[1] 0.003908 0.004875

−Z128 +K[0]−K[1] 0.003907 0.004876

S128[i129] −Z129 −K[0] +K[1] + 1 0.003906 0.004875

−Z129 +K[0]−K[1] + 1 0.003907 0.004875

K[1] + 1 0.004672 0.005886

S129[i130] −Z130 −K[0] +K[1] + 2 0.003906 0.004875

−Z130 +K[0]−K[1] + 2 0.003906 0.004876

K[2] + 3 0.004671 0.004678

S130[i131] −Z131 −K[0] +K[1] + 3 0.003903 0.004876

−Z131 +K[0]−K[1] + 3 0.003906 0.004875

S156[i157] −Z157 −K[0] +K[1]− 3 0.003904 0.004876

S157[i158] −Z158 −K[0] +K[1]− 2 0.003906 0.004877

S158[i159] −Z159 −K[0] +K[1]− 1 0.003906 0.004875

S159[i160] −Z160 −K[0] +K[1] 0.003906 0.004876

S160[i161] −Z161 −K[0] +K[1] + 1 0.003906 0.004876

−K[0] +K[1] + 1 0.003898 0.004825

S161[i162] −Z162 −K[0] +K[1] + 2 0.003907 0.004875

S162[i163] −Z163 −K[0] +K[1] + 3 0.003907 0.004874

−K[0] +K[1] + 3 0.003901 0.004835

S182[i183] −K[0] + 2 0.003902 0.004601

S220[i221] −Z221 +K[0]−K[1]− 3 0.003907 0.004860

K[0]−K[1]− 3 0.003902 0.004670

S221[i222] −Z222 +K[0]−K[1]− 2 0.003907 0.004858

S222[i223] −Z223 +K[0]−K[1]− 1 0.003906 0.004861

K[0]−K[1]− 1 0.003904 0.004671

S223[i224] −Z224 +K[0]−K[1] 0.003907 0.004859

S224[i225] −Z225 +K[0]−K[1] + 1 0.003908 0.004861

S225[i226] −Z226 +K[0]−K[1] + 2 0.003907 0.004861

S226[i227] −Z227 +K[0]−K[1] + 3 0.003907 0.004859

S252[i253] −Z253 −K[0] +K[1]− 3 0.003907 0.004876

−Z253 − 3 0.007813 0.007815

−Z253 +K[0]−K[1]− 3 0.003906 0.004875

S253[i254] −Z254 −K[0] +K[1]− 2 0.003906 0.004875
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−Z254 − 2 0.007814 0.007812

−Z254 +K[0]−K[1]− 2 0.003906 0.004875

S254[i255] −Z255 −K[0] +K[1]− 1 0.003905 0.004875

−Z255 − 1 0.007816 0.007815

−Z255 +K[0]−K[1]− 1 0.003905 0.004876

−K[0]−K[1]− 3 0.004430 0.004985

S255[i256] −Z256 −K[0] +K[1] 0.003908 0.004875

−Z256 0.007861 0.007810

−Z256 +K[0]−K[1] 0.003909 0.004875

K[0] 0.137294 0.138047

K[1] 0.003911 0.037189

Sr[ir+1] −K[0]− 1 Figure A.1

(0 ≤ r ≤ N) −K[1]− 1 Figure A.2

−K[2]− 1 Figure A.3

K[0] Figure A.4

K[0] +K[1] + 1 Figure 5.1

S0[j1] −Z1 +K[0] +K[1] + 1 0.005330 0.005280

−K[0]−K[1]− 3 0.004339 0.005513

−K[0]−K[1] + 1 0.005791 0.003417

K[1] + 1 0.004933 0.004597

K[0]−K[1]− 3 0.004403 0.005342

K[0]−K[1]− 1 0.004431 0.005346

K[0] 0.002889 0.001898

K[0] +K[1] + 1 0.135738 0.134820

K[0] +K[1] +K[2] + 3 0.002385 0.002441

Z1 −K[0]−K[1]−K[2]− 2 0.005295 0.004726

Z1 −K[0]−K[1]− 1 0.005188 0.005115

S1[j2] −Z2 +K[0] +K[1] + 1 0.005316 0.005335

−K[0]−K[1] + 1 0.005318 0.005408

Z2 −K[0]−K[1]−K[2]− 3 0.005686 0.005694

Z2 +K[0] +K[1] + 1 0.005321 0.005344

j2 −Z2 +K[0] +K[1] + 1 0.005318 0.005336

−Z2 +K[0] +K[1] + 3 0.005302 0.005310

−K[0]−K[1]−K[2] + 2 0.005333 0.005856

−K[0]−K[1] +K[2]− 2 0.003921 0.004574

−K[0]−K[1] +K[2] 0.003919 0.005573

−K[0]−K[1] +K[2] + 2 0.003912 0.004545

−K[0] +K[1] +K[2] 0.003921 0.005501

−K[1] +K[2]− 2 0.003911 0.005479
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APPENDIX A. NEWLY OBSERVED KEY CORRELATIONS OF STATE VARIABLES

Xr Key correlations RC4 WPA-TKIP

−K[1] +K[2] + 3 0.003899 0.005476

K[2] 0.004428 0.005571

K[0]−K[1] +K[2] 0.003918 0.005618

K[0]−K[2]− 2 0.004951 0.004974

K[0] +K[1]−K[2] 0.004397 0.004923

K[0] +K[1] + 3 0.005309 0.003889

t1 −Z1 −K[0]−K[1] + 1 0.005251 0.005333

−K[0]−K[1] + 2 0.005310 0.003902

K[0] 0.005291 0.004806

Z1 −K[0]−K[1]−K[2]− 1 0.006639 0.006094

t2 −Z2 −K[0]−K[1]−K[2] + 1 0.005301 0.005306

−Z2 +K[0] +K[1] + 1 0.005339 0.005341

K[0] +K[1] + 1 0.005317 0.005349

t3 K[0] +K[1] +K[2] + 3 0.005297 0.005310

tr −Zr +K[0] Figure A.5

(1 ≤ r ≤ N) Zr −K[0] Figure A.6

Zr Figure A.7

Zr +K[0] +K[1] + 1 Figure A.8
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APPENDIX A. NEWLY OBSERVED KEY CORRELATIONS OF STATE VARIABLES

Figure A.1: Observation of the event (Sr[ir+1] = −K[0] + 1).

Figure A.2: Observation of the event (Sr[ir+1] = −K[1] + 1).

Figure A.3: Observation of the event (Sr[ir+1] = −K[2] + 1).
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APPENDIX A. NEWLY OBSERVED KEY CORRELATIONS OF STATE VARIABLES

Figure A.4: Observation of the event (Sr[ir+1] = K[0]).

Figure A.5: Observation of the event (tr = −Zr +K[0]).

Figure A.6: Observation of the event (tr = Zr −K[0]).
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APPENDIX A. NEWLY OBSERVED KEY CORRELATIONS OF STATE VARIABLES

Figure A.7: Observation of the event (tr = Zr).

Figure A.8: Observation of the event (tr = Zr +K[0] +K[1] + 1).
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Appendix B

Number of Correlations Induced by the

Refined Key Setting

Table B.1: Number of correlations induced by the refined RC4 key settings.

x y z
# of Correlations

Zr+1 Sr[ir+1] Sr[jr+1] jr+1 tr+1 total reduction rate (%)

0

1 2 22 368 13 28 462 893 reference value (TKIP)

2 4 9 208 2 9 398 626 29.899

3 6 10 205 2 6 399 622 30.347

4 8 7 204 2 6 398 617 30.907

5 10 7 206 2 6 396 617 30.907

6 12 7 206 2 6 396 617 30.907

7 14 7 203 2 6 398 616 31.019

8 0 22 424 5 15 952 1418 -58.791

9 2 10 206 2 8 400 626 29.899

10 4 7 205 2 6 395 615 31.131

11 6 7 204 2 6 398 617 30.907

12 8 7 205 2 6 397 617 30.907

13 10 7 202 2 5 400 616 31.019

14 12 7 204 2 6 309 618 30.795

15 14 7 205 2 6 401 621 30.459

1

2 3 5 107 4 7 161 284 68.197

3 5 3 107 4 7 160 281 68.533

4 7 3 107 4 7 158 279 68.757

5 9 3 107 4 7 160 281 68.533

6 11 3 107 4 7 160 281 68.533

7 13 3 107 4 7 159 280 68.645

8 15 3 107 4 7 161 281 68.533

9 1 7 226 9 19 479 740 17.133
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APPENDIX B. NUMBER OF CORRELATIONS INDUCED BY THE REFINED KEY SETTING

x y z
# of Correlations

Zr+1 Sr[ir+1] Sr[jr+1] jr+1 tr+1 total reduction rate (%)

1

10 3 3 106 4 7 159 279 68.757

11 5 3 106 4 7 161 281 68.533

12 7 3 106 4 7 160 280 68.645

13 9 3 106 4 7 160 280 68.645

14 11 4 106 4 7 159 280 68.645

15 13 3 108 4 7 160 282 68.421

0 15 15 326 12 18 476 847 5.151

2

3 4 5 105 2 5 161 278 68.869

4 6 5 107 2 5 161 280 68.645

5 8 5 107 2 5 160 279 68.757

6 10 5 107 2 5 161 280 68.654

7 12 5 107 2 5 160 279 68.757

8 14 5 107 2 5 162 281 68.533

9 0 11 208 2 8 399 628 29.675

10 2 13 226 5 13 475 732 18.029

11 4 5 106 2 5 160 279 68.757

12 6 5 106 2 5 160 278 68.869

13 8 5 106 2 5 160 278 68.869

14 10 6 106 2 5 162 281 68.533

15 12 5 107 2 5 160 279 68.757

0 14 9 205 2 8 413 637 28.667

1 0 23 270 14 34 458 779 12.766

3

4 5 3 102 2 5 162 274 69.317

5 7 3 105 2 5 162 277 68.981

6 9 3 105 2 5 160 275 69.205

7 11 3 105 2 5 161 276 69.093

8 13 3 105 2 5 163 278 68.869

9 15 3 104 2 5 161 275 69.205

10 1 3 105 4 7 160 279 68.757

11 3 7 218 5 13 475 718 19.484

12 5 3 104 2 5 162 276 69.093

13 7 3 104 2 5 162 276 69.093

14 9 3 104 2 5 163 277 68.981

15 11 3 106 2 5 161 277 68.981

0 13 10 202 2 6 411 631 29.339

1 15 3 107 2 7 160 279 68.757

2 1 9 115 4 8 162 298 66.629

4
5 6 3 104 2 5 160 274 69.317

6 8 3 105 2 5 159 274 69.317
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APPENDIX B. NUMBER OF CORRELATIONS INDUCED BY THE REFINED KEY SETTING

x y z
# of Correlations

Zr+1 Sr[ir+1] Sr[jr+1] jr+1 tr+1 total reduction rate (%)

4

7 10 3 105 2 5 158 273 69.429

8 12 3 105 2 5 162 277 68.981

9 14 3 104 2 5 162 276 69.093

10 0 9 205 2 6 400 622 30.347

11 2 6 105 2 5 162 280 68.654

12 4 7 218 5 13 475 718 19.484

13 6 3 104 2 5 159 273 69.429

14 8 3 104 2 5 162 276 69.093

15 10 3 105 2 5 158 276 69.093

0 12 7 202 2 6 288 629 29.563

1 14 3 107 2 7 159 281 68.533

2 0 11 209 2 9 400 631 29.399

3 2 6 105 2 5 163 281 68.533

5

6 7 3 105 2 5 162 277 68.981

7 9 3 106 2 5 160 276 69.093

8 11 3 106 2 5 160 276 69.093

9 13 4 105 2 5 161 277 68.981

10 15 3 105 2 5 162 277 68.981

11 1 3 106 4 7 159 279 68.757

12 3 3 105 2 5 161 276 69.093

13 5 7 220 5 13 478 723 19.037

14 7 3 105 2 5 161 276 69.093

15 9 3 106 2 5 161 277 68.981

0 11 8 203 2 6 412 631 29.339

1 13 3 108 2 7 161 281 68.533

2 15 5 108 2 6 162 283 68.309

3 1 3 107 4 7 159 280 68.465

4 3 3 106 2 5 161 277 68.981

6

7 8 4 104 2 5 159 274 69.317

8 10 3 106 2 5 161 277 68.981

9 12 3 105 2 5 169 274 69.317

10 14 3 105 2 5 161 277 68.981

11 0 9 206 2 5 400 623 30.235

12 2 6 106 2 5 162 281 68.533

13 4 3 105 2 5 161 276 69.093

14 6 7 220 5 13 472 717 19.709

15 8 3 106 2 5 158 274 69.317

0 10 7 202 2 6 411 628 29.675

1 12 3 108 2 7 159 279 68.757
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APPENDIX B. NUMBER OF CORRELATIONS INDUCED BY THE REFINED KEY SETTING

x y z
# of Correlations

Zr+1 Sr[ir+1] Sr[jr+1] jr+1 tr+1 total reduction rate (%)

6

2 14 5 108 2 6 159 280 68.654

3 0 11 206 2 6 397 622 30.347

4 2 6 107 2 5 162 282 68.421

5 4 3 106 2 5 161 277 68.981

7

8 9 3 103 2 5 162 275 69.205

9 11 3 104 2 5 160 274 69.317

10 13 3 104 2 5 161 275 69.205

11 15 3 104 2 5 162 276 69.093

12 1 3 105 4 7 161 280 68.645

13 3 3 104 2 5 159 276 69.093

14 5 3 104 2 5 161 275 69.205

15 7 7 220 5 13 478 723 19.037

0 9 7 202 2 6 415 632 29.227

1 11 3 107 2 7 160 279 68.757

2 13 5 107 2 6 160 280 68.465

3 15 4 105 2 5 161 277 68.981

4 1 3 106 4 7 162 282 68.421

5 3 3 105 2 5 160 275 69.093

6 5 3 106 2 5 159 275 69.093

8

9 10 3 103 2 5 160 273 69.429

10 12 3 104 2 5 162 276 69.093

11 14 3 104 2 5 162 276 69.093

12 0 9 205 2 6 399 621 30.459

13 2 6 105 2 5 160 278 68.869

14 4 3 104 2 5 161 275 69.205

15 6 3 105 2 5 161 276 69.093

0 8 19 510 5 16 1234 1784 -99.776

1 10 4 107 2 6 160 281 68.533

2 12 5 107 2 6 160 280 68.465

3 14 3 105 2 5 161 276 69.093

4 0 9 206 2 6 398 621 30.459

5 2 6 106 2 5 161 280 68.465

6 4 3 105 2 5 161 276 69.093

7 6 3 106 2 5 163 279 68.757

9

10 11 3 103 2 5 158 271 69.653

11 13 3 104 2 5 161 275 69.205

12 15 3 104 2 5 162 276 69.093

13 1 3 105 4 7 162 281 68.533

14 3 3 104 2 5 161 275 69.205
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APPENDIX B. NUMBER OF CORRELATIONS INDUCED BY THE REFINED KEY SETTING

x y z
# of Correlations

Zr+1 Sr[ir+1] Sr[jr+1] jr+1 tr+1 total reduction rate (%)

9

15 5 3 105 2 5 161 276 69.093

0 7 7 201 2 5 412 628 29.675

1 9 7 230 5 19 471 732 18.029

2 11 5 107 2 6 160 280 68.465

3 13 3 105 2 5 163 278 68.869

4 15 3 105 2 5 162 277 68.981

5 1 3 106 4 7 161 281 68.533

6 3 3 105 2 5 162 277 68.981

7 5 3 105 2 5 161 276 69.093

8 7 3 104 2 5 161 275 69.205

10

11 12 3 104 2 5 159 273 69.429

12 14 3 104 2 5 160 274 69.317

13 0 9 205 2 6 398 620 30.571

14 2 6 105 2 5 160 278 68.869

15 4 3 105 2 5 160 275 69.205

0 6 8 202 2 6 415 633 29.115

1 8 3 107 2 7 159 278 68.869

2 10 13 228 5 16 476 738 17.357

3 12 3 105 2 5 162 277 68.981

4 14 3 105 2 5 162 277 68.981

5 0 9 205 2 6 399 621 30.459

6 2 6 106 2 5 161 280 68.465

7 4 3 105 2 5 161 276 69.093

8 6 3 105 2 5 161 276 69.093

9 8 3 104 2 5 161 275 69.205

11

12 13 3 103 2 5 161 274 69.317

13 15 3 104 2 5 160 274 69.317

14 1 3 105 4 8 161 281 68.533

15 3 3 105 2 5 161 276 69.093

0 5 7 202 2 6 411 628 29.675

1 7 3 107 2 7 160 279 68.757

2 9 5 107 2 6 162 282 68.421

3 11 7 221 5 13 475 721 19.261

4 13 3 105 2 5 160 276 69.093

5 15 3 105 2 5 162 277 68.981

6 1 3 106 4 7 162 282 68.421

7 3 4 105 2 5 162 278 68.869

8 5 3 105 2 5 160 275 69.205

9 7 3 104 2 5 160 274 69.317
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APPENDIX B. NUMBER OF CORRELATIONS INDUCED BY THE REFINED KEY SETTING

x y z
# of Correlations

Zr+1 Sr[ir+1] Sr[jr+1] jr+1 tr+1 total reduction rate (%)

11 10 9 3 104 2 5 162 276 69.093

12

13 14 3 103 2 5 160 273 69.429

14 0 9 205 2 6 400 622 30.347

15 2 6 106 2 5 160 279 68.757

0 4 7 202 2 6 412 629 29.563

1 6 3 107 2 7 159 278 68.869

2 8 5 107 2 5 160 280 68.645

3 10 4 105 2 5 161 277 68.981

4 12 7 221 5 13 476 722 19.149

5 14 3 105 2 5 160 275 69.205

6 0 9 206 2 6 398 621 30.459

7 2 7 106 2 5 159 279 68,757

8 4 3 105 2 5 162 277 68.981

9 6 3 104 2 5 159 273 69.429

10 8 3 104 2 5 159 273 69.429

11 10 3 104 2 5 162 276 69.093

13

14 15 3 103 2 5 161 274 69.317

15 1 3 106 4 7 162 282 68.421

0 3 10 202 2 6 415 635 28.891

1 5 3 107 2 7 160 279 68.757

2 7 5 107 2 6 159 279 68.757

3 9 4 105 3 5 161 278 68.869

4 11 3 105 2 5 163 278 68.869

5 13 5 221 5 24 481 730 18.253

6 15 3 105 2 5 159 274 69.317

7 1 3 106 4 7 159 279 68.757

8 3 3 104 2 5 160 274 69.317

9 5 3 104 2 5 162 276 69.093

10 7 3 104 2 5 159 273 69.429

11 9 3 104 2 5 161 275 69.205

12 11 3 104 2 5 162 276 69.093

14

15 0 9 206 2 6 396 619 30.683

0 2 11 201 2 7 413 634 29.003

1 4 4 106 2 5 159 276 69.093

2 6 5 107 2 5 161 280 68.645

3 8 3 105 2 5 161 276 69.093

4 10 3 105 2 5 161 276 69.093

5 12 3 104 2 5 158 272 69.541

6 14 7 219 5 13 478 722 19.149
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x y z
# of Correlations

Zr+1 Sr[ir+1] Sr[jr+1] jr+1 tr+1 total reduction rate (%)

14

7 0 9 206 2 6 398 621 30.459

8 2 6 104 2 5 162 279 68.757

9 4 3 104 2 5 161 275 69.205

10 6 3 104 2 5 162 276 69.093

11 8 3 104 2 5 161 275 69.205

12 10 3 104 2 5 160 274 69.317

13 12 3 103 2 5 160 273 69.429

15

0 1 14 226 13 30 472 755 15.454

1 3 3 106 2 7 159 277 68.981

2 5 5 106 2 6 160 279 68.757

3 7 3 105 2 5 161 276 69.093

4 9 3 104 2 5 161 275 69.205

5 11 3 104 2 5 160 274 69.317

6 13 3 104 2 5 160 274 69.317

7 15 5 220 5 13 479 724 18.925

8 1 3 105 4 7 162 281 68.533

9 3 3 103 2 5 160 273 69.429

10 5 3 103 2 5 161 274 69.317

11 7 4 103 2 5 162 276 69.093

12 9 3 103 2 5 160 273 69.429

13 11 3 104 2 5 160 274 69.317

14 13 4 104 2 5 160 275 69.205

157





Doctoral Dissertation

A Study on

Statistical Cryptanalysis of Stream Ciphers

（ストリーム暗号の統計解析に関する研究）

January 2019

Graduate School of Engineering,

Osaka University

Ryoma Ito

Supervisor: Professor Atsuko Miyaji

A
 Study on Statistical Cryptanalysis of Stream

 Ciphers 
Graduate School of Engineering, O

saka U
niversity 

R
yom

a Ito


