

Title	三元系ウルツ鉱型酸化物半導体β-CuGa02、β-AgGa02 のキャラクタリゼーションと伝導性制御
Author(s)	長谷,拓
Citation	大阪大学, 2019, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/73469
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

博士学位論文

三元系ウルツ鉱型酸化物半導体 β-CuGaO₂、β-AgGaO₂の キャラクタリゼーションと伝導性制御

長谷 拓

2019年3月

大阪大学大学院工学研究科

第1	1章	序論	1
1	-1	背景	1
	1-1	1-1 半導体材料における化合物半導体の位置づけ	1
	1-1	1-2 化合物半導体としての酸化物 –現状と期待–	2
	1-1	1-3 β-NaFeO2型構造を有する酸化物半導体	4
1	-2	本研究の目的	5
1	-3	本論文の構成	5
刺	<u>参考</u>]	文献	7
第2	2 章	β-CuGaO₂ および β-AgGaO₂ の結晶構造解析	9
2	2-1	緒言	9
2	2-2	実験方法	
	2-2	2-1 実験に使用した試薬	
	2-2	2-2 β-CuGaO 2および β-AgGaO2の合成	
	2-2	2-3 放射光を光源とした X 線回折と Rietveld 解析	11
2	2-3	結果	
	2-3	3-1 β-CuGaO 2の結晶構造解析	
	2-3	3-2 β-AgGaO 2の結晶構造解析	15
2	2-4	考察	16
	2-4	4-1 一連の β-NaFeO2型構造を有する I-III-O2 との比較	16
	2-4	4-2 エネルギーバンド構造に関する結晶構造の視点からの考察	19
2	2-5	結言	20
1	<u>豪考</u>]	文献	21
第:	3章	β-CuGaO₂ および β-AgGaO₂ の熱安定性	23
3	-1	緒言	23
3	-2	実験方法	23
	3-2	2-1 TG-DTA および DSC による熱安定性の評価	23
	3-2	2-2 高温 X 線回折	
3	-3	結果と考察	
	3-3	3-1 β-CuGaO 2の熱安定性	
	3-3	3-2 β-AgGaO₂の熱安定性	27
3	-4	結言	
	<u>参考</u>]	文献	
第4	4章	CuAlO₂との混晶化による β-CuGaO₂のバンドギャップエンジニアリング	31
4	-1	緒言	31
4	-2	実験方法	
	4-2	2-1 実験に使用した試薬	

4-2-2 Cu(Ga,Al)O 2の合成	32
4-2-2-1 前駆体 β-Na(Cu,Al)O₂の準備	32
4-2-2-2 β-Na(Cu,Al)O 2中の Na ⁺ イオンの Cu ⁺ へのイオン交換	33
4-2-3 作製した試料のキャラクタリゼーション	33
4-2-3-1 近赤外~紫外拡散反射スペクトル	33
4-2-3-2 XPS スペクトル	33
4-2-3-3 リートベルト法よる結晶構造解析	34
4-2-4 CuAlO 2のバンド計算	34
4-3 結果と考察	35
4-3-1 β-NaFeO 2型構造の β-Cu(Ga _{1-x} Al _x)O2混晶の生成と結晶構造の変化	35
4-3-2 Cu(Ga 1-xAlx)O2 混晶の光学的性質	41
4-3-3 CuAlO 2多形の電子構造	43
4-4 結言	47
参考文献	47
第5章 β-NaFeO2構造を有する準安定 I-III-O2半導体の不純物ドープによる伝導	ệ性制御 51
5-1 緒言	51
5-2 実験方法	52
5-2-1 実験に使用した試薬	52
5-2-2 β-Ag(Ga _{1-x} Ti _x)O ₂ の合成	52
5-2-2-1 前駆体 β-Na(Ga _{1-x} Ti _x)O₂の準備	52
5-2-2-2 β-Na(Ga 1-xTix)O2のイオン交換	53
5-2-2-3 β-Ag(Ga 1-xTix)O2成形体の作製	53
5-2-3 作製した試料のキャラクタリゼーション	53
5-2-3-1 相の同定と組成の決定	53
5-2-3-2 電気伝導度	53
5-2-3-3 近赤外~紫外拡散反射スペクトル	54
5-3 結果と考察	54
5-3-1 β-Na(Ga 1-xTix)O2前駆体とイオン交換後の生成相	54
5-3-2 β-Ag(Ga 1-xTix)O2の電気伝導度と光吸収スペクトル	57
5-3-3 β-AgGaO₂中でのキャリア電子の生成機構	60
5-4 結言	61
参考文献	62
第6章 総括	63
謝辞	65
研究業績リスト	67

第1章 序論

1-1 背景

1-1-1 半導体材料における化合物半導体の位置づけ

負の電荷を有する電子だけでなく、正の電荷を有する正孔をキャリアとできる半導体は、 ダイオードやトランジスタなど電子回路の基本となる固体素子を提供できることから、そ の発明以来、応用技術の開発が目覚ましい勢いで進められてきた。その代表的材料はシリコ ン(Si)である。Siはクラーク数が酸素に次ぐ第2位の元素であり、かつ、有害性がないこ とから、資源や環境の視点では鉄と並ぶ優等生といえる材料である。

Figure 1-1(a)に Si のエネルギーバンド構造を示す[1]。半導体素子の動作速度に直結する電 子および正孔の移動度は、伝導帯および価電子帯の分散によりそれぞれ決定される。Si の 場合、エネルギーバンド構造から求められる電子の有効質量(me/mo)は0.19と0.92、正孔 の有効質量(mb/mo)は0.16と0.52であり十分に小さい[2]。これがSi が長きにわたって半 導体材料の中核を担ってきた所以である。近年の半導体素子の高速作動に対する要求の高 まりにより、Si の数倍の電子移動度を有する砒化ガリウム(GaAs)が一部で使用されてい るが、汎用的な回路素子用の半導体材料として、Si は今後もその地位を守り続けるに違い ない。Figure 1-1 のエネルギーバンド構造からは、Si のもう一つの重要な性質を読み取るこ とができる。Si は、価電子帯の頂上はΓ点に、伝導帯の底部はX 点近傍にそれぞれ位置す る間接遷移型半導体である。光の吸収や放出を伴う電子の遷移では、エネルギー保存則と運 動量保存則が満足されなければならないが、光子の持つ運動量はΓ点とX 点の波数の差を

Figure 1-1. Energy band structure of (a)Si and (b)GaAs [1]. Copyright 1981 with permission from the American physical society

Figure 1-2. Schematic drawing of diamond, zincblende, lonsdaleite and wurtzite structures

埋めるにはあまりに小さく、光の吸収、放出だけでは電子はバンド間を遷移することができ ない。そのため、バンド端での光の吸収は弱く、また、励起された電子と正孔との再結合に よる発光はほとんど観察できない。したがって、Si は発光素子や強い光吸収を必要とする 薄膜太陽電池などへは応用することができない。

これに対して、IV 族半導体である Si の半数を II 族もしくは III 族元素に、残る半数を VI 族もしくは V 族元素にそれぞれ置換した、II-VI 族もしくは III-V 族化合物半導体の多くで は (Figure 1-2)、価電子帯の頂上と伝導帯の底部が同じ波数に位置する直接遷移型半導体と なる (Figure 1-1(b))。直接遷移型半導体では、価電子帯の頂上と伝導帯の底部の間の電子遷 移は、光の吸収や放出だけでエネルギーと運動量を保存することができるため、バンド端の 光吸収は強く、かつ、励起された電子と正孔の再結合による発光を観測することができる。 GaAs (赤外)、Ga(As, P)(赤)、(In, Ga)N(青)などの化合物半導体が発光ダイオード(LED) に[3-5]、GaAs、CdTe などが薄膜太陽電池に使用される[6-8]のはこの特徴による。太陽光な どの自然エネルギーを利用した発電技術やエネルギー消費の抑制技術は、持続可能な開発 目標 (Sustainable Development Goals; SDGs) に代表されるように、将来の社会に必須の技術 であり、化合物半導体はその一翼を担う重要な材料の一つと言える。

1-1-2 化合物半導体としての酸化物 -現状と期待-

化合物半導体の利用技術の中でも、我々の生活に最も身近なものといえる LED では、青 色、緑色には(In, Ga)N 系、赤色には(Ga, Al)As 系化合物半導体が用いられている[3-5]。前述 のように発光ダイオードは省エネルギー技術の一つとして重要ではあるが、三原色の一つ である赤色 LED には有害性の高い砒素 (As) が用いられている。また、薄膜太陽電池は軽 量、低価格、高効率であることを特徴とし、家庭用だけでなくソーラーファームと呼ばれる 大規模発電所の建設も進んでいるが、これには有害性の高いカドミウム (Cd) を含む CdTe が用いられる[9,10]。Cd や As は多くの先進国で製品中の使用量が規制されているが (例え ば EU 圏での電子部品中の有害元素の使用を規制する RoHS 指令[11]では Cd は 100 ppm 未 満に、化学製品中の有害元素の使用を規制する REACH 規制[12]では As は 1000 ppm 未満に 規制されている)、現在のところこれらの用途に限って規制から除外されている。LED と薄 膜太陽電池は SDGs の趣旨に合致した重要技術であるものの、それらに必須の(Ga,Al)As や CdTe は安全性や環境という視点に立つと危うさが残っている。

Cd や As などを含む II-VI 族、III-V 族化合物半導体に対して、酸化亜鉛(ZnO)に代表さ れる酸化物半導体は、有害元素を含まない安全性の高い半導体材料のひとつとして位置づ けられる。多くの化合物半導体の製造には酸素の混入(酸化)による材料の劣化を避けるた め、真空プロセスを用いなければならないのに対して、酸化物は大気中や水溶液中での安定 性が高いため、大気圧プロセスや水溶液プロセスを用いることができることも、酸化物半導 体が潜在的に有する省エネルギーにおける優位性といえる。現在では GaN、(Al, Ga)N 系化 合物半導体の陰に隠れてしまったが、ZnO は近紫外発光ダイオード[13-17]やレーザ材料[18-21]として活発に研究開発が行われた歴史も持つ。真に安全で環境にも優しい化合物半導体 材料として、酸化物はポテンシャルの高い材料である。しかしながら、酸化物半導体には以 下の決定的な課題がある。

直接遷移型半導体の典型的結晶構造として、Figure 1-2 に示した閃亜鉛鉱型構造とウルツ 鉱型構造が知られているが、酸化物のようにイオン結合性の強い化合物では通常ウルツ鉱 型構造をとる。ウルツ鉱型構造を有する酸化物半導体は ZnO のほかには発がん性物質とし て知られる酸化ベリリウム (BeO) しか存在しない[22,23]。ZnO のエネルギーバンドギャッ プ(*E*g) は 3.37 eV の近紫外域にあり[24]、そのエネルギーバンドギャップは酸化マグネシ ウム (MgO) との混晶化 (固溶体) で 4eV 程度まで広げられる[25-30]。逆にエネルギーバ ンドギャップを狭めるには、有害元素である Cd の酸化物 (CdO) が使われ、かつ、2.6 eV 程度 (青色程度の波長に相当) までしかエネルギーバンドギャップを小さくできない[31-34] ため、可視光の LED などの発光素子や、近赤外光の吸収が必要とされる太陽電池材料には 使えない。結局のところ、(Al, Ga)As や CdTe を代替できる酸化物半導体は 2014 年以前には 存在せず、資源が豊富で安全、かつ、環境にも優しいという酸化物半導体を形容するフレー ズは、"絵に描いた餅"に過ぎなかった。

このような状況は 2014 年に見いだされた β-CuGaO₂ によって一変した[35]。β-CuGaO₂ は ウルツ鉱型構造の超構造にあたる β-NaFeO₂型構造(Figure 1-3)の酸化物の一つであり、エ ネルギーバンドギャップは近赤外光に相当する 1.47 eV で、しかも直接遷移型の半導体であ ることが明らかとされたのである[35,36]。成分元素である Cu は国内だけでも年間 150 万ト ンが生産され資源的にも十分量存在する元素である。Ga はその生産量が少なく稀少元素に

Figure 1-3. Schematic drawing of β -NaFeO₂ structure

分類されることもあるが、アルミニウムの原料として使用されるボーキサイト中には 30~80 ppm もの Ga が含まれており、ボーキサイトの生産量が年間 2 億トンであることを考慮する と現在は年間 1 万トンもの Ga がその用途が限られているため廃棄されているに過ぎず、資 源的には十分存在する[37]。また、いずれも有害性のない安全な元素である。1.47 eV という エネルギーバンドギャップは、単接合太陽電池の理論限界変換効率が最も高くなるエネル ギー域にあるため[38]、β-CuGaO₂は、原理上は CdTe と変換効率を競い得る酸化物半導体で ある。β-CuGaO₂の素子化が進展すると、資源が豊富で安全、かつ、環境にも優しいという、 酸化物半導体の特長を最大限に発揮した薄膜太陽電池となるものと期待できる。

1-1-3 β-NaFeO₂型構造を有する酸化物半導体

β-CuGaO₂は前述のように、ウルツ鉱型構造の超構造である β-NaFeO₂型構造の酸化物であ る。大きくは、カルコパイライト型構造の CuInS2 や CuInSe2 などのカルコゲナイド半導体 と同じ I-III-VI2 化合物半導体の一つに分類される。カルコパイライト型カルコゲナイドでは I 族元素として Cu、Ag を含む化合物が知られるように、β-NaFeO2型構造の酸化物半導体に おいても、β-CuGaO₂のほか β-AgGaO₂、β-AgAlO₂が知られている[39-41]。β-AgGaO₂、β-AgAlO₂のエネルギーバンドギャップはそれぞれ 2.2、3.0 eV であり、β-AgGaO₂も酸化物半 導体としてはバンドギャップが小さいナローギャップ半導体の部類に入る。β-AgGaO₂とβ-AgAlO2とは全組成域で固溶体を生成し、エネルギーバンドギャップは 2.2~3.0 eV の範囲で 組成により制御ができる[41]。2.2 eV は橙色から黄色に相当するので、この混晶では緑色、 青色に相当するエネルギーバンドギャップへのバンドエンジニアリングが可能である。残 念ながら β-AgGaO2 は間接遷移型半導体であるため[40-43]、発光素子へと展開することは難 しい。同じ構造の β-CuGaO₂ は直接遷移型であるにもかかわらず、β-AgGaO₂ が間接遷移型 となる起源についてはこれまで議論がない。直接遷移型であるか間接遷移型であるかは、半 導体材料の応用範囲を決定する重要な因子であり、その解明は β-NaFeO₂型構造を有する酸 化物半導体の理解を深め、β-CuGaO2 に続く新物質の開拓において重要な指針を与えてくれ るはずであり、何としても解き明かさねばならない問題のひとつといえよう。

また、 β -CuGaO₂と β -AgGaO₂(エネルギーバンドギャップが 3.0 eV の β -AgAlO₂も含めて) は準安定相であり、同じ β -NaFeO₂構造を有する β -NaGaO₂中のNa⁺イオンをCu⁺イオンや Ag⁺イオンへとイオン交換することにより得られる[35,39,40]。このことは、それらの応用を 進めるうえで次の二つの懸念を生む。第一の懸念はその安定性である。太陽電池や発光素子 は多層膜構造を有するので、その製造では組み合わせる材料がどの温度域で安定であるか でプロセス温度が決定される。従って、準安定な β -CuGaO₂、 β -AgGaO₂が実際上安定な温度 範囲は、素子作製プロセスにおいて重要な情報と言える。第二の懸念はバンドギャップや電 気伝導度の制御ができるのか、という点である。通常これらの制御は混晶化と不純物元素の ドーピングにより行われる。しかしながら β -CuGaO₂、 β -AgGaO₂ は準安定相であるがゆえ に、通常酸化物半導体で行われる高温での反応による混晶化や不純物ドーピングには耐え られない。バンドギャップと電気伝導性の制御は半導体を使う上で必須の技術であるので、 β -NaFeO₂構造を有する準安定な酸化物半導体においても何としても確立せねばならない。

1-2 本研究の目的

これまで述べてきたように β -CuGaO₂ や β -AgGaO₂ は、それらのナローバンドギャップと いう特長から、将来的には太陽電池や可視光の発光素子といった従来の酸化物半導体では 不可能であった用途へと展開が可能な酸化物半導体材料として大いに期待されるものの、 その研究は端緒に就いたところであり、解決すべき課題は山積している。本研究では β -CuGaO₂ や β -AgGaO₂ の理解を進め課題の解決へと導くことを目指し、以下を目的として遂 行した。

- (1) β-CuGaO₂ および β-AgGaO₂ の諸性質の理解の礎となる結晶構造を明らかにし、β-NaFeO₂ 型構造を有するナローバンドギャップ酸化物半導体の結晶化学的特徴を理解 する。
- (2) β-CuGaO₂およびβ-AgGaO₂の熱安定性を明らかにし、それらを使用した素子の作製温 度や素子の動作可能温度、雰囲気などの基礎情報を得る。
- (3) β-CuGaO₂のバンドエンジニアリング手法を開発し、応用可能な波長範囲を可視光領 域へと拡張するための礎を築く。
- (4) β-CuGaO₂、β-AgGaO₂などイオン交換で作製される準安定酸化物半導体における電気 伝導制御の手法を開発し、素子作製に向けた基本技術を確立する。

1-3 本論文の構成

本論文は、以下の第1章から第6章により構成されている。

第1章では、半導体分野における酸化物の現状と期待について述べ、酸化物半導体では不可能であった赤外・可視光域での応用を可能とするポテンシャルを有する β-CuGaO₂ と β-

AgGaO2の応用に向けた課題と本研究の目的を述べた。

第2章では、 β -CuGaO₂と β -AgGaO₂の結晶構造を、放射光を光源とした粉末 X 線回折に より解析した。 β -AgGaO₂では Ag⁺イオンと Ga³⁺イオンのサイズが大きく異なるため理想的 なウルツ鉱型構造から大きく歪んだ構造であるのに対し、 β -CuGaO₂ は理想的なウルツ鉱型 構造に非常に近い構造であることを明らかにした。さらに β -AgAlO₂ や β -LiGaO₂ との比較か ら、 β -NaFeO₂ 型酸化物半導体のバンドギャップは理想的なウルツ鉱型構造からのずれが小 さいと直接遷移型に、大きいと間接遷移型になるというエネルギーバンドの決定機構を提 案した。

第3章では、 β -CuGaO₂ と β -AgGaO₂の熱安定性を熱分析と高温 X 線回折から研究した。 β -CuGaO₂ は大気中では 300°C以上で Cu⁺イオンが酸化し CuO と CuGa₂O₄を生成するのに対 し不活性雰囲気では 460 °C以上でこの組成の安定相であるデラフォサイト型 α -CuGaO₂に相 変態することを見出した。一方、 β -AgGaO₂ は酸素雰囲気では 700 °C以上で、不活性雰囲気 では 600 °C以上でいずれも金属 Ag と Ga₂O₃ へと分解することを見出し、いずれも室温付近 で動作する素子として十分使用に耐える熱安定性を有することを明らかにした。

第4章では、 β -NaGaO₂ と β -NaAlO₂の混晶 β -Na(Ga,Al)O₂のイオン交換により、 β -CuGaO₂ と CuAlO₂ との混晶を作製し、 β -CuGaO₂のバンドギャップを可視光域へと制御する方法を 研究した。CuAlO₂ 含量が 70 mol%未満の組成では β -NaFeO₂型構造の混晶が生成し、 β -CuGaO₂のエネルギーバンドギャップを 1.47 eV から 2.09 eV まで広げることに成功した。こ れらの混晶の結晶構造解析から、CuAlO₂含量が 60 mol%未満の混晶ではウルツ鉱型構造か らのずれは β -CuGaO₂ と同程度であり、直接遷移型半導体であることが示唆された。一方、 CuAlO₂ 含量が 70mol%以上の組成では γ -LiAlO₂型構造の混晶が生成した。第一原理計算か ら γ -CuAlO2 は間接遷移型半導体であることを明らかにし、CuAlO₂含量が 70 mol%以上の γ -LiAlO₂型構造の混晶も間接遷移型半導体であるものと推察した。

第5章では、 β -CuGaO₂ や β -AgGaO₂の前駆体である β -NaGaO₂に不純物をドープし、その イオン交換により不純物ドープされた β -CuGaO₂ や β -AgGaO₂ を作製し、 β -CuGaO₂ や β -AgGaO₂の伝導性を制御する方法を、Ga サイトに Ti をドープした β -AgGaO₂を例に研究し た。 β -AgGaO₂ は室温で電気伝導度が 4×10^{-5} Scm⁻¹の n型半導体であったが、5 at%の Ti ド ープにより室温での電気伝導度は 1×10^{-2} Scm⁻¹へと増大し、Ti ドープした β -NaGaO₂前駆体 のイオン交換により β -AgGaO₂にキャリア電子を注入できることを明らかとした。

第6章では、β-CuGaO₂やβ-AgGaO₂は準安定相ではあるが、300℃以下では実際上安定な 化合物半導体であり、太陽電池や発光素子へと応用可能な材料であること、エネルギーバン ドギャップは近赤外から可視光域の広い範囲で制御できること、その電気伝導性も不純物 ドープした前駆体 β-NaGaO₂をイオン交換することで制御が可能であることを述べ、それら を各種の素子へと応用する場合に残された基礎的課題について議論し、本研究を総括した。

参考文献

- [1] C. S. Wang and B. M. Klein, Phys. Rev. B 24, 3393–416 (1981)
- [2] C. Kittel, Introduction of Solid State Physics, New York: Wiley (1988)
- [3] I. Akasaki, J. Cryst. Growth 300, 2–10 (2007)
- [4] S. T. Tan, X. W. Sun, H. V. Demir, and S. P. Denbaars, *IEEE Photonics J.* 4, 613–9 (2012)
- [5] T. Gessmann and E. F. Schuber, J. Appl. Phys. 95, 2203–16 (2004)
- [6] A. Shah, P. Torres, R. Tscharner, N. Wyrsch and H. Keppner, Science. 285, 692-8 (1999)
- [7] K. Tanabe, *Energies* 2, 504–30 (2009)
- [8] J. Britt and C. Ferekides, Appl. Phys. Lett. 62, 2851–2 (1993)
- [9] P. Sinha, Sol. Energy Mater. Sol. Cells 119, 271–5 (2013)
- [10] G. Weijers, G. Wanten, J. M. Thijssen, M. van der Graaf and C. L. de Korte, Ultrasound Med. Biol. 42, 637–44 (2016)
- [11] EU-Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
- [12] EC-Directive Regulation (EC) No. 1907/2006 of the European Parliament and of the Council of 18 December 2006, concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Agency, amending Directive 1999/45/EC
- [13] Q. Yang, Y. Liu, C. Pan, J. Chen, X. Wen and Z. L. Wang, Nano Lett. 13, 607–13 (2013)
- [14] X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen and Z. L. Wang, Adv. Mater. 21, 2767–70 (2009)
- [15] A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S. F. Chichibu and M. Kawasaki, *Japanese J. Appl. Physics, Part 2 Lett.* 44 (2005)
- [16] J. H. Lim, C. K. Kong, K. K. Kim, I. K. Park, D. K. Hwang and S. J. Park, Adv. Mater. 18, 2720–4 (2006)
- [17] W. Z. Xu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, B. H. Zhao, L. Jiang, J. G. Lu, H. P. He and S. B. Zhang, *Appl. Phys. Lett.* 88, 23–5 (2006)
- [18] A. Mitra and R. K. Thareja, J. Appl. Phys. 89, 2025-8 (2001)
- [19] M. Kawasaki, A. Ohtomo, I. Ohkubo, H. Koinuma, Z. K. Tang, P. Yu, G. K. L. Wong, B. P. Zhang and Y. Segawa, *Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.* 56, 239–45 (1998)
- [20] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, *Appl. Phys. Lett.* 72, 3270–2 (1998)
- [21] A. Ohtomo, M Kawasaki, Y. Sakurai, Y. Yoshida, H. Koinuma, P. Yu, Z. K. Tang, G. K. L. Wong and Y. Segawa, *Mater. Sci. Eng. B* 54, 24–8 (1998)
- [22] Y. R. Ryu, T. S. Lee, J. A. Lubguban, A. B. Corman, H. W. White, J. H. Leem, M. S. Han, Y. S. Park,
 C. J. Youn and W. J. Kim, *Appl. Phys. Lett.* 88, 1–2 (2006)
- [23] D. M. Roessler, W. C. Walker and E. Loh, J. Phys. Chem. Solids 30, 157-67 (1969)

- [24] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S-J. Cho and H. Morkoç, J. Appl. Phys. 98, 041301 (2005)
- [25] B. Wang, M. J. Callahan and L. O. Bouthillette, Cryst. Growth Des. 6, 1256-60 (2006)
- [26] H. Che, J. Huso, J. L. Morrison, D. Thapa, M. Huso, W. J. Yeh, M. C. Tarun, M. D. McCluskey and L. Bergman, J. Nanomater. 2012, 1–7 (2012)
- [27] C. H. Choi and S. H. Kim, J. Cryst. Growth 283, 170-9 (2005)
- [28] J. Zhang, F. Pan, W. Hao and T. Wang, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 129, 93– 5 (2006)
- [29] H. Tampo, H. Shibata, K. Maejima, A. Yamada, K. Matsubara, P. Fons, S. Kashiwaya, S. Niki, Y. Chiba, T. Wakamatsu and H. Kanie, *Appl. Phys. Lett.* 93, 2006–9 (2008)
- [30] Y. Il. Kim, K. Page and R. Seshadri, Appl. Phys. Lett. 90, 133-6 (2007)
- [31] S. Shigemori, A. Nakamura, J. Ishihara, T. Aoki and J. Temmyo, Jpn. J. Appl. Phys. 43, L1088–90 (2004)
- [32] X. J. Wang, I. A. Buyanova, W. M. Chen, M. Izadifard, S. Rawal, D. P. Norton, S. J. Pearton, A. Osinsky, J. W. Dong and A. Dabiran, *Appl. Phys. Lett.* 89, 133–6 (2006)
- [33] S. Anandan, N. Ohashi and M. Miyauchi, Appl. Catal. B Environ. 100, 502-9 (2010)
- [34] P. Misra, P. K. Sahoo, P. Tripathi, V. N. Kulkarni, R. V. Nandedkar and L. M. Kukreja, *Appl. Phys.* A 78, 37–40 (2004)
- [35] T. Omata, H. Nagatani, I. Suzuki, M. Kita, H. Yanagi and N. Ohashi, J. Am. Chem. Soc. 136, 3378– 81 (2014)
- [36] I. Suzuki, H. Nagatani, M. Kita, Y. Iguchi, C. Sato, H. Yanagi, N. Ohashi and T. Omata, J. Appl. Phys. 119, 095701 (2016)
- [37] R. R. Moskalyk, Miner. Eng. 16, 921-9 (2003)
- [38] W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510-9 (1961)
- [39] G. A. Korteweg, J. Magn. Reson. 42, 181-5 (1981)
- [40] Y. Maruyama, H. Irie and K. Hashimoto, J. Phys. Chem. B 110, 23274-8 (2006)
- [41] S. Ouyang and J. Ye, J. Am. Chem. Soc. 133, 7757-63 (2011)
- [42] L. Guo, S. Zhu, S. Zhang and W. Feng, Comput. Mater. Sci. 92, 92-101 (2014)
- [43] S. Ouyang, N. Kikugawa, D. Chen, Z. Zou and J. Ye, J. Ph. chem.c 2, 1560-6 (2009)

第2章 β-CuGaO2およびβ-AgGaO2の結晶構造解析

2-1 緒言

β-NaFeO₂型構造の β-CuGaO₂は、エネルギーバンドギャップが近赤外域の 1.47 eV、直接 遷移型半導体、p型半導体など、ITO、SnO₂、ZnO などよく知られた酸化物半導体とは特徴 を全く異にする酸化物半導体である[1,2]。エネルギーバンドギャップが単接合太陽電池の理 論限界変換効率(Shockley-Queisser limit [3])が最も高くなるエネルギー域にあり、バンド 端近傍で強い光吸収を示すことから薄膜太陽電池の光吸収層としての応用が期待されてい る。また、β-NaFeO₂型構造はその母構造であるウルツ鉱型構造と同様に、対称心を持たな い構造であるため潜在的には強誘電性を示すことから、その分極を利用して電荷分離する 強誘電体太陽電池(Ferroelectric Photovoltaics; FPVs)材料としてのポテンシャルも議論され ている[4]。同じ結晶構造を有する β-AgGaO₂ はエネルギーバンドギャップが 2.2eV で可視光 域にあるため、可視光に感度のある光触媒材料として研究されている[5,6]。これら β-NaFeO₂ 型構造の酸化物は酸化物半導体に新たな応用領域を提供する物質として期待が高まってお り、それらの電気的、光学的物性の詳細な理解が望まれている。

結晶構造が物質の諸性質を理解する手がかりとして重要であることは、ダイヤモンドと グラファイトの違いをみるまでもなく明白である。特にβ-NaFeO₂型構造のように複数の陽 イオンからなる多元系物質においては、各陽イオンの特徴が結晶構造に反映されるので、結 晶構造の詳細な理解は物性の理解の第一歩ともいえる。A.W.Sleight らのグループは、LiGaS₂ や LiInSe₂ などのβ-NaFeO₂構造のカルコゲナイドについて、I 族元素と III 族元素の大きさ と結晶構造の詳細との関係を結晶化学的な視点で議論している[7]。酸化物においてもその ような議論は重要であるが、議論のベースとなるβ-NaFeO₂型構造の酸化物、特に半導体と して重要な典型元素のみからなる酸化物の種類が乏しいため、残念ながら今のところ十分 ではない。また、カルコゲナイドにおいてさえ、β-NaFeO₂型構造の化合物の結晶化学的特 徴とそれらの物性との関連は議論されていない。

上記のような議論には β -CuGaO₂ や β -AgGaO₂ の詳細な結晶構造データが必要であること は言うまでもない。しかしながら、いずれの物質も準安定相であり単結晶を入手できない。 β -CuGaO₂については汎用の X 線源を使用した粉末構造解析は行われているが[1]、 β -AgGaO₂ については結晶構造の詳細に関する報告が皆無である。本研究では、放射光を光源として β -CuGaO₂ および β -AgGaO₂の高分解能粉末 X 線回折を測定し、その強度データの Rietveld 解 析から結晶構造を解析した。得られた結晶構造を同じ β -NaFeO₂型構造の β -LiGaO₂、 β -AgAlO₂ や二元系ウルツ鉱型構造の ZnO、BeO と比較し、 β -NaFeO₂型構造の酸化物半導体のエネル ギーバンドギャップの特徴との関連を議論した。

2-2 実験方法

2-2-1 実験に使用した試薬

本研究においては、以下の市販の試薬を使用した。

Na₂CO₃(99.8%、和光純薬工業)、Ga₂O₃(99.99%、高純度化学)、AgNO₃(99.9%、和光純薬 工業)、KNO₃(99.9%、和光純薬工業)、CuCl(99.9%、和光純薬工業)。

2-2-2 β-CuGaO₂および β-AgGaO₂の合成

すでに述べたように、 β -CuGaO₂、 β -AgGaO₂はいずれも準安定相で、各種酸化物生成に対して通常使用される各成分酸化物の高温固相反応では合成できない[1,6]。いずれの物質もそれらと同じ β -NaFeO₂ 構造を有する β -NaGaO₂ を前駆体とし、その Na⁺イオンを Cu⁺または Ag⁺イオンへとイオン交換する方法により得た。

前駆体 β-NaGaO₂ は以下の手順で固相反応法により準備した。高温での反応中に Na 成分 は Na₂O として揮発するので、Na₂CO₃ と Ga₂O₃ を わずかに Na₂CO₃ が過剰になるモル比 (1.06:1) で計 10~15 g となるよう秤量した。秤量した粉末を直径 5 mm の安定化ジルコニ ア製ボールとともに 80 cm³ のナイロン製ポッドに装填し、15mL のエタノールを混合媒体と して、回転数 250 rpm で 1 時間遊星ボールミルを用いて混合した。混合後のスラリーを、テ フロン製シートを敷いた金属製バットに排出し、150 °C のホットプレート上で乾燥した。得 られた粉末を内径 17.2 mm のダイスに充填し、圧力 100 MPa で 1 分間一軸プレス成形した。 成形体の側面に付着したダイスからの汚れをエメリー紙(#1000)で取り除いたのち、白金 箔を敷いたアルミナ製ボートに載せ、電気炉にて 900 °C で 20 時間保持し、大気中で焼成し た。β-NaGaO₂ は吸湿性が著しいので[8,9]、焼成後は 200 °C まで電気炉中で冷却した後、直 ちに真空デシケータに移し真空中で冷却した。このようにして準備した β-NaGaO₂ は、直ち にイオン交換反応処理に供するか、もしくは、真空中で保管した後にイオン交換に供した。

Na⁺イオンから Cu⁺ イオンへの交換は以下の手順で行った。準備した β -NaGaO₂ と CuCl を、モル比が β -NaGaO₂:CuCl = 1:1 となるように窒素フローしたグローブボックス内で秤量 し、乳鉢で混合した。混合粉末を内径 17.2 mm のダイスで、圧力 100 MPa で 1 分間一軸プ レス成形した。成形体の側面に付着したダイスからのコンタミネーションをエメリー紙 (#800~1200) で取り除いた後、アルミナ製ボートに載せ、管状炉内に装填した。管状炉内 をロータリーポンプで排気した後昇温し、250 °C で 48 時間イオン交換処理を行った。昇温 中および加熱処理中の真空度は < 1 Pa だった。イオン交換処理後の試料には、副生成物の NaCl が含まれるので、それを超純水で洗浄、除去した後、真空デシケータ内にて室温で乾 燥した。

Na⁺イオンから Ag⁺イオンへの交換は以下の手順で行った。AgNO₃ と KNO₃ をモル比で

1.2:1 となるよう秤量し、乳鉢を使用して粉砕混合した。この混合粉末を準備した β -NaGaO₂ 前駆体とモル比で β -NaGaO₂:AgNO₃:KNO₃ = 1:1.2:1 となるようガラス製のバイアルに装填 し、振とう混合器を使用して混合した。混合後の粉末をアルミナ製るつぼ(ニッカトー製、 SSA-S B2 型)に移し、小型の電気炉を使用して 200 °C で 12 時間保持しイオン交換後、室温 まで炉冷した。イオン交換後の混合粉末中の残留 AgNO₃ と KNO₃、副生成物の NaNO₃を超 純水で 3 回洗浄して除去した後、再度エタノールで洗浄してから、真空デシケータに移して 室温、真空中で乾燥した。 β -AgGaO₂ は水中で放置すると安定相のデラフォサイト型 α -AgGaO₂に相転移するので[10,11]、洗浄操作は 15 分以内で完了した。

洗浄後の各試料の組成は、SII ナノテクノロジー社製 ICP 発光分析装置 SPS7800 により決定した。 β -CuGaO₂ では $X_{Ga}:X_{Cu}:X_{Na}=1:1.007(1):0.001(1)$ 、 β -AgGaO₂ では $X_{Ga}:X_{Ag}:X_{Na}=1:1.020(5):0.0025(4)$ (カッコ内の数値は最終桁での標準偏差を示す)であり、前 駆体中の Na⁺イオンのすべてが Cu⁺もしくは Ag⁺イオンに交換されていた。

2-2-3 放射光を光源とした X 線回折と Rietveld 解析

粉末 X 線回折は放射光施設 SPring-8 のビームライン BL15XU により行った。ストレージ リングから放射されるアンジュレータ光を Si(111)に結晶分光器で単色化した、波長 0.065273nm の X 線を光源とし、Debye-Scherrer 型の回折計を用い Si 半導体の一次元アレイ 検出器 (Mythen, Dectris Co., Switzerland) により強度データを測定した。直径 0.1mm のガラ スキャピラリーに装填した β-CuGaO₂、βAgGaO₂の各粉末を試料とし、試料と検出器の距離 は 955mm とした。20 で 7~60°の範囲を 3.5°間隔でスキャンし 100 秒間データを蓄積し、20 では 0.003°間隔の強度データを採取した。

リートベルト解析には RIETAN-FP を使用した[12]。原子座標等の初期値は、β-CuGaO₂に ついては既に報告されている Cu Kα 線を使用した粉末構造解析により決定された値を、β-AgGaO₂ については同じ構造の β-NaGaO₂ で報告されている値を使用した。プロファイル関 数には pseudo-Voigt 関数を使用し、バックグラウンド強度は RIETAN-FP に搭載されている 標準的なバックグラウンド関数を使用して補正した。格子定数、原子座標、等方的温度因子 をプロファイル関数およびバックグラウンド関数のパラメータとともに最適化した。最適 化の指標には以下の信頼度因子により評価した。プロファイル R 因子; $R_p = \Sigma |y_{i0} - y_{ic}|/\Sigma y_{i0}$;、 重みつきプロファイル R 因子; $R_{wp} = [\Sigma w_i (y_{i0} - y_{ic})^2 / \Sigma w_i (y_{i0})^2]^{1/2}$ 、ブラッグ R 因子; $R_B = \Sigma |I_o(h_K) - I(h_K)| / \Sigma I_o(h_K)$ 、および、一致の度合いを表すパラメータ S; $S = R_{wp}/R_{eo}$ ただし、 $R_e = [(N - P) / \Sigma w_i (y_{i0})^2]^{1/2}$ 、 y_{io} と y_{ic} はそれぞれ i 番目の回折各における実測および計算回折強 度、 w_i は重み因子、 $I_o(h_K)$ は実測された強度データから見積もられる積分強度、 $I(h_K)$ は構 造データから計算される積分強度、N は各回折各で実測された強度データ y_{io} の数、P は最 適化したパラメータの数である。

2-3 結果

2-3-1 β-CuGaO2の結晶構造解析

Figure 2-1にβ-CuGaO₂の実測XRD、Rietveld解析により求めた計算XRDとそれらの差を示 す。実測された回折線は、20=15.12~15.34°および17.40~17.70°に観察された微量のCu₂O 相のものを除いて、ウルツ鉱型構造の派生構造であるβ-NaFeO₂型構造のそれとして同定さ れた。Rietveld解析の際にはCu₂Oの回折線が現れた20=15.12~15.34°および17.40~17.70°を 除いて最適化した。β-NaFeO₂型構造の空間群*Pna*2₁で構造を最適化したところ、 R_p = 2.24%, R_{wp} = 2.84%, R_e = 0.37%, R_B = 3.15%, S = 7.75となり、良好に収束した。最適化後の格子定数 は a_0 = 5.46004(1) Å、 b_0 = 6.61013(2) Å、 c_0 = 5.27147(1) Åであった。最適化後の原子座標、 等方性温度因子をTable 2-1に、結合距離、結合角度をTable 2-2に示す。Cu原子の等方性温 度因子は若干大きな値であったが、微量のCu₂Oが不純物相として析出していることを考慮 すると、Cuサイトの一部に空孔があるか、もしくは、Gaの一部がCuサイトを占有している る可能性がある。Cuサイトに空孔を仮定した場合とGaの一部がCuサイトを占有している と仮定した場合についても解析を行ったが(Figure 2-2, 2-3およびTable 2-3, 2-4)、Cuの等 方性温度因子の値に改善は見られなかった。従って、Cu原子の若干大きな等方性温度因子 は、Cu欠陥やCuサイトをGaが占有するといったことが理由ではないようである。

Figure 2-1. Rietveld plot of β -CuGaO₂ showing observed (red dots), calculated (light blue line) and difference (dark blue line) profiles. Green vertical tick marks show calculated peak positions. The profile between 15.12° and 15.34° and between 17.40° and 17.70° was excluded from the least-squares refinement because of diffraction from Cu₂O.

Space group	Pna2	1				
Lattice parameters (Å) $a_0 = 5.46004(1), b_0 = 6.61013(2), c_0 = 5.27417(1)$						
Atomic parameters	site	x	У	Z.	$U(\text{\AA}^2)$	
Cu	4 <i>a</i>	0.4414(1)	0.1285(4)	0.5046(5)	0.0247(3)	
Ga	4a	0.0782(1)	0.1233(3)	0	0.0071(2)	
O(1)	4a	0.4071(6)	0.1408(11)	0.9094(6)	0.0065(11)	
O(2)	4a	0.4418(7)	0.6002(10)	0.8488(6)	0.0050(11)	
$R_{\rm p} = 2.24\%$, $R_{\rm wp} = 2.84\%$, $R_{\rm e} = 0.37\%$, $R_{\rm B} = 3.15\%$, $S = 7.74$						

Table 2-1. Structural parameters of β -CuGaO₂ obtained by Rietveld analysis.

Table 2-2. Bond lengths (Å) and bond angles (degree) of β -CuGaO₂.

Cu-O(1)	2.145(5)	Ga-O(1)	1.862(4)
Cu-O(1)'	2.026(7)	Ga-O(1)'	1.880(7)
Cu-O(2)	2.256(5)	Ga-O(2)	1.849(5)
Cu-O(2)'	2.073(7)	Ga-O(2)'	1.837(6)
O(1)—Cu—O(1)'	108.4(2)	Cu—O(1)—Cu'	100.3(2)
O(1)—Cu—O(2)	106.5(1)	Cu—O(1)—Ga	103.9(2)
O(1)—Cu—O(2)'	112.9(2)	Cu—O(1)—Ga'	109.7(2)
O(1)'—Cu—O(2)	102.5(2)	Cu'—O(1)—Ga	117.6(2)
O(1)'—Cu—O(2)'	122.4(2)	Cu'—O(1)—Ga'	106.0(2)
O(2)—Cu—O(2)'	102.3(2)	Ga—O(1)—Ga'	117.8(2)
O(1)—Ga—O(1)'	111.3(1)	Cu—O(2)—Cu'	94.0(2)
O(1)—Ga—O(2)	108.5(2)	Cu—O(2)—Ga	109.9(2)
O(1)—Ga—O(2)'	109.2 (2)	Cu—O(2)—Ga'	113.5(2)
O(1)'—Ga—O(2)	107.0(1)	Cu'—O(2)—Ga	107.5(2)
O(1)'—Ga—O(2)'	110.8(2)	Cu'—O(2)—Ga'	106.5(2)
O(2)—Ga—O(2)'	110.0(1)	Ga—O(2)—Ga'	121.5(2)

Figure 2-2. Rietveld plot of β -CuGaO₂ based on an assumption that a part of Ga occupies at the Cusite. The same regions were excluded from refinement as Figure. 2-1 because of Cu₂O impurity.

Table 2-3. Structural parameters of β -CuGaO₂ obtained by Rietveld analysis based on an assuming that a part of Ga occupies at the Cu-site.

Lattice parameters (Å) $a_0 = 5.46004(1), b_0 = 6.61013(2), c_0 = 5.27417(1)$						
Atomic parameters	site	X	у	Z.	SOF ^{a)}	$U(\text{\AA}^2)$
Cu	4 <i>a</i>	0.4414(1)	0.1285(4)	0.5047(5)	0.9951(95)	0.0249(3)
Ga	4 <i>a</i>	0.4414(1)	0.1285(4)	0.5047(5)	0.0049(95)	0.0071(2)
Ga	4 <i>a</i>	0.0782(1)	0.1234(3)	0	1	0.0071(2)
O(1)	4 <i>a</i>	0.4070(6)	0.1408(11)	0.9094(6)	1	0.0064(11)
O(2)	4 <i>a</i>	0.4418(7)	0.6002(10)	0.8488(6)	1	0.0050(11)
$R_{\rm p} = 2.24\%, R_{\rm wp} = 2.84\%, R_{\rm e} = 0.37\%, R_{\rm B} = 3.13\%, S = 7.74$						

^{a)} site occupancy factor

Figure 2-3. Rietveld plot of β -CuGaO₂ based on an assumption that a part of Ga occupies at the Cusite. The same regions were excluded from refinement as Figure. 2-1 because of Cu₂O impurity.

Table 2-4. Structural parameters of β -CuGaO₂ obtained by Rietveld analysis based on an assuming that a part of Ga occupies at the Cu-site.

Lattice parameters (Å) $a_0 = 5.46004(1)$, $b_0 = 6.61013(2)$, $c_0 = 5.27417(1)$							
Atomic parameters	site	X	у	Z	SOF	$U(\text{\AA}^2)$	
Cu	4 <i>a</i>	0.4414(1)	0.1285(3)	0.5050(5)	0.9941(24)	0.0247(3)	
Ga	4 <i>a</i>	0.0782(1)	0.1233(3)	0	1	0.0071(2)	
O(1)	4 <i>a</i>	0.4071(6)	0.1402(11)	0.9091(6)	1	0.0064(11)	
O(2)	4 <i>a</i>	0.4417(7)	0.6003(10)	0.8491(6)	1	0.0051(11)	
$R_{\rm p} = 2.24\%, R_{\rm wp} = 2.84\%,$							
$R_{\rm e} = 0.37\%, R_{\rm B} = 3.11\%, S = 7.74$							

2-3-2 β-AgGaO2の結晶構造解析

Figure 2-4にβ-AgGaO₂の実測XRD、Rietveld解析により求めた計算XRDとそれらの差を示 す。実測された回折線はウルツ鉱型構造の派生構造であるβ-NaFeO₂型構造のそれとして同 定され、空間群*Pna*2₁で構造を最適化により、 $R_p = 1.861\%$ 、 $R_{wp} = 2.928\%$ 、S = 1.28となり、 良好に収束した。最適化後の格子定数は $a_0 = 5.56175(1)$ Å、 $b_0 = 7.14749(1)$ Å、 $c_0 = 5.46875(1)$ Åであった。最適化後の原子座標、等方性温度因子をTable 2-5に、結合距離、結合角度を Table 2-6に示す。

Figure 2-4. Rietveld plot of β -AgGaO₂ showing observed (red dots), calculated (light blue line), and difference (dark blue line) profiles. Green vertical tick marks show calculated peak positions.

Space group	Pna2	1				
Lattice parameters (Å) $a_0 = 5.56175(1), b_0 = 7.14749(1), c_0 = 5.46875(1)$						
Atomic parameters	site	x	у	Z	В	
Ag	4a	0.4498(1)	0.1246(1)	0.4947(4)	1.34(1)	
Ga	4a	0.0615(1)	0.1242(2)	-0.0040(5)	0.47(1)	
O(1)	4a	0.6218(6)	0.8267(5)	0.4261(7)	0.90 ^a	
O(2)	4a	0.5423(8)	0.4167(6)	0.3317(6)	0.90	
$R_{\rm p} = 1.861\%, R_{\rm wp} = 2.928\%, S = 1.28$						

Table 2-5. Structural parameters of β -AgGaO₂ obtained by Rietveld analysis.

^a Isotropic temperature factors of oxygen were not refined.

	1000 2 0.0000 long ms (11) and cond angles (active) of 1150002.							
Ag-O(1)	2.418	Ga-O(1)	1.811					
Ag-O(1)'	2.364	Ga-O(1)'	1.836					
Ag-O(2)	2.328	Ga-O(2)	1.828					
Ag-O(2)'	2.453	Ga-O(2)'	1.862					
O(1)—Ag—O(1)'	110.56	Ag—O(1)—Ag'	87.61					
O(1)—Ag—O(2)	106.31	Ag—O(1)—Ga	117.29					
O(1)—Ag—O(2)'	102.69	Ag—O(1)—Ga'	100.54					
O(1)'—Ag—O(2)	131.12	Ag'—O(1)—Ga	103.19					
O(1)'—Ag—O(2)'	102.01	Ag'—O(1)—Ga'	109.49					
O(2)—Ag—O(2)'	99.95	Ga—O(1)—Ga'	130.45					
O(1)—Ga—O(1)'	110.07	Ag—O(2)—Ag'	87.55					
O(1)—Ga—O(2)	111.52	Ag—O(2)—Ga	118.01					
O(1)—Ga—O(2)'	107.52	Ag—O(2)—Ga'	104.45					
O(1)'—Ga—O(2)	110.85	Ag'—O(2)—Ga	102.16					
O(1)'—Ga—O(2)'	106.87	Ag'—O(2)—Ga'	106.65					
O(2)—Ga—O(2)'	109.85	Ga—O(2)—Ga'	129.06					

Table 2-6. Bond lengths (Å) and bond angles (degree) of β -AgGaO₂.

2-4 考察

2-4-1 一連の β-NaFeO₂型構造を有する I-III-O₂ との比較

Figure 2-5 に本研究で得られた β-CuGaO₂、β-AgGaO₂の格子定数、原子座標をもとに描い

た結晶構造の模式図を、同じ β -NaFeO₂型構造の酸化物半導体である β -AgAlO₂、 β -LiGaO₂、 β -NaFeO₂型構造の母構造である二元系ウルツ鉱型構造の ZnO のそれとともに示す。Cu⁺イ オンのイオン半径は 0.60 Å であり、イオン半径 0.47 Å の Ga³⁺イオンと大きさは近い[13]。 このため CuO₄四面体と GaO₄四面体とは同程度の大きさとなり、陽イオン M を中心イオン とした MO₄四面体の頂点連結構造に凸凹は生じていない。結果として β -CuGaO₂ 中の MO₄ 四面体の頂点連結構造は β -LiGaO₂ や ZnO のそれと非常に類似している。これに対して β -AgGaO₂では、Ag⁺イオンのイオン半径が 1.00 Å であり、Ga³⁺イオンのそれに比べはるかに 大きいため AgO₄四面体は GaO₄四面体よりも著しく大きくなっている。このため、MO₄四 面体の頂点連結構造には凸凹が生じ、 β -LiGaO₂ や ZnO のそれと比べて明らかに歪んでいる。

ウルツ鉱型構造の超構造である β -NaFeO₂型構造は、理想的なウルツ鉱型構造と比べてどの程度歪んでいるかでその特徴があらわされ、1 価の陽イオン M(I)と 3 価の陽イオン M(III) のイオン半径比 $r_{M(I)}/r_{M(III)}$ を指標として議論されている[7]。 β -NaFeO₂型構造の特徴の一つは Figure 2-5 でも見てとれる MO₄ 四面体の傾きである。この四面体の傾きは Table 2-2、2-5 中 の O(1)サイトと O(2) サイトの z 座標の違いに起因して生じる。Figure 2-5 中の ZnO を見る と明らかなように、二元系ウルツ鉱型構造では二つの酸素サイトの z 座標は完全に同じで ある。Figure 2-6 に MO₄ 四面体の傾きの指標となる、二つの酸素サイトの z 座標の差 Δz を $r_{M(I)}/r_{M(III)}$ の関数として示す。以前の報告同様に Δz は $r_{M(I)}/r_{M(III)}$ の増加とともに大きくなる。 β -CuGaO₂ の Δz は $r_{M(I)}/r_{M(III)}$ の値から期待される通り β -LiGaO₂ に次いで小さい。一方、 β -AgGaO₂ の Δz も $r_{M(I)}/r_{M(III)}$ の値から期待される通り β -AgAIO₂ に次いで大きい。 Δz がこのよ うな順になったことは、構造解析結果が妥当であることを支持している。

Figure 2-5. Schematic illustrations of the crystal structures of wurtzite-derived β -NaFeO₂-type I–III–VI₂ oxide semiconductors (a) β -CuGaO₂ (this work), (b) β -LiGaO₂, (c) β -AgAlO₂, (d) β -AgGaO₂ (this work), and (e) wurtzite ZnO.

もう一つの β -NaFeO₂ 型構造の特徴を表すパラメータとして MO₄ 四面体が正四面体から どの程度歪んでいるかが提案されている。これは Angle Distortion Index (ADI) で表され、 観察される O-M-O 結合角と正四面体角 109.5°との差の絶対値の平均として定義されている。 Figure 2-7(a)に O-M(I)-O と O-M(III)-O の ADI を $r_{M(I)}/r_{M(III)}$ の関数としてそれぞれ示す。図中 に赤色のシンボルで表した O-M(I)-O の ADI は物質によって大きく異なり、 $r_{M(I)}/r_{M(III)}$ が大き くなるにしたがって増大している。一方、O-M(III)-O の ADI は物質、すなわち $r_{M(I)}/r_{M(III)}$ の

Figure 2-6. Cation tetrahedra tilting indexes, Δz , as a function of ratios of ionic radius of monovalent to trivalent cations, $r_{M(I)}/r_{M(III)}$. The definitions of these indexes are described in the text. Open and closed symbols denote reported values and the data from the present study, respectively. The solid lines are guides to eyes.

Figure 2-7. (a) angle distortion indexes, ADIs, for O–M–O bonds, and (b) ADI for M–O–M bonds as a function of ratios of ionic radius of monovalent to trivalent cations, $r_{M(I)}/r_{M(III)}$. The red and blue symbols denote M–O(1)–M and M–O(2)–M, respectively. Open and closed symbols denote reported values and the data from the present study, respectively. The solid lines are guides to eyes.

値によらずほぼ一定の、かつ、小さな値となっている。Figure 2-7 に掲載した β -NaFeO₂型構造の酸化物の M(III)イオン、Ga³⁺および Al³⁺イオンは、Cu⁺や Ag⁺イオンに比べ価数が大き く、電子配置は希ガスと同じ閉殻電子配置である。このため、GaO₄ や AlO₄四面体は等方的 な正四面体から歪みにくい。従って、M(I)O₄ 四面体と M(III)O₄ 四面体のサイズの違いに起 因するウルツ鉱型構造からの歪は、最外殻に d¹⁰ 電子を有し、Ga³⁺や Al³⁺イオンに比べ柔ら かい Cu⁺あるいは Ag⁺イオン、すなわち M(I)イオンがすべて引き受けることになる。結果と して、Figure 2-7 でも明確なように、ADI は O-M(I)-O のそれが O-M(III)-O のそれより大幅 に大きくなっている。 β -AgGaO₂の O-Ag-O の ADI は約 9°であり β -AgAlO₂のそれと同程度 である。これに対し、 β -CuGaO₂のそれは6°程度で、 β -LiGaO₂(約 3°)のそれよりは大きい ものの、 β -AgGaO₂や β -AgAlO₂に比べると小さい。

これまでにも O-M-O 四面体の ADI は議論されているが[7]、M-O-M 四面体の歪は議論さ れてこなかった。Figure 2-7(b)に M-O-M 結合角に対する ADI を $r_{M(I)}/r_{M(III)}$ の関数として示す。 OM4 四面体については、 β -NaFeO₂構造では酸素が O(1)、O(2)の 2 種類あるため、図中では それらをそれぞれ赤色、青色で区別している。M-O-M 結合の ADI は、 β -CuGaO₂、 β -LiGaO₂ で O-M(I)-O と同程度の比較的小さな値(3~6°)であるが、 β -AgGaO₂、 β -AgAlO₂で 10°を超 える大きな値となっている。サイズが大きく異なる M(I)、M(III)の組み合わせで生じた構造 的な歪が酸素の配位多面体に押し付けられていると理解できる。

このように Δz、O-M-O および M-O-M の ADI は、β-CuGaO₂ は三元系酸化物であるものの 二元系のウルツ鉱型構造に非常に近い構造であること、β-AgGaO₂ はそれとは異なりウルツ 鉱型の派生構造としては大きな歪を有する酸化物であることを明確に示している。

2-4-2 エネルギーバンド構造に関する結晶構造の視点からの考察

Suzuki らは β -CuGaO₂ が直接遷移型半導体であることを[2]、Lambrecht らは β -LiGaO₂ が直接遷移型半導体であることをそれぞれ第一原理計算から示している[14]。一方、Ouyang らの第一原理計算によれば、 β -AgGaO₂ と β -AgAlO₂ は間接遷移型半導体である[5]。これらの4 つの酸化物半導体はすべて β -NaFeO₂型構造であり、母構造であるウルツ鉱型構造の化合物は直接遷移型半導体であるにも関わらず、物質によって直接遷移型であるか間接遷移型であるかが異なるということは、直観的には不思議に思われる。

前節の議論から、β-CuGaO₂ と β-LiGaO₂ は四面体構造の歪が小さく二元系ウルツ鉱型に近 い構造であるのに対し、β-AgGaO₂ と β-AgAlO₂ は四面体構造の歪が大きく二元系ウルツ鉱 型から大きく歪んだ構造であることが明らかとなっている。このような Δz、ADI で表され る四面体構造の歪の大小と、直接遷移型か間接遷移型かは現象論的にはよく一致する。すな わち、β-CuGaO₂ や β-LiGaO₂ のように四面体の歪の小さな酸化物は直接遷移型半導体とな り、β-AgGaO₂ や β-AgAlO₂のように四面体歪の大きな酸化物は間接遷移型半導体となる、と 見ることができる。このような現象論的理解が妥当であることは以下のように説明するこ

とができる。ダイヤモンド構造関連の四面体構造を有する半導体の電子構造は、sp³ 混成軌 道で議論される。理想的な sp³ 混成軌道では 4 つの完全に空間的に対称な等価な結合によっ て隣り合った4つの原子と結合が形成される。実際 GaAs や ZnSe のような閃亜鉛鉱型構造 の二元系化合物半導体では、結合角は完全に正四面体角 109.5°に一致する。CuInSe, や AgGaS2などのカルコパイライト型構造の三元系化合物半導体では、結合角はわずかに正四 面体角から歪んでいるが、そのずれはごくわずかであり、陽イオンと陰イオンはともに対称 性の高いサイトを占有している[15,16]。従って、カルコパイライト型構造の三元系化合物半 導体の化学結合もほぼ sp³ 混成軌道で構成されていると考えてよい。また、GaN や ZnO の ような六方晶ウルツ鉱型構造の二元系化合物半導体では、その結合角は 108~110°であり正 四面体角に非常に近く[17,18]、これらの結合もおおよそ sp³混成軌道からなると考えてよい。 これらとは対照的にウルツ鉱型構造の超構造である β-NaFeO2 型三元系化合物半導体の構造 では、それらの構成原子はウルツ鉱型構造やカルコパイライト型構造に比べて対称性の低 いサイトを占有している。そのため MO4 あるいは OM4 四面体の正四面体からの歪は Figure 2-6、2-7 に示されるように 2 種の陽イオンの大きさの比 r_{MU}/r_{MUU}に依存して広い範囲で変 わる。MO4および OM4四面体の歪の小さい β-NaFeO2型構造の化合物では、その化学結合は 概ね sp³ 混成軌道から形成されていると考えてよいが、四面体の歪が大きい化合物に対して も sp³ 混成軌道から成ると考えるのには無理がある。加えて、Cu⁺や Ag⁺イオンを含む化合 物では、CuO4 や AgO4 配位多面体の形は d 軌道の分裂様式に大きく影響するはずである。 すなわち β-CuGaO₂、β-AgGaO₂、β-AgAlO₂ では価電子帯の上部における Cu 3d や Ag 4d 軌道 の寄与は大きいので、CuO₄ や AgO₄ 四面体の形によって価電子帯の電子構造は劇的に変調 されるに違いない。従って、三元系ウルツ鉱型 β-NaFeO2型構造の酸化物半導体が直接遷移 型か間接遷移型かであることを、Δz や ADI で表現される MO4 や OM4 四面体が正四面体か らどの程度歪んでいるかによって決まるという前述の現象論的理解は、十分合理的といえ よう。

2-5 結言

本研究では、放射光を X 線源とした粉末 XRD の Rietveld 解析によって、β-CuGaO₂ とβ-AgGaO₂の結晶構造解析を行った。得られた構造データをもとに、これらの酸化物半導体の 構造の特徴を他のβ-NaFeO₂型構造の三元系酸化物半導体やウルツ鉱型構造の二元系酸化物 半導体のそれとともに議論した。得られた結論を以下にまとめる。

- β-CuGaO₂では、Cu⁺イオンとGa³⁺イオンの大きさが近いため、正四面体の歪で表される ウルツ鉱型構造からの偏倚は非常に小さい。一方、Ag⁺イオンはGa³⁺に比べて非常に大 きなイオンであるためβ-AgGaO₂のそれは大きい。
- (2) β-NaFeO₂ 型構造の酸化物半導体が直接遷移型であるか間接遷移型であるかは、MO₄ や OM₄ 四面体が正四面体からどの程度歪んでいるかによって決まる。すなわち、四面体の

歪が小さい化合物は直接遷移型半導体であり、四面体の歪が大きい化合物は間接遷移型 半導体となる。

参考文献

- T. Omata, H. Nagatani, I. Suzuki, M. Kita, H. Yanagi and N. Ohashi, J. Am. Chem. Soc. 136, 3378– 81 (2014)
- [2] I. Suzuki, H. Nagatani, M. Kita, Y. Iguchi, C. Sato, H. Yanagi, N. Ohashi and T. Omata, J. Appl. Phys. 119, 095701 (2016)
- [3] W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510–9 (1961)
- [4] S. Song, D. Kim, H. M. Jang, B. C. Yeo, S. S. Han, C. S. Kim and J. F. Scott, *Chem. Mater.* 29, 7596–603 (2017)
- [5] S. Ouyang and J. Ye, J. Am. Chem. Soc. 133, 7757-63 (2011)
- [6] Y. Maruyama, H. Irie and K. Hashimoto, J. Phys. Chem. B 110, 23274-8 (2006)
- [7] J. Li and A. W. Sleight, J. Solid State Chem. 177, 889-94 (2004)
- [8] K. Wang, Z. Kou, H. Ma, Y. Wang, S. Wang, C. Xu, J. Guan and D. He, *Solid State Commun.* 152, 540–4 (2012)
- [9] H. Neumann, W. Hörig, E. Reccius, W. Möller and G. Kühn, Solid State Commun. 27, 449–51 (1978)
- [10] S. Ouyang, D. Chen, D. Wang, Z. Li, J. Ye and Z. Zou, Cryst. Growth Des. 10, 2921-7 (2010)
- [11] K. A. Vanaja, R. S. Ajimsha, A. S. Asha and M. K. Jayaraj, Appl. Phys. Lett. 88, 133-6 (2006)
- [12] F. Izumi and K. Momma, Solid State Phenom. 130, 15-20 (2007)
- [13] R. D. Shannon, Acta Crystallogr. Sect. A 32, 751-67 (1976)
- [14] S. Limpijumnong, W. Lambrecht, B. Segall and K. Kim, MRS Proc. 449, 905 (1996)
- [15] K. S. Knight, Mater. Res. Bull. 27, 161-7 (1992)
- [16] S. C. Abrahams and J. L. Bernstein, J. Chem. Phys. 59, 1625-9 (1973)
- [17] W. Paszkowicz, S. Podsiadło and R. Minikayev, J. Alloys Compd. 382, 100-6 (2004)
- [18] S. C. Abrahams and J. L. Bernstein, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 25, 1233–6 (1969)

第3章 β-CuGaO2および β-AgGaO2の熱安定性

3-1 緒言

CuGaO₂ や AgGaO₂ 組成の化合物における安定相はデラフォサイト型構造の α-CuGaO₂ や α-AgGaO₂ であり、β-NaFeO₂ 型構造の β-CuGaO₂ や β-AgGaO₂ はいずれも準安定相である。 これらのナローギャップ酸化物半導体は、薄膜太陽電池や LED などへの応用が期待されて いる。例えば結晶 Si 太陽電池では最高 70°C程度まで[1]、GaN 系青色 LED では 200°C程度 まで[2]作動時には温度が上昇するといわれている。従って、β-CuGaO₂ や β-AgGaO₂ を用い て太陽電池や LED を作製する場合、これら準安定相の酸化物は動作温度で安定相へと相変 化することが心配される。準安定相から安定相への相変化は速度論に支配され、必ずしも短 時間で完了するとは限らない。例えば、炭素の室温大気圧下での安定相はグラファイトであ りダイヤモンドは準安定相であるが、ダイヤモンドからグラファイトへの相変化は室温付 近ではきわめて遅く[3]、ダイヤモンドは実際上安定な相として宝石のみならず研磨剤とし て実用に供されている。また、ワイドギャップ半導体としての応用も研究されている[4-6]。 このように準安定相であるからといって直ちに実用材料としては適さないということでは なく、使用環境で実際上安定であれば、準安定相であることは必ずしもデメリットとはなら ない。

本研究では、 β -CuGaO₂ と β -AgGaO₂の安定性を温度の関数として評価し、これら準安定 相が実用素子に適用可能であるかを検討した。

3-2 実験方法

3-2-1 TG-DTA および DSC による熱安定性の評価

試料の熱安定性を示差熱・熱重量分析装置(TG/DTA 6300;セイコーインスツルメンツ) を使用して評価した。β-CuGaO₂、β-AgGaO₂各試料を約 20mg 秤量し、酸素中またはアルゴ ン中で、β-CuGaO₂では室温から 700°C、β-AgGaO₂では室温から 800°Cの温度範囲で測定し た。昇温速度は 5°Cmin⁻¹ とした。測定後の試料について X 線回折(XRD)(リガク; RINT2550HL)により相を同定した。測定条件は、X 線源 CuKa、加速電圧 40 kV、電流 375 mA、走査範囲(20):10.000°~ 90.000°、ステップ幅:0.020°、計数時間:0.2 sec、発散ス リット:1°、発散縦制限スリット:10 mm、散乱スリット:1°、受光スリット:0.30 mm と した。β-CuGaO₂ではアルゴン雰囲気下で α-CuGaO₂ への相変化が観察されたので、示差走 査熱量測定(DSC; X-DSC 7000; セイコーインスツルメンツ)により相変化の熱量を測定し た。

3-2-2 高温 X 線回折

β-CuGaO₂ については相変化挙動の詳細を観察するため高温 X 線回折(RINT2500;リガ ク)を測定した。測定は空気中と窒素中とで行い、CuKα線を X 線源として 20.000°~60.000° の走査範囲(20)を、室温から 631℃の範囲で昇温しながら測定した。

3-3 結果と考察

3-3-1 β-CuGaO2の熱安定性

Figure 3-1(a)に β-CuGaO₂を出発試料に用いた Ar 雰囲気での TG-DTA 曲線を示す。300℃ から始まるわずかな重量増加は見られるものの、450℃を超えるまで発熱・吸熱ピークは観察されなかった。450℃を超えると 495℃にピークを持つシャープな発熱ピークが明瞭に現れた。Figure 3-2 に TG-DTA 分析前後の試料の XRD パターンを示す。Ar 雰囲気で 700℃まで加熱された TG-DTA 分析後の試料の XRD パターン (Figure 3-2(b)) は、回折線はブロードではあるもののデラフォサイト型 α-CuGaO₂ のそれと完全に一致した。従って、495℃の発熱ピークはウルツ鉱型構造の派生構造である β-NaFeO₂型構造の β-CuGaO₂ からデラフォサイト型構造の α-CuGaO₂ への相転移に帰属される。このような相転移は後で述べる β-AgGaO₂のそれとは大きく異なる (β-AgGaO₂から α-AgGaO₂への相転移には水の介在が必要である)。300℃から始まる非常に緩やかな重量増加は、装置内に流す Ar ガスの流量を100mLmin⁻¹にした場合と 200mLmin⁻¹にした場合で比較すると、100mLmin⁻¹の場合の方が大きくなった。酸素分圧が高い雰囲気下の方が重量増加量が大きくなることから、この増加分は雰囲気中の残留酸素による Cu⁺から Cu²⁺への酸化に対応するものと推察される。

Figure 3-1(a)で観察された相転移挙動をより詳細に調べるために β-CuGaO₂ を出発として N₂中雰囲気中で高温 XRD を測定した結果を Figure 3-3(a)に示す。TG-DTA から推察した通 り、460°Cまでの XRD パターンは熱膨張によるわずかなピーク位置のシフトを示すが、β-CuGaO₂のそれから変化しなかった。一方、481°Cでの XRD パターンは、20 がおおよそ 33° と 34°にわずかに β-CuGaO₂ のピークが観察されるものの、その他の回折線は α-CuGaO₂ の それと一致した。500°C以上での XRD パターンは β-CuGaO₂ の回折線は完全に消え、α-CuGaO₂の単相となった。すなわち、β-NaGaO₂型構造の β-CuGaO₂ は不活性雰囲気の 460°C 以上でデラフォサイト型構造の α-CuGaO₂ へと相転移するとともに、さらに室温へと温度を 下げても α-CuGaO₂から β-CuGaO₂ への相転移は生じなかったので、β-CuGaO₂は準安定相で あることが明らかとなった。

Figure 3-4 にデラフォサイト型構造の α-CuGaO₂ と β-NaFeO₂型構造の β-CuGaO₂の結晶構 造を模式的に示す。ウルツ鉱型構造の派生構造である β-NaFeO₂型構造の β-CuGaO₂では Cu および Ga 原子は正四面体構造の 4 配位サイトを交互に占有しているのに対し、デラフォサ

Figure 3-1. TG-DTA curves of β -CuGaO₂ under (a) Ar and (b) O₂ atmospheres.

イト型構造の α -CuGaO₂型構造では Cu 原子は直線 2 配位サイトを、Ga 原子は正八面体 6 配 位サイトを占有した Cu₂O と Ga₂O₃の層状構造となっている。 α -CuGaO₂ と β -CuGaO₂ とでは Cu と Ga の配位状態だけでなく配列様式も全く違っているので、 β -CuGaO₂ から α -CuGaO₂ への相変化は Cu、Ga および O 原子の再配列を必要とする reconstructive な相変化といえる。 Figure 3-5 に β -CuGaO₂ から α -CuGaO₂ への相変化を DSC で調べた結果を示す。 β -CuGaO₂ か ら α -CuGaO₂ への相変化熱は-31.97 kJmol⁻¹であった。

Figure 3-1(b)に β-CuGaO₂を出発試料とした O₂雰囲気での TG-DTA 曲線を示す。200℃以 上で大きな重量増加が始まり、350℃付近をピークとするブロードな発熱ピークが観察され た。観察された重量増加は β-CuGaO₂中の Cu⁺が完全に酸化され Cu²⁺になった際に吸収され る酸素の重量と完全に一致した。Figure 3-2(c)に TG-DTA 分析後の試料の XRD パターンを 示す。β-CuGaO₂は完全に消失し、スピネル型構造の CuGa₂O₄ と CuO へと相変化していた。 Figure 3-3(b)に示した大気中での高温 XRD からも β-CuGaO₂ は大気中では 300℃程度まで安 定で、300℃より高温では CuGa₂O₄ と CuO が生成することが明らかである。

これらの結果から β-CuGaO₂ は準安定な相であるが、300℃以下では実際上安定であるため、300℃以下で動作する素子には応用が可能であると結論した。

Figure 3-2. Powder X-ray diffraction profiles of the samples before TG-DTA analysis (a) and after TG-DTA up to 700 $^{\circ}$ C under (b) Ar and (c) O₂ atmospheres.

Figure 3-3. High-temperature XRD profiles of β -CuGaO₂ under (a) N₂ and (b) air.

Figure 3-4. Schematic illustrations of the crystal structures of (a) delafossite-type α -CuGaO₂ and (b) wurtzite-type β -CuGaO₂.

Figure 3-5. DSC curve of β -CuGaO₂ under an Ar atmosphere. The evolution of heat is accompanied by the phase transformation from β -CuGaO₂ to α -CuGaO₂.

3-3-2 β-AgGaO₂の熱安定性

Figure 3-6(a)に β-AgGaO₂を出発試料として Ar 雰囲気で行った TG-DTA 曲線を示す。Ar 雰 囲気では (Figure 3-6(a)) 590°Cまで重量変化、発熱吸熱ピークのいずれも観測されず、590°C 以上で急激な重量減少とともに 650°C付近を中心とするブロードな吸熱ピークが観察され た。Figure 3-7(b)に示した 500°Cまで昇温後冷却した試料の XRD は β-AgGaO₂ のパターンと 完全に一致し、β-AgGaO₂ が 590°C以下の Ar 雰囲気下では安定であることが明らかとなっ た。800°Cまで昇温後室温へと冷却した試料の XRD パターン Figure 3-7(c)から 590°C以上で の重量減少と 650°C付近の吸熱ピークは、β-AgGaO₂ の金属 Ag と Ga₂O₃ とへの分解に対応 することが明らかとなった。すなわち β-CuGaO₂ の場合とは異なり、β-AgGaO₂ からデラフ ォサイト型構造の α-AgGaO₂ への相転移は生じなかった。詳細な理由は明らかではないが、 α-AgGaO₂への相変化には Ouyang らや Vanaja らが報告するように水の共存が必要なようで ある[2,7]。

Figure 3-6(b)に β-AgGaO₂を出発試料として O₂雰囲気で行った TG-DTA 曲線を示す。O₂雰 囲気では 700℃付近から急激に重量減少が始まり、740℃付近を中心とする吸熱ピークが観 察された。重量減少の開始温度と吸熱ピークの温度は Ar 雰囲気に比べ 100℃程度高温にシ フトしたが、全体的には比較的類似した状況であった。O₂中では、Ar 雰囲気の場合と同様 に 500℃まで昇温した後に室温へと冷却した試料(Figure 3-7(d))は出発試料と同じ β-AgGaO₂のままであり、800℃まで昇温後に冷却した試料(Figure 3-7(e))は金属 Ag と Ga₂O₃ に相変化していた。β-AgGaO₂から金属 Ag と Ga₂O₃への相変化温度が、Ar 中に比べ酸素中 では 100℃程度高いのは、Ar 中よりも高い酸素分圧のために Ag⁺の還元が抑制されたため であろう。

これらの結果から、ウルツ鉱型構造の派生構造である β-NaFeO₂ 型構造の β-AgGaO₂ は酸 素中でも 700℃付近までは実際上安定であり、それ以上の温度では金属 Ag と Ga₂O₃ に分解 することが明らかとなった。β-AgGaO₂ を各種の素子へと展開する上で、製造時や使用時の 温度の上限は十分高く、応用していくにあたって支障がないと考えて良さそうである。

Figure 3-6. TG–DTA curves of β -AgGaO₂ under (a) Ar and (b) O₂ atmospheres. The mass of the starting β -AgGaO₂ was 20 mg in both measurements.

Figure 3-7. Powder X-ray diffraction profiles of the samples before and after TG–DTA analysis. (a) Initial β -AgGaO₂, (b) heated to 500°C in Ar, (c) heated to 800°C in Ar, (d) heated to 500°C in O₂, and (e) heated to 800°C in O₂.

3-4 結言

本研究ではウルツ鉱型の派生構造である β-NaFeO₂型構造を有する三元系ウルツ鉱型酸化 物半導体 β-CuGaO₂ と β-AgGaO₂の熱的な安定性を DG-DTA 分析、DSC 分析、高温粉末 X 線 回折によって研究した。本研究で得られた結論は以下のとおりである。

- CuGaO₂組成における安定相はデラフォサイト型構造の α-CuGaO₂ であり、三元系ウルツ 鉱型構造の β-CuGaO₂ は準安定相である。
- (2) O₂雰囲気中でβ-CuGaO₂は300℃以下において実際上安定である。O₂雰囲気の300℃以上では、Cu⁺のCu²⁺への酸化が進行し、β-CuGaO₂はCuGa₂O₄とCuOへと分解する。
- (3) Ar 雰囲気のような酸素分圧の比較的低い雰囲気では、β-CuGaO₂ は 460℃以下において 実際上安定である。それ以上の温度では安定相である α-CuGaO₂ へと相変化する。β-CuGaO₂ 相から α-CuGaO₂ 相への相変化熱は-31.97 kJmol⁻¹である。
- (4) AgGaO₂ 組成における安定相はデラフォサイト型構造の α-AgGaO₂ であり、三元系ウル ツ鉱型構造の α-AgGaO₂ は準安定相である。
- (5) β -AgGaO₂ は高温では Ag⁺の還元を伴いながら金属 Ag と Ga₂O₃ へ分解し、 α -AgGaO₂ への相変化は本研究で行ったようなドライな雰囲気では生じない。

(6) β-AgGaO₂の還元・分解温度は雰囲気中の酸素分圧に依存し、Ar 雰囲気では約 600℃、酸素雰囲気では約 700℃である。

以上のように β-CuGaO₂ と β-AgGaO₂ はいずれも準安定相でありながら、それぞれ約 300℃、 約 600℃までは実際上安定な相である。従って、これらの酸化物半導体は室温近傍で動作す る薄膜太陽電池や LED 素子の材料として使用することが可能である。今後の応用研究に期 待がもたれる。

参考文献

- [1] P. Singh and N. M. Ravindra, Sol. Energy Mater. Sol. Cells 101, 36–45 (2012)
- [2] S. Ouyang, D. Chen, D. Wang, Z. Li, J. Ye and Z. Zou, Cryst. Growth Des. 10, 2921–7 (2010)
- [3] J. Bernstein, NATO Sci. Peace Secur. Ser. B Phys. Biophys. 87-109 (2008)
- [4] J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback and J. A. Simmons, *Adv. Electron. Mater.* 4, (2018)
- [5] M. Kim, J. H. Seo, U. Singisetti and Z. Ma, J. Mater. Chem. C 5, 8338-54 (2017)
- [6] R. Kalish, J. Phys. D. Appl. Phys. 40, 6467–78 (2007)
- [7] K. A. Vanaja, R. S. Ajimsha, A. S. Asha and M. K. Jayaraj, Appl. Phys. Lett. 88, 133-6 (2006)

第4章 CuAlO2との混晶化による β-CuGaO2のバンドギャップエンジニアリング

4-1 緒言

SnO₂、In₂O₃などに代表される酸化物は、エネルギーバンドギャップが3eV以上のワイド バンドギャップ半導体であるものが多く、透明電極や透明 TFT などとして既に実用化され ている[1.2]。これらの用途は、酸化物半導体の可視光に対する透明性を利用したものであり、 言ってみれば光に対しては passive な用途といえる。発光素子や光電極といった光に対して active な用途に用いられる半導体は、直接遷移型の半導体が圧倒的に優位であり、ダイヤモ ンド関連構造の酸化物半導体では ZnO がこれに該当する[3]。ZnO のエネルギーバンドギャ ップは 3.37 eV であり近紫外光のエネルギーに対応するので、ZnO は近紫外光の LED やレ ーザ材料として研究されている[4]。薄膜太陽電池に使用される CdTe や赤色 LED に使用さ れる(Al, Ga)As を代替する半導体材料として、有害元素を含まず、資源豊富な元素からなる 酸化物半導体に期待が寄せられ、ZnO のバンドエンジニアリングによるナローバンドギャ ップ化が研究されている。ZnO のナローバンドギャップ化は岩塩型 CdO との混晶化[5]や β-AgGaOっとの混晶化[6]により試みられているが、いずれの混晶も最小のエネルギーバンドギ ャップは 2.5eV 程度であり、赤色 (~2.0 eV) や近赤外光のエネルギーには届いていない。一 方、2014 年に発見された β-CuGaO2 はエネルギーバンドギャップが 1.47 eV の直接遷移型半 導体であり[7-9]、CdTe や Cu(In,Ga)Se₂ などのカルコゲナイド半導体や GaAs などの砒化物 半導体と、変換効率を競えるポテンシャルを有する太陽電池用半導体として期待され、すで に薄膜化の研究も進められている[10,11]。さらに β-CuGaO2 のバンドエンジニアリングによ りワイドバンドギャップ化ができれば、赤色をはじめ可視光 LED へとその応用範囲が広が り、真に安全で環境にやさしい LED やレーザ材料を提供できる。

β-CuGaO₂ と同様に β-NaFeO₂ 型構造を有する準安定な β-AgGaO₂ では、同形の β-AgAlO₂ との混晶化によるバンドエンジニアリングが Ye らにより報告されている[12]。β-AgGaO₂ と β-AgAlO₂ とは全率固溶し、エネルギーバンドギャップは 2.2~3.0 eV の範囲で制御できる。 しかしながら、β-AgGaO₂ と β-AgAlO₂ はいずれも間接遷移型半導体であるため、発光素子に は適さない材料である。本研究では、β-AgGaO₂ と β-AgAlO₂ の混晶化の手法に倣って[12]、 β-NaFeO₂ 型構造の β-Na(Ga,Al)O₂ 中の Na⁺イオンを Cu⁺イオンに交換することで、β-Cu(Ga,Al)O₂ を合成し β-CuGaO₂ のエネルギーバンドギャップを広げることを試みた。 CuAlO₂ 組成では、陽イオンを中心とした四面体が一部稜連結した γ-LiAlO₂ 型構造の γ-CuAlO₂の存在が報告されているが、β-CuGaO₂と同形の β-CuAlO₂は未だ報告されていない。

以上のことを踏まえて本研究では、Cu(Ga,Al)O₂系におけるβ-Cu(Ga,Al)O₂の生成範囲、Al 量の増加に伴い生じる結晶構造の変化を詳細に検討した。生成相が直接遷移型半導体、間接 遷移型半導体のいずれであるかは、応用範囲を決定する重要な性質であるので、第3章で述 べた結晶構造の特徴、すなわち、理想的ウルツ鉱型構造からのずれを指標としてそれを議論
するとともに、第一原理計算により β-CuAlO₂および γ-CuAlO₂のエネルギーバンド構造を議 論した。

4-2 実験方法

4-2-1 実験に使用した試薬

本研究においては、以下の市販の試薬を使用した。

Na₂CO₃ (99.8%、和光純薬工業)、Ga₂O₃ (99.99%、高純度化学)、α-Al₂O₃ (99.99%、高純度 化学)、CuCl (99.9%、和光純薬工業)。

4-2-2 Cu(Ga,Al)O2の合成

4-2-2-1 前駆体 β-Na(Cu,Al)O₂の準備

β-CuGaO₂の合成方法に倣って、β-NaFeO₂構造を有する β-Na(Ga,Al)O₂を前駆体とし、その Na⁺イオンを Cu⁺イオンへとイオン交換する方法により β-Cu(Ga,Al)O₂得た。

前駆体 β-Na(Ga,Al)O₂ は以下の手順で固相反応法により準備した。高温での反応中に Na 成分は Na₂O として揮発するので、Ga₂O₃ と Al₂O₃ および Na₂CO₃ の混合比は、わずかに Na₂CO₃ が過剰になるモル比 (X_{Na} : X_{Ga} : X_{Al} =1.06:1-x:x) とし、合計 10 g となるよう秤量し た。秤量後の原料をナイロンポットに φ5 mm のジルコニアボールを約 50 g とともに装填 し、15 mL のエタノールを混合媒体とし、遊星ボールミルにて回転数 250 rpm で 1 時間湿式 混合した。混合後のポットの内容物をテフロンシートを敷いたステンレスバットに移し、 100 °Cに熱したホットプレートで 30 分間乾燥した。混合後の粉末をハンドプレス機を使用 し 100 MPa で 1 分間加圧し、φ17.2 mm のペレット状に成形した。成形後のペレットの表面 を#800 のエメリー紙で研磨した。

成形体ペレットを白金箔を敷いたアルミナボートに載せ、管状炉にて 300 ℃h⁻¹の昇温速 度で 900 ℃に昇温し 12 時間保持した。200 ℃まで炉冷した後、シリカゲルの入ったデシケ ータで室温まで放冷した。煆焼後の試料を YTZ 乳鉢にて粉砕し、煆焼時と同様の方法でペ レット状にし、白金箔を敷いたアルミナボートに載せ、管状炉にて 300 ℃h⁻¹の昇温速度で 1100 ℃に昇温し 12 時間保持した。本焼後、200 ℃になるまで炉冷し、シリカゲルの入った デシケータ内で室温まで放冷した。

本焼後の粉末を煆焼時と同様の方法でペレット状にし、白金箔を敷いたアルミナボート に載せ、管状炉にて 350 ℃で 72 時間アニールした。アニール後、200 ℃になるまで炉冷し、 シリカゲルの入ったデシケータ内で室温まで放冷した。

各処理後の試料を X 線回折(XRD)(リガク;RINT2550HL)により同定した。測定条件

は、X 線源 Cu Ka、加速電圧 40 kV、電流 375 mA、走査範囲: 10.000 °~ 90.000 °、ステッ プ幅: 0.020 °、計数時間: 0.2 sec、発散スリット: 1 °、発散縦制限スリット: 10 mm、散乱 スリット: 1 °、受光スリット: 0.30 mm とした。

4-2-2-2 β-Na(Cu,Al)O₂中の Na⁺イオンの Cu⁺へのイオン交換

使用する CuCl は空気中で酸化して CuCl₂となるため、窒素を充填したグローブボックス 内で秤量および混合を行った。 β -Na(Ga_{1-x}Al_x)O₂と CuCl をモル比で 1:1 で秤量し、YTZ 乳鉢 で 5 分間乾式混合した。ハンドプレス機を使用して 100 MPa で 1 分間加圧し、 φ 17.2 mm の ペレット状に成形した。成形体ペレットの表面を#800 のエメリー紙で研磨した。ペレット をアルミナボートに載せ、1 Pa 程度の真空とした管状炉にて 250 ℃に 1 時間で昇温、48 時 間保持したのち室温まで炉冷した。イオン交換後のペレット表面を#800 のエメリー紙で研 磨により除去し、YTZ 乳鉢で粉砕した。試料中の未反応 CuCl、副生成物の NaCl は 60 ℃の アセトニトリルで 20 分間振盪機を用いて洗浄除去した。その後超純水を使用して 3 回洗浄 し、室温で真空乾燥した。

乾燥後の試料を 4-2-2-1 に記載の XRD により同定し、格子定数はプログラム Cellcalc を使 用して決定した。さらに誘導結合プラズマ発光分析 (ICP-AES) (島津製作所; ICPS-8100) により組成を決定した。標準溶液には硝酸銅溶液 1000 mgL⁻¹ (MERCK)、塩化ガリウム溶液 1000 mgL⁻¹ (キシダ化学)、硝酸アルミニウム溶液 1000 mgL⁻¹ (MERCK)を用い、検量線 を作成した。組成分析に使用する溶液は、Cu の濃度が約 150 ppm となるように試料を量り とり、1 molL⁻¹の硝酸を 5 mL 加えたテフロン容器内で 200 °Cで 5 時間加熱溶解したのち、 超純水を加えて全量を 100 mL とした。

4-2-3 作製した試料のキャラクタリゼーション

4-2-3-1 近赤外~紫外拡散反射スペクトル

拡散反射スペクトルの測定に U-4000 自動分光光度計(日立)を使用した。白色標準には MgO を使用した。測定波長範囲 240~2600 nm、PbS 感度 2、サンプリング間隔 1.00 nm、検 出器切替波長 850 nm、光源切替波長 340 nm とし、スキャンスピードは 240~850 nm では 300 nm/min、850~2600 nm では 750 nm/min、スリット幅は 240~850 nm では 5.00 nm、850 ~2600 nm では 5.00~36.00 nm の自動制御とした。

4-2-3-2 XPS スペクトル

XPS スペクトル測定には PHI Quantera SXM (ULVAC-PHI) を使用した。インジウム箔上 に試料粉末を分散し、エタノールの蒸発を利用して固定化した。測定は、X 線源 Al Kα(1486.6 eV)、出力 24.90 W、ビーム径 100.0 μm の条件で行った。 4-2-3-3 リートベルト法よる結晶構造解析

リートベルト解析に用いた XRD の強度データは、汎用のラボ用 XRD 装置(リガク; RINT2550HL)により取得した。X線源は Cu Kα線、加速電圧 40 kV、電流 375 mA とし、 20範囲を 15.000°~ 140.000°、ステップ幅 0.020°、計数時間 5.0 sec/点、発散スリット 1°、 発散縦制限スリット 10 mm、散乱スリット 1°、モノクロメータの受光スリット 0.15 mm と して測定した。リートベルト解析には RIETAN-FP を使用した[13]。原子座標等の初期値は、 x=0.2、0.4、0.5、0.6の解析においては2章で決定した β-CuGaO₂の値を[14]、x=1の解析に おいては γ-LiAlO₂のもの[15]を用いた。プロファイル関数には pseudo-Voigt 関数を使用し、 バックグラウンド強度は RIETAN-FP に搭載されている標準的なバックグラウンド関数を使 用して補正した。格子定数、原子座標、等方的温度因子をプロファイル関数およびバックグ ラウンド関数のパラメータとともに最適化した。最適化の指標には以下の信頼度因子によ り評価した。プロファイル R 因子; $R_{p} = \Sigma | y_{io} - y_{ic} | / \Sigma y_{io};$ 、重みつきプロファイル R 因子; R_{wp} = $[\Sigma w_i(y_{io} - y_{ic})^2 / \Sigma w_i(y_{io})^2]^{1/2}$ 、ブラッグ R 因子; $R_B = \Sigma |I_o(h_K) - I(h_K)| / \Sigma I_o(h_K)$ 、および、一致の 度合いを表すパラメータS; $S = R_{wp}/R_{eo}$ ただし、 $R_e = [(N-P)/\Sigma w_i(y_{io})^2]^{1/2}$ 、 y_{io} と y_{ic} はそれ ぞれ i 番目の回折各における実測および計算回折強度、wi は重み因子、Lo(hk) は実測された 強度データから見積もられる積分強度、I(hĸ) は構造データから計算される積分強度、N は 各回折各で実測された強度データ yio の数、P は最適化したパラメータの数である。

4-2-4 CuAlO2のバンド計算

結晶構造が異なる β-CuAlO₂、γ-CuAlO₂、α-CuAlO₂の 3 相について第一原理計算によりバ ンド構造を計算した。第一原理計算の条件は β-CuGaO₂、α-CuGaO₂での計算[8,9]を参考に決 定した。全ての計算は、計算コード CASTEP により行った[16]。汎関数には LDA + Uを使 用し、Uは Cu 3d 軌道に導入した[17]。直線 2 配位の Cu⁺を含む α-CuAlO₂については U=4 eV、四面体 4 配位の Cu⁺を含む β-CuAlO₂、γ-CuAlO₂については U=6 eV とした[8,9]。擬ポ テンシャルは OPIUM[18]で生成したノルム保存型擬ポテンシャルを使用した[19]。カットオ フエネルギーは 880 eV とし、さらに Monkhost-Pack グリッドの大きさは、β-CuAlO₂は 5×4 × 5、γ-CuAlO₂ は 5×5×4、α-CuAlO₂ は 10×10×10 とした。原子位置は β-CuAlO₂ について は *Pna2*₁[20]、γ-CuAlO₂ については *P*4₁2₁2[15]、α-CuAlO₂ については *R*-3m[21]で拘束をかけ て緩和した。結晶構造を緩和した際の収束条件は、Energy convergence 5.0×10⁻⁶ eV atom⁻¹、 Maximum ionic displacement 5.0×10⁻⁴ Å、Maximum force 1.0×10⁻² eVÅ⁻¹、Maximum stress 2.0 ×10⁻² GPa とした。全ての計算において Cu 3d、4s、4p、Al 3s、3p および O 2s、2p 電子を価 電子とした。

4-3 結果と考察

4-3-1 β-NaFeO₂型構造の β-Cu(Ga_{1-x}Al_x)O₂ 混晶の生成と結晶構造の変化

Figure 4-1 に示すように、前駆体の Na(Ga_{1-x}Al_x)O₂ はすべて β-NaFeO₂型構造であった。こ れらをイオン交換した試料の組成を Table 4-1 に示す。いずれの試料もわずかに Cu が欠損 した組成であったが、前駆体混晶中の Na⁺イオンはすべて Cu⁺へとイオン交換され Cu(Ga_{1-x}Al_x)O₂ が得られていた。Figure 4-2 に得られた Cu(Ga_{1-x}Al_x)O₂の XRD パターンを β-CuGaO₂ および γ-LiAlO₂型構造の γ-CuAlO₂のそれとともに示す。イオン交換に供した前駆体 Na(Ga_{1-x}Al_x)O₂ はすべてウルツ鉱型構造の派生構造である β-NaFeO₂型であったが、Cu(Ga_{1-x}Al_x)O₂ で は x≥0.8 では β-NeFeO₂ 型構造の相ではなく γ-LiAlO₂型構造(正方晶、空間群 P4₁2₁2 (No. 92); Figure 4-3)の相が生成した。x=0.7 では、20=33.30°に現れる β-CuGaO₂相の 200 回折線 の強度は 34.38°に現れる 002 回折線の強度より大きく、また、36.52°に観察される 121 回折 線の低角度側に β-NaFeO₂ 型構造の相には見られない肩が現れている。これらの観察は、 Cu(Ga₀₋₃Al₀₋₇)O₂ は x=0.7 では β-NaFeO₂型構造の単相ではなく、わずかに γ-LiAlO₂型構造の 相が生成していることを示している。従って、Cu(Ga_{1-x}Al_x)O₂ 系ではウルツ鉱型の派生構造 である β-NaFeO₂型構造の相は x≤0.7 の範囲で生成することが明らかとなった。Figure 4-4 に Cu(Ga_{1-x}Al_x)O₂ 混晶系の格子定数の組成変化を示す。ウルツ鉱型派生構造の β 相の領域では

Figure 4-1. Experimentally obtained XRD profiles of precursor $Na(Ga_{1-x}Al_x)O_2$ and calculated profiles of wurtzite β -NaGaO₂ (top panel) and β -NaAlO₂ (bottom panel).

Composition, <i>x</i>	Cu	Ga	Al	Phase
0	0.939	1	_	\uparrow
0.1	0.966	0.905	0.095	
0.2	0.951	0.803	0.197	I
0.3	0.946	0.707	0.293	β -NaFeO ₂
0.4	0.918	0.605	0.395	
0.5	0.931	0.504	0.496	
0.6	0.944	0.396	0.604	V
0.7	0.931	0.297	0.703	mixture of β and γ
0.8	0.938	0.201	0.799	\uparrow
0.9	0.927	0.099	0.901	γ-NaAlO ₂
1	0.931	—	1	\downarrow

Table 4-1. Compositions of Cu(Ga_{1-x}Al_x)O₂ alloys determined by ICP-AES

Figure 4-2. XRD profiles of the samples obtained in the present study. (a) Experimentally obtained profiles of precursor Na(Ga_{1-x}Al_x)O₂ and calculated profiles of wurtzite β -NaGaO₂ (top panel) and β -NaAlO₂ (bottom panel) and (b) experimentally obtained profiles of ion-exchanged Cu(Ga_{1-x}Al_x)O₂ and calculated XRD profiles of wurtzite β -CuGaO₂ (top panel) and γ -CuAlO₂ (bottom panel).

Figure 4-3. Schematic drawing of crystals structures of (a, b) β -CuGaO₂ and (c, d) γ -CuAlO₂.

Figure 4-4. Variation of the lattice parameters (a) a_0 , (b) b_0 , and (c) c_0 of Cu(Ga_{1-x}Al_x)O₂ alloys. Blue and red dots indicate the β - and γ -phases, respectively.

 a_0 、 b_0 および c_0 のいずれも Al 濃度の増加に伴って直線的に減少し、Al 濃度に対する格子定 数の変化率は β 相の単相範囲において一定であった。 Al^{3+} のイオン半径は 0.39 Å であり Ga^{3+} イオンのそれ (0.47 Å[22])より小さいので、 Al 濃度が増加すると格子定数が減少するとい う傾向は非常に合理的で、同様な変化が β -Ag(Ga,Al)O₂ 混晶系でも報告されている[23]。 γ 相 が生成する領域でも格子定数の変化は同様で、 a_0 、 b_0 および c_0 のいずれも Al 濃度の増加に 伴って直線的に減少した。

Table 4-2~4-5 に Rietveld 解析で最適化された x=0.2, 0.4, 0.5, 0.6 の β - Cu(Ga_{1-x}Al_x)O₂の原子 座標と等方性温度因子を示す。Figure 4-5 はこれらの原子座標の Al 濃度依存性を示す (x=0については 2 章で最適化した β -CuGaO₂のそれをプロットしてある[20])。なお、Ga あるい は Al は特殊等価点にあり、その z 座標は 0 に固定されているので図示していない。O(2)の x 座標だけが x>0.4 の組成範囲で Al 濃度の増加とともに増加しているが、他のすべての原 子の ab 面内での位置は Al 濃度によらず β -CuGaO₂のそれとほとんど変わっていない。一方 z 座標は、Al 濃度の増加に伴って Cu と O(2)では x>0.4 で減少し O(1)では増加している。

Space group		$Pna2_1$				
Lattice parameters (Å)		$a_0 = 5.4$	$4010(4), b_0 = 6.$	$.58912(4), c_0 =$	5. 25996(3)
Atomic parameters	site	x	У	Ζ	SOF	$U(Å^2)$
Cu	4 <i>a</i>	0.4428(1)	0.1291(3)	0.5030(3)	1	0.0231(3)
Ga	4 <i>a</i>	0.0787(1)	0.1238(3)	0	0.8	0.0073(2)
Al	4 <i>a</i>	0.0787(1)	0.1238(3)	0	0.2	0.0073(2)
O(1)	4 <i>a</i>	0.3997(4)	0.1485(8)	0.9029(4)	1	0.0087(5)
O(2)	4 <i>a</i>	0.4408(5)	0.5977(8)	0.8497(3)	1	0.0087(5)
$R_{\rm p} = 1.10\%$, $R_{wp} =$	$1.55\%, R_{\rm e} = 1$.32%, <i>S</i> = 1.17			

Table 4-2. Structural parameters of β -Cu(Ga_{0.8}Al_{0.2})O₂ obtained by Rietveld analysis.

Table 4-3. Structural parameters of β -Cu(Ga_{0.6}Al_{0.4})O₂ obtained by Rietveld analysis.

Space group		$Pna2_1$				
Lattice parameters (Å)		$a_0 = 5.41$	$513(5), b_0 = 6.5$	$56287(5), c_0 = 5$	5.24250(3)	1
Atomic parameters	site	x	У	Ζ	SOF	$U(\text{\AA}^2)$
Cu	4 <i>a</i>	0.4425(1)	0.1292(3)	0.4999(3)	1	0.0238(3)
Ga	4 <i>a</i>	0.0780(1)	0.1251(4)	0	0.6	0.0085(2)
Al	4 <i>a</i>	0.0780(1)	0.1251(4)	0	0.4	0.0085(2)
O(1)	4 <i>a</i>	0.3987(4)	0.1536(7)	0.9043(4)	1	0.0107(6)
O(2)	4 <i>a</i>	0.4434(6)	0.5958(8)	0.8463(3)	1	0.0107(6)
$R_{\rm p} = 1.15\%$, $R_{\rm wp} =$	$1.66\%, R_e = 1.$	29%, <i>S</i> = 1.29			

Space group		$Pna2_1$				
Lattice parameters (Å)		$a_0 = 5.40381(4), b_0 = 6.54956(5), c_0 = 5.23361(4)$				
Atomic parameters	site	x	у	Z	SOF	$U(Å^2)$
Cu	4 <i>a</i>	0.4427(1)	0.1283(3)	0.4991(4)	1	0.0272(4)
Ga	4 <i>a</i>	0.0765(1)	0.1229(4)	0	0.5	0.0033(3)
Al	4 <i>a</i>	0.0765(1)	0.1229(4)	0	0.5	0.0033(3)
O(1)	4 <i>a</i>	0.3933(4)	0.1466(8)	0.9097(5)	1	0.0021(7)
O(2)	4 <i>a</i>	0.4525(6)	0.5934(7)	0.8401(4)	1	0.0021(7)
$R_{\rm p} = 1.20\%$, $R_{\rm wp} =$	$1.20\%, R_{\rm e} = 1$.25%, <i>S</i> = 1.56			

Table 4-4. Structural parameters of β-Cu(Ga_{0.5}Al_{0.5})O₂ obtained by Rietveld analysis.

Table 4-5. Structural parameters of β-Cu(Ga_{0.4}Al_{0.6})O₂ obtained by Rietveld analysis.

Space group		$Pna2_1$				
Lattice parameters (Å)		$a_0 = 5.3$	$8795(6), b_0 = 6.$	$53276(9), c_0 =$	5.22257(5	5)
Atomic parameters	site	x	у	Ζ	SOF	$U(\text{\AA}^2)$
Cu	4 <i>a</i>	0.4454(2)	0.1316(3)	0.4965(5)	1	0.0420(9)
Ga	4 <i>a</i>	0.0771(2)	0.1225(4)	0	0.4	0.0049(5)
Al	4 <i>a</i>	0.0771(2)	0.1225(4)	0	0.6	0.0049(5)
O(1)	4 <i>a</i>	0.4008(5)	0.1422(10)	0.9167(6)	1	0.0063
O(2)	4 <i>a</i>	0.4564(7)	0.5958(8)	0.8250(5)	1	0.0063
$*R_{\rm p} = 1.57\%$	$R_{\rm wp} =$	$2.32\%, R_{\rm e}=1$.27%, <i>S</i> = 1.83			

Figure 4-5. Variation of fractional coordinates of (a) Cu, (b) Ga/Al, (c) O1, and (d) O2 in the β -NaFeO₂-type β -Cu(Ga_{1-x}Al_x)O₂ phase (0 $\leq x \leq 0.6$).

Figure 4-6 は Cu、O(1)、O(2)のこのような z 座標の変化を模式的に示したものである。ウル ツ鉱型構造の派生構造である β-NaFeO₂型の β 相では、CuO₄ や(Ga,Al)O₄ などの陽イオンを 中心とした四面体は、Figure 4-3(b)に示したように、それらの頂点を互いに共有しながら連 結しており、四面体はその頂上を上向きに揃えて並んでいる。この状況は Figure 4-6(a)で表 されている。x>0.4 では、図中の矢印に示したように Cu と O(2)は下方に変位し、O(1)は上 方へ変位する。結果として、Cu と四面体の頂上にあたる O(1)の距離は長くなり、Cu と CuO₄ 四面体の底面の下に位置する O(1)"の距離は短くなる(Figure 4-6(b))。β 相が生成する組成 域では、CuO₄ とその下にある(Ga,Al)O₄ とは四面体の形が大きく歪みながらも互いに頂点を 共有して連結した状態が維持されている。このような Cu、O(1)、O(2)の変位が、ある閾値を 超えると CuO₄ 四面体の頂上の酸素は元の O(1)から O(1)"にスイッチし、CuO₄ 四面体の頂上 は下向きに変わり、CuO₄ と(Ga,Al)O₄ 四面体とは O(2)"と O(1)"を結んだ四面体の積を共有す るようになり(Figure 4-6(c))、β 相から γ 相へと相変化する。従って、β 相の生成した組成 域内でも x>0.4 では、潜在的に γ 相へと相変化する準備が進んでいる。

Figure 4-6. Schematic drawing of the positions of Cu, Ga/Al, and O. (a) β -CuGaO₂, (b) x>0.4 in β -Cu(Ga_{1-x}Al_x)O₂, and (c) γ -Cu(Ga_{1-x}Al_x)O₂, corresponding to $x\geq0.8$ in Cu(Ga_{1-x}Al_x)O₂ alloys. Blue, green, and red circles indicate Cu, Ga/Al, and O atoms, respectively. Arrows in (a) indicate the direction of displacement for the respective atoms observed for x>0.4.

このような β-Cu(Ga_{1-x}Al_x)O₂の構造変化は、第 2 章で述べた β-NaFeO₂型構造の相のウルツ 鉱型構造からの歪の程度を定量的に表す四面体の傾きや正四面体からの歪の程度を表す Δz や ADI の変化にも明確に現れる[24]。Figure 4-7 は β-Cu(Ga_{1-x}Al_x)O₂の Δz と ADI の AI 濃度 依存性を示した図である。0<u><x</u>≤0.4 の組成域では Δz と ADI は β-CuGaO₂のそれらと同程度 であり、x>0.4 でそれらは急激に増大している。とりわけ Δz で表される陽イオンを中心と した四面体の傾きと O-Cu-O 結合角の四面体角からのずれは、x=0.6 で β-AgGaO₂や β-AgAlO₂ のそれらと同じ程度にまで大きくなっている。第 2 章で述べたように、β-NaFeO₂型構造の 酸化物半導体では陽イオンや酸素を中心とする四面体の正四面体からの歪は、それらの物 性に大きく影響を与えるので、β-Cu(Ga_{1-x}Al_x)O₂ においては x=0.4 を境にして大きな物性の 変化が生じているに違いない。このことについては 4-3-2 節で議論する。

Figure 4-7. (a) Cation tetrahedra tilting indexes, Δz , (b) angle distortion indexes, ADIs, for M–O–M bonds, and (c) ADI for O–M–O bonds as a function of alloying level, *x*. The definitions of these indexes are described in the text. The dotted lines indicate the values for β -AgGaO₂ and β -AgAlO₂. The solid lines are visual guides.

4-3-2 Cu(Ga_{1-x}Al_x)O₂混晶の光学的性質

Figure 4-8(a)に Cu(Ga_{1-x}Al_x)O₂ 混晶の粉末の写真を示す。x=0のβ-CuGaO₂ は既に報告され ているようにその約 1.5 eV のバンドギャップ[7]を反映して黒色を呈している。Al 濃度が増 加すると、β相の組成域でその色は x=0.6 で茶色を x=0.7 で赤色を呈するようになる。β相 からγ相へと相変化した後は、Cu(Ga_{1-x}Al_x)O₂ 混晶の色は黄色へと変わる。Figure 4-8(c)には Figure 4-8(b)に示した光吸収スペクトルから決定した光学バンドギャップを図示する。 0 $\leq x \leq 0.7$ のβ相の範囲では、光学バンドギャップはAl 濃度の増加とともに大きくなり x=0.7では 2.09 eV に達した。このようにβ-Cu(Ga_{1-x}Al_x)O₂ はバンドギャップが近赤外域から可視 光域をカバーする珍しい酸化物半導体であることが見出された。

半導体の混晶ではそのバンドギャップは、多くの場合加成則から下方に偏倚するバンド ギャップボーイングが生じる[25,26]。しかしながら、 β -Cu(Ga_{1-x}Al_x)O₂ 混晶系では既に報告 されている β -Ag(Ga_{1-x}Al_x)O₂ 混晶系[23]と同様にバンドギャップボーイングは生じず、組成 に対して直線的に変化した。一般的に、巨大バンドギャップボーイングは highly mismatched semiconductor alloy と呼ばれる、例えば Zn(S,Te)混晶中[27-29]の硫黄とテルルのように結合 強度、原子半径、電気陰性度などの化学的・構造的な不整合性が大きな元素を混晶化した半 導体で生じる。 β -Cu(Ga_{1-x}Al_x)O₂では、Ga と Al の電気陰性度はそれぞれ 1.756 と 1.613 で近 く[30]、4 配位のイオン半径は Ga³⁺が 0.47 Å、Al³⁺が 0.39 Å[22]であり、これも大きくは異な らない。このような Ga と Al の類似性のため、 β -Ag(Ga_{1-x}Al_x)O₂ では Zn(S,Te)とは異なりバ ンドギャップは組成に対して直線的に変化したものと推察される。 β -Cu(Ga_{1-x}Al_x)O₂ の 0<x<0.7 の範囲の直線を、x=1 に外挿して得られる、仮想的な β -CuAlO₂のバンドギャップは 2.37 eV と見積もられた。

Figure 4-8. (a) Photographs, (b) optical absorption spectra, and (c) variation of the optical band gap of $Cu(Ga_{1-x}Al_x)O_2$ alloy powders. The blue dots and line and red dots and line indicate the β - and γ -phases, respectively.

β-Cu(Ga_{1-x}Al_x)O₂のバンドギャップに関する最も注目される特性は、それがβ-CuGaO₂と同 じように直接遷移型であるかどうかである。三元系ウルツ鉱型構造のβ-NaFeO₂型酸化物半 導体のバンドギャップが直接遷移型か間接遷移型かは、その構造が二元系のウルツ鉱型構 造からどの程度歪んでいるかを表す Δz と ADI の大きさと関連付けられることは既に 2 章 で述べた。すなわち、Δz や ADI が小さく四面体の歪が小さいβ-LiGaO₂ やβ-CuGaO₂は直接 遷移型半導体となり、それらが大きいβ-AgGaO₂ やβ-AgAlO₂は間接遷移型半導体となる。 Figure 4-7 に示したように、β-Cu(Ga_{0.4}Al_{0.6})O₂の四面体の歪は、間接遷移型半導体であるこ とが既にわかっている β-AgGaO₂ と同じくらいに大きいことを考慮すると[23,31,32]、β-Cu(Ga_{0.4}Al_{0.6})O₂は間接遷移型半導体であると考えるのが妥当であろう。また次節で詳細の述 べるように、β-NaFeO₂型構造を仮定したβ-CuAlO₂のDFT 計算ではβ-CuAlO₂は間接遷移型 半導体となることも Al 濃度の高い β-Cu(Ga_{1-x}Al_x)O₂ は直接遷移型ではなく間接遷移型半導 体となることを示唆する。すなわち、ウルツ鉱型構造の派生構造である β-NaFeO2型構造の β-Cu(Ga1-xAlx)O2 では、Al 濃度の低い x<0.6 では直接遷移型半導体であり、Al 濃度の高い x>0.6 では間接遷移型半導体であるとみるのが妥当であろう。通常、混晶組成の変化に伴っ てバンドギャップが直接遷移型から間接遷移型へと変化する場合、In_{1-x}Ga_xP 混晶の x~0.7 や Ga1-xAlxAs 混晶の x~0.4 で観察されるような吸収スペクトルの形状変化やバンドギャップの 組成依存性に屈曲が現れる[33,34]。しかし、β-NaFeO₂型構造の β-Cu(Ga_{1-x}Al_x)O₂(0<x<0.7)の 光吸収スペクトル(Figure 4-8(b))やバンドギャップ(Figure 4-8(c))では、そのような変化 は現れていない。β-CuGaO₂とβ-CuAlO₂の価電子帯はいずれも非常に分散の小さい構造とな っており、次節で詳細を述べる DFT 計算によると β-CuAlO2 では直接および間接遷移ギャッ プの差は 0.03 eV であり(直接遷移ギャップは 1.77 eV、間接ギャップは 1.74 eV)非常に小 さい。したがって、光吸収スペクトルやバンドギャップの組成依存性に明確な変化が現れな くても不思議ではない。Al 濃度が高い組成域で生じる直接遷移から間接遷移へのバンドギ ャップの変化を、光吸収スペクトルやバンドギャップの組成依存性で見いだすことができ ないのは、このような理由のためと推察する。直接遷移型の組成域でバンド端の発光が観測 できれば、直接遷移型と間接遷移型を区別する有力な手法となるが、β-Cu(Ga_{1-x}Al_x)O₂ では いずれの組成でも蛍光発光が観測できていない。これは試料の光学的な品質が高くないこ とによるので、より高品質な試料の作製が明確な解を得るための鍵となろう。

4-3-3 CuAlO₂多形の電子構造

Table 4-6 に、Cu、Al、O の各原子を基準とし、LDA+U法により計算したデラフォサイト 型 α-CuAlO₂、β-NaFeO₂型 β-CuAlO₂ および γ-LiAlO₂型 γ-CuAlO₂の生成エンタルピーΔ*H*を 示す。CuAlO₂組成で最も安定な相はデラフォサイト型構造のα相であり、β-NaFeO₂型構造 のβ相は準安定相であることを示している。これはCuGaO₂、AgGaO₂およびAgAlO₂などの I-III-O₂組成と同様である[21]。β相はγ相よりは安定で、この2相の生成エンタルピーの差 は概ね 6 kJmol⁻¹である。β-CuAlO₂相は実験的には得られておらず、γ相が生成しているの で、この点においてはDFT 計算の結果とは一致していない。NaFeO₂、NaAlO₂および LiAlO₂ では、β相が高温下でγ相へと相転移することが知られているので、β相は低温安定相でγ 相は高温安定相である可能性がある[35-37]。DFT は絶対零度での計算であるため、低温で は γ相よりβ相が安定なのかもしれない。

Figure 4-9(a)、(b)および(c)に DFT 計算によって得られた α-CuAlO₂、β-CuAlO₂ と γ-CuAlO₂ のエネルギーバンド構造をそれぞれ示す。β-CuAlO₂ では、伝導帯の底部は Γ 点に位置する が、価電子帯の頂上は U 点に位置している(Figure 4-9(b))。すなわち、β-CuAlO₂相は直接 遷移型半導体ではなく、間接遷移型半導体である。同様な結果が Scanlon らの計算によって も得られている[38]。この結果は、Figure 4-7 に示した四面体の歪の大きさと直接遷移型お よび間接遷移型との関係から推察される $x\geq 0.6$ の β-Cu(Ga_{1-x}Al_x)O₂ は間接遷移型半導体であ るという結論と一致する。計算によって求められた U 点と Γ 点のエネルギー差から求めた 間接ギャップは 1.74 eV で、Γ 点における直接ギャップ (1.77 eV) より 0.03 eV 小さいのみ にとどまっている。このように直接ギャップと間接ギャップが非常に近くなっているのは、 価電子帯の分散が非常に小さいことに由来する。このように直接ギャップと間接ギャップ が近いために、β-Cu(Ga_{1-x}Al_x)O₂ では x \geq 0.6 で直接遷移型および間接遷移型へと変わるにも かかわらず、バンドギャップの組成依存性 (Figure 4-8(c)) において屈曲が観察されないこ とは既に述べたとおりである。Ga_{1-x}Al_xAs 系では直接遷移型から間接遷移型に変わる x~0.4 で、バンドギャップの組成依存性に明瞭な屈曲が観察される[34]。これは、この系では Γ 点 と X 点のエネルギー差が大きいこと (GaAs で約 0.5 eV、AlAs で約 0.8 eV[34]) に由来する。

β-CuAlO₂の伝導帯底部付近はおもに Cu 4s 状態からなり、Al 3s 状態の寄与は小さいこと を示している。β-CuGaO₂では伝導帯底部は Cu 4s 状態と Ga 4s 状態が良く混成しているこ とと対照的である[8]。価電子帯は 0~2.5 eV、3~6 eV、6~7.5 eV の大きく 3 つの部分に分かれ ている。最上部とその下の中間の状態は、Cu 3d と O 2p の反結合および結合状態にそれぞ れ対応する。最もエネルギーの小さいバンドは主に Al 4s と O 2p からなり、Al と O との sp 結合状態であることを示している。これらの価電子帯は β-CuGaO₂のそれと類似しており [8]、β-CuAlO₂の価電子帯は β-CuGaO₂の同様に Cu 3d 状態により特徴づけられるといえる。 従って、β-Cu(Ga_{1-x}Al_x)O₂ の価電子帯の電子状態は、混晶の組成に依らず、ほぼ同様である と推察される。実際に β-Cu(Ga_{1-x}Al_x)O₂ (0≤x≤0.7)の価電子帯の XPS スペクトルは、約 20 eV に位置する Ga 3d 状態の強度が Ga 量の減少に伴って小さくなることを除いて、組成が変わ ってもほとんど変わらない (Figure 4-10)。このように価電子帯の電子構造が組成によって ほとんど変わらないために、バンドギャップは組成に対して直線的に変化する (Figure 4-8(c)) ものと考察される。

Table 4-6. Formation enthalpies, ΔH , of CuAlO₂ polymorphs obtained from LDA+U calculations. U = 4 eV is appropriate for the α -form, in which Cu atoms have a two-fold and linear coordination, while U = 6 eV is appropriate for the β - and γ -forms, in which Cu atoms have a four-fold and tetrahedral coordination.⁸ For the calculation of the relative ΔH , ΔH for the α -form using U = 6 eV is employed because the ΔH values obtained from the calculations using different U values cannot be compared.

Polymorphs	U/eV	$\Delta H / \text{kJ mol}^{-1}$	Relative $\Delta H / \text{kJ mol}^{-1}$
	4	-202416.6494	
α-form	6	-202404.3746	0
β-form	6	-202379.7291	24.6455
γ-form	6	-202373.3483	31.0263

Figure 4-9. Electronic band structure of various CuAlO₂ phases calculated using the LDA+U functional. The band structure along the symmetry line and (right) corresponding total and partial density of states (left). Blue, red, and green lines in the partial density of states indicate the s, p, and d states, respectively. (a) α -phase (U = 6 eV), (b) β -phase (U = 6 eV) and (c) γ -phase (U = 6 eV).

Figure 4-10. Valence band XPS spectra of $Cu(Ga_{1-x}Al_x)O_2$ alloys.

4-4 結言

本研究ではウルツ鉱型の派生構造である β-NaFeO2型構造を有する三元系ウルツ鉱型酸化 物半導体 β-CuGaO2の Gaの一部を Al に置換した Cu(Ga1-xAlx)O2 混晶を作製し、ウルツ鉱型 の派生構造である β-Cu(Ga,Al)O2の生成範囲、Al 量の増加に伴い生じる結晶構造の変化を詳 細に検討した。β-Cu(Ga,Al)O2の構造の理想的ウルツ鉱型構造からのずれを指標として、生 成した β-Cu(Ga,Al)O2相のバンドギャップが直接遷移型か間接遷移型かを議論するとともに、 β-CuAlO2 および γ-CuAlO2 のエネルギーバンド構造を第一原理計算により求めて議論した。 本研究で得られた結論は以下のとおりである。

- 0≤x≤0.7 の Cu(Ga_{1-x}Al_x)O₂では β-NaFeO₂型構造の β-Cu(Ga_{1-x}Al_x)O₂相が生成し、β-CuGaO₂ の Ga の一部を Al で置換することで、エネルギーバンドギャップを 1.47 eV (x=0) か ら 2.09 eV (x=0.7) まで広げることに成功した。
- (2) 結晶構造解析から、β-Cu(Ga_{1-x}Al_x)O₂ 相は x<0.6 の組成域では陽イオンを中心とする四面体の正四面体からの歪および、その配列における理想的ウルツ鉱型構造からの歪はβ-CuGaO₂のそれと同程度に十分に小さく、二元系のウルツ鉱型化合物半導体でみられる直接遷移型のエネルギーバンドギャップを有することが示唆された。すなわち、1.5≤Eg≤1.9 eVの直接遷移型エネルギーバンドギャップを有するナローバンドギャップ酸化物半導体の開発に成功した。
- (3) 第一原理計算の結果、β-NaFeO2型構造を有する仮想的な β-CuAlO2 は間接遷移型バンド ギャップとなることが示され、結晶構造の特徴から β-Cu(Ga_{1-x}Al_x)O2 相は x≥0.6 の組成 域においては間接遷移型バンドギャップとなるという示唆が支持された。
- (4) x>0.7の組成域では γ-LiAlO₂型構造の γ-Cu(Ga_{1-x}Al_x)O₂が生成し、Al 含量の増加ととも にそのエネルギーバンドギャップは 2.45 eV (x=0.8) から 2.76 eV (x=1) まで大きくな った。
- (5) 第一原理計算から γ-CuAlO₂ は間接遷移型半導体であることを明らかにした。さらに、 x>0.7 の γ-LiAlO₂ 型構造の γ-Cu(Ga_{1-x}Al_x)O₂ 混晶も間接遷移型半導体であることが示唆 された。

以上のように、β-CuGaO₂の Ga の一部を Al に置換することで、直接遷移型の酸化物半導体がカバーするエネルギー域を近赤外域から赤色の領域まで広げることに成功した。現状の赤色 LED が有害な砒素を含む GaAs をベースとした半導体から作られていることを鑑みると、酸化物半導体を使った赤色 LED の可能性が拓けたことになり、今後の応用研究の展開に期待が持たれる。

参考文献

[1] C. G. Granqvist, Appl. Phys. A Solids Surfaces 57, 19 (1993)

- [2] S. C. Dixon, D. O. Scanlon, C. J. Carmalt and I. P. Parkin, J. Mater. Chem. C 4, 6946 (2016)
- [3] Ed., P. H. Holloway, G. E. McGuire, Handbook of Compound Semiconductors, Growth, Processing, Characterization and Devices, Noyes Publications, Park Ridge, New Jersey, USA, 1995
- [4] Ü Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dog`an, V. Avrutin, S-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)
- [5] S. Anandan, N. Ohashi and M. Miyauchi, Appl. Catal. B 100, 502 (2010)
- [6] I. Suzuki, H. Nagatani, A. Arima, M. Kita and T. Omata, Appl. Phys. Lett. 103, 222107 (2013)
- [7] T. Omata, H. Nagatani, I. Suzuki, M. Kita, H. Yanagi and N. Ohashi, J. Am. Chem. Soc. 136, 3378 (2014)
- [8] I. Suzuki, H. Nagatani, M. Kita, Y. Iguchi, C. Sato, H. Yanagi, N. Ohashi and T. Omata, J. Appl. Phys. 119, 095701 (2016)
- [9] I. Suzuki, H. Nagatani, M. Kita, Y. Iguchi, C. Sato, H. Yanagi, N. Ohashi and T. Omata, *Inorg. Chem.* 55, 7610 (2016)
- [10] I. Suzuki, H. Nagatani, M. Kita and T. Omata, Appl. Phys. Exp. 10, 095501 (2017)
- [11] I. Suzuki, M. Tanemura and T. Omata, J. Ceram. Soc. Jpn. 125, 872-875 (2017)
- [12] S. Ouyang and J. Ye, J. Am. Chem. Soc. 133, 7757 (2011)
- [13] F. Izumi and K. Momma, Solid State Phenom. 130, 15 (2007)
- [14] H. Nagatani, I. Suzuki, M. Kita, M. Tanaka, Y. Katsuya, O. Sakata, S. Miyoshi, S. Yamaguchi and T. Omata, *Inorg. Chem.* 54, 1698 (2015)
- [15] M. Marezio, Acta Cryst. 19, 396 (1965)
- [16] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, *Rev. Mod. Phys.* 64, 1045 (1992)
- [17] V. I. Anisimov, J. Zaanen, O. K. Andersen, Phys. Rev. B 44, 943 (1991)
- [18] Opium-pseudopotential Generation Project, see http://opium.sourceforge.net/.
- [19] A. M. Rappe, K. M. Rabe, E. Kaxiras, J. D. Joannopoulos, Phys. Rev. B 41, 1227 (1990)
- [20] H. Nagatani, I. Suzuki, M. Kita, M. Tanaka, Y. Katsuya, O. Sakata, S. Miyoshi, S. Yamaguchi and T. Omata, *Inorg. Chem.* 54, 1698 (2015)
- [21] B. U. Köhler, M. Jansen, Z. Anorg. Allg. Chem. 543, 73 (1986)
- [22] R. D. Shannon, Acta Crystallogr. A 32, 751 (1976)
- [23] S. Ouyang, J. Ye, J. Am. Chem. Soc. 133, 7757 (2011)
- [24] J. Li, A. W. Sleight, J. Solid State Chem. 177, 889 (2004)
- [25] M. Cardona, Phys. Rev. 129, 69 (1963)
- [26] J. A. Van Vechten, T. K. Bergstresser, Phys. Rev. B 1, 3351 (1970)
- [27] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, I. Miotkowski, A. K. Ramdas, C-H. Su, I. K. Sou, R. C. C. Perera, J. D. Denlinger, *Phys. Rev. B* 67, 035207 (2003)

- [28] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager III, E. E. Haller, I. Miotkowski, A. K. Ramdas, C-H. Su, *Phys. Rev. B* 68, 033206 (2003)
- [29] Z. Y. Xu, X. D. Yang, Z. Sun, B. Q. Sun, Y. Ji, G. H. Li, I. K. Sou, W. K. Ge, J. Lumi. 122–123, 402 (2007)
- [30] L. C. Allen, J. Am. Chem. Soc. 111, 9003 (1989).
- [31] L. Guo, S. Zhu, S. Zhang, W. Feng, Comp. Mater. Sci. 92, 92 (2014)
- [32] S. Ouyang, N. Kikugawa, D. Chen, Z. Zou, J. Ye, J. Phys. Chem. C 113, 1560 (2009)
- [33] R. J. Nelson, N. Holonyak Jr., Solid State Comm. 20, 549 (1976)
- [34] H. Temkin. V. G. Keramidas, J. Appl. Phys. 51, 3269 (1980)
- [35] J. Thery, A-M. Lejus, D. Briançon, R. Collongues, Bull. Soc. Chim. Fr. 973(1961)
- [36] G. Saeki, A. Watanabe, J. Ceram. Soc. Jpn. 101, 593 (1993)
- [37] I. E. Grey, R. J. Hill, A. W. Hewat, Z. Krist. 193, 51 (1990)
- [38] D. O. Scanlon, A. Walsh, Acta Cryst. B 71, 702 (2015)
- [39] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature 389, 939 (1997).

第5章 β-NaFeO2構造を有する準安定 I-III-O2半導体の不純物ドープによる伝

導性制御

5-1 緒言

前章までに β -CuGaO₂ は薄膜太陽電池の光吸収層材料に、また β -Cu(Ga,Al)O₂ は赤色 LED 材料として有望であることを述べてきた。 β -CuGaO₂ はドーピングしていない状態で p 型伝 導を呈することから[1]、n 型伝導性の ZnO との p-n ヘテロ接合を利用した太陽電池への応 用が期待される。また、第一原理計算によれば電子の有効質量 m_e/m_0 は 0.1~0.2 であり[2]、 多くの n 型伝導性酸化物と同程度であるとともに、Robartson らにより報告されているバン ドアラインメント[3]を参考にすると、 β -CuGaO₂ は p 型だけでなく n 型伝導体としてのポテ ンシャルを有していることから、 β -CuGaO₂ の p-n ホモ接合太陽電池も視野に入ってくる。 第4章で述べたように β -Cu(Ga,Al)O₂ のエネルギーバンド構造は β -CuGaO₂ の特徴を引き継 いでいることから、 β -Cu(Ga,Al)O₂ もまた p-n ホモ接合が期待できる。しかしながら、不純 物ドーピングしていない β -CuGaO₂ の電気伝導度は室温で 1×10⁻⁶Scm⁻¹であり、p 型伝導性を 呈するといっても伝導度は著しく小さいので[1]、そのままでは太陽電池や LED 素子に適用 することはできない。現在報告のない n 型伝導性はもちろんのこと、p 型伝導体としても広 い範囲での伝導性の制御技術を確立しなければ、各種素子への実用化への道は開けない。

通常、半導体の伝導性制御は不純物ドーピングにより行われる。例えば IV 半導体の Si で は、Si より価電子の一つ多いリン (P) など V 族元素を不純物としてドーピングすることで n 伝導性を、Si より価電子の一つ少ないホウ素 (B) など III 族元素をドーピングすること で p 型伝導性を発現し、不純物の濃度によりキャリア密度を制御することで伝導度を制御 する。酸化物半導体でもこの方法が通常採用され、III 族元素のインジウムの酸化物 (In₂O₃) では、IV 族元素の錫 (Sn)の酸化物 (SnO₂)をドーピングすることで n 型伝導性を制御し、 II 族元素の酸化物 ZnO では III 族元素のガリウムもしくはアルミニウムの酸化物 (Ga₂O₃ も しくは Al₂O₃)をドーピングすることで n 型伝導性を制御している[4,5]。酸化物の場合これ らの不純物ドーピングは、数百℃以上の高温における固相反応で不純物元素を固溶するこ とで行われる。例えば、ZnO では Al₂O₃をドーピングすることによる以下の反応により Zn サイトに Al が固溶しキャリア電子を生成する。

 $(1-x)ZnO + xAlO_{3/2} \rightarrow (Zn_{1-x}Al_x)O + 1/4O_2(gas)\uparrow \qquad (@T \ge 800^{\circ}C)$ (5.1)

 $xAlO_{3/2} \rightarrow Al_{Zn} + O_O^{\times} + e' + 1/4O_2(gas)$

(5.2)

一方、 β -CuGaO₂ や β -AgGaO₂などの β -NaFeO₂型構造を有するナローバンドギャップ酸化物でも同様に、III 族元素である Ga のサイトに Si、Ge、Ti などの IV 族元素を固溶して n 型 伝導性制御を、また、Be、Mg、Zn などの II 族元素を固溶して p 型伝導性制御を、あるい は、Cu や Ag のサイトに II 族の Be、Mg、Zn を固溶して n 型伝導性制御をしたいところで はあるが、 β -CuGaO₂や β -AgGaO₂が準安定相で、 β -NaGaO₂のイオン交換によってのみ生成 する相であるとともに、第3章で述べたように数百°C以上では分解してしまう相であるた め、高温での固相反応で(5.1)、(5.2)で表されるような不純物ドーピングをすることができな い。従って、Gaサイトに不純物ドーピングした β -Cu(Ga,M)O₂や β -Ag(Ga,M)O₂を得るため には、Gaサイトに不純物ドーピングした β -Na(Ga,M)O₂をあらかじめ用意し、そのイオン交 換により β -Cu(Ga,M)O₂や β -Ag(Ga,M)O₂を作製する以外に方法はない。本研究では、Gaサ イトに Ti を固溶した β -Na(Ga,Ti)O₂前駆体のイオン交換により、n型ドーピングした β -Ag(Ga,Ti)O₂を作製し、 β -CuGaO₂や β -AgGaO₂などのイオン交換により作製される準安定な 酸化物半導体における伝導性の制御技術を研究した。

5-2 実験方法

5-2-1 実験に使用した試薬

本研究においては、以下の市販の試薬を使用した。

Na₂CO₃(99.8%、和光純薬工業)、Ga₂O₃(99.99%、高純度化学)、TiO₂(99.99%、レアメタ リック)、AgNO₃(99.9%、和光純薬工業)、KNO₃(99.9%、和光純薬工業)。

5-2-2 β-Ag(Ga_{1-x}Ti_x)O₂の合成

5-2-2-1 前駆体 β-Na(Ga_{1-x}Ti_x)O₂の準備

前駆体 β-Na(Ga_{1-x}Ti_x)O₂ は以下の手順で固相反応法により準備した。高温での反応中に Na 成分は Na₂O として揮発するので、Ga₂O₃ と TiO₂ および Na₂CO₃ とを、わずかに Na₂CO₃ が 過剰になるモル比 ($X_{Na}:X_{Ga}:X_{Ti}=1.06:1-x:x$) で計 10 gとなるよう秤量した。秤量した粉末を 直径 5 mm の安定化ジルコニア製ボールとともに 80 cm³のナイロン製ポッドに装填し、15mL のエタノールを混合媒体として、回転数 250 rpm で 1 時間遊星ボールミルを用いて混合し た。混合後のスラリーを、テフロン製シートを敷いた金属製バットに排出し、150 °C のホッ トプレート上で乾燥した。得られた粉末を内径 17.2 mm のダイスに充填し、圧力 100 MPa で 1 分間一軸プレス成形した。成形体の側面に付着したダイスからの汚れをエメリー紙 (#1000) で取り除いたのち、白金箔を敷いたアルミナ製ボートに載せ、電気炉にて 900 °C で 20 時間保持し、大気中で焼成した。TiO₂ を含まない純粋な β-NaGaO₂ では、この焼成後 の時点で β-NaFeO₂型構造の単相が得られるが、Ti ドーピングした組成では、煆焼後の時点 では KAIO₂型構造の文相となっている。従って、Ti ドーピングした試料は、焼成後再び粉 砕、成形し、1200°Cで 20 時間アニールすることで β-NaFeO₂型構造の単相とした。これらの 前駆体は吸湿性が著しいので、焼成後もしくはアニール後は 200 °C まで電気炉中で冷却し た後、直ちに真空デシケータに移し真空中で冷却し、イオン交換に供した。

5-2-2-2 β-Na(Ga_{1-x}Ti_x)O₂のイオン交換

Na⁺イオンから Ag⁺ イオンへの交換は以下の手順で行った。AgNO₃ と KNO₃ をモル比で 1.2:1 となるよう秤量し、乳鉢を使用して粉砕混合した。この混合粉末をすでに準備した β-Na(Ga_{1-x}Ti_x)O₂前駆体とモル比で β-Na(Ga_{1-x}Ti_x)O₂:AgNO₃:KNO₃ = 1:1.2:1 となるようガラス製 のバイアルに装填し、振とう混合器を使用して混合した。混合後の粉末をアルミナ製るつぼ (ニッカトー製、SSA-S B2 型) に移し、小型の電気炉を使用して 200 °Cで 12 時間保持して イオン交換後、室温まで炉冷した。イオン交換後の混合粉末中の残留 AgNO₃ と KNO₃、お よび副生成物の NaNO₃を超純水で 3 回洗浄して除去した後、再度エタノールで洗浄してか ら、真空デシケータに移して室温、真空中で乾燥した。β-AgGaO₂ は水中で放置すると安定 相のデラフォサイト型 α-AgGaO₂ に相転移することが知られており、β-Ag(Ga_{1-x}Ti_x)O₂ につい ても同様な現象が予測されるので、洗浄操作は 15 分以内で完了した。

5-2-2-3 β-Ag(Ga_{1-x}Ti_x)O₂成形体の作製

β-NeFeO₂型構造の β-AgGaO₂は 600 °C以上で金属 Ag と Ga₂O₃に分解する。このため電気 伝導度の測定に供する成形体を高温での焼結では作製できないので、低温で焼結体を作製 できるスパークプラズマ焼結 (SPS) 法により成形体を作製した。しかし、β-AgGaO₂は 40 MPa の圧力の印加により安定相であるデラフォサイト型 α-AgGaOa に相変化するので、圧 力はそれほど大きくできない。β-Ag(Ga_{1-x}Ti_x)O₂ 粉末をグラファイト製のダイスに装填し、 10 MPa の一軸加圧しながら 550 °C で 15 分間 SPS 処理を行った。

5-2-3 作製した試料のキャラクタリゼーション

5-2-3-1 相の同定と組成の決定

作製した各前駆体およびイオン交換後の試料を X 線回折 (XRD) (リガク; RINT2550HL) により生成相を同定した。測定条件は、X 線源 Cu Kα、加速電圧 40 kV、電流 375 mA、走査 範囲:10.000°~ 90.000°、ステップ幅:0.020°、計数時間:0.2 sec、発散スリット:1°、発 散縦制限スリット:10 mm、散乱スリット:1°、受光スリット:0.30 mm とした。格子定数 はプログラム Cellcalc を使用し決定した。さらに誘導結合プラズマ発光分析 (ICP-AES) (Parkin-Elmer; Optima3300XL) により各試料の化学組成を決定した。

5-2-3-2 電気伝導度

SPS 法により作製した β-Ag(Ga_{1-x}Ti_x)O₂の成形体を、エメリー紙を用いて一辺 5~10mmの 正方形で厚さ約 0.5mmの板状に加工した。これを電気伝導度測定用の試料とし、van der Pauw 法により室温から 100K の温度範囲で直流電気伝導度を測定した。

5-2-3-3 近赤外~紫外拡散反射スペクトル

拡散反射スペクトルの測定には U-4000 自動分光光度計(日立)を使用した。白色標準に は MgO を使用した。測定波長範囲 240~2600 nm、PbS 感度 2、サンプリング間隔 1.00 nm、 検出器切替波長 850 nm、光源切替波長 340 nm とし、スキャンスピードは 240~850 nm では 300 nm/min、850~2600 nm では 750 nm/min、スリット幅は 240~850 nm では 5.00 nm、850 ~2600 nm では 5.00~36.00 nm の自動制御とした。

5-3 結果と考察

5-3-1 β-Na(Ga_{1-x}Ti_x)O₂前駆体とイオン交換後の生成相

作製した Na(Ga_{1-x}Ti_x)O₂の XRD パターンと β -NaGaO₂[6]と γ -NaGaO₂[7]の結晶構造からシ ミュレーションした XRD パターンを Figure 5-1 に示す。x<0.05の Na(Ga_{1-x}Ti_x)O₂の回折線 は、すべてウルツ鉱型構造の派生構造である β -NaFeO₂構造の相のそれと一致しているので、 この組成範囲では β -NaFeO₂型構造の単相が得られた。x=0.07では、図中に*で示した γ -NaGaO₂相の回折線と 20<20°に不明相の回折線が、弱いながらもはっきりと現れた。これら の結果は、0≤x≤0.05では β -NaGaO₂の Ga 位置を Ti で置換した β -Na(Ga_{1-x}Ti_x)O₂が得られる ことを示している。そこで、 β -NaFeO₂型構造の単相が得られた x=0,0.01,0.03 および 0.05 の β -Na(Ga_{1-x}Ti_x)O₂を Ag⁺イオンへのイオン交換に供した。

Table 5-1 にイオン交換後試料の組成を示す。Ga および Ti の合計量に対して Ag は僅かに 不足した組成となっていたが、Ti 濃度は前駆体の調合組成と概ね一致しており、イオン交 換の前後で Ti 濃度に変化は生じていない。Figure 5-2 にイオン交換後の Ag(Ga_{1-x}Ti_x)O₂ の XRD パターンを β-AgGaO₂ の計算パターンとともに示す。すべての回折線はウルツ鉱型の 派生構造である β-NaFeO₂ 型構造の β-AgGaO₂ 相のそれと一致し、不純物に対応するそのほ かの回折線は見られなかった。従って、β-Na(Ga_{1-x}Ti_x)O₂ のイオン交換により、Ti ドープし た β-AgGaO₂ の作製に成功した。

Figure 5-3 は、β-Ag(Ga_{1-x}Ti_x)O₂の格子定数 (*a*, *b*, *c*)、単位格子体積 (*V*_{cell})の組成依存性 を示す。格子定数 *a* と *b* は Ti 濃度の増加に伴い増加し、c は Ti 濃度の増加とともに減少し た。4 配位の Ga³⁺と Ti⁴⁺イオンのイオン半径は、それぞれ 0.47 および 0.42 Å であるので[8]、 Ga サイトの Ti による置換が進むと *V*_{cell} は減少するものと期待される。例えば、β-Ag(Ga_{1-x}Al_x)O₂では、4 配位 Al³⁺イオンのイオン半径が 0.39 Å であり Ga³⁺イオンのそれより 小さいため、Ga サイトの Al による置換が進むと *V*_{cell} は減少すると報告されている[9]。し かしながら、Figure 5-3 に示されるように、β-Ag(Ga_{1-x}Ti_x)O₂ においては Ti 濃度の増加に伴 い僅かではあるものの *V*_{cell} は増加した(*x*=0.05 の *V*_{cell} は *x*=0 のそれに比べ 0.12% 大きい)。

Figure 5-1. XRD profiles of the Na(Ga_{1-x}Ti_x)O₂ precursor and the calculated profiles of β -NaGaO₂ (top panel) and γ -NaGaO₂ (bottom panel). The purple lines for *x*=0.07 show the 7-fold-enlarged profile. Asterisks and black dots in the profile indicate the diffraction peaks arising from γ -NaGaO₂ and an unknown phase, respectively.

X	Ag	Ga	Ti
0	0.898	1	
0.01	0.938	0.990	0.010
0.03	1.003	0.966	0.034
0.05	0.987	0.945	0.055

Table 5-1. Compositions of the wurtzite β -Ag(Ga_{1-x}Ti_x)O₂ samples, determined by ICP-AES.

Figure 5-2. XRD profiles of the samples after ion-exchange, $Ag(Ga_{1-x}Ti_x)O_2$, and the calculated profile of β -AgGaO₂ (top panel). All these diffraction peaks match wurtzite β -NaFeO₂.

Figure 5-3. Orthorhombic lattice parameters (a) a, (b) b, (c) c, and the (d) unit cell volume, V_{cell} , for various samples of wurtzite β -Ag(Ga_{1-x}Ti_x)O₂.

もちろん 3 つの価電子を有する Ga を 4 つの価電子を有する Ti で置換しているので、状況 はいずれも 3 つの価電子を有する Ga と Al の置換の場合ほどは単純でない。Al をドープし た ZnO の場合(4 配位 Al³⁺のイオン半径は 4 配位 Zn²⁺のそれ(0.60Å)より小さい)では、 価電子数が Al の方が一つ多いにもかかわらず、イオン半径の違いからの期待通り Al 濃度 の増大とともに V_{cell} は減少する[10]。しかしながら、β-Ag(Ga_{1-x}Ti_x)O₂ では、 V_{cell} は単純には 変化していないので、Ti ドープに伴って例えば格子間酸素や Ga 空孔など、複数種類の欠陥 が生じている可能性がある。

5-3-2 β-Ag(Ga_{1-x}Ti_x)O₂の電気伝導度と光吸収スペクトル

Figure 5-4 に β-Ag(Ga_{1-x}Ti_x)O₂ 成形体の電気伝導度のアレニウスプロットを示す。積極的 にドーピングしていない β-AgGaO₂の伝導度は熱活性化型で、室温での 4×10⁻⁵ Scm⁻¹ から温 度の低下に伴い急激に低下し、220 K では 2×10⁻⁶ Scm⁻¹ となった。さらに温度が下がると伝 導度は緩やかに減少し、110 K では約 1×10⁻⁷ Scm⁻¹ となった。Table 5-2 に伝導の活性化エネ ルギー E_a を示す。このような電気伝導度の温度依存性から、積極的にドーピングしていない β-AgGaO₂には E_a =0.048 eV となる浅いドナー準位と、 E_a =0.208 eV となる深いドナー準位の 2 種類のドナー準位が存在するものと推察される。本研究ではそれぞれのドナー準位がどの ような欠陥に由来するかを同定するには至っていないが、100~220 K では浅いドナー準位 からキャリア電子は供給され、220 K 付近で浅いドナー準位の電子が出払い、それ以上の高 温では深いドナー準位から伝導電子が供給されているに違いない。

Figure 5-4. Arrhenius plot of the electrical conductivity of the β -Ag(Ga_{1-x}Ti_x)O₂ compacts. For x=0.05, the figure shows the electrical conductivity for compacts with low and high density. The density of the compacts relative to the theoretical density are summarized in Table 5-3.

x	$E_{\rm a}({\rm eV})$
0	0.208 (<i>T</i> ≥250 K)
0	0.048 (<i>T</i> ≤200 K)
0.01	0.004
0.03	0.003
0.05	0.016

Table 5-2. Activation energy, E_a , of the electrical conductivity of the β -Ag(Ga_{1-x}Ti_x)O₂ compacts.

Table 5-3. Relative densities of the β -Ag(Ga_{1-x}Ti_x)O₂ compacts used in measurements of electrical conductivity.

x	Relative density (%)
0	46
0.01	53
0.03	51
0.05	47
0.05	58

Ti をドープした β-AgGaO₂の室温での電気伝導度は、積極的にドーピングしていない β-AgGaO₂のそれよりも1から3桁程度大きかった。このことは、Ti ドープによって β-AgGaO₂ 中に伝導電子が注入できていることを示している。また、Ti をドープすると β-AgGaO₂の活性化エネルギーが減少することから、Ti ドープによってフェルミ準位は伝導帯のごく近傍にまで達しているものと推察される。室温での電気伝導度は $\sigma_{(x=0.05)} < \sigma_{(x=0.01)} < \sigma_{(x=0.03)}$ の順となっており、これは Ti 濃度の順とは異なる。Table 5-3 に伝導度を測定した成形体の相対密度を示す。x=0.05 における電気伝導度は、相対密度が 47%の試料より相対密度が 58%の試料の方が1桁以上大きい。すなわち、電気伝導度は相対密度に大きく依存するため、今回のような密度が非常に小さい成形体を用いて測定された電気伝導度は、Ti をドープした β-AgGaO₂の真の値ではなく、Table 5-3 に示した各成形体の相対密度に対応する見かけ上の電気伝導度であると理解すべきである。従って、伝導度の大小だけから Ti ドープの効果を議論することはできない。

Figure 5-5(a)に β-Ag(Ga1-xTix)O2 粉末の拡散反射スペクトルを示す。積極的にドーピングし

ていない β-AgGaO₂ (x=0) では λ <600 nm の範囲の基礎吸収のみが観察され、 λ >600 nm の波 長域では試料は概ね透明であった。β-AgGaO₂ のバンドギャップが波長に換算すると 560-620 nm に相当する 2.0-2.2 eV であることを考慮すると、この観察結果は非常に理にか なっている。一方、Ti をドープした β-AgGaO₂ では λ <600 nm の基礎吸収に加えて、 λ >650 nm の近赤外域に幅の広い吸収帯が観察された。このような近赤外域での幅の広い吸収帯は、 Al ドープした ZnO[11,12]、Sn ドープした In₂O₃[13]、F ドープした SnO₂[14]など、キャリア 電子を注入した酸化物半導体で通常観察され、それは伝導電子のプラズマ振動に帰属され る。Ti をドープした β-AgGaO₂ は積極的にドーピングしていない β-AgGaO₂ よりも 1 から 3 桁高い電気伝導度であるので、伝導電子による吸収が現れるのは合理的である。キャリア密 度が増加するとバンド間遷移による基礎吸収には Burstein-Moss シフトと呼ばれる短波長側 (高エネルギー側) へのシフトが生じる[15]。Figure 5-5(b)では β-Ag(Ga_{1-x}Ti_x)O₂ 粉末の基礎 吸収は 2.21–2.27 eV に観察され、Ti 濃度に対応した系統的なシフトは見られない。これは 拡散反射スペクトルによるバンドギャップ測定精度の限界を超えているためであろう。

Figure 5-5(c)は伝導電子の吸収が始まる波長域の拡大図である。図中に三角形で示した伝 導電子の吸収が始まる波長は、x=0.01 で 708 nm 、x=0.03 で 650 nm、x=0.05 で 642 nm であ り、Ti 濃度の増加とともに短波長側(高エネルギー側)へと系統的にシフトしている。プラ

Figure 5-5. Optical absorption spectra of β -Ag(Ga_{1-x}Ti_x)O₂ (a) at wavelengths of 400–2600 nm, (b) near the fundamental absorption edge, and (c) near the onset of free-carrier absorption.

ズマ振動の周波数 ω_P は、キャリア密度、電子の電荷、電子の有効質量および真空の誘電率 をそれぞれ n、e、 m^* および ε_0 とすると、次の式で表される。

$$\omega_P = \left(\frac{ne^2}{m^*\varepsilon_0}\right)^{1/2} \tag{5-3}$$

β-Ag(Ga_{1-x}Ti_x)O₂の m^* および ε₀ は 0≤x≤0.05 の範囲で Ti 濃度には依らないとすると、 ω_P はキ ャリア密度の 1/2 乗に比例する。すなわち、伝導電子の吸収が始まるエネルギー ω_P は、キャ リア密度が増大すると大きくなる。このような変化は Figure 5-5(c)で観察される変化と定性 的に一致している。β-AgGaO₂の Γ点における電子の有効質量 m^*/m_0 (m_0 は静止電子の質量) は、0.14-0.33 であることが第一原理計算から求められている[16]。この値は一般的な n 型酸 化物半導体の値と同程度である (ZnO では m^*/m_0 =0.28-0.32[17,18]、SnO₂ では m^*/m_0 =0.29[19]、 In₂O₃ では m^*/m_0 =0.2-0.3[20,21]などの値が報告されている)。β-AgGaO₂ と ZnO、SnO₂、In₂O₃ などの酸化物半導体との ϵ_0 の違いはそれほど大きくなく、電子の有効質量が同じくらいで あることから、ZnO、SnO₂、In₂O₃ などの酸化物半導体の伝導電子の吸収が始まるエネルギ ーとキャリア密度の関係から[22-25]、β-Ag(Ga_{1-x}Ti_x)O₂ のおおよそのキャリア密度は 10¹⁸-10¹⁹ cm⁻³であると推定される。

5-3-3 β-AgGaO₂中でのキャリア電子の生成機構

本研究での最も大きな関心は、Ga サイトに Ti を固溶した前駆体 β -Na(Ga,Ti)O₂のイオン 交換により、 β -AgGaO₂にキャリア電子を注入できるか否かにあった。Figure 5-4 の電気伝導 度のアレニウスプロットで示された通り β -Na(Ga_{1-x}Ti_x)O₂のイオン交換により作製した β -Ag(Ga_{1-x}Ti_x)O₂にはキャリア電子が注入されていた。したがって、前駆体への不純物ドープ は、前駆体からのイオン交換によってのみ作製可能な β -AgGaO₂や β -CuGaO₂などの準安定 多元系ウルツ鉱型酸化物半導体への有効なキャリア注入法であることが示された。

前駆体 β-Na(Ga_{1-x}Ti_x)O₂の電気伝導度は吸湿性が高いために測定していないが、β-NaGaO₂ のバンドギャップが 5 eV 以上と大きいこと、β-Na(Ga_{1-x}Ti_x)O₂には伝導電子の吸収による着 色などが見られないことから、これら前駆体は絶縁体であると推察される。これは、β-NaGaO₂中の Ga サイトの Ti のドナー準位 (Kröger-Vink の記号では*Ti'_{Ga}*で表される)が、伝 導帯の下端から深い位置にあるためイオン化しないことによる (Figure 5-6)。イオン交換に よって、バンドギャップは β-NaGaO₂の 5 eV 以上から、β-AgGaO₂の約 2.2 eV へと小さくな る。バンドギャップの減少は、主に Na 3s から構成される β-NaGaO₂の伝導帯から Ag 5s か ら構成される β-AgGaO₂の伝導帯へと変わる際に伝導帯が大きく下がること、および主に O 2p から構成される β-NaGaO₂の価電子帯から Ag 4d から構成される β-AgGaO₂の価電子帯へ と変わる際に価電子帯が上がることによる。この伝導帯の降下は、*Ti'_{Ga}のエネルギーを*伝導 帯の下端に近づけ、熱エネルギーによるイオン化が十分に可能となる (Figure 5-6)。その結 果イオン化した*Ti'_{Ga}*からキャリア電子が注入され、β-AgGaO₂の伝導度が増大したに違いな

Figure 5-6. Schematic of the electronic structures of Ti-doped β -NaGaO₂ and β -AgGaO₂.

6,0

不純物である Ti の密度は格子体積を基にすると x=0.01 では 7.3×10^{21} cm⁻³、 x=0.03 では 2.2×10^{22} cm⁻³、 x=0.05 では 3.7×10^{22} cm⁻³ と計算される。本研究では、成形体の相対密度が小 さかったため Hall 測定によるキャリア密度決定ができなかったので、キャリア生成効率の 詳細な値は不明であるが、伝導電子の吸収から見積もられたキャリア電子密度は $10^{18}-10^{19}$ cm⁻³ であるから、不純物 Ti のキャリア生成効率は高くても数%程度に留まっていることに なる。Ti ドーピングにより β -AgGaO₂中に持ち込まれた電子の大部分はキャリアとなってい ないことから、本研究で作製した β -Ag(Ga_{1-x}Ti_x)O₂では、生成した電子は Ga 空孔や Ag 空孔 などの欠陥により補償されているものと推察される。

5-4 結言

本研究では Ti ドープした β -NaGaO₂ 前駆体中の Na⁺イオンを Ag⁺イオンへとイオン交換す る方法で Ti ドープした β -AgGaO₂を作製し、 β -AgGaO₂へのキャリア注入が可能であるかを 検討するとともに、不純物ドープした前駆体のイオン交換により、 β -AgGaO₂や β -CuGaO₂な どのイオン交換によってのみ作製可能な準安定多元系ウルツ鉱型酸化物半導体にキャリア を注入する技術を開発することを目的とした。その結果、得られた β -Ag(Ga_{1-x}Ti_x)O₂の電気 伝導度は β -AgGaO₂より 1~3 桁大きくなり、10¹⁸–10¹⁹ cm⁻³のキャリア電子が注入されてい ると推察される。これにより、不純物ドープした前駆体のイオン交換により作製される多元 系ウルツ鉱型酸化物半導体にキャリアを注入できることが示され、 β -AgGaO₂や β -CuGaO₂ などの伝導性制御の道を拓くことに成功した。本研究では β -CuGaO₂の伝導性制御について は着手していないが、Ti ドープした β -AgGaO₂と同様な原理でそれは可能であると推察され る。このキャリア注入技術を用いて、 β -CuGaO₂や β -AgGaO₂をベースとした材料の素子化 の研究が進展するものと期待される。

参考文献

- T. Omata, H. Nagatani, I. Suzuki, M. Kita, H. Yanagi and N. Ohashi, J. Am. Chem. Soc. 136, 3378–81 (2014)
- [2] I. Suzuki, H. Nagatani, M. Kita, Y. Iguchi, C. Sato, H. Yanagi, N. Ohashi and T. Omata, J. Appl. Phys. 119 095701 (2016)
- [3] J. Robertson and S. J. Clark, Phys. Rev. B 83, 075205 (2011)
- [4] C. G. Granqvist, Appl. Phys. A Solids Surfaces 57, 19 (1993)
- [5] S. C. Dixon, D. O. Scanlon, C. J. Carmalt and I. P. Parkin, J. Mater. Chem. C 4, 6946 (2016).
- [6] H. P. Müller and R. Hoppe, Zeitschrift Für Anorg. Allg. Chemie 611, 73 (1992)
- [7] M. E. Villafuerte-Castrejón, L. Bucio, A. Sánchez-Arjona, J. Duque and R. Pomés, Acta Crystallogr. Sect. C Cryst. Struct. Commun. 58, i69 (2002)
- [8] R. D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)
- [9] S Ouyang, and J. Ye, J. Am. Chem. Soc. 133, 7757 (2011)
- [10] D. Nie, T. Xue, Y. Zhang and X. Li, Sci. China Ser. B Chem. 51, 823 (2008)
- [11] H. Serier, M. Gaudon and M. Ménétrier, Solid State Sci. 11, 1192 (2009)
- [12] C. Liu, Z. Xu, Y. Zhang, J. Fu, S. Zang and Y. Zuo, Mater. Lett. 139, 279 (2015)
- [13] N. Naghavi, C. Marcel, L. Dupont, A. Rougier, J. B. Leriche and C. Guery, J. Mater. Chem. 10, 2315 (2000)
- [14] B-H. Liao, C-C. Kuo, P-J. Chen and C-C. Lee, Appl. Opt. 50, C106 (2011)
- [15] J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He and B. H. Zhao, J. Appl. Phys. 101, 083705 (2007)
- [16] I. Suzuki, Ph. D. thesis, Osaka University (2016), Retrieved from http://dx.doi.org/10.18910/55938
- [17] K. Hümmer, Phys. Status Solidi 56, 249 (1973)
- [18] Y. Wang, J. Zhu and W. Tang, Appl. Phys. Lett. 104, 1 (2014)
- [19] Z. M. Jarzebski and J. P. Marton, J. Electrochem. Soc. 123, 299C (1976)
- [20] M. Feneberg, J. Nixdorf, C. Lidig, R. Goldhahn, Z. Galazka, O. Bierwagen and J. S. Speck, *Phys. Rev. B* 94, 239905 (2016)
- [21] H. Kostlin, R. Jost and W. Lems, 87, 87 (1975)
- [22] K. Utsumi and I. Iigusa, TOSHO Reseach Technol. Rev. 47, 11 (2003)
- [23] T. Omata, N. Ueda, N. Hikuma, K. Ueda, H. Mizoguchi, T. Hashimoto and H. Kawazoe, *Appl. Phys. Lett.* 62, 499 (1992)
- [24] A. Segura, J. A. Sans, D. Errandonea, D. Martinez-García and V. Fages, Appl. Phys. Lett. 88, 011910 (2006)
- [25] M. V. Castro and C. J. Tavares, Thin Solid Films 586, 13 (2015)

第6章 総括

本研究では、ウルツ鉱型構造の超構造である β-NaFeO₂型構造を有するナローバンドギャ ップ酸化物半導体である β-CuGaO₂、β-AgGaO₂に対する理解を深めるために、その基礎的知 見を与える結晶構造の詳細な解析と熱的安定性を研究するとともに、応用上必須の技術で あるバンドギャップエンジニアリングと不純物ドーピングによる伝導性制御技術について 研究した。本章では、これまでの研究で得られた成果や知見を述べ、β-NaFeO₂型構造を有 する準安定なナローギャップ酸化物半導体を素子へと応用する上で今後開発すべき技術に ついて議論し、本論文を総括する。

第2章では、 β -CuGaO₂ と β -AgGaO₂の結晶構造を、放射光を光源とした粉末 X 線回折に より解析した。 β -AgGaO₂では Ag⁺イオンと Ga³⁺イオンのサイズが大きく異なるため理想的 なウルツ鉱型構造から大きく歪んだ構造であるのに対し、 β -CuGaO₂ は理想的なウルツ鉱型 構造に非常に近い構造であることを明らかにした。さらに β -AgAlO₂ や β -LiGaO₂ との比較か ら、 β -NaFeO₂ 型酸化物半導体のバンドギャップは理想的なウルツ鉱型構造からのずれが小 さいと直接遷移型に、大きいと間接遷移型になるというエネルギーバンドの決定機構を提 案した。

第3章では、 β -CuGaO₂ と β -AgGaO₂の熱安定性を熱分析と高温 X 線回折から研究した。 β -CuGaO₂ は大気中では 300°C以上で Cu⁺イオンが酸化し CuO と CuGa₂O₄を生成するのに対 し不活性雰囲気では 460 °C以上でこの組成の安定相であるデラフォサイト型 α -CuGaO₂ に相 変態することを見出した。一方、 β -AgGaO₂ は酸素雰囲気では 700 °C以上で、不活性雰囲気 では 600 °C以上でいずれも金属 Ag と Ga₂O₃へと分解することを見出し、いずれも室温付近 で動作する素子であれば十分使用に耐える熱安定性を有することを明らかにした。

第4章では、Ga サイトへの Al の固溶による、 β -CuGaO₂のバンドギャップエンジニアリ ングを研究した。Cu(Ga_{1-x}Al_x)O₂ 表記で 0≤x≤0.7 では β -NaFeO₂型構造の β -Cu(Ga_{1-x}Al_x)O₂ 相 が生成し、エネルギーバンドギャップを 1.47 eV から 2.09 eV まで広げることに成功した。 β -Cu(Ga_{1-x}Al_x)O₂ 相の結晶構造解析から x<0.6 の組成域では CuO₄ と(Ga,Al)O₄ 四面体とその 配列における理想的ウルツ鉱型構造からの歪は β -CuGaO₂ のそれと同程度に十分に小さく、 直接遷移型のエネルギーバンドギャップを有することが示唆された。すなわち、1.5≤Eg≤1.9 eV の直接遷移型エネルギーバンドギャップを有するナローバンドギャップ酸化物半導体の 開発に成功した。第一原理計算の結果、 β -NaFeO₂型構造を有する仮想的な β -CuAlO₂ は間接 遷移型バンドギャップとなることを示し、結晶構造の特徴から x≥0.6 の組成域においては間 接遷移型バンドギャップとなるという示唆が支持された。x>0.7 の組成域では γ -LiAlO₂型構 造の γ -Cu(Ga_{1-x}Al_x)O₂が生成し、そのエネルギーバンドギャップは 2.45 eV (x=0.8) から 2.80 eV (x=1) へと Al 含量の増加とともに大きくなった。第一原理計算から γ -CuAlO₂ は間接遷 移型半導体であることを明らかにし、x>0.7 の γ -LiAlO₂型構造の γ -Cu(Ga_{1-x}Al_x)O₂ 混晶も間 接遷移型半導体であることが示唆された。 第5章では、 β -CuGaO₂ や β -AgGaO₂ などのイオン交換で作製される準安定な酸化物半導体の伝導性制御の方法を研究した。 β -NaGaO₂のGa サイトにTi をドーピングした β -Na(Ga_{1-x}Ti_x)O₂を前駆体とし、Na⁺イオンをAg⁺イオンへと交換することにより、Ga サイトにTi をドープした β -Ag(Ga_{1-x}Ti_x)O₂を作製した。x=0の β -AgGaO₂は室温で電気伝導度が4×10⁻⁵ Scm⁻¹のn型半導体であったが、5 at%のTi をドーピングした β -Ag(Ga_{0.95}Ti_{0.05})O₂の室温での電気伝導度は1×10⁻² Scm⁻¹であり、Ti ドーピングした β -NaGaO₂前駆体のイオン交換により β -AgGaO₂にキャリア電子を注入できることを明らかとした。

本研究で β -CuGaO₂ と β -AgGaO₂ は室温付近で動作する素子として使用するのに十分な安定性を有し、かつ、バンドギャップエンジニアリングや伝導性制御も可能であることが明らかとされ、太陽電池や LED へと応用可能な材料であることが示された。また、ごく最近、 β -CuGaO₂ の Cu サイトを Li で置換することで可視光全域にわたるバンドギャップエンジニアリングも可能であることも報告されており、LED 材料としての期待は膨らんでいる。 β -CuGaO₂ については既に薄膜化の研究も開始されているが、スパッタリング法や電子ビーム蒸着法で作製した β -NaGaO₂ 前駆体薄膜では Na が欠損した組成となることから良質な β -CuGaO₂ 薄膜を得るには至っていない。太陽電池素子や LED 素子のように多層構造を必要とする素子では、薄膜化技術の確立は必須であり、今後必ずや解決しなければならない技術課題のひとつである。また、本研究では β -AgGaO₂ の焼結体において伝導性制御を達成しているが、 β -CuGaO₂ 焼結体では p型、n型のいずれでも不純物ドーピングによる伝導性制御が達成されているためと推察しており、良質な薄膜堆積技術さえ確立すれば伝導性の制御も十分可能であると期待される。

本研究で得られた β-CuGaO₂ と β-AgGaO₂ を半導体材料として応用するのに必要な基礎的 知見および技術を足掛かりに、これらのナローギャップ酸化物半導体の素子化が実現する と、資源の制約を受けず、かつ、真に安全で環境にやさしい半導体素子となる。今後の実際 的な研究の進展を期待し、本論文を閉じる。

64

謝辞

本論文は、筆者が大阪大学大学院工学研究科マテリアル生産科学専攻マテリアル科学コ ース博士課程に在籍中の成果をまとめたものとなります。この論文執筆にあたり、数えき れないほどの人にご支援いただいたこと、心より深謝いたします。

本論文の主査として、ご指導、ご鞭撻を賜りました大阪大学大学院 工学研究科 藤本 慎司教授に厚く御礼申し上げます。私が大阪大学を離れ、東北大学へ移る際も快く籍を置 かせてくださいました。東北大学に移ってからも気にかけてくださり、先生の心配りなく しては博士論文の遂行もなかったかと思います。心から、感謝いたします。

本論文の執筆にあたり、副査としてだけでなく、日ごろから多大なるご指導、ご鞭撻賜 りました東北大学 多元物質科学研究所 小俣孝久教授に厚く御礼申し上げます。公私と もに立ち止まりそうになった私を見放さず、前に進めるよう導いてくださったおかげで、 現在の私があると思います。心より、感謝いたします。

本論文の執筆にあたり、同じく副査として査読をしていただきました、大阪大学大学院 工学研究科 山下弘巳教授に厚くお礼申し上げます。本論文に対して、丁寧なご指導をい ただきました。心から感謝いたします。

本論文の執筆にあたり、同じく副査として査読をしていただきました、大阪大学大学院 工学研究科 関野徹教授に厚くお礼申し上げます。本論文に対して、丁寧なご指導をいた だきました。心から感謝いたします。

本論文の執筆にあたり、同じく副査として査読をしていただきました、大阪大学大学院 工学研究科 土谷博昭准教授に厚くお礼申し上げます。本論文に対して、丁寧なご指導を いただきました。心から感謝いたします。

本研究におけるSPring-8での放射光X線測定に関してご協力と助言を賜りました、物 質・材料研究機構 技術開発共用部門 高輝度放射光ステーション 坂田修身ステーショ ン長、田中雅彦氏、勝矢良雄氏に厚く御礼申し上げます。

本研究における高温X線測定に関してご協力と助言を賜りました、物質・材料研究機構 エネルギー・環境材料研究拠点 三好正悟氏に厚く御礼申し上げます。

本研究における構造未知新物質のリートベルト解析で多大なる助言を賜りました、富山 高等専門学校 機械システム工学科 喜多正雄准教授に厚く御礼申し上げます。

本研究全体を通し試料の提供や実験に関する助言を惜しむことなくしてくださった、パ ナソニック株式会社 坂井全弘氏、浅野洋氏に厚く御礼申し上げます。

本研究全体を通し数多くの助言を賜り、最後まで不出来な後輩である私の面倒を見てく ださった敬愛すべき先輩である鈴木一誓氏に心より厚く御礼申し上げます。

本研究における3章、4章の実験を手助けしてくれた水野裕貴氏、竹村沙友理氏に厚く御 礼申し上げます。2人の協力なくしてこの論文の遂行は成しえなかったと思います。 また、ともに研究室での日々を歩んでくださった大阪大学大学院 工学研究科 マテリ アル生産科学専攻 材料精製工学領域研究室ならびに東北大学 多元物質科学研究所 小 俣研究室の皆様には公私ともに大変お世話になりました。心より感謝申し上げます。本来 であればお世話になった人全員の名前を挙げるべきところではありますが、挙げだすとき りがないためひとまとめとすることお許しください。

最後に、私のことをいつも滋賀県から案じ、支え、応援しながら、やりたいことをやり たいようにやらせてくれた両親に心から感謝し、謝辞といたします。

なお、本研究は以下の科学研究費助成事業からの援助のもとに遂行しました。 感謝いたし ます。

- ◆ 挑戦的萌芽研究 (研究課題番号 23656402)
 "酸化亜鉛半導体に可視光域での活性を賦与する新たな混晶系の創製とその原理"
- ◆ 挑戦的萌芽研究 (研究課題番号 25630283)
 "p/n 制御が可能な酸化物系 I-III-VI₂化合物半導体の物質・機能開拓"
- ◆ 基盤研究(B) (研究課題番号 26289239) "三元系ウルツ鉱型ナローギャップ酸化物半導体;薄膜化・薄膜太陽電池素子への展開"
- ◆ 特別研究員 科学研究費助成事業 (研究課題番号 15J00261)
 "ウルツ鉱型構造を有するナローギャップ酸化物半導体の伝導性制御と太陽電池への応用"

研究業績リスト

(本研究に関する投稿論文) すべて査読あり

- "Controlling the electrical conductivity of ternary wurtzite-type and metastable β-AgGaO₂ by impurity doping", <u>H. Nagatani</u>, I. Suzuki, S. Takemura, S. Fujimoto, T. Omata, *AIP Advances* 8, 085203 (2018). doi: 10.1063/1.5046361
- "Variation of crystal structure and optical properties of wurtzite-type oxide semiconductor alloys of β-Cu(Ga,Al)O₂", <u>H. Nagatani</u>, Y. Mizuno, I. Suzuki, M. Kita, N. Ohashi, T. Omata, *J. Appl. Phys.* 121, 235103 (2017). doi: 10.1063/1.4985700
- "Structural and thermal properties of a ternary narrow gap oxide semiconductor; wurtzite-derived β-CuGaO₂", <u>H. Nagatani</u>, I. Suzuki, M. Kita, M. Tanaka, Y. Katsuya, O. Sakata, S. Miyoshi, S. Yamaguchi, T. Omata, *Inorg. Chem.* 54, 1698–1704 (2015). doi: 10.1021/ic502659e
- "Structure of β-AgGaO₂; ternary I-III-VI₂ oxide semiconductor with a wurtzite-derived structure", <u>H. Nagatani</u>, I. Suzuki, M. Kita, M. Tanaka, Y. Katsuya, O. Sakata and T. Omata, *J. Solid State Chem.* 222, 66–70(2015). doi: 10.1016/j.jssc.2014.11.012

(その他の投稿論文)すべて査読あり

- "Fabrication of β-CuGaO₂ thin-films by ion-exchange of β-NaGaO₂ thin-films", I. Suzuki, <u>H.</u> <u>Nagatani</u>, M. Kita, T. Omata, *Appl. Phys. Express* 10, 095501(2017). doi: 10.7567/APEX.10.095501
- "First-principles study of CuGaO₂ polymorphs: Delafossite α-CuGaO₂ and wurtzite β-CuGaO₂", I. Suzuki, <u>H. Nagatani</u>, M. Kita, Y. Iguchi, C. Sato, H. Yanagi, N. Ohashi, T. Omata, *Inorg. Chem.* 55, 7610–7616(2016).

doi: 10.1021/acs.inorgchem.6b01012

- "First principles calculations of ternary wurtzite β-CuGaO₂", I. Suzuki, <u>H. Nagatani</u>, M. Kita, Y. Iguchi, C. Sato, H. Yanagi, N. Ohashi, T. Omata, *J. Appl. Phys.* 119, 095701 (2016). doi: 10.1063/1.4942619
- "Wurtzite CuGaO₂: A New Direct and Narrow Band Gap Oxide Semiconductor Applicable as a Solar Cell Absorber", T. Omata, <u>H. Nagatani</u>, I. Suzuki, M. Kita, H. Yanagi and N. Ohashi, *J. Am. Chem. Soc.*, 136, 3378 (2014).

(総説)

 "Wurtzite-derived ternary I-III-O₂ semiconductors", T. Omata, <u>H. Nagatani</u>, I. Suzuki, M. Kita, *Sci. Technol. Adv. Mater.* 16, 024902 (2015). doi:10.1088/1468-6996/16/2/024902
(本研究に関する出願特許)

 小俣孝久、鈴木一誓、<u>長谷拓</u>(発明の名称)半導体用材料およびその製造方法、(出願 番号・出願日)特願 2013-66037・2013 年 3 月 27 日(公開番号・公開日)特開 2014-192306・2014 年 10 月 6 日

研究発表リスト

(本研究に関する国際会議での発表)

- <u>Hiraku Nagatani</u>, Issei Suzuki, Masao Kita, and Takahisa Omata, "Control of Electrical Conductivity of Ternary Wurtzite β-AgGaO₂", 9th International Workshop on Zinc Oxide and Related Materials, Taipei, Taiwan, October 31 2016 (POSTER).
- Yuki Mizuno, <u>Hiraku Nagatani</u>, Issei Suzuki, Masao Kita and Takahisa Omata, "Band Gap Engineering of Wurtzite-type Narrow Band Gap Semiconductor β-CuGaO₂", *The 9th International Conference on the Science and Technology for Advanced Ceramics (STAC-9)* Tsukuba, Japan, October 20 2015 (POSTER).
- <u>Hiraku Nagatani</u>, Issei Suzuki, Masao Kita, Hiroshi Yanagi, Naoki Ohashi and Takahisa Omata, "A New Ternary Oxide Semiconductor; Wurtzite CuGaO₂", 8th International Workshop on Zinc Oxide and Related Materials, Niagara Falls, Canada, September 8 2014 (POSTER).
- <u>Hiraku Nagatani</u>, Issei Suzuki, Masao Kita, Hiroshi Yanagi, Naoki Ohashi and Takahisa Omata, "A New Direct and Narrow Band Gap Oxide Semiconductor; Wurtzite CuGaO₂", *The 3rd International Seminar: International Workshop on Green Energy Conversion*, Yamanashi, Japan, August 25 2014 (POSTER).
- Yuki Mizuno, <u>Hiraku Nagatani</u>, Issei Suzuki, Masao Kita and Takahisa Omata, "Band Gap Engineering of Wurtzite-Derived CuGaO₂ with CuAlO₂", *The 3rd International Seminar: International Workshop on Green Energy Conversion*, Yamanashi, Japan, August 25 2014 (POSTER).
- <u>Hiraku Nagatani</u>, Issei Suzuki, Masao Kita, Hiroshi Yanagi, Naoki Ohashi and Takahisa Omata, A New Direct and Narrow Band Gap Oxide Semiconductor; Wurtzite CuGaO₂", *The 8th International Conference on the Science and Technology for Advanced Ceramics (STAC8)*, Yokohama, Japan, June 26 2014 (POSTER).
- <u>Hiraku Nagatani</u>, Issei Suzuki, Masao Kita, Hiroshi Yanagi, Naoki Ohashi and Takahisa Omata, "A New Ternary Oxide Semiconductor; Wurtzite CuGaO₂", 8th International Workshop on Zinc Oxide and Related Materials, Niagara Falls, Canada, September 8 2014 (POSTER).

(本研究に関する国内学会での発表)

1. <u>長谷拓</u>、鈴木一誓、喜多正雄、小俣孝久、『ウルツ鉱型酸化物半導体 β-CuGaO₂, β-AgGaO₂ への不純物ドーピング』、*資源素材学会 平成 27 年度資源・素材関係学協会合同秋季大* 会、松山、2015年9月8日(ポスター)

- <u>長谷拓</u>、鈴木一誓、小俣孝久、喜多正雄、『ウルツ鉱型酸化物半導体 β-CuGaO₂, β-AgGaO₂ への不純物ドーピング』、*日本セラミックス協会 第28 回秋季シンポジウム*、富山、2014 年9月18日(口頭)
- 水野裕貴、<u>長谷拓</u>、鈴木一誓、喜多正雄、小俣孝久、『ウルツ鉱型ナローバンドギャッ プ半導体 β-CuGaO₂ のバンドエンジニアリング』、*日本セラミックス協会 第 28 回秋季* シンポジウム、富山、2014 年 9 月 18 日(口頭)
- 4. <u>長谷拓</u>、鈴木一誓、喜多正雄、柳博、田中雅彦、勝矢良雄、坂田修身、大橋直樹、小俣 孝久、『直接遷移型ナローギャップ半導体;ウルツ鉱型 β-CuGaO₂』
 第9回日本セラミックス協会関西支部学術講演会、堺、2014 年 7 月 25 日(ポスター)
- 5. 水野裕貴、長谷拓、鈴木一誓、喜多正雄、小俣孝久、『CuAlO₂との混晶化によるウルツ 鉱型 CuGaO₂のバンドギャップエンジニアリング』、第9回日本セラミックス協会関西 支部学術講演会、堺、2014年7月25日(ポスター)
- 長谷拓、鈴木一誓、常深浩、井藤幹夫、喜多正雄、小俣孝久、『ウルツ鉱型酸化物半導 体 β-CuGaO₂、β-AgGaO₂の伝導性制御』、2014 年応用物理学会春季学術講演会、相模原、 2014 年 3 月 17 日(口頭)
- 長谷拓、鈴木一誓、喜多正雄、柳博、田中雅彦、勝矢良雄、大橋直樹、小俣孝久、『直 接遷移型ナローギャップ半導体;ウルツ鉱型 β-CuGaO₂』、2014 年応用物理学会春季学 術講演会、相模原、2014 年 3 月 17 日(口頭)
- 小俣孝久、鈴木一誓、<u>長谷拓</u>、喜多正雄、『新規酸化物半導体材料の探索;ウルツ鉱型 I-III-O2化合物半導体』、2014 年応用物理学会春季学術講演会、相模原、2014 年 3 月 17 日(口頭)
- 9. <u>長谷拓</u>、鈴木一誓、喜多正雄、柳博、大橋直樹、小俣孝久、『新規の薄膜太陽電池用酸 化物半導体; β-CuGaO₂』、*資源素材学会、第10回・若手研究者・学生のための研究発表 会*、京都、2013 年 12 月 6 日(口頭)
- 長谷拓、鈴木一誓、喜多正雄、柳博、小俣孝久、『新規のウルツ鉱型酸化物ナローギャ ップ半導体 β-CuGaO₂』、*資源素材学会・平成 24 年度春季大会、*千葉、2013 年 3 月 29 日(口頭)

(その他の国際会議での発表)

- Issei Suzuki, <u>Hiraku Nagatani</u>, Masao Kita and Takahisa Omata, "Fabrication of β-CuGaO₂ thin films; An Oxide Thin-Film Solar Cell Absorber", *2015 MRS Fall Meeting & Exhibit*, Boston, USA, December 2 2015 (ORAL).
- Issei Suzuki, <u>Hiraku Nagatani</u>, Masao Kita and Takahisa Omata, "Fabrication of β-CuGaO₂ Thin Films; An Oxide Thin-Film Solar Cell Absorber", *The 9th Symposium on Transparent Oxide and Related Materials for Electronics and Optics (TOEO-9)*, Tsukuba, Japan, October 20 2015

(POSTER).

- Issei Suzuki, <u>Hiraku Nagatani</u>, Masao Kita, Hiroshi Yanagi, Naoki Ohashi and Takahisa Omata, "Novel Ternary Wurtzite Semiconductor β-CuGaO₂", 17th International Conference on II-VI Compounds and Related Materials, Paris, France, September 15 2015 (ORAL).
- Issei Suzuki, <u>Hiraku Nagatani</u>, Masao Kita and Takahisa Omata, "Fabrication of β-CuGaO₂ Thin Films", 17th International Conference on II-VI Compounds and Related Materials, Paris, France, September 15 2015 (POSTER).
- Issei Suzuki, <u>Hiraku Nagatani</u>, Masao Kita, Hiroshi Yanagi, Naoki Ohashi and Takahisa Omata, "Novel Ternary Wurtzite-type Semiconductor β-CuGaO₂", 2014 MRS Fall Meeting & Exhibit, Boston, USA, December 1 2014 (ORAL).
- Issei Suzuki, <u>Hiraku Nagatani</u>, Masao Kita, Yuki Iguchi, Chiyuki Sato, Hiroshi Yanagi, Naoki Ohashi and Takahisa Omata, "First Principle Calculations of Wurtzite β-CuGaO₂ and β-AgGaO₂", 2014 MRS Fall Meeting & Exhibit, Boston, USA, December 1 2014 (POSTER).
- Issei Suzuki, <u>Hiraku Nagatani</u>, Masao Kita, Yuki Iguchi, Chiyuki Sato, Hiroshi Yanagi, Naoki Ohashi and Takahisa Omata, "First Principle Calculation of Electronic Band Structure of Wurtzite β-CuGaO₂ and β-AgGaO₂", 8th International Workshop on Zinc Oxide and Related Materials, Niagara Falls, Canada, September 8 2014 (POSTER).
- Issei Suzuki, <u>Hiraku Nagatani</u>, Masao Kita, Yuki Iguchi, Chiyuki Sato, Hiroshi Yanagi, Naoki Ohashi and Takahisa Omata

"First Principle Calculation of Electronic Band Structures of Wurtzite β-CuGaO₂ and β-AgGaO₂", *The 3rd International Seminar: International Workshop on Green Energy Conversion*, Yamanashi, Japan, August 25 2014 (POSTER).

 Issei Suzuki, <u>Hiraku Nagatani</u>, Masao Kita, Yuki Iguchi, Chiyuki Sato, Hiroshi Yanagi, Naoki Ohashi and Takahisa Omata

"First Principle Calculations of Electronic Band Structures of Wurtzite β -CuGaO₂ and β -AgGaO₂", *The* 8th International Conference on the Science and Technology for Advanced Ceramics (STAC8), Yokohama, Japan, June 26 2014 (POSTER).

 Issei Suzuki, <u>Hiraku Nagatani</u>, Yuta Arima, Masao Kita and Takahisa Omata "Band Gap Engineering of ZnO by Alloying with β-AgGaO₂", *The 2nd International Seminar: International Workshop on Green Energy Conversion*, Nagano, Japan, September 2 2013 (POSTER).

(その他の国内学会での発表)

 鈴木一誓、長谷拓、喜多正雄、井口雄喜、佐藤千友紀、柳博、大橋直樹、小俣孝久、『新 規酸化物半導体:ウルツ鉱型 β-CuGaO₂』、日本セラミックス協会 2015 年・年会、岡山、 2015 年 3 月 20 日(口頭)

- 鈴木一誓、<u>長谷拓</u>、喜多正雄、井口雄喜、佐藤千友紀、柳博、大橋直樹、小俣孝久、『ウ ルツ鉱型 β-CuGaO₂の第一原理計算』、*日本セラミックス協会 2015 年・年会*、岡山、2015 年3月20日(口頭)
- 3. 鈴木一誓、<u>長谷拓</u>、喜多正雄、井口雄喜、佐藤千友紀、柳博、大橋直樹、小俣孝久、『ウ ルツ鉱型 β-CuGaO₂、β-AgGaO₂の第一原理計算』、*第75 回 応用物理学会秋季学術講演 会*、札幌、2014 年 9 月 19 日(口頭)
- 4. 喜多正雄、鈴木一誓、<u>長谷拓</u>、水野裕貴、小俣孝久、『ウルツ鉱型関連構造の四元系ナローギャップ酸化物半導体 Cu₂ZnGeO₄の合成』、日本セラミックス協会 第28 回秋季シンポジウム、富山、2014年9月18日(口頭)
- 5. 鈴木一誓、<u>長谷拓</u>、喜多正雄、井口雄喜、佐藤千友紀、柳博、大橋直樹、小俣孝久、『ウ ルツ鉱型 β-CuGaO₂、β-AgGaO₂の第一原理計算』、*第9回日本セラミックス協会関西支 部学術講演会*、堺、2014 年 7 月 25 日(ポスター)
- 6. 鈴木一誓、<u>長谷拓</u>、喜多正雄、井口雄喜、佐藤千友紀、柳博、大橋直樹、小俣孝久、『第 一原理計算によるウルツ鉱型 β-CuGaO₂、β-AgGaO₂の電子構造解析』、2014 年応用物理 学会春季学術講演会、相模原、2014 年 3 月 17 日(口頭)
- 37. 鈴木一誓、<u>長谷拓</u>、有馬優太、喜多正雄、小俣孝久、『AgGaO₂ との混晶化による ZnO のバンドギャップナローイング』、2014 年応用物理学会春季学術講演会、相模原、2014 年 3 月 17 日(口頭)
- 長谷拓、鈴木一誓、喜多正雄、小俣孝久、『ウルツ鉱型酸化物半導体 β-CuGaO₂, β-AgGaO₂ への不純物ドーピング』、*資源素材学会 平成 27 年度資源・素材関係学協会合同秋季大 会、*松山、2015 年 9 月 8 日(ポスター)

(受賞)

- 優秀発表賞 長谷拓、鈴木一誓、喜多正雄、柳博、大橋直樹、小俣孝久、『新規の薄膜太 陽電池用酸化物半導体; β-CuGaO₂』、資源素材学会、第 10 回・若手研究者・学生のため の研究発表会、京都、2013 年 12 月 6 日
- 学生講演賞 長谷拓、鈴木一誓、喜多正雄、柳博、田中雅彦、勝矢良雄、坂田修身、大橋 直樹、小俣孝久、『直接遷移型ナローギャップ半導体;ウルツ鉱型 β-CuGaO2』、第9回 日本セラミックス協会関西支部学術講演会、堺、2014 年7月25日
- First Prize Poster Award Hiraku Nagatani, Issei Suzuki, Masao Kita, Hiroshi Yanagi, Naoki Ohashi and Takahisa Omata, "A New Direct and Narrow Band Gap Oxide Semiconductor; Wurtzite CuGaO₂", The 8th International Conference on the Science and Technology for Advanced Ceramics (STAC8), Yokohama, Japan, June 26 2014.