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Abstract

Air-writing refers to writing alphabet or numeric gestures by hand or finger movement
in free space. It has attracted attention since it can offer verbal communication. Even the
air-writing recognition has been studied more than three decades, creating a robust system
is still challenging. The primary objective of this work is studying a fusion framework for
air-writing recognition from a vision-based sensor. We employ a fusion scheme by modeling
the air-writing with the temporal feature augmented with the spatial feature. We address
the air-writing recognition in two categories: motion character recognition and motion word
recognition. The underlying assumption of motion character is that the gesture is correctly
spotted; therefore, a segmentation process is not necessary for the air-writing recognition.
In contrast, the motion word gesture was captured from a user in a motion stream. It does
not have a sign to indicate the writing and non-writing part. Moreover, there are ligatures
between the characters in motion word.

For learning the motion character, we model the air-writing by using spatial features aug-
mented with an image-like feature. The proposed structure comprises three main parts: a
CNN part, an RNN part, and a Fusion part. The CNN part consists of three convolution
layers and two subsampling layers. The convolution layers in the CNN part are employed to
extract information from the image-like feature. In the RNN part, there are two types of struc-
tures that were considered. The first structure is a Bidirectional Long-Short Term Memory
(BLSTM), and the other one is a simplified Bidirectional Recurrent Neural Network (sim-
plified BRNN). To obtain useful information from the temporal features, the BLSTM was
deployed in the RNN part. The output of the CNN and the RNN parts were combined before
feeding into the Fusion part. In the first experiment, the performance of the proposed struc-
ture was compared with three baseline references: the CNN, the BLSTM, and Yang’s work.
The result confirms the fusion scheme outperforms all of the references. In the second ex-
periment, the effects of the recurrent units were examined by varying the number of BLSTM
units in the RNN part. The optimum number of the BLSTM units are 15 and 25 for the nu-
meric gesture and alphabet gesture, respectively. From the experimental results, we confined
that the execution time of the fusion structure is high due to the complexity of the BLSTM
unit. In the third experiment, the simplified BRNN was considered. When comparing the
results with the previous experiment, the execution time of simplified BRNN unit reduces in
half while the accuracy drops insignificantly. In the last experiment, we demonstrated that
using hand position feature (RNN part) and image-like feature (CNN part) are adequate for
the fusion network.

For leaning the motion word, a deep recurrent neural network was studied. In the output
layer of the proposed structure, the Connectionist Temporal Classification (CTC) loss was
considered. The main advantage of using the CTC loss is removing a predefined alignment
to create the training set. The features that we studied are the hand position feature and the
path signature feature. In the preprocessing stage, we employ a sliding window technique to
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segment a long sequence of motion gesture into small pieces. Then, each piece of motion
was used to generate the hand position feature and the path signature feature. When using
the sliding window technique, the most critical parameter is the size of the sliding window.
The output of the fusion structure attempts to predict characters in a word; therefore, the size
of the sliding window should be set to capture the data no more than one character at a time.
For examining the performance of the proposed structure, two public datasets were studied,
i.e. a palm-writing dataset and a finger-writing dataset. Each dataset was analyzed to obtain
a writing duration per character, which could be used to set the maximum size of the sliding
window. The shortest of writing duration per one character in the palm-writing dataset and
finger writing dataset are 0.88 seconds and 1.38 seconds, respectively. From the experiments,
the appropriate window size of the palm-writing and the finger-writing dataset are determined
as 0.5 seconds and 0.25 seconds, respectively. The best recognition accuracy on the palm-
writing dataset and the finger-writing dataset are 86.90% and 75.81%, respectively. We also
confirmed that the required prediction time per word on the palm-writing dataset and the
finger-writing dataset are 3.91 milliseconds and 6.37 milliseconds, respectively. These results
confirm the proposed algorithm can be executed in a real-time.
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Chapter 1

Introduction

In recent years, there is an interest in improving the human-computer interaction (HCI)
in all aspects. For instance, in the game sector, many devices have been introduced in the
market to acquire input data from users. The goal of HCI research is developing an effective
way of communication between human and computer device. The communication method
should be as natural as the way of human interaction with each other [1]. There are many
ways to communicate with computational devices; e.g., the traditional inputs such as mouse
and keyboard, touch screen, speech, and gesture. Each technology has pros and cons to meet
the specific requirement from a user. For example, the keyboard is most effective for text
input, and it needs the user to learn how to type. While the speech is more intuitively, it may
interference by noise from many sources. The gesture is viable to be applied in sophisticated
computing environments such as Virtual Environment [2], Augmented Reality, smart surveil-
lance, sign language translation, medical systems [3, 4], and robot control application [5].
This research emphasizes to study a dynamic gesture as a text input.

The rest of this chapter is organized as follows. Section 1.1 presents the motivation for
coordinating this research. Even though the air-writing recognition has been studied around
three decades, there is still room for improvement. In Section 1.2, the objectives and con-
tributions of this work are indicated. Finally, the main content of each chapter has been
summarized and exposed in Section 1.3.

1.1 Motivation
In the early stages of the computer era, keyboard and mouse are the first attempt to acquire

input directly from a user. With this kind of user interface, the user was required to adapt
his/her behavior to fit the machine unnaturally. When the display technology had been de-
veloped, and a computer has more processing power, a touchscreen interface was introduced.
This technology enables a user to communicate with devices more naturally and intuitively
because a user can control a device by writing on the screen. Another type of user input is the
human voice, which helps to improve the user experience in controlling devices in the IoT
(Internet of Things) era. Another type of input is a gesture-based user interface [6], which
plays important roles in the game industry. Although the human gesture is more natural than
the other types of user interface, it had been rarely used because of the reliability and the
precision of tracking sensors. Besides, the meaningful gesture is relatively small compared
with the entire movement of a user. Generally, a system that handles the recognition process
needs high processing power to classify and filter out the false positive gesture.
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At present, there are a few commercial devices available for tracking the motion gesture,
e.g. Microsoft kinect sensor [7, 8] and Leap motion sensor [9, 10]. The Microsoft kinect
sensor is mainly designed for tracking the entire body of a user while the Leap motion sensor
focuses on tracking a hand gesture. The Leap motion sensor is a small USB device, which is
designed to track the finger joints and hand movement with a precision of 0.01 millimeters.
We can connect it with the personal computer as illustrated in Fig. 1.1. As declared by the
manufacturer, the Leap motion sensor has a maximum frame rate of 120 frames per second.

Figure 1.1: Leap motion sensor.

The data that the Leap motion sensor provides is a raw three-dimensional coordinate of
the fingers in the field of view of sensors. It is also possible to acquire the confidence rate
of the observed data. The value of confidence rate lays between 0 and 1, where a low value
indicates the finger position would be incorrect. In some work, the Leap motion sensor has
mounted on a virtual reality headset for controlling an avatar [11, 12].

During the last decade, many research actively studies human gestures for a user interface.
This type of interface changes the way that we interact with some digital devices. Even
though we can use many parts of the body to make a gesture, the hand gesture is the most
commonly deployed in many applications since it is natural and more convenient than other
types of gestures. Hand gestures can be characterized as a static gesture or a dynamic gesture
owing to the motion of a user [3]. A static hand gesture refers to the relation of fingers and the
hand without moving [13–15]. Many algorithms consider the static gesture with 2D models
such as the image contour and the silhouette. A static gesture has been widely studied due
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to the low computational complexity. The dynamic gesture is another type of hand gesture,
which refers to information embedded in both shape and the motion of hand reference [16,
17]. Consideration of the movement of a dynamic gesture provides more communication
capability than a static gesture. In other words, we can send more information by performing
the dynamic gesture.

Simple dynamic gestures, such as swipe, circle, open-palm, and close-palm, are often
deployed as a command in applications. For instance, a smart television allows a user to
change channels by swipe right to left, and set up a volume by moving a hand up or down [18].
Although this type of gesture is easy to manage, the communicating capability is limited by
the available gestures. Although the simple gestures work quite well in practice, it is difficult
to extend the set of commands. Writing a character or word in the air is a choice to overcome
this problem. Referring to the result of Chen’s recent study [19], the average speed of air-
writing is 5.4 words per minute. It may not be fast enough for the general text input interface.
However, the usability results support that the air-writing is suitable for a short-text input,
and therefore it can be applied to the motion-based user interface.

Recently, air-writing, which refers to writing an alphabet or numeric gesture in free space,
has attracted attention since it can offer verbal communication by constructing a word. Many
techniques have been proposed to recognize the air-writing, however creating a robust system
for practical application is still challenging because the air-writing is different from traditional
writing in many aspects. For example, drawing the characters in the air does not have any
visual or haptic feedback [19], and hence the gesture involves inconsistency. Moreover, the
shape and size of a gesture may vary among trials even though the same writer writes it.

Even though the air-writing has been studied for three decades, there are some problems as
follows: recognition accuracy, ambiguous recognition results, and real-time execution. Most
of recent studies focus on feature state transition by modeling the air-writing as a sequence
of temporal features that were extracted from the time domain. However, modeling the air-
writing with state transition based methods may be vulnerable when a certain gesture consists
of a combination of other similar gestures. The confusing issue can be avoided by considering
a fusion scheme [20,21]. By modeling the air-writing with a combination of temporal feature
and spatial feature, a fusion structure can learn more information.

1.2 Objectives and contributions
As described in the previous section, the development of air-writing recognition is impor-

tant for bridging the human-computer barrier. In addition, the recognition algorithm should
recognize the air-writing with high accuracy in real-time execution. This thesis proposes
fusion frameworks that satisfy those requirements.

First, we propose a fusion framework for motion character recognition. Instead of model-
ing the air-writing by either spatial feature or temporal feature in the same manner as other
works, we employ a fusion scheme [20, 21] to learn both spatial and temporal information
concurrently. The proposed framework employs the Convolutional Neural Network (CNN)
and Bidirectional Recurrent Neural Network (BRNN) to extract useful information from an
image-like feature and temporal features, respectively. For learning both types of features, the
learning part is designed based on a deep learning structure. By stacking multiple layers of a
fully connected neural network, the proposed framework outperforms all the previous studies.
The performance of the proposed framework is investigated on two public datasets, namely a
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numeric gesture and an alphabet gesture. The average accuracies of the proposed framework
achieve 99.83% and 99.25% on the numeric gesture and the alphabet gesture, respectively.
When comparing the results with the CNN, the accuracies of the proposed framework im-
prove 1.83% on the numeric gesture, and 1.42% on the alphabet gesture. When compare the
results with a Bidirectional Long Short-Term Memory neural network, the average accura-
cies of the proposed framework improve by 0.53% and 0.22% on the numeric gesture and
the alphabet gesture, respectively. By comparing the results with Yang’s work, the proposed
framework achieves higher accuracy by 0.84% on the numeric gesture, and 0.68% on the
alphabet gesture. As for the prediction time, the proposed framework can predict the writing
character in 5.57 milliseconds. Among many features that we studied, the image-like feature
and the hand position feature are adequate for training the proposed framework.

We also propose a new scheme for a motion word recognition. While studying the motion
character recognition, we realize that the Recurrent Neural Network (RNN) has a high im-
pact on learning the air-writing. In the motion word recognition, we consider the multilayers
of Long Short-Term Memory network as a central part of the learning structure. Instead of
using an image-like feature for learning the spatial information as previous works, we em-
ploy the path signature feature which can be calculated at low cost. In the end, we reach
the fusion structure which can recognize a motion word consuming low processing power.
The performance of the proposed framework is examined with two public datasets, namely
a palm-writing dataset and a finger-writing dataset. All features that we exploit are limited
in two-dimensional space. The results are classified into three classes: precise prediction,
imprecise prediction, and false prediction. From the experiments, the precise predictions of
the proposed framework achieve 86.90% and 75.81% on the palm-writing dataset and finger-
writing dataset, respectively. When considering the prediction time per word, the average
time is 3.91 milliseconds on the palm-writing dataset. In the case of finger-writing, the pro-
posed framework can recognize a word within 6.37 milliseconds.

1.3 Overview of the thesis
The rest of this thesis is structured as follows.
In Chapter 2, the background knowledge and related works for the air-writing recognition

are reviewed. The air-writing is introduced at the beginning of the chapter. By reviewing
much research, we classify the air-writing recognition into two classes: the motion character
and the motion word. At the end of this chapter, the public dataset for investigating the
performance of the proposed framework is reviewed and analyzed.

Chapter 3 details the proposed technique on the motion character. For learning the motion
character, the proposed technique utilizes two types of neural networks, the CNN and RNN,
to extract air-writing information. The CNN has been selected to extract information an
image-like feature while RNN takes information out of the temporal features. All features
are combined at fusion layer before being fed into a deep neural network. We conduct the
experiments on the character dataset, which comprises two types of gestures: the alphabet
gesture and the numeric gesture. We have investigated the performance of the fusion structure
using a CNN and Bidirectional Long Short-Term Memory as base references. Moreover, we
demonstrate the proposed network outperforms Yang’s work [20] in both alphabet gesture
and numeric gesture.
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Chapter 4 describes the proposed technique for air-writing recognition on the motion word
approach. Learning the motion word is more complicated than the motion character because
the sample comprises gesture and non-gesture motion. Moreover, a sample does not have
a clue for indicating the start and stop sign for the word writing. We adopt a segmentation
free approach using the Connectionist Temporal Classification technique to minimize loss
of the proposed technique. In the experiments, the performance of the proposed structure
is investigated on two datasets: the palm-writing dataset and finger-writing dataset. We first
examine the performance of the fusion network using a spatial and temporal feature modeling
as based references. Then, we also investigate the effect of sliding window size in both
datasets.

Chapter 5 concludes this thesis. The motivation, the objectives, and the main contributions
are briefly reviewed to link the main conclusions. Finally, we provide directions for future
work to improve the performance of the system.
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Chapter 2

Background knowledge

In this chapter, we introduce basic knowledge of the air-writing. Tracking techniques and
writing style are introduced. Although there are a variety of sensors for tracking a hand ref-
erence, we emphasize a vision-based approach because it is more comfortable than a sensor-
based approach. We address the air-writing on two groups: motion character and motion
word [22,23]. The motion character is a type of air-writing where each character is processed
separately. In contrast, the motion word comprises motion characters and some meaning-
less motion between consequence characters. Cutting-edge techniques for motion character
recognition have been reviewed in Section 2.4. Techniques for motion word recognition were
reviewed in Section 2.5. In the Section 2.6, the 6DMG database [24] is presented.

2.1 Air writing
Air-writing is a type of dynamic hand gesture. It refers to writing an alphabet gesture

or a numeric gesture by hand or finger movement in free space. Because the air-writing
is performed in three-dimensional space, the writing trajectory could be represented by the
spatial and temporal features as illustrated in Fig. 2.1.

AK�;2@HB
F2 72�im`2

UaT�iB�H 72�im`2V

v@TH�M2
Uh2KTQ`�H 72�im`2V

t@TH�M2
Uh2KTQ`�H 72�im`2V

hBK2

Figure 2.1: Air-writing trajectory in spatio-temporal space.
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This figure exemplifies the motion character “A” written in the air. By projecting the writ-
ing trajectory in x- and y-plane, we get two one-dimensional signals in the time domain.
The other view of this gesture is generated by plotting the entire trajectory points on two-
dimensional space. By this way, we get an image-like feature in the spatial space. The
process of generating an image-like feature is illustrated in Fig. 2.2. To begin with, the tra-
jectory points are plotted on two-dimensional plane. Then, a gap between two consecutive
points is connected with a straight line. Finally, a plot is smoothed using a spatial filter.

x - axis
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y 
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y 
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s

(a) plotting hand position (b) interpolating line between (c) an image-like feature.
on two-dimensional plane. consecutive hand positions.

Figure 2.2: Image-like feature is generated by plotting entire trajectory points on two-
dimensional space.

The air-writing is fundamentally different from the writing on a surface, since it provides
no haptic feedback. In conventional handwriting, the sequence of discrete strokes is made by
using pen-up and pen-down events. In contrast, the air-writing is rendered in an imaginary
plane without feedback and lacks delimited events.

2.2 Hand tracking techniques
There are many techniques for tracking hand movement. For instance, attaching gyro-

scope, three-axis accelerometer, and three-axis magnetometer sensor on a user’s hand to
generate the nine degree-of-freedom data (roll, pitch, and yaw) for hand orientation. Hand
tracking techniques can be roughly categorized into two groups based on the motion cap-
ture mechanism: sensor-based and vision-based approaches [25–30]. In a sensor-based ap-
proach [31–34], a user is required to wear a special device as exemplified in Fig. 2.3, such as
a data-glove [33, 35, 36] or tracking sensor [37]. This technique is capable of capturing mo-
tion parameters directly from the user’s hand with low latency and computational cost [38].
On the contrary, a vision-based approach is stress-free and more intuitive. Motion parame-
ters are acquired based on the assumption that the gesture is performed in the viewing field
of the camera. Even though tracking the gesture by the sensor-based approach is more reli-
able than the vision-based approach, wearing a cumbersome device affects the nature of user
interaction.

Recently, there are commercial sensors which are quite commonly used for tracking the
gesture. As an example, the Microsoft kinect [7, 8, 39–41] provides raw three-dimensional
coordinates of a moving object. Another one is a Leap motion sensor [9, 11] which provides
hand and finger information in three-dimensional space with an accuracy of 0.01 millimeters.
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Figure 2.3: Data-glove [33].

Figure 2.4: Microsoft kinect v2 [42].

These cameras can retrieve motion parameters without the limitation of environmental factors
such as illumination changes and partial occlusion. Therefore, the vision-based technique has
been potentially deployed recently.

Microsoft kinect was invented to control games on Microsoft Xbox and introduced in 2010
[43]. Hardware of Microsoft kinect composes of visible-light camera, depth sensor, and
microphone array. These components support researchers to capture images and voice in
multi dimension view. By taking color picture and depth image, Microsoft kinect can be used
for tracking, interpreting body movement, and recognizing gestures or voices. Microsoft
kinect has been widely used in many applications because it is a low cost RGBD cameras
and supported by many software frameworks. From the specification, the Microsoft kinect
v2 can capture color image with a resolution of 1920 × 1080 pixels. The infrared camera in
the Microsoft kinect is used to capture infrared and depth image with a resolution of 512 ×
424 pixels. All of these images can be carry out with 30 frames per second.
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Figure 2.5: Leap motion sensor.

From a hardware perspective, the Leap motion sensor consists of two cameras and three in-
frared LEDs [44]. These tracking infrared light with a wavelength of 850 nanometers, which
is outside the visible light spectrum. The Leap motion sensor provides data on fine-grained
locations such as hands and knuckles in three-dimensional space. The tracking direction, i.e.
x-, y-, and z-axis, are shown in Fig. 2.5. The Leap motion sensor has an effective range that
is approximately 25 to 600 millimeters above the sensor, and it can track hand movement at
200 frames per second.

2.3 Writing style
The air-writing can be commonly classified into two styles of writing depending on the

following written ways. The first style is over-writing, and the other style is writing-toward.
Writing trajectories in Fig. 2.6 are the example of these styles. These samples were captured
by the Leap motion sensor. Fig. 2.6 (a) is a word “around” which is written in the writing-
toward style. In contrast, the Fig. 2.6 (b) is an example of the “CODE” word in the over-
writing style, when each character in the word is plotted with a different color, and the color
of the ligatures between the characters is omitted for clear visualization.

(a) Writing-toward style. (b) Over-writing style.

Figure 2.6: Writing-toward and over-writing style.

In the over-writing style, the characters are written in an imaginary box which has fixed
height and width in the field of view of an image sensor. The next character will be drawn
over the previous one. By drawing the gesture in the fixed area, the shape and size of a
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character are easy to control. In the writing-toward style, the characters are written from left
to right, which is similar to the traditional writing in many aspects. This writing style is more
complicated than the over-writing because the size and shape of the characters may vary.
Besides, writing characters in an unconstrained area causes a slant which affects the accuracy
of total system. In general, the over-writing style is an excellent choice for many applications
because it is easy to manage, even though this writing style is not natural.

2.4 Motion character recognition techniques
The basic assumption on a motion character is that a gesture has been segmented perfectly.

The isolated character can be applied with state-of-the-art techniques similar to a motion ges-
ture. However, high variance in length and shape of gesture would be the main challenges in
developing a learning algorithm. We first summarize the literature works of motion character
recognition as listed in Table 2.1.

There are two fundamental problems affecting the performance of the air-writing recogni-
tion algorithm: spatio-temporal variability [45] and segmentation ambiguity [46]. As hand
motion is freely rendered in the air, the air-writing shows large variation in scale, speed, and
style of writing as illustrated in Fig. 2.7. Even though the same “Y” gesture is performed by
the same writer in four times, the gesture may be inconsistent.

Figure 2.7: Example of a “Y” character written in the air by the same user.

As described in Section 2.1, the air-writing trajectory is represented by spatio-temporal
features. Even though the gesture is performed in a three-dimensional space, the air-writing
recognition usually limits the hand gesture trajectory in the two-dimensional plane for sim-
plicity and compatibility with other works [47]. From the previous studies, the air-writing
recognition is normally modeled by the features in either spatial or temporal space. In spatial
space, the writing trajectory is represented by a gray-scale image. It is similar to traditional
writing in many aspects. Each image-like character is generated by projecting the hand po-
sition into the visual plane. By viewing the air-writing as an image, the state-of-the-art tech-
niques such as CNN [48,49] can be applied to the gesture recognition. In the temporal space,
the observed gesture is represented by the sequences of hand position in x-, y-, and z-axis as
illustrated in Fig. 2.8. There are also attempts to derive other features from the hand trajec-
tory to raise the recognition accuracy, e.g. the writing velocity, and the angle [36] between
the successive points in the trajectory, etc. As shown in Table 2.1, conventional algorithms
such as Hidden Markov Model [10,36,50–54], Dynamic Time Warping [55–58], and Condi-
tional Random Field [20, 59], are commonly deployed. These techniques model the gesture
trajectory as the transition of a reference point in the temporal space.
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Table 2.1: Summary of related works in motion character recognition.

Authors Year Used features Recognition method Dataset
Min et al. [64] 1999 Location, velocity,

angular velocity,
angle

HMM private dataset

Bhuyan et al. [65] 2008 Trajectory posi-
tion, Acceleration,
Hand orientation,
Velocity

DTW private dataset

Vikram et al. [66] 2013 Finger position DTW private dataset
Zhang et al. [7] 2013 Background,

Depth, and Skin
Models

Artificial Neural
Networks

private dataset

Bhuyan et al. [59] 2014 Motion Chain
Code

CRF private dataset

Ma et al. 2014 Hand orientation HMM, CRF private dataset
Murata el al. [41] 2014 Interstroke feature DTW private dataset
Hameed and Her-
nando [53]

2015 Centroid distance ,
Spatial tangent

HMM private dataset

Ayachi et al. [67] 2015 Intensity of grid
cells, Number of
OFF cells in a row,
Heuristics patterns

HMM private dataset

Patil et al. [38] 2016 Angular velocity,
Acceleration ve-
locity , Quaternion

DTW private dataset

Kane and Khanna
[68]

2016 Equi-polar signa-
ture

DTW, kNN private dataset

Xu and Xue [54] 2016 angular velocity HMM private dataset
Ramasamy et al.
[69]

2016 Image-like feature CNN private dataset

Islam et al. [70] 2016 Depth Information DTW private dataset
Chen et al. [19] 2016 Position, Velocity,

Orientation
HMM 6DMG

Poularakis and
Katsavouni-
dis [46]

2016 Position Signal Maximum Cosine
Similarity, DTW

2D Graffiti,
6DMG, Kinect

Chang et al. [71] 2016 parametric and
non-parametric,
curvature

Spatio-Temporal
Hough Forest

private dataset

Yang et al. [20] 2016 Hand position and
Image-like

Fusion of CNN with
CRF

6DMG

Zhang et al. [72] 2017 Writing trajectory Multi-Layer RNNs ICDAR-2013
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Figure 2.8: Air-writing trajectory represents in temporal space.

The Hidden Markov Model (HMM) [19,60–63] is a mathematical model for the stochastic
process which generates random sequences of outcomes according to a certain probability.
The HMM models the writing trajectory with a state transition of the moving trajectory.
There are three types of HMM topologies: Fully Connected where any state in it can reach
from other states, a Left-to-Right model where each state can go back to itself or go to the
forward states, and a Left-Right Banded model where each state can go back to itself or the
next state only. For modeling the air-writing, the Left-to-Right Banded HMM is commonly
considered [63] because it is flexible and suitable for an order-constrained and time-evolving
signals. Fig. 2.9 exemplifies an air-writing recognition framework for numeric gesture. In

Figure 2.9: Block diagram of a framework for numeric gesture recognition.

the HMM based approach, learning a hand gesture consists of two main processes: feature
extraction process and training process. In the feature extraction process, the hand position
data is first converted to a sequence of fixed size feature vectors. One of the most commonly
used features is an orientation feature, which is computed by the angle between consecutive
points as illustrated in Fig. 2.10. Let pt and pt+1 be a hand position at time t and t + 1,
respectively. The angle ( θt ) between pt and pt+1 is firstly computed. Then, the θt is quantized
into a code word ot ∈ {d1, d2, . . . , d8}, where a value is finite. After that, a sequence of
orientation features is fed to the HMM model in the training process. For instance, let gesture
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“2” be represented by a sequence of orientation feature Ot = ⟨d2, d1, d8, d6, d1⟩ as exemplified
in Fig. 2.11. The HMM model for gesture “2” comprises five state S = {S 1, S 2, S 3, S 4, S 5}.
At each time instant t = {1, 2, . . . , T }, the model is located in one of possible states. An arrow
represents a conditional probability depending on either previous state or current input. The

(xt,yt)

θt

(xt+1,yt+1)

pt

pt+1

d1

d2

d3

d4

d5

d6

d7

d8

(a) Orientation feature. (b) Codeword.

Figure 2.10: Orientation feature and codeword.

underline assumption of the HMM is that all observations are independent. When a training
feature is fed to the HMM models, conditional probability distributions among all possible
states are computed depending on the current and previous state. The predicted character in
the output is selected from a model with the best likelihood.

Figure 2.11: Exempler of HMM model of gesture “2”.

Dynamic Time Warping (DTW) [55–58] is an algorithm for measuring the similarity be-
tween two temporal sequences: template trajectory and test trajectory, which may vary in
speed and amplitude. The main advantage of the DTW algorithm is an ability to match two
different length sequences as illustrated in Fig. 2.12. The DTW algorithm calculates the dis-
tance between each possible pair of input signal and template signal in term of distance values
in a matrix. For instance, the template trajectory length in Fig. 2.12 is 12 points, and the test
trajectory length is 9 points. When applied these trajectories with the DTW technique, we get
a distance matrix size 9×12. Then the similarity of the two signals is computed using the cu-
mulative distance value along a diagonal path in a matrix. The shortest path with a minimum
accumulative distance, which is illustrated by the colored block, represents the similarity of
two signals. In practice, the searching area should be fixed for controlling the computation
cost.
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Figure 2.12: Example of dynamic time warping technique.

The Conditional Random Field (CRF) is a discriminative model, which was first introduced
by Lafferty et al. [73]. It has been widely used in natural language processing, hand gesture
spotting [74], and gesture recognition [75–77]. Even though the computational graph of the
CRF looks like the HMM structure, the CRF allows the dependencies between the state and
observations. In other words, the CRF structure is more flexible for learning complex data. A
structure of a CRF framework for air-writing recognition is similar to an HMM framework.
Instead of assuming that the observation is independent of each other, the conditional prob-
abilities are computed depending on an observation (ot) and adjacent states as illustrated in
Fig. 2.13. When a training feature is fed to the CRF models, conditional probability distribu-
tions among all possible states are computed. Even though a CRF model is more powerful
than an HMM model, many more parameters are necessary to be estimated. In practice, the
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S1 S2 S3 S4 SR

ot

. . .

Figure 2.13: A computational graph of a conditional random field technique.

computational constraints limit the use of large state space CRF [78]. Furthermore, the CRF
has computational efficiency if dependencies within state sequences are constrained [78].

These previous techniques work well with a simple gesture such as the numeric gesture
because each gesture is much different from the others. When applying these techniques
to the alphabet gesture, which is more complicated than the numeric one, the accuracy of
these techniques may drop. For example, by using only the temporal features, the specific
gesture “B” may be predicted as “D,” “P,” or “B” as depicted in Fig. 2.14. Since each of these
candidate gestures consists of similar sequence with the certain gesture [56], if the spotting
process did not classify the gesture correctly, the decision process fails. Even if the gesture
can be spotted correctly, an occlusion effect may remain when using only temporal features.

Figure 2.14: Example of occlusion gestures.

Yang et al. [20, 79] proposed a recognition method for alphabet and numeric hand ges-
ture by combining temporal feature state modeling and total trajectory shape modeling as
illustrated in Fig. 2.15. They deployed an angular feature and an image-like feature to train
the temporal feature state modeling and total trajectory shape modeling, respectively. They
split the recognition process into three parts: trajectory shape modeling, temporal feature
state modeling, and score fusion of two modeling results. In the trajectory shape modeling,
the total trajectory of segmented gesture is spotted on a two-dimensional plane to generate
a gray-scale image like feature. The temporal state modeling, the angular features has been
derived from the segmented data. Yang’s method employed the CNN structure and the CRF
structure to learn the trajectory shape and temporal state modeling, respectively. Finally, the
fusion score from two output structures has been computed. From their experiments, it has
confirmed that the fusion technique outperforms all of the previous works.
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Figure 2.15: Yang’s fusion framework.

2.5 Motion word recognition techniques
The motion word is complicated for automatic recognition because it lacks delimited se-

quence and concrete anchoring. Some works suggest a specific clue to signify the starting
and stopping point of writing activity. Although writing with an explicit delimiter obstructs
the user experience, the tracking data may be recognized with current recognition techniques.

Figure 2.16: Example of a word in finger-writing dataset.

Fig. 2.16 exemplifies a sample from the finger-writing dataset. A record is mixed with
writing and non-writing motion. We plot the motion trajectory in x- and y-axis separately
for easy visualization in which colored blocks are used for masking a writing motion. Each
colored area indicates a character by manual segmentation. From this figure, we can confirm
that the meaningful trajectory is less than a half of the record. There are the ligatures between
the written characters.

A general framework for the motion word recognition [3, 64, 80, 81] comprises two main
processes: the gesture spotting process and gesture recognition process as illustrated in
Fig. 2.17. The gesture spotting process attempts locating the meaningful patterns from the
motion stream to find the start and the end points of the gesture. In other words, it locates
the rightful gesture while ignoring the rest. The gesture spotting process consists of three
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consequence steps: motion tracking, feature processing, and gesture segmentation. After the
gesture was segmented, it may be recognized using the technique which is similar to the
motion character recognition. In general, the gesture spotting and gesture recognition are
performed with either supervised or unsupervised learning.

Sensing

data

Motion

Tracking

Feature

Processing

Gesture

Segmentation

Gesture

Recognition

Predicting

gesture

gesture spotting

Figure 2.17: Block diagram of a general framework for the air-writing recognition.

Literature works of motion word recognition technique are summarized in Table 2.2. There
are small number of researches which report the motion word recognition techniques. The
common technique used for recognizing the motion word is the HMM. Recognizing a motion

Table 2.2: Summary of related works in motion word recognition.

Authors Year Used features Recognition method Dataset
Amma et al. [36] 2012 Angular velocity,

Mean Shift Accel-
eration

SVM and HMM private dataset

Chen et al. [52] 2016 Position, Velocity,
Orientation

HMM 6DMG

Kumar et al. [28] 2017 Distance, Angular,
Data Distribution,
Curvature, Slope,
Direction

HMM and BLSTM Leap motion
and Kinect
dataset

Gang and Wang
[82]

2017 Offset, Curvature,
Writing Direction

Deep Bidirectional
RNN

private dataset

word is more complicated than a motion character approach. If the spotting process can not
segment the word writing correctly, the performance of a recognition algorithm is affected.
Even though the word gesture is perfectly spotted, the ligature between characters in the word
remains the challenge. Therefore, many techniques have been proposed for the segmentation
process, and the most efficient method that still plays a crucial role is over-segmentation [52].
The basic concept underlying the over-segmentation is dividing a motion data into a sequence
of small motions where it can be used to construct a candidate prediction. Whereas the over-
segmentation increases the chances of finding the boundaries of the gesture, it needs a high
computational cost of generating many insignificant boundaries.

A segmentation free approach [83] is an alternative method, which completely avoids an
explicit spotting process. The spotting and recognition process are executed concurrently,
which make this approach flexible and reduce computational cost. In general, the motion
stream is converted into slices by sliding window technique. After that, the training features
are extracted from each slice and fed to the learning structure. In the training process, the
Connectionist Temporal Classification (CTC) loss [85] can be applied to avoid a labeling
issue, details of the CTC loss are described in Chapter 4.
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2.6 The 6DMG database
The 6DMG [24], stands for 6 degrees of freedom of the motion gesture, comprises three

datasets, namely character dataset, palm-writing dataset, and finger-writing dataset. The char-
acter dataset and palm-writing dataset were recorded by a WorldViz PPT-X4 and Wiimote
modules by using user’s hand as a tracking point. In the case of finger writing, samples were
captured by the Leap motion sensor as illustrated in Fig. 2.18 (b). The writing trajectory is
tracked by the tip of an index finger. Specific details of each dataset are indicated as follows.

(a) Example of palm-writing [84]. (b) Example of finger-writing.

Figure 2.18: Example of palm-writing and finger-writing.

2.6.1 The character dataset

The character dataset comprises three types of gestures: numeric gesture, alphabet gesture,
and simple gesture. In this thesis we emphasize on learning alphabet and numeric gestures.
The alphabet gesture is a set of the uppercase characters from “A” to “Z” while the numeric
is a set of Arabic numbers. The gestures in the database are captured by the hybrid approach
between optical tracking system and inertial sensor at 60 Hz. The database was collected from
25 participants. Each type of gestures was written 10 times by each participant, which makes
the total number of samples 6,500. The numeric gesture was collected from 6 participants
while each character was written 10 times. The simple gesture contains 20 motion gestures,
which have been categorized into 5 groups: swipe, forth and back, shape, circle, and twist
motions. The minimum and the maximum values of the hand position, in x- and y-directions,
were analyzed and summarized in Table. 2.3. According to this table, we can approximate the
writing area for each class of gesture. The numeric gesture was written on the virtual plane
size of 0.73 meters by 0.75 meters. In the case of the alphabet gesture, the writing space is
1.04 meters by 1.00 meter. The simple gesture was performed on the virtual plane size of
1.61 meters by 1.24 meters.
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Table 2.3: Writing area analysis of the character dataset.

Gesture X Position (m) Y Position (m)
Min. Max. Min. Max.

Numeric gesture -0.3727 0.3545 -0.2967 0.4493
Alphabet gesture -0.4803 0.5610 -0.4141 0.5835
Simple gesture -0.7276 0.8864 -0.4071 0.8287

We analyze the writing time duration on each class of gesture in seconds, and then list it in
Table 2.4 and Table 2.5. The shortest writing duration in the numeric gesture is 0.48 seconds,

Table 2.4: Writing duration of each class of the numeric gesture in seconds.

gesture writing duration (seconds) gesture writing duration (seconds)
Min. Max. Mean STD. Min. Max. Mean STD.

0 0.98 2.80 1.62 0.48 5 1.72 3.63 2.47 0.43
1 0.48 1.82 0.84 0.33 6 1.05 2.42 1.58 0.35
2 1.05 2.87 1.75 0.44 7 1.28 2.70 1.83 0.39
3 1.27 3.00 2.03 0.46 8 1.43 2.98 2.11 0.43
4 1.32 2.85 2.20 0.41 9 1.30 2.62 1.81 0.33

which state in the “1” gesture. While the longest gesture is the “5,” which is performed in
3.67 seconds. The mean of the writing duration on the numeric gesture is 1.82 seconds. In
the case of alphabetic gesture, the shortest gesture is “I,” which is performed in 0.45 seconds.
And the longest gesture is “E,” where the duration is 6.87 seconds. The average of writing
duration on alphabet gesture is 1.83 seconds.

Table 2.5: Writing duration of each class of the alphabet gesture in seconds.

gesture writing duration (seconds) gesture writing duration (seconds)
Min. Max. Mean STD. Min. Max. Mean STD.

A 1.62 4.47 2.66 0.62 N 1.18 3.17 1.93 0.35
B 1.50 4.40 2.61 0.62 O 0.82 2.28 1.42 0.29
C 0.58 1.97 1.29 0.33 P 1.12 3.38 1.79 0.34
D 1.05 2.90 1.98 0.41 Q 1.07 3.47 1.99 0.44
E 1.72 6.87 3.18 0.81 R 1.48 3.45 2.25 0.41
F 1.37 3.45 2.21 0.46 S 0.92 2.45 1.54 0.30
G 1.38 4.28 2.49 0.58 T 0.92 2.27 1.48 0.27
H 1.13 3.72 2.29 0.50 U 0.70 2.13 1.22 0.24
I 0.45 1.42 0.71 0.17 V 0.65 1.75 1.12 0.19
J 0.62 1.58 1.01 0.20 W 1.08 2.63 1.84 0.32
K 1.23 3.62 2.27 0.44 X 0.97 2.17 1.52 0.27
L 0.57 1.83 1.08 0.25 Y 1.10 2.73 1.76 0.34
M 1.35 3.88 2.44 0.49 Z 0.78 2.47 1.57 0.31
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2.6.2 The palm-writing dataset

The palm-writing dataset is composed of 40 words collected from television channels and
internet services. The longest word is “DISCOVERY” and the shortest one consists of two
characters. The words have been divided into four sets and listed in Table 2.6. Each set has 10
words with four characters per word on average. The samples in palm-writing dataset have
been collected from 25 participants. Only 22 people completely perform all 40 words in the
vocabulary. Every subject wrote 5 times for each word. The total number of samples in this
dataset is 4,665. The palm-writing dataset was written in an over-writing style. The samples
in the dataset cover all 26 capital characters.

Table 2.6: Four sets of the palm-writing dataset.

Set 1 Set 2 Set 3 Set 4
ABC BBC WEATHER GAME
CBS FX NEWS VOICE
CNN HULU MLB CALL
DISCOVERY TNT NFL MAIL
DISNEY MUSIC TRAVEL MSG
ESPN JAZZ POKER FB
FOX ROCK FOOD YOU
HBO DRAMA KID GOOGLE
NBC MOVIE MAP SKYPE
TBS SPORT TV QUIZ

We have inferred the size of the writing plane by analyzing the motion trajectory and
recorded the results in Table 2.7. The shortest writing duration is a “TV” whose data length is
1.77 seconds. The longest gesture is a “WEATHER,” which was performed in 34.23 seconds.
The size of the writing area is 1.06 meters by 1.10 meters. When considering the average of
writing duration per character, the minimum value is 0.88 seconds.

Table 2.7: Palm-writing dataset analysis.

X Position (m) Y Position (m) Gesture duration per character (s)
Min. Max. Min. Max. Min. Mean Max.
-0.50 0.56 -0.47 0.63 0.88 2.04 4.89

For more information, we have analyzed the statistical information of characters in word
dataset and plotted in Fig. 2.19. The most frequent character written in the dataset is “O,”
which occupies 8.12%. The portions of “J” and “Q” are less than 1 percent.

2.6.3 The finger-writing dataset

Finger-writing refers to the writing motion that is rendered by the tip of an index fin-
ger [86–88]. The samples in this dataset were captured by the Leap motion sensor in three-
dimensional space. The thumb-up and thumb-close gestures were adopted for labeling the
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Figure 2.19: Statistics of relative frequency of character in the palm-writing dataset.

ground truth of the writing. The thumbs-up gesture indicates the starting point of the writ-
ing while the thumb-close gesture states the end of the motion. The x- and y-axis coordi-
nates were laid in the horizontal plane in front of the user. The finger-writing samples were

(a) Thumb-up gesture. (b) Thumb-close gesture.

Figure 2.20: Thumb-up and thumb-close gestures.

recorded from 18 participants. Each person performs 150 different words: 100 common
words and 50 unique words. The unique words are varied for everyone. The total number
of samples in this database is 2,700. For all the samples in the dataset, the motion of the
character is written with the same stroke order specified in the finger-writing dataset. Each
record contains the random motion at the beginning and the end of the writing. Ergonomic
information and writing duration of the finger writing have been analyzed, and then listed in
Table. 2.8. The shortest word is a “TH,” which is performed in 5.25 seconds. The longest
gesture is a “KNOW,” which is recorded in 43.07 seconds. The size of the writing area is
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201.5 millimeters by 362.9 millimeters. When considering the average of writing duration
per character, the minimum value is 0.57 seconds.

Table 2.8: Finger-writing dataset analysis.

X Position (mm) Y Position (mm) Gesture duration per character (s)
Min. Max. Min. Max. Min. Mean Max.
-94.7 106.8 0.0 362.9 0.57 1.32 3.22

For more information, the statistical information of characters in the finger writing dataset
has been analyzed and then illustrated in Fig. 2.21. The most frequent character written
the dataset is “E,” which occupies 10.44%. The least written character is “Z,” which equals
0.70%.
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Figure 2.21: Statistics of relative frequency of character in finger-writing dataset.

2.7 Summary
This chapter introduced the basic knowledge of the air-writing. We classified the air-

writing into two types: the motion character and the motion word. In the motion character,
the gesture was assumed to be correctly segmented; therefore, the spotting process is not nec-
essary. The motion character may be learned with state-of-the-art techniques such as CNN,
HMM, CRF, and DTW. In case of the motion word, a sample comprises multiple characters.
In general, the recognition framework firstly discriminates between a writing part and non-
writing part. Then, recognition algorithms which are similar to the motion word are applied
to. This technique needs a high processing cost because it need to execute two processes. We
can reduce the processing time by considering the segmentation free technique.

In the last section, we also analyzed samples in the 6DMG database. The 6DMG database
comprises three datasets: the character dataset, the palm-writing dataset, and the finger-
writing dataset. The character dataset is used for evaluating the performance of the motion
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character recognition technique in Chapter 3. The palm-writing dataset and finger-writing
dataset are used for evaluating the performance of the motion word recognition in Chapter 4.
We recorded the writing duration per character of the palm-writing dataset and finger-writing
dataset for setting up the maximum size of a sliding window. The minimum values of the
writing duration are 0.88 second and 0.57 second for the palm-writing and finger-writing,
respectively.
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Chapter 3

Motion character recognition

This chapter presents details of the fusion structure for the motion character recognition.
The main structure of the proposed network has been developed from Yang’s work [20].
Instead of fusing the final score from each modeling similar to Yang’s work, we employ
the deep neural network for learning the fusion feature to improve the recognition accuracy.
When considering the hand movement with the temporal features, some works successfully
classify the writing gesture. However, the recognition result may suffer if the gesture is
much complicated. The background idea of this work is to gain the advantage from both
spatial and temporal views. By employing the spatial information augmented with temporal
information, the learning ability of the classifier may be improved even if the hand movement
includes high variability and inconsistency. One target of this work is developing the learning
structure, which can learn both spatial and temporal features concurrently.

The performance of the proposed network has been evaluated using the state-of-the-art
techniques and Yang’s work [20] as baseline references. From the results, it is confirmed that
learning the isolated written character using hand position feature and image-like feature is
adequate. We also investigated the effects of the number of RNN units and the number of
convolution maps in the fusion structure.

3.1 The fusion structure
In this section, we propose a method for recognizing the motion character based on fusion

networks as illustrated in Fig. 3.1. We assume the gesture has been spotted correctly. The
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Figure 3.1: Structure of fusion network for character recognition.
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entire trajectory has been used to derive spatial feature and temporal features. The spatial
feature was created by plotting the hand location on the two-dimension plane. The temporal
features that have been studied are hand position, angular, and velocity. By learning both
spatial and temporal features, the proposed network can acquire more information than the
conventional techniques. For learning a spatial feature, we deploy CNN which has shown
a high performance in the handwritten recognition [48]. For learning the temporal features,
Recurrent Neural Network (RNN) is considered. The proposed framework mainly comprises
three parts, i.e. CNN part, RNN part, and learning part. The CNN part and RNN part are
mainly assumed to extract the high dimensional spatial feature and temporal feature, respec-
tively. In the succeeding stage, we fuse both features and utilize the fully connected layers to
learn these features. Specific detail of each part is presented as follows.

3.1.1 Convolutional neural network part

The CNN part is made up of neurons that have the learnable weights and biases. It has been
designed for extracting the high dimensional features from an image. The CNN comprises
two types of layers: convolution layers, and subsampling layers. A convolution layer is the
core building block of the CNN that does most of the computation. It transforms the input
image to the high-level features such as edge, orientation, blob, or eventually honeycomb or
wheel-like patterns. Rather than focusing on one pixel at a time, a convolution layer feeds
input data to the predefined filters to generate the feature maps. The important parameters
that should be carefully considered are the filter size and the number of filters because these
parameters are directly proportional to the computation time and the size of memory. Another
type of layer is a subsampling layer, which performs a downsampling operation along the
spatial dimensions. The feature maps from a convolution layer are fed into a subsampling
layer one map at a time. Fig. 3.2 illustrates an exemplar of a process in the subsampling
layer. A feature map is divided in small portions. Then the largest value from each portion is
placed in a new matrix while the rest are discarded to generate the new smaller feature map.
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Figure 3.2: Exemplar of a process in subsampling layer.

In this work, the CNN part consists of three convolution layers (C1,C2,C3) and two sub-
sampling layers (S 1,S 2) as depicted in Fig. 3.3. All of the convolution layers utilize the fixed
size 5×5 convolution kernel. The kernel size of all subsampling layers is 2×2, which reduces
number of trainable parameters by four folds from the previous layer. The spatial feature for
training the CNN part is created by plotting the normalized trajectory on a two-dimensional
plane. The two consecutive points in the image are connected by a linear approximation.
Finally, the path of trajectory image is smoothed by the Gaussian filter. In this work, the
variance (σ) of the Gaussian function is set to 0.5 and the kernel size of the image filter is
fixed to 3 × 3 pixels.



3.1 The fusion structure 27

*LL T�`i

r`BiBM; i`�D2+iQ`v
UaT�iB�H 72�im`2V

ky
72
�i

m`
2
K

�T
b

ky
72
�i

m`
2
K

�T
b

8y
72
�i

m`
2
K

�T
b

C1

Y
_2Gm

S1 C2

Y
_2Gm

S2 C3

Y
_2Gm

Ci , *QMpQHmiBQM H�v2`
Si , am#b�KTHBM; H�v2`

Figure 3.3: Convolution part of CNN.

The first convolution layer has one convolution filter, which produces a single feature map
of the same size as an input image. The second convolution layer has 20 filters, so that the
dimension and the number of feature maps at C2 are 16× 16 and 20, respectively. In the third
convolution layer, the number of convolution filters is 50, and therefore 50 feature maps, each
with the size of 8 × 8, are produced.

3.1.2 Recurrent neural network part

The RNN part comprises the RNN units each with a loop inside allowing previous informa-
tion to persist. The structure of the RNN unit is represented in Fig. 3.4. In general, the RNN
unit uses internal memory to store previous information while processing new input. The
RNN network is ideal for learning the time series data because it performs the same compu-
tation for every element in the input data. The RNN has been proved successful for learning
the dynamic time sequences such as natural language processing [85], speech recognition,
and handwriting recognition [89–91].

ht−1

xt

σ ht

Figure 3.4: Structure of the RNN unit.

The RNN has been designed for processing variable length sequential data. The state is
accumulated until the first output is created. At each time step, the RNN unit updates a hidden
state by computing from the current input and the previous state. Let X = (x1, x2, ..., xT )
denotes an input sequence where xt is an input vector at time step t. The RNN updates the
recurrent hidden state ht based on the current input vector xt and the previous hidden state
ht−1 as
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ht =

 0 if t < 0
σ(ht−1, xt) otherwise,

(3.1)

where the σ is a nonlinear function. There are three main types of nonlinear functions of
RNN that are usually deployed in many applications. The first one is the sigmoid function,
of RNN defined by f (x) = 1/(1 + e−x). In general, the sigmoid function is monotonic which
squashes the input value into a range between 0 and 1 as illustrated in Fig. 3.5 (a). However,
this function saturates the gradients. Another function is the hyperbolic tangent, which is
defined by f (x) = (1 − 1e−2x)/(1 + e−2x), which normalizes a real-valued number to a range
between -1 and 1 as shown in Fig. 3.5 (b). Even though the output of the hyperbolic tangent
is similar to the sigmoid function, the output is zero-centered. When the input equals to zero
the output equals to zero. The main advantage of the hyperbolic tangent is that the negative
inputs will be mapped strongly negative, and the zero inputs will be mapped near zero. The
third one is the Rectified Linear unit (ReLu). It has become popular in the modern neural
network structure. The output function is defined by f (x) = max(0, x). When the input is less
than zero, the output will be zero as illustrated in Fig. 3.5 (c). The output range of ReLu is
[0, ∞) which means it can blow up the activation. Many empirical studies have proven that
the ReLu function is easier to optimize and converged faster than the others.

Figure 3.5: Graphs of nonlinear functions.

A Long-Short-Term Memory (LSTM) is a type of RNN introduced by Hochreiter and
Schmidhuber in 1997 [92]. It has been designed to overcome the vanishing gradient problem,
which can retain information for long periods of time. This advantage allows important
information learned from the early state impacts on the decision at the present state of the
sequence. The LSTM unit consists of internal gates to control information flow through
the learning parameters. Each unit cell of the LSTM comprises three main gates namely,
input gate (it), forget gate ( ft), and output gate (ot). The subscript t in each gate denotes
a computation at time step t. The output of each gate is squashed with the sigmoid (σ)
activation function.

We implement the RNN part by considering a Bidirectional Long-Short-Term Memory
(BLSTM) network [89] as shown in Fig. 3.6. The main structure comprises two layers of
the LSTM units. The first layer was designed for learning information from the writing
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Figure 3.6: Structure of the RNN part.

trajectory in the forward direction. The other layer captures the writing characteristic in the
backward direction. By deploying the bidirectional structure, the fusion network can learn
the information in both forward and backward directions. Finally, the outputs of both layers
were fused to generate the prediction. This type of structure can improve the performance of
the gesture classification. The complete structure of the LSTM unit that we have deployed
can be described by

it = σ(Wixt + Uiht−1 + bi), (3.2)
ft = σ(W f xt + U f ht−1 + b f ), (3.3)
ot = σ(Woht + Uoht−1 + bo), (3.4)
ĉt = tanh(Wcxt + Ucht−1 + bc), (3.5)
ct = ft ⊙ ct−1 + it ⊙ ĉt, (3.6)
ht = ot ⊙ tanh(ct), (3.7)

where W∗ is an adaptive weight matrix of the input in the recurrent layer, U∗ is an internal
weight matrix in the recurrent layer, b∗ is a bias vector in each part of the LSTM unit, and σ
is a nonlinear activation function. The operator ⊙ denotes the element-wise product of two
matrices. The output of RNN part (yt) is computed by the hidden state matrix in the forward
(
−→
h ) and backward (

←−
h ) layers as

yt = tanh(W−→
hy

−→
h t +W←−

hy

←−
h t + by). (3.8)

3.1.3 Learning part

The learning part of the proposed network comprises three fully connected layers as illus-
trated in Fig. 3.7, where the last one is a decision layer. The number of neuron in the first
and second layers are 200 and 100, respectively. In the decision layer, the number of neurons
depends on the number of the gesture classes. For learning the alphabet gesture, the decision
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layer comprises 26 neurons, while for learning the numeric gesture, the number of neurons
in the decision layer is 10. The learning parameters from CNN and RNN parts are flattened
and combined to generate input for the learning part.
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Figure 3.7: Structure of the learning part.
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Figure 3.8: Flattening and combining process in learning part.

The process that generates input for the learning part is illustrated in Fig. 3.8. The feature
maps from the CNN part are converted into a vector, namely a flat feature. Then, a flat
feature and the output of the RNN part are combined. To avoid over-fitting, we also applied
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the dropout technique [93] for generalizing the learning parameters. The fusion score at the
decision layer of the proposed framework is computed by the Softmax function as

ql = softmax

 M∑
j=1

w jσ

 D∑
i=1

wiθi + bi

 + b j

 , (3.9)

where θi is the learnable parameters from the CNN and RNN part. Other variables wi, w j,
D, M, bi and b j are weight matrix of the first layer, the weight matrix of the second layer,
numbers of neurons in the first layer, number of neuron in he second layer, bias vector in the
input layer, and bias vector in hidden layer, respectively. The prediction class is computed
by maximizing the output q̂ = argmax{ql}. For learning the alphabet gesture, the output is a
set of the upper case letter, i.e. ql ∈ {A, B, . . . , Z}. For the numeric gesture, the output is a set
of digits, i.e. ql ∈ {0, 1, . . . , 9}. For learning a temporal information, we utilize RNN which
receives sequence of x- and y- positions. The input size of RNN part is fixed to the number
of recurrent units, while the output size is doubled.

3.2 K-fold cross-validation technique
For evaluating the performance of the proposed framework, we employ the K-fold cross-

validation technique which is commonly conducted to verify the learning model. This method
is suitable for evaluating the framework where the size of test samples is small. The samples
are randomly partitioned into K mutually exclusive subsets. Each subset is approximately
divided equal-size as illustrated in Fig. 3.9. One subset is kept for testing while the others are

· · ·1st iteration

training set testing set

· · ·2nd iteration

· · ·3rd iteration

· · · · · · · · ·

· · ·k
th iteration

training

testing

Figure 3.9: K fold cross validation.

used for training the network. This process is iterated throughout the whole K folds and then
the results are computed over all the experiments. The average result is computed by

ECV =
1
K

K∑
k=1

Ek, (3.10)
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where ECV is the expected outcome from the cross-validation and Ek is an expected value in
the kth fold. The K parameter is carefully selected because a lower value of K is more biased,
and hence undesirable. On the other hand, a high value of K is less biased, but it can suffer
from large variability. Moreover, when increasing the K value, the computation time of all
folds also grows. In general, the recommended value for K in the motion gesture recognition
should be more than 5 [94]. For investigating the performance of the proposed framework,
the K value was set to 20 and 10 for the motion character and motion word, respectively.

In this research, we considered a similar network structure for learning both alphabet and
numeric gestures so that our network can handle with both gestures in the same structure.
However, during the evaluation, we have tested alphabet and numeric gestures separately in
order to compare the results with previous works. The primary difference between the fusion
networks for learning alphabet and numeric gesture is the number of fully connected neurons
in the decision layer.

3.3 Experiments and results
This section presents the experiment that we have conducted in the following four sub-

sections. We first studied the tuning parameters of the proposed network by setting many
parameters similar to Yang’s work. Then the training history of the proposed model has been
recorded. By monitoring the training and validating curves, the graphs ensure that the train-
ing and tuning parameters have been set correctly. In the learning process, the over-fitting
is carefully considered. We added the dropout layer in many layers to avoid the over-fitting
effect. The performance of the proposed structure has been investigated on the alphabet and
numeric gesture separately. We also examined the effect of learning features and important
parameters of the network.

3.3.1 Feature processing

Writing a character in free-space without any visual or haptic feedbacks makes a writ-
ing trajectory inconsistency. Even though the same writer draws the same character, the
shape and writing duration of the characters are varied. The number of sampling points of
the gesture also varies. This phenomenon makes it difficult to execute the classification and
recognition. To avoid this problem, a technique that is usually considered is resampling the
writing trajectory with equal distance [95]. However, this technique incurs high computing
cost. Therefore, instead of using fixed distance resampling technique, we employed a sim-
ple rule to remove the redundant points. Specifically, distances of the consecutive points are
calculated. If a distance is less than a certain threshold value, the current point would be re-
moved from the sequence. In the experiment, the threshold value for removing the redundant
data is set at 5 centimeters. The distance between the consecutive points is calculated as

di =

√
(xi − xi−1)2 + (yi − yi−1)2. (3.11)

Deploying this technique can reduce the time for training the network. Before feeding the ges-
ture in the fusion networks, we normalize trajectory with a simple process similar to Jaeger’s
work [96]. The writing trajectory was first splitted into x and y sequences. The normalized
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trajectory pni is calculated by
pni =

pi

max(δx, δy)
, (3.12)

where the δx and δy are the differences between the lowest and highest values of the position
in x-axis and y-axis, respectively. The δx and δy are computed as

δx =
N

max
i=1

(xi) −
N

min
i=1

(xi), (3.13)

δy =
N

max
i=1

(yi) −
N

min
i=1

(yi).

This normalization method is simple and the shape of the gesture is kept unchanged.

3.3.2 Model training history

While training the deep neural network, the learning rate is an important verifying quantity
to tune the hyperparameters for the deep believe model. We monitor the performance of the
proposed method by testing the model on the alphabet dataset. The gestures were partitioned
into the training and validation sets. The training data is 90% of the samples, while 10% is
used for validation. In the training process, the results were obtained by applying the stochas-
tic gradient descent with a mini-batch size of 32. The momentum of learning parameters are
set in the same manner as the demonstration in [97]. The results from training and validation
datasets on alphabet gesture for each epoch are plotted in Fig. 3.10.
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Figure 3.10: Accuracy curves of the alphabet gesture.

From the curves, the validation accuracy tracks the training curve fairly well. Moreover,
the validation accuracy converges in less than 20 epochs. These graphs indicate that the
learning ability of the proposed network is more than 98%, which is enough for the air-
writing recognition. To confirm the performance of the proposed network, we have plotted
the training and validation loss in Fig. 3.11.
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Figure 3.11: Validation loss of the proposed model on the alphabet gesture.

From the plot in Fig. 3.11, the training and validation losses decrease dramatically and
converge after 10 epochs. It implies that the proposed model works well with the air-writing
gesture and the hyperparameters have been set appropriately. For the next experiments, we
decided to set the number of epochs to 50.

3.3.3 Performance comparison

In this section, the performance of the proposed network is first examined by using the
CNN, BLSTM networks, and Yang’s work [20] as the base references. We set the number
of BLSTM units to 40 and applying a 20-fold cross-validation technique to find the average
performance of the proposed network. We initialized the cross-validation parameter with a
specifical seed, which makes the results reproducible and comparable with the based refer-
ences. Experimental results on the alphabet and numeric gesture are summarized and listed in
Table 3.1. The recognition accuracy of the proposed structure achieves 99.83% and 99.25%
on the numeric and alphabet gesture, respectively.

Table 3.1: Accuracy comparison of the fusion network and base references.

Dataset Base References Fusion
NetworkCNN BLSTM Yang’s [20]

Numeric 98.00% 99.3% 98.99% 99.83%
Alphabet 97.83% 99.03% 98.57% 99.25%

In the case of a numeric gesture, the accuracy of the proposed structure improves by 1.83%
and 0.53% when compared with the CNN and BLSTM networks, respectively. By investi-
gating results on the alphabet gesture, the fusion network gives the higher recognition rate
than the CNN and BLSTM by 1.42% and 0.22%, respectively. From the results in this table,
we can confirm that the recognition accuracies of the proposed network are better than those
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of the based references. When compared with Yang’s work [20], the accuracies improve
0.68% and 0.84% on the alphabet and numeric gesture, respectively. For detailed evaluation,
the error rate of each class of the numeric and alphabet gesture are plotted in Fig. 3.12 and
Fig. 3.13, respectively. From the graph in Fig. 3.12, the performance of the fusion network is
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Figure 3.12: Error rate on each class of the numeric gesture.

better than those of both CNN and BLSTM in all the classes. There is only one error located
in the “6” gesture. For inspecting the occlusion class of the “6”, we have plotted the results
in the confusion matrix as shown in Fig. 3.14. Based on the result in the confusion matrix,
the actual class of “6” gesture is predicted as “0” for 1.67%.
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Figure 3.13: Error rate on each class of the alphabet gesture.

For the alphabet dataset, the performance of the fusion network is better than that of the
CNN in all classes. While comparing the results from the fusion network with the BLSTM,
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Figure 3.14: The confusion matrix of the numeric gesture.

the errors of some classes in the BLSTM are better than the proposed network. However, the
BLSTM may incur a considerable amount of errors in some classes. For precise interpreting,
the results of the proposed network are plotted in the confusion matrix as depicted in Fig. 3.15

Figure 3.15: Confusion matrix of the alphabet gesture.
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From the confusion matrix, there are eight classes of gestures, i.e. “A”, “I”, “J”, “L”, “O”,
“R”, “W”, “Z”, which are predicted correctly. The two most misclassified classes are stated
at the “P” and “D” gestures. The actual “P” gesture was classified as “D” gesture for 3.2%
and the actual “P” gesture was predicted as “D” gesture for 2.4%.

3.3.4 Effect of the training features and RNN units

The main objective of this section is examining the effective learning features in the RNN
part. From the reviews, there are three types of features that we are interested in: the hand
position, the writing velocity, and the angular feature. We have investigated the effect of RNN
units in the fusion network by varying the number of the unit cells from 1 to 40. We derive

(xi−1, yi−1)

(xi, yi)

(xi+1, yi+1)

θi

θi+1

Figure 3.16: Angular feature.

two types of features: the angular and velocity features [51,52] from the hand position, since
there features are commonly used for hand gesture recognition. The sequence of angular
features are denoted by A = {θ1, θ2, . . . , θN−1} where each element θi in this feature is an
angle between a current and a previous hand position as depicted in Fig. 3.16. By using the
current position as a reference, the angular feature has been measured from the positive x-
axis going counterclockwise. The angular feature converts absolute position to the relative
direction data. The element of angular feature is computed by

θi =


arctan

(
∆y
∆x

)
, ∆x ≥ 0and ∆y ≥ 0

π − arctan
(
∆y
∆x

)
, ∆x < 0and ∆y ≥ 0

π + arctan
(
∆y
∆x

)
, ∆x ≤ 0and ∆y < 0

2π − arctan
(
∆y
∆x

)
, ∆x > 0and ∆y < 0

(3.14)

where ∆x = xi − xi−1 and ∆y = yi − yi−1 are the distances of consecutive points in x-axis and
y-axis, respectively. The range of angular feature is bounded by the interval [0,2π]. Before
feeding the angular feature to the fusion networks, every single element of the feature is
normalized by 2π. The other feature that we have studied is a velocity feature. This feature
has been selected based on the fact that each gesture is made at different speeds. Many
learning structures can classify a simple gesture, almost non-varying speed, and complex
gestures using the velocity feature. We can view the velocity feature as a distance between
the two successive points. Let us denote the velocity feature by V = {d1, d2, . . . , dN−1}. Each
element of the angular feature is derived from the normalized position using the Euclidean
distance in Eq. 3.11. The maximum velocity finally normalizes the velocity feature in each
gesture, which is similar to the normalized process in the position feature.
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Figure 3.17: Relationship of BLSTM unit and accuracy in numeric gesture.

We start examining the effect of the BLSTM unit in the fusion network by varying the
number of BLSTM units from 1 to 40. The training parameters and optimization technique
have been set as same as the previous experiment. The proposed network has been trained
with the combination of hand position, angular, and velocity features. The results of the
numeric and alphabet gestures are plotted in Fig. 3.17 and Fig. 3.18, respectively. To analyze
the effect of RNN units, we also fit the relationship of the accuracy and RNN units by using
a 3rd order polynomial with the minimum mean squared error. Graphs in Fig. 3.17 illustrate
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Figure 3.18: Relationship of BLSTM unit and accuracy in alphabet gesture.

the relationship between the number of LSTM unit and the average accuracy. By training
the fusion network with the image-like and hand position features, the accuracy improves,
as the number of LSTM unit increases, at the beginning and maintains around 99.6%. For
more information, the accuracy depends on the number of BLSTM units at the beginning,
and then maintains when the number of BLSTM units is more than 25. While training the
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fusion network using more features, the accuracy of the proposed structure improves as the
number of LSTM unit increases. When the number of BLSTM units is more than 15, the
accuracy maintains at 99.7%. These results illustrate that the accuracy of learning three
features improves by approximately 0.1% when compared with a hand position feature.

The results from the alphabet dataset are similar to the previous experiment. By training
the proposed network with three features, the recognition accuracy increases and then main-
tains when the number of BLSTM units is higher than 25. When comparing the result from
multiple features with a hand position feature, the accuracy changes by less than 0.1%.

3.3.5 Performance of simplified bidirectional RNN network

Referring to the experiments in section 3.3.3 and section 3.3.4, training the BLSTM net-
work is relatively slow due to the complexity of the BLSTM structure. There are many
parameters that need to be calculated every time step, especially the weight matrix that is
involved in the gate mechanism. In this section, we investigate the effect of the recurrent part.
Instead of using a high computational cost structure like the LSTM network, we employ a
simple recurrent architecture which is described by

ht = σ(Whxxt +Whhht−1 + bn), (3.15)

yt = W−→
hy

−→
ht +W←−

hy

←−
ht + by.

For a fair comparison, we set the training parameters of the simplified Bidirectional Recur-
rent Neural Network (BRNN) and the BLSTM fusion structure similarly. The number of unit
cells in the recurrent part has been investigated. We examined the recognition accuracy of
each type of gesture by varying the number of unit cell in the RNN part from 1 to 40 and then
plotted the results in the graphs. For determining general trend of the accuracy from both
structures we fit the results using the 3rd order polynomial with the mean square error. The
computation time and learnable parameters in both structure have been studied and recorded.
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Figure 3.19: Performance comparison between BLSTM and simplified BRNN network
in numeric gesture.
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Graphs in Fig. 3.19 illustrate the results on a numeric gesture. Both graphs demonstrate
the recognition capability of the fusion networks depended on the number of recurrent units,
which is similar to the results in the previous section. When the number of RNN units is
less than 15, the accuracy of the BLSTM fusion network is lower than the simple BRNN
by around 0.2%. From these graphs, the recognition accuracy from the simple structure is
better than the BLSTM fusion network. However, the performances of both structures are
slightly different. The results on the alphabet gesture have been depicted in Fig. 3.20. The
accuracy of the fusion framework increases relative to the number of recurrent units at the
beginning. Then it maintains at 99.07% when the number of recurrent units is greater than
25. The results from the simple BRNN are quite similar to the previous experiments. The
accuracy increases at the beginning and retains at 99.15% when the number of recurrent units
equals to 25. Comparing the results from two fusion structures, the performance of the simple
BRNN structure is greater than that of the BLSTM network at the beginning. The accuracy
of the simple structure maintains when the number of the recurrent units equals to 15 while
another still increases and stops at 25. However, the performance of the simplified networks
is comparable with the BLSTM fusion structure.

5 10 15 20 25 30 35 40

98.2

98.4

98.6

98.8

99.0

99.2

99.4

Accuracy (%)

RNN
units

fusion network
Simple structure

Figure 3.20: Performance comparison between BLSTM and simplified BRNN network
in alphabet gesture.

To evaluate the cost of the BLSTM and simplified BRNN network, we run the experiments
in an Intel Core i7 (3.4 GHz) Windows machine, and then record the average computation
time and adaptive parameters in Table 3.2. These experiments are coded in Python with Ten-
sorflow backend. The average predicting time of the BLSTM network is 5.57 milliseconds
and 5.15 milliseconds on a numeric and alphabet gesture, respectively. For the simplified
BRNN, the output gesture can be predicted within 2.98 milliseconds and 2.73 milliseconds
in the numeric and alphabet gesture, respectively. When comparing the computation time
of two networks, the training and testing time of the simplified network is reduced approx-
imately to half. The computation time of both networks gave confidence that the proposed
networks can be deployed in real-time applications. The results demonstrate that the adaptive
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parameters of the simplified BRNN network were reduced by 8.15% and 7.91% in numeric
and alphabet gesture, respectively.

Table 3.2: Cost comparison between BLSTM and simplified BRNN.

Gesture

BLSTM Simplified BRNN
Computation Adaptive

parameters

Computation Adaptive
parametersTime (ms) Time (ms)

Train Test Train Test
Numeric 73.47 5.57 51,476 32.84 2.98 47,276
Alphabet 57.13 5.15 53,092 25.65 2.73 48,892

In the final part of this section, we examine the effect of the number of convolution maps
in the fusion network. From the experiments in this section, the fusion networks reach high
performance when the number of recurrent units is more than 25. We examined the fusion
structures by choosing the number of BLSTM units of 25 and fixing the convolution kernel
size at 5 × 5 pixels. The number of feature maps in the third convolution layer C3 is varied
from 1 to 50. Then the results are plotted in Fig. 3.21.
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Figure 3.21: Effect of the number of convolution map in C3 layer.

The graph illustrates the recognition rate of fusion networks. Although the number of
recurrent units has been varied, the accuracy maintains around 99.18% and 99.5% for the
alphabet and numeric gesture, respectively. Obviously, the average accuracy changes slightly
in accordance with the number of convolution maps. We can simplify the fusion network by
reducing the number of convolution feature maps in the third CNN layer without disturbing
the overall performance of the proposed structures. From the graphs, the most appropriate
number of BRNN units is 30. Although this method reduces computation time insignificantly,
it can save memory usage for storing the trainable parameters.
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3.4 Conclusion
In this chapter, we introduced a fusion framework for air-writing recognition by model-

ing the hand trajectory using both spatial and temporal features. The proposed structure
comprises three main parts, i.e. CNN part, RNN part, and learning part. The CNN part is
employed to extract information from the spatial feature. To obtain the information from tem-
poral features, we deploy a BRNN in the RNN part. In the learning part, the extracted features
from the CNN part and the RNN part are combined and fed to the fully connected neural net-
works. We have conducted the experiments on the 6DMG dataset. The results demonstrated
the proposed networks achieve higher accuracy than other works. To investigate the perfor-
mance of the proposed structure, we conduct three experiments in the following.

The first experiment is comparing the accuracy of the proposed structure with the state-
of-the-art techniques. There are three techniques: CNN, BLSTM, and Yang’s work have
been selected as baseline references. The results confirmed that the accuracy of the pro-
posed technique outperforms both CNN and BLSTM networks in the alphabet and numeric
gesture. The best accuracy that we can achieve is 99.83% and 99.25% on the numeric and
alphabet gesture, respectively. When comparing the results with Yang’s work, the accuracy
of the proposed network improves by 0.68% and 0.84% in the alphabet and numeric gesture,
respectively. We have inspected more details of each class of gesture. The accuracy of the
fusion structure is better than those of the CNN and the BLSTM in all classes of the numeric
gesture. In the case of alphabet gesture, the recognition error of the fusion structure is lower
than the CNN in all classes. By comparing the results of fusion structure with the BLSTM,
the accuracy of the fusion structure is lower than the BLSTM technique in some classes. The
most misclassified classes are the “P” and the “D” gesture.

In the second experiment, the effects of the recurrent unit in the fusion structure have
been investigated by varying the number of BLSTM units from 1 to 40. We also study the
three common features: the hand position, the angular, and the velocity features. From the
results, the accuracy of the proposed structure improves while the BLSTM unit increases.
It maintains when the number of BLSTM units are more than 15 and 25 for learning the
numeric and alphabet gestures, respectively. We also demonstrated the fusion network did
not learn more information even when adding other training features. In other words, using
only hand position is adequate for the proposed structure.

Referring to the experiments in section 3.3.3 and section 3.3.4, training the proposed net-
work needs high processing cost due to the complexity of the network structure in the RNN
part. The last experiment, we reduce the computation time by simplifying the structure of
the LSTM cell. A simple Bidirectional RNN was introduced to speed up the computation
time for training and predicting. We found the fusion framework can learn the air-writing
although using a simple structure of BRNN. When decreasing the convolution map in the
third convolution layer, the memory usage was reduced. Even though the recurrent unit has
been simplified, the accuracy of the fusion structure drops only by 0.33% and 0.07% for the
numeric and alphabet gesture, respectively. From the experiments, the number of recurrent
units in the fusion network should be set at 25, and the number of convolution maps in the
third layer should be 30.
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Chapter 4

Motion word recognition

Learning the motion word is more difficult than the motion character because each sample
comprises not only gesture parts but also non-gesture parts. Moreover, there are ligatures
between characters in the motion word. When considering the public datasets that we used
for evaluating the proposed structure, the ground truth is labeled only writing and non-writing
parts. In other words, there is no ground truth for the ligature in the dataset. To avoid data
labelling issue, we deploy a segmentation free technique by adding a Connectionist Temporal
Classification (CTC) loss in a decision layer. Instead of employing an image-like feature
to represent the spatial information, we consider the path signature feature [98–102] which
incurs lower computational cost than an image-like feature.

This chapter gives improvement of the fusion scheme for motion word recognition. The
performance of the proposed structure was examined by two public datasets: the palm-writing
dataset and the finger-writing dataset. Although we set the training parameters for the palm-
writing dataset similar to the finger-writing dataset, the experiments were conducted sepa-
rately. We first compared the performance of the fusion scheme with the baseline references:
temporal modeling and spatial modeling. After that, the effect of the sliding window size was
examined and summarized at the end of the chapter.

4.1 Proposed framework
The primary goal of this chapter is developing a technique to recognize the air-writing on

a continuous motion stream. Recognizing the motion word is more complicated than the
motion character because it lacks the starting and stopping information. Moreover, there are
ligatures between characters in a word.

In this chapter, we considered a deep RNN [83] by stacking two layers of the LSTM units
to learn information on the air-writing. Details of the proposed structure are illustrated in
Fig. 4.1. The input feature comprises two types of features, i.e. temporal feature and spatial
feature. In the case of temporal feature, we deploy only a hand position. For learning the
spatial information, we considered a path signature feature which has proved to be sufficient
for handwriting recognition. The main advantage of the path signature feature is easy to
compute. In other words, employing the path signature feature can save computation time
and memory usage. At each time step, a hand position feature and path signature feature are
combined and fed to the proposed structure.

In the first layer, the hidden state is computed by using its previous state and the current
input. The hidden state in the second layer is computed by using the previous state of the
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Figure 4.1: Proposed structure for motion word recognition.

second layer and the current state of the first layer. In the output layer, we employed the CTC
loss [103] for mapping the air-writing information to a word label. The main advantage of
using the CTC loss is removing a predefined alignment for creating the training set. Even
though we can stack the RNN more than two layers for improving the learning capability, we
balance the computational cost with the performance of the proposed structure.

In practice, the number of recurrent units with CTC loss should be more than ten times of
the output label [103]. Referring to the information in section 2.6.2, the longest gesture label
is “DISCOVERY” which consists of 9 characters. Thus, we set the number of recurrent units
to 100 in all experiments. We avoid the over-fitting by applying a dropout technique, where
the dropout value is 20% in all LSTM layers [104,105]. More technically, the recurrent units
are randomly removed 20% on each epoch in a training phase.

4.1.1 Deep recurrent neural network

The main structure for learning the motion word is a multilayer LSTM network. The state
equations of each unit cell are computed by Equation (3.2) – (3.7). To extend the learning
capability of the LSTM structure, we deploy a deep learning approach by stacking two LSTM
layers. The hidden state of the first LSTM layer is fed directly to the input of the second
LSTM layer. The output yt of the proposed structure at each time step is computed by

yt = Wyht + by, (4.1)

where ht is an internal state of the LSTM units in the second layer. Wy and by are a weight
matrix and a bias vector in the output layer. For learning the air-writing without an explicit
delimiter, we employ the CTC loss building on top of the LSTM layers. A computation graph
of the proposed structure is illustrated in Fig 4.2.

x h
1

h
2 y L o

W1 W2

Figure 4.2: Computation graph of the proposed structure for motion word recognition.

There are two layers of the RNNs. In the first layer, the RNN generates the trainable
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parameters. Then, these parameters are fed to the second layer. By stacking the recurrent
layer on top of the other layer, the learning capability of the recurrent structure improves [106,
107]. The hidden states in the first and second layers are computed by

h1
t = H(Wxh1 xt +Wh1h1 h1

t−1 + b1
h), (4.2)

h2
t = H(Wh1h2 h2

t +Wh2h2 h2
t−1 + b2

h), (4.3)

where H is a nonlinear function in the hidden state. The h1
∗ and h2

∗ are vectors of the hidden
states in the first and second layer, respectively.

4.1.2 Connectionist temporal classification loss

The CTC loss was originally proposed by Grave et al. in 2005 [85]. Since then, it has been
used successfully in many applications such as speech recognition, handwriting recognition,
and phoneme recognition. The CTC introduces a new cost function for training unsegmented
sequence directly. The additional blank symbol ( ⟨ S PACE ⟩ ) is included between the pos-
sible labels. By adding the blank symbol at any location in the target labels, the learning
structure becomes more flexible. The learning structure gives a prediction at any moment
when the output probability is highly confident. In other words, the blank symbol allows the
learning structure to give a strong probability to the correct label at every point in time. The
structure of the CTC in this work is illustrated in Fig. 4.3, where the circles represent a matrix
of the conditional probability in the output layer. For instance, when the input features are
fed to the proposed network, the proposed structure computes the highest probability at each
time step. The word prediction is made by searching the path with the maximum probability.
The arrows in this figure represent a CTC path, which is used for a prediction.
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Figure 4.3: CTC structure in this work.

In the learning process, we introduce a unique character (∼) for indicating non-writing
event at the begin and at the end of the gesture. For instance, the label of the word “YOU”
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is “∼YOU∼”. The unique character (∼) is used for delimiting the predicted words. The (∼)
character is removed in the decoding process. Rather than predicting each label at a time,
the output sequence was predicted as a set of possible labels. Let y = {y[1], y[2], . . . , y[L]}
denotes the possible output labels, where y[w] is a vector with all possible characters in the
window w, and L is the number of LSTM units. The connecting line through the nodes at each
time step is called a CTC path, which is represented by π. Assuming that the probabilities
of CTC path at each time step are conditionally independent of given input x, the conditional
probability of the correct output is given by

p(π|x) =
T∏

t=1

P(πt |x). (4.4)

The CTC loss (LCTC) is defined as the summation of negative log probabilities of correct
labels as

LCTC = − ln

∑
π

P(π|x)

 . (4.5)

The CTC loss uses the Softmax function to separate the distribution of p(π|x) at every window
step along the input sequence. In this work, the distribution covers all upper case alphabet
gesture plus word separation (∼) and extra blank symbol. The output of the CTC is presented
by the matrix size 28 × L.

In the decoding process, we employed the Greedy algorithm [108, 109] for searching
the best path. Then, the symbol with the highest conditional probability at each node was
recorded. The probability of the output matrix was searched following the conditional depen-
dency path. In other words, the best symbol was selected one at a time from left to right. The
best path (ŷ) is computed by

ŷ = argmax
θ

T∏
i=1

∑
π

P(π|xi; θ), (4.6)

where θ is a set of trainable parameters in the model. In finally, the extra blank symbol and
the duplicate characters were removed from the output prediction.

4.2 Sliding window technique
In the preprocessing stage, we considered the sliding window technique to segment a long

sequence of motion into small pieces. This technique is commonly used for converting a
complicated learning problem into the simple supervised problem, to which the classical
techniques can be applied. The sliding window technique is represented in Fig. 4.4, where
W∗ is the sliding window, and k is a skip size for the next window. The subscript t indicates
the preprocessing process run at time step t. The sliding window technique was employed in
the motion word recognition because starting and stopping points of the writing are unknown.
When applying the sliding window technique, the size of the window should be seriously se-
lected because it is the most critical parameter. If the motion data is split with an appropriate
size of the sliding window, the proposed structure can capture both local and global informa-
tion. In other words, deploying a long window can provide the global information while a
short window gives local information. Based on analysis in section 2.6.2 and 2.6.3, writing
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Figure 4.4: Sliding window technique.

duration per character, is set as the maximum size of the sliding window. Specifically, the
maximum sizes of the sliding window are 0.88 seconds and 0.57 seconds for the palm-writing
and finger-writing datasets, respectively.

The skip size is another parameter that should be carefully considered. It is defined as
the number of time steps for skipping to the next window. This parameter helps to improve
the speed of computation. In practical, the skip size should be less than 50% of the window
size for maintaining the related information between the consecutive windows. In Chen’s
work [52], it is considered that the appropriate size of the sliding window is 1 second, and
the step size is 167 milliseconds.

4.3 Feature extraction
For training the proposed structure, two features were deployed: hand position feature and

path signature feature. The hand position feature comprises sequences of the hand position in
the x- and y- directions. The hand position feature contains the temporal information, while
the path signature embeds the analytic and geometric properties of the writing trajectory [110,
111]. For generating these features, the stream of motion was segmented into small pieces
using the sliding window technique. The data of each segmented piece is called a hand
position feature. To obtain information from the spatial space, we derived the path signature
feature from each segmented data.

Even though the Leap motion sensor records the motion word in a three-dimensional space,
we limit the trajectory representation in a two-dimensional coordinate for simplicity and com-
parability with other works. Therefore, each observed sample is described by a sequence of
hand position as

P =
{

p1, p2, . . . , pN
}
, (4.7)

where pi = {pxi, pyi} is the ith instance of the hand position in x- and y-direction as px and py,
respectively. N is the number of sampling points in each gesture.
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Path signature feature is a sequence of numbers derived from a continuous path. It can
be used to extract information about analytic and geometric properties of a data stream [98,
110]. Although the path signature feature is defined for a continuous path with bounded
variation, it is easily calculated from a discrete path based on linear interpolation and Chen’s
identity [112]. We assume that the length of a discrete path is finite, and the consecutive
points always connect with a straight line. The element of the path signature is generally
expressed as

S (P)i1,i2,...,ik
[0,T ] =

1
k!

k∏
j=1

(Pi j

T − Pi j

0 ), (4.8)

where Pi j

T is the i j-th value of the path P at time T . ik ∈ {1, . . . , d} is an order of integral in
d-dimensional path. The path signature level m consists of

(
dm+1/(d − 1)

)
− 1 value. This

work, we set the level of integration (m) equal to 4. Because the finger position feature is a
two-dimensional signal, the dimension of the path signature equals 31. In this work, the path
signature feature within time interval [0,T ] ∈ R is computed by

S m(P)[0,T ] =
(
1, S (P)1

[0,T ], S (P)2
[0,T ], S (P)1,1

[0,T ], S (P)1,2
[0,T ], S (P)2,1

[0,T ], S (P)2,2
[0,T ], (4.9)

S (P)1,1,1
[0,T ], S (P)1,1,2

[0,T ], S (P)1,2,1
[0,T ], S (P)1,2,2

[0,T ], S (P)2,1,1
[0,T ], S (P)2,1,2

[0,T ],

S (P)2,2,1
[0,T ], S (P)2,2,2

[0,T ], S (P)1,1,1,1
[0,T ] , S (P)1,1,1,2

[0,T ] , S (P)1,1,2,1
[0,T ] , S (P)1,1,2,2

[0,T ] ,

S (P)1,2,1,1
[0,T ] , S (P)1,2,1,2

[0,T ] , S (P)1,2,2,1
[0,T ] , S (P)1,2,2,2

[0,T ] , S (P)2,1,1,1
[0,T ] , S (P)2,1,1,2

[0,T ] ,

S (P)2,1,2,1
[0,T ] , S (P)2,1,2,2

[0,T ] , S (P)2,2,1,1
[0,T ] , S (P)2,2,1,2

[0,T ] , S (P)2,2,2,1
[0,T ] , S (P)2,2,2,2

[0,T ]

)
.

Because the first term of the path signature feature equals to one; therefore, we removed it
before merging the hand position feature with the path signature feature.

4.4 Experiments and results
In this section, we conduct the experiments on two public datasets [24]: palm-writing

dataset and finger-writing dataset. These datasets were collected from a different scenario
and captured using different tracking sensors. Therefore, the experiments were conducted
separately. In the palm-writing dataset, the user’s palm was tracked with optical and inertial
sensors. The motion data was recorded by WorldViz PPT-X4 and Wiimote modules at 60
frames per second. Each sample contains motion data, including hand position, orientation,
acceleration, and angular speed. As for the finger-writing dataset, 1k-word vocabularies are
prepared, which include the most frequently used 1000 two-, three-, and four-letter words
from the Google Web 1T dataset [52]. The samples were recorded at 60 frames per second
by the Leap motion sensor.

The performance of the fusion framework was monitored using temporal modeling and
spatial modeling as baseline references. We first conducted the experiment on the finger-
writing dataset. The dataset samples are randomly split into a training and validating with
the size of the training set is 90% while the rest is validating set. The CTC loss function was
minimized by the mini-batch Gradient Descent algorithm [113]. The mini-batch size was set
at 24, and the momentum of the learning parameter was set to 0.9. In the training process, the
Adam optimization technique [97] was applied. The optimization parameters β1 and β2 used
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in this technique are 0.7 and 0.99, respectively. We firstly set the size of the sliding window
at 1 second, and the skip size is fixed to 167 milliseconds. The proposed structure failed
to learn the writing information because the proposed algorithm can not minimize the loss
function. In the second attempt, we considered a smaller size of the sliding window. The size
of the sliding window was set to 0.5 seconds, and the skip size is fixed at 83 milliseconds.
The training history loss was recorded and plotted in Fig. 4.5.
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Figure 4.5: The learning rate on finger-writing dataset.

Graphs in Fig. 4.5 illustrate the learning capability of three models: spatial feature model,
temporal feature model, and the proposed model. The spatial feature model learns the air-
writing from the path signature feature, while the temporal feature model learns the writing
information from the hand position in the time domain. After the training process runs 40
epochs, the losses of spatial and temporal models remain around 17, which is too high for
learning information. In contrast, the proposed model can minimize the loss below 1. More-
over, the loss of the fusion structure converges within 250 epochs. To confirm the fusion
technique can learn more information than the others, we plotted the validation error rate of
three models in Fig. 4.6. When comparing the results from all models, the fusion frame-
work achieves the lowest error rate at around 5%, while the validation errors of the others
are around 40%. The results from both figures demonstrate that the training parameters of
the fusion structure were set appropriately. The tuning and training parameters from this
experiment were used for investigating the performance of the proposed structure.

In the next sections, we conduct the experiments on the palm-writing and the finger-writing
dataset individually. The results on the palm-writing dataset and finger-writing dataset have
been recorded in section 4.4.1 and section 4.4.2, respectively. For estimating the performance
of the proposed model, we applied a ten-fold cross-validation technique. The proposed al-
gorithm was coded in Python using the Tensorflow as the backend. To evaluate the compu-
tational complexity, the experiments were executed in an Intel Core i7 (3.4 GHz) Windows
machine. We categorize the average results into three classes: correct prediction, imprecise
precision, and false prediction. In the correct prediction, the prediction word completely
matches with the ground truth label. In the case of imprecise prediction, we assume that only
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Figure 4.6: The error rates of validation set on finger-writing dataset.

one character is incorrect. Referring to the information in section 2.6.2, the average character
per word is four characters. Accordingly, we set the threshold percentage for matching the
prediction with the ground truth label more at 75%. If the prediction matches with the ground
truth label more than 75%, it will be categorized in the imprecise prediction class. The rest
will be categorized as the false prediction class.

4.4.1 Results on the palm-writing dataset

We first investigated the training loss of the proposed structure by varying the size of the
sliding window in three steps: 0.25 seconds, 0.5 seconds, and 1 second. The results were
recorded and plotted in Fig. 4.7. When the size of the sliding window equals to 0.25 seconds,
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Figure 4.7: Training loss on palm-writing dataset at different window size.
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the fusion structure can not learn useful information from the training features. The training
loss remains around eight although the training process is executed over 400 epochs. In
contrast, the training losses of other sets converge around 1. When the training process was
executed more than 200 epoch, we found the window size of 0.5 seconds giving the better
result. For more information, we plotted the training and validation error when the size of the
sliding window was set at 0.25 seconds in Fig. 4.8.
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Figure 4.8: Error rate on palm-writing dataset window 0.25 seconds.

The graphs in Fig. 4.8 indicate the fusion structure may not learn more information because
the gap between the training and validation error is large. Even though the training process
is executed more than 400 epochs, the error rate on a validation set may not reduce. For
a good interpretation, the results from ten-fold cross-validation were recorded and listed in
Table 4.1. When considering the results in Table 4.1, the average of the correct prediction is
18.50%, and the false prediction is 67.42%. Total testing time in this table is computed over
466 samples. Thus, the testing time per word is 3.05 milliseconds.

Table 4.1: Recognition results on palm-writing dataset: window 0.25 seconds.

Fold number Correct (%) Imprecise (%) False (%) Computation time
Training (s) Testing (s)

fold1 26.55 14.35 59.10 33.18 1.48
fold2 4.71 4.07 91.22 33.12 1.42
fold3 10.06 17.34 72.59 33.46 1.37
fold4 37.26 24.84 37.90 33.19 1.41
fold5 7.51 15.88 76.61 33.60 1.35
fold6 6.22 8.80 84.98 33.67 1.44
fold7 9.23 13.95 76.82 33.33 1.50
fold8 39.91 15.24 44.85 33.46 1.46
fold9 33.91 14.38 51.72 33.28 1.53
fold10 9.64 11.99 78.37 33.83 1.43
average 18.50 14.08 67.42 33.41 1.42
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In the second experiment, we increased the window size to 0.5 seconds while retaining the
skip window at 83 milliseconds. The histories of training and validation errors were recorded
and plotted in Fig. 4.9. It can be seen from the plot that the validation error tracks the training
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Figure 4.9: Error rate on palm-writing dataset window 0.5 seconds.

error after 200 epochs. In other words, the proposed structure can probably learn the air-
writing information. Moreover, the validation error is not lower than the training error which
means the model was not overlearned. Detailed result on each fold was recorded and listed
in Table 4.2.

Table 4.2: Recognition results on palm-writing dataset : window 0.5 seconds.

Fold number Correct (%) Imprecise (%) False (%) Computation time
Training (s) Testing (s)

fold1 73.88 13.92 12.20 36.93 1.78
fold2 94.43 2.14 3.43 36.89 1.80
fold3 83.30 10.06 6.64 38.54 1.81
fold4 81.80 8.14 10.06 37.11 1.71
fold5 77.47 11.37 11.16 37.09 1.90
fold6 95.92 1.50 2.58 37.42 1.81
fold7 89.91 5.15 4.94 39.47 1.79
fold8 93.99 2.15 3.86 36.27 1.88
fold9 95.71 1.72 2.57 36.55 1.86

fold10 82.66 7.28 10.06 40.28 1.84
average 86.90 6.35 6.75 37.66 1.82

The average of correct prediction achieves 86.90%, while the imprecise and false predic-
tions are 6.35% and 6.75%, respectively. When comparing with the previous experiment, the
correct prediction improves by 68.4%, and the false prediction reduces by 60.67%. From
the results in this table, the training time per epoch increases by 4.25 seconds because in-
creasing the size of the sliding window makes the training feature bigger than the previous
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experiment. When considering the testing time, the total testing time of 466 samples is 1.82
seconds. Thus, average time per word is 3.91 milliseconds, which is larger than the previous
experiment 0.86 milliseconds.

The last experiment in this section, we set the size of the sliding window to 1 second,
which equals the value that was suggested by Chen [52]. Then, the error rates were recorded
and plotted in Fig 4.10. From the graphs, the validating error is bigger than the training
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Figure 4.10: Error rate on palm-writing dataset window 1 second.

error which demonstrates the learning structure did not overlearn the information. For more
information, we recorded the detailed results in Table 4.3.

Table 4.3: Recognition results on palm-writing dataset : window 1 second.

Fold number Correct (%) Imprecise (%) False (%) Computation time
Training (s) Testing (s)

fold1 38.76 20.13 41.11 44.36 1.99
fold2 89.72 4.50 5.78 45.21 2.03
fold3 92.72 2.36 4.92 44.30 1.78
fold4 37.90 24.41 37.69 44.78 1.95
fold5 32.19 17.81 50.00 45.57 1.77
fold6 93.35 1.50 5.15 44.80 2.01
fold7 88.20 2.58 9.22 45.16 1.88
fold8 53.43 22.10 24.46 45.99 1.84
fold9 55.36 18.02 26.62 44.10 1.85
fold10 34.26 23.77 41.97 45.20 1.89
average 61.59 13.72 24.69 44.95 1.90

From the results in Table 4.3, the correct prediction in some fold is small. For instance,
the accuracies in fold number one, four, five, and ten are less than 40%. Even we retry to
experiment with same fold many times, the results insignificantly change. The average of
correct prediction is 61.59%, which is 25.31% smaller than the previous experiment. The im-
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precise and false predictions increase by 7.37% and 17.94%, respectively. The computation
time for training in each epoch is 44.95 seconds, which increases by 7.29 seconds over the
previous experiment. When considering the testing time, the average time per word is 4.08
milliseconds.

The experiments in this section demonstrate that the proposed structure adequately learns
the air-writing information, where any language model is not necessary. By considering the
proposed structure, the output prediction is generated at a single sliding window. When the
sliding window captures input information less than one character, the proposed structure
achieves high accuracy. Referring to the information in section 2.6.2, the minimum time of
writing duration per character is 0.88 seconds. Therefore, the proposed structure recognized
the motion gesture at 86.9% when the size of the sliding window equal to 0.5 seconds. When
considering the computation time, both training and testing time depend on the size of the
sliding window. In other words, increasing the size of the sliding window needs more pro-
cessing time. When the size of sliding window equals to 0.5 seconds, the testing time per
word gesture is 3.91 milliseconds. In any case, the computation of the proposed structure is
adequate for a real-time application.

4.4.2 Results on the finger-writing dataset

In this section, we investigate the performance of the proposed structure on the finger-
writing dataset. We first examine the learning capability of the proposed structure by varying
the size of the sliding window in 3 steps: 0.25 seconds, 0.5 seconds, and 1 second. The skip
size was fixed at 83 milliseconds in all experiments. The training and tuning parameters were
set as the previous section. The training loss was recorded and plotted in Fig. 4.11. From
this graph, the proposed structure partially learns the air-writing information when the size
of the sliding window equals to 1 second. The training loss remains over 10, even though the
number of training loop was set more than 400 epochs. When considering the training loss
from the window size 0.5 seconds and 0.25 seconds, the graphs closely track. The lowest loss
is stated when the window size equals 0.25 seconds. For more detail, the results from each
window size are recorded and plotted.
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Figure 4.11: Training and validation loss on finger-writing dataset.
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Graphs in Fig. 4.12 illustrate the results when the size of the sliding window equal to 0.25
seconds. The validation error dramatically decreases at the beginning and maintains at 3%
after 200 epochs. While considering both graphs, the validation error rates track the training
error rates well. This results confirm that the fusion structure did not have overlearned. For
more information, we recorded the results and listed in Table 4.4. From the results in the

1 50 100 150 200 250 300 350 400
0

20

40

60

80

Error rate (%)

epoch

window 0.25 second: validating error
window 0.25 second: training error

Figure 4.12: Error rate on finger dataset window 0.25 seconds.

table, the correct prediction in each fold ranges between 70.00% and 80.74%. The average
of correct prediction over the ten-fold cross-validation is 75.81%. The imprecise and false
predictions are 18.37% and 5.82%, respectively. When considering the computation time,
the training time per epoch is 12.4 seconds while the prediction time is 6.37 milliseconds per
word.

Table 4.4: Recognition results on finger-writing dataset: window 0.25 seconds.

Fold number Correct (%) Imprecise (%) False (%) Computation time
Training (s) Testing (s)

fold1 77.04 18.52 4.44 12.37 1.72
fold2 79.26 17.41 3.33 11.95 1.78
fold3 77.78 17.78 4.44 12.10 1.81
fold4 71.85 18.89 9.26 12.44 1.73
fold5 74.44 18.15 7.41 12.48 1.70
fold6 74.07 19.63 6.30 12.54 1.65
fold7 70.00 21.85 8.15 12.83 1.75
fold8 80.74 12.96 6.30 12.62 1.63
fold9 74.44 20.37 5.19 12.35 1.65
fold10 78.52 18.15 3.33 12.31 1.74
average 75.81 18.37 5.82 12.40 1.72

In the second experiment, the size of the sliding window was set at 0.5 seconds while the
skip size remained at 83 milliseconds. The training and validation error rates were recorded
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and plotted in Fig 4.13. From these graphs, the training and validation errors decrease dra-
matically at the beginning, then stop at 5%. This result indicates that the proposed structure
can learn the air-writing within 300 epochs. More detail about the performance of the pre-
diction, the result on each fold was recorded and listed in Table 4.5. From this result, the
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Figure 4.13: Error rate on finger dataset window 0.5 seconds.

correct prediction is 50.96%, which decreases by 24.85% when compared with the previous
experiment. In contrast, the false prediction is 17.41%, which increases by 11.59%. In the
case of imprecise prediction class, the average accuracy grows by 13.26%. While considering
the computation time in the training process, the average time in each epoch is around 12.72
seconds. It grows by 0.3 seconds over the previous experiment. The testing time per word is
6.33 milliseconds.

Table 4.5: Recognition results on finger-writing dataset: window 0.5 seconds.

Fold number Correct (%) Imprecise (%) False (%) Computation time
Training (s) Testing (s)

fold 1 53.70 30.00 16.30 12.93 1.72
fold 2 45.18 33.33 21.49 12.95 1.73
fold 3 49.26 37.78 12.96 12.54 1.69
fold 4 42.59 32.59 24.82 12.66 1.71
fold 5 44.44 30.37 25.19 12.65 1.67
fold 6 46.30 35.55 18.15 12.60 1.68
fold 7 48.89 31.11 20.00 12.57 1.74
fold 8 57.99 29.37 12.64 12.70 1.68
fold 9 57.56 32.10 10.34 12.68 1.72

fold 10 63.70 24.07 12.23 12.73 1.73
average 50.96 31.63 17.41 12.70 1.71

The last experiment in this section, we set the size of the sliding window equal to 1 second.
The other parameters were set as all previous experiments. The training process was executed



4.4 Experiments and results 57

for 400 epochs. The history of training and validation error rates were recorded and plotted
in Fig. 4.14. From these graphs, the training and validation errors drop dramatically at the
beginning. After the 5th epoch, the validation loss gently decreases while the training loss
remains constant. For more detail, the results were recorded and listed in Table 4.6.
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Figure 4.14: Error rate on finger dataset window 1 second.

From the results in Table 4.6, the correct and imprecise predictions are 0% and 0.52%,
respectively. In contrast, the false prediction is 99.48%. From this results, we can conclude
that the fusion structure completely fails to learn the air-writing when the size of the sliding
window equals to 1 second.

Table 4.6: Recognition results on finger-writing dataset: window 1 second.

Fold number Correct (%) Imprecise (%) False (%) Computation time
Training (s) Testing (s)

fold1 0.00 0.37 99.63 13.64 1.99
fold2 0.00 0.37 99.63 13.57 2.03
fold3 0.00 0.37 99.63 14.45 1.78
fold4 0.00 0.37 99.63 13.62 2.11
fold5 0.00 0.37 99.63 13.56 1.83
fold6 0.00 1.11 98.89 13.57 1.72
fold7 0.00 0.00 100.00 13.68 1.82
fold8 0.00 1.11 98.89 13.62 1.88
fold9 0.00 0.74 99.26 13.68 1.79
fold10 0.00 0.37 99.63 13.57 2.01
average 0.00 0.52 99.48 13.70 1.89

The experiments in this section demonstrate that the fusion structure achieves the best
performance at 75.81% when the size of the sliding window equals to 0.25 seconds. By
considering the proposed structure, the prediction character is generated one character per a
sliding window. Therefore, the size of the sliding window must be smaller than the writing
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duration per character. This result is confirmed by the information in section 2.6.3, where the
minimum time of writing duration per character is 0.57 seconds. When increasing the size of
the sliding window, the proposed structure learns less information.

From analyzed information in section 2.6.3, the average of writing duration per character
is 1.32 seconds. Therefore, the proposed structure may ultimately fail if the sliding window
is larger than 1.32 seconds. When applying the proposed structure with other datasets, the
average time of writing duration can be used to control the maximum size of the sliding
window. When considering the computation time of the best result, the prediction time per
word is 6.37 milliseconds. Accordingly, the proposed structure can be executed in real-time.

4.5 Conclusion
In this chapter, we proposed the fusion structure for a motion word recognition by consid-

ering the segmentation free technique. The fusion structure utilizes both spatial and temporal
features to recognize the air-writing. There are two consecutive processes: the preprocessing
and the recognition processes. In the preprocessing process, the stream of motion data was
split into small segments using the sliding window technique. Then, the spatial and temporal
features are derived from each segment before feeding to the proposed structure. By using the
spatial model and temporal model as baseline references, the results from the first experiment
confirmed that the proposed structure could learn more information. The most important pa-
rameter in the preprocessing process is the size of the sliding window. If it was set improperly,
the fusion structure may ultimately fail to recognize the motion word. Even though we can
avoid this problem by using the over-segmentation technique, it needs high processing cost.
One goal in this chapter is finding an appropriate window size to recognize the motion word.
We investigated the performance of the proposed structure on two public datasets: the palm-
writing and the finger-writing datasets. Because the samples in each dataset were recorded
with different scenarios, the experiments were conducted on each dataset separately.

In the first experiment, we investigated the performance of the proposed structure on the
palm-writing dataset. The sizes of the sliding window were varied in three steps: 0.25 sec-
onds, 0.5 seconds, and 1 second. From the experiments, the proposed structure can recognize
unseen words up to 86.90% when the window size equals to 0.5 seconds. When changing
the size of the sliding window to 0.25 seconds and 1 second, the correct predictions drop to
68.4% and 25.31%, respectively. From this result, we conclude that the most appropriate win-
dow size for recognizing the word dataset is 0.5 seconds. When considering the prediction
time per word, the average time is 3.91 milliseconds. This result confirms that the proposed
algorithm can be executed in real-time.

In the second experiment, we studied the performance of the fusion structure on the finger-
writing dataset. First, the learning capability of the fusion structure was roughly monitored
from the training history. The result confirmed that the training and tuning parameters, which
are similar to the first experiment, are adequate for learning the finger-writing dataset. For
more detail, the fusion structure was examined with ten-fold cross-validation by varying the
size of the sliding window. The best recognition accuracy is 75.81% when the window size
equals to 0.25 seconds. When the sizes of the sliding window change to 0.5 seconds and 1
second, the correct predictions drop 24.85% and 75.81%, respectively. When the size of the
window is larger than 1 second, the fusion structure can not learn any information from the
finger-writing dataset. We conclude that the most appropriate window size for recognizing
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the finger-writing dataset is 0.25 seconds. When considering the prediction time per a word,
the average time is 6.37 milliseconds.

Learning the motion word using the sliding window technique, the size of the window is
a critical parameter which is carefully considered. In this work, the output prediction of the
proposed structure is generated one character per time step. Thus, each sliding window must
capture input information less than one character. In other words, the size of sliding window
is limited by the writing duration per one character. From the results in section 4.4.1 and sec-
tion 4.4.2, the best result on each dataset is less than the average time writing duration. We
confirmed that the average time of writing duration from section 2.6.2 and 2.6.3 can be used
for setting the maximum size of a sliding window. The results from the palm-writing and
finger-writing confirm that the proposed structure can be applied for the air-writing recogni-
tion. When considering the prediction time per word, the average times are 3.91 milliseconds
and 6.97 milliseconds. Thus, the proposed structure can be executed in real-time.
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Chapter 5

Conclusion

Human-computer interface (HCI) is a research area focusing on interaction modalities be-
tween human and computer. HCI devices have had many changes over time due to techno-
logical advancements. At the beginning of the computer era, users must adapt their behavior
to fit HCI devices. A user primarily sends data and command to a computer via keyboard and
mouse paradigm in the early years. After that, many sensors have been introduced to change
the way people interact with devices. For instance, a touch screen and speech recognition
technologies let user efficiently provide inputs. Currently, some sensors such as Microsoft
kinect and Leap motion sensors further step forward the implementation of natural interfaces
in which a human gesture becomes a controller. Even though we can employ a simple gesture
to control a computing device, we can extend the communication capability by employing the
air-writing recognition technology.

The air-writing is a type of dynamic hand gesture. It refers to writing the alphabet or
numeric gestures by hand or finger movement in free space. The air-writing has attracted
attention since it can offer the verbal communication, which is suitable for a short-text in-
put interface. By writing a character in the air, the air-writing is mainly different from the
surface-based writing in three aspects. First, a user is free for writing cause the air-writing
did not have a concrete anchoring and reference position. Second, there is no relationship be-
tween the adjacent characters in the spatial domain. When the user performs the air-writing
without control the hand or finger movement, the writing may lay in a non-aligned text.
Finally, the user can not pause while writing which causes writing mixed between gesture
and non-gesture. The captured data is represented in a single stroke without gaps between
the consecutive gestures. Although many techniques have been proposed more than three
decades, there is a room for improving the performance of air-writing recognition technique.

As summarized in chapter 2, most of the previous studies model air-writing by either the
spatial features or temporal features. Even though these models work well with a simple
gesture, the recognition accuracy may be vulnerable when applied with the motion character.
This work proposed the fusion scheme for air-writing recognition by modeling the air-writing
with the temporal features augmented with the spatial features to improve the recognition
accuracy. We addressed the design into two categories: motion character recognition and
motion word recognition. The underlying assumption of motion character is the gesture was
correctly spotted. In other words, the meaningless motion was removed in advance; thus,
the segmentation process is not necessary for learning the motion character. In contrast,
the motion word is captured from a user in a continuous stream. It does not have a sign
to indicate the writing and non-writing part, which is more complicated than the motion
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character approach.
In chapter 3, the fusion structure for learning the motion character was developed from

the Yang’s work. Instead of modeling the spatial and temporal feature separately as Yang’s
work, we employ fully connected neural networks for learning both types of features. For
a fair comparison, the training parameters in the CNN part were set similar to Yang’s work.
We first investigated the performance of the proposed structure using the CNN, BLSTM,
and Yang’s work as baseline references. The results confirmed that the fusion scheme could
improve the recognition accuracy. When comparing the results with Yang’s work, the accu-
racies of the proposed network improve by 0.68% and 0.84% in the alphabet and numeric
gesture, respectively. Then, we examined the effect of the recurrent unit in the fusion struc-
ture by varying the number of BLSTM unit in the RNN part. The optimum number of the
BLSTM units are 15 and 25 for the numeric gesture and alphabet gesture, respectively. By
substituting the simplified BRNN layer for the BLSTM layer, the results illustrated that the
computation time reduced to half while the accuracies dropped by 0.33% and 0.07% for the
numeric and alphabet gestures, respectively. In the last experiment, we investigated the ef-
fect of the convolution map in the third layer of the CNN part. From the experiment, the
optimum number of convolution map in the third layer is 30. Although this method reduces
computation time insignificantly, it saves memory used for storing the trainable parameters.
We also demonstrated that the fusion network did not learn more information even adding
more training features. In other words, using the hand position feature augmented with an
image-like feature is adequate for learning the motion character recognition.

In chapter 4, we improve the fusion scheme for a motion word recognition. We considered
a deep RNN with the CTC loss for mapping the air-writing trajectory into a word. The main
advantage of this approach is removing a predefined alignment for generating the training
set. In the preprocessing stage, we employed the sliding window technique where the size of
the sliding window was carefully selected. For evaluating the performance of the proposed
structure, we conducted the experiments on two public datasets: palm-writing and finger-
writing datasets. Even though these datasets were recorded by a vision-sensor approach,
the characteristics of the samples were different. The palm-writing dataset was recorded by
WorldViz PPT-X4 and Wiimote modules using a palm as the tracking point. The writing
area is 110 time 106 centimeters. In the case of the finger-writing dataset, the samples were
recorded by the Leap motion sensor. The size of the writing space is 37 times 21 centimeters,
which is 7% of the palm-writing area. Even other works suggest that the size of the sliding
window should be 1 second, we studied the effect of the window size of each type of gesture
separately. From the experiments, the best recognition accuracies on the palm-writing dataset
and the finger-writing dataset are 86.90% and 75.81%, respectively. The appropriate window
size for the palm-writing and the finger-writing datasets are 0.5 seconds and 0.25 seconds,
respectively. These results illustrate that the proper size of a sliding window must be smaller
than the average duration as analyzed in chapter 2. To improve the recognition accuracy of the
proposed structure, a language model will be integrated into the CTC layer as mention in the
literature [28,52,82]. When considering the prediction time per word on the palm-writing and
the finger-writing datasets are 3.91 milliseconds and 6.37 milliseconds, respectively. These
results confirm that the proposed algorithm can be executed in a real-time.

From the above results, we concluded that the proposed structure achieves higher accuracy
than either spatial model or temporal model. The proposed structure recognizes the motion
word by using multi-layers of the RNN with the CTC algorithm. The main advantage of the
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CTC algorithm is removing the predefined alignment in the training set. Therefore, a specific
signed is not necessary for the segmentation process. Another advantage is speeding up the
execution time. When considering the sliding window technique, the size of the sliding win-
dow is seriously selected. This issue will be further studied in the future. If the size of the
sliding window is not correctly, the learning structure may not learn any information. One
direction to overcome this issue is employing the over-segmentation technique. By segment-
ing the motion data into multiple sizes of window, the leaning structure can acquire more
information. Even though this technique can improve the recognition accuracy, increasing
the number of learning features needs high processing cost. We also demonstrated that the
writing duration was related to the effective size of the sliding window. The minimum size
of writing duration per word may be used to bound the maximum size of the sliding window.
Another direction to overcome the window selection issue is training the motion word with
an unsupervised algorithm similar to Simao’s work [114]. Learning the air-writing using
unsupervised techniques may increase the execution time.

In the future, we will extend and refine a fusion framework for a real-life application. We
will focus a study on the motion word recognition where a dataset contains both alphabet
characters and numbers. One direction is adding some constraints such as language mod-
els and the lexicon searching to improve the recognition accuracy. By limiting the number
of writing words, the accuracy may improve while the execution time remains. Another di-
rection is refining the fusion structure by adding more LSTM layers, which may improve
the recognition accuracy. Increasing the number of LSTM layers will increase the execution
time. Thus the relation between the number of LSTM layers and the execution time will
be studied. Last but not least, the usability study is another point that will be conducted to
evaluate the user experience.
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