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Preface

The study of degenerating families of algebraic curves (Riemann surfaces)
has a long history ever since Kodaira’s classification [Kod] of degenerating
families of elliptic curves, and which is an active research area even today.
This research field is located at the crossing between algebraic geometry and
topology, therefore researches from both areas are available. From the view-
point of geography of algebraic surfaces, slopes and signatures were studied
by T. Ashikaga, K. Konno [AsKo] and many others. From the viewpoint of
topology, Matsumoto—Montesinos [MaMo| characterized degenerating fami-
lies of Riemann surfaces in terms of their monodromy. This thesis however
adopts other viewpoints to study families of Riemann surfaces, i.e., in terms
of linear quotient families and polyhedral symmetries; these viewpoints reveal

interesting geometric properties of families of Riemann surfaces.

(i) Linear quotient families are a special class of quotient families intro-
duced by S. Takamura [Ta,VI]; a linear quotient family is a fibration
constructed from a finite group action on a complex analytic variety
together with a linear representation of the finite group. This thesis

only treats linear quotient families, and “linear” is often omitted.

(ii) “Polyhedral symmetries” arise in our context as follows: Thickening
of the edges of a regular polyhedron yields a cable surface with the
polyhedral group action. We may assign a complex structure on this
surface such that the group action is holomorphic. Then to each linear

representation of the polyhedral group, a quotient family is associated.



The present work consists of two parts:

Part I:  In the construction of (ii), replacing a regular polyhedron with a
regular polygon yields a new construction of elliptic fibration. We describe
the elliptic fibrations obtained in this way. We determine their fibers and the
singularities on the total/base spaces; the description depends on the parity
of n of the regular n-gon. We point out that our construction is different from
the Weierstrass model construction of elliptic fibration in N. Nakayama |[Nak]|,
Dolgachev and Gross [DoGi]. The Weierstrass model is algebro-geometric,
while our construction is topological. The advantage of ours lies in that the

description of families is geometrically carried out.

Part II:  To the cable surface obtained from the tetrahedron, we give a
complex structure and regard it as a Riemann surface on which the tetrahe-
dral group acts holomorphically (caution: the automorphism group of such
a Riemann surface “contains” the tetrahedral group but does not necessar-
ily coincide with it). This Riemann surface determines an algebraic curve
with tetrahedral group action, which is called a tetra curve. M. Oka posed
a problem: Determine the defining equation of this curve. We solve this
problem — we actually show that a tetra curve is not unique: there are a
sporadic one (hyperelliptic) and a 1-parameter family of non-hyperelliptic
curves; this family contains the Fermat curve of degree 4 and the Klein curve
(their automorphism groups “jump” and become larger than the tetrahedral
group). We show that the non-hyperelliptic family of tetra curves is related
to the sporadic tetra curve via a stable reduction: we first show that the
total space of this family has eight A;-singularities on one fiber (which is a
projective line), and the stable reduction around it creates the sporadic tetra
curve as the central fiber of the resulting family — the eight A;-singularities

correspond to the eight fixed points of the hyperelliptic involution.
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Chapter 1
Introduction

This thesis is composed of two parts. Part I provides a new construction of
elliptic fibration and Part II describes the family of Riemann surfaces with

tetrahedral symmetries.

Part I: New construction of elliptic fibrations

Kodaira [Kod| classified degenerating families of elliptic curves into eight
types. Nakayama |[Nak] and Dolgachev—Gross [DoGr| described higher-dimensional
elliptic fibrations from the viewpoint of Weierstrass model. In this part, we
provide a new construction and the description of the resulting higher di-
mensional elliptic fibrations from the viewpoint of group actions and their
representations.

We briefly recall the historical background behind our construction. The
study of degenerating families of Riemann surfaces was initiated by Kodaira,
and subsequently the classification of degenerating families of genus 2 curves
was done by Namikawa and Ueno [NalUe]. Since then, the study of degen-
erating families of higher genus curves has been an area of active research
(e.g. see [TaIII]). Quotient families are “equivariant quotients” of families
with group actions — degenerating families of curves are examples of such

families (precisely speaking they are obtained from quotient families by re-

9



10 CHAPTER 1. INTRODUCTION

solving singularities). Among quotient families, linear ones are introduced
and developed in [Ta,VI|; they are constructed from finite group actions on
spaces together with representations of the groups. In what follows, we only

treat linear quotient families, and for simplicity, “linear” is omitted.

Quotient families associated with cyclic group actions on Riemann sur-
faces together with their 1-dimensional representations correspond to de-
generating families of Riemann surfaces with periodic monodromies. The
simplest groups next to cyclic groups are dihedral groups, accordingly the
simplest nontrivial quotient families other than degenerating families of Rie-
mann surfaces are those associated with dihedral group actions; they are
called dihedral quotient families. It is natural to investigate them; among
them, simple ones are those of elliptic curves. These “elliptic” dihedral quo-
tient families are interesting enough as they are completely different from
elliptic fibrations investigated by [Nak] and [DoGr]. Besides, note that di-
hedral groups admit double coverings (binary dihedral groups), and we may
also construct binary dihedral quotient families associated with their repre-
sentations. It is worthwhile investigating the difference between the dihedral
and binary dihedral elliptic quotient families. They are shown to be very
different.

Our construction starts from dihedral group actions on regular polygons
together with representations of the dihedral groups.
Step 1 A dihedral group D,, = (a,b: a” =b*> =1, bab™' = a™!) acts on the
regular n-gon A, as a is a 1/n-rotation around the origin and b is a reflection

along an axis:

\a k‘ﬂb

Thickening the edges of A,, yields a cable surface 3 with D,-action.
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Cablize
—_—

D)

We may give a complex structure to Y such that the D,,-action is holomorphic
(Lemma B1T]).

Step 2 Given a representation p : D, — GL,,(C), we may let D, act on
C™; then D, acts on ¥ x C™ diagonally: (z,t) — (gz,p(9)t), g € D,,. The
projection ¥ x C™ — C™ is D,-equivariant, so determines a holomorphic
map 1 : (X x C™)/D,, — C™/D,,. We say that n is the (dihedral) quotient
family of ¥ associated with p (or, quotient family of type D). See [HiTal| for

a similar construction for polyhedral groups.

Before proceeding, note that the dimension of an irreducible represen-
tation of D, is either 1 or 2 [Ser|: If n is even, besides the trivial repre-

sentation y; = 1, there are three 1-dimensional irreducible representations
Xi: D, — GLi(C) (i =2,3,4) given by

xs(a) = -1, xs(b) =1, (1.0.1)

If n is odd, x3 and x4 fail to be homomorphisms, and the 1-dimensional
irreducible representations of D,, are merely y; and ys.
The 2-dimensional irreducible representations are p; : D, — GLy(C)

(1=1,2,...,2 —1forevennand [ = 1,2,..., 2 for odd n) given by

6271'il/n 0 0 1
- N b) = . 1.0.2
(o) ( o) =) o)

Here p; is injective precisely when [ is relatively prime to n.
Let 1, : (X x C*)/D,, — C?/D,, be the quotient family associated with

p- 1t is said to be injective if p; injective. The non-injective case actually
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reduces to the injective case thanks to (ii) of the following:

Result 1 (Theorems [3.4.3], [3.4.17])

(i) If 1 is relatively prime to n, then depending on whether n is odd or even,
the singular fibers and the singular locus of n,,; are illustrated as in (1) or
(2) of Figure[1.01.

(ii) If I is not relatively prime to n, then n,, : (X x C*)/D, — C?/D,, is
isomorphic to .y : (X x C?) /D,y — C?/D,,, where n' := n/ged(n,l) and

=1/ ged(n,l).
(1)
Ye= (1)@

(X x C?)/D, J/Ul \Lnnl (X x C?)/

A . A

C2?/D, S et / C2?/D,

Figure 1.0.1: The numbers “2” and “2n” are multiplicities (see §2.1)). The
singular locus of (X x C?)/D,, consists of four ridges (see Notation B.41T) —

cach is isomorphic to a smooth complex line. The singular fibers of 7, ; lie

(2)

over the veins (the images of ridges under 7, ;).

Remark In degenerating families of elliptic curves, the topological mon-
odromy of the type [j singular fiber is b, while that of the type nl, singular
fiber is a (see [Kod|). The former singular fiber appears in Figure [LO1] (after
blowing up), while the latter does not.

The singular locus of (X x C?)/D,, is equisingular. In fact:

Result 2 (Theorem B.5.11]) The singular locus of (X x C?)/D,, consists of
the four disjoint complex lines — ridges — around each of which (¥ xC?)/D,,
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is isomorphic to (complex line) x (A;-singularity).

Convention: In the theory of quotient families, the singularity of the total
and base spaces are usually remain unresolved, as higher dimensional complex

analytic varieties have no canonical resolution except for 2-dimensional case.

Result 3 (Theorems [3.2.6], B.4.11])
ing multiplicities (c.m.) are as follows: (1) The quotient family & : (X X
C)/D,, — C/D,, (i =1,2,3,4) associated with x; is as in Table [LOT (2)
The quotient family 0, ; : (X x C*)/D,, — C?/D,, (where | is an integer such
that 1 <1 < %) associated with p; is as in Table [LOTL

The singular fibers and the cover-

&7(0) &' (s) &' (s) &' (5) &' ()
(s € (C/Dn)\{0}) | (s € (C/Dn) \{0}) | (s € (C/Dn) \{0}) | (s € (C/Dn)\{0})
fiber | /D, ¥/D, ¥/{a) % /{a?, b) % /{a?, ab)
(P1) (elliptic curve) (elliptic curve) (P1) (P1)
c.m. 2n 2n n n n
(2) 115, 1(0) 71(5) M,1(5)
(s € L\{0}) | (s€(C*/Dy)\ L)
fiber | /D, | X/(a™,b) /()
(P1) (P1) (elliptic curve)
c.m. 2n 2d d

Table 1.0.1: P! is the projective line. In (2), L C C?/D,, denotes the locus
KL,,, given by ([3.4.1)), which consists of veins (see Figure [LOT]).

Binary dihedral quotient families (type D)

The binary dihedral group D, = (a,b : a2 = 1,a" = b2, bab~! = @) is
a double covering of D,, = (a,b : a® = b®> = 1, bab~! = a™'): the double
covering homomorphism ¢ : lN)n — D, is given by a +—» a,g — b. Recall

that the dihedral group D, acts on the cable surface ¥ of the regular n-
gon. Let D, also act on ¥ via ¢, that is, g € D,, acts as ¢q(g) € D,. To
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each representation D, — GL,,(C), we may associate a quotient family
(X x C™)/D,, — C™/D,, of ¥, called a binary dihedral quotient family (or,
quotient family of type En)

For a representation p : D, — GL,,(C), the composition p := poq :
D,, — GL,,(C) is called the lift of p. A representation of D, is said to be

lifted if it is the lift of some representation of D,,, otherwise unlifted.
D,
D,

The dimension of any irreducible representation of IN)n is either 1 or 2.

Explicitly:
1-dim: The lifted ones are Y; : D, — GLy(C) (i = 1,2,3,4) defined by

(%1(5)7 %1(17)) = (17 1)7 (%2(6)7 %2(5» = (17 _1)7
(@ b

) 5(/3(6)) = (_1’ 1)’ (%4(6)7 %4(17)) = (_17 _1)‘

(Xi is the lift of y; defined by (LO.J]).) The unlifted ones exist only when n
is odd: they are oy, : D, — GL(C) (k = 1,2) defined by (0,(a), o1(b)) =
(~1,1) and (0(a), 225)) = (~1,3) ~ )

2-dim: The lifted irreducible representations of D,, are p; : D,, — GLy(C)

(where 1 <[ < %) defined by

o 627ril/n 0 o~ 0 1
pl(d) - ( 0 67271'il/n ’ pl(b) - 1 0 ’

(71 is the lift of p; given by (L02).) The unlifted ones are 7, : D,, — GLy(C)
(where m is odd and 1 < m < n) defined by

5 eﬂim/n 0 . 0 —1
Tm<a>:( ) =0
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Although irreducible representations of D,, and D,, are similar, their asso-
ciated quotient families are very different: unlike those associated with D,,,
those associated with D,, have isolated singular fibers.

Result 4 (Corollary @ I.I7) The quotient family &, = (X x C2)/D, —
(C2/1N)n of 3 associated with any unlifted irreducible representation 7, : D, —
GL5(C) has a single singular fiber (see Figure [LOI]).

0

(X x C2)/D,, Lum
c2/11/'0\

Figure 1.0.2: £, },(0) is the unique singular fiber. The singularity of C*/ D,
is isolated (a D-singularity).

For a cyclic subgroup Z,, of order m in GL3(C) generated by an element

Mmoo 0
of the form | 0 ¢ 0 | where ¢ := /™ and n; (i = 1,2,3) are
0 0 (m

integers such that 0 < n; < m, the quotient singularity C3/Z,, is called of
type —(ny,ng,n3). This singularity is terminal if and only if (nq,n9,n3) =
(1,4, —¢) for some ¢ relatively prime to m (see [Ish| p.185 Theorem 8.3.17).

Result 5 (Theorem E.1.33) The singular locus of (X x C2)/D, consists
of four isolated singularities, any of which is of type i(l, 2,3) (this is not

terminal).

Result 6 (Proposition 170, A.1.13|, 4.1.2T]) We determine the singular
fibers and the covering multiplicities of the quotient families associated with

the representations X;, pi, Ok, Tm:
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o (Lifted case) Let & : (S xC)/D, — C/D, (i = 1,2,3,4) be the quotient

family associated with x; and 1, :

(X x C?)/D,, — C2/D, (where

1 <1< %) be the quotient family associated with p;. Then the singular
fibers and the covering multiplicities (c.m.) are as in Table [L0O.2] (1)
and (2) respectively.

e (Unlifted case) Let wy : (X x C)/D,, — C/D, (k =1,2) be the quotient
family associated with oy, and &, : (X x C?)/D, — C2/D,, (where

m is odd and 1 < m < n) be the quotient family associated with T,,.

Then the singular fibers and the covering multiplicities (c.m.) are as
in Table [L0.2 (3).

(1) &0

30)
(s € (C/Dn) \ {0})

&1(s)
(s € (C/Dn) \ {0})

& '(s)
(s € (C/Dn) \ {0})

&)
(s € (C/Dn) \ {0})

fiber | X/Dn

()

$/Dy
(elliptic curve)

%/(a)

(elliptic curve)

$/(a2,b)
()

/{a?, ab)
(P

2n

n

n

n

(2) T 1(0)

Tai(s) (s € L\ {0})

T1() (s € (C*/Dy) \ L)

fiber | ¥/D,,
(P

’

=/(a",b)
(P1)

/(a™)

(elliptic curve)

c.m. 2n

(3) @, (0)

2d

@ ' (s) (s € (C/Dy) \ {0})

£,0,(0)

d

Enim(s) (s € (C?/Dy) \ {0})

fiber | /D,
(P)

%/ (a?)

(elliptic curve)

%/D,
(P)

£/(a")

(elliptic curve)

c.m. 2n

n

2n

d

Table 1.0.2: In (2), L € C2/D,, denotes the locus SLj, , given by ([@I13).

We mention our further works:

Paracabling construction From a regular n-gon, we constructed a cable

surface with D,-action. More generally, as illustrated in Figure [[.LO.3] we
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may construct paracabling, singular paracabling surfaces of high genera (this
operation is analogous to the procedure in knot theory to produce iterated
torus knots by cabling torus knots). These surfaces admit D,-actions, thus
from the representations of D,,, we may construct dihedral quotient families
of surfaces of high genera. These quotient families are expected to play an
important role in the theory of quotient families, as iterated torus knots did

in knot theory. We plan to describe them elsewhere.

-0

cabling paracabling smgular paracabling

Figure 1.0.3:

Boundary fibration Suppose that a finite group G acts on a complex
analytic variety Y. To each representation p : G — G L, (C), a quotient family
n: (YxC")/G — C"/G is associated (§2.1]). If p is unitary, i.e. p(G) C U(n),
then the action of G on C" preserves both B* = {z € C" : |z| < 1}
and S?"~! = 9B?*". The restriction of n to S**~! is the boundary fibration
(Y x §?=1/G — S*1/G of (Y x B*)/G — B*'/G. For example, for
T @ Dy — SU(2), (£ x $%)/D, — S3/D, is such that $3/D, is a prism
manifold [Sav] and for p, : D,, — U(2), (X x S®)/D,, — S*/D,, is such that
S3/D,, is the quotient of a lens space S3/{p(a)) by an orientation-reversing

involution p(b).

Actions of different groups D, is the semi-direct product Z, X Zs of Z,, =
(a) and Zy = (b). There is an elliptic curve with a periodic automorphism
of order 3, 4 or 6. It moreover admits the action of (Z,, ® Z,) x Z; (I = 3,4

or 6). We will describe these quotient families in our subsequent paper.
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Part II: The family of Riemann surfaces with tetrahe-

dral symmetries

Concerning our polyhedral construction of degenerations of Riemann sur-
faces, Mutsuo Oka raised two problems at the symposium “Contact struc-
ture, singularity, differential equation and related topics” at Kochi (2014):
[. Globalize the above degenerations in a natural way.
II. What is the defining equation of such a Riemann surface?
We solved Problem I in the joint work [HiTal] with S. Takamura. In this pa-
per, we solve Problem II. It however turns out that such a Riemann surface is
not unique but forms a 1-parameter non-hyperelliptic family together with a
sporadic hyperelliptic one. We explicitly describe this family, and in terms of
stable reduction reveal the relationship between this family and the sporadic
one. We moreover describe the image of this family under the moduli map.
Let ¥ be an orientable real surface obtained by thickening the edges
of a polyhedron (Figure [LO.4]). We say that ¥ is the cable surface of the

polyhedron — the genus of the cable surface of the n-hedron is n — 1.

NS

Figure 1.0.4:

The automorphism group G of the polyhedron naturally acts on ¥ orientation-
preservingly. Kerckhoff’s theorem [Ker] ensures the existence of a complex
structure on ¥ such that G acts holomorphically. In this paper, we consider
the cable surface of the tetrahedron (tetra surface); its genus is 3. We may
regard this Riemann surface as an algebraic curve. Noting that any (non-
hyperelliptic) curve of genus 3 is realized as a plane algebraic curve in P2
M. Oka asked:

Problem Determine the defining equation of such a curve. Moreover is this
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curve hyperelliptic or not? (The same problem may be considered for any
regular polyhedron, but it is subtle — for which the cable surface, being of
genus > 4, is not necessarily a plane curve, so may not be defined by a single

equation.)

The complete classification of full automorphism groups of genus 3 curves
is known ([Bars| for non-hyperelliptic ones, |GSS] for hyperelliptic ones);
this however does not give the solution of the above problem — in fact
the tetrahedral group may not be the full automorphism group of a curve
in question. Moreover we must take into account the topological types of
group actions: the action must be topologically equivalent to the standard

tetrahedral group action on the cable surface >.

Reformulation The tetrahedral group ¥ permutes the four vertices of the
tetrahedron, which induces an isomorphism T = %[, (alternating group of
degree 4). A curve with a tetrahedral group action may be thus called an
2A4-curve. If moreover the tetrahedral group action is topologically equivalent
to the standard one, that is, the natural tetrahedral group action on 3, then
the 204-curve is said to be of tetra type. M. Oka’s problem is then reformulated

as:
Problem Determine all genus 3 2A4-curves of tetra type.
We will show that:

Solution (Theorem [6.2.9] (1)) The genus 3 Ay-curves of tetra type are as

follows:
(H) The hyperelliptic curve B defined by y* = 28+ 142 +1 in C? (more pre-
cisely, compactify this curve in P* x P! and then resolve its singularities,
which yields B; refer to [GrHa] p.254 for this procedure).

(NH) The non-hyperelliptic curves C; (t € C\ {+2,—1}) in P? given by

oyt + 2t (2% 4 P+ %) = 0.



20 CHAPTER 1. INTRODUCTION

(Note: All degree 4 curves are non-hyperelliptic ([Har] p.315, Exercise

3.2 (c)).)

We will actually show much more. Observe first that the 24-actions on
B and C} are a priori ‘independent” and moreover these curves are unrelated
(as seen from their defining equations). This is however not the case; there
exists an analytic deformation from B to C; (s = (¢t — 2)?) that is compati-
ble with 2(4-action (we say an “24-deformation”). The construction of this
deformation is carried out by stable reduction (so B and C} are said to be
stably connected). We will also show that the singularities of the complex
surface S = {C; }ec are eight Aj-singularities and they arise as the quotient
under a hyperelliptic involution.

In the theory of algebraic curves, the classification of automorphism
groups of curves (of fixed genus) is usually carried out separately for hy-
perelliptic curves or non-hyperelliptic curves; then there often appears a pair
of a hyperelliptic G-curve X and a family of non-hyperelliptic G-curves Y;
(where G is a finite group) such that these G-actions are topologically equiv-
alent (examples of such pairs indeed appear in the list of S. Hirose in his
talk at the symposium “Algebraic topology around transformation groups”

at RIMS, 2017). Based on our results, we pose the following:

Stably-connectedness problem Are X andY; connected via a G-deformation?

Are they related via stable reduction?

We plan to discuss this in our subsequent paper.

Main results

We state our main results explicitly:

Main theorem (1) The genus 3 y-curves of tetra type are exhausted by :
(i) a hyperelliptic curve B : y* = 2% + 142* + 1 and

(ii) non-hyperelliptic curves Cy : x* + y* + 2% + t(2®y? + y?22 + 2%2%) = 0
in P2, where t € C\ {£2,—1} (Theorem 629 (1)). Here Cyo, C_4
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are excluded, because they are singular (Lemma [[.T.45 see also Figure

LOA):

o Cy is PY of multiplicity 2.

o C_5 consists of four P'’s and any two of them intersect at one

point.

o C_, consists of two P'’s intersecting at four points.

(2) Let S be a complex surface defined by

Si={(z,y,2,t) e P> x C: 2" + y' + 2" + t(2*y* + y*2* + 2°2°) = 0}

and p : S — C be the projection (z,y,2,t) — t; so C; = p~(t). Then the
singularities of S are eight Ai-singularities and they lie on Cy (Theorem [6.2.9]
2).

(3) Take a sufficiently small disk A centered at t = 2 in C and set W :=
p YH(A). Letv: M — W be the minimal resolution of the singularities. Then
m:=pot: M — A is a degeneration of smooth curves whose monodromy is
a hyperelliptic involution (Proposition [6.2.11]).

(4) Let p" : N — A be the Zsy-stable reduction of p : W — A wia the base
change A — A, t — 2+ (t —2)%. Then the central fiber of p” is B (Theorem
6.2.9 (3)) and the natural Zg-action on B is a hyperelliptic involution with
B/Zy = Cy (see Corollary [6.2.0]).



22 CHAPTER 1. INTRODUCTION

' Zo-action

..B.N

| stable reduction

@ E: .". %% Ct S
C_4 Cy
ip

C_s

, : - . C
—2 —1 2 t

Figure 1.0.5: The eight bold points on Cy are A;-singularities.

Remark 1.0.1. The family of curves C is also studied by other researchers:
Kuribayashi—Sekita [KuSe], which is subsequently used in our discussion, and
Alwaleed and Sakai [AlSal, which classified the 2-Weierstrass points on C

and determined the numbers of flexes and sextactic points.

Description of the moduli map Let M3 be the moduli space of Rie-
mann surfaces of genus 3 and M3 be its Deligne-Mumford compactification.
Consider the moduli map f : C\ {2} — Mj of the family {C;}iecy(2}. As
t — 2, f(t) =[B], so f is bounded, thus naturally extends to a holomorphic

map f: C — Ms. Set Imf := f(C). Then:
(1) f is injective except for two values ¢t = %, for which C; are
the Klein curve ([KuSe] Theorem 2 p.121). Moreover Imf intersects

transversally at the point corresponding to the Klein curve (this is

shown by using linear quotient family; see [SaTa] for details).

(2) Imf intersects the hyperelliptic locus in M3 at one point f(2) = [B]
(from Main theorem (4)).

(3) Imf intersects the boundary of M3 at f(—2) and f(—1), which corre-
spond to the stable curves C'_5 and C_;.
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f f(2) __hyperelliptic locus
—2 -1 2 (! (5-dim)
C moduli map D —
M3 (6-dim)
f(=2)  f(=1)

Figure 1.0.6: The point p corresponds to the Klein curve.

Exotic G,-action FEach C} actually admits a larger group action than 2.
Indeed the symmetric group &, acts on it (see [Bars| Table p.10). Since C;
is homeomorphic to the cable surface ¥ of the tetrahedron, this G4-action is
transformed to X. On the other hand, besides the automorphism group ¥ of
the tetrahedron, the full automorphism group T (which contains orientation-
reversing automorphisms) also acts on 3, and this group is isomorphic to &;.
It is thus plausible that the previous G4-action coincides with this &4-action.
However this is not the case, because the former contains no orientation-
reversing automorphisms (as it is holomorphic). Thus ¥ has two distinct

G4-actions: the standard one by T and the ezotic one from the G ,-action on

Ch.
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Chapter 2

Preparation

2.1 Quotient families in general

S. Takamura [Ta,VI] developed the theory of quotient families of complex
analytic varieties. For quotient families of Riemann surfaces, he introduced
four series in terms of group action: dihedral, polyhedral, modular, triangular
series (the first is the target of this paper).

We briefly review [Ta,VI|. Suppose that a finite group G acts on a com-
plex analytic variety Y holomorphically. (Unless otherwise mentioned, the
G-action is assumed to be effective.) Let p : G — GL,,(C) be a representa-
tion, via which G acts on C™, and accordingly on Y x C™ diagonally. The
projection map pr: Y x C™ — C™, being G-equivariant, determines a holo-
morphic map n :=pr : (Y x C")/G — C™/G. This is called the quotient
family of Y associated with p.

Theorem 2.1.1 (Quotient fiber theorem [Ta,VI]). A fiber n='(s) (s €
C™/Q) of a quotient family n : (Y x C™)/G — C™/G is described as follows:
Let ¢ : C™ — C™/G be the quotient map. Take a lift t € q~(s) and let
H, :={g € G : p(g)t = t} be its stabilizer. Then n~*(s) = Y/H,. (This
is, up to isomorphism, independent of the choice of ¢: if ¢’ is another lift,
Y/H, = Y/Hy.)

27
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Proof. Consider the following commutative diagram (¢’ and ¢ are quotient

maps):
yxcr—9 (v xcmy/a
pr in (2.1.1)
cm 1 /G,

The commutativity of this diagram implies n='(s) = ¢'pr-'¢'(s). Write
g '(s) = {t1,t2,...,t;} where t; = ¢, then pr (¢~ (s)) = pr—'(¢;)pr— ()11
-« I pr=*(¢;) (disjoint union). Here pr=!(¢;) =Y x {t;}. For brevity write it
as Y;, then

7 Hs) =¢d (VT IIY, O---11Y)). (2.1.2)
Now G acts transitively on the set {Y1,Ys,...,Y;} while H;, stabilizes Y.
Thus (Y 15 11---11Y})/G = Y1 /Hy,, that is, ¢ (Vi 1Y> 11-- - 11Y)) = Y, /H,,.
From this and (ZL2), n~*(s) = Y1/H,, (= Y/H,). O

Example 2.1.2. If s =0, i.e. t =0, then Hy = G, so n~(0) = Y/G.

Lemma 2.1.3. Letn: (Y x C)/G — C/G be the quotient family associated
with a 1-dimensional representation p : G — GL1(C). Then the following
hold:
(1) G t=0, @ Y/G s=0,
H, = no(s)=
Ker(p) t#0. Y/Ker(p) s#0.
Proof. We show (1). Hy = G is trivial. We show H; = Ker(p) for t # 0.
First Ker(p) C H; (because if g € Ker(p), then p(g) = 1, so p(g)t =t). Next
Ker(p) D H; (because if p(g)t = t, then p(g) = 1, so g € Ker(p)). (2) is
immediate from (1) by Theorem ZT.] O

Let n: (Y x C™)/G — C™/G be the quotient family associated with a
representation p : G — GL,,(C). By Theorem 2T.1l n~'(s) = Y/H,, where
t € C™ is a lift of s € C™/G. The covering multiplicity of n~1(s) is defined
as the covering degree of the quotient map Y — Y/ H,, which is equal to the
order |Hy| of H,.
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Definition 2.1.4. In Theorem R.I1.0] if H; # {1}, n~!(s) is called a kaleido
fiber and otherwise a pure fiber (in the former n~!(s) # Y and in the latter
n~'(s) = Y). The locus of C™/G over which kaleido fibers lie is called the
kaleido locus of n and denoted by KL,,.

Proposition 2.1.5. (1) If p : G — GL,,(C) is not injective, KL,, is the
whole of C™/G.

(2) If p: G = GL,(C) is injective, KL,, is a proper subset of C™ /G consist-
ing of the image of a finite union of (proper) linear subspaces of C™ under
the quotient map C™ — C™/G.

Proof. We show (1). K := Ker(p) acts on C™ trivially, so K C H, for any ¢.
If p is not injective, then K # {1}, so H; # {1}, and any fiber of 7 is kaleido,
thus KL, = C™/G.

We next show (2). The preimage ﬁn of KL, under the quotient map
C™ — C™/G is given by KL, = {t € C" : H, # {1}} = U,ce (1 Fix(9),
where Fix(g) := {t € C™ : p(g)t = t} is a linear subspace of C™. Here note
that this union is finite (as G is finite) and that if p is injective, Fix(g) is
proper. Thus the assertion holds. O

Let n: (Y x C™)/G — C™/G be the quotient family associated with a
representation p : G — GL,,(C). Here p is generally not injective. Set K :=
Ker(p). The quotient group G := G//K naturally acts on Y := Y/K and p
induces an injective representation p : G — GL,,(C). We shall show that
n is isomorphic to the quotient family 7 : (Y x C™)/G — C™/G associated
with p. We refer to 77 as the injectivization of 7.

Note first that (Y x C™)/G = (Y x C™)/G and C™/G = C™/G. Indeed

(Y x C™)/G = (Y x (Cm)/K/G/K
= (Y/K x (Cm)/G/K as K acts on C™ trivially
= (Y xC™/G.
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Similarly we can confirm that C™/G = C™/G. Moreover the following dia-
gram commutes:

~Y

(Y xC™/G (Y xC™/G
| g
cm/G = cm/q.

Therefore the following is obtained:

Lemma 2.1.6. n: (Y xC™)/G — C™/G and 7 : (Y xC™)/G — C™/G are
1somorphic.

Caution: Since n and 7] are isomorphic, fibers 7'(s) and 77'(s) are iso-
morphic. However their covering multiplicities are generally distinct, that is,
|H,| # |H,|. In fact the following holds:
Lemma 2.1.7. |H,| = |K||H,|, that is,

(covering multiplicity of n7!(s)) = |K| x (covering multiplicity of 777 *(s)).

Proof. Recall that Hy := {g € G : p(g)t =t} and H, := {g € G : p(g)t = t}.
Here since H; = H;/K, we have |H,| = |K||Hy|. O

Remark 2.1.8. For “kaleido/pure fiber” in Definition 2Z.1.4], there are similar
notions “special/generic fiber”: Noting K C H;, we call a fiber n7(s) =
Y/H; generic if H, = K and special otherwise. (If K = {1}, that is, p
is injective, then special/generic coincides with kaleido/pure.) The locus of

C™ /G over which special fibers lie is called the special locus and denoted by
SL,,.

The following is shown by S. Takamura [Ta,VI].

Theorem 2.1.9. (1) The quotient family n: (Y x C™)/G — C™/G asso-
ciated with p : G — GL,,(C) is canonically isomorphic to the quotient
family 7 : (Y x C™)/G — C™/G associated with p : G — GL,,(C).
Here set K := Ker(p), then the following holds:

(covering multiplicity of 7' (s)) = | K|x (covering multiplicity of 77'(s)).
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(2) Let SL,, be the special locus of n and KLz be the kaleido locus of 7 Under
the isomorphism in (1), SL, = KLz.






Chapter 3

Dihedral quotient families

3.1 Dihedral quotient families

Given a regular n-gon, thickening its edges yields a cable surface 32, on which
the dihedral group D,, := (a,b: a" =b*> =1, bab™' = a™') acts as illustrated
in Figure B 1.1} a is a 1/n-rotation, while b a 1/2-rotation fixing four points.

N djb

D

Figure 3.1.1:

Let us make this action holomorphic. First express ¥ as a complex torus
C/L, the quotient of C under the additive action of a lattice L := Z & \Z

1
(A € C,ImA > 0). Define two automorphisms A, B of C by A: z +— 2z + —

n
and B : z+— —z. Then

(i) A"(z) =241 (so A"(z) =2mod Z® N\Z), B>=1, BAB™' = A"

33
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(ii) For any T" € L (say, T acts on C as a translation z — z 4+ m + An
(m,n € 7)), we have AT(z) = TA(z) and BT (z) = T B(z) mod Z® N2
(indeed BT'(z) = B(z4+m+An) = —z—m—Anand TB(z) =T (—z) =
—z 4+ m+ An).

(ii) ensures that A and B descend to automorphisms A and B of C/L. By
(i), D,, = (A, B), where A and B correspond to a and b. See Figure B.1.2l
The above construction is independent of A (in L = Z® A\Z), so we obtain

the following:

Lemma 3.1.1. For any complex structure on the cable surface %, we may

let D,, act on X holomorphically.

/it

A: translation by 1/n B: 1/2-rotation

Figure 3.1.2: Actions of A and B on a fundamental domain of C/L.

Note next the following:

Lemma 3.1.2. Any element of D,, is expressed as a® ora*b (k =0,1,... ,n—

1).

Proof. This is immediate from the fact that the generator a,b of D,, satisfy

relations a” = b?> = 1 and bab~! = a~L. O
The following plays a fundamental role in our later discussion:
Lemma 3.1.3. (1) a* acts on ¥ as a k/n-rotation (see Figure [31.1]).

(2) Any afb (k = 0,1,...,n — 1) is an involution fizing four points — it

locally acts as a half rotation around each fixed point.
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(3) Let ¢ be the axis of the involution b, and p; € € (i = 1,2,3,4) be the
fized points of b. Then in (2), the azis of the involution a*b is a*/?,
and a*/*p; € a*?0 (i = 1,2,3,4) are the fized points of a*b. (Here a*/?
is a k/2n-rotation, and a*/? € Aut(X) but in general a*/2 ¢ D,,.)

Proof. (1) is obvious. We show (2). For k = 0, that is, for b, this is obvious.
For other a®b, this follows from the fact that a*b is conjugate to b in Aut(X),
indeed a*b = a*/?ba=*/? (from a*/2b = ba=*/?). (3) is clear from (2). O

In what follows, regard the cable surface ¥ as a Riemann surface on
which D,, acts holomorphically. To a representation p : D, — GL,,(C), a
quotient family n : (¥ x C™)/D,, — C™/D,, is then associated. In case p
is irreducible, we shall describe the quotient family n. We separate into two

cases depending on the dimension (1 or 2) of p.

3.2 1-dimensional quotient families
The 1-dimensional representations of D,, are as follows (see [Ser] §5.3 p.36):

e If n is even, D,, has four 1-dimensional (necessarily irreducible) repre-
sentations. They are x; : D,, = GL1(C) (i = 1,2,3,4) given by

(1,1) i=1,
(1,-1) =2,
(xi(a), xi(b)) = ‘ (3.2.1)
(_17 1) t= 37
| (-1,-1) i=4

e If n is odd, the representations y3 and y4 fail to be homomorphisms,
and the 1-dimensional representations of D,, are merely the represen-

tations x; and yo».

None of x1, X2, X3, X4 are injective, indeed:
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Lemma 3.2.1.
( D, 1=1,
(a) i=2,
Ker(x;) = (3.2.2)
(a®,b) i=3,
| (a®,ab) i=4

Proof. The case i = 1 is trivial. The other cases are confirmed as follows:

Case i = 2: Note that a € Ker(x2) and b ¢ Ker(x2). So (a) C Ker(xa)
D,, (= (a,b)). Here |(a)| = n and |D,| = 2n, thus necessarily |Ker(xs)| =
and Ker(yz) = (a).

Case i = 3: Note that a*,b € Ker(x3) and a ¢ Ker(xz). So (a?b) C
Ker(xs) & Dn (= (a,b)). Here [(a®,b)| = n and |D,| = 2n, thus necessarily
|Ker(x3)| = n and Ker(x3) = (a?,b).

Case i = 4: Note that a* ab € Ker(x4) and a ¢ Ker(x4). So (a? ab) C
Ker(x4) & Dn (= (a,b)). Here |(a®, ab)| = n and |D,| = 2n, thus necessarily

C
=
n

|Ker(x4)| = n and Ker(x4) = (a?, ab). O
Ker |Ker|
X1 Dn 2n
X2 (a) (=Zn) n

X3 | (a®,b) (= Zyj5 % Ls)
Xa | (@, ab) (2 Zyjy x L)

Table 3.2.1:

We describe the quotient family & : (X x C)/D,, — C/D,, associated
with x;. By Lemma 213 &'(0) = /D, (c.m. |D,| = 2n) and for s # 0,
&1(s) = B/Ker(x;) (c.m. |Ker(x;)]), explicitly:

¥/D, (cm. 2n) =1,

B Y./{a) (cm. n) =2,
&' (s) = (3.2.3)

¥/{a*b) (cm.n) i=3,

(¥/(a% ab) (cm. n) i=4.
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Note that & : ¥/D,, x C — C is a projection.
We will explicitly describe the four quotient spaces in ([B.2.3]) after some

technical preparation.

Lemma 3.2.2. Suppose that a group G acts on a Riemann surface X. Let
H be a normal subgroup of G and let q : X — X/H be the quotient map.
Then for each g € G, the following hold:

(1) The automorphism g : X — X descends to an automorphism G :
X/H — X/H, that is, go g = g o q holds. If the order of g is n,

then g" = id; so the order of g is at most n.

(2) If there exists a point x € X such that gx ¢ Hz, then g # id. (Caution:
in general, even if g ¢ H, possibly g = id.)

(3) If the automorphism g : X — X has a fized point, then the automor-
phism G : X/H — X/H also has a fized point. In fact under the quo-
tient map q, the fized points of g descend to fized points of g. (Caution:
there may be other fixed points of g.)

Proof. We show (1). A point of X/H is denoted by p mod H for some p € X.
Define g : X/H — X/H by pmod H — gp mod H. Then go g = g o q holds
from the normality condition gH = Hg. Thus g is the descent of g. If
g™ = id, then from the construction of g, we have g" = id. We show (2). Set
T := q(x). The condition gz ¢ Hx implies gT # T, so g # id. We show (3).
From go g =goq, we have go g(x) =goq(z) for any x € X. If x is a fixed
point of g, then g(z) = x, so q(z) = goq(x). Set T := q(x), then we have
T = g(T), that is, T is a fixed point of g. ]

We return to the action of D,, on ¥. Recall that a*b (k =0,1,2,...,n—1)
is an involution of the elliptic curve ¥ fixing four points (Lemma B.1.3] (2)),

that is, a*b is an elliptic involution. The following holds:

Lemma 3.2.3. Let ¥ be the cable surface of a reqular n-gon, which is an
elliptic curve with D,,-action. Write D,, = (a,b), where a is the 1/n-rotation
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and b is the elliptic involution in Figure [31.1. Let | be an integer and H
be the cyclic group generated by a'. If x ¢ UZ;& Fix(akb), then the following
hold:

(1) The Dy,-orbit D,x of x is written as a disjoint union D, = A1l B,

where

A={d'z :i=0,1,...,n—1}, B={a'br : j=0,1,...,n—1}.

(2) a*bx ¢ Hx for any k=0,1,...,n— 1.

(3) Under the quotient map q : ¥ — X /H, any elliptic involution a*b of
Y. descends to an automorphism akb of ¥/H such that %2 =id and

akb £ id, that is, a*b is an involution.

Proof. We show (1). Since D, = {a’,a’b : 1,7 =0,1,...,n—1} (see Lemma
B.I2), we have D,, = AU B. It suffices to show AN B # (. An element of
AN B, if any, is written as a'z = a’bx, that is, a’'bx = x, so x € Fix(a’ D).
This contradicts the assumption that = ¢ |J;—, Fix(a*b). We show (2). Since

Hr={a™z : m=0,1,...} C A,

we have Hx N B = () by (1), thus a*bx ¢ Hz for any k =0,1,...,n—1. We
show (3). Note that H = (a') is normal in D,, (as bab™* = a™1). Applying
Lemma (1) to the case X = X, G = D,, and g = a*b shows that a*b
descends to an automorphism a*b of Y¥/H such that @b = id. Here by
Lemma (2), a*b # id (note that a*bx ¢ Hz by (2), so the assumption
of that lemma is satisfied). O

We next show the following;:

Lemma 3.2.4. Let ¥ be the cable surface of a reqular n-gon, which is an
elliptic curve with D,-action. Write D,, = {(a,b), where a is the 1/n-rotation
and b is the elliptic involution in Figure[3.1.1. Then the following hold:
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(1) For any integer 1, the quotient map q : ¥ — X/{(a') is an unramified
covering and the quotient ¥/{a') is an elliptic curve.

(2) Under the quotient map q in (1), any elliptic involution a*b of ¥ de-
scends to an elliptic involution of X/{(a'), that is, the involution akb in
Lemma[3.2.3 (3) is an elliptic involution.

Proof. We show (1). As the action of (a) on ¥ is free (see Figure B.1.1]),
so is the action of (a') on X, thus ¢ : ¥ — ¥/(a') is unramified, that is,
¥/{a') has no branch points. Then by the Riemann-Hurwitz formula, x(2) =
[{a")| x(2/(a!)). Here ¥ is an elliptic curve, so x(X) = 0, thus x(X/(a!)) = 0,
in turn /{a') is an elliptic curve. We next show (2). As we saw in (1),
¥/{a') is an elliptic curve. It is well-known that an involution of an elliptic
curve is either an elliptic involution or a translation of order 2 (the latter is
fixed point free). Now since a*b has a fixed point (Lemma B3 (2)), akb also
has a fixed point (Lemma 322 (3)), so akb must be an elliptic involution. [

Note that when a group G acts on X and a subgroup N of G is normal,
the induced quotient map /N — ¥/G is a Galois covering with covering
transformation group G/N.

Lemma 3.2.5. Fix arbitrary integers | and k and consider a subgroup {(a', a*b)
of D,, = {(a,b). Then the following hold:

(1) (a') is a normal subgroup of {a', a*b) and the quotient group {a', a*b)/{a')
is cyclic group of order 2.

(2) ¥/{a') — X/{al, a*b) is the quotient of the elliptic curve ¥/{a') by the
elliptic involution akb in Lemma[3.27] (2); thus this covering is two-fold

with four branch points, and X/{a’, a*b) is a projective line.

(3) The quotient map p : ¥ — X/{al,a*b) is a ramified covering with four
branch points.
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Proof. We show (1), first, that (a') is normal in (a!, a*b), that is, ga'g~* € (a')
for ¢ = a' and a*b. For g = d!, this is trivial and for g = a*b, this follows

from (a*b)a'(a*b)~! = a~!, which is confirmed as follows:

(akb)al(akb)fl = ak(balbfl)afk =da a7 from bab™' = a7t

We next show that the quotient group (a', a*b)/(a') is a cyclic group of order
2. Consider the short exact sequence of groups:

1 — (d"y — (d, a"b) — (da',a*b)/{a") — 1.

Here (a!, a®b) /{a') = (a*b) and (a*b)? = 1, so the quotient group (a', a¥b)/{a’)
is a cyclic group of order 2. We show (2). From (1), X/(a') — ¥/{a!, a*b) is
a Galois covering with covering transformation group {(a!, a*b)/{a') = (a*b).
Here a*b acts on /(') as a*b, which is an elliptic involution of X/(a')
(Lemma B.Z4 (2)). Thus the Galois covering ¥/(a!) — X/(a!, a*b) is the
quotient of X/(a') by the involution akb. Therefore it is a two-fold covering
with four branch points, and ¥/(a!, a*b) is a projective line. We show (3).
Write p : ¥ — X /(a’, a*b) as the composition p = 7 o ¢ of quotient maps
r:3/{a")y — ¥/{d',akb) and ¢ : ¥ — X/(a'). Here r is a ramified covering
with four branch points by (2) and ¢ is an unramified covering by Lemma

B.2.4] (1), thus the assertion holds. Figure B.2.1] illustrates the case (I, k) =
(1,0). O
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djE
o
e D
p—?“oq

Figure 3.2.1: (I, k) = (1,0): ¢ is the quotient map under the (a)-action and
r is the quotient map under the (b)-action, where the descent b of b is an

elliptic involution.

We may now explicitly determine the fibers & *(s) in (3.23). By Lemma
(2), any of X/D,,, ¥/{a? b) and X/{(a? ab) is a projective line (note:
D,, = (a,b)). On the other hand, by Lemma 324 (1), ¥/(a) is an elliptic

curve. The results obtained so far are summarized as follows:

Theorem 3.2.6. Let & : (X xC)/D,, - C/D,, (i =1,2,3,4) be the quotient
family of 3 associated with x; : D,, — GL1(C). Then the following hold:

(i) & :(2/D,) x C — C is a projection, so for any s, & '(s) = X/D,,; its

covering multiplicity is | D,,| = 2n.
(il) For&s, & and &y, the following hold (c.m. means covering multiplicity):

projective line ¥/D,, (c.m.2n) if s =0,

&' () = . .
elliptic curve ¥/(a) (c.m.n) if s # 0,
£1(s) projective line ¥/D,, (c.m.2n) if s =0,
S) =
’ projective line ¥/{a?b) (c.m.n) if s #£ 0,
. projective line ¥/D,, (c.m.2n) if s =0,
& (s) =

projective line ¥/{a? ab) (c.m.n)  if s #0.
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3.3 Properties of representations of D,

The 2-dimensional irreducible representations of D,, are given by the repre-
sentations p; : D, — GLy(C) (where [ is an integer such that 1 <1 < %)
defined by

I
pi(a) = (% C(il> ,where ¢ := ¢*™/", pi(b) = (? (1]) . (3.3.1)

In what follows, via p; let D,, act on C2. Recall that any element of D,
is expressed as a* or a*b (k =0,1,...,n —1); see Lemma B.T.2.

Lemma 3.3.1. Set Fix(g) := {t € C?: p/(g)t = t}. Then Fix(a*) = {0} for

k # 0 (while Fix(a®) = C?) and Fix(a*b) = {/\ (Cik) eC?: e (C} for

any k

Clk 0 0 Clk
Proof. The assertion follows from p;(a*) = 0 (i and p;(a*b) = g )

Let 1, : (X x C*)/D,, — C?/D,, be the quotient family associated with
pi- Its prekaleido locus is given by IfiannJ = {t € C* : H, # 1}, where
H, denotes the stabilizer of t € C? for the D,-action on C2. The kaleido
locus is then given by KL, , = If(\inn,l /D,,. Note that If{\inn,l is expressed as
ﬁnn,l = Usep,\ 1y Fix(z). Here z = a® or a*b for some k € {0,1,...,n—1}
(Lemma B.I.2) and note that Fix(a*) = {0} and 0 € Fix(a*b) (Lemma

__ n—1
B3I). We may thus write KL, , = |J Fix(a"b). Accordingly we have
k=0

n—1
KL, , = < U Fix(akb)> / D,,. Here the D, -action is given as follows: g € D,,
k=0

maps Fix(a*b) to Fix(ga®bg™!). We explicitly describe Fix(ga®bg~!), for

which we shall rewrite ga¥bg=! (see (2) below).

Lemma 3.3.2. (1) Foranyi,k, a'(a*b)a™" = a**2b and (a'b)(a*b)(a’d) ™! =
a~k+2ip,
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(2) Foranyg € D, g(a*b)g~! = a**%b or a=*+2 for somei € {0,1,...,n—

1}.
(3) {ga*bg™t : g € D,} = {a***b,a ¥ : i =0,1,...,n —1}.
Proof. (1) Recall that D, := {a,b: a™ = b*> = 1, bab~! = a™'). The first
equation is confirmed as follows:
a'(a*b)a™" = a'(a*b)ba’b as a” ' =ba'b"" (from a~' = bab™?)

= a"*p?ah = oF 2 as b> =1 and b~' =b.
The second equation is confirmed as follows:

(a'b)(a®b)(a’b) ™t = a'(ba* ™) = a'(a=*k~Dp) as baF~t = g~ k=9
= a2,

(2) By LemmaBI.2, g = a’ or a'b for some i € {0,1,...,n—1}. Accord-

ingly we obtain

a'(a®b)a™" = a**%b (by (1)) or

g(a*b)g™t =4 S
(a’b)(a*b)(a’b) ™" = a~ "+ (by (1)).

(3) Set S = {ga*bg™' : g € D,} and T := {a**%b,a **?p : i =
0,1,...,n—1}. By (1), we have S D T and by (2), we have S C T. Thus
we obtain S =1T. ]

Corollary 3.3.3. If k = k' mod 2, then a*b and a*'b are conjugate in D,,.

/

Proof. Write k = k' 4+ 2l, where [ :=
Then by Lemma (1), we have a'(a*b)a~" = a**+2'b = a"b. O

is an integer by assumption.

For even n, the converse of Corollary 3.3.3] holds:

Corollary 3.3.4. (1) Ifn is even, then a*b and a*'b are conjugate if and
only if k = k' mod 2.
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(2) Ifn is odd, then a*b (k=10,1,...,n — 1) are mutually conjugate.

Proof. (1) It suffices to show that if a*b and a*'b are conjugate then k =
k' mod 2. The set of conjugates of a*b is equal to T' = {a**%b, a=*+%p :
i=0,1,...,n — 1} (Lemma (3)). If a*b and a*'b are conjugate then
a"b e T, so k' =k+ 2 or —k + 2i mod n for some i. Here n is even, thus
k = k' mod 2.

(2) Since a*b and a*b (k = kK’ mod 2) are conjugate (Corollary B.3.3),
elements of A := {a*b : kis even} are mutually conjugate and elements
of B := {a*b : kis odd} are mutually conjugate. Next since n — 1 =
n + 1mod 2, a" 'b and a"*'b are conjugate. Here a™ = 1, so a"*'b = ab.
Thus a"'b and ab are conjugate. Note that a" b € A (asn— 1 is even) and

ab € B. Thus elements of A and B are mutually conjugate. O]

Corollary B34 combined with the fact that ¢ € D, maps Fix(z) to
Fix(gxg™') yields: If n is odd, then for any k, k' there exists an element of
D,, that maps Fix(a*b) to Fix(a*'b). If n is even, this is the case only when
k = k' mod 2. Therefore the following is obtained:

Lemma 3.3.5. Set L; := Fix(a*b). The D,-action on C* permutes (dis-
tinct) complex lines {Lo, Ly1,...,Lo_1}: if n is odd, this action is transi-
tive and if n is even, this action has two orbits: {Lg, Lo,..., L, 2} and
(Li,Ls, .. L1}

3.4 2-dimensional quotient families

To each representation p; : D,, — GLo(C) where [ is an integer such that
1 <1 < %, we shall describe the associated quotient family 7, ; : (X x

C%/D,, — C?/D,. Note first that:

Lemma 3.4.1. Ker(p,) = (a"), where we set n’ := n/ged(l,n). (Thus
the order of Ker(p;) is ged(l,n). In particular p; is injective if and only if
ged(l,n) =1.)



3.4. 2-DIMENSIONAL QUOTIENT FAMILIES 45

Ik
Cgk CO > # [ for any

k. The assertion is then immediate from the following equivalence:

Proof. Note first that Ker(p;) C (a), as p(a*b) =

Ik 0
pi(a¥) = <<0 C_lk> = | <= k is a multiple of n’ (in other words

n',2n', ... ged(l,n)n’).

We separate into two cases depending on whether p; is injective.

3.4.1 Injective case

Let 1, : (X x C?*)/D,, — C?/D, be the quotient family associated with an
injective representation p; (in this case ged(l,n) = 1). We first determine
its kaleido locus KL,, , (over which kaleido fibers lie; see Definition 2.1.4)).
This is the image of the prekaleido locus RVLWZ = Uyep,\ 1y Fix(g) under the
quotient map C? — C?/D,,. Here note that

n—1 n—1 n—1
KL,,, = | Fix(a*) U | ] Fix(a"b) = | ] Fix(a"b)
k=1 k=0 k=0

n—1 Ik
:U{)\<1) eC?: )\GC} by Lemma 3311
k=0

This confirms the following;:

Lemma 3.4.2. The prekaleido locus of n, ; is given by ﬁnm = Z;é Ly,
where we set
CM
Ly, := Fix(a"b) = { A ) €cC*: \eCy.
We consequently obtain KL, , = Z;é Ly, where L, is the image of Ly,

under the quotient map C* — C2%/D,,. Here the lines Lo, Ly,..., L, 1 are
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not distinct: From LemmaB3.3.5] if nis odd, Ly =L = --- = L,,_; and if n
iseven, Ly=Ly=---=Lp, gand Ly =Ly =---=L,_;. So
Lo if n is odd,
KL,,, = (3.4.1)

LoUL; ifniseven.

Moonsault of elliptic curves Let ¥ x C?> — C? be the projection, on
which D, acts equivariantly (via p; on C?). (Its quotient is the quotient
family 7, : (X x C?)/D,, — C?/D,.) Every fiber of ¥ x C?* — C? is of
course the elliptic curve . As a consequence of Lemma

e Odd n: D,, permutes elliptic curves over Lg, L1, ..., L, (Figure 3Z.T]).

e Even n: D, permutes elliptic curves over Ly, Lo, ..., L, o as well as
elliptic curves over Ly, L3, ..., L, (Figure B.42).

R,
)
a*b

by

- @

C2

Figure 3.4.1: Odd case (n = 5): Moonsault (gymnastics skill) of an elliptic
curve E in ¥ x C2. Each a*b (k= 0,1,...) is an involution (Lemma B.1.3).
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. a’b
a’b N
)
a*b
PR Ny ab
ds p
3
/ a’b l
E
CQ

Figure 3.4.2: Even case (n = 6): Moonsault of an elliptic curve E in ¥ x C2.

We describe the kaleido fibers of 7, ; : (X x C*)/D, — C?/D,,. For
s € C?/D,, let Hs be the stabilizer of 5 € C? for the D,-action (5 is a lift of
s), then 7, '(s) = ¥/Hz by Theorem 2.1l This is essentially independent of
the choice of a lift s, as, for any other lift 5/, Hy = H;z and X/Hz = ¥ /Hz/
canonically. We shall explicitly determine Y/ Hz. Note that

D, ifF=0,
Hz = q (a*b) if5e€ L\ {0} (k=0,1,...,n—1), where L, := Fix(a*b),
{1} if5eC\UZ) i
(3.4.2)
Here the second case “Hz = (a*b) if 5 € Ly \ {0} (k=0,1,...,n—1)" may

be rewritten depending on the parity of n as follows:

e Odd n: Hy= (b) if s € Lo \ {0},
because the D,,-action on { Lo, L1, . .., L, } is transitive (Lemmal[3.3.5]).
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(b) se€ Lo\ {0} if kis even,

(ab) se Ly \ {0} if k is odd,
because the D,,-action on { Lo, L1, . .., L,_1} has two orbits { Lo, Lo, . .., L2}
and {Lq, L3, ..., L,_1} (Lemma 330]).

Hence the following is obtained:

e Even n: Hy =

e Odd n: e FEven n:

(D, s=0,

(b) s € Lo\ {0},

{ab) s € Ly \ {0},

{1} s€(C?/D,)\ (LoUL).

D, s=0,
Hy =4 () s¢cly\ {0}, Hz =
(1} se(C2/D)\ To.

Now recall that the covering multiplicity (c.m.) of 17;1[(3) = Y /Hzis |Hj|.
The following holds:

(i) Odd n:

¥/D, s=0 (cm. |D,| = 2n),

Mai(s) = B/(b) s € Lo\ {0} (c.m. ()] = 2),
)Y s€(C*/D,)\ Ly (cm. 1),

where note that KL, , = Lo.

(ii) Even n:
/D, s=0 (cm. |D,| =2n),
n=1(s) = S/ s € Lo\ {0} (cm. [(b)] =2),
" %/{ab) s € L1\ {0} (cm. [{ab)| = 2),
¥ s€(C?/D,)\ (LyULy) (cm. 1),

where note that KL,, , = LoU L.

In (i) and (ii), we have the following (see Lemma 3251 (2)):
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e X/D, is P!, and ¥ — 3/D, has four branch points.
e 2/(b) is P!, and ¥ — 3/(b) has four branch points.

e Y /{ab) is P!, and ¥ — X/(ab) has four branch points.
The above results are summarized as follows:

Theorem 3.4.3. Let 1, : (X x C*)/D,, — C*/D,, (1 <1 < %) be the
quotient family of 3 associated with p; : D, — GLo(C). If p, is injective
(equivalently ged(l,n) = 1), then the following hold (c.m. means covering

multiplicity):

projective line ¥/D,, (c.m.2n) if s =0,

77;1[(8) = projective line ¥/(b) (c.m.2) if s € KL,,, \ {0},
elliptic curve ¥ (c.m. 1) if s € (C*/D,,) \ KLy, ,.
L n :odd),
KL, , =4 _ ( )

LoUL; (n:even).

Remark 3.4.4. While /(b) appears as a fiber of n, ;, for any a* # 1, $/(a*)
does not. Reason: By the quotient fiber theorem, n;ll(s) = Y./H,, where H,
is the stabilizer of t € C?. We claim that H; # (a*) for any t € C2. Indeed
since Fix(a*) = {0}, if a* € H; then t = 0, but Hy = D,,.

To determine C?/D,,, we need the following:

Lemma 3.4.5. p;(b) is a reflection.

0 1 1 0 1 1
Proof. p(b) = (1 O) is conjugate to (O _1> in GLy(C) via <_1 1).

Now we can determine C?/D,,:

Lemma 3.4.6. C%/D,, (= C*/{pi(a), pi(b))) is isomorphic to C?.
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Proof. By computation, the invariant ring of Clz,y] under the D,-action is

isomorphic to C[z, y| itself, thus the assertion holds. ]

The total space (X x C?)/D,, of the quotient family 7, ; is singular:

Odd Case If n is odd, the ramification points of the quotient map > —
Y./ D,, consists of four D,,-orbits as illustrated in Figure .43l Each consists of

n pOHltS' {p07 s 7pn—1}7 {QO7 s 7Qn—1}7 {T()a s 7Tn—1}7 {807 s 7871—1}7 where
for each k =0,...,n — 1, P, @i, i, S, are the fixed points of a*b.

Dbo

/AN (/“ %
o T \ 7“1
IEE RN basl [

Figure 3.4.3: The D,-orbits of the ramification points for n = 3,5

Notation 3.4.7. Let x;, denote py, g, 7, or s;. Each line {z3} x Ly, in ¥ x C?
is mapped to a line {z} x L;, in (X x C?)/D,,, which lies over Ly. Noting
that {x;} x Lj, does not depend on k, write this as R, (x = p,q,r,s). See
Figure3.4.4l As we will show in Theorem B.5.11], the total space (X x C?)/D,
is singular along R,, R,, R, Rs. They are called the ridges of (X x C?)/D,,.
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R,
S==g)
R, R,
(£ x C?)/D, b

TN

C2/Dn LO

Figure 3.4.4: The ridges of the quotient family n, ; : (X x C?)/D,, — C*/D,,
(n: odd)

Even Case If n is even, the ramification points of the quotient map ¥ —
Y./ D,, consists of four D,,-orbits as illustrated in Figure .45 Each consists of
n points: {po,- .-, Pn-1}, {q0s-- > @1}, {r0s-- - Tn-1}, {S0;---,Sn_1}. Here
Dks Q> Ptn)2> Qkiny2 (B = 0,...,n — 1) are the fixed points of a®*b, while
,n — 1) are the fixed points of a?**1b.

|
o

>>

Ths Sky Thetn/2s Skn/2 (K=
TN
Q\SQ% /ym

Figure 3.4.5: The D,,-orbits of the ramification points for n = 4,6

<<

b2

Notation 3.4.8. Let x;, denote py, i, 1k, or s;. Each line {z3} x L, in ¥ x C?
is mapped to a line {z} x L, in (X x C?)/D,,. Noting that {z} x L; does
not depend on k, write this as R,. The lines R, and R, lie over Ly and
the lines R, and R, lie over L;. See Figure BZ6 (As we will show in
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Theorem B.5.10] the total space (¥ x C?)/D, is singular along the ridges
Rp7 Rtp RT’7 Rs)

R, R,
= e
iy

R, R,

¢ (X x C*)/Dn
ZO Zl (CQ/DTL

Figure 3.4.6: The ridges of the quotient family 7, ; : (X x C*)/D,, — C*/D,

(n: even)

3.4.2 Non-injective case

Let 1, : (X x C?)/D,, — C?/D,, be the quotient family associated with the
irreducible representation p; : D,, — G Ly(C) given by

627ril/n 0 0 1
fr—y R 5 b = .
pi(a) ( 0 o2 /n> pi(D) (1 0)

In what follows, consider the case that p; is not injective. The kaleido lo-
cus KL, , of n,; is then the whole of C?*/D,, ie. every fiber of Mn,1 18
kaleido (Proposition 21,5 (1)). By Theorem 219 (1), 0, : (X x C?*)/D,, —
C?/D, is canonically isomorphic to the quotient family 7, ; : (£/Ker(p) x
C?)/(Dn/Ker(p)) — C*/(D,/Ker(p)) associated with p; : D, /Ker(p) —
GLy(C). Now set d := ged(n,l), n' := n/d, and I' := [/d. By Lemma
B41 ged(n,l) > 2 and Ker(p) = (a™), so D, /Ker(p;) = D,s. Note that
¥ = ¥%/(a") is an elliptic curve (Lemma 324 (1)).
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Lemma 3.4.9. Two representations p; : D — GLo(C) and py : D,y —
GLy(C) coincide.
Proof. The images @, b of a, b under the quotient map D,, — D, (= D,,/{a™))

generate D,, and

o 3 e271*il’/n’ 0 e — 0 1
p(@) = py(a) = ( 0 e—27ril’/n’> ’ pib) = pr(b) = (1 O) '

The above results combined with Theorem yield the following:

Lemma 3.4.10. (1) The quotient family 0, : (X x C*)/D, — C*/D,
associated with p; : D, — GLs(C) is canonically isomorphic to the
quotient family 0,y @ (X' x C*)/D,, — C?/D,s associated with the
injective representation py : D,y — GLo(C). Here ¥ := ¥ /Ker(p,) is

]

an elliptic curve and |Ker(p))| = d (= ged(n, 1)), so
(covering multiplicity of n;}ll(s)) = dx (covering multiplicity of n;,? 1 (9)).
(2) Let SLy,, be the special locus of 0,1 (Remark[ZL8) and KL, , , be the
kaleido locus of nu,y. Under the isomorphism in (1), SL,, , =KL, , .
Here by Theorem [3.4.3]

projective line ¥'/D,, (2 ¥X/D,,) (c.m.2n’) it s =0,
() = projective line ¥'/(b) (= $/(a™,b)) (c.m.2) if s € KLy, , \ {0},
elliptic curve ¥’ (:= X/(a™)) (c.m.1) if s € (C*/Dp) \ KLy, -

Consequently the following holds:

Theorem 3.4.11. Let 1, : (¥ x C*)/D,, — C?/D,, be the quotient family
of ¥ associated with p; : D, — GL2(C) and set n’ :=n/ged(n,l). Then the
following holds:
projective line ¥/D,, (c.m.2n'd (= 2n)) if s =0,
77;11(8) = < projective line ¥/(a™,b) (c.m.2d) if s € SL,,, , \ {0},
elliptic curve ¥/(a™) (c.m.d) if s € (C*/D,) \ SLy, ,.
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3.5 Singular loci of total spaces

Let p; : D, — GL3(C) be the representation given by (B.31) and 7, ; :
(X x C?)/D,, — C*/D,, be its associated quotient family. We determine the
type of the singular locus of (X x C?)/D,,. Note first the following:

Lemma 3.5.1. If y € (X x C?)/D,, is a singularity, then Hy # {1}, where
Hj is the stabilizer of a lift § € ¥ x C? of y. (If moreover p; is injective, the
converse holds (Lemma below).)

Proof. Write § = (z,t) € ¥ x C? and take a sufficiently small Hy-stable
disk A C ¥ centered at 2. Then (¥ x C?)/D,, is around y isomorphic to
(A x C?)/Hy. If y is a singularity of (X x C?)/D,,, then y is a singularity of
(A x C?)/Hy, so necessarily Hy # {1}. O

Since the D,-action on ¥ x C? is diagonal ((z,¢) — (gz,p(g)t)), the
following holds:

Lemma 3.5.2. For any (z,t) € ¥ xC?, H(,4y = H,NH,. (Thus H(,4 # {1}
is restated as H, N H; # {1}.)

To determine the singularities of (3 x C?)/D,,, we shall determine (z, t)
such that H,; # {1}. Recall that n, ; : (X x C*)/D,, — C?/D,, is the quo-
tient family associated with the representation p; : D,, — GLo(C). Thanks
to Lemma B.4.10l (1), we may assume that p, is injective.

Recall that D, = {a*,a*b : k = 0,1,...,n — 1}. Here a*, being a
translation of ¥ (Figure B.11)), fixes no point of ¥. Thus a* ¢ H, for any
z. Next a*b, being a involution of ¥ (Figure BT, fixes four points. If
z is a fixed point of a*b, then (a*b) C H, and a*b ¢ H, for any k' # k,
so (akb) = H,. This confirms (i) of the following (while (ii) is nothing but
BZ2); note p; is injective):
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Lemma 3.5.3.

(i) ) if z € Fixg(ab), () T
H, (a®b)  if z € Fixy(a"b), Hy={ (a"b) if t € Fixea(a®)\ {0},
{1} otherwise, ‘
{1} otherwise,

where Fixg(a®b) (S = X, C?) denotes the fized point set of the action of a*b
on S.

From H.; = H. N Hy and Lemma [3.5.3] we have:

Corollary 3.5.4. Suppose that p; is injective. Then the following conditions

are equivalent:
(i) Hep # {1}
(ii) H(.p) = (a®b) for some k.
(iii) (z,t) € Fixs(a*b) x Fixcz(a*b).

The image of (z,t) € ¥ x C? under the quotient map ¥ x C? — (X x
C*/D,, is denoted by [z,t] € (¥ x C?)/D,. If [2,t] € (X x C?)/D,, is a
singularity, then H. s # {1} (Lemma[3.5.T)). Conversely the following holds:

Lemma 3.5.5. Suppose that p; is injective. If H.y # {1}, then [z,t] €
(X x C*) /D, is a singularity.

Proof. It H,; # {1}, then H(; = (a*b) for some k (Corollary 3.5.4).
Noting that a*b is not a pseudo-reflection (Lemma B5.10 below), H(, ;) =
(a*b) is a small group, so [z,t] € (¥ x C?)/D, is a singularity. O

Combining Lemma B.5.1] Corollary B.5.4] and Lemma yield the
following:

Proposition 3.5.6. Suppose that p; is injective. Then the following are
equivalent:
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(i) [2,t] € (¥ x C?)/D,, is a singularity.
(i) He.py 7 {1}
(iil) Hsp = (a*b) for some k.
(iv) (2,t) € Fixg(a*b) x Fixcz(akb).
We determine the singular locus of (X x C?)/D,,.

Proposition 3.5.7. Suppose that p; is injective. Then the singular locus of
(X x C?)/D,, consists of the ridges Ry, Ry, Ry, Rs (illustrated in Figure [3.4.)
for odd n and Figure[3.4.6 for even n; R,, Ry, R, Rs are disjoint).

Proof. By Proposition [3.5.6] it suffices to show that
(2,t) € Fixg(a"b) x Fixe2(a*b) <= [2,t] € R,UR,UR, UR,.
Note first that

Fixy(a®b) = {pk, qr, Tk, s} (see Figure B.A3] for odd n, Figure for even n),
Fixcz (a*b) =: Ly (see Lemma B.4.2).

Thus (z,t) € Fixg(a*b) x Fixcz(a*b) is restated as (z,t) € {x} X Ly (x5, =
Dk, Qks Tk, Sk ), that is, [z,t] € R, as R, := {x} X Ly (see Notation B.4T for
odd n and Notation B.4.8 for even n). O

Consider next the case that p; is not injective. We reduce this to the
injective case: Set n' := n/ged(n,l) and I' := 1/ ged(n, 1) and ¥/ := £/(a™).
Then note that the quotient family 7, ; : (X x C?)/D,, — C*/D,, associated
with p; : D, — GLy(C) is naturally identified with the quotient family
N v 2 (X' x C?)/ D,y — C?/D,, associated with the injective representation
pr (=7;) : Dy — GLy(C). In fact,

/7

(i) (ExC?)/Dy=(ZxC"/{a")/(Dnf{a™))
~ (E/(a”/> X (CQ)/(Dn/m”/)) as (a")-action on C? is trivial
= (X' x C*) /Dy,
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(i) C*/Dy=(C*/{a"™))/(Du/(a™))
= (CQ/(DTL/(anl)) as (a")-action on C? is trivial
= CZ/Dn’a

and the following diagram commutes:

(X x C*/D, — = (¥ xC?/D, (3.5.1)
nn,li lnn’,l’
C2/D, = C2/D,.

Consequently the assumption “p; is injective” in Proposition B.5.7 may be
omitted:

Proposition 3.5.8. The singular locus of (X x C?)/D,, consists of the ridges
Ry, Ry, Ry, Rs.

o

Remark 3.5.9. The isomorphism (X x C?)/D,, — (X' x C?)/D,y in (3.51))
is explicitly given by [y,t] — [y mod (a™),1].

We next determine the type of each singularity of (¥ x C?)/D,,. The
following is needed:

1 0 O
Lemma 3.5.10. The action of a*b on X xC? is given by M := |0 —1 0
0 0 -1

up to conjugation. (Note: M is not a pseudo-reflection while —M is a pseudo-

reflection.)

Proof. For z € Fixy(a*b), take an (a*b)-invariant small disk A in X centered
at z. Then the action of a*b on A is given by z — —z (Lemma

lk
CO ) (see (B:31))), where recall that

-1 0 0
¢ := e>/" So the action of a¥b on A x C*is given by | 0 0 (%],
0 ¢ o

(2)) and that on C? is given by (C_lk
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1 0 O
which is diagonalized to M := | 0 —1 0 | in GL3(C). O
0 -1

1 0

Write the matrix M in Lemma B.5.10 as M = (0 N)’ where N =

-1 0
0 -1
This with Proposition B.5.8 yields the following:

. Then C?/(N) is an A;-singularity and C3/(M) = Cx (C?*/(N)).

Theorem 3.5.11. The singular locus of (¥ x C?)/D,, consists of the ridges
Ry, Ry, R, R, around each of which (XxC?)/D,, is isomorphic to (complex line)x
(A;-singularity). (Note that the types of singularities do not depend on

whether n is odd or even.)



Chapter 4

Binary dihedral quotient

families

4.1 Binary dihedral quotient families

The dihedral group D,, = {a,b : a® = V> = 1, bab™' = a™!) acts on the
regular n-gon A,, as a is a 1/n-rotation and b is a reflection. Thickening the
edges of A, yields a cable surface (torus) X with D,-action. As before we give
a complex structure to X such that the D,-action is holomorphic. Consider
next the binary dihedral group D, = (a,b : @ = 1,a" = b, bab ! =
@') and the double covering ¢ : D, — D, given by @ — a and b —
b. Let D, act on X via q, i.e. g € D, acts as q(g) (this action is not
effective). To each representation D, — GL,,(C), the associated quotient
family (X x C™)/D, — C™/D, of ¥ is called a binary dihedral quotient
family or a quotient family of type D,,. We describe such quotient families
for all irreducible representations of lN)n. For representations of lN)n, there
is no suitable reference for our purpose, so we describe them herein. We

determine all irreducible representations of ZSH Note next that:

Lemma 4.1.1. For a finite group G, let p : G — A := G/|G,G] be its

abelianization. Then there is a one-to-one correspondence between the 1-

29
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dimensional representations of G and those of A. In fact, x € Hom(A, GL,(C)) —
x o p € Hom(G, GL,(C)) is bijective.

Proof. Surjective: For any 7 € Hom(G,GL1(C)), T|jc,q) = 1, so 7 factorize
through A, that is, 7 = x o p for some x € Hom(A,GL{(C)). Injective:
Suppose x; o p = Xy o p. We then show x; = x5, i.e. xy(a) = x,(a) for
any a € A. Since p : G — A is surjective, we may take a € G such that
p(a) = a. Then from x; o p = x5 0 p we have x; o p(a) = x, o p(a), ie.
x1(a) = x(a). 0

We return to D,, = <Zi,g catt=1,a" = 52,,555*1 =a ). Its abelianiza-
tion A,, := Bn / [15”, ﬁn] amounts to adding a relation ab = 35; then the last
relation bab~! = a~! becomes a = @ !, i.e. > = 1. Thus A, = (a,b : a* =

1,a" = b2, ab = ba). Note that:

(i) For even n, from @* = 1 we have a" = 1, so b = " = 1. Thus

A, =(a,b: a2 =b=1ab=ba).

(i) For odd n, from @* = 1 we have @ = @, so b®> = a" = @, accordingly
B —@ =1 Thus A, = @b : b = 1,a = 12, ab — ba).

Hence:
4 Zo X Lo = (a) x (b) if n is even,
" Z4 = (b) if n is odd.

124

Depending on whether n is even or odd, the representations of A, are x§¥" :

7

Lo X Xy = <Zi) X <b> — GLl(C) or X?dd 2Ly = <b> — GLl(C) (Z = 1,2,3,4)
given by

( (

(1,1) 1 =1
_ ~ (1,-1) s —1 =2
(x5 (@), x7™"(b)) = ) =9 . (4.1.1)
(—1,1) i i=3
L (_17_1)7 . —1 1 = 4.

By Lemma . T.T] the following holds:
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Proposition 4.1.2. Let p : D, — A, be the abelianization. Then the 1-
odd o py for

even

dimensional representations of D are X5V o p for even n and X

odd n.

Definition 4.1.3. Let ¢ : lN)n — D,, be the double covering given by a —
a,g +— b. For a representation p : D,, — GL,,(C), the composition p := pogq:
D,, = GL,(C) is the lift of p. A representation of D, is lifted if it is the lift

of some representation of D,,, otherwise unlifted.

D,
abelianization ]2/ % double covering
A, D,.
Lemma 4.1.4. The 1-dimensional representations X o p and x99 o p of

D, are lifts of 1-dimensional representations of D,. In fact the following
hold:

e Even n: x{¥ op (i = 1,2,3,4) is the lift of x; defined by (B.2.1)), that

is, X{* " op =X, (:=xi0q).

e Odd n: x%4op (i = 1,2) is the lift of x;, that is, x?%op = X; (:= x;0q),
whereas x$% o p (i = 3,4) is not the lift of a representation of D,,.

odd odd

Notation: Set o1 := x5 o p and 09 := X3

Proof. We only show that o; (i = 1,2) are not the lifts of representations
of D,, (the other statements are shown by easy computation). If o; = pog
for some representation p of D, then o;(a") = po q( ™). This however
does not hold, as o;(a") = —1 while po¢(a®) = 1. Indeed for i = 1:
o1(a@) = x5™ o p(a) = x3™(@) = x5 = -1 (aS d = b* in A,) while
poq(a™) = p(1) =1 (as g(a@™) = 1). Similarly for i = 2, this is confirmed. [

We next consider two kinds of 2-dimensional representations of D,: the
lift 7; := p; 0 q of p; : Dy — GLy(C) given by B31) and 73, : D,, — GLy(C)
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(k: odd, 1 < k < n) defined by

- emk/m ~ 0 —1
Tk(a) = ( 0 e—wik/n) N Tk(b) = <1 0 ) . (4.1.2)

Lemma 4.1.5. (1) p; is irreducible. (2) 73, is irreducible and unlifted.

Proof. We show (1). Otherwise p; is written as the sum of two 1-dimensional
representations of ﬁn, say p; = f1® fo. Here all 1-dimensional representations
of D, are exhausted by those in Proposition A.1.2] and f; is one of them.
Now tr(p;) = tr(f1) + tr(f2), but there is no combination of f; and f, that
satisfy this. We next show (2). The same argument used in (1) shows the
irreducibility of 7. We show that 7 is unlifted. If 7, = p o ¢ for some

representation p of D, then 75(a") = poq(a™). This however does not hold,

-1 0 10
as 7.(a") = while p o g(a™) = . (]
x(a") ( 0 _1> poq(a) 01
Even n: lifted unlifted
1-dim Xi (i=1,2,3,4) none
2dim | p; (j=1,2,...2-1) | 7 (k=1,3,...,n—1)
0dd n: \ lifted \ unlifted
1-dim Xi (i=1,2) o; (i=1,2)
2-dim | p; (j=1,2,...%5) | % (k=1,3,...,n—2)

Table 4.1.1: Irreducible representations of l~)n

Proposition 4.1.6. The representations in Table [{.1.1] exhaust all irre-

ducible representations of D,,.

Proof. This is checked by the sum of squares formula ([Ser] Corollary 2 (a)
p.18). For even n,
> (dimy)? + Y (dimp;)? + ) (dim)? = |Dy,

j k

7
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indeed 4 x 12 4 252 x 2% 4 2 x 22 = 4n. For odd n,

> (dimy:)® + Z(dim 0;)? + Z(dimﬁj)Q +) (dim7)? = [ D,

1

indeed 2 x 17 +2 x 12 + 251 x 22 4 221 % 22 — 4, O

We give the explicit forms of the representations X;, oy, p; (for 7 see

BE12)):

(1,1) i=1,
w@ wm={ " = @iy = Tt
(-1,1) =3, (C1) i=2

\ (_17 _]-) 1= 4,

. emi/m 0 o~ 0 1

4.1.1 Lifted case

We describe the quotient families associated with the lifted irreducible rep-

resentations of D,,. We begin with preparation.

Lemma 4.1.7 ([Ta,V1]). Let ¢ : G — G be a surjective homomorphism
between finite groups. Suppose that G acts on a compler analytic variety
Y holomorphically and let G act on'Y via q. Then for any representation
p:G— GL,(C) and its lift p:=pogq: G — GL,,(C), the quotient family
7 (Y xC™/G — C™/G associated with j is isomorphic to the quotient
family n: (Y x C™)/G — C™/G associated with p.

Proof. Since G acts on Y via ¢ and on C™ via p1 = p o q, the kernel
K := Ker(q) acts trivially on both ¥ and C™, so (Y x C™)/K =Y x C™,
and then

(Y x C™)/G = (Y x C™) /K /G/K
~ (Y x C™)/G.
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Similarly we can confirm that C™/G =2 C™/G. Moreover the following dia-

gram commutes:

(Y x C™)/G —— = (Y x C™)/G
i |7
cm/G = cm/G.

]

Lemma 4.1.8. In Lemma[[.1.7, the covering multiplicity of (s) is equal
to |Hy|/|K| (not |Hy|). In particular, the covering multiplicity of 7 *(s) is
equal to that of n~1(s).

Proof. Since K C H, acts on ¥ trivially and H;/K acts on ¥ effectively, the
covering degree of ¥ — X/H, (the covering multiplicity of 771(s)) is equal
to [Hy|/| K. O

A binary dihedral quotient family associated with a lifted representation
is isomorphic to a dihedral quotient family. In fact, let p : D,, = GL,,(C) be
a representation and p:=poq: D, — GL,,(C) be its lift, then application
of Lemma @7 to G = D,, and G = D,, yields the following:

Corollary 4.1.9. The quotient family (X x C™)/D, — C™/D, associated
with p is isomorphic to the quotient family (X xC™)/D,, — C™/D,, associated
with p.

The lifted representations of D, are Y; : D, — GL1(C) (i = 1,2,3,4)
given by (@IL3) and f; : D, — GLy(C) (where 1 < [ < %) given by (A.1.4).
Let & ¢ (8 x C)/D, — C/D,, and 7, : (X x C?)/D,, — C2/D, be their
associated quotient families. By Corollary [£.1.9]

>~

. {Z is isomorphic to the quotient family &; associated with x;; so E;l(s)

&' (s)-
e 1), is isomorphic to the quotient family 7, ; associated with p;; so
i (8) = 1, (s)-
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Here by Lemma 1.8
ca.of & 1(s) = cm.of £7(s),

c.m.of ﬁ;ll(s) = c.m. of 7, (s).

The kaleido fibers of & and 7, ; and their covering multiplicities are deter-
mined in Theorems 3.2.6] and B.4.11l Note next that

Lo
LoU L,

if n is odd,

SLz, , =KL, = (4.1.5)

if n is even,

where for the first equality, see Theorem 2Z1.91 (1) and for the second equality,
see (B.41]). We formalize the results so far obtained as follows:

Proposition 4.1.10. Let & : (X x C)/D, — C/D, (i = 1,2,3,4) be the
quotient family associated with x; and 7, ; : (X X C2)/D,, — C2/D, (where
1 <1< §) be the quotient family associated with p;. Then the kaleido fibers
and the covering multiplicities are as in Table (1) and (2) respectively.

1) &0 &) &) &) &)
(s € (C/Dn) \{0}) | (s € (/D) \{0}) | (s € (C/Dn) \{0}) | (s € (C/Dn)\ {0}
fiber | /D, ¥/D, ¥/{a) %/ {a?, b) ¥ /(a?, ab)
(P1) (elliptic curve) (elliptic curve) (P1) (P1)
c.m. 2n 2n n n n
(2) T,1(0) | 7, 4(s) (s € SLy, , \ {0}) | 7, (s) (s € (C*/Dy) \ SLy, ,)
fiber | ¥/D, >/ {a™,b) >/ {a™)
(P1) (Ph) (elliptic curve)
c.m. 2n 2d d

Table 4.1.2: d := ged(n,[). In (2), SLz, , is the special locus of 7, ;.
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4.1.2 Unlifted case

Before proceeding, note that using the relations a2" = 1,a" = b2 and bab~! =

@', any element of D,, is written as either a* or a"b:

D, = {Ek,akg :k=0,1,...,2n — 1} (no overlap). (4.1.6)

We shall describe the quotient families associated with the unlifted irre-
ducible representations of lN)n
1-dim case Recall that the unlifted representations exist only for odd
n: they are o1,05 : D, — GLy(C) given by (51(a), o1(b)) = (—1,i) and

(02(a), 02(b)) = (=1, ).
Lemma 4.1.11. For odd n, Ker(o,) = Ker(oy) = (a?).

Proof. Any element of D, is expressed as either @* or a*b (see ([E1.0)). Here

o1(a*) = (=1)* and o,(a*b) = (=1)*i. So o1(g) = 1 if and only if g = a* for
some even k. Thus Ker(oy) = {@* : k is even} = (a?). Similarly Ker(oy) =
(a?). O

Before proceeding, note the following:

Lemma 4.1.12. For odd n, ¥/(a%) = ¥ /{a).

Proof. The action of (a?) on X is, by definition, given by (a?). Here (a?) = {(a)
(as n is odd), so X/ (a*) = ¥/(a). O
Proposition 4.1.13. Let w@; : (X xC)/D,, — C/D, (i = 1,2) be the quotient
family of ¥ associated with o; : D, — GLi(C). Then the following holds

(c.m. means covering multiplicity):

projective line ¥/D,, (c.m.2n) if s =0,
elliptic curve £/(a) (c.m.n) if s # 0.

Proof. By Lemma 213, @; *(0) = %/ D,,, which is identical to /D, and

whose covering multiplicity is |D,,| = 2n.
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By Lemma 213 w;'(s) = X/Ker(o;), which is identical to X/(a?)

(Lemma ET.TT]), that is equal to X/(a) (Lemma ET.T2)), whose covering
multiplicity is |[(a)| = n. O

2-dim case Recall that the unlifted irreducible representations are 7, :

D,, — GLy(C) (where m is odd and 1 < m < n) given by (see [EI12)):

~ emim/n 0 ~ 0 —1
Tm<a>=< o ] O =( )

Lemma 4.1.14. Ker(r,,,) = (@), where we set n' := n/ged(m,n). (Thus
the order of Ker(7,,) is gcd(m,n). In particular 7, is injective if and only if
ged(m,n) =1.)

Proof. Note first that any element of D, is expressed as either a@* or a*b

(k=0,1,...,2n—1); see (ELH). Note next that Ker(r,,) C (a) as 7,,,(a*b) =
0

wimk/n

—e

i/ 0 ) = [ for any k. The assertion is then immediate from
e

the following equivalence:

wimk/n 0
Tm(@*) = (6 0 R I <= Fk is a multiple of 2n’ (in other

words 0,2n/,4n’, ... 2n — 2n/).

]

We shall describe the quotient family associated with 7,,. We separate
into two cases depending on whether 7, is injective or not (equivalently m

is coprime to n or not).

Case: 7, is injective Let D,, act on C? via 7,,.

Lemma 4.1.15. For g € D, set Fix(g) := {t € C : 7,,(¢)t = t}. If 7y :
D,, — GLs(C) is injective, then Fix(a*) = {0} for k # 0 (while Fix(a®) = C2)

and Fix(a*b) = {0} for any k.
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Proof. This is immediate from

wimk/n 0 . 0 _ mimk/n
Tm<a ) - ( 0 e—ﬂimk/n) ’ Tm((l b) - (e—wimk/n 0 > ’

Let & ¢ (3 % C2)/D,, — C2/D,, be the quotient family associated with
Tm. We now determine its kaleido locus KLg,,,. The preimage ﬁén,m of
KL, , under the quotient map C*> — C2/D, is given by Uyep oy Fix(g)
(see the proof of Proposition ZI.5)). By Lemma ETTIH, KL, , = {0}, so
KL, = {0}. Thus &,7,(s) (s € C2/D,) is kaleido if and only if s = 0.
The only one kaleido fiber &% (0) is X/D,. Here note that the action of
D, on ¥ is equivalent to that of D, on X, so E/En >~ ¥/D,, and thus
6:1,(0) = /D,

Theorem 4.1.16. Let &, ,, - (X x C2)/D,, — C2/D,, be the quotient family
of ¥ associated with Ty, : Dy — GLo(C). If 1y, is injective, then the following

holds (c.m. means covering multiplicity):

projective line ¥/D,, (c.m.2n) if s =0,
elliptic curve ¥ (c.m. 1) if s # 0.

In particular if s # 0, then all fibers of &, ,,, are X, so &, ,, has a single
kaleido fiber. We thus obtain the following:

Corollary 4.1.17. The quotient family &, : (3 x C2)/D, — C2/D, of
Y associated with any unlifted irreducible representation 7, : D, — GLy(C)

has a single singular fiber — a kaleido fiber of covering multiplicity 2n (see

Figure[{.1.1)).
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an

(2 x C?)/D, L
chV‘O\

Figure 4.1.1:

Remark 4.1.18. (i) While the base space C?/D,, of 1, ; is smooth (Lemma
[3.4.6), the base space C?/ D,, of &n.m has a D-singularity. (ii) The singular
locus of (X x C2)/D,, consists of the four points on &,4,(0) (see Proposition
below).

Case: 7, is non-injective Let &, ,, : (X X CQ)/ﬁn — CQ/ﬁn be the
quotient family associated with the irreducible representation 7, : lN)n —
G Ly (C) given by

~ emim/n 0 ~ 0 -1
Tm<a>=< R B O S

In what follows, consider the case that 7, is not injective. The kaleido lo-
cus KL, . of &, is then the whole of C?>/D,, i.e. every fiber of &, ,, is
kaleido (Proposition ZI5l (1)). By Theorem 2L (1), &, : (X x C2)/D,, —
C2/D,, is canonically isomorphic to the quotient family Enm  (B/Ker(ry,) x
(C2)/(En/KeI‘(Tm)) — Cz/(lN)n/Ker(Tm)) associated with 7,, : D, /Ker(7,) —
GLy(C). Now set d := ged(n,m), n’ :== n/d, and m' := m/d. By Lemma
EI114 ged(n,m) > 2 and Ker(ry,) = (@), so D,/Ker(r,) = D,. Set
Y/ := %/(a"); this coincides with ¥/(a™) (as @ acts on ¥ as a), so this is an
elliptic curve (Lemma [3.2.4] (1)).

Lemma 4.1.19. Two representations T, : lNDn/ — GLy(C) and 7y : Dy —
GLy(C) coincide.
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Proof. The images «, 3 of 5:5 under the quotient map D,, — D,y (=2 D,/ @)

generate D,/, and

The above results combined with Theorem yield the following:

Lemma 4.1.20. (1) The quotient family &, : (X x C?)/D, — C2/D,
associated with T, : Dy — GLy(C) is canonically isomorphic to the
quotient family &y @ (X % C2)/D, — C2/D, associated with the
injective representation Tpy : Dy — GLy(C). Here X' := X /Ker(r,,) is

an elliptic curve and |Ker(r,,)| = d (= ged(n,m)), so

(covering multiplicity of &, ", (s)) = dx (covering multiplicity of Sﬁm,(s)).

(2) Let SLg,,, be the special locus of &, (Remark[Z1.8) and KLg, , be
the kaleido locus of &y n. Under the isomorphism in (1), SLg, . =
KL

/ ’°
s

Here by Theorem [L.1.10]

projective line ¥'/D,, (2 3/D,) (c.m.2n’) it s =0,
elliptic curve ¥/ (2 X/(@")) (cm.1) if s #0.
Consequently the following holds:

Proposition 4.1.21. Let &, ., : (8 x C2)/D, — C2/D,, be the quotient
family of © associated with T, : D,, — GLy(C). Set d := ged(m,n) and
n’ :=mn/d. Then the following holds (c.m. means the covering multiplicity):

projective line ¥/D,, (c.m.2n'd (= 2n)) if s =0,
elliptic curve ¥/(a™) (c.m.d) if s # 0.
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4.1.3 Singular loci of total spaces

Let 7 : D — GLy(C) be the representation given by @L2) and &, :
(2 x C2)/D, — C2/D, be its associated quotient family. We determine the
type of the singular locus of (£ x C2)/D,. Note first the following (the proof
is same as that of Lemma [3.5.7]):

Lemma 4.1.22. Ify € (X X CZ)/ﬁn is a singularity, then Hy # {1}, where
Hj is the stabilizer of a lift y € X x C? of y. (If moreover 7, is injective, the
converse holds (Lemma below).)

Since the Dy-action on ¥ x C? is diagonal ((z,t) = (92, Tm(g)t)), the
following holds:

Lemma 4.1.23. For any (z,t) € ¥xC?, H(,;) = H,NH,. (Thus H, ;) # {1}
is restated as H, N H; # {1}.)

To determine the singularities of (X x C2)/D,, we shall determine (z, ¢)
such that H(,; # {1}. Thanks to Lemma (1), we may assume that
the representation T,, is injective.

The action of D,, = {Elk,Zikg :k=0,1,...,2n — 1} on X is not effective;
the kernel of D,, — Aut(X) is (a"). Since a@,b € D, acts on ¥ as a,b € D,,,
by (i) of Lemma 353 we have

o (@b, a") if z € Fixg(akb),
(a"™) otherwise.

Here (@*b) = (a¥b)(a*b) = a*a—*bb = b> = a", so (@*b,a") = (a*b). This
confirms (i) of the following (while (ii) is nothing but Lemma [.T.T5} note 7,

is injective):

Lemma 4.1.24.

(i) (@b) (2 7Z,) if z € Fixg(akb), (i) . D, ift=0,

t
(@) (2 Zsy)  otherwise, {1}  otherwise.
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From H,; = H. N H, and Lemma E.1.24] we have:

Corollary 4.1.25. Suppose that 7, is injective. Then the following condi-

tions are equivalent:

(i) Hep # {1}

(ii) H(.p = (@b) for some k.
(ili) z € Fixs(a*b) and t = 0.

The image of (2,t) € ¥ x C? under the quotient map ¥ x C* — (¥ x
C?)/D, is denoted by [z,1] € (X x C2)/D,. If [2,t] € (X x C?/D, is
a singularity, then H(., # {1} (Lemma [£I.22). Conversely the following
holds:

Lemma 4.1.26. Suppose that 7., is injective. If H(.p # {1}, then [z,1] €
(X x C2)/D, is a singularity.

Proof. It H(,; # {1}, then H(; = (a*b) for some k (Corollary E.I1.25).
Noting that a*b is not a pseudo-reflection (Lemma below), Hi.py =
(@*b) is a small group, so [z,t] € (£ x C2)/D,, is a singularity. O

Combining Lemma ET.22] Corollary ET.25] and Lemma £T1.26] yield the

following:

Proposition 4.1.27. Suppose that T, is injective. Then the following are

equivalent:
(i) [z,8] € (2 x C2)/D, is a singularity.

(ii) Hep # {1}

(iil) H. s = (@*b) for some k.
(iv) z € Fixg(@*b) and t = 0. (In case of D,,, this condition instead (z,t) €
Fixs(a®b) x Fixcz(a*b) (Proposition B.5.6 (iv)), in the present case,

Fixc: (@) = {0}.)
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Regard the quotient map ¥ x {0} — (2 x {0})/D, as © — %/D, (=
Y¥/D,). This has four branch points (Lemma (2)). Write them as
pi € (X x {0})/D, (i =1,2,3,4). In what follows, regard (X x {0})/D, as
a subspace of (X x C2)/D,,.

Lemma 4.1.28. z € Fixg(a*b) for some k (k=0,1,...,2n —1) if and only
if 2 is a ramification point of ¥ — X/D,, (= ©/D,).

Proof. = is obvious. We show <. If 2z is a ramification point of ¥ —
Y/D,, then its stabilizer H, C D, is nontrivial. By Lemma B.5.3 z €

Fixg(a*b) for some k, so z € Fixy(a*b) for some k. O

Recall that the ramification points of ¥ — ¥/D,, are py, gk, 7k, Sk € 2
(k=0,1,...,n — 1) (see Figure for odd n, Figure for even n),
and the branch points are [po], [qo], [70], [So] € 2/D,, (Lemma (2)). By
Proposition and Lemma [LT.28, we obtain the following:

Proposition 4.1.29. Suppose that 7, is injective. Then the singular locus
of (£ x C2)/D, is isolated, indeed consists of the branch points [py, 0], [qo, 0],
[10,0], [s0,0] of X x {0} = (X x {0})/D,.

Consider next the case that 7, is not injective. We reduce this to the
injective case: Set n’ := n/ged(m,n) and m' := m/ged(m,n) and ¥’ =
/(@™). Then note that the quotient family &, ,, : (X x C2)/D,, — C2/D,,
associated with 7,, : D, — GLy(C) is naturally identified with the quo-
tient family &y : (X x C2)/D, — C%/D,, associated with the injective
representation 7,y (= 7p) : D — GLy(C). In fact,

() (S xC)/Dy = (S xC)/@)/(Daf (@)
> (S/(@") x C?) /(D,/@")) as (@)-action on C? is trivial
= (E/ X C2)/l~)n/a

(if) C*/Dn=(C*/@"))/(Du/(@"))
= CQ/(ﬁn/(E"I)) as (a")-action on C? is trivial
= (C2/ﬁn’a
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and the following diagram commutes:

(X x C2)/D, (X x C2)/Dyy (4.1.7)
gn,ml lgn’,m’
c?/D, = C?/D,.

Consequently the assumption “7, is injective” in Proposition 4.1.29 may be

omitted:

Proposition 4.1.30. The singular locus of (X x C2)/D,, is isolated, consist-
ing of the four points on (X x {0})/D, (= £, (0)) that are the branch points
of £ x {0} = (2 x {0})/D,.

Remark 4.1.31. The isomorphism (X x C2)/D,, —» (X' xC2)/D,y in (@17
is explicitly given by [y,t] — [y mod (@), t].

We next determine the type of each singularity of (¥ x C2)/D,. The
following is needed:
i 0 0
Lemma 4.1.32. The action of’dkg on XxC? is giwen by M := |0 —1 0
0 —i
up to congugation. (Note: M is not a pseudo-reflection.)

Proof. For z € Fixy(a*b), take an (a*b)-invariant small disk A in ¥ centered
at z. Then the action of @*b on A is given by z + —z (LemmaB.1.3 (2)) and

0 _ mimk/n
that on C? is given by ( i/ ‘ 0 ) (see (4I1.2). So the action of
e
—1 0 0
a*bon A xC?is given by | 0 0 —e™mE/n | which is diagonalized

0 e—wimkz/n 0
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Let Z4 be the cyclic subgroup of order 4 in GL3(C) generated by M. We

C 0 0
may express M = [0 (2 0 |, where ¢ := ¥4 So C3/Z, is a singularity
0 0 ¢*

1
of type 1(1, 2,3) and not terminal (see Remark[.T.34below). By Proposition

Z.1.30, the singular locus of (X x C2)/D,, consists of four isolated singularities
and by Lemma .T.32] each is isomorphic to C3/Z,.

We formalize the results so far obtained as follows:

Theorem 4.1.33. The singular locus of (X x (CQ)/IN)n consists of four iso-
1

lated singularities — any of which is of type Z<1’ 2,3) (this is not a terminal

singularity).

Remark 4.1.34. For a cyclic subgroup Z,, of order m in GL3(C) generated

Mmoo 0
by an element of the form | 0 ¢" 0 | where ¢ := €>™/™ and n; (i =
0 0 (™

1,2, 3) are integers such that 0 < n; < m, the quotient singularity C3?/Z,,
is called of type —(ny,n2,ng). This singularity is terminal if and only if
(ny,ng,n3) = (1,72 —/() for some ¢ relatively prime to m (see [Ish] p.185
Theorem 8.3.17).

Summary The singular locus of the total space of a dihedral quotient
family (associated with a representation of D,,) is not isolated, consisting of
four ridges — their configuration depends on the parity of n; compare Figure
B4 and Figure B. 4.6 On the other hand, the singular locus of the total
space of a binary dihedral quotient family (associated with a representation
of l~)n) is isolated, consisting of four points irrespective of the parity of n.

These differences arise from the following differences between D,, and 5711



76

CHAPTER 4. BINARY DIHEDRAL QUOTIENT FAMILIES

D, ={d",a*b : k=0,...,n -1}

D, ={a*a* : k=0,...,2n—1}

Fix(a*) = {0} and Fix(a"b) = C
(see Lemma [B.3.1)

Fix(a*) = Fix(a*b) = {0}
(see Lemma A.T.15))

(IT)

n even:

{a*b : k is odd}, {a*b : k is even}
are distinct D,,-orbits

n odd:

{a*b : k is any} is a single D,-orbit

(see Corollary B:3.4])

{@*b : kis odd}, {a¥b : k is even}
are distinct ﬁn—orbits

(shown by the argument used in
the proof of Corollary 3.3.4] (1))

Table 4.1.3: Comparison of D,, and En
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Chapter 5

Aspects of Group Actions

5.1 Description of tetrahedral group action

Let X be the cable surface of the tetrahedron, on which the tetrahedral group
T naturally acts. Thanks to Kerckhoff’s theorem [Ker|, we may give a com-
plex structure to it such that the ¥-action is holomorphic. We determine the
branch data of the quotient map ¢ : ¥ — 3 /%. We first review terminology
with the intension of fixing notation.

Note first that ¢ is a |T|-fold covering.

e For y € /T, if #47 (y) < |T|, then y is a branch point (with branch
index || /#¢ 1 (y)).

e If y € /% is a branch point, then x € ¥ ~(y) is a ramification point
(with ramification index |T|/#¢~!(y)).

A ramification point is alternatively characterized as a point with non-
trivial stabilizer. For a point x € X, its stabilizer ¥, is a subgroup of ¥ given
by

T ={geT:gx =z}

Now for y € X/, take # € ¥»"!(y). Then T acts transitively on the points
of ¥~!(y) while T, fixing x. Thus ¥~ (y) =2 T/%, (as sets), and #¢~!(y) =

79
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[1/I. . Hence |T|/#47(y) = I5] /|1%1/|1%.] = ||
We thus obtain:

Lemma 5.1.1. The ramification indez of = is |T,|. Thus:
#(y) < |Z| (ie. y is a branch point) <= 1< |T,| <= T, # {1}.

Remark 5.1.2. |%,]| is independent of the choice of = € ¥ ~(y). In fact for
another 2/ € ¥~ (y), T, and T,/ are conjugate: There exists g € T such that
2’ = gz, for which T,» = ¢T,g7 .

Take a ramification point x € . Then to each conjugate ¢%,.g7' (g € T)
of T, a ramification point y = gz is associated; note that T, = ¢T,g*
and the ramification index |T,| of y is equal to |T,|. Now denote by H the
conjugacy class {gT,g7 ! : g € T} of T,. The ramification points associated

with the subgroups in this conjugacy class are called H-ramification points.

Definition 5.1.3. Let v, s, ...,y be the branch points of v, and for each
y; € L/T, let e; := |T,| (x € ¥~ (y;)) be the branch index of y;. Then the
tuple (genus(E/‘Z);el, €, . .. ,el) is called the branch data (signature) of
(or of the T-action on ).

The ramification points of ¥ — /T are the points of ¥ with nontriv-
ial stabilizers (Lemma [B.I.1). To determine such points, identify T with
the alternating group 24 under the canonical isomorphism induced from the
permutation of the vertices of the tetrahedron. Here the (proper) nontrivial
subgroups of 4 are Zs, Z3 and Zs X Zy up to conjugation. Among them, Z,
and Zj are stabilizers of some points of . In fact Z, acts as a 1/2-rotation
fixing four points as illustrated in Figure [B.1.1] (there are three conjugate
Zs’s in y) and Zs acts as a 1/3-rotation fixing two points as illustrated in
Figure (there are four conjugate Zs’s in 2d4), while Zy X Zsy fixes no
point (as a whole group) and is generated by a pair of 1/2-rotations (there
are three conjugate Zy x Zs’s in 24 respectively generated by (1) and (2), (2)
and (3), or (3) and (1) in Figure B.1.T]). The total number of Zs-ramification
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points are 4 x 3 = 12 and the total number of Zs-ramification points are
2 x 4 = 8. The ramification index of each Zy-ramification point is |Zs| = 2

and the ramification index of each Zs-ramification point is |Zs| = 3.

Figure 5.1.1:

|5 1/3-rotation

l e
; ; A
€4
e ) /3 — WP~
I 2 \3

Figure 5.1.2:

The images of the ramification points under the quotient map ¢ : ¥ —
Y /% are the branch points. Note:

® a;,b;,c;,d; (i =2,3) are identified with ay, by, ¢1, dy respectively.

e a; (resp. by) is identified with d; (resp. ¢;) via a 1/2-rotation as
illustrated in Figure (.13
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<\\? 1/2-rotation

Figure 5.1.3:

Hence the images of the Z,-ramification points are two points @; and by (with
branch index 2).

Next under ¢ : ¥ — X/T ¢, fi (i = 2,3,4) are identified with ey, f;
respectively. Hence the images of the Zs-ramification points are two points
€, and f, (with branch index 3).

We summarize the above as follows:

Lemma 5.1.4. The quotient map ¥ — X/T has four branch points with
branch indices (2,2,3,3).

We next show that ¥/ = P! by applying the Riemann-Hurwitz formula:

X(2) = || x(2/T) = > (ep— 1), (5.1.1)
PER
where R is the set of the ramification points and e, is its ramification index
of p € R. In the present case, x(X) = —4, [T| = 12 and }_ (¢, — 1) =
12(2 = 1) 4+ 8(3 — 1) = 28. Thus from(B. 1), x(X/%) = —2, implying that
/T = P! This with Lemma [5.1.4] yields the following:

Proposition 5.1.5. Let ¥ be the cable surface of the tetrahedron, on which
the tetrahedral group T acts. Then $3/T = P and the quotient map 3 — X/
has four branch points with branch indices (2,2, 3,3). (Thus the branch data
of the T-action on ¥ is (0;2,2,3,3).)

We regard the branch points on ¥/% as “marked points”; observe that
the complex structure on /% (=2 P!) with four marked points admits a 1-

parameter family of deformations (caused by moving one point among the
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four points — three points on P! are normalized as 0, 1, co under some ele-
ment of PSLy(C)). Varying one branch point (in P!\ {other branch points})
yields a family of topologically equivalent coverings. The complex structures
on the covering spaces are given by the pull back of the complex structures
on ¥/% with four marked points via the quotient map ¥ — ¥/%. We thus
obtain a 1-parameter family of complex structures on > with the same cover-
ing transformation group, that is, ¥ (their branch data remain (0;2, 2, 3, 3)).
We formalize this as follows:

Corollary 5.1.6. (Non-rigidity) Let 3 be the cable surface of the tetra-
hedron, on which the tetrahedral group € acts. Give a complex structure to
> such that the T-action s holomorphic, and regard 3 as a Riemann surface
with T-action. Then ¥ admits a “T-action preserving” 1-parameter deforma-
tion — there exists a 1-parameter family of Riemann surfaces with T-actions
starting from ¥ such that their branch data remain (0;2,2,3,3).






Chapter 6

The Family of Tetra Curves

6.1 Defining equations of 2l,-curves of genus
3

In what follows, unless otherwise mentioned, all curves are of genus 3. We
identify the tetrahedral group ¥ with the alternating group 2, under the
canonical isomorphism (recall: ¥ permutes the four vertices of the tetrahe-
dron, which induces ¥ = 24). A curve C' with -action (i.e. 2y C Aut(C))

is called an 2l4-curve. The aim of this section is to show the following:

Theorem 6.1.1. The 2A4-curves of genus 3 are as follows: (i) There is a
unique hyperelliptic one: B : y* = x® + 14x* + 1. (ii) Non-hyperelliptic ones
form a 1-parameter family Cy : z* + y* + 2* + t(2?y? + y?2? + 2%2?) = 0
(te C\{£2,—-1}).

Note first that: If C' is an Ay-curve, then Ay C Aut(C), so |Aut(C)|
is divisible by |A4] = 12. We thus consider curves C' such that |Aut(C)| is
divisible by 12. We separate into hyperelliptic case and non-hyperelliptic
case:

(H) The list of hyperelliptic curves C' such that |Aut(C')| is divisible by
12 is as follows ([GSS] p.118 Table 1):

85
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Aut | [Aut] | C
D1y 12 | Hl: y? = 2(28 +t2® + 1)
Us 24 | H2: 3% =2(z5 - 1)

Zox Gy | 48 | H3: 3?2 =28+ 142* +1

Table 6.1.1: &,,: symmetric group of degree n. Us := {(a,b : a®> = b'? =
abab” = 1) (or {(a,b : a* b'? abab”) in [BGG] p.272 Table 2, 3.e). Dy, :=
{(a,b : a™ = b* = abab = 1): dihedral group of order 2n. NOTE: Us =
{a,b : a? b5 abab®) in [GSS] p.118 Table 1 seems a typo, because in which
case |Us| # 24 (but |Ug| = 6).

Here:

e H1 and H2 are not A4-curves, as Ay ¢ Aut(Hl) (= Dy2) and Ay ¢
Aut(H2) (= Us) by Lemma [6.1.3] below.

e H3 is an Ay-curve, indeed Ay C Zy x S,. (Note: The Galois group of
28 + 142t + 1 is Gy, see [Kle] p.58.)

This confirms (i) of Theorem [G.T.11
(NH) The list of non-hyperelliptic curves C' such that |Aut(C')| is divisible
by 12 is as follows (|[Bars| Theorem 16 p.10) — note that any non-hyperelliptic

curve of genus 3 is realized as a quadric in P?:

Aut |Aut| C
Sy 24 | NH1: 2% + 9t + 24 + t(22y? + y222 + 2%22) = 0,
where t € C\ {0, Z£3Y=T 49 _1}; this is
singular for ¢t = £2, —1 (Lemma [[.1.0]),
Fermat for ¢t = 0, Klein for ¢ = #‘/ﬁ
Z4© Ay =2 SLo(F3) X Zs 48 NH2: 24 +9* + 232 =0

(Zy x 7y) x B3 96 | NH3: z* + y* + 2% = 0 (Fermat curve)

PSLy(Fr) 168 | NH4 : 23y + y?z + 222 = 0 (Klein curve)

Table 6.1.2: A x B is the semidirect product of A and B. For Zs © 24,
see [Bars| p.10. NOTE: Both Z, ©® 4 and SLy(F3) X Zs have the same
identification number of finite group: “GAP Id. [48,33]” ([Bars] p.10, [PaWi|

p.9), so they are isomorphic.
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Here:

e NHI1 is an A -curve, as Ay C Aut(NH1) (= &,).

e NH2 is excluded, as 24 ¢ Aut(NH2) (= SLy(F3) X Zs); see [PaWi| p.9.

e NH3 and NH4 are special cases of NH1 at the value of t = 0 and
t= % respectively. In fact, NH1 for ¢t = 0 is NH3, and NH1 for
t= % is isomorphic to NH4 ([KuSe] p.121 Theorem 2).

This confirms (ii) of Theorem [6.1.1]

Supplement: Technical lemmas on groups

Lemma 6.1.2. For Us := (a,b : a®> = b"? = abab” = 1), the following hold:
(i) ba = ab®.

(ii) Any element of Us is written as b or ab® (k = 0,1,...,11). Conse-
quently
Us={bF ab* : k=0,1,... 11}.

(iii) Any subgroup H C Ugs of order 12 is normal in Us and Us/H = Zs.
Moreover V? € H.

Proof. (i): The relation abab” = 1 is rewritten as ba = a='b~". Here a™! = a

and b7 =0° (as a® = b'? = 1), thus ba = ab®.

(ii): Use (i).

(iii): Since |Us| = 24 and |H| = 12, H is of index 2 in Ug, so normal. We
show that v*> € H. If b € H, this is trivial. If b ¢ H, then b determines the
generator b of Us/H = Zj, so b= 1, thus b* € H. O

Lemma 6.1.3. (1) 24 is “not” a subgroup of Ds.

(2) Ay is “not” a subgroup of Us.
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Proof. (1): Since |4] = |D12| (= 12), if A4 C Dyy then Ay = D;o, which
contradicts the fact that D;y has an element of order 6 while 2(, does not
(because the order of any element of 2y is either 1, 2 or 3).

(2): Since |A4] = 12, if A4 C Us then b* € A, (Lemma [6.1.2 (iii)). The

order of this element is 6, which is a contradiction. Il

6.2 Proof of main results in Part 11

Unless otherwise mentioned, all curves are assumed to be of genus 3. The
tetrahedral group ¥ naturally acts on the cable surface ¥ of the tetrahedron.
By Kerckhoff’s theorem [Ker|, we may give a complex structure on X such
that this action is holomorphic. Recall that T = (4, so X is an Q4-curve. Its
branch data on ¥ is (0;2,2,3,3) (Proposition E.1.0). An 2(-curve is said to
be of tetra type if the A4-action is topologically equivalent to the standard

tetrahedral group action on ..
Definition 6.2.1. An 2,-curve of tetra type is called a tetra curve.

We determine all tetra curves, in fact we show that B and C; (t € C\
{£2,—1}) in Theorem exhaust all tetra curves. This is a consequence

of a chain of claims:

Claim I C} for some t is a tetra curve.

Proof. If none of C; is a tetra curve, then only B is a tetra curve, which

however cannot occur due to the non-rigidity of a tetra surface (Corollary

B.1.6]). O
From the non-rigidity of a tetra surface (Corollary B.1.6]), the following
holds:

Claim I1 Let Cy, be a tetra curve, then there exists an open neighborhood
U of tg in C\ {£2, -1} such that for any t € U, Cy is a tetra curve.
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In fact every C; (t € C\ {£2,—1}) is a tetra curve. To show this, we
need preparation. Let S be the complex surface in P2 x C defined by

Si={(lrry: 2 1) €P2 X Crat 4y’ + 20 4 (% + P2+ 2%%) = 0},
and let p : S — C be the projection ([z:y: 2], t) — ¢; and C;, = p~*(¢).

Lemma 6.2.2. (1) M := S\ (Cy2 U C_y) is non-singular. (2) Set 2 :=
C\ {£2, -1}, then the restriction p : M — 2 is a fibration.

Proof. (1) follows from the fact that all of singular points of S lie on Cs
(Lemma [Z.T.T] below). (2) is clear, because no degeneration occurs in p :
M — Q (Lemma [7.1.6] below). O

Lemma 6.2.3. For each point b € ), there exists an open neighborhood V' of
b in Q such that the Ay-actions on all Cy (t € V) are topologically the same.

Proof. Since p : M — € is a fibration, by the Ehresmann fibration theorem
there exists a sufficiently small open neighborhood V' of b in €2 such that the
restriction p : p~ (V) — V is diffeomorphically isomorphic to a projection
C xV — V (where C = C}). The fiberwise 2,-action on p~ (V) corresponds
to a fiberwise 2A4-action on C' x V. Identifying the fiber C' x {t} (t € V)
with C' in an obvious way, we regard the 20-action on C' x {t} (t € V) as
a family of 2,-actions on a single C'. This amounts to a family of injective
homomorphisms ¢; : Ay — MCG(C'), where MCG(C') denotes the mapping
class group of C. Since MCG(C) is discrete, ¢; must be constant. Therefore
the 204-actions on all C; (t € V') are topologically the same. O

Now we can show:
Claim IIT Every C; (t € ) is a tetra curve.
Proof. 1t suffices to show that the 4-actions on all C; (¢ € ) are topolog-
ically the same. Take the open neighborhood U in Claim II as a mazimal

one. We claim that U is the whole of 2. Otherwise there is a boundary point
(say b) of U in Q. By Lemma [6.2.3] there exists an open neighborhood V' of
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b in €2 such that the 2(-actions on all Cy (¢ € V') are topologically the same.
So V' C U, which contradicts the fact that b ¢ U. O

Our next task is to show that B is also a tetra curve. Let A be a suffi-
ciently small disk centered at ¢t = 2 in C and set W := p~(A). Consider the
restriction p : W — A of p : S — C around the singular fiber Cy = p~1(2)
(= 2P'; see Lemma [T.T.4). After showing that B arises as the central fiber
of a stable reduction of p : W — A, we will show that B is a tetra curve.
Note first that W has eight isolated singularities, which lie on C5 and exhaust
all singularities of S (see Lemma [[.T.J] below). These eight singularities are
A;-singularities (see Lemma below).

Now let p' : W’ — A be the family obtained from p : W — A by the base

change t — 2 = 52, where explicitly
W ={([r:y:2],s) € PPxA : a4y +24 +(s*+2) (2% +y2 22 +220%) = 0},

The central fiber p'~1(0) of p' : W' — A is identical to p~!(2) (= Cy), so
p~1(0) = PL. Here W’ is singular in codimension 1 (W’ is ‘bent’ along
p71(0)), and so non-normal. Let v : N — W’ be the normalization of T’
Then p” :=p'ov: N — A is a (non-degenerating) family of smooth curves,

which is the stable reduction of p: W — A.

N —2W w

N
p// N p,l p (621)
A
base A
change

Lemma 6.2.4. Let ry,79,...,75 € p~1(0) be the eight singularities of W and
b, ..., rh € pH(0) be the corresponding points of W' under the identifica-
tion of p~*(0) with p'~1(0). Then the restriction v : p"~1(0) — p'~1(0) (= P*)

of v: N — W' is a double covering with eight branch points ri,r5, ..., 7§.

Proof. For each point ¢ € p~1(0), let ¢’ € p"~(0) denote the corresponding
point under the identification of p~!(0) with p'~*(0). To show the assertion,



6.2. PROOF OF MAIN RESULTS IN PART II 91

we describe the normalization v : N — W’ around each point ¢’ € p'~1(0).
We separate into two cases depending on the position of ¢’ (below, we take
a coordinate of the disk A so that the center is the origin: A = {T € C :
IT| < 1}):

Case 1. ¢ € {r},rh,...,ri}: In this case W is defined by TX = Y?
around ¢ (and p : W — A is given by (X,Y,T) — T around ¢). Here ¢
corresponds to the origin (X, Y, T) = (0,0,0). The base change T' +— T? turns
TX =Y?toT?X = Y? which is the defining equation of W’ around ¢’ (and
p W' — Aisgiven by (X,Y,T) — T around ¢’). Here ¢’ corresponds to the
origin (X,Y,T) = (0,0,0). Let W, be a sufficiently small neighborhood of
¢'. Then W, Np'~1(0), given by T =Y = 0 (the X-axis), is the non-normal
locus of W,,. The normalization of W, is given by (u,v) € C* — (v?, uv,u) €
W,,; note that (X,Y,T) = (v*,uv,u) satisfies T°X = Y?, as u’v® = (uv)*.
(Precisely speaking, we need to shrink C? around the origin.) On the u-axis
in C2, this normalization is given by v — v?, which is a double covering over
the origin ¢’. See Figure [6.2.11

v
/\
,\s
Op | | 3¢
T /
C? ¥ — '/ /—1qu
u-axis Wq/ Np'=(0)

Figure 6.2.1: The restriction of v : C? — W, to the u-axis is two-to-one
outside 0 € C? while ramified at 0.

Case 2. ¢ € p~1(0)\ {ry,7%,...,r4}: In this case W is defined by T' = Y*
around ¢ (and p : W — A is given by (X,Y,T) — T around ¢). Accordingly
W' is defined by T2 = Y2 around ¢’ (and p’ : W’ — A'is given by (X, Y, T)
T around ¢'). Let W, be a sufficiently small neighborhood of ¢’. Then W, N
p1(0), given by Y = T = 0 (the X-axis), is the non-normal locus of W, .
The normalization of W, : T? = Y? is explicitly given by V, ITV_ — W,
where V := {(u,v,w) € C3 : w=v}and V_ := {(u,v,w) € C3 : w= —v},
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and v|y, and v|y_ are the ‘identity’ maps. (Precisely speaking, we need to
shrink V, and V_ around the origins.) This normalization isomorphically
maps the u-axis in V. and the u-axis in V_ to the X-axis in W, which is an
unramified double covering.

The descriptions in Case 1 and Case 2 together imply the assertion.

u\—axis
v
LW, N p'L(0)
— q
v, — |,
| -14
!
v Wq,
u—/axis

Figure 6.2.2: The restriction of v : V. Il V. — W, to the u-axis in V; and

the u-axis in V_ is two-to-one and unramified.

]

A genus 3 curve branched over P! at eight points is necessarily hyperellip-
tic, and the double covering is the quotient under the hyperelliptic involution

— the ramification points are the fixed points of hyperelliptic involution.
Thus the following holds:

Corollary 6.2.5. In Lemma[6.2.4), p"~'(0) is a hyperelliptic curve, and the

eight ramification points of v are the fized points of its hyperelliptic involution
L, so that p"~1(0) /v = p'~1(0) (= p~1(0)).

We next show that the hyperelliptic curve A := p”~1(0) admits an 2A,-

action. Consider the commutative diagram:

N—W

pvl lp (6.2.2)
A——A.
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Then the 24-action on W \ p~1(0) lifts to an A4-action on N \ A such that
it maps each fiber p”~'(u) (u # 0) to itself (Remark .27 below). The
commutativity of (6.2.2)) implies that each fiber p”~!(u) (u # 0) is isomorphic
to Cs (s = u?), so from Claim III it is a tetra curve (equipped with the 2f4-
action). We thus obtain the following:

Lemma 6.2.6. (1) A :=p"~1(0) is a hyperelliptic curve. (2) p” : N\ A —
A\A{0} is a family of smooth Ay-curves — the Ay-action on N\ A maps each
fiber p"~Y(u) (u # 0) to itself, and p"~'(u) (u #0) is a tetra curve.

Remark 6.2.7. Any finite group action on a plane curve in P? is the re-
striction of a projective linear action on P2, that is, the finite group acts as
a subgroup of PGL3(C) ([Nam] Corollary 5.3.19 p.382). So in our context,
the A -action on W is of the form ([z:y: 2], s) — (g([z : y : 2]), s), where
g € PGL3(C) (and s :=t — 2). This action naturally defines an 2-action
on N\ A. Indeed as W is defined by f([z:y: 2], s) =2 +y* + 22+ (s +
2) (2?2 +y?22 +2%?) = 0in P2 x A, N\ A is defined by f([x:y: 2], s*) =0
in P2 x (A\ {0}), thus the 2A-action on W defines an 24-action on N \ A.
(Caution: N itself is not simply defined by f([z :y: 2], s?) = 0.)

The s-action on N \ A uniquely extends to an 2-action on N that
maps A = p"71(0) to itself (see Remark below). In particular A is an
2y-curve. With Lemma 62,6 (1), A is a hyperelliptic A4-curve. Such a curve
is unique — it is B (see Theorem [G.1.T]), thus A = B.

Remark 6.2.8. Let 7 : M — A be a family of smooth curves and set
X :=771(0). Suppose that the restriction 7 : M\ X — A\ {0} is a family of
smooth G-curves (G: a finite group). Then the G-action on M \ X uniquely
extends to a G-action on M that maps X to itself (see [ACG] p.115).

We show that the [4-actions on all fibers of p” : N — A are topologically
equivalent. First by the Ehresmann fibration theorem, p” : N — A may be
topologically considered as the projection A x A — A (recall that A is a
sufficiently small disk). Then applying the argument in the proof of Lemma
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shows that the QA4-actions on all fibers of p” : N — A are topologically
the same. Since the -actions on all fibers of p” : N\ A — A\ {0} are of
tetra type (Lemma (2)), the A -action on A is also of tetra type. Thus
A (= B) is also a tetra curve.

We summarize the results so far obtained as follows:

Theorem 6.2.9. (1) The tetra curves are erhausted by B and C; (t €
C\ {£2,-1}).

(2) W (and S) has eight singularities and they lie on Cy and all are A;-

singularities.

(3) Letp” : N — A be the stable reduction of p: W — A via a base change
A — A, t—2w (t—2)% Then the central fiber of p” is B.

Remark 6.2.10. The 2 -action on B (and C}) corresponds to an embedding
of 24 (as a subgroup) into the mapping class group MCGg of a genus 3 curve.
Then in MCGg, 24 and the hyperelliptic involution ¢ commute, which follows
from the commutativity of the 204-action and the Zs-action (Zy = (1)) on
N\ A; see the paragraph above Lemma [6.2.6]

Now let v : M — W be the minimal resolution of the eight A;-singularities
1,79, ...,7s (in Lemma [6.2.4), where each F; := v7'(r;) (i = 1,2,...,8)
is P! with self-intersection number —2, that is, E; is a (—2)-curve. The
composition of ¢ with p : W — A is a degeneration 7 := potv: M — A of
smooth curves of genus 3, whose singular fiber is 2IP! —1—2?:1 E; (Figure[6.2.3)),
where each F; intersects 2P! transversally. The monodromy of m : M — A
is the hyperelliptic involution in Corollary [6.2.5

rg 1
t r7 T2
Te T3
s T4
“10)=P!
Y, p~(0) W

Figure 6.2.3: The minimal resolution v : M — W.
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We formalize the above as follows:

Proposition 6.2.11. Let v: M — W be the minimal resolution of the eight
A;-singularities r1, 79, ..., rs of W; each E; := v~ (r;) is a (—2)-curve. Then
the composition of v with p : W — A is a degeneration m :=pov: M — A
of smooth curves of genus 3, whose singular fiber is 2IP* + Z§:1 E;, and the
monodromy of w: M — A is the hyperelliptic involution in Corollary [6.2.].






Chapter 7

Description of Singularities

7.1 The singularities and singular fibers of
the 2l,-family

Let S be the complex surface in P? x C defined by

S = {([:c tyz),t) €PPx Crat +yt + 2t + (2P’ + P + 2P0) = 0},

and let p : S — C be the projection ([x Ly 2], t) — t and Cy := p~1(t). The
restriction of p : S — C to C\ {£2, —1} is the family of 4-curves appearing
in Theorem [6.T.1] (ii).

Lemma 7.1.1. S has eight isolated singularities ([fw : +w? : 1], 2) and
([fw? : £w : 1], 2), where w := e*™/3, which lie on the fiber Cy = p~'(2).

Proof. Take an open covering P> = U UV UW, where U = {z = 1}, V =
{z = 1}, and W = {y = 1}. We show that the singularities of S lie on
(UNVNW) x C and they are ([+w : +w? : 1],2) and ([+w? : +w : 1],2).

We first determine the singularities of S on U x C. The defining equation
of Son U x C is given by f(x,y,t) = 2* + y* + 1 + t(z*y* + 2> + 3*). Let
q=(x,y,t) € S|luxc, then

(a) z'+y'+ 14+t +2"+y*) =0.

97
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Suppose that ¢ is a singularity, equivalently

0:f(q) =0,f(q) = 0, f(qg) =0 (Jacobi criterion),

or explicitly

(b)  2(da? +26(7 +1)) =0,
(¢)  y(4y® +2t(x*+1)) =0,
(d) 2*y*+2*+y*>=0.
We claim that z # 0 and y # 0. Indeed if = 0 then (a) and (d) become
(a) y* +ty? +1=0and (d)' y*> =0, so 1 = 0 (absurd!). Similarly if y = 0
then (a) and (d) yield a contradiction, so y # 0. Dividing now (b) by z and
(c) by y yields
() 4x?+2(y? +1) =0,
(¢) 4y +2t(x?+1)=0.
We next claim that 22 # —1 and y? # —1. If 22 = —1 then (c)’ implies

y = 0 (contradiction). Similarly if > = —1 then (b)" implies z = 0 (con-
222 29/
tradiction). Now eliminating ¢ from (b) and (c)’ yields (e) yzi = :1:21—1— T

2 —y
From (d), z* = ey
so (2%, y%) = (-2, -2), (w,w?), (w?* w). Here the first one is excluded, as it
does not satisfy (a). The others indeed satisfy all of (a), (b), (¢), (d) for
t = 2. Therefore the singularities of S on U x C are ([tw : +w? : 1], 2) and
([fw? : tw: 1], 2).

Similarly the singularities of S on V x C are ([1 D dw s tw?, 2) and
([1:4w?: +w], 2). They are ‘equal’ to ([+w : +w?: 1], 2) and ([+w? : tw :
1], 2) (projective coordinates!). Similarly the singularities of S on W x C
are ([tw? :1:=+w], 2) and ([tw : 1 : £w?], 2), and they are also ‘equal’ to
([fw: +w?: 1], 2) and ([+w? : +w: 1], 2). O

Substituting this into (e) yields y* = —2,w,w?,

Remark 7.1.2. The eight points [tw : +w? : 1], [fw? : +w : 1] on P? are
the base points of the pencil {C}}sepr.
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Lemma 7.1.3. All eight singularities ([£w : £w? : 1], 2) and ([£w? : tw :

1], 2) of S are an Aj-singularities.

Proof. Tt suffices to check that the Hessian of f(z,y,t) = 2 +y* + 1 +
t(x*y* + 2% + y?) at each singularity is nonzero, that is, nondegenerate (as
this is equivalent to the singularity being A;; see, e.g. [Okal]). The Hessian

matrix of f is

1222 4 2t(y* + 1) Aty 2z(y* + 1)
H = dtxy 1292 4+ 2t(2* +1) 2y(2®+1)
2e(y* +1) 2y(z? + 1) 0

At a singularity (z,y,t) = (w,w? 2), H is given by

1202 8 -2
s 12w -2,
2 2 0

whose determinant is nonzero (indeed 16). Similarly for the other singulari-

ties, the Hessian is nonzero. O
We next determine the singular fibers of p: .S — C.
Lemma 7.1.4. C; fort = =+2,—1 are reducible. In fact:
(i) Cy is P! of multiplicity 2.
(i) C_y consists of four P1’s and any two of them intersect at one point.
(iii) C_; consists of two P'’s intersecting at four points.

Proof. The defining equations of C; for t = £2, —1 factorize as follows (so
C; for t = £2, —1 are reducible):
DE for t = 2:

ot byt 42t 202 4 P 2A?) = (P 4yt )R
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DE for t = —2:

oyt 2t —2(a? PR 2%2?) = (e ty ) (e thy—2) (e —y+2) (—y—2).
DE for t = —1: Where w := e2™/3,

Pyt 2t = (22 4 g2 4 220) = (22 4wyt + w2 (2P 4 WPy w2?).

Note that any factor of the above factorizations is linear or quadratic, so
it defines P!. Thus each irreducible component of C; for t = £2, —1 is P!

The other assertions are immediate from the above factorizations. O
Lemma 7.1.5. C; fort # £2,—1 is smooth.

Proof. Set F(z,y,z) := x* + y* + 2* + t(z%y* + y*2* + 2%2?). Then [z : y :
z] € C} is a singularity if and only if 0, F = 0,F = 0,F = 0, or explicitly

r(20° +t(y°* +2°) = y(20* + t(z* +2%)) = 2(22° + t(2* +y%)) = 0. (7.1.1)

We separate into two cases:
Case 1 zyz # 0: Then ([TI1J]) is simplified into

207 +t(y? + 2%) = 27 + (22 + 2?) =222 + t(2? + ¢*) = 0.

2 t t\ [2?

Thus |t 2 ¢ 2| = 0. This has a nontrivial solution precisely when
t ot 2] \7?

2t t

t 2 t|=0,thatis, 262 —6t24+8=0,s0t =2, —1.

t t 2

Case 2 zyz = 0: Then no two of x,y, z can be 0 (for instance if z =y = 0,

then from (1)), z = 0, so x = y = z = 0, which contradicts [z : y : 2] € P?).

We may thus assume that x = 0 and yz # 0. Then 2y% +t2% = 222 +ty? = 0,
t 2) \ 22

t‘ B
o =
0, that is, —t> +4 =0, so t = £2.

We thus conclude that C} is singular if and only if t = £2, —1. O

2 t) (v . - . . 2
SO = 0. This has a nontrivial solution precisely when ;
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By Lemmas [[.T.4l and [T.1.5] the following is obtained:

Lemma 7.1.6. C; (t € C) is singular precisely whent = £2, —1: the singular
curves Cy, C_y, C_y are explicitly described in Lemma[7.1.4)






Bibliography

[ACG] E. Arbarello, M. Cornalba, and P. Griffiths, Geometry of Algebraic
Curves: Volume II, Springer (2011)

[AlSa] K. Alwaleed, and F. Sakai, Geometry and computation of 2-
Weierstrass points on Kuribayashi quartic curves, Saitama Math. J.
26 (2009), 67-82

[AsKo| T. Ashikaga, and K. Konno, Global and local properties of pencils of
algebraic curves, in “Algebraic Geometry 2000 Azumino”, ed. by Usui et
al., Advanced Studies in Pure Math. 36 (2002), 1-49

[Bard] F.Bardelli, Lecture on stable curves, in Lectures on Riemann Surfaces
(Proceedings of the College on Riemann Surfaces, ICTP, Ttaly, 9 Nov — 18
Dec 1987) edited by M. Cornalba, X. Gémez-Mont, A. Verjovsky (1989),
World Scientific, 648-704

[Bars| F. Bars, On the automorphisms groups of genus 3 curves, Sur-
veys in Math. and Math. Sciences 2 (2012), 83-124, https://www.
researchgate.net/publication/228866630

[BGG] E. Bujalance, J.M. Gamboa, and G. Gromadzki, The full automor-
phism groups of hyperelliptic Riemann surfaces, Manuscripta Math. 79
(1993), 267282

103


https://www.researchgate.net/publication/228866630
https://www.researchgate.net/publication/228866630

104 BIBLIOGRAPHY

[Bre] T. Breuer, Characters and Automorphism Groups of Compact Rie-
mann Surfaces, London Mathematical Society Lecture Note Series 280,
Cambridge Univ. Press (2000)

[DoGr] 1. Dolgachev, and M. Gross, FElliptic threefolds I: Ogg-Shafarevich
theory, J. Alg. Geom. 3 (1994), 39-80

[Dol] 1. Dolgachev, Classical Algebraic Geometry: A modern view, Cam-
bridge University Press (2012)

[FaMa] B. Farb, and D. Margalit, A Primer on Mapping Class Groups,
Princeton Mathematical Series (2012)

[GrHa|] P. Griffiths, and J. Harris, Principles of Algebraic Geometry, Wiley
Classics Library (1994)

[GSS] J. Gutierrez, D. Sevilla, and T. Shaska, Hyperelliptic curves of genus 3
with prescribed automorphism group, Lecture Notes Series on Computing
13 (2005), 109-123

[Har] R. Hartshorne, Algebraic Geometry, Springer (1977)

[Hirl] R. Hirakawa, On the family of Riemann surfaces with tetrahedral group
action, Preprint (2017) to appear from Kodai Math. J.

[HiTal] R. Hirakawa, and S. Takamura, Degenerations and fibrations of
Riemann surfaces associated with regular polyhedra and soccer ball, J.
Math. Soc. Japan 69 No.3 (2017), 1213-1233

[HiTa2] R. Hirakawa, and S. Takamura, Quotient families of elliptic curves
associated with representations of dihedral groups, Preprint (2017), to
appear from Publ. RIMS

[Ish] S. Ishii, Introduction to Singularities, Springer (2014)

[Ker] S. Kerckhoff, The Nielsen realization problem, Ann. of Math. 117
(1983), 235-265



BIBLIOGRAPHY 105

[Kle] F. Klein, Lectures on the icosahedron and the solution of equation of
the fifth degree, Cosimo Inc. (2007)

[Kod] K. Kodaira, On compact complex analytic surfaces II, Ann. of Math.
77 (1963), 563-626

[KuSe] A. Kuribayashi, and E. Sekita, On a Family of Riemann surfaces I,
Bull. Facul. Sci. Eng. Chuo U. 22 (1979), 107129

[MaMo] Y. Matsumoto, and J.M. Montesinos-Amilibia, Pseudo-periodic
Maps and Degeneration of Riemann Surfaces, Springer Lecture Notes in
Math. 2030 (2011)

[Nak] N. Nakayama, On Weierstrass models, Algebraic Geometry and Com-
mutative Algebra: In Honor of Masayoshi Nagata, Kinokuniya Publ.
(1988), 405-431

[Nam] M. Namba, Geometry of Projective Algebraic Curves, Marcel Dekker
(1984)

[NaUe] Y. Namikawa, and K. Ueno, The complete classification of fibers in
pencils of curves of genus two, Manuscripta Math. 9 (1973), 143-186

[Okal] M. Oka, On the bifurcation of the multiplicity and topology of the
Newton boundary, J. Math. Soc. Japan 31 (3) (1979), 435-450

[Oka2] M. Oka, Non-degenerate Complete Intersection Singularity, Hermann
(1997)

[PaWi| K. Parattu, and A. Wingerter, Finite Groups of Order Less Than
or Fqual to 100, https://www.mimuw.edu.pl/~zbimar/small_groups.
pdf

[SaTa] K. Sasaki, and S. Takamura, Quotient families associated with the
Klein curve, Preprint (2017)


https://www.mimuw.edu.pl/~zbimar/small_groups.pdf
https://www.mimuw.edu.pl/~zbimar/small_groups.pdf

106 BIBLIOGRAPHY

[Sav] N. Saveliev, Invariants for Homology 3-Spheres, Springer (2002)
[Ser] J.P. Serre, Linear Representations of Finite Groups, Springer (1997)

[Ta,Il] S. Takamura, Towards the classification of atoms of degenerations, 11,
(Cyclic quotient construction of degenerations of complex curves), RIMS
Preprint 1344 (2001)

[Ta,IlT] S. Takamura, Towards the classification of atoms of degenera-
tions, 111, (Splitting Deformations of Degenerations of Complex Curves),
Springer Lecture Notes in Math. 1886 (2006)

[Ta, VI]
(Group Actions, Representations, and Quotient Families, vol.1), Lecture
Notes (2015)

, Towards the classification of atoms of degenerations, VI,




	Introduction
	I New Construction of Elliptic Fibrations
	Preparation
	Quotient families in general

	Dihedral quotient families
	Dihedral quotient families
	1-dimensional quotient families
	Properties of representations of Dn
	2-dimensional quotient families
	Injective case
	Non-injective case

	Singular loci of total spaces

	Binary dihedral quotient families
	Binary dihedral quotient families
	Lifted case
	Unlifted case
	Singular loci of total spaces



	II The Family of Tetra Riemann Surfaces
	Aspects of Group Actions
	Description of tetrahedral group action

	The Family of Tetra Curves
	Defining equations of A4-curves of genus 3
	Proof of main results in Part II

	Description of Singularities
	The singularities and singular fibers of the A4-family



