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Preface

The study of degenerating families of algebraic curves (Riemann surfaces)

has a long history ever since Kodaira’s classification [Kod] of degenerating

families of elliptic curves, and which is an active research area even today.

This research field is located at the crossing between algebraic geometry and

topology, therefore researches from both areas are available. From the view-

point of geography of algebraic surfaces, slopes and signatures were studied

by T. Ashikaga, K. Konno [AsKo] and many others. From the viewpoint of

topology, Matsumoto–Montesinos [MaMo] characterized degenerating fami-

lies of Riemann surfaces in terms of their monodromy. This thesis however

adopts other viewpoints to study families of Riemann surfaces, i.e., in terms

of linear quotient families and polyhedral symmetries; these viewpoints reveal

interesting geometric properties of families of Riemann surfaces.

(i) Linear quotient families are a special class of quotient families intro-

duced by S. Takamura [Ta,VI]; a linear quotient family is a fibration

constructed from a finite group action on a complex analytic variety

together with a linear representation of the finite group. This thesis

only treats linear quotient families, and “linear” is often omitted.

(ii) “Polyhedral symmetries” arise in our context as follows: Thickening

of the edges of a regular polyhedron yields a cable surface with the

polyhedral group action. We may assign a complex structure on this

surface such that the group action is holomorphic. Then to each linear

representation of the polyhedral group, a quotient family is associated.
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The present work consists of two parts:

Part I: In the construction of (ii), replacing a regular polyhedron with a

regular polygon yields a new construction of elliptic fibration. We describe

the elliptic fibrations obtained in this way. We determine their fibers and the

singularities on the total/base spaces; the description depends on the parity

of n of the regular n-gon. We point out that our construction is different from

the Weierstrass model construction of elliptic fibration in N. Nakayama [Nak],

Dolgachev and Gross [DoGr]. The Weierstrass model is algebro-geometric,

while our construction is topological. The advantage of ours lies in that the

description of families is geometrically carried out.

Part II: To the cable surface obtained from the tetrahedron, we give a

complex structure and regard it as a Riemann surface on which the tetrahe-

dral group acts holomorphically (caution: the automorphism group of such

a Riemann surface “contains” the tetrahedral group but does not necessar-

ily coincide with it). This Riemann surface determines an algebraic curve

with tetrahedral group action, which is called a tetra curve. M. Oka posed

a problem: Determine the defining equation of this curve. We solve this

problem — we actually show that a tetra curve is not unique: there are a

sporadic one (hyperelliptic) and a 1-parameter family of non-hyperelliptic

curves; this family contains the Fermat curve of degree 4 and the Klein curve

(their automorphism groups “jump” and become larger than the tetrahedral

group). We show that the non-hyperelliptic family of tetra curves is related

to the sporadic tetra curve via a stable reduction: we first show that the

total space of this family has eight A1-singularities on one fiber (which is a

projective line), and the stable reduction around it creates the sporadic tetra

curve as the central fiber of the resulting family — the eight A1-singularities

correspond to the eight fixed points of the hyperelliptic involution.
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Chapter 1

Introduction

This thesis is composed of two parts. Part I provides a new construction of

elliptic fibration and Part II describes the family of Riemann surfaces with

tetrahedral symmetries.

Part I: New construction of elliptic fibrations

Kodaira [Kod] classified degenerating families of elliptic curves into eight

types. Nakayama [Nak] and Dolgachev–Gross [DoGr] described higher-dimensional

elliptic fibrations from the viewpoint of Weierstrass model. In this part, we

provide a new construction and the description of the resulting higher di-

mensional elliptic fibrations from the viewpoint of group actions and their

representations.

We briefly recall the historical background behind our construction. The

study of degenerating families of Riemann surfaces was initiated by Kodaira,

and subsequently the classification of degenerating families of genus 2 curves

was done by Namikawa and Ueno [NaUe]. Since then, the study of degen-

erating families of higher genus curves has been an area of active research

(e.g. see [Ta,III]). Quotient families are “equivariant quotients” of families

with group actions — degenerating families of curves are examples of such

families (precisely speaking they are obtained from quotient families by re-

9



10 CHAPTER 1. INTRODUCTION

solving singularities). Among quotient families, linear ones are introduced

and developed in [Ta,VI]; they are constructed from finite group actions on

spaces together with representations of the groups. In what follows, we only

treat linear quotient families, and for simplicity, “linear” is omitted.

Quotient families associated with cyclic group actions on Riemann sur-

faces together with their 1-dimensional representations correspond to de-

generating families of Riemann surfaces with periodic monodromies. The

simplest groups next to cyclic groups are dihedral groups, accordingly the

simplest nontrivial quotient families other than degenerating families of Rie-

mann surfaces are those associated with dihedral group actions; they are

called dihedral quotient families. It is natural to investigate them; among

them, simple ones are those of elliptic curves. These “elliptic” dihedral quo-

tient families are interesting enough as they are completely different from

elliptic fibrations investigated by [Nak] and [DoGr]. Besides, note that di-

hedral groups admit double coverings (binary dihedral groups), and we may

also construct binary dihedral quotient families associated with their repre-

sentations. It is worthwhile investigating the difference between the dihedral

and binary dihedral elliptic quotient families. They are shown to be very

different.

Our construction starts from dihedral group actions on regular polygons

together with representations of the dihedral groups.

Step 1 A dihedral group Dn = ⟨a, b : an = b2 = 1, bab−1 = a−1⟩ acts on the

regular n-gon ∆n as a is a 1/n-rotation around the origin and b is a reflection

along an axis:

0

a
b

Thickening the edges of ∆n yields a cable surface Σ with Dn-action.
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Σ

Cablize

We may give a complex structure to Σ such that theDn-action is holomorphic

(Lemma 3.1.1).

Step 2 Given a representation ρ : Dn → GLm(C), we may let Dn act on

Cm; then Dn acts on Σ × Cm diagonally: (z, t) 7→ (gz, ρ(g)t), g ∈ Dn. The

projection Σ × Cm → Cm is Dn-equivariant, so determines a holomorphic

map η : (Σ × Cm)/Dn → Cm/Dn. We say that η is the (dihedral) quotient

family of Σ associated with ρ (or, quotient family of type D). See [HiTa1] for

a similar construction for polyhedral groups.

Before proceeding, note that the dimension of an irreducible represen-

tation of Dn is either 1 or 2 [Ser]: If n is even, besides the trivial repre-

sentation χ1 = 1, there are three 1-dimensional irreducible representations

χi : Dn → GL1(C) (i = 2, 3, 4) given by
χ2(a) = 1, χ2(b) = −1,

χ3(a) = −1, χ3(b) = 1,

χ4(a) = −1, χ4(b) = −1.

(1.0.1)

If n is odd, χ3 and χ4 fail to be homomorphisms, and the 1-dimensional

irreducible representations of Dn are merely χ1 and χ2.

The 2-dimensional irreducible representations are ρl : Dn → GL2(C)
(l = 1, 2, . . . , n

2
− 1 for even n and l = 1, 2, . . . , n−1

2
for odd n) given by

ρl(a) =

(
e2πil/n 0

0 e−2πil/n

)
, ρl(b) =

(
0 1

1 0

)
. (1.0.2)

Here ρl is injective precisely when l is relatively prime to n.

Let ηn, l : (Σ× C2)/Dn → C2/Dn be the quotient family associated with

ρl. It is said to be injective if ρl injective. The non-injective case actually
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reduces to the injective case thanks to (ii) of the following:

Result 1 (Theorems 3.4.3, 3.4.11)

(i) If l is relatively prime to n, then depending on whether n is odd or even,

the singular fibers and the singular locus of ηn, l are illustrated as in (1) or

(2) of Figure 1.0.1.

(ii) If l is not relatively prime to n, then ηn, l : (Σ × C2)/Dn → C2/Dn is

isomorphic to ηn′, l′ : (Σ × C2)/Dn′ → C2/Dn′, where n′ := n/ gcd(n, l) and

l′ := l/ gcd(n, l).

ridges

2n

veins

(Σ× C2)/Dn

(2)(1)

C2/Dn C2/Dn

(Σ× C2)/Dn

2 22

ηn, l ηn, l

2n

Figure 1.0.1: The numbers “2” and “2n” are multiplicities (see §2.1). The

singular locus of (Σ×C2)/Dn consists of four ridges (see Notation 3.4.7) —

each is isomorphic to a smooth complex line. The singular fibers of ηn, l lie

over the veins (the images of ridges under ηn, l).

Remark In degenerating families of elliptic curves, the topological mon-

odromy of the type I∗0 singular fiber is b, while that of the type nI0 singular

fiber is a (see [Kod]). The former singular fiber appears in Figure 1.0.1 (after

blowing up), while the latter does not.

The singular locus of (Σ× C2)/Dn is equisingular. In fact:

Result 2 (Theorem 3.5.11) The singular locus of (Σ×C2)/Dn consists of

the four disjoint complex lines — ridges — around each of which (Σ×C2)/Dn
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is isomorphic to (complex line)× (A1-singularity).

Convention: In the theory of quotient families, the singularity of the total

and base spaces are usually remain unresolved, as higher dimensional complex

analytic varieties have no canonical resolution except for 2-dimensional case.

Result 3 (Theorems 3.2.6, 3.4.11) The singular fibers and the cover-

ing multiplicities (c.m.) are as follows: (1) The quotient family ξi : (Σ ×
C)/Dn → C/Dn (i = 1, 2, 3, 4) associated with χi is as in Table 1.0.1. (2)

The quotient family ηn, l : (Σ×C2)/Dn → C2/Dn (where l is an integer such

that 1 ≤ l < n
2
) associated with ρl is as in Table 1.0.1.

(1)
ξ−1
i (0) ξ−1

1 (s) ξ−1
2 (s) ξ−1

3 (s) ξ−1
4 (s)

(s ∈ (C/Dn) \ {0}) (s ∈ (C/Dn) \ {0}) (s ∈ (C/Dn) \ {0}) (s ∈ (C/Dn) \ {0})

fiber Σ/Dn Σ/Dn Σ/⟨a⟩ Σ/⟨a2, b⟩ Σ/⟨a2, ab⟩
(P1) (elliptic curve) (elliptic curve) (P1) (P1)

c.m. 2n 2n n n n

(2) η−1
n, l(0) η−1

n, l(s) η−1
n, l(s)

(s ∈ L \ {0}) (s ∈ (C2/Dn) \ L)

fiber Σ/Dn Σ/⟨an′
, b⟩ Σ/⟨an′⟩

(P1) (P1) (elliptic curve)

c.m. 2n 2d d

Table 1.0.1: P1 is the projective line. In (2), L ⊂ C2/Dn denotes the locus

KLηn,l
given by (3.4.1), which consists of veins (see Figure 1.0.1).

Binary dihedral quotient families (type D̃)

The binary dihedral group D̃n = ⟨ã, b̃ : ã2n = 1, ãn = b̃2, b̃ãb̃−1 = ã−1⟩ is

a double covering of Dn = ⟨a, b : an = b2 = 1, bab−1 = a−1⟩: the double

covering homomorphism q : D̃n → Dn is given by ã 7→ a, b̃ 7→ b. Recall

that the dihedral group Dn acts on the cable surface Σ of the regular n-

gon. Let D̃n also act on Σ via q, that is, g ∈ D̃n acts as q(g) ∈ Dn. To
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each representation D̃n → GLm(C), we may associate a quotient family

(Σ × Cm)/D̃n → Cm/D̃n of Σ, called a binary dihedral quotient family (or,

quotient family of type D̃n).

For a representation ρ : Dn → GLm(C), the composition ρ̃ := ρ ◦ q :

D̃n → GLm(C) is called the lift of ρ. A representation of D̃n is said to be

lifted if it is the lift of some representation of Dn, otherwise unlifted.

D̃n

q
��

ρ̃

''PP
PPP

PPP
PPP

PPP

Dn

ρ // GLm(C).

The dimension of any irreducible representation of D̃n is either 1 or 2.

Explicitly:

1-dim: The lifted ones are χ̃i : D̃n → GL1(C) (i = 1, 2, 3, 4) defined by

(χ̃1(ã), χ̃1(̃b)) = (1, 1), (χ̃2(ã), χ̃2(̃b)) = (1,−1),

(χ̃3(ã), χ̃3(̃b)) = (−1, 1), (χ̃4(ã), χ̃4(̃b)) = (−1,−1).

(χ̃i is the lift of χi defined by (1.0.1).) The unlifted ones exist only when n

is odd: they are σk : D̃n → GL1(C) (k = 1, 2) defined by (σ1(ã), σ1(̃b)) =

(−1, i) and (σ2(ã), σ2(̃b)) = (−1,−i).

2-dim: The lifted irreducible representations of D̃n are ρ̃l : D̃n → GL2(C)
(where 1 ≤ l < n

2
) defined by

ρ̃l(ã) =

(
e2πil/n 0

0 e−2πil/n

)
, ρ̃l(̃b) =

(
0 1

1 0

)
.

(ρ̃l is the lift of ρl given by (1.0.2).) The unlifted ones are τm : D̃n → GL2(C)
(where m is odd and 1 ≤ m < n) defined by

τm(ã) =

(
eπim/n 0

0 e−πim/n

)
, τm(̃b) =

(
0 −1

1 0

)
.
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Although irreducible representations of D̃n and Dn are similar, their asso-

ciated quotient families are very different : unlike those associated with Dn,

those associated with D̃n have isolated singular fibers.

Result 4 (Corollary 4.1.17) The quotient family ξn,m : (Σ × C2)/D̃n →
C2/D̃n of Σ associated with any unlifted irreducible representation τm : D̃n →
GL2(C) has a single singular fiber (see Figure 1.0.1).

C2/D̃n

2n

0

(Σ× C2)/D̃n ξn,m

Figure 1.0.2: ξ−1
n,m(0) is the unique singular fiber. The singularity of C2/D̃n

is isolated (a D-singularity).

For a cyclic subgroup Zm of order m in GL3(C) generated by an element

of the form

ζn1 0 0

0 ζn2 0

0 0 ζn3

 where ζ := e2πi/m and ni (i = 1, 2, 3) are

integers such that 0 < ni < m, the quotient singularity C3/Zm is called of

type
1

m
(n1, n2, n3). This singularity is terminal if and only if (n1, n2, n3) =

(1, ℓ,−ℓ) for some ℓ relatively prime to m (see [Ish] p.185 Theorem 8.3.17).

Result 5 (Theorem 4.1.33) The singular locus of (Σ × C2)/D̃n consists

of four isolated singularities, any of which is of type
1

4
(1, 2, 3) (this is not

terminal).

Result 6 (Proposition 4.1.10, 4.1.13, 4.1.21) We determine the singular

fibers and the covering multiplicities of the quotient families associated with

the representations χ̃i, ρ̃l, σk, τm:
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• (Lifted case) Let ξ̃i : (Σ×C)/D̃n → C/D̃n (i = 1, 2, 3, 4) be the quotient

family associated with χ̃i and η̃n, l : (Σ × C2)/D̃n → C2/D̃n (where

1 ≤ l < n
2
) be the quotient family associated with ρ̃l. Then the singular

fibers and the covering multiplicities (c.m.) are as in Table 1.0.2 (1)

and (2) respectively.

• (Unlifted case) Let ϖk : (Σ×C)/D̃n → C/D̃n (k = 1, 2) be the quotient

family associated with σk and ξn,m : (Σ × C2)/D̃n → C2/D̃n (where

m is odd and 1 ≤ m < n) be the quotient family associated with τm.

Then the singular fibers and the covering multiplicities (c.m.) are as

in Table 1.0.2 (3).

(1) ξ̃−1
i (0) ξ̃−1

1 (s) ξ̃−1
2 (s) ξ̃−1

3 (s) ξ̃−1
4 (s)

(s ∈ (C/D̃n) \ {0}) (s ∈ (C/D̃n) \ {0}) (s ∈ (C/D̃n) \ {0}) (s ∈ (C/D̃n) \ {0})

fiber Σ/Dn Σ/Dn Σ/⟨a⟩ Σ/⟨a2, b⟩ Σ/⟨a2, ab⟩
(P1) (elliptic curve) (elliptic curve) (P1) (P1)

c.m. 2n 2n n n n

(2) η̃−1
n, l(0) η̃−1

n, l(s) (s ∈ L \ {0}) η̃−1
n, l(s) (s ∈ (C2/D̃n) \ L)

fiber Σ/Dn Σ/⟨an′
, b⟩ Σ/⟨an′⟩

(P1) (P1) (elliptic curve)

c.m. 2n 2d d

(3) ϖ−1
k (0) ϖ−1

k (s) (s ∈ (C/D̃n) \ {0}) ξ−1
n,m(0) ξ−1

n,m(s) (s ∈ (C2/D̃n) \ {0})

fiber Σ/Dn Σ/⟨a2⟩ Σ/Dn Σ/⟨an′⟩
(P1) (elliptic curve) (P1) (elliptic curve)

c.m. 2n n 2n d

Table 1.0.2: In (2), L ⊂ C2/D̃n denotes the locus SLη̃n,l
given by (4.1.5).

We mention our further works:

Paracabling construction From a regular n-gon, we constructed a cable

surface with Dn-action. More generally, as illustrated in Figure 1.0.3, we
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may construct paracabling, singular paracabling surfaces of high genera (this

operation is analogous to the procedure in knot theory to produce iterated

torus knots by cabling torus knots). These surfaces admit Dn-actions, thus

from the representations of Dn, we may construct dihedral quotient families

of surfaces of high genera. These quotient families are expected to play an

important role in the theory of quotient families, as iterated torus knots did

in knot theory. We plan to describe them elsewhere.

paracabling singular paracablingcabling

Figure 1.0.3:

Boundary fibration Suppose that a finite group G acts on a complex

analytic variety Y . To each representation ρ : G→ GLn(C), a quotient family

η : (Y ×Cn)/G→ Cn/G is associated (§2.1). If ρ is unitary, i.e. ρ(G) ⊂ U(n),

then the action of G on Cn preserves both B2n = {z ∈ Cn : |z| ≤ 1}
and S2n−1 = ∂B2n. The restriction of η to S2n−1 is the boundary fibration

(Y × S2n−1)/G → S2n−1/G of (Y × B2n)/G → B2n/G. For example, for

τm : D̃n → SU(2), (Σ × S3)/D̃n → S3/D̃n is such that S3/D̃n is a prism

manifold [Sav] and for ρl : Dn → U(2), (Σ× S3)/Dn → S3/Dn is such that

S3/Dn is the quotient of a lens space S3/⟨ρ(a)⟩ by an orientation-reversing

involution ρ(b).

Actions of different groups Dn is the semi-direct product Zn⋊Z2 of Zn =

⟨a⟩ and Z2 = ⟨b⟩. There is an elliptic curve with a periodic automorphism

of order 3, 4 or 6. It moreover admits the action of (Zn ⊕ Zn)⋊ Zl (l = 3, 4

or 6). We will describe these quotient families in our subsequent paper.
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Part II: The family of Riemann surfaces with tetrahe-

dral symmetries

Concerning our polyhedral construction of degenerations of Riemann sur-

faces, Mutsuo Oka raised two problems at the symposium “Contact struc-

ture, singularity, differential equation and related topics” at Kochi (2014):

I. Globalize the above degenerations in a natural way.

II. What is the defining equation of such a Riemann surface?

We solved Problem I in the joint work [HiTa1] with S. Takamura. In this pa-

per, we solve Problem II. It however turns out that such a Riemann surface is

not unique but forms a 1-parameter non-hyperelliptic family together with a

sporadic hyperelliptic one. We explicitly describe this family, and in terms of

stable reduction reveal the relationship between this family and the sporadic

one. We moreover describe the image of this family under the moduli map.

Let Σ be an orientable real surface obtained by thickening the edges

of a polyhedron (Figure 1.0.4). We say that Σ is the cable surface of the

polyhedron — the genus of the cable surface of the n-hedron is n− 1.

Σ

Figure 1.0.4:

The automorphism groupG of the polyhedron naturally acts on Σ orientation-

preservingly. Kerckhoff’s theorem [Ker] ensures the existence of a complex

structure on Σ such that G acts holomorphically. In this paper, we consider

the cable surface of the tetrahedron (tetra surface); its genus is 3. We may

regard this Riemann surface as an algebraic curve. Noting that any (non-

hyperelliptic) curve of genus 3 is realized as a plane algebraic curve in P2.

M. Oka asked:

Problem Determine the defining equation of such a curve. Moreover is this
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curve hyperelliptic or not? (The same problem may be considered for any

regular polyhedron, but it is subtle — for which the cable surface, being of

genus ≥ 4, is not necessarily a plane curve, so may not be defined by a single

equation.)

The complete classification of full automorphism groups of genus 3 curves

is known ([Bars] for non-hyperelliptic ones, [GSS] for hyperelliptic ones);

this however does not give the solution of the above problem — in fact

the tetrahedral group may not be the full automorphism group of a curve

in question. Moreover we must take into account the topological types of

group actions: the action must be topologically equivalent to the standard

tetrahedral group action on the cable surface Σ.

Reformulation The tetrahedral group T permutes the four vertices of the

tetrahedron, which induces an isomorphism T ∼= A4 (alternating group of

degree 4). A curve with a tetrahedral group action may be thus called an

A4-curve. If moreover the tetrahedral group action is topologically equivalent

to the standard one, that is, the natural tetrahedral group action on Σ, then

the A4-curve is said to be of tetra type. M. Oka’s problem is then reformulated

as:

Problem Determine all genus 3 A4-curves of tetra type.

We will show that:

Solution (Theorem 6.2.9 (1)) The genus 3 A4-curves of tetra type are as

follows:

(H) The hyperelliptic curve B defined by y2 = x8+14x4+1 in C2 (more pre-

cisely, compactify this curve in P1×P1 and then resolve its singularities,

which yields B; refer to [GrHa] p.254 for this procedure).

(NH) The non-hyperelliptic curves Ct (t ∈ C \ {±2,−1}) in P2 given by

x4 + y4 + z4 + t(x2y2 + y2z2 + z2x2) = 0.
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(Note: All degree 4 curves are non-hyperelliptic ([Har] p.315, Exercise

3.2 (c)).)

We will actually show much more. Observe first that the A4-actions on

B and Ct are a priori ‘independent’ and moreover these curves are unrelated

(as seen from their defining equations). This is however not the case; there

exists an analytic deformation from B to Cs (s = (t − 2)2) that is compati-

ble with A4-action (we say an “A4-deformation”). The construction of this

deformation is carried out by stable reduction (so B and Ct are said to be

stably connected). We will also show that the singularities of the complex

surface S = {Ct}t∈C are eight A1-singularities and they arise as the quotient

under a hyperelliptic involution.

In the theory of algebraic curves, the classification of automorphism

groups of curves (of fixed genus) is usually carried out separately for hy-

perelliptic curves or non-hyperelliptic curves; then there often appears a pair

of a hyperelliptic G-curve X and a family of non-hyperelliptic G-curves Yt

(where G is a finite group) such that these G-actions are topologically equiv-

alent (examples of such pairs indeed appear in the list of S. Hirose in his

talk at the symposium “Algebraic topology around transformation groups”

at RIMS, 2017). Based on our results, we pose the following:

Stably-connectedness problem Are X and Yt connected via a G-deformation?

Are they related via stable reduction?

We plan to discuss this in our subsequent paper.

Main results

We state our main results explicitly:

Main theorem (1) The genus 3 A4-curves of tetra type are exhausted by :

(i) a hyperelliptic curve B : y2 = x8 + 14x4 + 1 and

(ii) non-hyperelliptic curves Ct : x
4 + y4 + z4 + t(x2y2 + y2z2 + z2x2) = 0

in P2, where t ∈ C \ {±2,−1} (Theorem 6.2.9 (1)). Here C±2, C−1
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are excluded, because they are singular (Lemma 7.1.4; see also Figure

1.0.5):

• C2 is P1 of multiplicity 2.

• C−2 consists of four P1’s and any two of them intersect at one

point.

• C−1 consists of two P1’s intersecting at four points.

(2) Let S be a complex surface defined by

S :=
{
(x, y, z, t) ∈ P2 × C : x4 + y4 + z4 + t(x2y2 + y2z2 + z2x2) = 0

}

and p : S → C be the projection (x, y, z, t) 7→ t; so Ct = p−1(t). Then the

singularities of S are eight A1-singularities and they lie on C2 (Theorem 6.2.9

(2)).

(3) Take a sufficiently small disk ∆ centered at t = 2 in C and set W :=

p−1(∆). Let r :M → W be the minimal resolution of the singularities. Then

π := p ◦ r :M → ∆ is a degeneration of smooth curves whose monodromy is

a hyperelliptic involution (Proposition 6.2.11).

(4) Let p′′ : N → ∆ be the Z2-stable reduction of p : W → ∆ via the base

change ∆ → ∆, t− 2 7→ (t− 2)2. Then the central fiber of p′′ is B (Theorem

6.2.9 (3)) and the natural Z2-action on B is a hyperelliptic involution with

B/Z2 = C2 (see Corollary 6.2.5).
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2

Ct

t2−2

stable reduction

B N

W
S

C−1C−2 C2

Z2-action

C
−1

p

Figure 1.0.5: The eight bold points on C2 are A1-singularities.

Remark 1.0.1. The family of curves Ct is also studied by other researchers:

Kuribayashi–Sekita [KuSe], which is subsequently used in our discussion, and

Alwaleed and Sakai [AlSa], which classified the 2-Weierstrass points on Ct

and determined the numbers of flexes and sextactic points.

Description of the moduli map Let M3 be the moduli space of Rie-

mann surfaces of genus 3 and M3 be its Deligne–Mumford compactification.

Consider the moduli map f : C \ {2} → M3 of the family {Ct}t∈C\{2}. As

t→ 2, f(t) = [B], so f is bounded, thus naturally extends to a holomorphic

map f : C → M3. Set Imf := f(C). Then:

(1) f is injective except for two values t = −3±3
√
−7

4
, for which Ct are

the Klein curve ([KuSe] Theorem 2 p.121). Moreover Imf intersects

transversally at the point corresponding to the Klein curve (this is

shown by using linear quotient family; see [SaTa] for details).

(2) Imf intersects the hyperelliptic locus in M3 at one point f(2) = [B]

(from Main theorem (4)).

(3) Imf intersects the boundary of M3 at f(−2) and f(−1), which corre-

spond to the stable curves C−2 and C−1.
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−2 (5-dim)

M3 (6-dim)
f(−2) f(−1)

Imf
−1

moduli mapC

hyperelliptic locus

2
f f(2)

p

Figure 1.0.6: The point p corresponds to the Klein curve.

Exotic S4-action Each Ct actually admits a larger group action than A4.

Indeed the symmetric group S4 acts on it (see [Bars] Table p.10). Since Ct

is homeomorphic to the cable surface Σ of the tetrahedron, this S4-action is

transformed to Σ. On the other hand, besides the automorphism group T of

the tetrahedron, the full automorphism group T̂ (which contains orientation-

reversing automorphisms) also acts on Σ, and this group is isomorphic to S4.

It is thus plausible that the previous S4-action coincides with this S4-action.

However this is not the case, because the former contains no orientation-

reversing automorphisms (as it is holomorphic). Thus Σ has two distinct

S4-actions: the standard one by T̂ and the exotic one from the S4-action on

Ct.
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Chapter 2

Preparation

2.1 Quotient families in general

S. Takamura [Ta,VI] developed the theory of quotient families of complex

analytic varieties. For quotient families of Riemann surfaces, he introduced

four series in terms of group action: dihedral, polyhedral, modular, triangular

series (the first is the target of this paper).

We briefly review [Ta,VI]. Suppose that a finite group G acts on a com-

plex analytic variety Y holomorphically. (Unless otherwise mentioned, the

G-action is assumed to be effective.) Let ρ : G → GLm(C) be a representa-

tion, via which G acts on Cm, and accordingly on Y × Cm diagonally. The

projection map pr : Y × Cm → Cm, being G-equivariant, determines a holo-

morphic map η := pr : (Y × Cm)/G → Cm/G. This is called the quotient

family of Y associated with ρ.

Theorem 2.1.1 (Quotient fiber theorem [Ta,VI]). A fiber η−1(s) (s ∈
Cm/G) of a quotient family η : (Y ×Cm)/G→ Cm/G is described as follows:

Let q : Cm → Cm/G be the quotient map. Take a lift t ∈ q−1(s) and let

Ht := {g ∈ G : ρ(g) t = t} be its stabilizer. Then η−1(s) = Y/Ht. (This

is, up to isomorphism, independent of the choice of t: if t′ is another lift,

Y/Ht
∼= Y/Ht′ .)

27
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Proof. Consider the following commutative diagram (q′ and q are quotient

maps):

Y × Cm q′ //

pr
��

(Y × Cm)/G

η
��

Cm q // Cm/G.

(2.1.1)

The commutativity of this diagram implies η−1(s) = q′pr−1q−1(s). Write

q−1(s) = {t1, t2, . . . , tl} where t1 = t, then pr−1
(
q−1(s)

)
= pr−1(t1)⨿pr−1(t2)⨿

· · · ⨿ pr−1(tl) (disjoint union). Here pr
−1(ti) = Y ×{ti}. For brevity write it

as Yi, then

η−1(s) = q′(Y1 ⨿ Y2 ⨿ · · · ⨿ Yl). (2.1.2)

Now G acts transitively on the set {Y1, Y2, . . . , Yl} while Ht1 stabilizes Y1.

Thus (Y1⨿Y2⨿· · ·⨿Yl)/G = Y1/Ht1 , that is, q
′(Y1⨿Y2⨿· · ·⨿Yl) = Y1/Ht1 .

From this and (2.1.2), η−1(s) = Y1/Ht1(= Y/Ht).

Example 2.1.2. If s = 0, i.e. t = 0, then H0 = G, so η−1(0) = Y/G.

Lemma 2.1.3. Let η : (Y × C)/G→ C/G be the quotient family associated

with a 1-dimensional representation ρ : G → GL1(C). Then the following

hold :

(1)

Ht =

G t = 0,

Ker(ρ) t ̸= 0.

(2)

η−1(s) =

Y/G s = 0,

Y/Ker(ρ) s ≠ 0.

Proof. We show (1). H0 = G is trivial. We show Ht = Ker(ρ) for t ̸= 0.

First Ker(ρ) ⊂ Ht (because if g ∈ Ker(ρ), then ρ(g) = 1, so ρ(g)t = t). Next

Ker(ρ) ⊃ Ht (because if ρ(g)t = t, then ρ(g) = 1, so g ∈ Ker(ρ)). (2) is

immediate from (1) by Theorem 2.1.1.

Let η : (Y × Cm)/G → Cm/G be the quotient family associated with a

representation ρ : G → GLm(C). By Theorem 2.1.1, η−1(s) = Y/Ht, where

t ∈ Cm is a lift of s ∈ Cm/G. The covering multiplicity of η−1(s) is defined

as the covering degree of the quotient map Y → Y/Ht, which is equal to the

order |Ht| of Ht.
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Definition 2.1.4. In Theorem 2.1.1, if Ht ̸= {1}, η−1(s) is called a kaleido

fiber and otherwise a pure fiber (in the former η−1(s) ̸= Y and in the latter

η−1(s) = Y ). The locus of Cm/G over which kaleido fibers lie is called the

kaleido locus of η and denoted by KLη.

Proposition 2.1.5. (1) If ρ : G → GLm(C) is not injective, KLη is the

whole of Cm/G.

(2) If ρ : G→ GLm(C) is injective, KLη is a proper subset of Cm/G consist-

ing of the image of a finite union of (proper) linear subspaces of Cm under

the quotient map Cm → Cm/G.

Proof. We show (1). K := Ker(ρ) acts on Cm trivially, so K ⊂ Ht for any t.

If ρ is not injective, then K ̸= {1}, so Ht ̸= {1}, and any fiber of η is kaleido,

thus KLη = Cm/G.

We next show (2). The preimage K̃Lη of KLη under the quotient map

Cm → Cm/G is given by K̃Lη =
{
t ∈ Cm : Ht ̸= {1}

}
=
∪

g∈G\{1} Fix(g),

where Fix(g) := {t ∈ Cm : ρ(g)t = t} is a linear subspace of Cm. Here note

that this union is finite (as G is finite) and that if ρ is injective, Fix(g) is

proper. Thus the assertion holds.

Let η : (Y × Cm)/G → Cm/G be the quotient family associated with a

representation ρ : G→ GLm(C). Here ρ is generally not injective. Set K :=

Ker(ρ). The quotient group G := G/K naturally acts on Y := Y/K and ρ

induces an injective representation ρ : G → GLm(C). We shall show that

η is isomorphic to the quotient family η : (Y × Cm)/G → Cm/G associated

with ρ. We refer to η as the injectivization of η.

Note first that (Y ×Cm)/G ∼= (Y ×Cm)/G and Cm/G ∼= Cm/G. Indeed

(Y × Cm)/G ∼= (Y × Cm)/K
/
G/K

= (Y/K × Cm)
/
G/K as K acts on Cm trivially

= (Y × Cm)/G.
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Similarly we can confirm that Cm/G ∼= Cm/G. Moreover the following dia-

gram commutes:

(Y × Cm)/G

η
��

∼= // (Y × Cm)/G

η
��

Cm/G
∼= // Cm/G.

Therefore the following is obtained:

Lemma 2.1.6. η : (Y ×Cm)/G→ Cm/G and η : (Y ×Cm)/G→ Cm/G are

isomorphic.

Caution: Since η and η are isomorphic, fibers η−1(s) and η−1(s) are iso-

morphic. However their covering multiplicities are generally distinct, that is,

|Ht| ̸= |H t|. In fact the following holds:

Lemma 2.1.7. |Ht| = |K||H t|, that is,

(covering multiplicity of η−1(s)) = |K| × (covering multiplicity of η−1(s)).

Proof. Recall that Ht := {g ∈ G : ρ(g)t = t} and H t := {g ∈ G : ρ(g)t = t}.
Here since H t

∼= Ht/K, we have |Ht| = |K||H t|.

Remark 2.1.8. For “kaleido/pure fiber” in Definition 2.1.4, there are similar

notions “special/generic fiber”: Noting K ⊂ Ht, we call a fiber η−1(s) =

Y/Ht generic if Ht = K and special otherwise. (If K = {1}, that is, ρ

is injective, then special/generic coincides with kaleido/pure.) The locus of

Cm/G over which special fibers lie is called the special locus and denoted by

SLη.

The following is shown by S. Takamura [Ta,VI].

Theorem 2.1.9. (1) The quotient family η : (Y × Cm)/G→ Cm/G asso-

ciated with ρ : G → GLm(C) is canonically isomorphic to the quotient

family η : (Y × Cm)/G → Cm/G associated with ρ : G → GLm(C).
Here set K := Ker(ρ), then the following holds :

(covering multiplicity of η−1(s)) = |K|×(covering multiplicity of η−1(s)).
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(2) Let SLη be the special locus of η and KLη be the kaleido locus of η Under

the isomorphism in (1), SLη = KLη.





Chapter 3

Dihedral quotient families

3.1 Dihedral quotient families

Given a regular n-gon, thickening its edges yields a cable surface Σ, on which

the dihedral group Dn := ⟨a, b : an = b2 = 1, bab−1 = a−1⟩ acts as illustrated
in Figure 3.1.1: a is a 1/n-rotation, while b a 1/2-rotation fixing four points.

ba

Figure 3.1.1:

Let us make this action holomorphic. First express Σ as a complex torus

C/L, the quotient of C under the additive action of a lattice L := Z ⊕ λZ
(λ ∈ C, Imλ > 0). Define two automorphisms A,B of C by A : z 7→ z +

1

n
and B : z 7→ −z. Then

(i) An(z) = z + 1 (so An(z) ≡ z mod Z⊕ λZ), B2 = 1, BAB−1 = A−1.

33



34 CHAPTER 3. DIHEDRAL QUOTIENT FAMILIES

(ii) For any T ∈ L (say, T acts on C as a translation z 7→ z + m + λn

(m,n ∈ Z)), we have AT (z) = TA(z) and BT (z) ≡ TB(z) mod Z⊕λZ
(indeed BT (z) = B(z+m+λn) = −z−m−λn and TB(z) = T (−z) =
−z +m+ λn).

(ii) ensures that A and B descend to automorphisms A and B of C/L. By

(i), Dn = ⟨A,B⟩, where A and B correspond to a and b. See Figure 3.1.2.

The above construction is independent of λ (in L = Z⊕λZ), so we obtain

the following:

Lemma 3.1.1. For any complex structure on the cable surface Σ, we may

let Dn act on Σ holomorphically.

00

A: translation by 1/n B: 1/2-rotation

Figure 3.1.2: Actions of A and B on a fundamental domain of C/L.

Note next the following:

Lemma 3.1.2. Any element of Dn is expressed as ak or akb (k = 0, 1, . . . , n−
1).

Proof. This is immediate from the fact that the generator a, b of Dn satisfy

relations an = b2 = 1 and bab−1 = a−1.

The following plays a fundamental role in our later discussion:

Lemma 3.1.3. (1) ak acts on Σ as a k/n-rotation (see Figure 3.1.1).

(2) Any akb (k = 0, 1, . . . , n − 1) is an involution fixing four points — it

locally acts as a half rotation around each fixed point.
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(3) Let ℓ be the axis of the involution b, and pi ∈ ℓ (i = 1, 2, 3, 4) be the

fixed points of b. Then in (2), the axis of the involution akb is ak/2ℓ,

and ak/2pi ∈ ak/2ℓ (i = 1, 2, 3, 4) are the fixed points of akb. (Here ak/2

is a k/2n-rotation, and ak/2 ∈ Aut(Σ) but in general ak/2 /∈ Dn.)

Proof. (1) is obvious. We show (2). For k = 0, that is, for b, this is obvious.

For other akb, this follows from the fact that akb is conjugate to b in Aut(Σ),

indeed akb = ak/2ba−k/2 (from ak/2b = ba−k/2). (3) is clear from (2).

In what follows, regard the cable surface Σ as a Riemann surface on

which Dn acts holomorphically. To a representation ρ : Dn → GLm(C), a
quotient family η : (Σ × Cm)/Dn → Cm/Dn is then associated. In case ρ

is irreducible, we shall describe the quotient family η. We separate into two

cases depending on the dimension (1 or 2) of ρ.

3.2 1-dimensional quotient families

The 1-dimensional representations of Dn are as follows (see [Ser] §5.3 p.36):

• If n is even, Dn has four 1-dimensional (necessarily irreducible) repre-

sentations. They are χi : Dn → GL1(C) (i = 1, 2, 3, 4) given by

(χi(a), χi(b)) =


(1, 1) i = 1,

(1,−1) i = 2,

(−1, 1) i = 3,

(−1,−1) i = 4.

(3.2.1)

• If n is odd, the representations χ3 and χ4 fail to be homomorphisms,

and the 1-dimensional representations of Dn are merely the represen-

tations χ1 and χ2.

None of χ1, χ2, χ3, χ4 are injective, indeed:
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Lemma 3.2.1.

Ker(χi) =


Dn i = 1,

⟨a⟩ i = 2,

⟨a2, b⟩ i = 3,

⟨a2, ab⟩ i = 4.

(3.2.2)

Proof. The case i = 1 is trivial. The other cases are confirmed as follows:

Case i = 2: Note that a ∈ Ker(χ2) and b /∈ Ker(χ2). So ⟨a⟩ ⊂ Ker(χ2) ⫋
Dn (= ⟨a, b⟩). Here |⟨a⟩| = n and |Dn| = 2n, thus necessarily |Ker(χ2)| = n

and Ker(χ2) = ⟨a⟩.
Case i = 3: Note that a2, b ∈ Ker(χ3) and a /∈ Ker(χ3). So ⟨a2, b⟩ ⊂

Ker(χ3) ⫋ Dn (= ⟨a, b⟩). Here |⟨a2, b⟩| = n and |Dn| = 2n, thus necessarily

|Ker(χ3)| = n and Ker(χ3) = ⟨a2, b⟩.
Case i = 4: Note that a2, ab ∈ Ker(χ4) and a /∈ Ker(χ4). So ⟨a2, ab⟩ ⊂

Ker(χ4) ⫋ Dn (= ⟨a, b⟩). Here |⟨a2, ab⟩| = n and |Dn| = 2n, thus necessarily

|Ker(χ4)| = n and Ker(χ4) = ⟨a2, ab⟩.

Ker |Ker|
χ1 Dn 2n

χ2 ⟨a⟩ (∼= Zn) n

χ3 ⟨a2, b⟩ (∼= Zn/2 ⋊ Z2) n

χ4 ⟨a2, ab⟩ (∼= Zn/2 ⋊ Z2) n

Table 3.2.1:

We describe the quotient family ξi : (Σ × C)/Dn → C/Dn associated

with χi. By Lemma 2.1.3, ξ−1
i (0) = Σ/Dn (c.m. |Dn| = 2n) and for s ̸= 0,

ξ−1
i (s) = Σ/Ker(χi) (c.m. |Ker(χi)|), explicitly:

ξ−1
i (s) =


Σ/Dn (c.m. 2n) i = 1,

Σ/⟨a⟩ (c.m. n) i = 2,

Σ/⟨a2, b⟩ (c.m. n) i = 3,

Σ/⟨a2, ab⟩ (c.m. n) i = 4.

(3.2.3)
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Note that ξ1 : Σ/Dn × C → C is a projection.

We will explicitly describe the four quotient spaces in (3.2.3) after some

technical preparation.

Lemma 3.2.2. Suppose that a group G acts on a Riemann surface X. Let

H be a normal subgroup of G and let q : X → X/H be the quotient map.

Then for each g ∈ G, the following hold :

(1) The automorphism g : X → X descends to an automorphism g :

X/H → X/H, that is, q ◦ g = g ◦ q holds. If the order of g is n,

then gn = id; so the order of g is at most n.

(2) If there exists a point x ∈ X such that gx /∈ Hx, then g ̸= id. (Caution:

in general, even if g /∈ H, possibly g = id.)

(3) If the automorphism g : X → X has a fixed point, then the automor-

phism g : X/H → X/H also has a fixed point. In fact under the quo-

tient map q, the fixed points of g descend to fixed points of g. (Caution:

there may be other fixed points of g.)

Proof. We show (1). A point of X/H is denoted by p mod H for some p ∈ X.

Define g : X/H → X/H by p mod H 7→ gp mod H. Then q ◦ g = g ◦ q holds

from the normality condition gH = Hg. Thus g is the descent of g. If

gn = id, then from the construction of g, we have gn = id. We show (2). Set

x := q(x). The condition gx /∈ Hx implies g x ̸= x, so g ̸= id. We show (3).

From q ◦ g = g ◦ q, we have q ◦ g(x) = g ◦ q(x) for any x ∈ X. If x is a fixed

point of g, then g(x) = x, so q(x) = g ◦ q(x). Set x := q(x), then we have

x = g(x), that is, x is a fixed point of g.

We return to the action of Dn on Σ. Recall that akb (k = 0, 1, 2, . . . , n−1)

is an involution of the elliptic curve Σ fixing four points (Lemma 3.1.3 (2)),

that is, akb is an elliptic involution. The following holds:

Lemma 3.2.3. Let Σ be the cable surface of a regular n-gon, which is an

elliptic curve with Dn-action. Write Dn = ⟨a, b⟩, where a is the 1/n-rotation
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and b is the elliptic involution in Figure 3.1.1. Let l be an integer and H

be the cyclic group generated by al. If x /∈
∪n−1

k=0 Fix(a
kb), then the following

hold:

(1) The Dn-orbit Dnx of x is written as a disjoint union Dn = A ⨿ B,

where

A = {aix : i = 0, 1, . . . , n− 1}, B = {ajbx : j = 0, 1, . . . , n− 1}.

(2) akbx /∈ Hx for any k = 0, 1, . . . , n− 1.

(3) Under the quotient map q : Σ → Σ/H, any elliptic involution akb of

Σ descends to an automorphism akb of Σ/H such that akb
2
= id and

akb ̸= id, that is, akb is an involution.

Proof. We show (1). Since Dn = {ai, ajb : i, j = 0, 1, . . . , n−1} (see Lemma

3.1.2), we have Dn = A ∪ B. It suffices to show A ∩ B ̸= ∅. An element of

A∩B, if any, is written as aix = ajbx, that is, aj−ibx = x, so x ∈ Fix(aj−ib).

This contradicts the assumption that x /∈
∪n−1

k=0 Fix(a
kb). We show (2). Since

Hx = {amlx : m = 0, 1, . . . } ⊂ A,

we have Hx ∩B = ∅ by (1), thus akbx /∈ Hx for any k = 0, 1, . . . , n− 1. We

show (3). Note that H = ⟨al⟩ is normal in Dn (as bab−1 = a−1). Applying

Lemma 3.2.2 (1) to the case X = Σ, G = Dn and g = akb shows that akb

descends to an automorphism akb of Σ/H such that akb
2
= id. Here by

Lemma 3.2.2 (2), akb ̸= id (note that akbx /∈ Hx by (2), so the assumption

of that lemma is satisfied).

We next show the following:

Lemma 3.2.4. Let Σ be the cable surface of a regular n-gon, which is an

elliptic curve with Dn-action. Write Dn = ⟨a, b⟩, where a is the 1/n-rotation

and b is the elliptic involution in Figure 3.1.1. Then the following hold :
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(1) For any integer l, the quotient map q : Σ → Σ/⟨al⟩ is an unramified

covering and the quotient Σ/⟨al⟩ is an elliptic curve.

(2) Under the quotient map q in (1), any elliptic involution akb of Σ de-

scends to an elliptic involution of Σ/⟨al⟩, that is, the involution akb in

Lemma 3.2.3 (3) is an elliptic involution.

Proof. We show (1). As the action of ⟨a⟩ on Σ is free (see Figure 3.1.1),

so is the action of ⟨al⟩ on Σ, thus q : Σ → Σ/⟨al⟩ is unramified, that is,

Σ/⟨al⟩ has no branch points. Then by the Riemann–Hurwitz formula, χ(Σ) =

|⟨al⟩|χ(Σ/⟨al⟩). Here Σ is an elliptic curve, so χ(Σ) = 0, thus χ(Σ/⟨al⟩) = 0,

in turn Σ/⟨al⟩ is an elliptic curve. We next show (2). As we saw in (1),

Σ/⟨al⟩ is an elliptic curve. It is well-known that an involution of an elliptic

curve is either an elliptic involution or a translation of order 2 (the latter is

fixed point free). Now since akb has a fixed point (Lemma 3.1.3 (2)), akb also

has a fixed point (Lemma 3.2.2 (3)), so akb must be an elliptic involution.

Note that when a group G acts on Σ and a subgroup N of G is normal,

the induced quotient map Σ/N → Σ/G is a Galois covering with covering

transformation group G/N .

Lemma 3.2.5. Fix arbitrary integers l and k and consider a subgroup ⟨al, akb⟩
of Dn = ⟨a, b⟩. Then the following hold :

(1) ⟨al⟩ is a normal subgroup of ⟨al, akb⟩ and the quotient group ⟨al, akb⟩/⟨al⟩
is cyclic group of order 2.

(2) Σ/⟨al⟩ → Σ/⟨al, akb⟩ is the quotient of the elliptic curve Σ/⟨al⟩ by the

elliptic involution akb in Lemma 3.2.4 (2); thus this covering is two-fold

with four branch points, and Σ/⟨al, akb⟩ is a projective line.

(3) The quotient map p : Σ → Σ/⟨al, akb⟩ is a ramified covering with four

branch points.



40 CHAPTER 3. DIHEDRAL QUOTIENT FAMILIES

Proof. We show (1), first, that ⟨al⟩ is normal in ⟨al, akb⟩, that is, galg−1 ∈ ⟨al⟩
for g = al and akb. For g = al, this is trivial and for g = akb, this follows

from (akb)al(akb)−1 = a−l, which is confirmed as follows:

(akb)al(akb)−1 = ak(balb−1)a−k = aka−la−k from bab−1 = a−1

= a−l.

We next show that the quotient group ⟨al, akb⟩/⟨al⟩ is a cyclic group of order

2. Consider the short exact sequence of groups:

1 −→ ⟨al⟩ −→ ⟨al, akb⟩ −→ ⟨al, akb⟩/⟨al⟩ −→ 1.

Here ⟨al, akb⟩/⟨al⟩ ∼= ⟨akb⟩ and (akb)2 = 1, so the quotient group ⟨al, akb⟩/⟨al⟩
is a cyclic group of order 2. We show (2). From (1), Σ/⟨al⟩ → Σ/⟨al, akb⟩ is
a Galois covering with covering transformation group ⟨al, akb⟩/⟨al⟩ ∼= ⟨akb⟩.
Here akb acts on Σ/⟨al⟩ as akb, which is an elliptic involution of Σ/⟨al⟩
(Lemma 3.2.4 (2)). Thus the Galois covering Σ/⟨al⟩ → Σ/⟨al, akb⟩ is the

quotient of Σ/⟨al⟩ by the involution akb. Therefore it is a two-fold covering

with four branch points, and Σ/⟨al, akb⟩ is a projective line. We show (3).

Write p : Σ → Σ/⟨al, akb⟩ as the composition p = r ◦ q of quotient maps

r : Σ/⟨al⟩ → Σ/⟨al, akb⟩ and q : Σ → Σ/⟨al⟩. Here r is a ramified covering

with four branch points by (2) and q is an unramified covering by Lemma

3.2.4 (1), thus the assertion holds. Figure 3.2.1 illustrates the case (l, k) =

(1, 0).
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p = r ◦ q

b
b

Σ/⟨a⟩Σ Σ/Dn

q r

Figure 3.2.1: (l, k) = (1, 0): q is the quotient map under the ⟨a⟩-action and

r is the quotient map under the ⟨b⟩-action, where the descent b of b is an

elliptic involution.

We may now explicitly determine the fibers ξ−1
i (s) in (3.2.3). By Lemma

3.2.5 (2), any of Σ/Dn, Σ/⟨a2, b⟩ and Σ/⟨a2, ab⟩ is a projective line (note:

Dn = ⟨a, b⟩). On the other hand, by Lemma 3.2.4 (1), Σ/⟨a⟩ is an elliptic

curve. The results obtained so far are summarized as follows:

Theorem 3.2.6. Let ξi : (Σ×C)/Dn → C/Dn (i = 1, 2, 3, 4) be the quotient

family of Σ associated with χi : Dn → GL1(C). Then the following hold :

(i) ξ1 : (Σ/Dn)×C → C is a projection, so for any s, ξ−1
1 (s) = Σ/Dn; its

covering multiplicity is |Dn| = 2n.

(ii) For ξ2, ξ3 and ξ4, the following hold (c.m. means covering multiplicity):

ξ−1
2 (s) =

 projective line Σ/Dn (c.m. 2n) if s = 0,

elliptic curve Σ/⟨a⟩ (c.m.n) if s ̸= 0,

ξ−1
3 (s) =

 projective line Σ/Dn (c.m. 2n) if s = 0,

projective line Σ/⟨a2, b⟩ (c.m.n) if s ̸= 0,

ξ−1
4 (s) =

 projective line Σ/Dn (c.m. 2n) if s = 0,

projective line Σ/⟨a2, ab⟩ (c.m.n) if s ̸= 0.
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3.3 Properties of representations of Dn

The 2-dimensional irreducible representations of Dn are given by the repre-

sentations ρl : Dn → GL2(C) (where l is an integer such that 1 ≤ l < n
2
)

defined by

ρl(a) =

(
ζ l 0

0 ζ−l

)
,where ζ := e2πi/n, ρl(b) =

(
0 1

1 0

)
. (3.3.1)

In what follows, via ρl let Dn act on C2. Recall that any element of Dn

is expressed as ak or akb (k = 0, 1, . . . , n− 1); see Lemma 3.1.2.

Lemma 3.3.1. Set Fix(g) := {t ∈ C2 : ρl(g)t = t}. Then Fix(ak) = {0} for

k ̸= 0 (while Fix(a0) = C2) and Fix(akb) =

{
λ

(
ζ lk

1

)
∈ C2 : λ ∈ C

}
for

any k.

Proof. The assertion follows from ρl(a
k) =

(
ζ lk 0

0 ζ−lk

)
and ρl(a

kb) =

(
0 ζ lk

ζ−lk 0

)
.

Let ηn, l : (Σ× C2)/Dn → C2/Dn be the quotient family associated with

ρl. Its prekaleido locus is given by K̃Lηn,l
= {t ∈ C2 : Ht ̸= 1}, where

Ht denotes the stabilizer of t ∈ C2 for the Dn-action on C2. The kaleido

locus is then given by KLηn,l
= K̃Lηn,l

/Dn. Note that K̃Lηn,l
is expressed as

K̃Lηn,l
=
∪

x∈Dn\{1} Fix(x). Here x = ak or akb for some k ∈ {0, 1, . . . , n− 1}
(Lemma 3.1.2) and note that Fix(ak) = {0} and 0 ∈ Fix(akb) (Lemma

3.3.1). We may thus write K̃Lηn,l
=

n−1∪
k=0

Fix(akb). Accordingly we have

KLηn,l
=
( n−1∪

k=0

Fix(akb)
)/

Dn. Here the Dn-action is given as follows: g ∈ Dn

maps Fix(akb) to Fix(gakbg−1). We explicitly describe Fix(gakbg−1), for

which we shall rewrite gakbg−1 (see (2) below).

Lemma 3.3.2. (1) For any i, k, ai(akb)a−i = ak+2ib and (aib)(akb)(aib)−1 =

a−k+2ib.
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(2) For any g ∈ Dn, g(a
kb)g−1 = ak+2ib or a−k+2ib for some i ∈ {0, 1, . . . , n−

1}.

(3) {gakbg−1 : g ∈ Dn} = {ak+2ib, a−k+2ib : i = 0, 1, . . . , n− 1}.

Proof. (1) Recall that Dn := ⟨a, b : an = b2 = 1, bab−1 = a−1⟩. The first

equation is confirmed as follows:

ai(akb)a−i = ai(akb)baib−1 as a−i = baib−1 (from a−1 = bab−1)

= ai+kb2aib−1 = ak+2ib as b2 = 1 and b−1 = b.

The second equation is confirmed as follows:

(aib)(akb)(aib)−1 = ai(bak−i) = ai(a−(k−i)b) as bak−i = a−(k−i)b

= a−k+2ib.

(2) By Lemma 3.1.2, g = ai or aib for some i ∈ {0, 1, . . . , n− 1}. Accord-
ingly we obtain

g(akb)g−1 =

ai(akb)a−i = ak+2ib (by (1)) or

(aib)(akb)(aib)−1 = a−k+2ib (by (1)).

(3) Set S := {gakbg−1 : g ∈ Dn} and T := {ak+2ib, a−k+2ib : i =

0, 1, . . . , n − 1}. By (1), we have S ⊃ T and by (2), we have S ⊂ T . Thus

we obtain S = T .

Corollary 3.3.3. If k ≡ k′ mod 2, then akb and ak
′
b are conjugate in Dn.

Proof. Write k = k′ + 2l, where l :=
k − k′

2
is an integer by assumption.

Then by Lemma 3.3.2 (1), we have al(ak
′
b)a−l = ak

′+2lb = akb.

For even n, the converse of Corollary 3.3.3 holds:

Corollary 3.3.4. (1) If n is even, then akb and ak
′
b are conjugate if and

only if k ≡ k′ mod 2.
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(2) If n is odd, then akb (k = 0, 1, . . . , n− 1) are mutually conjugate.

Proof. (1) It suffices to show that if akb and ak
′
b are conjugate then k ≡

k′ mod 2. The set of conjugates of akb is equal to T = {ak+2ib, a−k+2ib :

i = 0, 1, . . . , n − 1} (Lemma 3.3.2 (3)). If akb and ak
′
b are conjugate then

ak
′
b ∈ T , so k′ ≡ k + 2i or −k + 2i mod n for some i. Here n is even, thus

k ≡ k′ mod 2.

(2) Since akb and ak
′
b (k ≡ k′ mod 2) are conjugate (Corollary 3.3.3),

elements of A := {akb : k is even} are mutually conjugate and elements

of B := {akb : k is odd} are mutually conjugate. Next since n − 1 ≡
n + 1 mod 2, an−1b and an+1b are conjugate. Here an = 1, so an+1b = ab.

Thus an−1b and ab are conjugate. Note that an−1b ∈ A (as n−1 is even) and

ab ∈ B. Thus elements of A and B are mutually conjugate.

Corollary 3.3.4 combined with the fact that g ∈ Dn maps Fix(x) to

Fix(gxg−1) yields: If n is odd, then for any k, k′ there exists an element of

Dn that maps Fix(akb) to Fix(ak
′
b). If n is even, this is the case only when

k ≡ k′ mod 2. Therefore the following is obtained:

Lemma 3.3.5. Set Lk := Fix(akb). The Dn-action on C2 permutes (dis-

tinct) complex lines {L0, L1, . . . , Ln−1}: if n is odd, this action is transi-

tive and if n is even, this action has two orbits: {L0, L2, . . . , Ln−2} and

{L1, L3, . . . , Ln−1}.

3.4 2-dimensional quotient families

To each representation ρl : Dn → GL2(C) where l is an integer such that

1 ≤ l < n
2
, we shall describe the associated quotient family ηn, l : (Σ ×

C2)/Dn → C2/Dn. Note first that:

Lemma 3.4.1. Ker(ρl) = ⟨an′⟩, where we set n′ := n/ gcd(l, n). (Thus

the order of Ker(ρl) is gcd(l, n). In particular ρl is injective if and only if

gcd(l, n) = 1.)
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Proof. Note first that Ker(ρl) ⊂ ⟨a⟩, as ρl(akb) =

(
0 ζ lk

ζ−lk 0

)
̸= I for any

k. The assertion is then immediate from the following equivalence:

ρl(a
k) =

(
ζ lk 0

0 ζ−lk

)
= I ⇐⇒ k is a multiple of n′ (in other words

n′, 2n′, . . . , gcd(l, n)n′).

We separate into two cases depending on whether ρl is injective.

3.4.1 Injective case

Let ηn, l : (Σ × C2)/Dn → C2/Dn be the quotient family associated with an

injective representation ρl (in this case gcd(l, n) = 1). We first determine

its kaleido locus KLηn,l
(over which kaleido fibers lie; see Definition 2.1.4).

This is the image of the prekaleido locus K̃Lηn,l
=
∪

g∈Dn\{1} Fix(g) under the

quotient map C2 → C2/Dn. Here note that

K̃Lηn,l
=

n−1∪
k=1

Fix(ak) ∪
n−1∪
k=0

Fix(akb) =
n−1∪
k=0

Fix(akb)

=
n−1∪
k=0

{
λ

(
ζ lk

1

)
∈ C2 : λ ∈ C

}
by Lemma 3.3.1.

This confirms the following:

Lemma 3.4.2. The prekaleido locus of ηn, l is given by K̃Lηn,l
=
∪n−1

k=0 Lk,

where we set

Lk := Fix(akb) =

{
λ

(
ζ lk

1

)
∈ C2 : λ ∈ C

}
.

We consequently obtain KLηn,l
=
∪n−1

k=0 Lk, where Lk is the image of Lk

under the quotient map C2 → C2/Dn. Here the lines L0, L1, . . . , Ln−1 are
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not distinct: From Lemma 3.3.5, if n is odd, L0 = L1 = · · · = Ln−1 and if n

is even, L0 = L2 = · · · = Ln−2 and L1 = L3 = · · · = Ln−1. So

KLηn,l
=

 L0 if n is odd,

L0 ∪ L1 if n is even.
(3.4.1)

Moonsault of elliptic curves Let Σ × C2 → C2 be the projection, on

which Dn acts equivariantly (via ρl on C2). (Its quotient is the quotient

family ηn, l : (Σ × C2)/Dn → C2/Dn.) Every fiber of Σ × C2 → C2 is of

course the elliptic curve Σ. As a consequence of Lemma 3.3.5:

• Odd n: Dn permutes elliptic curves over L0, L1, . . . , Ln−1 (Figure 3.4.1).

• Even n: Dn permutes elliptic curves over L0, L2, . . . , Ln−2 as well as

elliptic curves over L1, L3, . . . , Ln−1 (Figure 3.4.2).

b

ab

a4b
a3b a2b

L0

L1
L2L3L4

C2

E

Figure 3.4.1: Odd case (n = 5): Moonsault (gymnastics skill) of an elliptic

curve E in Σ× C2. Each akb (k = 0, 1, . . . ) is an involution (Lemma 3.1.3).
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L0

L1
L5

L4 L2
L3

b

ab

a2b
a3b

a4b

a5b

E

C2

Figure 3.4.2: Even case (n = 6): Moonsault of an elliptic curve E in Σ×C2.

We describe the kaleido fibers of ηn, l : (Σ × C2)/Dn → C2/Dn. For

s ∈ C2/Dn, let Hs̃ be the stabilizer of s̃ ∈ C2 for the Dn-action (s̃ is a lift of

s), then η−1
n, l(s) = Σ/Hs̃ by Theorem 2.1.1. This is essentially independent of

the choice of a lift s̃, as, for any other lift s̃ ′, Hs̃
∼= Hs̃ ′ and Σ/Hs̃

∼= Σ/Hs̃ ′

canonically. We shall explicitly determine Σ/Hs̃. Note that

Hs̃ =


Dn if s̃ = 0,

⟨akb⟩ if s̃ ∈ Lk \ {0} (k = 0, 1, . . . , n− 1), where Lk := Fix(akb),

{1} if s̃ ∈ C2 \
∪n−1

k=0 Lk.

(3.4.2)

Here the second case “Hs̃ = ⟨akb⟩ if s̃ ∈ Lk \ {0} (k = 0, 1, . . . , n− 1)” may

be rewritten depending on the parity of n as follows:

• Odd n: Hs̃ = ⟨b⟩ if s̃ ∈ L0 \ {0},
because theDn-action on {L0, L1, . . . , Ln−1} is transitive (Lemma 3.3.5).
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• Even n: Hs̃ =

⟨b⟩ s̃ ∈ L0 \ {0} if k is even,

⟨ab⟩ s̃ ∈ L1 \ {0} if k is odd,

because theDn-action on {L0, L1, . . . , Ln−1} has two orbits {L0, L2, . . . , Ln−2}
and {L1, L3, . . . , Ln−1} (Lemma 3.3.5).

Hence the following is obtained:

• Odd n: • Even n:

Hs̃ =


Dn s = 0,

⟨b⟩ s ∈ L0 \ {0},

{1} s ∈ (C2/Dn) \ L0.

Hs̃ =


Dn s = 0,

⟨b⟩ s ∈ L0 \ {0},

⟨ab⟩ s ∈ L1 \ {0},

{1} s ∈ (C2/Dn) \ (L0 ∪ L1).

Now recall that the covering multiplicity (c.m.) of η−1
n, l(s) = Σ/Hs̃ is |Hs̃|.

The following holds:

(i) Odd n:

η−1
n, l(s) =


Σ/Dn s = 0 (c.m. |Dn| = 2n),

Σ/⟨b⟩ s ∈ L0 \ {0} (c.m. |⟨b⟩| = 2),

Σ s ∈ (C2/Dn) \ L0 (c.m. 1),

where note that KLηn,l
= L0.

(ii) Even n:

η−1
n, l(s) =


Σ/Dn s = 0 (c.m. |Dn| = 2n),

Σ/⟨b⟩ s ∈ L0 \ {0} (c.m. |⟨b⟩| = 2),

Σ/⟨ab⟩ s ∈ L1 \ {0} (c.m. |⟨ab⟩| = 2),

Σ s ∈ (C2/Dn) \ (L0 ∪ L1) (c.m. 1),

where note that KLηn,l
= L0 ∪ L1.

In (i) and (ii), we have the following (see Lemma 3.2.5 (2)):
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• Σ/Dn is P1, and Σ → Σ/Dn has four branch points.

• Σ/⟨b⟩ is P1, and Σ → Σ/⟨b⟩ has four branch points.

• Σ/⟨ab⟩ is P1, and Σ → Σ/⟨ab⟩ has four branch points.

The above results are summarized as follows:

Theorem 3.4.3. Let ηn, l : (Σ × C2)/Dn → C2/Dn (1 ≤ l < n
2
) be the

quotient family of Σ associated with ρl : Dn → GL2(C). If ρl is injective

(equivalently gcd(l, n) = 1), then the following hold (c.m. means covering

multiplicity):

η−1
n, l(s) =


projective line Σ/Dn (c.m. 2n) if s = 0,

projective line Σ/⟨b⟩ (c.m. 2) if s ∈ KLηn,l
\ {0},

elliptic curve Σ (c.m. 1) if s ∈ (C2/Dn) \KLηn,l
.

KLηn,l
=

 L0 (n : odd),

L0 ∪ L1 (n : even).

Remark 3.4.4. While Σ/⟨b⟩ appears as a fiber of ηn, l, for any ak ̸= 1, Σ/⟨ak⟩
does not. Reason: By the quotient fiber theorem, η−1

n, l(s) = Σ/Ht, where Ht

is the stabilizer of t ∈ C2. We claim that Ht ̸= ⟨ak⟩ for any t ∈ C2. Indeed

since Fix(ak) = {0}, if ak ∈ Ht then t = 0, but H0 = Dn.

To determine C2/Dn, we need the following:

Lemma 3.4.5. ρl(b) is a reflection.

Proof. ρl(b) =

(
0 1

1 0

)
is conjugate to

(
1 0

0 −1

)
in GL2(C) via

(
1 1

−1 1

)
.

Now we can determine C2/Dn:

Lemma 3.4.6. C2/Dn (= C2/⟨ρl(a), ρl(b)⟩) is isomorphic to C2.
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Proof. By computation, the invariant ring of C[x, y] under the Dn-action is

isomorphic to C[x, y] itself, thus the assertion holds.

The total space (Σ× C2)/Dn of the quotient family ηn, l is singular:

Odd Case If n is odd, the ramification points of the quotient map Σ →
Σ/Dn consists of fourDn-orbits as illustrated in Figure 3.4.3. Each consists of

n points: {p0, . . . , pn−1}, {q0, . . . , qn−1}, {r0, . . . , rn−1}, {s0, . . . , sn−1}, where
for each k = 0, . . . , n− 1, pk, qk, rk, sk are the fixed points of akb.

Σ

s2s3

p0

p1
r3 r2

p0

s2
r2
r0

r4 r1
r1

q0

q1 q2

s1

p2p1
s0

p4

s1s4

p2 p3s0

q2 q3r0

q1 q4

q0

Figure 3.4.3: The Dn-orbits of the ramification points for n = 3, 5

Notation 3.4.7. Let xk denote pk, qk, rk, or sk. Each line {xk}×Lk in Σ×C2

is mapped to a line {xk} × Lk in (Σ × C2)/Dn, which lies over L0. Noting

that {xk} × Lk does not depend on k, write this as Rx (x = p, q, r, s). See

Figure 3.4.4. As we will show in Theorem 3.5.11, the total space (Σ×C2)/Dn

is singular along Rp, Rq, Rr, Rs. They are called the ridges of (Σ× C2)/Dn.
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(Σ× C2)/Dn

2n

C2/Dn L0

Rr

2

Rq

Rs

Rp

Figure 3.4.4: The ridges of the quotient family ηn, l : (Σ×C2)/Dn → C2/Dn

(n: odd)

Even Case If n is even, the ramification points of the quotient map Σ →
Σ/Dn consists of fourDn-orbits as illustrated in Figure 3.4.5. Each consists of

n points: {p0, . . . , pn−1}, {q0, . . . , qn−1}, {r0, . . . , rn−1}, {s0, . . . , sn−1}. Here

pk, qk, pk+n/2, qk+n/2 (k = 0, . . . , n − 1) are the fixed points of a2kb, while

rk, sk, rk+n/2, sk+n/2 (k = 0, . . . , n− 1) are the fixed points of a2k+1b.

Σ

p0
r0

s2 s3

s1 s4

r5

p5

r2

q3
q4

s0s3
q0

s0
q1 q3
s1 s2

q2
r2r1

p2

p0

p3p1
q1

s5

r0 r3

p2

r1

p3
r3

p4

r4

q0
q5

q2

p1

Figure 3.4.5: The Dn-orbits of the ramification points for n = 4, 6

Notation 3.4.8. Let xk denote pk, qk, rk, or sk. Each line {xk}×Lk in Σ×C2

is mapped to a line {xk} × Lk in (Σ× C2)/Dn. Noting that {xk} × Lk does

not depend on k, write this as Rx. The lines Rp and Rq lie over L0 and

the lines Rr and Rs lie over L1. See Figure 3.4.6. (As we will show in
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Theorem 3.5.11, the total space (Σ × C2)/Dn is singular along the ridges

Rp, Rq, Rr, Rs.)

Rs

C2/DnL0 L1

(Σ× C2)/Dn

RrRp

Rq

2 22n

Figure 3.4.6: The ridges of the quotient family ηn, l : (Σ×C2)/Dn → C2/Dn

(n: even)

3.4.2 Non-injective case

Let ηn, l : (Σ×C2)/Dn → C2/Dn be the quotient family associated with the

irreducible representation ρl : Dn → GL2(C) given by

ρl(a) =

(
e2πil/n 0

0 e−2πil/n

)
, ρl(b) =

(
0 1

1 0

)
.

In what follows, consider the case that ρl is not injective. The kaleido lo-

cus KLηn,l
of ηn, l is then the whole of C2/Dn, i.e. every fiber of ηn, l is

kaleido (Proposition 2.1.5 (1)). By Theorem 2.1.9 (1), ηn, l : (Σ×C2)/Dn →
C2/Dn is canonically isomorphic to the quotient family ηn, l :

(
Σ/Ker(ρl) ×

C2
)/(

Dn/Ker(ρl)
)
→ C2

/(
Dn/Ker(ρl)

)
associated with ρl : Dn/Ker(ρl) →

GL2(C). Now set d := gcd(n, l), n′ := n/d, and l′ := l/d. By Lemma

3.4.1, gcd(n, l) ≥ 2 and Ker(ρl) = ⟨an′⟩, so Dn/Ker(ρl) ∼= Dn′ . Note that

Σ′ := Σ/⟨an′⟩ is an elliptic curve (Lemma 3.2.4 (1)).
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Lemma 3.4.9. Two representations ρl : Dn′ → GL2(C) and ρl′ : Dn′ →
GL2(C) coincide.

Proof. The images a, b of a, b under the quotient mapDn → Dn′ (∼= Dn/⟨an
′⟩)

generate Dn′ , and

ρl(a) = ρl′(a) =

(
e2πil

′/n′
0

0 e−2πil′/n′

)
, ρl(b) = ρl′(b) =

(
0 1

1 0

)
.

The above results combined with Theorem 2.1.9 yield the following:

Lemma 3.4.10. (1) The quotient family ηn, l : (Σ × C2)/Dn → C2/Dn

associated with ρl : Dn → GL2(C) is canonically isomorphic to the

quotient family ηn′, l′ : (Σ′ × C2)/Dn′ → C2/Dn′ associated with the

injective representation ρl′ : Dn′ → GL2(C). Here Σ′ := Σ/Ker(ρl) is

an elliptic curve and |Ker(ρl)| = d (= gcd(n, l)), so

(covering multiplicity of η−1
n, l(s)) = d×(covering multiplicity of η−1

n′, l′(s)).

(2) Let SLηn,l
be the special locus of ηn, l (Remark 2.1.8) and KLηn′,l′

be the

kaleido locus of ηn′, l′. Under the isomorphism in (1), SLηn,l
= KLηn′,l′

.

Here by Theorem 3.4.3,

η−1
n′, l′(s) =


projective line Σ′/Dn′ (∼= Σ/Dn) (c.m. 2n′) if s = 0,

projective line Σ′/⟨b⟩ (∼= Σ/⟨an′
, b⟩) (c.m. 2) if s ∈ KLηn′,l′

\ {0},

elliptic curve Σ′ (:= Σ/⟨an′⟩) (c.m. 1) if s ∈ (C2/Dn) \KLηn′,l′
.

Consequently the following holds:

Theorem 3.4.11. Let ηn, l : (Σ × C2)/Dn → C2/Dn be the quotient family

of Σ associated with ρl : Dn → GL2(C) and set n′ := n/ gcd(n, l). Then the

following holds :

η−1
n, l(s) =


projective line Σ/Dn (c.m. 2n′d (= 2n)) if s = 0,

projective line Σ/⟨an′
, b⟩ (c.m. 2d) if s ∈ SLηn,l

\ {0},

elliptic curve Σ/⟨an′⟩ (c.m. d) if s ∈ (C2/Dn) \ SLηn,l
.
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3.5 Singular loci of total spaces

Let ρl : Dn → GL2(C) be the representation given by (3.3.1) and ηn, l :

(Σ× C2)/Dn → C2/Dn be its associated quotient family. We determine the

type of the singular locus of (Σ× C2)/Dn. Note first the following:

Lemma 3.5.1. If y ∈ (Σ × C2)/Dn is a singularity, then Hỹ ̸= {1}, where
Hỹ is the stabilizer of a lift ỹ ∈ Σ×C2 of y. (If moreover ρl is injective, the

converse holds (Lemma 3.5.5 below).)

Proof. Write ỹ = (z, t) ∈ Σ × C2, and take a sufficiently small Hỹ-stable

disk ∆ ⊂ Σ centered at z. Then (Σ × C2)/Dn is around y isomorphic to

(∆×C2)/Hỹ. If y is a singularity of (Σ×C2)/Dn, then y is a singularity of

(∆× C2)/Hỹ, so necessarily Hỹ ̸= {1}.

Since the Dn-action on Σ × C2 is diagonal
(
(z, t) 7→ (gz, ρl(g)t)

)
, the

following holds:

Lemma 3.5.2. For any (z, t) ∈ Σ×C2, H(z,t) = Hz∩Ht. (Thus H(z,t) ̸= {1}
is restated as Hz ∩Ht ̸= {1}.)

To determine the singularities of (Σ × C2)/Dn, we shall determine (z, t)

such that H(z,t) ̸= {1}. Recall that ηn, l : (Σ× C2)/Dn → C2/Dn is the quo-

tient family associated with the representation ρl : Dn → GL2(C). Thanks

to Lemma 3.4.10 (1), we may assume that ρl is injective.

Recall that Dn = {ak, akb : k = 0, 1, . . . , n − 1}. Here ak, being a

translation of Σ (Figure 3.1.1), fixes no point of Σ. Thus ak /∈ Hz for any

z. Next akb, being a involution of Σ (Figure 3.1.1), fixes four points. If

z is a fixed point of akb, then ⟨akb⟩ ⊂ Hz and ak
′
b /∈ Hz for any k′ ≠ k,

so ⟨akb⟩ = Hz. This confirms (i) of the following (while (ii) is nothing but

(3.4.2); note ρl is injective):



3.5. SINGULAR LOCI OF TOTAL SPACES 55

Lemma 3.5.3.

(i)

Hz =

 ⟨akb⟩ if z ∈ FixΣ(a
kb),

{1} otherwise,

(ii)

Ht =


Dn if t = 0,

⟨akb⟩ if t ∈ FixC2(akb) \ {0},

{1} otherwise,

where FixS(a
kb) (S = Σ,C2) denotes the fixed point set of the action of akb

on S.

From H(z,t) = Hz ∩Ht and Lemma 3.5.3, we have:

Corollary 3.5.4. Suppose that ρl is injective. Then the following conditions

are equivalent:

(i) H(z,t) ̸= {1}.

(ii) H(z,t) = ⟨akb⟩ for some k.

(iii) (z, t) ∈ FixΣ(a
kb)× FixC2(akb).

The image of (z, t) ∈ Σ × C2 under the quotient map Σ × C2 → (Σ ×
C2)/Dn is denoted by [z, t] ∈ (Σ × C2)/Dn. If [z, t] ∈ (Σ × C2)/Dn is a

singularity, then H(z,t) ̸= {1} (Lemma 3.5.1). Conversely the following holds:

Lemma 3.5.5. Suppose that ρl is injective. If H(z,t) ̸= {1}, then [z, t] ∈
(Σ× C2)/Dn is a singularity.

Proof. If H(z,t) ̸= {1}, then H(z,t) = ⟨akb⟩ for some k (Corollary 3.5.4).

Noting that akb is not a pseudo-reflection (Lemma 3.5.10 below), H(z,t) =

⟨akb⟩ is a small group, so [z, t] ∈ (Σ× C2)/Dn is a singularity.

Combining Lemma 3.5.1, Corollary 3.5.4, and Lemma 3.5.5 yield the

following:

Proposition 3.5.6. Suppose that ρl is injective. Then the following are

equivalent:
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(i) [z, t] ∈ (Σ× C2)/Dn is a singularity.

(ii) H(z,t) ̸= {1}.

(iii) H(z,t) = ⟨akb⟩ for some k.

(iv) (z, t) ∈ FixΣ(a
kb)× FixC2(akb).

We determine the singular locus of (Σ× C2)/Dn.

Proposition 3.5.7. Suppose that ρl is injective. Then the singular locus of

(Σ×C2)/Dn consists of the ridges Rp, Rq, Rr, Rs (illustrated in Figure 3.4.4

for odd n and Figure 3.4.6 for even n; Rp, Rq, Rr, Rs are disjoint).

Proof. By Proposition 3.5.6, it suffices to show that

(z, t) ∈ FixΣ(a
kb)× FixC2(akb) ⇐⇒ [z, t] ∈ Rp ∪Rq ∪Rr ∪Rs.

Note first thatFixΣ(a
kb) = {pk, qk, rk, sk} (see Figure 3.4.3 for odd n, Figure 3.4.5 for even n),

FixC2(akb) =: Lk (see Lemma 3.4.2).

Thus (z, t) ∈ FixΣ(a
kb) × FixC2(akb) is restated as (z, t) ∈ {xk} × Lk (xk =

pk, qk, rk, sk), that is, [z, t] ∈ Rx as Rx := {xk} × Lk (see Notation 3.4.7 for

odd n and Notation 3.4.8 for even n).

Consider next the case that ρl is not injective. We reduce this to the

injective case: Set n′ := n/ gcd(n, l) and l′ := l/ gcd(n, l) and Σ′ := Σ/⟨an′⟩.
Then note that the quotient family ηn, l : (Σ× C2)/Dn → C2/Dn associated

with ρl : Dn → GL2(C) is naturally identified with the quotient family

ηn′, l′ : (Σ
′ × C2)/Dn′ → C2/Dn′ associated with the injective representation

ρl′ (= ρl) : Dn′ → GL2(C). In fact,

(i) (Σ× C2)/Dn = (Σ× C2)/⟨an′⟩
/
(Dn/⟨an

′⟩)
∼=
(
Σ/⟨an′⟩ × C2

)/
(Dn/⟨an

′⟩) as ⟨an′⟩-action on C2 is trivial

= (Σ′ × C2)/Dn′ ,
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(ii) C2/Dn = (C2/⟨an′⟩)
/
(Dn/⟨an

′⟩)
∼= C2

/
(Dn/⟨an

′⟩) as ⟨an′⟩-action on C2 is trivial

= C2/Dn′ ,

and the following diagram commutes:

(Σ× C2)/Dn

ηn, l
��

∼= // (Σ′ × C2)/Dn′

ηn′, l′

��
C2/Dn

∼= // C2/Dn′ .

(3.5.1)

Consequently the assumption “ρl is injective” in Proposition 3.5.7 may be

omitted:

Proposition 3.5.8. The singular locus of (Σ×C2)/Dn consists of the ridges

Rp, Rq, Rr, Rs.

Remark 3.5.9. The isomorphism (Σ×C2)/Dn

∼=−→ (Σ′×C2)/Dn′ in (3.5.1)

is explicitly given by [y, t] 7→ [y mod ⟨an′⟩, t].

We next determine the type of each singularity of (Σ × C2)/Dn. The

following is needed:

Lemma 3.5.10. The action of akb on Σ×C2 is given byM :=

1 0 0

0 −1 0

0 0 −1


up to conjugation. (Note: M is not a pseudo-reflection while−M is a pseudo-

reflection.)

Proof. For z ∈ FixΣ(a
kb), take an ⟨akb⟩-invariant small disk ∆ in Σ centered

at z. Then the action of akb on ∆ is given by x 7→ −x (Lemma 3.1.3

(2)) and that on C2 is given by

(
0 ζ lk

ζ−lk 0

)
(see (3.3.1)), where recall that

ζ := e2πi/n. So the action of akb on ∆ × C2 is given by

−1 0 0

0 0 ζ lk

0 ζ−lk 0

,
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which is diagonalized to M :=

1 0 0

0 −1 0

0 0 −1

 in GL3(C).

Write the matrix M in Lemma 3.5.10 as M =

(
1 0

0 N

)
, where N :=(

−1 0

0 −1

)
. Then C2/⟨N⟩ is an A1-singularity and C3/⟨M⟩ ∼= C×(C2/⟨N⟩).

This with Proposition 3.5.8 yields the following:

Theorem 3.5.11. The singular locus of (Σ× C2)/Dn consists of the ridges

Rp, Rq, Rr, Rs, around each of which (Σ×C2)/Dn is isomorphic to (complex line)×
(A1-singularity). (Note that the types of singularities do not depend on

whether n is odd or even.)



Chapter 4

Binary dihedral quotient

families

4.1 Binary dihedral quotient families

The dihedral group Dn = ⟨a, b : an = b2 = 1, bab−1 = a−1⟩ acts on the

regular n-gon ∆n as a is a 1/n-rotation and b is a reflection. Thickening the

edges of ∆n yields a cable surface (torus) Σ withDn-action. As before we give

a complex structure to Σ such that the Dn-action is holomorphic. Consider

next the binary dihedral group D̃n = ⟨ã, b̃ : ã2n = 1, ãn = b̃2, b̃ãb̃−1 =

ã−1⟩ and the double covering q : D̃n → Dn given by ã 7→ a and b̃ 7→
b. Let D̃n act on Σ via q, i.e. g ∈ D̃n acts as q(g) (this action is not

effective). To each representation D̃n → GLm(C), the associated quotient

family (Σ × Cm)/D̃n → Cm/D̃n of Σ is called a binary dihedral quotient

family or a quotient family of type D̃n. We describe such quotient families

for all irreducible representations of D̃n. For representations of D̃n, there

is no suitable reference for our purpose, so we describe them herein. We

determine all irreducible representations of D̃n. Note next that:

Lemma 4.1.1. For a finite group G, let p : G → A := G/[G,G] be its

abelianization. Then there is a one-to-one correspondence between the 1-

59
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dimensional representations of G and those of A. In fact, χ ∈ Hom(A,GL1(C)) 7→
χ ◦ p ∈ Hom(G,GL1(C)) is bijective.

Proof. Surjective: For any τ ∈ Hom(G,GL1(C)), τ |[G,G] ≡ 1, so τ factorize

through A, that is, τ = χ ◦ p for some χ ∈ Hom(A,GL1(C)). Injective:

Suppose χ1 ◦ p = χ2 ◦ p. We then show χ1 = χ2, i.e. χ1(a) = χ2(a) for

any a ∈ A. Since p : G → A is surjective, we may take ã ∈ G such that

p(ã) = a. Then from χ1 ◦ p = χ2 ◦ p we have χ1 ◦ p(ã) = χ2 ◦ p(ã), i.e.
χ1(a) = χ2(a).

We return to D̃n = ⟨ã, b̃ : ã2n = 1, ãn = b̃2, b̃ãb̃−1 = ã−1⟩. Its abelianiza-
tion An := D̃n/[D̃n, D̃n] amounts to adding a relation ãb̃ = b̃ã; then the last

relation b̃ãb̃−1 = ã−1 becomes ã = ã−1, i.e. ã2 = 1. Thus An = ⟨ã, b̃ : ã2 =

1, ãn = b̃2, ãb̃ = b̃ã⟩. Note that:

(i) For even n, from ã2 = 1 we have ãn = 1, so b̃2 = ãn = 1. Thus

An = ⟨ã, b̃ : ã2 = b̃2 = 1, ãb̃ = b̃ã⟩.

(ii) For odd n, from ã2 = 1 we have ãn = ã, so b̃2 = ãn = ã, accordingly

b̃4 = ã2 = 1. Thus An = ⟨ã, b̃ : b̃4 = 1, ã = b̃2, ãb̃ = b̃ã⟩.

Hence:

An
∼=

Z2 × Z2 = ⟨ã⟩ × ⟨̃b⟩ if n is even,

Z4 = ⟨̃b⟩ if n is odd.

Depending on whether n is even or odd, the representations of An are χeven
i :

Z2 × Z2 = ⟨ã⟩ × ⟨̃b⟩ → GL1(C) or χodd
i : Z4 = ⟨̃b⟩ → GL1(C) (i = 1, 2, 3, 4)

given by

(χeven
i (ã), χeven

i (̃b)) =


(1, 1)

(1,−1)

(−1, 1)

(−1,−1),

χodd
i (̃b) =


1 i = 1

− 1 i = 2

i i = 3

− i i = 4.

(4.1.1)

By Lemma 4.1.1, the following holds:
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Proposition 4.1.2. Let p : D̃n → An be the abelianization. Then the 1-

dimensional representations of D̃n are χeven
i ◦ p for even n and χodd

i ◦ p for

odd n.

Definition 4.1.3. Let q : D̃n → Dn be the double covering given by ã 7→
a, b̃ 7→ b. For a representation ρ : Dn → GLm(C), the composition ρ̃ := ρ◦q :
D̃n → GLm(C) is the lift of ρ. A representation of D̃n is lifted if it is the lift

of some representation of Dn, otherwise unlifted .

D̃n
abelianization p

~~||
||
| q double covering

!!D
DD

DD

An Dn.

Lemma 4.1.4. The 1-dimensional representations χeven
i ◦ p and χodd

i ◦ p of

D̃n are lifts of 1-dimensional representations of Dn. In fact the following

hold:

• Even n: χeven
i ◦ p (i = 1, 2, 3, 4) is the lift of χi defined by (3.2.1), that

is, χeven
i ◦ p = χ̃i (:= χi ◦ q).

• Odd n: χodd
i ◦p (i = 1, 2) is the lift of χi, that is, χ

odd
i ◦p = χ̃i (:= χi◦q),

whereas χodd
i ◦ p (i = 3, 4) is not the lift of a representation of Dn.

Notation: Set σ1 := χodd
3 ◦ p and σ2 := χodd

4 ◦ p.

Proof. We only show that σi (i = 1, 2) are not the lifts of representations

of Dn (the other statements are shown by easy computation). If σi = ρ ◦ q
for some representation ρ of Dn, then σi(ã

n) = ρ ◦ q(ãn). This however

does not hold, as σi(ã
n) = −1 while ρ ◦ q(ãn) = 1. Indeed for i = 1:

σ1(ã) = χodd
3 ◦ p(ã) = χodd

3 (ã) = χodd
3 (̃b2) = −1 (as ã = b̃2 in An) while

ρ◦q(ãn) = ρ(1) = 1 (as q(ãn) = 1). Similarly for i = 2, this is confirmed.

We next consider two kinds of 2-dimensional representations of D̃n: the

lift ρ̃j := ρj ◦ q of ρj : Dn → GL2(C) given by (3.3.1) and τk : D̃n → GL2(C)
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(k: odd, 1 ≤ k < n) defined by

τk(ã) =

(
eπik/n 0

0 e−πik/n

)
, τk (̃b) =

(
0 −1

1 0

)
. (4.1.2)

Lemma 4.1.5. (1) ρ̃j is irreducible. (2) τk is irreducible and unlifted.

Proof. We show (1). Otherwise ρ̃j is written as the sum of two 1-dimensional

representations of D̃n, say ρ̃j = f1⊕f2. Here all 1-dimensional representations

of D̃n are exhausted by those in Proposition 4.1.2, and fi is one of them.

Now tr(ρ̃j) = tr(f1) + tr(f2), but there is no combination of f1 and f2 that

satisfy this. We next show (2). The same argument used in (1) shows the

irreducibility of τk. We show that τk is unlifted. If τk = ρ ◦ q for some

representation ρ of Dn, then τk(ã
n) = ρ ◦ q(ãn). This however does not hold,

as τk(ã
n) =

(
−1 0

0 −1

)
while ρ ◦ q(ãn) =

(
1 0

0 1

)
.

Even n: lifted unlifted

1-dim χ̃i (i = 1, 2, 3, 4) none

2-dim ρ̃j (j = 1, 2, . . . n2 − 1) τk (k = 1, 3, . . . , n− 1)

Odd n: lifted unlifted

1-dim χ̃i (i = 1, 2) σi (i = 1, 2)

2-dim ρ̃j (j = 1, 2, . . . n−1
2 ) τk (k = 1, 3, . . . , n− 2)

Table 4.1.1: Irreducible representations of D̃n

Proposition 4.1.6. The representations in Table 4.1.1 exhaust all irre-

ducible representations of D̃n.

Proof. This is checked by the sum of squares formula ([Ser] Corollary 2 (a)

p.18). For even n,∑
i

(dim χ̃i)
2 +

∑
j

(dim ρ̃j)
2 +

∑
k

(dim τk)
2 = |D̃n|,



4.1. BINARY DIHEDRAL QUOTIENT FAMILIES 63

indeed 4× 12 + n−2
2

× 22 + n
2
× 22 = 4n. For odd n,∑

i

(dim χ̃i)
2 +

∑
i

(dimσi)
2 +

∑
j

(dim ρ̃j)
2 +

∑
k

(dim τk)
2 = |D̃n|,

indeed 2× 12 + 2× 12 + n−1
2

× 22 + n−1
2

× 22 = 4n.

We give the explicit forms of the representations χ̃i, σi, ρ̃j (for τk see

(4.1.2)):

(χ̃i(ã), χ̃i(̃b)) =


(1, 1) i = 1,

(1,−1) i = 2,

(−1, 1) i = 3,

(−1,−1) i = 4,

(σi(ã), σi(̃b)) =

(−1, i) i = 1,

(−1,−i) i = 2,

(4.1.3)

ρ̃j(ã) =

(
e2πij/n 0

0 e−2πij/n

)
, ρ̃j (̃b) =

(
0 1

1 0

)
. (4.1.4)

4.1.1 Lifted case

We describe the quotient families associated with the lifted irreducible rep-

resentations of D̃n. We begin with preparation.

Lemma 4.1.7 ([Ta,VI]). Let q : G̃ → G be a surjective homomorphism

between finite groups. Suppose that G acts on a complex analytic variety

Y holomorphically and let G̃ act on Y via q. Then for any representation

ρ : G → GLm(C) and its lift ρ̃ := ρ ◦ q : G̃ → GLm(C), the quotient family

η̃ : (Y × Cm)/G̃ → Cm/G̃ associated with ρ̃ is isomorphic to the quotient

family η : (Y × Cm)/G→ Cm/G associated with ρ.

Proof. Since G̃ acts on Y via q and on Cm via ρ̃l := ρl ◦ q, the kernel

K := Ker(q) acts trivially on both Y and Cm, so (Y × Cm)/K ∼= Y × Cm,

and then

(Y × Cm)/G̃ ∼= (Y × Cm)/K
/
G̃/K

∼= (Y × Cm)/G.



64 CHAPTER 4. BINARY DIHEDRAL QUOTIENT FAMILIES

Similarly we can confirm that Cm/G̃ ∼= Cm/G. Moreover the following dia-

gram commutes:

(Y × Cm)/G̃

η̃
��

∼= // (Y × Cm)/G

η
��

Cm/G̃
∼= // Cm/G.

Lemma 4.1.8. In Lemma 4.1.7, the covering multiplicity of η̃−1(s) is equal

to |Ht|/|K| (not |Ht|). In particular, the covering multiplicity of η̃−1(s) is

equal to that of η−1(s).

Proof. Since K ⊂ Ht acts on Σ trivially and Ht/K acts on Σ effectively, the

covering degree of Σ → Σ/Ht (the covering multiplicity of η̃−1(s)) is equal

to |Ht|/|K|.

A binary dihedral quotient family associated with a lifted representation

is isomorphic to a dihedral quotient family. In fact, let ρ : Dn → GLm(C) be
a representation and ρ̃ := ρ ◦ q : D̃n → GLm(C) be its lift, then application

of Lemma 4.1.7 to G = Dn and G̃ = D̃n yields the following:

Corollary 4.1.9. The quotient family (Σ × Cm)/D̃n → Cm/D̃n associated

with ρ̃ is isomorphic to the quotient family (Σ×Cm)/Dn → Cm/Dn associated

with ρ.

The lifted representations of D̃n are χ̃i : D̃n → GL1(C) (i = 1, 2, 3, 4)

given by (4.1.3) and ρ̃l : D̃n → GL2(C) (where 1 ≤ l < n
2
) given by (4.1.4).

Let ξ̃i : (Σ × C)/D̃n → C/D̃n and η̃n, l : (Σ × C2)/D̃n → C2/D̃n be their

associated quotient families. By Corollary 4.1.9,

• ξ̃i is isomorphic to the quotient family ξi associated with χi; so ξ̃
−1
i (s) ∼=

ξ−1
i (s).

• η̃n, l is isomorphic to the quotient family ηn, l associated with ρl; so

η̃−1
n, l(s)

∼= η−1
n, l(s).
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Here by Lemma 4.1.8,

c.m.of ξ̃−1
i (s) = c.m.of ξ−1

i (s), c.m.of η̃−1
n, l(s) = c.m.of η−1

n, l(s).

The kaleido fibers of ξi and ηn, l and their covering multiplicities are deter-

mined in Theorems 3.2.6 and 3.4.11. Note next that

SLη̃n, l
= KLηn,l

=

 L0 if n is odd,

L0 ∪ L1 if n is even,
(4.1.5)

where for the first equality, see Theorem 2.1.9 (1) and for the second equality,

see (3.4.1). We formalize the results so far obtained as follows:

Proposition 4.1.10. Let ξ̃i : (Σ × C)/D̃n → C/D̃n (i = 1, 2, 3, 4) be the

quotient family associated with χ̃i and η̃n, l : (Σ × C2)/D̃n → C2/D̃n (where

1 ≤ l < n
2
) be the quotient family associated with ρ̃l. Then the kaleido fibers

and the covering multiplicities are as in Table 4.1.2 (1) and (2) respectively.

(1) ξ̃−1
i (0) ξ̃−1

1 (s) ξ̃−1
2 (s) ξ̃−1

3 (s) ξ̃−1
4 (s)

(s ∈ (C/D̃n) \ {0}) (s ∈ (C/D̃n) \ {0}) (s ∈ (C/D̃n) \ {0}) (s ∈ (C/D̃n) \ {0})

fiber Σ/Dn Σ/Dn Σ/⟨a⟩ Σ/⟨a2, b⟩ Σ/⟨a2, ab⟩
(P1) (elliptic curve) (elliptic curve) (P1) (P1)

c.m. 2n 2n n n n

(2) η̃−1
n, l(0) η̃−1

n, l(s) (s ∈ SLη̃n, l
\ {0}) η̃−1

n, l(s) (s ∈ (C2/D̃n) \ SLη̃n, l
)

fiber Σ/Dn Σ/⟨an′
, b⟩ Σ/⟨an′⟩

(P1) (P1) (elliptic curve)

c.m. 2n 2d d

Table 4.1.2: d := gcd(n, l). In (2), SLη̃n, l
is the special locus of η̃n, l.
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4.1.2 Unlifted case

Before proceeding, note that using the relations ã2n = 1, ãn = b̃2 and b̃ãb̃−1 =

ã−1, any element of D̃n is written as either ãk or ãkb̃:

D̃n = {ãk, ãkb̃ : k = 0, 1, . . . , 2n− 1} (no overlap). (4.1.6)

We shall describe the quotient families associated with the unlifted irre-

ducible representations of D̃n.

1-dim case Recall that the unlifted representations exist only for odd

n: they are σ1, σ2 : D̃n → GL1(C) given by (σ1(ã), σ1(̃b)) = (−1, i) and

(σ2(ã), σ2(̃b)) = (−1,−i).

Lemma 4.1.11. For odd n, Ker(σ1) = Ker(σ2) = ⟨ã2⟩.

Proof. Any element of D̃n is expressed as either ãk or ãkb̃ (see (4.1.6)). Here

σ1(ã
k) = (−1)k and σ1(ã

kb̃) = (−1)ki. So σ1(g) = 1 if and only if g = ãk for

some even k. Thus Ker(σ1) = {ãk : k is even} = ⟨ã2⟩. Similarly Ker(σ2) =

⟨ã2⟩.

Before proceeding, note the following:

Lemma 4.1.12. For odd n, Σ/⟨ã2⟩ ∼= Σ/⟨a⟩.

Proof. The action of ⟨ã2⟩ on Σ is, by definition, given by ⟨a2⟩. Here ⟨a2⟩ = ⟨a⟩
(as n is odd), so Σ/⟨ã2⟩ ∼= Σ/⟨a⟩.

Proposition 4.1.13. Let ϖi : (Σ×C)/D̃n → C/D̃n (i = 1, 2) be the quotient

family of Σ associated with σi : D̃n → GL1(C). Then the following holds

(c.m. means covering multiplicity):

ϖ−1
i (s) =

 projective line Σ/Dn (c.m. 2n) if s = 0,

elliptic curve Σ/⟨a⟩ (c.m.n) if s ̸= 0.

Proof. By Lemma 2.1.3, ϖ−1
i (0) = Σ/D̃n, which is identical to Σ/Dn, and

whose covering multiplicity is |Dn| = 2n.
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By Lemma 2.1.3, ϖ−1
i (s) = Σ/Ker(σi), which is identical to Σ/⟨ã2⟩

(Lemma 4.1.11), that is equal to Σ/⟨a⟩ (Lemma 4.1.12), whose covering

multiplicity is |⟨a⟩| = n.

2-dim case Recall that the unlifted irreducible representations are τm :

D̃n → GL2(C) (where m is odd and 1 ≤ m < n) given by (see (4.1.2)):

τm(ã) =

(
eπim/n 0

0 e−πim/n

)
, τm(̃b) =

(
0 −1

1 0

)
.

Lemma 4.1.14. Ker(τm) = ⟨ã2n′⟩, where we set n′ := n/ gcd(m,n). (Thus

the order of Ker(τm) is gcd(m,n). In particular τm is injective if and only if

gcd(m,n) = 1.)

Proof. Note first that any element of D̃n is expressed as either ãk or ãkb̃

(k = 0, 1, . . . , 2n−1); see (4.1.6). Note next that Ker(τm) ⊂ ⟨ã⟩ as τm(ãkb̃) =(
0 −eπimk/n

e−πimk/n 0

)
̸= I for any k. The assertion is then immediate from

the following equivalence:

τm(ã
k) =

(
eπimk/n 0

0 e−πimk/n

)
= I ⇐⇒ k is a multiple of 2n′ (in other

words 0, 2n′, 4n′, . . . , 2n− 2n′).

We shall describe the quotient family associated with τm. We separate

into two cases depending on whether τm is injective or not (equivalently m

is coprime to n or not).

Case: τm is injective Let D̃n act on C2 via τm.

Lemma 4.1.15. For g ∈ D̃n, set Fix(g) := {t ∈ C2 : τm(g)t = t}. If τm :

D̃n → GL2(C) is injective, then Fix(ãk) = {0} for k ̸= 0 (while Fix(ã0) = C2)

and Fix(ãkb̃) = {0} for any k.
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Proof. This is immediate from

τm(ã
k) =

(
eπimk/n 0

0 e−πimk/n

)
, τm(ã

kb̃) =

(
0 −eπimk/n

e−πimk/n 0

)
.

Let ξn,m : (Σ×C2)/D̃n → C2/D̃n be the quotient family associated with

τm. We now determine its kaleido locus KLξn,m . The preimage K̃Lξn,m of

KLξn,m under the quotient map C2 → C2/D̃n is given by
∪

g∈D̃n\{1} Fix(g)

(see the proof of Proposition 2.1.5). By Lemma 4.1.15, K̃Lξn,m = {0}, so
KLξn,m = {0}. Thus ξ−1

n,m(s) (s ∈ C2/D̃n) is kaleido if and only if s = 0.

The only one kaleido fiber ξ−1
n,m(0) is Σ/D̃n. Here note that the action of

D̃n on Σ is equivalent to that of Dn on Σ, so Σ/D̃n
∼= Σ/Dn, and thus

ξ−1
n,m(0) = Σ/Dn.

Theorem 4.1.16. Let ξn,m : (Σ× C2)/D̃n → C2/D̃n be the quotient family

of Σ associated with τm : D̃n → GL2(C). If τm is injective, then the following

holds (c.m. means covering multiplicity):

ξ−1
n,m(s) =

 projective line Σ/Dn (c.m. 2n) if s = 0,

elliptic curve Σ (c.m. 1) if s ̸= 0.

In particular if s ̸= 0, then all fibers of ξn,m are Σ, so ξn,m has a single

kaleido fiber. We thus obtain the following:

Corollary 4.1.17. The quotient family ξn,m : (Σ × C2)/D̃n → C2/D̃n of

Σ associated with any unlifted irreducible representation τm : D̃n → GL2(C)
has a single singular fiber — a kaleido fiber of covering multiplicity 2n (see

Figure 4.1.1).
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ξn,m

C2/D̃n

2n

0

(Σ× C2)/D̃n

Figure 4.1.1:

Remark 4.1.18. (i) While the base space C2/Dn of ηn, l is smooth (Lemma

3.4.6), the base space C2/D̃n of ξn,m has a D-singularity. (ii) The singular

locus of (Σ×C2)/D̃n consists of the four points on ξ−1
n,m(0) (see Proposition

4.1.29 below).

Case: τm is non-injective Let ξn,m : (Σ × C2)/D̃n → C2/D̃n be the

quotient family associated with the irreducible representation τm : D̃n →
GL2(C) given by

τm(ã) =

(
eπim/n 0

0 e−πim/n

)
, τm(̃b) =

(
0 −1

1 0

)
.

In what follows, consider the case that τm is not injective. The kaleido lo-

cus KLξn,m of ξn,m is then the whole of C2/Dn, i.e. every fiber of ξn,m is

kaleido (Proposition 2.1.5 (1)). By Theorem 2.1.9 (1), ξn,m : (Σ×C2)/D̃n →
C2/D̃n is canonically isomorphic to the quotient family ξn,m :

(
Σ/Ker(τm)×

C2
)/(

D̃n/Ker(τm)
)
→ C2

/(
D̃n/Ker(τm)

)
associated with τm : D̃n/Ker(τm) →

GL2(C). Now set d := gcd(n,m), n′ := n/d, and m′ := m/d. By Lemma

4.1.14, gcd(n,m) ≥ 2 and Ker(τm) = ⟨ãn′⟩, so D̃n/Ker(τm) ∼= D̃n′ . Set

Σ′ := Σ/⟨ãn′⟩; this coincides with Σ/⟨an′⟩ (as ã acts on Σ as a), so this is an

elliptic curve (Lemma 3.2.4 (1)).

Lemma 4.1.19. Two representations τm : D̃n′ → GL2(C) and τm′ : D̃n′ →
GL2(C) coincide.
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Proof. The images α, β of ã, b̃ under the quotient map D̃n → D̃n′ (∼= D̃n/⟨ãn
′⟩)

generate D̃n′ , and

τm(α) = τm′(α) =

(
eπim

′/n′
0

0 e−πim′/n′

)
, τm(β) = τm′(β) =

(
0 −1

1 0

)
.

The above results combined with Theorem 2.1.9 yield the following:

Lemma 4.1.20. (1) The quotient family ξn,m : (Σ × C2)/D̃n → C2/D̃n

associated with τm : D̃n′ → GL2(C) is canonically isomorphic to the

quotient family ξn′,m′ : (Σ′ × C2)/D̃n′ → C2/D̃n′ associated with the

injective representation τm′ : D̃n′ → GL2(C). Here Σ′ := Σ/Ker(τm) is

an elliptic curve and |Ker(τm)| = d (= gcd(n,m)), so

(covering multiplicity of ξ−1
n,m(s)) = d×(covering multiplicity of ξ−1

n′,m′(s)).

(2) Let SLξn,m be the special locus of ξn,m (Remark 2.1.8) and KLξn′,m′ be

the kaleido locus of ξn′,m′. Under the isomorphism in (1), SLξn,m =

KLξn′,m′ .

Here by Theorem 4.1.16,

ξ−1
n′,m′(s) =

 projective line Σ′/Dn′ (∼= Σ/Dn) (c.m. 2n′) if s = 0,

elliptic curve Σ′ (∼= Σ/⟨ãn′⟩) (c.m. 1) if s ̸= 0.

Consequently the following holds:

Proposition 4.1.21. Let ξn,m : (Σ × C2)/D̃n → C2/D̃n be the quotient

family of Σ associated with τm : D̃n → GL2(C). Set d := gcd(m,n) and

n′ := n/d. Then the following holds (c.m. means the covering multiplicity):

ξ−1
n,m(s) =

 projective line Σ/Dn (c.m. 2n′d (= 2n)) if s = 0,

elliptic curve Σ/⟨an′⟩ (c.m. d) if s ̸= 0.
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4.1.3 Singular loci of total spaces

Let τm : D̃n → GL2(C) be the representation given by (4.1.2) and ξn,m :

(Σ× C2)/D̃n → C2/D̃n be its associated quotient family. We determine the

type of the singular locus of (Σ×C2)/D̃n. Note first the following (the proof

is same as that of Lemma 3.5.1):

Lemma 4.1.22. If y ∈ (Σ×C2)/D̃n is a singularity, then Hỹ ̸= {1}, where
Hỹ is the stabilizer of a lift ỹ ∈ Σ×C2 of y. (If moreover τm is injective, the

converse holds (Lemma 4.1.26 below).)

Since the D̃n-action on Σ × C2 is diagonal
(
(z, t) 7→ (gz, τm(g)t)

)
, the

following holds:

Lemma 4.1.23. For any (z, t) ∈ Σ×C2, H(z,t) = Hz∩Ht. (ThusH(z,t) ̸= {1}
is restated as Hz ∩Ht ̸= {1}.)

To determine the singularities of (Σ × C2)/D̃n, we shall determine (z, t)

such that H(z,t) ̸= {1}. Thanks to Lemma 4.1.20 (1), we may assume that

the representation τm is injective.

The action of D̃n = {ãk, ãkb̃ : k = 0, 1, . . . , 2n− 1} on Σ is not effective;

the kernel of D̃n → Aut(Σ) is ⟨ãn⟩. Since ã, b̃ ∈ D̃n acts on Σ as a, b ∈ Dn,

by (i) of Lemma 3.5.3, we have

Hz =

 ⟨ãkb̃, ãn⟩ if z ∈ FixΣ(ã
kb̃),

⟨ãn⟩ otherwise.

Here (ãkb̃)2 = (ãkb̃)(ãkb̃) = ãkã−k b̃̃b = b̃2 = ãn, so ⟨ãkb̃, ãn⟩ = ⟨ãkb̃⟩. This

confirms (i) of the following (while (ii) is nothing but Lemma 4.1.15; note τm

is injective):

Lemma 4.1.24.

(i)
Hz =

 ⟨ãkb̃⟩ (∼= Z4) if z ∈ FixΣ(ã
kb̃),

⟨ãn⟩ (∼= Z2) otherwise,

(ii)
Ht =

 D̃n if t = 0,

{1} otherwise.
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From H(z,t) = Hz ∩Ht and Lemma 4.1.24, we have:

Corollary 4.1.25. Suppose that τm is injective. Then the following condi-

tions are equivalent:

(i) H(z,t) ̸= {1}.

(ii) H(z,t) = ⟨ãkb̃⟩ for some k.

(iii) z ∈ FixΣ(ã
kb̃) and t = 0.

The image of (z, t) ∈ Σ × C2 under the quotient map Σ × C2 → (Σ ×
C2)/D̃n is denoted by [z, t] ∈ (Σ × C2)/D̃n. If [z, t] ∈ (Σ × C2)/D̃n is

a singularity, then H(z,t) ̸= {1} (Lemma 4.1.22). Conversely the following

holds:

Lemma 4.1.26. Suppose that τm is injective. If H(z,t) ̸= {1}, then [z, t] ∈
(Σ× C2)/D̃n is a singularity.

Proof. If H(z,t) ̸= {1}, then H(z,t) = ⟨akb⟩ for some k (Corollary 4.1.25).

Noting that ãkb̃ is not a pseudo-reflection (Lemma 4.1.32 below), H(z,t) =

⟨ãkb̃⟩ is a small group, so [z, t] ∈ (Σ× C2)/D̃n is a singularity.

Combining Lemma 4.1.22, Corollary 4.1.25, and Lemma 4.1.26 yield the

following:

Proposition 4.1.27. Suppose that τm is injective. Then the following are

equivalent:

(i) [z, t] ∈ (Σ× C2)/D̃n is a singularity.

(ii) H(z,t) ̸= {1}.

(iii) H(z,t) = ⟨ãkb̃⟩ for some k.

(iv) z ∈ FixΣ(ã
kb̃) and t = 0. (In case of Dn, this condition instead (z, t) ∈

FixΣ(a
kb) × FixC2(akb) (Proposition 3.5.6 (iv)), in the present case,

FixC2(ãkb̃) = {0}.)
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Regard the quotient map Σ × {0} → (Σ × {0})/D̃n as Σ → Σ/D̃n (=

Σ/Dn). This has four branch points (Lemma 3.2.5 (2)). Write them as

pi ∈ (Σ × {0})/D̃n (i = 1, 2, 3, 4). In what follows, regard (Σ × {0})/D̃n as

a subspace of (Σ× C2)/D̃n.

Lemma 4.1.28. z ∈ FixΣ(ã
kb̃) for some k (k = 0, 1, . . . , 2n− 1) if and only

if z is a ramification point of Σ → Σ/D̃n (= Σ/Dn).

Proof. =⇒ is obvious. We show ⇐=. If z is a ramification point of Σ →
Σ/Dn, then its stabilizer Hz ⊂ Dn is nontrivial. By Lemma 3.5.3, z ∈
FixΣ(a

kb) for some k, so z ∈ FixΣ(ã
kb̃) for some k.

Recall that the ramification points of Σ → Σ/Dn are pk, qk, rk, sk ∈ Σ

(k = 0, 1, . . . , n − 1) (see Figure 3.4.3 for odd n, Figure 3.4.5 for even n),

and the branch points are [p0], [q0], [r0], [s0] ∈ Σ/Dn (Lemma 3.2.5 (2)). By

Proposition 4.1.27 and Lemma 4.1.28, we obtain the following:

Proposition 4.1.29. Suppose that τm is injective. Then the singular locus

of (Σ×C2)/D̃n is isolated, indeed consists of the branch points [p0, 0], [q0, 0],

[r0, 0], [s0, 0] of Σ× {0} → (Σ× {0})/D̃n.

Consider next the case that τm is not injective. We reduce this to the

injective case: Set n′ := n/ gcd(m,n) and m′ := m/ gcd(m,n) and Σ′ :=

Σ/⟨ãn′⟩. Then note that the quotient family ξn,m : (Σ × C2)/D̃n → C2/D̃n

associated with τm : D̃n → GL2(C) is naturally identified with the quo-

tient family ξn′,m′ : (Σ′ × C2)/D̃n′ → C2/D̃n′ associated with the injective

representation τm′ (= τm) : D̃n′ → GL2(C). In fact,

(i) (Σ× C2)/D̃n = (Σ× C2)/⟨ãn′⟩
/
(D̃n/⟨ãn

′⟩)
∼=
(
Σ/⟨ãn′⟩ × C2

)/
(D̃n/⟨ãn

′⟩) as ⟨ãn′⟩-action on C2 is trivial

= (Σ′ × C2)/D̃n′ ,

(ii) C2/D̃n = (C2/⟨ãn′⟩)
/
(D̃n/⟨ãn

′⟩)
∼= C2

/
(D̃n/⟨ãn

′⟩) as ⟨ãn′⟩-action on C2 is trivial

= C2/D̃n′ ,
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and the following diagram commutes:

(Σ× C2)/D̃n

ξn,m
��

∼= // (Σ′ × C2)/D̃n′

ξn′,m′
��

C2/D̃n

∼= // C2/D̃n′ .

(4.1.7)

Consequently the assumption “τm is injective” in Proposition 4.1.29 may be

omitted:

Proposition 4.1.30. The singular locus of (Σ×C2)/D̃n is isolated, consist-

ing of the four points on (Σ×{0})/D̃n (= ξ−1
n,m(0)) that are the branch points

of Σ× {0} → (Σ× {0})/D̃n.

Remark 4.1.31. The isomorphism (Σ×C2)/D̃n

∼=−→ (Σ′×C2)/D̃n′ in (4.1.7)

is explicitly given by [y, t] 7→ [y mod ⟨ãn′⟩, t].

We next determine the type of each singularity of (Σ × C2)/D̃n. The

following is needed:

Lemma 4.1.32. The action of ãkb̃ on Σ×C2 is given byM :=

 i 0 0

0 −1 0

0 0 −i


up to conjugation. (Note: M is not a pseudo-reflection.)

Proof. For z ∈ FixΣ(ã
kb̃), take an ⟨ãkb̃⟩-invariant small disk ∆ in Σ centered

at z. Then the action of ãkb̃ on ∆ is given by x 7→ −x (Lemma 3.1.3 (2)) and

that on C2 is given by

(
0 −eπimk/n

e−πimk/n 0

)
(see (4.1.2)). So the action of

ãkb̃ on ∆×C2 is given by

−1 0 0

0 0 −eπimk/n

0 e−πimk/n 0

, which is diagonalized

to M :=

 i 0 0

0 −1 0

0 0 −i

 in GL3(C).
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Let Z4 be the cyclic subgroup of order 4 in GL3(C) generated by M . We

may express M =

ζ 0 0

0 ζ2 0

0 0 ζ3

, where ζ := e2πi/4. So C3/Z4 is a singularity

of type
1

4
(1, 2, 3) and not terminal (see Remark 4.1.34 below). By Proposition

4.1.30, the singular locus of (Σ×C2)/D̃n consists of four isolated singularities

and by Lemma 4.1.32, each is isomorphic to C3/Z4.

We formalize the results so far obtained as follows:

Theorem 4.1.33. The singular locus of (Σ × C2)/D̃n consists of four iso-

lated singularities — any of which is of type
1

4
(1, 2, 3) (this is not a terminal

singularity).

Remark 4.1.34. For a cyclic subgroup Zm of order m in GL3(C) generated

by an element of the form

ζn1 0 0

0 ζn2 0

0 0 ζn3

 where ζ := e2πi/m and ni (i =

1, 2, 3) are integers such that 0 < ni < m, the quotient singularity C3/Zm

is called of type
1

m
(n1, n2, n3). This singularity is terminal if and only if

(n1, n2, n3) = (1, ℓ,−ℓ) for some ℓ relatively prime to m (see [Ish] p.185

Theorem 8.3.17).

Summary The singular locus of the total space of a dihedral quotient

family (associated with a representation of Dn) is not isolated, consisting of

four ridges — their configuration depends on the parity of n; compare Figure

3.4.4 and Figure 3.4.6. On the other hand, the singular locus of the total

space of a binary dihedral quotient family (associated with a representation

of D̃n) is isolated, consisting of four points irrespective of the parity of n.

These differences arise from the following differences between Dn and D̃n:
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Dn = {ak, akb : k = 0, . . . , n− 1} D̃n = {ãk, ãk b̃ : k = 0, . . . , 2n− 1}

(I) Fix(ak) = {0} and Fix(akb) = C
(see Lemma 3.3.1)

Fix(ãk) = Fix(ãk b̃) = {0}
(see Lemma 4.1.15)

(II) n even:
{akb : k is odd}, {akb : k is even}
are distinct Dn-orbits

n odd:
{akb : k is any} is a single Dn-orbit

(see Corollary 3.3.4)

{ãk b̃ : k is odd}, {ãk b̃ : k is even}
are distinct D̃n-orbits

(shown by the argument used in

the proof of Corollary 3.3.4 (1))

Table 4.1.3: Comparison of Dn and D̃n



Part II

The Family of Tetra Riemann
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Chapter 5

Aspects of Group Actions

5.1 Description of tetrahedral group action

Let Σ be the cable surface of the tetrahedron, on which the tetrahedral group

T naturally acts. Thanks to Kerckhoff’s theorem [Ker], we may give a com-

plex structure to it such that the T-action is holomorphic. We determine the

branch data of the quotient map ψ : Σ → Σ/T. We first review terminology

with the intension of fixing notation.

Note first that ψ is a |T|-fold covering.

• For y ∈ Σ/T, if #ψ−1(y) < |T|, then y is a branch point (with branch

index |T|
/
#ψ−1(y)).

• If y ∈ Σ/T is a branch point, then x ∈ ψ−1(y) is a ramification point

(with ramification index |T|
/
#ψ−1(y)).

A ramification point is alternatively characterized as a point with non-

trivial stabilizer. For a point x ∈ Σ, its stabilizer Tx is a subgroup of T given

by

Tx := {g ∈ T : gx = x}.

Now for y ∈ Σ/T, take x ∈ ψ−1(y). Then T acts transitively on the points

of ψ−1(y) while Tx fixing x. Thus ψ−1(y) ∼= T/Tx (as sets), and #ψ−1(y) =

79
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|T|/|Tx|. Hence |T|
/
#ψ−1(y) = |T|

/
|T|
/
|Tx| = |Tx|.

We thus obtain:

Lemma 5.1.1. The ramification index of x is |Tx|. Thus:

#ψ−1(y) < |T| (i.e. y is a branch point) ⇐⇒ 1 < |Tx| ⇐⇒ Tx ̸= {1}.

Remark 5.1.2. |Tx| is independent of the choice of x ∈ ψ−1(y). In fact for

another x′ ∈ ψ−1(y), Tx and Tx′ are conjugate: There exists g ∈ T such that

x′ = gx, for which Tx′ = gTxg
−1.

Take a ramification point x ∈ Σ. Then to each conjugate gTxg
−1 (g ∈ T)

of Tx, a ramification point y = gx is associated; note that Ty = gTxg
−1

and the ramification index |Ty| of y is equal to |Tx|. Now denote by H the

conjugacy class {gTxg
−1 : g ∈ T} of Tx. The ramification points associated

with the subgroups in this conjugacy class are called H-ramification points.

Definition 5.1.3. Let y1, y2, . . . , yl be the branch points of ψ, and for each

yi ∈ Σ/T, let ei := |Tx| (x ∈ ψ−1(yi)) be the branch index of yi. Then the

tuple
(
genus(Σ/T); e1, e2, . . . , el

)
is called the branch data (signature) of ψ

(or of the T-action on Σ).

The ramification points of Σ → Σ/T are the points of Σ with nontriv-

ial stabilizers (Lemma 5.1.1). To determine such points, identify T with

the alternating group A4 under the canonical isomorphism induced from the

permutation of the vertices of the tetrahedron. Here the (proper) nontrivial

subgroups of A4 are Z2,Z3 and Z2 ×Z2 up to conjugation. Among them, Z2

and Z3 are stabilizers of some points of Σ. In fact Z2 acts as a 1/2-rotation

fixing four points as illustrated in Figure 5.1.1 (there are three conjugate

Z2’s in A4) and Z3 acts as a 1/3-rotation fixing two points as illustrated in

Figure 5.1.2 (there are four conjugate Z3’s in A4), while Z2 × Z2 fixes no

point (as a whole group) and is generated by a pair of 1/2-rotations (there

are three conjugate Z2×Z2’s in A4 respectively generated by (1) and (2), (2)

and (3), or (3) and (1) in Figure 5.1.1). The total number of Z2-ramification
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points are 4 × 3 = 12 and the total number of Z3-ramification points are

2 × 4 = 8. The ramification index of each Z2-ramification point is |Z2| = 2

and the ramification index of each Z3-ramification point is |Z3| = 3.

a3

d1

a2
b2

d2

b3

d3
c3

c2

a1
b1

c1

(1) (2) (3)
1/2-rotation

Figure 5.1.1:

f4

1/3-rotation

e3e2

e1
f1

e4
f3

f2

Figure 5.1.2:

The images of the ramification points under the quotient map ψ : Σ →
Σ/T are the branch points. Note:

• ai, bi, ci, di (i = 2, 3) are identified with a1, b1, c1, d1 respectively.

• a1 (resp. b1) is identified with d1 (resp. c1) via a 1/2-rotation as

illustrated in Figure 5.1.3.
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c

1/2-rotation

d

b
a

Figure 5.1.3:

Hence the images of the Z2-ramification points are two points a1 and b1 (with

branch index 2).

Next under ψ : Σ → Σ/T, ei, fi (i = 2, 3, 4) are identified with e1, f1

respectively. Hence the images of the Z3-ramification points are two points

e1 and f 1 (with branch index 3).

We summarize the above as follows:

Lemma 5.1.4. The quotient map Σ → Σ/T has four branch points with

branch indices (2, 2, 3, 3).

We next show that Σ/T ∼= P1 by applying the Riemann–Hurwitz formula:

χ(Σ) = |T| χ
(
Σ/T

)
−
∑
p∈R

(ep − 1), (5.1.1)

where R is the set of the ramification points and ep is its ramification index

of p ∈ R. In the present case, χ(Σ) = −4, |T| = 12 and
∑

p(ep − 1) =

12(2 − 1) + 8(3 − 1) = 28. Thus from(5.1.1), χ(Σ/T) = −2, implying that

Σ/T ∼= P1. This with Lemma 5.1.4 yields the following:

Proposition 5.1.5. Let Σ be the cable surface of the tetrahedron, on which

the tetrahedral group T acts. Then Σ/T ∼= P1 and the quotient map Σ → Σ/T

has four branch points with branch indices (2, 2, 3, 3). (Thus the branch data

of the T-action on Σ is (0; 2, 2, 3, 3).)

We regard the branch points on Σ/T as “marked points”; observe that

the complex structure on Σ/T (∼= P1) with four marked points admits a 1-

parameter family of deformations (caused by moving one point among the
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four points — three points on P1 are normalized as 0, 1,∞ under some ele-

ment of PSL2(C)). Varying one branch point (in P1\{other branch points})
yields a family of topologically equivalent coverings. The complex structures

on the covering spaces are given by the pull back of the complex structures

on Σ/T with four marked points via the quotient map Σ → Σ/T. We thus

obtain a 1-parameter family of complex structures on Σ with the same cover-

ing transformation group, that is, T (their branch data remain (0; 2, 2, 3, 3)).

We formalize this as follows:

Corollary 5.1.6. (Non-rigidity) Let Σ be the cable surface of the tetra-

hedron, on which the tetrahedral group T acts. Give a complex structure to

Σ such that the T-action is holomorphic, and regard Σ as a Riemann surface

with T-action. Then Σ admits a “T-action preserving” 1-parameter deforma-

tion — there exists a 1-parameter family of Riemann surfaces with T-actions

starting from Σ such that their branch data remain (0; 2, 2, 3, 3).





Chapter 6

The Family of Tetra Curves

6.1 Defining equations of A4-curves of genus

3

In what follows, unless otherwise mentioned, all curves are of genus 3. We

identify the tetrahedral group T with the alternating group A4 under the

canonical isomorphism (recall: T permutes the four vertices of the tetrahe-

dron, which induces T ∼= A4). A curve C with A4-action (i.e. A4 ⊂ Aut(C))

is called an A4-curve. The aim of this section is to show the following:

Theorem 6.1.1. The A4-curves of genus 3 are as follows: (i) There is a

unique hyperelliptic one: B : y2 = x8 + 14x4 + 1. (ii) Non-hyperelliptic ones

form a 1-parameter family Ct : x4 + y4 + z4 + t(x2y2 + y2z2 + z2x2) = 0

(t ∈ C \ {±2,−1}).

Note first that: If C is an A4-curve, then A4 ⊂ Aut(C), so |Aut(C)|
is divisible by |A4| = 12. We thus consider curves C such that |Aut(C)| is
divisible by 12. We separate into hyperelliptic case and non-hyperelliptic

case:

(H) The list of hyperelliptic curves C such that |Aut(C)| is divisible by

12 is as follows ([GSS] p.118 Table 1):

85
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Aut |Aut| C

D12 12 H1 : y2 = x(x6 + tx2 + 1)

U6 24 H2 : y2 = x(x6 − 1)

Z2 ×S4 48 H3 : y2 = x8 + 14x4 + 1

Table 6.1.1: Sn: symmetric group of degree n. U6 := ⟨a, b : a2 = b12 =

abab7 = 1⟩ (or ⟨a, b : a2, b12, abab7⟩ in [BGG] p.272 Table 2, 3.e). D2n :=

⟨a, b : an = b2 = abab = 1⟩: dihedral group of order 2n. Note: U6 =

⟨a, b : a2, b6, abab4⟩ in [GSS] p.118 Table 1 seems a typo, because in which

case |U6| ̸= 24 (but |U6| = 6).

Here:

• H1 and H2 are not A4-curves, as A4 ̸⊂ Aut(H1) (= D12) and A4 ̸⊂
Aut(H2) (= U6) by Lemma 6.1.3 below.

• H3 is an A4-curve, indeed A4 ⊂ Z2 ×S4. (Note: The Galois group of

x8 + 14x4 + 1 is S4, see [Kle] p.58.)

This confirms (i) of Theorem 6.1.1.

(NH) The list of non-hyperelliptic curves C such that |Aut(C)| is divisible
by 12 is as follows ([Bars] Theorem 16 p.10) — note that any non-hyperelliptic

curve of genus 3 is realized as a quadric in P2:

Aut |Aut| C

S4 24 NH1 : x4 + y4 + z4 + t(x2y2 + y2z2 + z2x2) = 0,

where t ∈ C \ {0, −3±3
√
−7

2 ,±2,−1}; this is
singular for t = ±2,−1 (Lemma 7.1.6),

Fermat for t = 0, Klein for t = −3±3
√
−7

2 .

Z4 ⊚ A4
∼= SL2(F3)⋊ Z2 48 NH2 : x4 + y4 + z3x = 0

(Z4 × Z4)⋊S3 96 NH3 : x4 + y4 + z4 = 0 (Fermat curve)

PSL2(F7) 168 NH4 : z3y + y3x+ x3z = 0 (Klein curve)

Table 6.1.2: A ⋊ B is the semidirect product of A and B. For Z4 ⊚ A4,

see [Bars] p.10. Note: Both Z4 ⊚ A4 and SL2(F3) ⋊ Z2 have the same

identification number of finite group: “GAP Id. [48, 33]” ([Bars] p.10, [PaWi]

p.9), so they are isomorphic.
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Here:

• NH1 is an A4-curve, as A4 ⊂ Aut(NH1) (= S4).

• NH2 is excluded, as A4 ̸⊂ Aut(NH2) (= SL2(F3)⋊Z2); see [PaWi] p.9.

• NH3 and NH4 are special cases of NH1 at the value of t = 0 and

t = −3±3
√
−7

2
respectively. In fact, NH1 for t = 0 is NH3, and NH1 for

t = −3±3
√
−7

2
is isomorphic to NH4 ([KuSe] p.121 Theorem 2).

This confirms (ii) of Theorem 6.1.1.

Supplement: Technical lemmas on groups

Lemma 6.1.2. For U6 := ⟨a, b : a2 = b12 = abab7 = 1⟩, the following hold:

(i) ba = ab5.

(ii) Any element of U6 is written as bk or abk (k = 0, 1, . . . , 11). Conse-

quently

U6 = {bk, abk : k = 0, 1, . . . , 11}.

(iii) Any subgroup H ⊂ U6 of order 12 is normal in U6 and U6/H ∼= Z2.

Moreover b2 ∈ H.

Proof. (i): The relation abab7 = 1 is rewritten as ba = a−1b−7. Here a−1 = a

and b−7 = b5 (as a2 = b12 = 1), thus ba = ab5.

(ii): Use (i).

(iii): Since |U6| = 24 and |H| = 12, H is of index 2 in U6, so normal. We

show that b2 ∈ H. If b ∈ H, this is trivial. If b /∈ H, then b determines the

generator b of U6/H ∼= Z2, so b
2
= 1, thus b2 ∈ H.

Lemma 6.1.3. (1) A4 is “not” a subgroup of D12.

(2) A4 is “not” a subgroup of U6.
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Proof. (1): Since |A4| = |D12| (= 12), if A4 ⊂ D12 then A4 = D12, which

contradicts the fact that D12 has an element of order 6 while A4 does not

(because the order of any element of A4 is either 1, 2 or 3).

(2): Since |A4| = 12, if A4 ⊂ U6 then b2 ∈ A4 (Lemma 6.1.2 (iii)). The

order of this element is 6, which is a contradiction.

6.2 Proof of main results in Part II

Unless otherwise mentioned, all curves are assumed to be of genus 3. The

tetrahedral group T naturally acts on the cable surface Σ of the tetrahedron.

By Kerckhoff’s theorem [Ker], we may give a complex structure on Σ such

that this action is holomorphic. Recall that T ∼= A4, so Σ is an A4-curve. Its

branch data on Σ is (0; 2, 2, 3, 3) (Proposition 5.1.5). An A4-curve is said to

be of tetra type if the A4-action is topologically equivalent to the standard

tetrahedral group action on Σ.

Definition 6.2.1. An A4-curve of tetra type is called a tetra curve.

We determine all tetra curves, in fact we show that B and Ct (t ∈ C \
{±2,−1}) in Theorem 6.1.1 exhaust all tetra curves. This is a consequence

of a chain of claims:

Claim I Ct for some t is a tetra curve.

Proof. If none of Ct is a tetra curve, then only B is a tetra curve, which

however cannot occur due to the non-rigidity of a tetra surface (Corollary

5.1.6).

From the non-rigidity of a tetra surface (Corollary 5.1.6), the following

holds:

Claim II Let Ct0 be a tetra curve, then there exists an open neighborhood

U of t0 in C \ {±2,−1} such that for any t ∈ U , Ct is a tetra curve.
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In fact every Ct (t ∈ C \ {±2,−1}) is a tetra curve. To show this, we

need preparation. Let S be the complex surface in P2 × C defined by

S :=
{(

[x : y : z], t
)
∈ P2 × C : x4 + y4 + z4 + t(x2y2 + y2z2 + z2x2) = 0

}
,

and let p : S → C be the projection
(
[x : y : z], t

)
7→ t; and Ct = p−1(t).

Lemma 6.2.2. (1) M := S \ (C±2 ∪ C−1) is non-singular. (2) Set Ω :=

C \ {±2,−1}, then the restriction p :M → Ω is a fibration.

Proof. (1) follows from the fact that all of singular points of S lie on C2

(Lemma 7.1.1 below). (2) is clear, because no degeneration occurs in p :

M → Ω (Lemma 7.1.6 below).

Lemma 6.2.3. For each point b ∈ Ω, there exists an open neighborhood V of

b in Ω such that the A4-actions on all Ct (t ∈ V ) are topologically the same.

Proof. Since p : M → Ω is a fibration, by the Ehresmann fibration theorem

there exists a sufficiently small open neighborhood V of b in Ω such that the

restriction p : p−1(V ) → V is diffeomorphically isomorphic to a projection

C×V → V (where C = Cb). The fiberwise A4-action on p−1(V ) corresponds

to a fiberwise A4-action on C × V . Identifying the fiber C × {t} (t ∈ V )

with C in an obvious way, we regard the A4-action on C × {t} (t ∈ V ) as

a family of A4-actions on a single C. This amounts to a family of injective

homomorphisms ιt : A4 → MCG(C), where MCG(C) denotes the mapping

class group of C. Since MCG(C) is discrete, ιt must be constant. Therefore

the A4-actions on all Ct (t ∈ V ) are topologically the same.

Now we can show:

Claim III Every Ct (t ∈ Ω) is a tetra curve.

Proof. It suffices to show that the A4-actions on all Ct (t ∈ Ω) are topolog-

ically the same. Take the open neighborhood U in Claim II as a maximal

one. We claim that U is the whole of Ω. Otherwise there is a boundary point

(say b) of U in Ω. By Lemma 6.2.3, there exists an open neighborhood V of
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b in Ω such that the A4-actions on all Ct (t ∈ V ) are topologically the same.

So V ⊂ U , which contradicts the fact that b /∈ U .

Our next task is to show that B is also a tetra curve. Let ∆ be a suffi-

ciently small disk centered at t = 2 in C and set W := p−1(∆). Consider the

restriction p : W → ∆ of p : S → C around the singular fiber C2 = p−1(2)

(= 2P1; see Lemma 7.1.4). After showing that B arises as the central fiber

of a stable reduction of p : W → ∆, we will show that B is a tetra curve.

Note first thatW has eight isolated singularities, which lie on C2 and exhaust

all singularities of S (see Lemma 7.1.1 below). These eight singularities are

A1-singularities (see Lemma 7.1.3 below).

Now let p′ : W ′ → ∆ be the family obtained from p : W → ∆ by the base

change t− 2 = s2, where explicitly

W ′ := {([x : y : z], s) ∈ P2×∆ : x4+y4+z4+(s2+2)(x2y2+y2z2+z2x2) = 0}.

The central fiber p′−1(0) of p′ : W ′ → ∆ is identical to p−1(2) (= C2), so

p′−1(0) ∼= P1. Here W ′ is singular in codimension 1 (W ′ is ‘bent’ along

p′−1(0)), and so non-normal. Let ν : N → W ′ be the normalization of W ′.

Then p′′ := p′ ◦ ν : N → ∆ is a (non-degenerating) family of smooth curves,

which is the stable reduction of p : W → ∆.

N

p′′ !!B
B

B
B

ν //W ′

p′

��

W

p

��
∆ base

change
// ∆.

(6.2.1)

Lemma 6.2.4. Let r1, r2, . . . , r8 ∈ p−1(0) be the eight singularities of W and

r′1, r
′
2, . . . , r

′
8 ∈ p′−1(0) be the corresponding points of W ′ under the identifica-

tion of p−1(0) with p′−1(0). Then the restriction ν : p′′−1(0) → p′−1(0) (∼= P1)

of ν : N → W ′ is a double covering with eight branch points r′1, r
′
2, . . . , r

′
8.

Proof. For each point q ∈ p−1(0), let q′ ∈ p′−1(0) denote the corresponding

point under the identification of p−1(0) with p′−1(0). To show the assertion,
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we describe the normalization ν : N → W ′ around each point q′ ∈ p′−1(0).

We separate into two cases depending on the position of q′ (below, we take

a coordinate of the disk ∆ so that the center is the origin: ∆ = {T ∈ C :

|T | < 1}):
Case 1. q′ ∈ {r′1, r′2, . . . , r′8}: In this case W is defined by TX = Y 2

around q (and p : W → ∆ is given by (X,Y, T ) 7→ T around q). Here q

corresponds to the origin (X,Y, T ) = (0, 0, 0). The base change T 7→ T 2 turns

TX = Y 2 to T 2X = Y 2, which is the defining equation of W ′ around q′ (and

p′ : W ′ → ∆ is given by (X,Y, T ) 7→ T around q′). Here q′ corresponds to the

origin (X,Y, T ) = (0, 0, 0). Let Wq′ be a sufficiently small neighborhood of

q′. Then Wq′ ∩ p′−1(0), given by T = Y = 0 (the X-axis), is the non-normal

locus ofWq′ . The normalization ofWq′ is given by (u, v) ∈ C2 7→ (v2, uv, u) ∈
W ′

q′ ; note that (X,Y, T ) = (v2, uv, u) satisfies T 2X = Y 2, as u2v2 = (uv)2.

(Precisely speaking, we need to shrink C2 around the origin.) On the u-axis

in C2, this normalization is given by v 7→ v2, which is a double covering over

the origin q′. See Figure 6.2.1.

W ′
q′

q′0

C2

ν

u-axis W ′
q′ ∩ p′−1(0)

Figure 6.2.1: The restriction of ν : C2 → W ′
q′ to the u-axis is two-to-one

outside 0 ∈ C2 while ramified at 0.

Case 2. q′ ∈ p′−1(0)\{r′1, r′2, . . . , r′8}: In this case W is defined by T = Y 2

around q (and p : W → ∆ is given by (X,Y, T ) 7→ T around q). Accordingly

W ′ is defined by T 2 = Y 2 around q′ (and p′ : W ′ → ∆ is given by (X,Y, T ) 7→
T around q′). Let Wq′ be a sufficiently small neighborhood of q′. Then Wq′ ∩
p′−1(0), given by Y = T = 0 (the X-axis), is the non-normal locus of Wq′ .

The normalization of Wq′ : T
2 = Y 2 is explicitly given by V+ ⨿ V− → Wq′ ,

where V+ := {(u, v, w) ∈ C3 : w = v} and V− := {(u, v, w) ∈ C3 : w = −v},
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and ν|V+ and ν|V− are the ‘identity’ maps. (Precisely speaking, we need to

shrink V+ and V− around the origins.) This normalization isomorphically

maps the u-axis in V+ and the u-axis in V− to the X-axis in Wq′ , which is an

unramified double covering.

The descriptions in Case 1 and Case 2 together imply the assertion.

ν

W ′
q′

q′
W ′

q′ ∩ p′−1(0)
V+

V−
u-axis

u-axis

Figure 6.2.2: The restriction of ν : V+ ⨿ V− → Wq′ to the u-axis in V+ and

the u-axis in V− is two-to-one and unramified.

A genus 3 curve branched over P1 at eight points is necessarily hyperellip-

tic, and the double covering is the quotient under the hyperelliptic involution

— the ramification points are the fixed points of hyperelliptic involution.

Thus the following holds:

Corollary 6.2.5. In Lemma 6.2.4, p′′−1(0) is a hyperelliptic curve, and the

eight ramification points of ν are the fixed points of its hyperelliptic involution

ι, so that p′′−1(0)/ι = p′−1(0) (= p−1(0)).

We next show that the hyperelliptic curve A := p′′−1(0) admits an A4-

action. Consider the commutative diagram:

N

p′′
��

//W

p
��

∆ // ∆.

(6.2.2)



6.2. PROOF OF MAIN RESULTS IN PART II 93

Then the A4-action on W \ p−1(0) lifts to an A4-action on N \ A such that

it maps each fiber p′′−1(u) (u ̸= 0) to itself (Remark 6.2.7 below). The

commutativity of (6.2.2) implies that each fiber p′′−1(u) (u ̸= 0) is isomorphic

to Cs (s = u2), so from Claim III it is a tetra curve (equipped with the A4-

action). We thus obtain the following:

Lemma 6.2.6. (1) A := p′′−1(0) is a hyperelliptic curve. (2) p′′ : N \ A →
∆\{0} is a family of smooth A4-curves — the A4-action on N \A maps each

fiber p′′−1(u) (u ̸= 0) to itself, and p′′−1(u) (u ̸= 0) is a tetra curve.

Remark 6.2.7. Any finite group action on a plane curve in P2 is the re-

striction of a projective linear action on P2, that is, the finite group acts as

a subgroup of PGL3(C) ([Nam] Corollary 5.3.19 p.382). So in our context,

the A4-action on W is of the form ([x : y : z], s) 7→ (g([x : y : z]), s), where

g ∈ PGL3(C) (and s := t − 2). This action naturally defines an A4-action

on N \ A. Indeed as W is defined by f([x : y : z], s) := x4 + y4 + z4 + (s +

2)(x2y2+y2z2+z2x2) = 0 in P2×∆, N \A is defined by f([x : y : z], s2) = 0

in P2 × (∆ \ {0}), thus the A4-action on W defines an A4-action on N \ A.
(Caution: N itself is not simply defined by f([x : y : z], s2) = 0.)

The A4-action on N \ A uniquely extends to an A4-action on N that

maps A = p′′−1(0) to itself (see Remark 6.2.8 below). In particular A is an

A4-curve. With Lemma 6.2.6 (1), A is a hyperelliptic A4-curve. Such a curve

is unique — it is B (see Theorem 6.1.1), thus A = B.

Remark 6.2.8. Let π : M → ∆ be a family of smooth curves and set

X := π−1(0). Suppose that the restriction π :M \X → ∆\{0} is a family of

smooth G-curves (G: a finite group). Then the G-action on M \X uniquely

extends to a G-action on M that maps X to itself (see [ACG] p.115).

We show that the A4-actions on all fibers of p′′ : N → ∆ are topologically

equivalent. First by the Ehresmann fibration theorem, p′′ : N → ∆ may be

topologically considered as the projection A × ∆ → ∆ (recall that ∆ is a

sufficiently small disk). Then applying the argument in the proof of Lemma
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6.2.3 shows that the A4-actions on all fibers of p′′ : N → ∆ are topologically

the same. Since the A4-actions on all fibers of p′′ : N \ A → ∆ \ {0} are of

tetra type (Lemma 6.2.6 (2)), the A4-action on A is also of tetra type. Thus

A (= B) is also a tetra curve.

We summarize the results so far obtained as follows:

Theorem 6.2.9. (1) The tetra curves are exhausted by B and Ct (t ∈
C \ {±2,−1}).

(2) W (and S) has eight singularities and they lie on C2 and all are A1-

singularities.

(3) Let p′′ : N → ∆ be the stable reduction of p : W → ∆ via a base change

∆ → ∆, t− 2 7→ (t− 2)2. Then the central fiber of p′′ is B.

Remark 6.2.10. The A4-action on B (and Ct) corresponds to an embedding

of A4 (as a subgroup) into the mapping class group MCG3 of a genus 3 curve.

Then in MCG3, A4 and the hyperelliptic involution ι commute, which follows

from the commutativity of the A4-action and the Z2-action (Z2 = ⟨ι⟩) on

N \ A; see the paragraph above Lemma 6.2.6.

Now let r :M → W be the minimal resolution of the eight A1-singularities

r1, r2, . . . , r8 (in Lemma 6.2.4), where each Ei := r−1(ri) (i = 1, 2, . . . , 8)

is P1 with self-intersection number −2, that is, Ei is a (−2)-curve. The

composition of r with p : W → ∆ is a degeneration π := p ◦ r : M → ∆ of

smooth curves of genus 3, whose singular fiber is 2P1+
∑8

i=1Ei (Figure 6.2.3),

where each Ei intersects 2P1 transversally. The monodromy of π : M → ∆

is the hyperelliptic involution in Corollary 6.2.5.

W

1

1

1

1

1 1

1

1
2

E1

E2

E4

E6

E7

π−1(0)M

r

p−1(0) = P1

r1
r2

r3
r4

2
r5

r8
r7

r6E3

E8

E5

Figure 6.2.3: The minimal resolution r :M → W .
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We formalize the above as follows:

Proposition 6.2.11. Let r :M → W be the minimal resolution of the eight

A1-singularities r1, r2, . . . , r8 of W ; each Ei := r−1(ri) is a (−2)-curve. Then

the composition of r with p : W → ∆ is a degeneration π := p ◦ r : M → ∆

of smooth curves of genus 3, whose singular fiber is 2P1 +
∑8

i=1Ei, and the

monodromy of π :M → ∆ is the hyperelliptic involution in Corollary 6.2.5.





Chapter 7

Description of Singularities

7.1 The singularities and singular fibers of

the A4-family

Let S be the complex surface in P2 × C defined by

S :=
{(

[x : y : z], t
)
∈ P2 × C : x4 + y4 + z4 + t(x2y2 + y2z2 + z2x2) = 0

}
,

and let p : S → C be the projection
(
[x : y : z], t

)
7→ t and Ct := p−1(t). The

restriction of p : S → C to C \ {±2,−1} is the family of A4-curves appearing

in Theorem 6.1.1 (ii).

Lemma 7.1.1. S has eight isolated singularities
(
[±ω : ±ω2 : 1], 2

)
and(

[±ω2 : ±ω : 1], 2
)
, where ω := e2πi/3, which lie on the fiber C2 = p−1(2).

Proof. Take an open covering P2 = U ∪ V ∪W , where U = {z = 1}, V =

{x = 1}, and W = {y = 1}. We show that the singularities of S lie on

(U ∩ V ∩W )× C and they are
(
[±ω : ±ω2 : 1], 2

)
and

(
[±ω2 : ±ω : 1], 2

)
.

We first determine the singularities of S on U ×C. The defining equation

of S on U × C is given by f(x, y, t) = x4 + y4 + 1 + t(x2y2 + x2 + y2). Let

q = (x, y, t) ∈ S|U×C, then

(a) x4 + y4 + 1 + t(x2y2 + x2 + y2) = 0.

97
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Suppose that q is a singularity, equivalently

∂xf(q) = ∂yf(q) = ∂tf(q) = 0 (Jacobi criterion),

or explicitly 
(b) x(4x2 + 2t(y2 + 1)) = 0,

(c) y(4y2 + 2t(x2 + 1)) = 0,

(d) x2y2 + x2 + y2 = 0.

We claim that x ̸= 0 and y ̸= 0. Indeed if x = 0 then (a) and (d) become

(a)′ y4 + ty2 + 1 = 0 and (d)′ y2 = 0, so 1 = 0 (absurd!). Similarly if y = 0

then (a) and (d) yield a contradiction, so y ̸= 0. Dividing now (b) by x and

(c) by y yields  (b)′ 4x2 + 2t(y2 + 1) = 0,

(c)′ 4y2 + 2t(x2 + 1) = 0.

We next claim that x2 ̸= −1 and y2 ̸= −1. If x2 = −1 then (c)′ implies

y = 0 (contradiction). Similarly if y2 = −1 then (b)′ implies x = 0 (con-

tradiction). Now eliminating t from (b)′ and (c)′ yields (e)
2x2

y2 + 1
=

2y2

x2 + 1
.

From (d), x2 =
−y2

y2 + 1
. Substituting this into (e) yields y2 = −2, ω, ω2,

so (x2, y2) = (−2,−2), (ω, ω2), (ω2, ω). Here the first one is excluded, as it

does not satisfy (a). The others indeed satisfy all of (a), (b), (c), (d) for

t = 2. Therefore the singularities of S on U × C are
(
[±ω : ±ω2 : 1], 2

)
and(

[±ω2 : ±ω : 1], 2
)
.

Similarly the singularities of S on V × C are
(
[1 : ±ω : ±ω2], 2

)
and(

[1 : ±ω2 : ±ω], 2
)
. They are ‘equal’ to

(
[±ω : ±ω2 : 1], 2

)
and

(
[±ω2 : ±ω :

1], 2
)
(projective coordinates!). Similarly the singularities of S on W × C

are
(
[±ω2 : 1 : ±ω], 2

)
and

(
[±ω : 1 : ±ω2], 2

)
, and they are also ‘equal’ to(

[±ω : ±ω2 : 1], 2
)
and

(
[±ω2 : ±ω : 1], 2

)
.

Remark 7.1.2. The eight points [±ω : ±ω2 : 1], [±ω2 : ±ω : 1] on P2 are

the base points of the pencil {Ct}t∈P1 .
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Lemma 7.1.3. All eight singularities
(
[±ω : ±ω2 : 1], 2

)
and

(
[±ω2 : ±ω :

1], 2
)
of S are an A1-singularities.

Proof. It suffices to check that the Hessian of f(x, y, t) = x4 + y4 + 1 +

t(x2y2 + x2 + y2) at each singularity is nonzero, that is, nondegenerate (as

this is equivalent to the singularity being A1; see, e.g. [Oka1]). The Hessian

matrix of f is

H =

12x2 + 2t(y2 + 1) 4txy 2x(y2 + 1)

4txy 12y2 + 2t(x2 + 1) 2y(x2 + 1)

2x(y2 + 1) 2y(x2 + 1) 0

 .

At a singularity (x, y, t) = (ω, ω2, 2), H is given by12ω2 8 −2

8 12ω −2

−2 −2 0

 ,

whose determinant is nonzero (indeed 16). Similarly for the other singulari-

ties, the Hessian is nonzero.

We next determine the singular fibers of p : S → C.

Lemma 7.1.4. Ct for t = ±2,−1 are reducible. In fact:

(i) C2 is P1 of multiplicity 2.

(ii) C−2 consists of four P1’s and any two of them intersect at one point.

(iii) C−1 consists of two P1’s intersecting at four points.

Proof. The defining equations of Ct for t = ±2,−1 factorize as follows (so

Ct for t = ±2,−1 are reducible):

DE for t = 2:

x4 + y4 + z4 + 2(x2y2 + y2z2 + z2x2) = (x2 + y2 + z2)2.
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DE for t = −2:

x4+y4+z4−2(x2y2+y2z2+z2x2) = (x+y+z)(x+y−z)(x−y+z)(x−y−z).

DE for t = −1: Where ω := e2πi/3,

x4 + y4 + z4 − (x2y2 + y2z2 + z2x2) = (x2 + ωy2 + ω2z2)(x2 + ω2y2 + ωz2).

Note that any factor of the above factorizations is linear or quadratic, so

it defines P1. Thus each irreducible component of Ct for t = ±2,−1 is P1.

The other assertions are immediate from the above factorizations.

Lemma 7.1.5. Ct for t ̸= ±2,−1 is smooth.

Proof. Set F (x, y, z) := x4 + y4 + z4 + t(x2y2 + y2z2 + z2x2). Then [x : y :

z] ∈ Ct is a singularity if and only if ∂xF = ∂yF = ∂zF = 0, or explicitly

x
(
2x2 + t(y2 + z2)

)
= y
(
2y2 + t(z2 + x2)

)
= z
(
2z2 + t(x2 + y2)

)
= 0. (7.1.1)

We separate into two cases:

Case 1 xyz ̸= 0: Then (7.1.1) is simplified into

2x2 + t(y2 + z2) = 2y2 + t(z2 + x2) = 2z2 + t(x2 + y2) = 0.

Thus

2 t t

t 2 t

t t 2


x2y2
z2

 = 0. This has a nontrivial solution precisely when

∣∣∣∣∣∣∣
2 t t

t 2 t

t t 2

∣∣∣∣∣∣∣ = 0, that is, 2t3 − 6t2 + 8 = 0, so t = 2,−1.

Case 2 xyz = 0: Then no two of x, y, z can be 0 (for instance if x = y = 0,

then from (7.1.1), z = 0, so x = y = z = 0, which contradicts [x : y : z] ∈ P2).

We may thus assume that x = 0 and yz ̸= 0. Then 2y2+ tz2 = 2z2+ ty2 = 0,

so

(
2 t

t 2

)(
y2

z2

)
= 0. This has a nontrivial solution precisely when

∣∣∣∣∣2 t

t 2

∣∣∣∣∣ =
0, that is, −t2 + 4 = 0, so t = ±2.

We thus conclude that Ct is singular if and only if t = ±2,−1.
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By Lemmas 7.1.4 and 7.1.5, the following is obtained:

Lemma 7.1.6. Ct (t ∈ C) is singular precisely when t = ±2,−1: the singular

curves C2, C−2, C−1 are explicitly described in Lemma 7.1.4.
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