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GENERAL INTRODUCTION 

The primary aim of this research was to develop a method for analyzing the trajectory of 

animals regardless of the animal species and spatiotemporal scale. For this purpose, I 

collaborated with Associate Professor Takuya Maekawa of the Graduate School of Information 

Science and classified animals’ trajectory into multiple behavioral states using machine 

learning, and comprehensively and objectively analyzed the differences in behavioral states. I 

named this approach as the state estimation and feature extraction (STEFTR) method. 

 

Quantitative analysis of animal behavior 

In order to analyze animal behavior and investigate its underlying mechanism, it is 

necessary to record the trajectory, calculate behavioral features, and quantitatively evaluate it. 

Quantitative analysis of an organism's behavior was pioneered by Howard Berg. Berg and his 

colleagues recorded the response of Escherichia coli to amino acid gradients and revealed that 

changes in frequency of directional change, “tumbling,” depend on a change in concentration of 

amino acids in a solution, referred to as the biased random walk mechanism (Berg & Brown, 

1972; Block et al, 1982). Quantitative analysis of animal (i.e., a multicellular organism with 

nervous system) behavior was then initiated by Shawn Lockery and colleagues in studies of the 

nematode, Caenorhabditis elegans. In the chemotaxis of C. elegans, its trajectory can be 

classified into a straight movement (run) or frequent directional change (pirouette); these two 

behavioral states transition stochastically, demonstrating that the biased random walk strategy is 

also used in animals (Pierce-Shimomura et al., 1999; Lockery, 2011). In wild animals, Lévy 
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flight, random walk with a power-law tail, has been reported in multiple species (Viswanathan 

et al, 1996; Viswanathan et al, 2008) 

 

Although quantitative classification of behavior has been achieved, these methods 

have the following problems: (1) because the classifications are calculated using a different 

algorithm for each animal species, it is not possible for methods to be used in other animals; (2) 

they require information regarding posture from high-resolution images and are not suitable for 

analysis of coarse GPS positional information; and (3) numerous data require manual labelling 

by humans. Even if the trajectory can be classified, there is still a problem that the extraction of 

features from the classified behavior state is performed only with subjectively selected 

parameters. Therefore, I established STEFTR to estimate behavioral states only from the 

trajectory in an unsupervised manner and to comprehensively analyze and extract behavioral 

features. 

 

Behavior analysis using the nematode, C. elegans 

In order to evaluate the newly developed method, it is necessary to analyze the 

behavior of animals with the following conditions: (1) it is possible to verify the behavioral 

state from different methods of calculation that classify the behavioral state (i.e., have “correct” 

labels); (2) the extracted behavioral state can be confirmed by neural activity; (3) the trajectory 

is recorded under a controlled environment, in which animals receive a controlled stimulus; and 

(4) the data are less noisy, for example, the measurement time is the same and missing values 

are not included.  
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For these reasons, animals in an experimental setting can be considered as proof of 

principle. Among numerous behaviors, the odor avoidance behavior of C. elegans is ideal 

because detailed quantitative analysis of this behavior has been previously conducted (Kimura 

et al, 2010; Yamazoe-Umemoto et al, 2015).  

In C. elegans, in addition to electrophysiology, the recording of neural activity can be 

achieved using calcium imaging. Tanimoto et al. developed a microscope system that performs 

calcium imaging under an odor gradient that mimics the stimulus provided during odor 

avoidance behavior (Tanimoto et al, 2017). Thus, it is considered that the evaluation of the 

method can be performed using C. elegans. 

 

In addition, C. elegans has a limited number of neurons (302) and its connectome has 

been clarified. Moreover, further analysis using genetic and optophysiological techniques can be 

easily performed. Recently, whole-brain imaging has become available (Nguyen et al., 2016; 

Venkatachalam et al., 2016). Owing to these characteristics, it appeared relatively simple to 

analyze the correspondence between neural activities and behavioral features identified using 

STEFTR.  

 

Aim and approaches of this study 

The primary aim of my study was the development of the method to analyze the 

trajectory in any animal for any spatiotemporal scale. To achieve this goal, I decided to analyze 

trajectory using only two-dimensional xy coordinates. When considering only xy coordinates, 

analysis can be performed regardless of the scale of movement and the method of recording, 
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e.g., a camera or GPS. Furthermore, I used an EM algorithm that does not depend on the initial 

value for clustering and can perform clustering relatively stably for any distribution. I then 

comprehensively calculated the characteristics of the behavior and used the obtained 

information to detect differences between two conditions (e.g., the difference before and after 

learning). 

 

In order to evaluate whether the developed method was accurate, I analyzed odor 

avoidance behavior in the nematode C. elegans. I confirmed that the behavioral states obtained 

by clustering were consistent with previous findings and also found the change in neural activity 

that occurs using calcium imaging under a virtual odor gradient, corresponding to the behavioral 

features found using STEFTR. In addition, mutants were analyzed, and it was confirmed that 

groups of features extracted from groups of genes were similar.  

 

Furthermore, in wild animals, we analyzed the behavior of the Adélie penguin, for 

which previous findings regarding the estimation of behavioral states using multiple sensors 

were available and confirmed that clustering obtained using STEFTR showed results similar to 

those reported previously. For the analysis of different scales of behavior, I analyzed seabirds 

moving over 1000 km and separated the behavioral state of rats as an example in laboratory 

animals. Moreover, I analyzed the behavior of fruit flies and bats, and revealed that STEFTR 

was able to extract behavioral features, some of which were consistent with past reports and 

others were novel findings. 
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SUMMARY 

Animal behavior is the final and integrated output of brain activity. Thus, recording 

and analyzing behavior is critical to understand the underlying brain function. While recording 

animal behavior has become easier than ever with the development of compact and inexpensive 

devices, detailed behavioral data analysis requires sufficient previous knowledge and/or high 

content data such as video images of animal postures, which makes it difficult for most of the 

animal behavioral data to be efficiently analyzed to understand brain function. Here, I report a 

versatile method using a hybrid supervised/unsupervised machine learning approach to 

efficiently estimate behavioral states and to extract important behavioral features only from 

low-content animal trajectory data. As proof of principle experiments, I analyzed trajectory data 

of worms, fruit flies, rats, and bats in the laboratories, and penguins and flying seabirds in the 

wild, which were recorded with various methods and span a wide range of spatiotemporal 

scales—from mm to 1000 km in space and from sub-seconds to days in time. I estimated 

several states during behavior and comprehensively extracted characteristic features from a 

behavioral state and/or a specific experimental condition. Physiological and genetic experiments 

in worms revealed that the extracted behavioral features reflected specific neural or gene 

activities. Thus, our method provides a versatile and unbiased way to extract behavioral features 

from simple trajectory data to understand brain function.   
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INTRODUCTION 

The brain receives, integrates, and processes a range of ever-changing environmental 

information to produce relevant behavioral outputs. Therefore, understanding salient behavioral 

features can augment our understanding of important aspects of environmental information as 

well as of brain activity, which links the environmental information to behavior. Recent 

technological development of compact and inexpensive cameras and/or global positioning 

system (GPS) devices has facilitated convenient monitoring and recording of animal behavior 

(Brown and de Bivort, 2018; Dell et al., 2014; Egnor and Branson, 2016). However, the 

behavioral data generated through these approaches are frequently represented as a few simple 

measures, such as velocity, migratory distance, or the probability of reaching a particular goal, 

due to the challenges related to identification of specific aspects of behavior to be analyzed; in 

other words, it is still difficult to figure out how we can describe an animal behavior 

meaningfully (Berman, 2018). Owing to poor description of behavior, dynamic neural activity, 

for example, is not sufficiently interpreted even though simultaneous optical monitoring can 

measure a large number of time-series neural activities (Alivisatos et al., 2012; Landhuis, 2017). 

This large asymmetry in data richness between neural activity and behavior has emerged as one 

of the most significant issues in modern neuroscience (Anderson and Perona, 2014; Gomez-

Marin et al., 2014; Krakauer et al., 2017). 

 

One way to overcome the challenges in the appropriate descriptions of behavior is to 

describe its salient features via comprehensive analysis through an approach such as machine 
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learning. Machine learning involves extracting latent patterns and uncovering knowledge from a 

large amount of data (Bishop, 2006). In fact, multiple behavioral analysis methods based on 

machine learning have been reported in the last decade (Baek et al., 2002; Branson et al., 2009; 

Brown et al., 2013; Dankert et al., 2009; Kabra et al., 2013; Mathis et al., 2018; Robie et al., 

2017; Stephens et al., 2008; Vogelstein et al., 2014; Wiltschko et al., 2015). Most of these 

studies have classified behavioral states based on detailed analyses of animal postures as 

observed in video images (Dell et al., 2014); the classification of behavioral states into classes, 

such as foraging, sleeping, chasing, or fighting, is considered to be critical for efficient 

behavioral analysis, as each of the behavioral feature varies differently across different 

behavioral states (Egnor and Branson, 2016; Jonsen et al., 2013; Patterson et al., 2008). 

Although these methods have worked successfully for the analysis of behavioral videos of 

worms, fruit flies, and rodents in laboratories, they have some limitations. First, these methods 

are not suitable for analyzing relatively long-distance navigation given their requirement of 

recording reasonably large and detailed images of animals in the video frame. Second, the 

extraction of behavioral features from a state, as opposed to just state classification, is more 

critical in understanding how environmental information and/or brain activities trigger 

transitions among states for behavioral response. 

 

To analyze relatively long-distance navigation behavior comprehensively, I 

developed a method for the estimation of behavioral states and extraction of relevant behavioral 

features based only on the trajectories of animals. For estimating behavioral states, I used an 
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unsupervised learning method involving the expectation maximization (EM) algorithm 

(Dempster et al., 1977) because it is difficult for the human eye to classify behavior into distinct 

states without using posture images. For extracting salient behavioral features, I used 

information gain, an index used for a supervised learning method (the decision tree analysis) 

(Quinlan, 1986), and compared the features between two different experimental conditions (e.g., 

with or without certain stimulus). It is because supervised learning is considered advantageous 

in the extraction of characteristic behavioral features and comparing them among multiple 

conditions. I named this hybrid supervised/unsupervised machine learning approach as the state 

estimation and feature extraction (STEFTR) method (Fig. 1). 

 

Because the STEFTR method only uses trajectory information for the analysis, it 

becomes possible to analyze the movement behavior of various animals regardless of the 

spatiotemporal scale of movement. As proof-of-principle experiments, I analyzed the 

trajectories of worms, flies, rats, and bats in laboratories and those of penguins and flying 

seabirds in the wild; these experiments involved a spatiotemporal scale ranging from mm to 

1000 km in space and from sub-seconds to days in time. The behavioral states of worms and 

penguins estimated by the STEFTR method were in reasonable conformation with the ones 

described in previous literature, supporting the reliability of our method. I further extracted 

learning-dependent behavioral features from a behavioral state of worms, in which one of the 

behavioral features is correlated with learning-dependent changes in neural activities. I also 

analyzed the behavioral features of mutant strains of worms and found that the patterns of 
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features are correlated with gene function, suggesting that comprehensive feature extraction 

may enable us to estimate unknown functions of a gene product. I was also able to extract 

learning-dependent features from bats and pheromone-dependent features from fruit flies. Taken 

together, our findings indicate that the STEFTR method allows us to estimate internal state, 

neural activity, and gene function related to animal behavior only from movement trajectories, 

regardless of the recording method or the spatiotemporal scales. 
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RESULTS 

Estimation of behavioral states 

 As the first part of the analysis, I classified the trajectory into several behavioral 

states based on the distribution of a basic behavioral feature. The behavior of animals consists 

of several states (Jonsen et al., 2013; Patterson et al., 2008), where basic behavioral features 

such as speed and direction change are likely distributed probabilistically with a center value 

that is optimal for each state. Thus, behavior can be more easily characterized when the 

behavioral features are analyzed for each state rather than for the entire behavior as a whole. In 

fact, classifying the trajectory into several states is one of the essential preprocessing steps in 

trajectory mining of people and vehicles in data science (Zheng, 2015). 

 

For the state classification, I calculated the averages (Ave) and variances (Var) of 

four basic behavioral features: velocity (V), temporal changes in velocity (i.e. acceleration, dV), 

bearing (B), and temporal changes in bearing (dB). These 8 features were represented in the 

form of histograms. Based on the hypothesis that values of basic behavioral features are likely 

distributed probabilistically in each state, I considered that histogram peaks may correspond to 

different behavioral states. One histogram was then regarded as a mixture of Gaussian 

distributions, and EM algorithm, an iterative method to estimate model parameters that 

maximize the likelihood of the model (Dempster et al., 1977), was used to estimate the average 

and variance values of each cluster. The separations of clusters in a histogram were evaluated 

by the separation index (see Materials and Methods), and the best-separated histogram was 
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chosen for further analysis. The individual clusters in the histogram were considered to 

correspond to different behavioral states. As proof-of-principle experiments, I analyzed the 

trajectories of worms and penguins, whose behavioral states have been studied previously using 

other methods (Pierce-Shimomura et al., 1999; Yoda et al., 2001). 

 

 The roundworm Caenorhabditis elegans has been used as a model animal for 

quantitative behavioral analysis owing to the ease of tracking behavior (movement for a few cm 

on agar surface can be easily recorded with an inexpensive high-resolution camera), optical 

monitoring neural activities, and genetic analyses and manipulations (De Bono and Maricq, 

2005). Further, the neuronal wiring in C. elegans has been described in complete detail (White 

et al., 1986). In this study, I focused on the avoidance behavior to the repulsive odor of 2-

nonanone (Fig. 2A, left) (Bargmann et al., 1993; Kimura et al., 2010). I chose this behavioral 

paradigm for the proof-of-principle experiment because the odor avoidance behavior has been 

quantitatively, although not fully, analyzed previously (Kimura et al., 2010; Yamazoe-

Umemoto et al., 2015). The behavior of the worms was recorded with a USB camera for 12 

minutes, and the position of each worm's centroid was extracted every second�(Table 1). 

 

 I calculated the separation index in 8 basic features, and the variance values for 

bearing change with 5 clusters turned out to be the best (dB_Var, Fig. 2B and C). Upon 

mapping the clusters on to the trajectories, I found that cluster 0 corresponds to relatively 

straight part, while the other clusters correspond to more complex parts (Fig. 2D, upper panel). 
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Cluster 0 and clusters 1-4 mainly corresponded to “run” and “pirouette,” respectively, which are 

the classic two behavioral states of worms and have been found in multiple types of sensory 

behavior (Fig. 2D, lower panel) (Lockery, 2011; Pierce-Shimomura et al., 1999). “Run” 

constitutes a relatively straight movement, while “pirouette” is characterized by short, straight 

movement divided by frequent large changes in angle (turns and reversals). Runs and pirouettes 

are usually classified based on a threshold value for the duration between consecutive large 

angle changes (Pierce-Shimomura et al., 1999), unlike in this method. I collectively regarded 

clusters 1-4 as “cluster 1” because the positional information of worms does not appropriately 

reflect their actual locations during pirouettes due to insufficient spatiotemporal resolution of 

the recording system for relatively long-distance navigation, such as odor avoidance behavior 

(Yamazoe-Umemoto et al., 2015). I found that more than 90% of the cluster 0 and 1 

corresponded with the run and pirouette, respectively (Fig. 2E, F and Suppl. Fig. 1A). 

Therefore, I concluded that the STEFTR method properly classified the odor avoidance 

behavior into distinct behavioral states. Although some cluster(s) do not appear to be Gaussian 

distributed (Fig. 2C), the high matching rate supports the legitimacy of this method (see also the 

following sections for penguins). 

 

 Next, I applied the same process to the trajectories of penguins obtained using GPS 

devices. Penguins are good model wild animals for studying long-distance navigation given 

their relatively large body size and their habit of returning to a colony, which make the 

attachment and the recovery of GPS data easy (Yoda, 2018; Yoda et al., 2001). In this study, 
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GPS and depth sensors were attached to 11 penguins from a colony in the Antarctic Continent; 

the depth sensors were used to evaluate the accuracy of state estimation (see below). The 

penguins moved by walking and swimming about 10 km for feeding, and each dataset contained 

up to 2 days of data recordings (Table 1 and Fig. 3A). Like in the case of worms, 8 basic 

behavioral features were extracted from the penguin trajectory data and represented as 

histograms. I chose the average velocity (V_Ave) as it showed the highest separation index (Fig. 

3B). The EM algorithm classified it into 5 clusters (Fig. 3C, D and E upper panel). 

 

 Interestingly, the clusters exhibited significantly different distributions in multiple 

behavioral features. For example, the values for the duration of each bout were much longer in 

cluster 0 than in clusters 1, 2, and 3 (Fig. 3E, middle panel). In addition, although the clusters 

were classified only based on the horizontal velocities, the depths for cluster 0 and 1 were 

significantly closer to zero than those for clusters 2, 3, and 4 (Fig. 3E, lower panel). These 

results are consistent with the idea that each cluster reflects a behavioral state that is a complex 

function of multiple behavioral features.  

 

To evaluate whether the clusters actually reflect different behavioral states, I 

compare the results with the typical manual classification into four states (resting, transit by 

walking, transit by swimming, and diving), based on diving depth (from depth sensor), 

movement velocity, and distance from the colony (both calculated from the GPS positional 

information) (Watanabe et al., 2012; Yoda et al., 2001). Penguins stayed and rested at the 
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colony (location does not change much; depth is zero), moved on land and ice mainly by 

walking (location changes relatively slowly; depth is near-zero), swim in the sea to go to the 

foraging area (location changes quickly; depth is relatively shallow in general and sometimes 

increases when they are moving towards the feeding area), dive deeply at the foraging area 

(location does not change much; dives occur continuously in bouts), and then come back to the 

colony by swimming and walking. The resting at the colony and swimming correlated with 

clusters 0 and 4, respectively (Fig. 3F, G and Suppl. Fig. 2A). In addition, most of clusters 1 and 

2 correlated with walking, while about 50% of cluster 3 corresponded to diving (Fig. 3G and 

Suppl. Fig. 2A). Thus, when a behavioral state is classified to a cluster other than cluster 3, the 

penguin is likely to be resting, walking, or swimming. If a behavioral state is classified to 

cluster 3, which is ~10% of all the behavior recorded, the penguin is either diving or swimming. 

Remarkably, although the clustering is only based on the trajectories of 11 penguins for a few 

days, the false positive rates were less than 10% and the sensitivity of the analysis was greater 

than 90% in all the cases (Fig. 3H). Thus, I concluded that the STEFTR method can reasonably 

estimate different behavioral states only based on trajectory data.  

 

 In order to verify the evaluation process by the separation index, I compared the 

results of the state estimation with the 1st and 2nd best-separated histograms for the worms and 

the penguins (indicated by red and yellow rectangles, respectively, in Fig. 2B and 3B). In both 

animal species, the estimated behavioral states based on the 2nd best separation index exhibited 

a similar tendency to those of the best separation index, although the correlations between 
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clusters and behavioral states were less clear (Suppl. Fig. 1B-E and 2B-D). These results 

strongly support the selection of the basic behavioral feature by the separation index. 

 

The STEFTR method was also applied to the trajectories of flying seabirds in the 

wild and rats in the laboratory. The seabirds, Calonectris leucomelas, traveled ~100 times 

longer distances (up to 1,000 km) with ~10 times the speeds compared to penguins (Matsumoto 

et al., 2017; Yoda et al., 2014). For the animals, the variance of bearing (B_Var) with 4 clusters 

were chosen (Fig. 4A-C). In the case of rats, the variance of velocity change (dV_Var) with 4 

clusters was chosen (Fig. 4D-G). In both animal species, significant differences among clusters 

were observed in duration and directedness, for example (Fig. 4D and H). Such information can 

help ecologists estimate the candidates for feeding areas where fishes may be more densely 

distributed and discover biologically important marine areas. It can also help neuroscientists in 

estimating candidate conditions to further explore specific neural activities. 

 

Comprehensive extraction of behavioral features modulated by learning 

As a second part of the STEFTR method, comprehensive feature extraction was 

performed by comparing a specific behavioral state in two different conditions, such as cluster 0 

of worms before and after learning. Comprehensive semi-automated analysis can be very 

helpful to compare behavioral features in two conditions. This is because even when the overall 

result of behavioral responses is different in two conditions, it is still difficult to quantitatively 

determine which part of the trajectories are different (Fig. 2A left and right, for example). 
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Furthermore, even if several behavioral features are found to be different, it is possible that 

other more prominent feature differences may exist. I considered that learning-dependent 

changes in behavior should be one of the best models for comprehensive feature extraction 

because the differences in behavioral features should reflect learning-dependent changes in 

neural/brain activities.  

 

As a useful index for feature extraction, I chose information gain, the index for 

decision tree analysis (Quinlan, 1986). Binary decision tree analysis is for splitting a dataset into 

two sub-groups by automatically selecting the best feature and its parameter showing the largest 

information gain (i.e., difference of uncertainty, or “information entropy”, between before and 

after division). Each data point is then classified into one of the sub-classes based on whether it 

has a larger or smaller value than an automatically determined threshold. When applied for 

binary classification, decision tree analysis automatically evaluates the classification 

performance of a large number of features as designed by the researchers. This analysis results 

in the extraction of certain features, allowing us to easily understand the utility of particular 

features in the classification. This approach is substantially different from those that employ 

support vector machines and/or deep neural networks, wherein the relationships between the 

classification and the features of the data cannot be easily discerned.  

 

I first analyzed learning-dependent changes in worm odor avoidance behavior. Worm 

odor avoidance behavior is enhanced by pre-exposure to the odor as a type of non-associative 
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learning, and pre-exposed worms migrate significantly longer distances from the odor source 

than control worms do during the same period (Fig. 2A) (Kimura et al., 2010). This 

phenomenon is interesting because prior exposure to a stimulus generally causes a reduction, 

instead of enhancement, of the response to the stimulus through adaptation or habituation. 

Although this is a simple form of learning, this odor learning is modulated by multiple 

neuromodulators, including dopamine, octopamine (the worm counterpart of mammalian 

noradrenaline), and neuropeptides (Kimura et al., 2010; Yamazoe-Umemoto et al., 2015). 

Previous quantitative analyses have shown that the enhanced odor avoidance behavior is not 

caused by changes in speed, but mostly by increases in run duration (Yamazoe-Umemoto et al., 

2015). However, this did not rule out the possibility that other behavioral features play more 

profound effects. 

 

As an example of comprehensive feature extraction from a behavioral state, I focused 

on learning-dependent changes in cluster 0 (run) because the values of their centroid migration 

are quantitatively more reliable than cluster 1 (pirouette) as mentioned above. In addition to the 

basic behavioral features used for the estimation of behavioral states (V, dV, B, and dB), I  also 

calculated directedness (Dir) (Gorelik and Gautreau, 2014), and the odor concentration (C) and 

temporal change in odor concentration (dC) that each worm experienced during the odor 

avoidance behavior; C and dC were calculated based on actual measurements of the dynamic 

odor gradient (Tanimoto et al., 2017; Yamazoe-Umemoto et al., 2018). For these, I calculated 

the initiation (Ini), middle (Mid), termination (Ter), and all (All) values of a cluster 0 segment 
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(Fig. 5A). In addition, different time windows (1-6 s in this case) were used to calculate these 

values because a behavioral feature could be apparent only within a specific temporal window 

(for example, velocity of run (i.e. cluster 0) starts decreasing 2 s before the end of a run (Pierce-

Shimomura et al., 1999)). I also calculated durations (Dur) of cluster 0 and 1, and the 

weathervane index (WV) (Iino and Yoshida, 2009). Information gain for each of these features 

was compared between naive/mock and pre-exposed conditions (Fig. 5B, for example). The 

information gain values for each of the features have been summarized in Table 2, and the 

details are described in Supplementary Tables 2-11. 

 

Through this analysis, I was able to find new as well as previously known behavioral 

features that exhibited learning-dependent changes. First, I found that the duration of each 

cluster 0 (Clst0Dur) exhibited higher information gain (Table 2), which corresponded to 

significantly increased cluster 0 duration (Fig. 6B). This result is consistent with the findings 

from previous reports (Kimura et al., 2010; Yamazoe-Umemoto et al., 2015), highlighting the 

reliability of this method. I also found that the velocity at the beginning of each cluster 0 (V_Ini) 

consistently exhibited higher information gain in the average and median values in multiple 

time windows (Table 2); these values were also significantly different in the pre-exposed worms 

as compared to the control worms (Fig. 6C). The previous study has not identified this 

difference as only average values per run (i.e. cluster 0) have been calculated in the study 

(Yamazoe-Umemoto et al., 2015). Although the contribution of this behavioral feature to 

enhanced odor avoidance is unclear at present, our results indicate that the STEFTR method can 
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reveal characteristic feature(s) under specific conditions, which is difficult for human analyses 

to accomplish. 

 

Odor stimuli during runs, which likely drive the worms' odor avoidance behavior, 

were also found to be consistently modulated (Table 2). In fact, odor concentration (C) was 

significantly lower, and the temporal change in odor concentration (dC) was significantly closer 

to zero (i.e. shallower) in a learning-dependent manner (Fig. 6D and E). Because the previous 

study demonstrated that worm odor avoidance behavior depends on dC rather than C at least in 

the naive condition (Tanimoto et al., 2017), one possibility is that the changes in the 

responsiveness of worms to dC was the underlying reason for the enhanced odor avoidance. 

However, it is also possible that the odor-experienced worms were somehow located farther 

away from the odor source than the unexperienced worms, and hence, sensed lower odor 

concentrations and shallower odor concentration change than the latter.  

 

Responsiveness of sensory neurons to odor increase was modulated by the odor learning 

(This experiment was performed by Yosuke Ikejiri.) 

If the change in sensitivity to dC/dt is the reason underlying enhanced odor 

avoidance behavior, it should be associated with changes in neural activity. Thus, I analyzed the 

responsiveness of a likely candidate, ASH nociceptive neurons (Bargmann, 2006; Kaplan, 

1996). Previously, we have established the OSB2 microscope system that allows for in vivo 

calcium imaging of C. elegans neurons in the presence of odor stimuli resembling those that the 
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worms experience during the odor avoidance behavior in the plates (Fig. 7A) (Tanimoto et al., 

2017). Using the OSB2 system, we found that ASH neurons are the major sensory neurons to 

cause pirouettes upon increases in 2-nonanone concentration (Tanimoto et al., 2017). However, 

whether the ASH response is modulated by 2-nonanone experience has not yet been studied. 

 

We found that ASH responses were indeed modulated by prior odor experience. 

When the worms were stimulated with a 5 nM/s odor increase rate, which is the lowest rate of 

change to cause the threshold-level behavioral response in the previous study (Tanimoto et al., 

2017), ASH neurons in naive as well as mock-treated worms exhibited robust responses (Fig. 

7B). However, the ASH responses were significantly reduced in the pre-exposed worms (Fig. 

7B and C). This suggests that prior odor experience causes a reduction in the neuronal response 

to a slight increase in odor concentration, subsequently causing longer run durations and 

enhanced odor avoidance behavior (Fig. 7D).  

 

Extracted behavioral features of mutant strains correspond to gene function 

Next, I comprehensively analyzed learning-dependent behavioral changes in the 

mutant C. elegans strains. Many mutant strains of C. elegans showing impaired learning have 

already been isolated and characterized (Bargmann, 2006; Sasakura and Mori, 2013), and the 

behavioral abnormalities observed in these mutants should reflect the role of the causal genes in 

neural function. In fact, Yamazoe-Umemoto et al. have previously shown that two different 

groups of genes involved in the enhanced odor avoidance behavior cause different abnormalities 



� �������

in behavioral features when mutated (Yamazoe-Umemoto et al., 2015). However, as the 

behavioral features exhibited by a mutant strain could be different from one another, 

identification of abnormal behavioral features is often laborious and time-consuming.  

 

In addition to studying the previously described mutants with defective enhanced 

odor avoidance behavior (egl-3 and egl-21 for neuropeptide biosynthesis, and dop-3 for 

dopamine receptor) (Kass et al., 2001; Suo et al., 2004; Yamazoe-Umemoto et al., 2015), I also 

analyzed mutant strains found to be involved in the phenomenon in this study (ocr-2 and osm-9 

for TRP channels; tax-4 for CNG channel; eat-4 for vesicular glutamate transporter; pkc-1 for 

protein kinase) (Colbert et al., 1997; Komatsu et al., 1996; Land et al., 1994; Lee et al., 1999; 

Tobin et al., 2002) (Table 3). 

 

Neuropeptide mutant strains did not exhibit learning-dependent changes in 

behavioral features, except for the velocity of egl-3(ok979). This result is consistent with the 

previous finding that neuropeptide signaling is required for the acquisition of odor memory 

(Yamazoe-Umemoto et al., 2015). egl-3(ok979) may have exhibited stronger phenotypes than 

egl-3(n589) because they are nonsense and missense mutants, respectively. Also consistent with 

the previous report (Yamazoe-Umemoto et al., 2015), the dop-3 mutants exhibited 

abnormalities in direction-related behavioral features (B and Dir) while the changes in cluster 0 

durations and velocities are similar to those of wild-type worms (Table 3). Furthermore, with 

respect to the newly added mutant strain, similar patterns are observed in ocr-2 and osm-9 

mutants of the TRP channel involved in sensory perception. On the other hand, tax-4, which is 
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also involved in sensory perception but expressed in a different set of sensory neurons 

(Komatsu et al., 1996; Tobin et al., 2002), and eat-4 and pkc-1 mutants showed different 

patterns of abnormalities. Taken together, our results suggest that the patterns of features 

extracted from mutant strains may reflect functional groupings of the mutated genes. Thus, 

profiling and classification of extracted mutant features of unknown genes may be useful in the 

estimation of their physiological functions. 

 

Feature extraction of fly sexual behavior 

Next, I applied the technique to comprehensive feature extraction of animal behavior 

under specific situations in two different conditions—heterosexual chasing behavior of 

Drosophila melanogaster with or without pheromone sensation. On an experimental tracking 

system (Fig. 8A), male flies chased the target female flies’ abdomens after tapping them with 

their forelegs to sense the cuticular pheromone, although males do not show such chasing 

behavior before tapping (Kohatsu et al., 2011). While this pheromone-driven behavior has been 

generally used for the observation of neural activity during courtship behavior in fruit flies, the 

behavioral features have not yet been elucidated comprehensively. 

 

In this study, I used a tracking system as described in previous studies, where a male 

was exhibited the moving female abdomen with 8 times left-right round trip after a pheromone 

sensation (Fig. 8A) (Kohatsu et al., 2011). I detected positive information gains in the velocity, 

changes in velocity, bearing, and changes in bearing in a pheromone sensation-dependent 
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manner (Fig. 8B). Unexpectedly, the information gains of velocity were higher in the earlier 

round trips and decreased over the trips (Fig. 8B). This suggests that the pheromonal effect 

promoting chasing behavior decreases over time. To confirm the result of the STEFTR method, 

I re-analyzed the speed of the male locomotion along with time-series. Consistent with the 

STEFTR result, the velocity of males that had tapped the female significantly decreased over 

the trips (orange group in Fig. 8C; significant differences between rounds 1, 4, and 8), whereas 

that of control flies (gray group in Fig. 8C) remained mostly unchanged (significant difference 

only between rounds 1 and 5). Thus, the STEFTR method can even uncover behavioral features 

that fluctuate over time. The decreased tracking velocity may reflect a decrease in motivation in 

the fly brain, which can be assessed directly by observing the temporal changes in neuronal 

activity related to the courtship-motivation circuit in the fly brain (Yamamoto and Koganezawa, 

2013; Zhang et al., 2018). 

 

Feature extraction of learning-dependent modulation of acoustic navigation in bats 

To further demonstrate the general applicability of the method, I examined features 

of acoustic navigation in bats. Yamada has previously reported that bats improve their flight 

trajectory in an indoor space with obstacles in a learning-dependent manner (Yamada 2017). 

Here, I optimized features such as velocity (V), distance to the obstacle chain array (R_obs and 

R_x), and horizontal bearing of the flight (B_hori) for the experimental paradigm (Fig. 9A and 

B). Interestingly, although the velocity (V) itself was modulated by flight experience, the change 

in velocity (dV) was not (Fig. 9C and D), suggesting that bats determine flight speed before 
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initiating navigation, but not during navigation, at least in this experimental condition. As the 

vocalizations of bats reflect their attention or decisions (Moss and Surlykke, 2010), our results 

suggest that the STEFTR method can be used to elucidate such higher brain functions during 

navigation. 
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DISCUSSION 

 Measuring and analyzing behavior is one of the most prominent steps in 

understanding brain function. In order to utilize “behavioral big data”, I developed a hybrid 

supervised/unsupervised technique, the STEFTR method, to estimate behavioral states and to 

efficiently extract behavioral features solely from the trajectories of animal movement. The 

behavioral states of worms and penguins estimated with the STEFTR method were in 

reasonable agreement with the ones based on previous knowledge, highlighting the validity of 

our method. In addition, one of the learning-dependent behavioral features extracted from 

worms corresponded to a change in neural activity. Furthermore, I was able to identify 

temporally dynamic changes through feature extraction from fly courtship behavioral data. 

 

 One of the advantages of the STEFTR method is its versatility. Multiple methods 

have been reported for the behavioral analysis of specific animals under specific conditions 

(Baek et al., 2002; Branson et al., 2009; Brown et al., 2013; Dankert et al., 2009; Kabra et al., 

2013; Mathis et al., 2018; Robie et al., 2017; Stephens et al., 2008; Vogelstein et al., 2014; 

Wiltschko et al., 2015). However, the animals and experimental conditions for which each of 

these methods can be applied are rather limited. For example, it is still not easy to effectively 

and robustly extract an animal's posture from a video image, especially in the wild. Even in 

laboratories, the parameters generally need to be adjusted again when imaging conditions 

changed (Dell et al., 2014; Egnor and Branson, 2016). In contrast to these methods, our method 
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allows for behavioral analysis based on positional information that can be extracted from animal 

video images as well as from different methods such as a GPS device. 

 

 As a first step of the STEFTR method, I estimated behavioral states from animal 

trajectories. State estimation is one of the critical processes of movement analysis of animals in 

the wild as well as of cars and people in ecology and data science, respectively (Egnor and 

Branson, 2016; Jonsen et al., 2013; Patterson et al., 2008; Zheng, 2015). However, the 

analytical methods that can be applied to the analysis of various types of animals (and cars and 

people) are still in debate (Gurarie et al., 2016; Zheng, 2015). In the STEFTR method, I aimed 

to analyze behavior without previous knowledge of the animal and/or experimental condition 

and independent of the spatiotemporal scale of the behavior. For this purpose, I analyzed 

migratory velocity and direction, the most fundamental elements of moving objects, with 

appropriate moving-averaged data. Because different types of behavioral features are observed 

in different temporal scales from milliseconds to days or months (Buhusi and Meck, 2005), I 

assumed that different levels of behavioral states will be extracted with different temporal 

resolution. I further hypothesized that a proper combination of recording time, time unit, and 

temporal resolution may determine the type of behavioral state to be extracted. Our results 

suggest that the ratio among total recording time, time unit, and temporal window used in this 

study were proper to extract well-known behavioral states in worms and penguins (Fig. 2D-F 

and 3F-H). Furthermore, when I used ~0.15% temporal window for analysis of worms, the 

clusters obtained from the analysis did not match to run and pirouette (Suppl. Fig. 1F). This 
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result also supports the idea that a proper temporal window is required to extract certain 

behavioral states. Still, those clusters with 0.15% temporal window may reflect other behavioral 

states of worms, which have not been studied yet. 

 

 State estimation based only on trajectory analysis using the STEFTR method is not 

perfect, as shown in the case of penguins (Fig. 3F-H). However, the estimated behavioral states 

likely provide us with important information for further experiments, such as when and where 

in the spatiotemporal behavioral profile of the animal behavior should be analyzed in detail, 

especially in the case where the behavior has not been studied intensively in a quantitative 

manner. For example, relatively small movements at places distant from their nest in the wild 

may correspond to the feeding area. For neurobiological/physiological analysis, the transition 

from one state to the other could be triggered by a specific change in the sensory stimulus and 

associated with specific neural activities. It should also be noted that the STEFTR method 

allows semi-automatic state estimation and feature extraction, which is suitable for large-scale 

behavioral analysis of mutant strains of laboratory model animals (Table 3).  

 

 Estimation of behavioral states (or behavioral modes) based on animal trajectories 

have been performed previously by various methods. The Expectation-Maximization binary 

Clustering (EMbC) method is the most similar to our method (Garriga et al., 2016). In the 

EMbC method, a few behavioral features, such as velocity and turn angle, were classified into 

two groups based on higher (H) or lower (L) values compared to a threshold, and the trajectories 
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were segmented using combinations of the classifications (e.g., HH, HL, LH, or LL for 

velocity-turn angle). In that study, bat trajectories were analyzed by the EMbC method and 

compared with the labels by experts. True positive rates (TPR) for roost, forage, and commute 

were 9%, 94%, and 91%, respectively, which were at least comparable with the TPR of our 

method for worms and penguins ("sensitivity" in Fig. 2F and 3H). When state estimation from 

trajectory data with classic methods (first passage time, speed-tortuosity threshold, Hidden 

Markov Model, etc.) or with machine learning methods (linear discriminant analysis, 

classification and regression trees, support vector machine, etc.) were systematically compared 

with ground truth data, TPR of the classic methods were about 30-80%, and 80-90% for 

machine learning (Bennison et al., 2017; Nathan et al., 2012). Furthermore, even in a study that 

classified the behavioral state of Drosophila or mice based on high content video data with 

machine learning analysis, about 4-5% errors were observed (Kabra et al., 2013). This 

comparison of our method with earlier methods is not accurate as these studies used data 

different from ours. Still, I consider that our STEFTR method is one of the efficient methods to 

estimate behavioral states from animal trajectories. 

 

 For comprehensive feature extraction, I used information gain, an index used in 

decision tree analysis. Decision tree analysis is one of the machine learning techniques used for 

classification. Classification analysis involves classifying new, unlabeled data into appropriate 

classes using characteristic features and the parameters that have been extracted from the known 

class-labeled data. In the present study, however, the classification itself was not meaningful 
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because the data were already classified (with/without learning or with/without sex pheromone). 

Instead, I focused on the procedure in the classification that identifies features useful for 

distinguishing between the two classes. In other words, behavioral features that are different 

between two classes (i.e., conditions) should be able to effectively classify the behavioral data 

of animals in two conditions. To our knowledge, our STEFTR method is the first pipeline to 

comprehensively extract behavioral features of a behavioral state in two different conditions. 

 

 Although the STEFTR method does not directly provide information about 

brain/neural activity underlying animal behavior, it provides us with clues required to formulate 

hypotheses related to the experimental investigation of the neural activity, as shown in the case 

of learning-dependent changes in behavioral features and neural activity (Fig. 7). For example, 

animals in the wild experience continuously changing visual, auditory, and olfactory stimuli, 

each of which contains multi-dimensional information (color, shape, tone, different chemical 

compounds, etc.). Therefore, it is difficult to identify which aspect(s) of the particular stimulus 

actually triggers a change in animal behavior. Estimation of behavioral states using the STEFTR 

method will allow us to identify the behavior-triggering stimulus by focusing on the timing 

and/or place of the behavioral transition. Similarly, large-scale recording of neural activities 

from moving animals in the laboratory itself is difficult to interpret. However, state estimation 

and feature extraction of the behavior will greatly facilitate the identification of neural activities 

that are associated with behavioral transitions and/or specific behavioral features. 

  



� �������

MATERIAL AND METHODS 

Overview of behavioral state estimation 

For the analysis of trajectory information of an animal obtained from video images or 

from the GPS device attached to an animal, approximately 1/1,000 and 1/100 of the median 

recording time across animals were used as a unit for time frame and the time window for 

moving average, respectively (Table 1). These values were used to draw the 8 histograms of the 

averages (Ave) and the variances (Var) of velocity (V), bearing (B), time-differential of V (dV) 

and B (dB) as the basic behavioral features. The time window for moving average was critical to 

reduce noise and to detect relatively long trends of behavior (see Discussion). Each histogram 

was regarded as a mixture of normal distributions, and EM algorithm was used to estimate the 

number of clusters (i.e. normal distributions) and their boundaries. I then calculated how many 

individual clusters in a histogram were well-separated using the separation index, and a 

histogram with the best separation index was chosen for further analysis (for details, see the 

following sections). The individual clusters in the chosen histogram are considered to be 

corresponding to different behavioral states. In the case of worms, the EM analysis was 

performed with specifying the maximum cluster number of 20. In other cases, maximum cluster 

number 5 was predetermined based on the knowledge that the number of basic behavioral states 

are several in general (Patterson et al., 2008). 

 

The EM algorithm assigns a cluster label to each time frame although the clustering 

results�should be smooth in time because each cluster should reflect a behavioral state of an 



� �������

animal. To smooth out the clustering results and removing outlying results, moving average was 

again applied to the cluster labels, which resulted in clusters resemble to the human-labeled 

behavioral states. 

 

When the value of a basic behavioral feature changes suddenly and largely, the 

influence of the change may extend over a wide range. For example, if an animal moving 

straightly initiates local search suddenly, dB value will be 0°, 0°, 0°, 0°, 0°, 0°, 180°, 0°, 90°, 0°, 

270°, etc. If moving average with ±5 time frame is applied, the value change occurs from -5 

time frame of the sudden value change, which should be compensated. Because worm's clusters 

0 and 1 corresponded to this case, the beginning and the end of each cluster 0 was extended by 

the half of time window.  

 

The cluster labels obtained as described above were mapped to the corresponding 

trajectory position with colors. I used a custom-made python program for calculating basic 

behavioral features, Weka data mining software (the University of Waikato, New Zealand) 

(Frank et al., 2016) for EM calculation, and Excel (Microsoft) for others. 

 

EM algorithm for cluster analysis 

A set of values of the ith basic behavioral feature !"($. &. , V_Ave), which were 

extracted from trajectories of interest, and the number of clusters N were given. I employed the 
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EM algorithm to cluster !" into N clusters, i.e., a mixture of N Gaussians. The probability 

distribution of the Gaussian mixtures ./ is represented as follows: 

0(1"|./) = ∑ 567(1", 86, 96)/
6:; , 

where 1" is one of the feature values among of !", 56 is the mixture weight of the nth 

Gaussian, 86 is the mean of the nth Gaussian, and 96 is the standard deviation of the nth 

Gaussian. The EM algorithm was used to estimate the cluster parameters: 56, 86, and 96. 

 

Determination of cluster number using log-likelihood for model 

To find the best cluster number N, we evaluated a set of clusters obtained by the EM 

algorithm using log-likelihood of a set of feature values !" under model .6 (n shows the 

cluster number). That is, (i) we performed the EM algorithm to obtain the cluster parameters for 

each n, which increased from 1 by 1. (ii) If the log-likelihood of !" for .6 was increased 

compared with that for .6<;, n was further increased. (iii) If not, the best N was determined as 

= − 1. The Weka software (Frank et al., 2016) was used for this process. 

 

Automatic selection of basic behavioral feature by separation index 

To choose a histogram that best represents multiple behavior states, we calculated the 

"separation index" based on the following two criteria: (i) the distances among clusters were 

large and (ii) a peak of each cluster was apparent. The first criterion was calculated based on the 

overlapping area of different clusters. The second criterion was designed based on an idea that, 

when behavior clusters are not separated, the histogram (mixture of the clusters) seems to have 
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no apparent peaks. Based on the above criteria, the separation index of a histogram was 

calculated as follows: 

@(A) = (1 − Ov(./)) +
minG7,Mx(A)J

7
, 

where Ov(./) represents the proportion of overlapping area of adjacent Gaussian 

distributions in ./, and Mx(A) represents the number of local maxima in the histogram A. 

To calculate local maxima, we first estimated the probability density function of A using the 

kernel density estimation and then calculated the derivative of the function. Note that, to 

eliminate noise local maxima, we ignored local maxima smaller than 0.1%. A histogram with 

the largest index was selected for further analysis. 

 

Feature extraction with information gain 

I leverage information gain to evaluate the classification ability of each feature, i.e., 

its ability to identify a characteristic of a state (cluster). Information entropy is used to compute 

the ambiguity of a set of data points according to the following formula:  

A = −∑ 06 logN 06/
6:; , 

where 06 is the proportion of data points belonging to the nth class (cluster). Given that I 

classify all the data points into two groups (i.e. two experimental conditions) using a particular 

threshold related to a specific feature, the feature is considered to be a characteristic feature (in 

that it classifies the data points well) if the ambiguity within the two groups is lower than that of 
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the original data set. Thus, I evaluated features in terms of their ability in ambiguity reduction 

upon classification (information gain).  

 

For worm odor avoidance behavior, I extracted behavioral features that have positive 

information gain in naive versus pre-exposed worms or in mock-treated versus pre-exposed 

worms (see below). Next, I chose the extracted features that were common for both 

comparisons; these features were termed as “features modulated in a learning-dependent 

manner.” For flies, behavioral features were compared between with or without pheromone 

tapping. For bats, behavioral features were compared between unfamiliar flights (1st-3rd) and 

familiar (10th-12th) flights. The Weka software was used for these calculations. 

Behavioral parameters included in a feature vector 

For the machine learning analysis of worm's odor avoidance behavior, the following 

behavioral features were calculated for each cluster 0 segment from the coordinates of the 

centroid of the trajectory: velocity (V), bearing (B), odor concentration the worm experienced 

during the run (C), the time differential values for these (dV, dB, and dC), directedness (Dir) 

(Gorelik and Gautreau, 2014), curvature (called weathervane; WV) (Iino and Yoshida, 2009), 

and durations of cluster 0 and 1 (Clst0Dur and Clst1Dur, respectively). For V, dV, B, dB, C, dC, 

and Dir, the average (Ave) and median (Med) values for at the initiation (Ini), middle (Mid), 

termination (Ter), and all (All) periods of a cluster 0 segment were calculated. A total of 333 

features was calculated by combining all these features.  
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For analyzing changes in the flight of bats, the following behavioral features in each 

flight were calculated from the coordinates of the bats and obstacles: three-dimensional flight 

velocity (V), horizontal and vertical bearings of the flight (B_hori and B_vert, respectively), 

distance (R_obs) and bearing (B_obs) of the bat to the nearest edge point of the obstacle chain 

array, longitudinal directional distance to the frontal chain array (R_x), and lateral directional 

distance to the inside pitch of the chain array (R_y). Time-differential values were calculated for 

V (dV), B (dB), dB (ddB), and the flight height (dH), which were calculated with frame units of 

the high-speed video cameras (1/125 s). All flight trajectories were divided into three segments: 

early, middle, and late terms. The time window for the analysis of each behavioral feature was 

0.1 s, 0.2 s, or 0.3 s before or while (t = 0) passing through the chain array. A total of 42 

features was calculated by combining all these features.  

 

Excel and Visual C# (Microsoft) were used for the calculations, while the Beeswarm 

package for R (The R Project) was used to obtain a scatter plot of the data.  

 

Worms (This experiment was performed by Akiko Yamazoe-Umemoto and Kosuke Fujita) 

The culture and handling of Caenorhabditis elegans strains were performed 

according to techniques described previously (Brenner, 1974). Wild-type Bristol strain 

RRID:WB-STRAIN:N2_Male and mutant strains RRID:WB-STRAIN:MT1219 egl-3(n589), 

RRID:WB-STRAIN:VC671 egl-3(ok979), RRID:WB-STRAIN:KP2018 egl-21(n476), 
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RRID:WB-STRAIN:CX4544 ocr-2(ak47), RRID:WB-STRAIN:JC1636 osm-9(ky10), and 

RRID:WB-STRAIN:FK127 tax-4(p678), RRID:WB-STRAIN:MT6308 eat-4(ky5), and 

RRID:WB-STRAIN:IK105 pkc-1(nj1) were obtained from the Caenorhabditis Genetics Center 

at the University of Minnesota, USA. The RRID:WB-STRAIN:KDK1 dop-3(tm1356) strain 

was originally obtained from the National BioResource Project (Japan) and back-crossed with 

the wild-type N2 strain five times. 

 

A 2-nonanone avoidance assay was performed according to the protocol described 

previously (Kimura et al., 2010; Yamazoe-Umemoto et al., 2015). Briefly, 2-3 young adult 

hermaphrodite worms grown synchronously were placed in the center of a 9-cm nematode 

growth media (NGM) plate. Worm behavior was recorded for 12 min after 2-µL of 30% 2-

nonanone (cat. no. 132-04173; Wako, Japan) diluted in 99.5% ethanol (cat. no. 0057-00456; 

Wako, Japan) were placed at two spots on the surface of the NGM plate. This assay was 

performed under the following three conditions: (1) Naive—the worms cultivated on 6-cm 

NGM plates with the RRID:WB-STRAIN:OP-50 bacteria as food were briefly washed with 

NGM buffer and subjected to the assay; (2) Pre-exposed—the worms were subjected to the 

assay after being pre-exposed to 0.6 µL of 15% 2-nonanone spotted on the lid of a 6-cm NGM 

plate for 1 h without food; and (3) Mock—the worms were subjected to the assay after being 

pre-exposed to ethanol similarly to the pre-exposed condition. We added the mock-treated 

control group to ensure that the starvation itself did not affect the odor avoidance behavior of 

worms and to extract behavioral features modulated by odor pre-exposure compared with the 
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naive and mock-treated control groups. Images of worms on the 9-cm NGM plate during the 

odor avoidance assay were acquired by a high-resolution USB camera (DMK 72AUC02; The 

Imaging Source, USA) with a lens (LM16JC5MW; Kowa, Japan) at 1 Hz for 12 min. The 

coordinates of individual animals' centroids were acquired from the recorded images using the 

Move-tr/2D software (Library Co., Ltd., Tokyo, Japan) and used for the STEFTR analysis. 

 

Similar to the other sensory behaviors of the worms, trajectories in the 2-nonanone 

avoidance behavior can be divided into two states: (1) “run”—a relatively long period of 

straight movement, and (2) “pirouette”—a period of short movements interrupted by frequent 

reversals and turns (Kimura et al., 2010; Pierce-Shimomura et al., 1999). The angular change 

per second was calculated from the centroid coordinates, and movements of 1 s with angular 

changes larger than 90° were classified as a turn. The histogram of turn intervals could be fitted 

to two exponentials, suggesting that the turn intervals are regulated by two probabilistic 

mechanisms (Pierce-Shimomura et al., 1999; Yamazoe-Umemoto et al., 2015). The time point 

at which the two exponentials intersected was defined as tcrit, and turn intervals longer or shorter 

than the tcrit were classified as runs or included in pirouettes, respectively. The tcrit was 

calculated for the control (i.e., naive and mock-treated) condition for wild-type and mutant 

strains. Excel (Microsoft) was used for the above calculations. The odor concentrations that the 

worms experienced at specific spatiotemporal points were calculated according to the dynamic 

odor gradient model based on the measured odor concentration (Tanimoto et al., 2017; 

Yamazoe-Umemoto et al., 2018). 
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Statistical analyses were performed with Prism ver. 5.0 for Mac OSX (GraphPad 

Software, CA, USA) and R (The R Project). The sample size was determined based on the 

previous report (Yamazoe-Umemoto et al., 2015). A part of the original data used in this study 

had already been analyzed and published previously (Yamazoe-Umemoto et al., 2015), and re-

analyzed with the STEFTR method. 

 

Penguins (This experiment was performed by Kentaro Ito, Nobuo Kokubun, and Akinori 

Takahashi) 

Fieldwork was performed on chick-rearing Adélie penguins at Hukuro Cove colony 

(69°13′ S, 39°38′ E) in Lützow-Holm Bay, East Antarctica. GPS-depth loggers (GPL380-DT 

or GPL400-D3GT, weighing 55-85 g; Little Leonardo, Japan) were deployed among 11 

penguins during the period between 27 December 2016 and 10 January 2017 and recovered 

from all the birds after 1-2 days. While the loggers were set to record GPS positions and depth 

every second, they could not record GPS positions when the penguins were diving. Therefore, 

we linearly interpolated the data, when necessary, to obtain GPS positions every 1 minute 

before further analysis. See Kokubun et al. for methodological details (Kokubun et al., 2015). 

This fieldwork was carried out in accordance with the recommendations of the Law relating to 

Protection of the Environment in Antarctica. The protocol was approved by the Ministry of the 

Environment, Government of Japan. The sample size was not predetermined. 
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Flying seabirds (This experiment was performed by Katsufumi Sato and Ken Yoda) 

Fieldwork was performed on Calonectris leucomelas at Funakoshi-Ohshima Island 

(39°24’N, 141°59’E) between August and September in 2011, 2012, 2013, and 2015. GPS 

logger (GiPSy-2, 37 × 16 × 4 mm or GiPSy-4, 37 × 19 × 6 mm; TechnoSmArt, Roma, Italy) 

was attached to the back feathers of chick-rearing Streaked Shearwaters with Tesa® tape 

(Beiersdorf AG; GmbH, Hamburg, Germany) and cyanoacrylate glue (Loctite®401; Henkel 

Ltd., Hatfield, UK). The loggers were housed in waterproof heat-shrink tubing and set to record 

one fix per minute. The total weight of the unit was 25 g, which was less than 5% of the mean 

mass of the birds in accordance with the suggested load limit for flying seabirds. After 

approximately two weeks of deployment, we recaptured and retrieved the loggers. See Yoda et 

al. for methodological details (Yoda et al., 2014). The study was carried out in accordance with 

the recommendations of the guidelines of the Animal Experimental Committee of Nagoya 

University. The protocol was approved by the Animal Experimental Committee of Nagoya 

University. The sample size was not predetermined. A part of the original data used in this study 

had already been analyzed and published previously (Yoda et al., 2014), and re-analyzed with 

the STEFTR method. 

 

Rats (This experiment was performed by Takuma Kitanishi) 

Locomotion data of an adult male Long Evans rat were obtained from the 

Collaborative Research in Computational Neuroscience (CRCNS; RRID:SCR_005608) data 

sharing website (https://crcns.org, hc-3 dataset, ec013 rat) (Mizuseki et al., 2014). The rat 



� �������

foraged for randomly dispersed water or foods on an elevated open field (180 cm × 180 cm) for 

17 - 53 min. The rat’s position was tracked by monitoring two light-emitting diodes mounted 

above the head with an overhead video camera at 30 Hz. The 30-Hz tracking data were 

resampled to 39.0625 Hz for offline processing. This study was carried out in accordance with 

the recommendations of the Regulations on Animal Experiments at Osaka City University. The 

protocol was approved by the Animal Care and Ethics Committee of Osaka City University. 

The sample size was not predetermined. The original data used in this study had already been 

analyzed and published previously (Diba and Buzsáki, 2008; Mizuseki et al., 2009; 2014), and 

re-analyzed with the STEFTR method. 

 

Flies (This experiment was performed by Daisuke Takaichi, Yuki Ishikawa, and Azusa 

Kamikouchi) 

Fruit flies D. melanogaster were raised on standard yeast-based media at 25ºC and 

40 - 60% relative humidity under a 12-hour light/dark cycle. Canton-S flies aged between 6-8 

days after eclosion were used as a wild-type. After eclosion, the males were housed singly, 

while females were housed in groups until the experiment.  

 

The locomotion measurement was performed as described previously with minor 

modifications (Kohatsu and Yamamoto, 2015; Kohatsu et al., 2011). Briefly, a male fly was 

tethered with a metal wire on its dorsal thorax and positioned over an air-supported Styrofoam 

ball (diameter, c. a. 6 mm). The locomotion trajectory of the fly was recorded by monitoring the 
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rotations of the Styrofoam ball using an optical computer mouse sensor (BSMRU21BK; 

BUFFALO INC., Nagoya, Japan). The sensor detected the movements of the ball in the 

horizontal (Δx) and vertical (Δy) directions, which correspond to lateral and forward movements 

of the male fly, respectively. The Δx and Δy values, together with timestamps, were sent to a 

computer at 60 Hz via an Arduino Due microcontroller (Switch Science, Japan) with a custom 

sketch program. The 60-Hz data were down-sampled to 4-Hz data for the information gain 

analysis. The measurements were obtained at 25±1°C and 50±10% relative humidity and within 

4 hours after light onset. 

 

Female pheromones were applied to the male fly by placing the female’s abdomen in 

contact with the male’s foreleg at the onset of the measurement. A manipulator (M-3333, 

Narishige, Tokyo, Japan) actuated a pipette with a volume of 200 µL (FUKAEKASEI Co., Ltd., 

China), in which a live female with her abdomen exposed toward a male fly was captured. We 

manually controlled the position of the manipulator to contact the female’s abdomen to the 

male’s foreleg. This contact procedure was omitted in the control experiments.  

 

Visual stimulus was applied directly after pheromone application by starting 

horizontal movements of the female fly in front of the male fly as described (Kohatsu et al., 

2011). The visual stimulus consisted of ten left-right horizontal movements of the female that 

lasted for 40 s. Each movement started with the female fly in the front of the male fly (i.e., 

center) and continued as the female fly moved left until it reached the left end of the rail (i.e., 5 
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mm away from the center), then moved right until it reached the right end of the rail (i.e., 5 mm 

away from the center), and ended when it came back to the center with a constant velocity of 5 

mm/s. This movement was driven by a stepper motor (42BYG Stepper Motor, Makeblock Co., 

Ltd., Shenzhen, China) controlled by a custom sketch program (processing software version 

3.3.7). We defined one round (4 s in total) as the movement related to the female starting to 

move away from the center, reaching the left end of the rail, passing the center, moving away to 

reach the right end of the rail, and coming back to the center again. Each of the “moving away” 

and “coming back” periods lasted for 1 s. 

 

The Δx and Δy values with timestamps obtained in the final eight rounds were used 

for the analysis. To detect the characteristic parameters for the chasing behavior, we used Δx 

and Δy values during the period when the female was moving away from the male (2 s/round). 

We set the angle of the chasing behavior as 0 degree when the male moved forward. Angles 

between 0 and 90 degrees indicate that the male fly is moving towards the female that was 

moving away from the male. 

 

As the parameters (velocity, bearing, and their time-differential values) were not 

normally distributed (Shapiro-Wilk test; see Supplementary Table 13), their values were 

compared between conditions (with/without pheromone) using the Mann-Whitney U test 

followed by Bonferroni correction for multiple comparisons. We used the Steel-Dwass test to 

compare values of the parameters between rounds. Statistical analyses were conducted using R 
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software version 3.4.4. No statistical methods were used to pre-determine sample sizes, but our 

sample sizes are similar to those in previous studies (Kohatsu and Yamamoto, 2015; Kohatsu et 

al., 2011).  

 

Bats (This experiment was performed by Yasufumi Yamada, and Shizuko Hiryu) 

 Three adult Japanese horseshoe bats (Rhinolophus ferrumequinum nippon, body 

length: 6–8 cm, body mass: 20–30 g) were captured from natural caves in the Hyogo and Osaka 

prefectures in Japan as previously described (Yamada et al., 2016). The bats were housed in a 

temperature- and humidity-controlled colony room [4 m (L) × 3 m (W) × 2 m (H)] with a 12-h 

light/dark cycle at Doshisha University in Kyoto, Japan, and were allowed to fly freely and 

given access to mealworms and water. Captures were conducted under license and in 

compliance with current Japanese law. This study was carried out in accordance with the 

recommendations of Principles of Animal Care (publication no. 86-23 [revised 1985)] of the 

National Institutes of Health) and all Japanese laws. The protocol was approved by the Animal 

Experiment Committee of Doshisha University.  

 

 Methods for acoustic navigation measurement in bats have been described elsewhere 

(Yamada 2017). Briefly, the experiments were conducted in a flight chamber constructed using 

steel plates [9 (length) × 4.5 (width) × 2.5 m (height)] under lighting with red filters (>650 nm) 

to avoid visual effects on the bats. An obstacle environment was constructed using plastic 

chains (diameter: 4 cm) suspended from the ceiling of the chamber. The chains were arranged at 
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15-cm intervals along the x-axis and at 22-cm intervals along the y-axis so that the bat was 

forced to fly in an S-shaped pattern without passing between chains. Three naive bats were 

observed for 12 continuous repeated flights so that their echolocation behavior in unfamiliar and 

familiar spaces could be compared. In this study, the first three flights were defined as 

unfamiliar flights, while the last three flights were defined as familiar flights. 

 

 The flight behavior of the bats was recorded at 125 frames/s using two digital high-

speed video cameras (MotionPro X3; IDT Japan, Inc., Japan) placed in the left and right corners 

of the flight chamber. Based on a direct linear transformation technique, the successive 3D 

positions of the flying bats, as well as the locations of other objects, were reconstructed using 

motion analysis software (DIPPMotionPro ver. 2.2.1.0; Ditect Corp., Japan). The statistical 

calculations were performed with SPSS version 23 (IBM Corp.). 

 

Calcium imaging of worm's neurons (This experiment was performed by Yosuke Ikejiri) 

Calcium imaging of the worms’ ASH neurons was performed according to the previous method 

with some modifications (Tanimoto et al., 2017). Briefly, transgenic strains expressing 

GCaMP3 (Tian et al., 2009) and mCherry (Shaner et al., 2004) in ASH sensory neurons under 

the sra-6 promoter (KDK70034 and KDK70072; 20 ng/µl of sra-6p::GCaMP3, 20 ng/µl of sra-

6p::mCherry, 10 ng/µl of lin-44p::GFP, 50 ng/µl of PvuII-cut N2 genomic DNA as a carrier in 

N2 background) were placed on an NGM agar plate on a robotic microscope system, OSB2 

(Tanimoto et al., 2017). Although these transgenic worms were immobilized with the 

acetylcholine receptor agonist levamisole (Lewis et al., 1980) for high-throughput data 
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acquisition through simultaneous imaging of multiple worms, the previous study revealed that 

the ASH activity is essentially unaffected by levamisole-treatment (Tanimoto et al., 2017). A 

constant gas flow of 8 mm/min was delivered, in which the mixture rate of 2-nonanone gas with 

air was changed to create a temporal gradient of odor concentration. The temporal change in 

odor concentration was measured by a custom-made semiconductor sensor before and after the 

series of calcium imaging experiments on each day. The fluorescence signals of GCaMP3 and 

mCherry in ASH neurons were divided into two channels using W-View (Hamamatsu, Japan), 

an image splitting optic, and captured by an electron multiplying charge-coupled detector (EM-

CCD) camera (ImagEM; Hamamatsu, Japan) at 1 Hz. The intensities of fluorescence signals 

from cell bodies were extracted and quantified by ImageJ (NIH) after background subtraction. 

The average ratio over 30 s prior to the odor increase was used as a baseline (F0), and the 

difference from F0 (∆F) was used to calculate the fluorescence intensities of GCaMP3 and 

mCherry (F = ∆F/F0). The ratio between florescence intensities of GCaMP and mCherry 

(GCaMP/mCherry) was used in the figure. 
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FIGURES AND TABLES 

 

Figure 1. A workflow of the STEFTR method. Trajectory data of animals are used to 

calculate 8 basic behavioral features, and one of them is analyzed by the EM algorithm to 

estimate behavioral states (upper panels). From a behavioral state, behavioral features are 

comprehensively evaluated by using information gain (lower panels).  
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Figure 2. State estimation of worms. (A) Examples of the trajectories of 3 worms before (left) 

or after odor learning (right) in 12 min of 2-nonanone avoidance assay, overlaid on a schematic 

drawing of a 9 cm plate. One of the trajectories is magnified below. (B) The histograms of 8 

basic behavioral features. Horizontal and vertical axes indicate the values and the density of 

each feature. The numbers in each panel indicate the separation indices. The red and yellow 

rectangles indicate the 1st and 2nd best separation indices, respectively. dB_Var was chosen (red 

square) for the EM analysis. (C) Clustering dB_Var by the EM algorithm. Each cluster 
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distribution (cluster 0, 1, 2, 3, and 4 are indicated by purple, blue, green, orange, and red dashed 

lines, respectively, similarly to the following figures) and the sum of clusters (red solid line) are 

shown. Inset is a magnified view. (D) Comparison of the cluster 0 and 1 (upper panel; purple 

and green, respectively) with run and pirouette (lower panel; blue and red, respectively) on a 

trajectory. The initial 2 minutes (gray in both panels) were excluded from the analyses because 

worms do not avoid the odor during the period (Kimura et al., 2010). (E) Event numbers of 

cluster 0 (left) and 1 (right) in run and pirouette. (F) Matching matrix of the state estimation 

shows the followings: sensitivity = TP / (TP + FN), false positive rate = FP / (FP + TN), false 

negative rate = FN / (FN + TP), specificity = TN / (TN + FP) , accuracy = (TP + TN) / (TP + 

TN + FP + FN), where TP = true positive, TN = true negative, FP = false positive, FN = false 

negative.  

This data was recorded by Akiko Yamazoe-Umemoto and Kosuke Fujita.  
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Figure 3. State estimation of penguins. (A) The trajectories of 11 penguins (black lines) on 

the Antarctic Continent (gray area; white area is the sea). Horizontal and vertical axes indicate 

longitude and latitude, respectively. (B) The histograms of 8 basic behavioral features (upper 

panels) and the classification by the EM algorithm.�The numbers in each panel indicate the 
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separation indices. The red and yellow rectangles indicate the 1st and 2nd best separation 

indices, respectively. (C) Clustering V_Ave into 5 clusters (D) Mapping of the 5 clusters on the 

trajectory. (E) Differences in velocity, duration, and depth among the clusters. Each dot 

represents a cluster bout, and the bars represent the median and the first and third quartiles. 

Significant differences among clusters suggest that the clusters correspond to different 

behavioral states. Statistical values were calculated using Kruskal-Wallis test with post hoc 

Dunn's test. **p < 0.01, ***p < 0.001. (F) An example of comparison of the clusters from the 

STEFTR analysis with the behavioral states by manually classified labels, which is based on 

diving depth, movement speed recorded from GPS data, and distance from the colony. (G) 

Event numbers of each cluster. (H) Matching matrix of the state estimation. The statistical 

details are described in Supplementary Table 1. 

This data was recorded by Kentaro Ito, Nobuo Kokubun, and Akinori Takahashi. 
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Figure 4. State estimation of flying seabirds in the Pacific Ocean. (A-D) and rats in the open 

maze (E-H). (A) 8 basic features of flying seabirds. (B) Clustering B_Var into 4 clusters. (C) 

Mapping of the clusters on the trajectory. The gray region is the northern part of Japan (Tohoku 

and Hokkaido area), while the white region is the sea. (D) Significant differences were observed 
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in duration (left) and directedness (right). (E) Eight basic features of rats. (F) Clustering V_Var 

into 4 clusters. (G) An example of trajectories of one rat. (H) Significant differences were 

observed in duration (left) and directedness (right). Each dot represents a cluster bout, and the 

bars represent the median and the first and third quartiles. Statistical values were calculated 

using Kruskal-Wallis test with post hoc Dunn's test. *p < 0.05, **p < 0.01, ***p < 0.001. The 

statistical details are described in Supplementary Table 1. 

This data was recorded by Katsufumi Sato, Ken Yoda, and Takuma Kitanishi. 
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Figure 5. Feature extraction of worm behavior. (A) Schematic drawing of the behavioral 

features. (B) One example (V_Ini; average of time window 2) of calculation of information 

gain. 
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Figure 6. Extracted features modulated by the odor learning. (A) Enhanced odor avoidance 

behavior in worms caused by odor pre-exposure. Left: End-points of 25 worms in each 

condition plotted on a schematic representation of the assay plate. Right: Avoidance distance 

(distance between the center line of the plate and the end-point of the behavior) of each worm. 

Each dot represents a worm. Significant differences were observed between the pre-exposed 

worms and the naive and mock-treated worms (***p < 0.001, Kruskal-Wallis test with post-hoc 

Dunn's test). (B, C, D, and E) Distributions of extracted features. Duration (B), the initial value 

of velocity (C; average of time window 2), the average odor concentration (D), and the average 

odor concentration change (E) of each run (***p < 0.001, Kruskal-Wallis test with post-hoc 

Dunn's test). Each dot represents a cluster bout, and the bars represent the median and the first 

and third quartiles. The statistical details are described in Supplementary Table 1.  

This data was recorded by Akiko Yamazoe-Umemoto and Kosuke Fujita. 
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Figure 7. Sensory responses to slight increases in odor concentration were reduced by pre-

exposure to the odor. (A) A schematic drawing of calcium imaging of neural activity of worms 

under odor stimuli. Several immobilized worms were simultaneously exposed to an odor flow 

whose concentration was changed by controlling syringe pumps. (B) Responses 

(GCaMP/mCherry) of ASH neurons in naive (n = 25), mock-treated (n = 29), and pre-exposed 

(n = 26) worms. Thick lines with gray shadows indicate mean ± standard error of the mean, 
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while thin lines indicate individual responses. (C) Distributions of peak values during the odor-

increasing phase (t = 40-80 s) shown in panel B. The bars represent the median. (***p < 0.001, 

Kruskal-Wallis test with post-hoc Dunn's test). (D) A model relationship between odor 

concentration change and behavioral response during navigation along the odor gradient. When 

naive and mock-treated worms sensed a slight increase in the odor concentration, which is a 

sign of migrating in the wrong direction, they stopped a run and started a pirouette to search for 

a new direction. In contrast, the pre-exposed worms did not respond to a slight increase in odor 

concentration, leading to longer run durations (and shorter pirouette durations in total as a 

consequence), which likely contribute to the enhanced avoidance distance. The statistical details 

are described in Supplementary Table 1. 

This experiment was performed by Yosuke Ikejiri. 
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Figure 8. Pheromone-driven responses of male fruit flies decreased over time. (A) A 

schematic drawing of the experimental setup. A female fly was actuated leftward and rightward 

in front of the male fly. The locomotion of the male fly was monitored by an optical sensor, 

which recorded lateral (∆x) and forward (∆y) movements at 4 Hz. (B) Information gain. Darker 

and lighter colors mean larger and smaller values, respectively. (C) Distribution of velocity in 

the chasing behavior of male flies. Control (without female tapping, gray dots) and 

experimental (with female tapping, orange dots) groups are shown. Solid and dotted lines 

represent the median and the first and third quartiles, respectively. Asterisks indicate the 

statistical significance between the control and test groups (Mann-Whitney U test followed by 

Bonferroni test for multiple comparison correction, p < 0.05). Different characters in each group 

indicate statistical significance among rounds (Steel-Dwass test, p < 0.05). The statistical details 

are described in Supplementary Tables 12 and 13. 

This data was recorded by Daisuke Takaichi,�Yuki Ishikawa, and Azusa Kamikouchi. 
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Figure 9. Learning-dependent changes in bat acoustic navigation. (A) The experimental 

setup for monitoring the 3D flight trajectory of a bat during obstacle avoidance flight in a 

chamber. (B) Representative flight trajectories of a bat in the horizontal plane during repeated 

flights in the obstacle course. The figure on the top combines the first three (red) and last three 

(blue) flight trajectories. Each behavioral feature was collected in three segments: earlier, 

middle, and later terms. The figure on the bottom shows an expanded view of the earlier term in 

the first flight. Definition of the horizontal bearing of the flight (B_hori), distance (R_obs), and 

bearing (B_obs) of the bat to the nearest edge point of the obstacle chain array, longitudinal 

directional distance to the frontal chain array (R_x), and lateral directional distance to the inside 
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pitch of the chains array (R_y) are indicated. Time windows for the analysis of each behavioral 

feature were 0.1, 0.2, or 0.3 s before or while (t = 0) passing through the chain array. (C) A list 

of extracted features of bat acoustic navigation modulated by flight experience. (D) 

Distributions of V(-0.3) and dV(-0.3) are plotted. The bars represent the median and the first and 

third quartiles. (*p < 0.05, Kruskal-Wallis test with post-hoc Dunn's test). The statistical details 

are described in Supplementary Table 1. 

This data was recorded by Yasufumi Yamada and Shizuko Hiryu. 
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Table 1. Summary of recording and analysis conditions of animal behavior.   

Animal worms penguins flying seabirds rats flies bats 

Condition naive, mock, 
preexposed 1 1 1 with or without 

pheromone 
with or without 

learning 
Animal # / 
condition 50 each 11 54 1 27, 30 3 each 

Trajectory # / 
condition 50 each 11 54 45 27, 30 9 each 

Recording time 
(min-max) 600 s 1626-2787 

min 
484-8293  

min 1031-3194 s 16 s 1.67-2.53 s 

Recording time 
(median) 600 s 2279 min 972 min 1822 min 16 s 1.95 s 

Time unit 1 s 1 min 1 min 1 s 0.25 s 0.008 s 
Time window for 
moving average 12 s 20 min 10 min 20 s - - 

Feature used for 
EM dB_Var V_Ave B_Var V_Var - - 

Length unit mm m km cm a.u. m 
Approx. distance 

(min-max) 5-30 mm 1-10 km 100-2000 km 180 × 180 cm 1 - 500 mm 6 m 

  



� �������

Table 2. Learning-dependent features extracted from cluster 0 in odor avoidance behavior of wild-type worms.     

time value 

Clst0 
Dur 

Clst1 
Dur V dV B dB Dir C dC WV 

All All All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All 

- Ave 0.098 0.057 �  - - - �  - - - �  - - - 0.072 - - - �  - - - 0.163 - - - 0.088 - - - �  

- Med - - 0.040 - - -  - - - �  - - - 0.102 - - - - - - - 0.160 - - - 0.088 - - -  

- Q1st - - �  - - -  - - - �  - - - 0.065 - - - - - - - 0.164 - - - 0.107 - - -  

- Q3rd - - �  - - -  - - - �  - - - 0.083 - - - - - - - 0.161 - - - 0.080 - - -  

- Var - - �  - - -  - - - �  - - -  - - - - - - -  - - - 0.080 - - -  

- 1 %ile - - �  - - -  - - - �  - - -  - - - - - - - 0.163 - - - 0.090 - - -  

- 5 %ile - - �  - - -  - - - �  - - -  - - - - - - - 0.165 - - - 0.100 - - -  

- 95 %ile - - �  - - -  - - - �  - - -  - - - - - - - 0.153 - - - 0.108 - - -  

- 99 %ile - - �  - - - �  - - - �  - - - �  - - - - - - - 0.148 - - - 0.060 - - - �  

1 Ave - - - 0.114 �  �  - �  �  �  - �  �  �  - �  �  �  - - - - - 0.147 0.162 0.162 - 0.116 0.093 0.104 - 

2 Ave - - - 0.120  0.049 -    -   �  -  0.048  -   �  - 0.148 0.166 0.163 - 0.111 0.105 0.122 - 

3 Ave - - - 0.109  �  -    -   �  -  0.049  -   �  - 0.151 0.163 0.162 - 0.110 0.099 0.128 - 

3 Med - - - 0.100  0.039 -    -   �  -    - - - - - 0.149 0.162 0.162 - 0.114 0.089 0.134 - 

3 Var - - -   �  -    -   �  -    - - - - - 0.111 0.087 0.041 -  0.060 0.050 - 

4 Ave - - - 0.099  �  -    -   �  -  0.050  -   �  - 0.147 0.166 0.165 - 0.082 0.098 0.122 - 

4 Med - - - 0.100  �  -    -   �  -    - - - - - 0.149 0.166 0.165 - 0.085 0.097 0.145 - 

4 Var - - -   �  -    -   �  -    - - - - - 0.102 0.083 0.040 - 0.057 0.082 0.082 - 

5 Ave - - -   �  -    -   �  -  0.048  -   �  - 0.146 0.163 0.166 - 0.090 0.112 0.148 - 

5 Med - - - 0.078  �  -    -   �  -    - - - - - 0.148 0.162 0.165 - 0.093 0.110 0.125 - 

5 Var - - -   �  -    -   �  -    - - - - - 0.097 0.092 0.054 - 0.061 0.112 0.078 - 

6 Ave - - - 0.072  �  -    -   �  -  0.056  -   �  - 0.148 0.164 0.146 - 0.083 0.112 0.169 - 

6 Med - - - 0.075  �  -    -   �  -    - - - - - 0.148 0.166 0.147 - 0.085 0.111 0.149 - 

6 Var - - - �  �  �  - �  �  �  - �  �  �  - �  �  �  - - - - - 0.089 0.095 0.060 - �  0.116 0.081 - 

Numbers are the sum of information gains obtained from the comparisons of naive vs. preexp. and mock. vs. preexp. Darker and lighter colors correspond to larger and smaller values, respectively. Blank cells, no value for information gain was 
obtained. “-”, not calculated. 
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Table 3. Patterns of learning-dependent behavioral features of cluster 0 in odor avoidance behavior of mutant worms.  

Strain 
Clst0 
Dur 

Clst1 
Dur V dV B dB Dir C dC 

All All All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter 

wild-type Up D/U Down Down �  Down �  �  �  �  �  �  �  �  Down �  Down �  �  �  �  �  Down Down Down Down Up Up Up Up 

egl-3(n589) �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  Up Up Up Up �  �  �  �  

egl-3(ok979) �  �  Down Down Down Down �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  Up Up Up Up �  �  �  �  

egl-21 �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  

dop-3 Up �  Down �  Down Down �  �  �  �  Up �  Up Up �  �  �  Up Down �  �  Down �  �  �  �  Up �  Up Up 

ocr-2 �  �  Up �  �  Up �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  

osm-9 Up �  Up Up Up Up �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  

tax-4 �  �  �  �  �  Down �  �  �  �  �  �  �  �  Down U/D �  �  �  �  �  �  D/U D/U D/U D/U �  �  �  �  

eat-4 �  �  Down Down �  Down �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  Down �  �  �  �  �  �  �  

pkc-1 �  �  �  �  �  �  �  �  �  �  �  �  �  �  Down �  Down �  �  �  �  �  Up �  �  �  Down �  �  �  

Darker and lighter colors mean larger and smaller information gain values, respectively. “Up” and “Down” indicates the value changes of pre-exposed worms compared with naive and mock-treated worms. “U/D” or “D/U” indicates the value of pre-
exposed worms is higher than naive and lower than mock-treated worms, and vice versa. Blank cells, no value for information gain was obtained. The details of information gain are described in Supplementary Tables 2-11. 
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SUPPLEMENTARY FIGURES AND TABLES 

 
Supplementary Figure 1. State estimation of worms (Related to Figure 2). (A) Confusion 

matrix for the state estimation with dB_Var. (B-D) The results of state estimation with dV_Var 

in confusion matrix, where the histogram was separated to 3 clusters. (B) Confusion matrix. (C) 

Mapping on a trajectory. (D) Event numbers of run and pirouette in cluster 0 (left) and 1 & 2 

(right). (E) Confusion matrix for the state estimation by dB_Var in finer (0.15%) window.  
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Supplementary Figure 1. State estimation of worms (Related to Figure 2). (A) Confusion matrix for the 
state estimation with dB_Var. (B-D) The results of state estimation with dV_Var in confusion matrix, where 
the histogram was separated to 3 clusters. (B) Confusion matrix. (C) Mapping on a trajectory. (D) Event 
numbers of run and pirouette in cluster 0 (left) and 1 & 2 (right). (E) Confusion matrix for the state 
estimation by dB_Var in finer (0.15%) window.
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Supplementary Figure 2. State estimation of penguins (Related to Figure 3). (A) Confusion 

matrix for the state estimation with dV_Ave. (B-D) The results of state estimation with dV_Ave 

in confusion matrix (B) and event numbers of each cluster (C). (D) Differences in velocity, 

duration, and depth among the clusters with dV_Ave. Each dot represents a cluster bout, and the 

bars represent the median and the first and third quartiles. Statistical values were calculated 

using Kruskal-Wallis test with post hoc Dunn's test. **p < 0.01, ***p < 0.001.  
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Supplementary Figure 2. State estimation of penguins (Related to Figure 3). (A) Confusion matrix for the state estimation 
with dV_Ave. (B-D) The results of state estimation with dV_Ave in confusion matrix (B) and event numbers of each cluster 
(C). (D) Differences in velocity, duration, and depth among the clusters with dV_Ave. Each dot represents a cluster bout, and 
the bars represent the median and the first and third quartiles. Statistical values were calculated using Kruskal-Wallis test with 
post hoc Dunn's test. **p < 0.01, ***p < 0.001.
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Supplementary Table 1. Detailed results of statistical tests for Fig. 3-7, 9 and S2. 
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Figure Parameter Number of
Groups

Group 1 Group 2 Group 3 Group 4 Group 5 Unit of
number

Statistical
tests used

p value of
multiple test

Other result of
multiple test

Post-hoc
test

p value of post-hoc test Other result of post-
hoc test

3E Velocity 5 cluster 0
(n=48)

cluster 1
(n=54)

cluster 2
(n=121)

cluster 3
(n=94)

cluster 4
(n=64)

clusters Kruskal-Wallis
test

<0.0001(***) 355.614 Dunn's test 0 vs 1: 0.1062(ns)
0 vs 2: <0.0001(***)
1 vs 2: <0.0001(***)
0 vs 3: <0.0001(***)
1 vs 3: <0.0001(***)
2 vs 3: <0.0001(***)
0 vs 4: <0.0001(***)
1 vs 4: <0.0001(***)
2 vs 4: <0.0001(***)
3 vs 4: 0.0001(***)

z = -2.3037
z = -7.2863
z = -4.8022
z = -12.5996
z = -10.4138
z = -7.2173
z = -15.3219
z = -13.3596
z = -10.8868
z = -4.2601

3E Duration 5 cluster 0
(n=48)

cluster 1
(n=54)

cluster 2
(n=121)

cluster 3
(n=94)

cluster 4
(n=64)

clusters Kruskal-Wallis
test

<0.0001(***) 32.71 Dunn's test 0 vs 1: 0.0035(**)
0 vs 2: <0.0001(***)
1 vs 2: 1(ns)
0 vs 3: <0.0001(***)
1 vs 3: 1(ns)
2 vs 3: 1(ns)
0 vs 4: 1(ns)
1 vs 4: 0.0925(ns)
2 vs 4: 0.0057(**)
3 vs 4: 0.0015(**)

z = 3.3877
z = 4.3376
z = 0.4147
z = 4.6324
z = 0.8771
z = 0.5956
z = 1.2402
z = -2.3553
z = -3.2549
z = -3.6096

3E Depth 5 cluster 0
(n=48)

cluster 1
(n=54)

cluster 2
(n=121)

cluster 3
(n=94)

cluster 4
(n=64)

clusters Kruskal-Wallis
test

<0.0001(***) 236.67 Dunn's test 0 vs 1: 1(ns)
0 vs 2: <0.0001(***)
1 vs 2: <0.0001(***)
0 vs 3: <0.0001(***)
1 vs 3: <0.0001(***)
2 vs 3: <0.0001(***)
0 vs 4: <0.0001(***)
1 vs 4: <0.0001(***)
2 vs 4: <0.0001(***)
3 vs 4: 1(ns)

z = -0.8047
z = -7.0018
z = -6.3227
z = -11.816
z = -11.3412
z = -6.5593
z = -10.1204
z = -9.5939
z = -4.7749
z = 1.0107

4D Duration 4 cluster 1
(n=584)

cluster 1
(n=170)

cluster 2
(n=1080)

cluster 3
(n=29)

clusters Kruskal-Wallis
test

<0.0001(***) 119.53 Dunn's test 0 vs 1: 0.0311(*)
0 vs 2: <0.0001(***)
1 vs 2: 0.0007(***)
0 vs 3: 0.2611(ns)
1 vs 3: 0.0189(*)
2 vs 3: <0.0001(***)

z = -2.5631
z = -2.5631
z = -3.6737
z = 1.7113
z = 2.7323
z = 4.5281

4D Directedness 4 cluster 1
(n=584)

cluster 1
(n=170)

cluster 2
(n=1080)

cluster 3
(n=29)

clusters Kruskal-Wallis
test

<0.0001(***) 70.77 Dunn's test 0 vs 1: 0.022(*)
0 vs 2: <0.0001(***)
1 vs 2: 0.0507(ns)
0 vs 3: 0.2251(ns)
1 vs 3: 1(ns)
2 vs 3: 1(ns)

z = 2.6812
z = 2.6812
z = 2.3889
z = 1.7802
z = 0.5228
z = -0.4894

4H Duration 4 cluster 0
(n=335)

cluster 1
(n=927)

cluster 2
(n=806)

cluster 3
(n=222)

clusters Kruskal-Wallis
test

<0.0001(***) 115.97 Dunn's test 0 vs 1: <0.0001(***)
0 vs 2: 0.1178(ns)
1 vs 2: <0.0001(***)
0 vs 3: <0.0001(***)
1 vs 3: <0.0001(***)
2 vs 3: 0.0049(**)

z = -4.3936
z = -4.3936
z = 8.5979
z = 4.3073
z = 8.7371
z = 3.1501

4H Directedness 4 cluster 0
(n=335)

cluster 1
(n=927)

cluster 2
(n=806)

cluster 3
(n=222)

clusters Kruskal-Wallis
test

<0.0001(***) 89.86 Dunn's test 0 vs 1: 0.1394(ns)
0 vs 2: <0.0001(***)
1 vs 2: <0.0001(***)
0 vs 3: <0.0001(***)
1 vs 3: <0.0001(***)
2 vs 3: <0.0001(***)

z = -1.9912
z = -1.9912
z = -5.0746
z = -7.9756
z = -7.5386
z = -4.2072

Figure Parameter Number of
Groups

Group 1 Group 2 Group 3 Group 4 Group 5 Unit of
number

Statistical
tests used

p value of
multiple test

Other result of
multiple test

Post-hoc
test

p value of post-hoc test Other result of post-
hoc test

6A Avoidance distance 3 naive
(n=50)

mock
(n=50)

preexp.
(n=50)

animals Kruskal-Wallis
test

<0.0001(***) 24.451 Dunn's test naive vs mock: 0.7621(ns)
naive vs preexp.: <0.0001(***)
mock vs preexp.: 0.0001(***)

z = 0.6619
z = 4.5747
z = 3.9128

6B Cluster 0 duration 3 naive
(n=347)

mock
(n=373)

preexp.
(n=349)

clusters Kruskal-Wallis
test

<0.0001(***) 29.20 Dunn's test naive vs mock: 1(ns)
naive vs preexp.: <0.0001(***)
mock vs preexp.: <0.0001(***)

z = -0.1812
z = -4.739
z = -4.6426

6C Initial velocity 3 naive
(n=347)

mock
(n=373)

preexp.
(n=349)

clusters Kruskal-Wallis
test

<0.0001(***) 88.07 Dunn's test naive vs mock: <0.0001(***)
naive vs preexp.: <0.0001(***)
mock vs preexp.: <0.0001(***)

z = 5.2709
z = 9.3668
z = 4.2561

6D Average concentration 3 naive
(n=347)

mock
(n=373)

preexp.
(n=349)

clusters Kruskal-Wallis
test

<0.0001(***) 85.60 Dunn's test naive vs mock: 1(ns)
naive vs preexp.: <0.0001(***)
mock vs preexp.: <0.0001(***)

z = -0.3344
z = 7.7844
z = 8.259

6E Averege of
concentration change

3 naive
(n=347)

mock
(n=373)

preexp.
(n=349)

clusters Kruskal-Wallis
test

0.0003(***) 48.83 Dunn's test naive vs mock: 0.24(ns)
naive vs preexp.: <0.0001(***)
mock vs preexp.: <0.0001(***)

z = -1.405
z = -6.6052
z = -5.3166

7C Peak value of
GCaMP3/mCherry

3 naive
(n=25)

mock
(n=29)

preexp.
(n=28)

animals Kruskal-Wallis
test

<0.0001(***) 30.11 Dunn's test naive vs mock: 0.0949(ns)
naive vs preexp.: <0.0001(***)
mock vs preexp.: 0.0004(***)

z = 1.8571
z = 5.3589
z = 3.6525

9D Fight velocity in 3D
space at t=-0.3

2 initial
(n=27)

last
(n=27)

flights Mann–
Whitney test

0.0234(*) 233.000 - - -

9D Flight acceleration in 3D
space at t=-0.3

2 initial
(n=27)

last
(n=27)

flights Mann–
Whitney test

0.2326(ns) 295.00 - - -

S2D Velocity 5 cluster 0
(n=97)

cluster 1
(n=112)

cluster 2
(n=117)

cluster 3
(n=30)

cluster 4
(n=9)

clusters Kruskal-Wallis
test

<0.0001(***) 224.45 Dunn's test 0 vs 1: 0.0034(**)
0 vs 2: <0.0001(***)
1 vs 2: <0.0001(***)
0 vs 3: <0.0001(***)
1 vs 3: <0.0001(***)
2 vs 3: 0.0632(ns)
0 vs 4: <0.0001(***)
1 vs 4: <0.0001(***)
2 vs 4: 0.1187(ns)
3 vs 4: 1(ns)

z = -3.3957
z = -11.7674
z = -8.6606
z = -10.178
z = -8.0519
z = -2.494
z = -6.882
z = -5.5621
z = -2.2612
z = -0.7152

S2D Duration 5 cluster 0
(n=97)

cluster 1
(n=112)

cluster 2
(n=117)

cluster 3
(n=30)

cluster 4
(n=9)

clusters Kruskal-Wallis
test

<0.0001(***) 51.09 Dunn's test 0 vs 1: 0.0072(**)
0 vs 2: 0.6346(ns)
1 vs 2: <0.0001(***)
0 vs 3: 0.0001(***)
1 vs 3: 0.172(ns)
2 vs 3: <0.0001(***)
0 vs 4: 0.0063(**)
1 vs 4: 0.2455(ns)
2 vs 4: 0.0006(***)
3 vs 4: 1(ns)

z = 3.1845
z = -1.5264
z = -4.9268
z = 4.1959
z = 2.1153
z = 5.3074
z = 3.2241
z = 1.9677
z = 3.8537
z = 0.6496

S2D Depth 5 cluster 0
(n=97)

cluster 1
(n=112)

cluster 2
(n=117)

cluster 3
(n=30)

cluster 4
(n=9)

clusters Kruskal-Wallis
test

<0.0001(***) 197.3806 Dunn's test 0 vs 1: 0.9449(ns)
0 vs 2: <0.0001(***)
1 vs 2: <0.0001(***)
0 vs 3: <0.0001(***)
1 vs 3: <0.0001(***)
2 vs 3: 0.6961(ns)
0 vs 4: <0.0001(***)
1 vs 4: <0.0001(***)
2 vs 4: 1(ns)
3 vs 4: 1(ns)

z = -1.3136
z = -10.8527
z = -9.895
z = -8.5822
z = -7.835
z = -1.4787
z = -5.2045
z = -4.7085
z = -0.9345
z = -0.0543
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Figure Parameter Number of
Groups

Group 1 Group 2 Group 3 Group 4 Group 5 Unit of
number

Statistical
tests used

p value of
multiple test

Other result of
multiple test

Post-hoc
test

p value of post-hoc test Other result of post-
hoc test

3E Velocity 5 cluster 0
(n=48)

cluster 1
(n=54)

cluster 2
(n=121)

cluster 3
(n=94)

cluster 4
(n=64)

clusters Kruskal-Wallis
test

<0.0001(***) 355.614 Dunn's test 0 vs 1: 0.1062(ns)
0 vs 2: <0.0001(***)
1 vs 2: <0.0001(***)
0 vs 3: <0.0001(***)
1 vs 3: <0.0001(***)
2 vs 3: <0.0001(***)
0 vs 4: <0.0001(***)
1 vs 4: <0.0001(***)
2 vs 4: <0.0001(***)
3 vs 4: 0.0001(***)

z = -2.3037
z = -7.2863
z = -4.8022
z = -12.5996
z = -10.4138
z = -7.2173
z = -15.3219
z = -13.3596
z = -10.8868
z = -4.2601

3E Duration 5 cluster 0
(n=48)

cluster 1
(n=54)

cluster 2
(n=121)

cluster 3
(n=94)

cluster 4
(n=64)

clusters Kruskal-Wallis
test

<0.0001(***) 32.71 Dunn's test 0 vs 1: 0.0035(**)
0 vs 2: <0.0001(***)
1 vs 2: 1(ns)
0 vs 3: <0.0001(***)
1 vs 3: 1(ns)
2 vs 3: 1(ns)
0 vs 4: 1(ns)
1 vs 4: 0.0925(ns)
2 vs 4: 0.0057(**)
3 vs 4: 0.0015(**)

z = 3.3877
z = 4.3376
z = 0.4147
z = 4.6324
z = 0.8771
z = 0.5956
z = 1.2402
z = -2.3553
z = -3.2549
z = -3.6096

3E Depth 5 cluster 0
(n=48)

cluster 1
(n=54)

cluster 2
(n=121)

cluster 3
(n=94)

cluster 4
(n=64)

clusters Kruskal-Wallis
test

<0.0001(***) 236.67 Dunn's test 0 vs 1: 1(ns)
0 vs 2: <0.0001(***)
1 vs 2: <0.0001(***)
0 vs 3: <0.0001(***)
1 vs 3: <0.0001(***)
2 vs 3: <0.0001(***)
0 vs 4: <0.0001(***)
1 vs 4: <0.0001(***)
2 vs 4: <0.0001(***)
3 vs 4: 1(ns)

z = -0.8047
z = -7.0018
z = -6.3227
z = -11.816
z = -11.3412
z = -6.5593
z = -10.1204
z = -9.5939
z = -4.7749
z = 1.0107

4D Duration 4 cluster 1
(n=584)

cluster 1
(n=170)

cluster 2
(n=1080)

cluster 3
(n=29)

clusters Kruskal-Wallis
test

<0.0001(***) 119.53 Dunn's test 0 vs 1: 0.0311(*)
0 vs 2: <0.0001(***)
1 vs 2: 0.0007(***)
0 vs 3: 0.2611(ns)
1 vs 3: 0.0189(*)
2 vs 3: <0.0001(***)

z = -2.5631
z = -2.5631
z = -3.6737
z = 1.7113
z = 2.7323
z = 4.5281

4D Directedness 4 cluster 1
(n=584)

cluster 1
(n=170)

cluster 2
(n=1080)

cluster 3
(n=29)

clusters Kruskal-Wallis
test

<0.0001(***) 70.77 Dunn's test 0 vs 1: 0.022(*)
0 vs 2: <0.0001(***)
1 vs 2: 0.0507(ns)
0 vs 3: 0.2251(ns)
1 vs 3: 1(ns)
2 vs 3: 1(ns)

z = 2.6812
z = 2.6812
z = 2.3889
z = 1.7802
z = 0.5228
z = -0.4894

4H Duration 4 cluster 0
(n=335)

cluster 1
(n=927)

cluster 2
(n=806)

cluster 3
(n=222)

clusters Kruskal-Wallis
test

<0.0001(***) 115.97 Dunn's test 0 vs 1: <0.0001(***)
0 vs 2: 0.1178(ns)
1 vs 2: <0.0001(***)
0 vs 3: <0.0001(***)
1 vs 3: <0.0001(***)
2 vs 3: 0.0049(**)

z = -4.3936
z = -4.3936
z = 8.5979
z = 4.3073
z = 8.7371
z = 3.1501

4H Directedness 4 cluster 0
(n=335)

cluster 1
(n=927)

cluster 2
(n=806)

cluster 3
(n=222)

clusters Kruskal-Wallis
test

<0.0001(***) 89.86 Dunn's test 0 vs 1: 0.1394(ns)
0 vs 2: <0.0001(***)
1 vs 2: <0.0001(***)
0 vs 3: <0.0001(***)
1 vs 3: <0.0001(***)
2 vs 3: <0.0001(***)

z = -1.9912
z = -1.9912
z = -5.0746
z = -7.9756
z = -7.5386
z = -4.2072

Figure Parameter Number of
Groups

Group 1 Group 2 Group 3 Group 4 Group 5 Unit of
number

Statistical
tests used

p value of
multiple test

Other result of
multiple test

Post-hoc
test

p value of post-hoc test Other result of post-
hoc test

6A Avoidance distance 3 naive
(n=50)

mock
(n=50)

preexp.
(n=50)

animals Kruskal-Wallis
test

<0.0001(***) 24.451 Dunn's test naive vs mock: 0.7621(ns)
naive vs preexp.: <0.0001(***)
mock vs preexp.: 0.0001(***)

z = 0.6619
z = 4.5747
z = 3.9128

6B Cluster 0 duration 3 naive
(n=347)

mock
(n=373)

preexp.
(n=349)

clusters Kruskal-Wallis
test

<0.0001(***) 29.20 Dunn's test naive vs mock: 1(ns)
naive vs preexp.: <0.0001(***)
mock vs preexp.: <0.0001(***)

z = -0.1812
z = -4.739
z = -4.6426

6C Initial velocity 3 naive
(n=347)

mock
(n=373)

preexp.
(n=349)

clusters Kruskal-Wallis
test

<0.0001(***) 88.07 Dunn's test naive vs mock: <0.0001(***)
naive vs preexp.: <0.0001(***)
mock vs preexp.: <0.0001(***)

z = 5.2709
z = 9.3668
z = 4.2561

6D Average concentration 3 naive
(n=347)

mock
(n=373)

preexp.
(n=349)

clusters Kruskal-Wallis
test

<0.0001(***) 85.60 Dunn's test naive vs mock: 1(ns)
naive vs preexp.: <0.0001(***)
mock vs preexp.: <0.0001(***)

z = -0.3344
z = 7.7844
z = 8.259

6E Averege of
concentration change

3 naive
(n=347)

mock
(n=373)

preexp.
(n=349)

clusters Kruskal-Wallis
test

0.0003(***) 48.83 Dunn's test naive vs mock: 0.24(ns)
naive vs preexp.: <0.0001(***)
mock vs preexp.: <0.0001(***)

z = -1.405
z = -6.6052
z = -5.3166

7C Peak value of
GCaMP3/mCherry

3 naive
(n=25)

mock
(n=29)

preexp.
(n=28)

animals Kruskal-Wallis
test

<0.0001(***) 30.11 Dunn's test naive vs mock: 0.0949(ns)
naive vs preexp.: <0.0001(***)
mock vs preexp.: 0.0004(***)

z = 1.8571
z = 5.3589
z = 3.6525

9D Fight velocity in 3D
space at t=-0.3

2 initial
(n=27)

last
(n=27)

flights Mann–
Whitney test

0.0234(*) 233.000 - - -

9D Flight acceleration in 3D
space at t=-0.3

2 initial
(n=27)

last
(n=27)

flights Mann–
Whitney test

0.2326(ns) 295.00 - - -

S2D Velocity 5 cluster 0
(n=97)

cluster 1
(n=112)

cluster 2
(n=117)

cluster 3
(n=30)

cluster 4
(n=9)

clusters Kruskal-Wallis
test

<0.0001(***) 224.45 Dunn's test 0 vs 1: 0.0034(**)
0 vs 2: <0.0001(***)
1 vs 2: <0.0001(***)
0 vs 3: <0.0001(***)
1 vs 3: <0.0001(***)
2 vs 3: 0.0632(ns)
0 vs 4: <0.0001(***)
1 vs 4: <0.0001(***)
2 vs 4: 0.1187(ns)
3 vs 4: 1(ns)

z = -3.3957
z = -11.7674
z = -8.6606
z = -10.178
z = -8.0519
z = -2.494
z = -6.882
z = -5.5621
z = -2.2612
z = -0.7152

S2D Duration 5 cluster 0
(n=97)

cluster 1
(n=112)

cluster 2
(n=117)

cluster 3
(n=30)

cluster 4
(n=9)

clusters Kruskal-Wallis
test

<0.0001(***) 51.09 Dunn's test 0 vs 1: 0.0072(**)
0 vs 2: 0.6346(ns)
1 vs 2: <0.0001(***)
0 vs 3: 0.0001(***)
1 vs 3: 0.172(ns)
2 vs 3: <0.0001(***)
0 vs 4: 0.0063(**)
1 vs 4: 0.2455(ns)
2 vs 4: 0.0006(***)
3 vs 4: 1(ns)

z = 3.1845
z = -1.5264
z = -4.9268
z = 4.1959
z = 2.1153
z = 5.3074
z = 3.2241
z = 1.9677
z = 3.8537
z = 0.6496

S2D Depth 5 cluster 0
(n=97)

cluster 1
(n=112)

cluster 2
(n=117)

cluster 3
(n=30)

cluster 4
(n=9)

clusters Kruskal-Wallis
test

<0.0001(***) 197.3806 Dunn's test 0 vs 1: 0.9449(ns)
0 vs 2: <0.0001(***)
1 vs 2: <0.0001(***)
0 vs 3: <0.0001(***)
1 vs 3: <0.0001(***)
2 vs 3: 0.6961(ns)
0 vs 4: <0.0001(***)
1 vs 4: <0.0001(***)
2 vs 4: 1(ns)
3 vs 4: 1(ns)

z = -1.3136
z = -10.8527
z = -9.895
z = -8.5822
z = -7.835
z = -1.4787
z = -5.2045
z = -4.7085
z = -0.9345
z = -0.0543
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Supplementary Table 2. Information gains for wild-type. 

 

  

Clst0Dur Clst1Dur WV
All All All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All

- Ave 0.0975 0.0569 - - - - - - - - - 0.0715 - - - - - - 0.1633 - - - 0.0879 - - -
- Med - - 0.0401 - - - - - - - - - 0.1017 - - - - - - - 0.1603 - - - 0.0883 - - -
- Q1st - - - - - - - - - - - 0.0645 - - - - - - - 0.1635 - - - 0.1072 - - -
- Q3rd - - - - - - - - - - - 0.0828 - - - - - - - 0.1605 - - - 0.0799 - - -
- Var - - - - - - - - - - - - - - - - - - - - - 0.0797 - - -
- 1 %ile - - - - - - - - - - - - - - - - - - 0.1634 - - - 0.0904 - - -
- 5 %ile - - - - - - - - - - - - - - - - - - 0.1645 - - - 0.0998 - - -
- 95 %ile - - - - - - - - - - - - - - - - - - 0.1532 - - - 0.1078 - - -
- 99 %ile - - - - - - - - - - - - - - - - - - 0.1482 - - - 0.0601 - - -
1 Ave - - - 0.1137 - - - - - 0.1471 0.162 0.162 - 0.1163 0.0927 0.1043 -
2 Ave - - - 0.1203 0.049 - - - 0.0478 - - 0.1478 0.1655 0.163 - 0.1107 0.1048 0.1219 -
3 Ave - - - 0.1088 - - - 0.0487 - - 0.1508 0.1633 0.1621 - 0.1096 0.0986 0.1277 -
3 Med - - - 0.0996 0.0391 - - - - - - - - 0.1491 0.162 0.1622 - 0.114 0.0894 0.1338 -
3 Var - - - - - - - - - - - 0.1114 0.0866 0.0408 - 0.0596 0.0504 -
4 Ave - - - 0.0987 - - - 0.0504 - - 0.1465 0.1655 0.1654 - 0.082 0.0984 0.1218 -
4 Med - - - 0.0999 - - - - - - - - 0.1486 0.1655 0.1647 - 0.0853 0.0965 0.1447 -
4 Var - - - - - - - - - - - 0.1024 0.083 0.0402 - 0.0572 0.0821 0.0817 -
5 Ave - - - - - - 0.0483 - - 0.1458 0.1633 0.166 - 0.0903 0.1117 0.148 -
5 Med - - - 0.0778 - - - - - - - - 0.148 0.162 0.1653 - 0.0926 0.1104 0.1248 -
5 Var - - - - - - - - - - - 0.0968 0.092 0.0537 - 0.0609 0.1124 0.0782 -
6 Ave - - - 0.0718 - - - 0.0562 - - 0.1477 0.1642 0.1459 - 0.0833 0.1117 0.1686 -
6 Med - - - 0.0747 - - - - - - - - 0.148 0.1655 0.1466 - 0.085 0.1111 0.1489 -
6 Var - - - - - - - - - - - 0.089 0.0953 0.0601 - 0.1162 0.081 -

Dir C dC
time value

V dV B dB
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Supplementary Table 3. Information gains for egl-3(n589). 

 

  

Clst0Dur Clst1Dur WV
All All All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All

- Ave - - - - - - - - - - - - - - - 0.1179 - - - - - -
- Med - - - - - - - - - - - - - - - - - - 0.1179 - - - - - -
- Q1st - - - - - - - - - - - - - - - - - - 0.1209 - - - - - -
- Q3rd - - - - - - - - - - - - - - - - - - 0.1191 - - - - - -
- Var - - - - - - - - - - - - - - - - - - - - - - - -
- 1 %ile - - - - - - - - - - - - - - - - - - 0.1138 - - - - - -
- 5 %ile - - - - - - - - - - - - - - - - - - 0.1138 - - - - - -
- 95 %ile - - - - - - - - - - - - - - - - - - 0.1396 - - - - - -
- 99 %ile - - - - - - - - - - - - - - - - - - 0.1485 - - - - - -
1 Ave - - - - - - - - 0.1416 0.1163 0.1233 - -
2 Ave - - - - - - - - 0.146 0.1163 0.1251 - -
3 Ave - - - - - - - - 0.1489 0.1163 0.1209 - -
3 Med - - - - - - - - - - - 0.146 0.1163 0.1251 - -
3 Var - - - - - - - - - - - - -
4 Ave - - - - - - - - 0.1402 0.1163 0.1209 - -
4 Med - - - - - - - - - - - 0.146 0.1163 0.1209 - -
4 Var - - - - - - - - - - - - -
5 Ave - - - - - - - - 0.1402 0.1163 0.1209 - -
5 Med - - - - - - - - - - - 0.1402 0.1163 0.1191 - -
5 Var - - - - - - - - - - - - -
6 Ave - - - - - - - - 0.1398 0.1163 0.1251 - -
6 Med - - - - - - - - - - - 0.1398 0.1163 0.1191 - -
6 Var - - - - - - - - - - - - -

Dir C dC
time value

V dV B dB
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Supplementary Table 4. Information gains for egl-3(ok979). 

 

 

  

Clst0Dur Clst1Dur WV
All All All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All

- Ave 0.5665 - - - - - - - - - - - - - - - 0.1766 - - - - - -
- Med - - 0.4535 - - - - - - - - - - - - - - - - 0.1821 - - - - - -
- Q1st - - 0.3885 - - - - - - - - - - - - - - - - 0.1772 - - - - - -
- Q3rd - - 0.531 - - - - - - - - - - - - - - - - 0.1703 - - - - - -
- Var - - - - - - - - - - - - - - - - - - - - - - - -
- 1 %ile - - - - - - - - - - - - - - - - - - 0.187 - - - - - -
- 5 %ile - - - - - - - - - - - - - - - - - - 0.187 - - - - - -
- 95 %ile - - 0.4334 - - - - - - - - - - - - - - - - 0.1611 - - - - - -
- 99 %ile - - 0.4201 - - - - - - - - - - - - - - - - 0.1611 - - - - - -
1 Ave - - - 0.153 0.2297 - - - - - 0.172 0.1821 0.1727 - -
2 Ave - - - 0.1977 0.2102 - - - - - 0.172 0.1821 0.1727 - -
3 Ave - - - 0.2585 0.3037 0.2213 - - - - - 0.1737 0.1821 0.1727 - -
3 Med - - - 0.2252 0.2769 0.2474 - - - - - - - - 0.1727 0.1821 0.1727 - -
3 Var - - - - - - - - - - - - -
4 Ave - - - 0.2805 0.3375 0.3015 - - - - - 0.1737 0.1821 0.1727 - -
4 Med - - - 0.2502 0.351 0.3091 - - - - - - - - 0.1737 0.1821 0.1727 - -
4 Var - - - - - - - - - - - - -
5 Ave - - - 0.2821 0.3142 0.3748 - - - - - 0.1737 0.1821 0.1727 - -
5 Med - - - 0.3144 0.3859 0.3277 - - - - - - - - 0.1737 0.1821 0.1727 - -
5 Var - - - - 0.1696 - - - - - - - - -
6 Ave - - - 0.3166 0.3806 0.4495 - - - - - 0.1727 0.1821 0.1727 - -
6 Med - - - 0.3362 0.3934 0.4197 - - - - - - - - 0.1737 0.1821 0.1727 - -
6 Var - - - - 0.1814 - - - - - - - - -

Dir C dC
time value

V dV B dB
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Supplementary Table 5. Information gains for egl-21. 

 

 

  

Clst0Dur Clst1Dur WV
All All All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All

- Ave - - - - - - - - - - - - - - - - - - - - -
- Med - - - - - - - - - - - - - - - - - - - - - - - -
- Q1st - - - - - - - - - - - - - - - - - - - - - - - -
- Q3rd - - - - - - - - - - - - - - - - - - - - - - - -
- Var - - - - - - - - - - - - - - - - - - - - - - - -
- 1 %ile - - - - - - - - - - - - - - - - - - - - - - - -
- 5 %ile - - - - - - - - - - - - - - - - - - - - - - - -
- 95 %ile - - - - - - - - - - - - - - - - - - - - - - - -
- 99 %ile - - - - - - - - - - - - - - - - - - - - - - - -
1 Ave - - - - - - - - - -
2 Ave - - - - - - - - - -
3 Ave - - - - - - - - - -
3 Med - - - - - - - - - - - - -
3 Var - - - - - - - - - - - - -
4 Ave - - - - - - - - - -
4 Med - - - - - - - - - - - - -
4 Var - - - - - - - - - - - - -
5 Ave - - - - - - - - - -
5 Med - - - - - - - - - - - - -
5 Var - - - - - - - - - - - - -
6 Ave - - - - - - - - - -
6 Med - - - - - - - - - - - - -
6 Var - - - - - - - - - - - - -

Dir C dC
time value

V dV B dB
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Supplementary Table 6. Information gains for dop-3. 

 

  

Clst0Dur Clst1Dur WV
All All All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All

- Ave 0.0682 0.1111 - - - - - - 0.1133 - - - - - - 0.0997 - - - - - - 0.1233 - - -
- Med - - 0.1138 - - - - - - 0.092 - - - - - - - - - - - - - 0.1467 - - -
- Q1st - - 0.1152 - - - - - - 0.059 - - - - - - - - - - - - - - - -
- Q3rd - - 0.083 - - - - - - 0.1097 - - - - - - - - - - - - - 0.1197 - - -
- Var - - - - - - - - 0.0891 - - - - - - - - - - - - - 0.0787 - - -
- 1 %ile - - 0.0489 - - - - - - - - - - - - - - - - - - - - - -
- 5 %ile - - 0.0603 - - - - - - - - - - - - - - - - - - - - - -
- 95 %ile - - 0.0573 - - - - - - 0.119 - - - - - - - - - - - - - 0.1146 - - -
- 99 %ile - - - - - - - - 0.1378 - - - - - - - - - - - - - 0.1168 - - -
1 Ave - - - 0.0538 0.0462 - - 0.0504 0.0978 - - - - - - - 0.1226 -
2 Ave - - - 0.068 0.0889 - - 0.1119 - - - - 0.0793 0.1532 -
3 Ave - - - 0.0722 0.1143 - - 0.1261 - 0.0467 - - - 0.0947 0.1548 -
3 Med - - - 0.0547 0.1581 - - 0.1397 - - - - - - - 0.0879 0.1721 -
3 Var - - - - - - - - - - - - -
4 Ave - - - 0.0557 0.1373 - - 0.0444 0.1353 - - - - 0.0958 0.1585 -
4 Med - - - 0.0601 0.1264 - - 0.139 - - - - - - - 0.0919 0.1674 -
4 Var - - - - - - - - - - - - -
5 Ave - - - 0.0516 0.1365 - - 0.1326 - 0.0513 - - - 0.103 0.1613 -
5 Med - - - 0.0702 0.1162 - - 0.1274 - - - - - - - 0.0979 0.1549 -
5 Var - - - - - 0.0614 - 0.0488 - - - - - - -
6 Ave - - - 0.0592 0.1514 - - 0.1314 - - 0.0527 - - 0.1164 0.1632 -
6 Med - - - 0.059 0.1383 - - 0.1288 - - - - - - - 0.0929 0.1537 -
6 Var - - - - - 0.0681 - 0.0678 - - - - - - -

Dir C dC
time value

V dV B dB
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Supplementary Table 7. Information gains for ocr-2. 

 

 

  

Clst0Dur Clst1Dur WV
All All All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All

- Ave 0.1229 - - - - - - - - - - - - - - - - - - - - -
- Med - - 0.1362 - - - - - - - - - - - - - - - - - - - - - -
- Q1st - - 0.1412 - - - - - - - - - - - - - - - - - - - - - -
- Q3rd - - 0.1226 - - - - - - - - - - - - - - - - - - - - - -
- Var - - - - - - - - - - - - - - - - - - - - - - - -
- 1 %ile - - - - - - - - - - - - - - - - - - - - - - - -
- 5 %ile - - - - - - - - - - - - - - - - - - - - - - - -
- 95 %ile - - - - - - - - - - - - - - - - - - - - - - - -
- 99 %ile - - - - - - - - - - - - - - - - - - - - - - - -
1 Ave - - - - - - - - - -
2 Ave - - - - - - - - - -
3 Ave - - - - - - - - - -
3 Med - - - 0.1 - - - - - - - - - -
3 Var - - - - - - - - - - - - -
4 Ave - - - - - - - - - -
4 Med - - - 0.1051 - - - - - - - - - -
4 Var - - - - - - - - - - - - -
5 Ave - - - 0.1663 - - - - - - -
5 Med - - - 0.1657 - - - - - - - - - -
5 Var - - - - - - - - - - - - -
6 Ave - - - 0.1086 - - - - - - -
6 Med - - - 0.1474 - - - - - - - - - -
6 Var - - - - - - - - - - - - -

Dir C dC
time value

V dV B dB
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Supplementary Table 8. Information gains for osm-9. 

 

 

  

Clst0Dur Clst1Dur WV
All All All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All

- Ave 0.0963 0.2378 - - - - - - - - - - - - - - - - - - - - -
- Med - - 0.2247 - - - - - - - - - - - - - - - - - - - - - -
- Q1st - - 0.2555 - - - - - - - - - - - - - - - - - - - - - -
- Q3rd - - 0.1996 - - - - - - - - - - - - - - - - - - - - - -
- Var - - - - - - - - - - - - - - - - - - 0.1101 - - - - - -
- 1 %ile - - - - - - - - - - - - - - - - - - - - - - - -
- 5 %ile - - - - - - - - - - - - - - - - - - - - - - - -
- 95 %ile - - 0.1553 - - - - - - - - - - - - - - - - - - - - - -
- 99 %ile - - 0.1249 - - - - - - - - - - - - - - - - - - - - - -
1 Ave - - - - - - - - - -
2 Ave - - - 0.1382 - - - - - - -
3 Ave - - - 0.1437 - - - - - - -
3 Med - - - 0.1558 0.0922 - - - - - - - - - -
3 Var - - - - - - - - - - - - -
4 Ave - - - 0.1433 - - - - - - -
4 Med - - - 0.1641 - - - - - - - - - -
4 Var - - - - - - - - - - - - -
5 Ave - - - 0.0724 0.1637 - - - - - - -
5 Med - - - 0.0859 0.1597 0.1115 - - - - - - - - - -
5 Var - - - - - - - - - - - - -
6 Ave - - - 0.0884 0.1872 0.1012 - - - - - - -
6 Med - - - 0.1197 0.1735 0.1116 - - - - - - - - - -
6 Var - - - - - - - - - - - - -

Dir C dC
time value

V dV B dB
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Supplementary Table 9. Information gains for tax-4. 

 

 

  

Clst0Dur Clst1Dur WV
All All All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All

- Ave - - - - - - - - - - - - - - - 0.2677 - - - - - -
- Med - - - - - - - - - - - - - - - - - - 0.268 - - - - - -
- Q1st - - - - - - - - - - - - - - - - - - 0.232 - - - - - -
- Q3rd - - - - - - - - - - - - - - - - - - 0.2832 - - - - - -
- Var - - - - - - - - - - - - - - - - - - - - - - - -
- 1 %ile - - - - - - - - - - - 0.0739 - - - - - - - 0.2412 - - - - - -
- 5 %ile - - - - - - - - - - - - - - - - - - 0.2387 - - - - - -
- 95 %ile - - - - - - - - - - - - - - - - - - 0.2825 - - - - - -
- 99 %ile - - - - - - - - - - - - - - - - - - 0.2776 - - - - - -
1 Ave - - - - - - - - 0.2324 0.2667 0.2329 - -
2 Ave - - - - - - - - 0.2317 0.2703 0.2329 - -
3 Ave - - - - - - - - 0.2348 0.2667 0.2332 - -
3 Med - - - 0.1029 - - - - - - - - 0.2348 0.2667 0.2332 - -
3 Var - - - - - - - - - - - - -
4 Ave - - - - - - - - 0.2344 0.2703 0.2348 - -
4 Med - - - - - - - - - - - 0.2353 0.2703 0.2332 - -
4 Var - - - - - - - - - - - - -
5 Ave - - - - - - 0.0801 - - 0.2376 0.2671 0.2348 - -
5 Med - - - - - - - - - - - 0.2362 0.2667 0.2348 - -
5 Var - - - - - - - - - - - - -
6 Ave - - - - - - - - 0.2418 0.271 0.2394 - -
6 Med - - - - - - - - - - - 0.2418 0.2703 0.2394 - -
6 Var - - - - - - - - - - - - -

Dir C dC
time value

V dV B dB
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Supplementary Table 10. Information gains for eat-4. 

 

 

  

Clst0Dur Clst1Dur WV
All All All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All

- Ave 0.0905 - - - - - - - - - - - - - - - - - - - - -
- Med - - 0.0922 - - - - - - - - - - - - - - - - - - - - - -
- Q1st - - 0.0826 - - - - - - - - - - - - - - - - - - - - - -
- Q3rd - - - - - - - - - - - - - - - - - - - - - - - -
- Var - - - - - - - - - - - - - - - - - - - - - - - -
- 1 %ile - - 0.0643 - - - - - - - - - - - - - - - - - - - - - -
- 5 %ile - - 0.0808 - - - - - - - - - - - - - - - - 0.0886 - - - - - -
- 95 %ile - - - - - - - - - - - - - - - - - - - - - - - -
- 99 %ile - - - - - - - - - - - - - - - - - - - - - - - -
1 Ave - - - 0.0805 0.045 - - - - - - -
2 Ave - - - 0.0834 0.0649 - - - - - - -
3 Ave - - - 0.0866 0.0533 - - - - - - -
3 Med - - - 0.0919 0.065 - - - - - - - - - -
3 Var - - - - - - - - - - - - -
4 Ave - - - 0.0766 0.0505 - - - - - - -
4 Med - - - 0.0771 0.0805 - - - - - - - - - -
4 Var - - - - - - - - - - - - -
5 Ave - - - 0.0955 0.0529 - - - - - - -
5 Med - - - 0.065 0.0493 - - - - - - - - - -
5 Var - - - - - - - - - - - - -
6 Ave - - - 0.0867 0.0481 - - - - - - -
6 Med - - - 0.0634 - - - - - - - - - -
6 Var - - - - - - - - - - - - -

Dir C dC
time value

V dV B dB
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Supplementary Table 11. Information gains for pkc-1. 

 

  

Clst0Dur Clst1Dur WV
All All All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All

- Ave - - - - - - - - - 0.2292 - - - - - - - - - - - -
- Med - - - - - - - - - - - 0.1702 - - - - - - - - - - - - -
- Q1st - - - - - - - - - - - - - - - - - - - - - - - -
- Q3rd - - - - - - - - - - - 0.2311 - - - - - - - - - - - - -
- Var - - - - - - - - - - - - - - - - - - - - - - - -
- 1 %ile - - - - - - - - - - - - - - - - - - - - - 0.226 - - -
- 5 %ile - - - - - - - - - - - - - - - - - - - - - - - -
- 95 %ile - - - - - - - - - - - - - - - - - - 0.2395 - - - - - -
- 99 %ile - - - - - - - - - - - - - - - - - - 0.2316 - - - - - -
1 Ave - - - - - - - - - -
2 Ave - - - - - - - - - -
3 Ave - - - - - - 0.1464 - - - -
3 Med - - - - - - - - - - - - -
3 Var - - - - - - - - - - - - -
4 Ave - - - - - - - - - -
4 Med - - - - - - - - - - - - -
4 Var - - - - - - - - - - - - -
5 Ave - - - - - - - - - -
5 Med - - - - - - - - - - - - -
5 Var - - - - - - - - - - - - -
6 Ave - - - - - - - - - -
6 Med - - - - - - - - - - - - -
6 Var - - - - - - 0.1596 - - - - - - -

Dir C dC
time value

V dV B dB
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Supplementary Table 12. Statistical details of fly behavior with or without pheromone sensation. 
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Supplementary Table 13. Statistical details of fly behavior over time. 
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