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1× 10−6 A

32



୫ୟ୶ଵࡱ = 3.0 × 10ସ V/cm

୫ୟ୶ଶࡱ = 3.2 × 10ସ V/cm

୫ୟ୶ଷࡱ = 3.7 × 10ସ V/cm

ܵ

ଵ଴଴ା௞ଵ଴଴ ܵ

ଵ଴଴ି௞ଵ଴଴ ܵ
= ୵୭୰ୱ୲ࡱ max (ܧ୫ୟ୶ଵ, ,୫ୟ୶ଶܧ =  (୫ୟ୶ଷܧ 3.7 × 10ସ V/cm

3.3:

3.3.2

3.2 S(x)

C(x, y) S(x)

3.3

1. S(x) 0% +k% −k% 3

2. 3 Emax1 Emax2 Emax3

Eworst

3. Eworst S(x)
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3.4

3.4.1

V n

p [1]

∇2V =
q

ε
(n− p− C) (3.1)

∇ · (μnn∇V −Dn∇n) = −R+G (3.2)

−∇ · (μpp∇V +Dp∇p) = −R+G (3.3)

q ε μn μp Dn Dp

R G C

N+
D N−

A

C = N+
D −N−

A (3.4)

Si

SRH (Shockley-Read-Hall) [2, 3]

Okuto–Crowell [4] Extended Canali

[5] Arora [6]

A

3.4.2

-

minimize
C

KS(E) =
1

ρE
ln

∫
Ω

exp (ρE |E|) dΩ (3.5)

subject to r ≤ rmax (3.6)

Ω KS(E) KS(Kreisselmeier-Steinhauser) [7] ρE E

r rmax E

–

KS
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3.4:

S(x) C(x, y)

[8]

C(x, y) =
S(x)√(

2ΔR2
p + 4Dt

) exp
(
− (Rp − y)

2

2ΔR2
p + 4Dt

)
(3.7)

Rp ΔRp D t

(3.7)

minimize
S

Eworst = max (KS(E1),KS(E2),KS(E3)) (3.8)

KS E1 E2 E3

3

3.4.3

Scharffeter–

Gummel [9] TCAD (Technology CAD)
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3.9: JTE

i

100V

759V i p–n

3.5.2

3.9 JTE

3.10 10V

Emax
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3.9
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k 50%
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2

)
= N(N − 1)/2 Nef
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4.3.3

Nec (i = 1, . . . , Nec)

∇ · Ji = 0, Ji = −σec∇Vec,i on Ωec (4.1)

∂Vec,i
∂n

= Jin = 1 on Γec,in,i (4.2)

∂Vec,i
∂n

= Jout = −1 on Γec,out,i (4.3)

∂Vec,i
∂n

= 0 on ∂Ωec\(Γec,in,i ∪ Γec,out,i) (4.4)

Vec,i = 0 at Pec,i (4.5)
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Nef (j = 1, . . . , Nef)

∇ ·Ej = 0, Ej = −εef∇Vef,j on Ωef (4.6)

∂Vef,j
∂n

= 0 on ∂Ωef (4.7)

Vef,j = Vhigh = 1 at Pef,high,j (4.8)

Vef,j = Vlow = 0 at Pef,low,j (4.9)

Ej Vef,j j εef
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Ji Ej

|Ji| w

|Ej | d

|Ji| = Jinwin

w
(4.10)

|Ej | = Vhigh − Vlow
d

(4.11)

win wmin

dmin

max |Ji|
Jmin

≤ 1, Jmin =
Jinwin

wmin
(4.12)

max |Ej |
Emin

≤ 1, Emin =
Vhigh − Vlow

dmin
(4.13)

-

KS

[10] |Ji| |Ej | KS

KS(Ji) =
1

ρ1
ln

(∫
Ωec

exp

(
ρ1

|Ji|
Jmin

)
dV

)
− 1

ρ1
ln

(
Kec

∫
Ωec

1dV

)
(4.14)

KS(Ej) =
1

ρ1
ln

(∫
Ωef

exp

(
ρ1

|Ej |
Emin

)
dV

)
− 1

ρ1
ln

(
Kef

∫
Ωef

1dV

)
(4.15)

g KS

g =
1

ρ2
ln

⎛
⎝∑

i

exp (ρ2KS(Ji)) +
∑
j

exp (ρ2KS(Ej))

⎞
⎠ (4.16)

g ≤ 1 (4.17)

(4.14) (4.15)

ρ1 ρ2 Kec Kef KS D
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[11]

r-refinement [12]

PDE (Partial Differential Equation)

2.15 φ

2.16

(4.17)

minimize
φ

fobj (4.18)

subject to g ≤ 1 (4.19)
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fobj φ

[11]

freg =

∫
D

(
φ2 − 1

)2
dV (4.20)

1 −1 φ 1

−1

PDE [13]

−R2∇2φ+ φ = ψ in D (4.21)

∂φ

∂n
= 0 on ∂D (4.22)

R PDE ψ R

PDE

minimize
ψ

fobj + wregfreg (4.23)

subject to g ≤ 1 (4.24)

wreg freg wreg fobj

freg [14]

4.4.2

fobj

fobj

4.4.3

[11]

freg
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∇× 1

μr
∇×E − 4π2f2μ0

(
ε+

σ

jω

)
E

= −j2πfμ0

(∑
k

Je,k +
∑
l

Jp,l

)
in Ωem (5.1)

n×
(
1

μ
∇×E

)
+ j2πf

√
ε

μ
(n× n×E) = 0 on ∂Ωem (5.2)

Je,k =
E

ηe,k
, ηe,k =

wk
hk
Ze,k on Γem,e,k (5.3)

Jp,l =
E − 2Ep,l

ηp,l
, ηp,l =

wl
hl
Zp,l, Ep,l =

Vp,l
hl
ap,l on Γem,p,l (5.4)

Zs n× (H1 −H2)− n× (E × n) = 0 on (Ω ∪ Γcond) (5.5)

n× (H1 −H2) = 0 on D\Ω (5.6)

E ε σ μ μr μ0

f j Ωem Γem,e,k Γem,p,l k

l wk hk k Ze,k

k wl hl l Zp,l l

Vp,l l ap,l l

Zs =

√
πfμ0

σ
(1 + j)

Γcond H1 H2

E D

Ω

5.3.2

2 S S21

f S21

minimize
φ

fobj + wregfreg (5.7)

subject to g ≤ 1 (5.8)

where fobj = 20 log10 |S21| (5.9)

S21 =
1

w2

∫
Γem,p,2

(E · a2)dV (5.10)

(5.10) F
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6.1

(ESL: Equivalent Series Inductance)
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−M
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(6.1)

v2 = −M di1
dt

+ L2
di2
dt

(6.2)

M 6.1(b) 6.1(c)
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v1 = (L1 +M)
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A.

3 T

T0 = 300[K] NA ND

(2) τc (6) αc c n p

SRH

RSRH =
np− n2i

τp(n+ n1) + τn(p+ p1)
(1)

τc = τdop

(
T

T0

)Tα

(2)

τdop = τmin +
τmax − τmin

1 +
(
NA+ND

Nref

)γ (3)

n1 = ni exp

(
Etrap

kT

)
, p1 = ni exp

(
−Etrap

kT

)
(4)

1: SRH

Symbol Electrons Holes Unit

τmin 0 0 s

τmax 1× 10−5 3× 10−6 s

Nref 1× 1016 1× 1016 cm−3

γ 1 1 1

Tα -1.5 -1.5 1

Etrap 0 0 eV
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(Okuto-Crowell Model)

Gii = αnnvn + αppvp (5)

αc = a(1 + c(T − T0))E
γ exp

[
−
(
b[1 + d(T − T0)]

E

)δ]
(6)

2: (Okuto-Crowell Model)

Symbol Electrons Holes Unit

a 0.426 0.243 V−1

b 4.81× 105 6.53× 105 V/cm

c 3.05× 10−4 5.35× 10−4 K−1

d 6.86× 10−4 5.67× 10−4 K−1

γ 1 1 1

δ 2 2 1

(Extended Canali Model)

μ(E) =
(α+ 1)μlow

α+

[
1 +

(
(α+1)μlowE

vsat

)β]1/β (7)

β = β0

(
T

T0

)βexp

(8)

vsat = vsat,0

(
T0
T

)vsat,exp
(9)

3: (Extended Canali Model)

Symbol Electrons Holes Unit

β0 1.109 1.213 1

βexp 0.66 0.17 1

α 0 0 1

vsat,0 1.07× 107 8.37× 106 cm/s

vsat,exp 0.87 0.52 1
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(Arora Model)

μlow = μdop = μmin +
μd

1 + {(NA +ND) /N0}A∗ (10)

μmin = Amin

(
T

T0

)αm

(11)

μd = Ad

(
T

T0

)αd

(12)

N0 = AN

(
T

T0

)αN

(13)

A∗ = Aa

(
T

T0

)αa

(14)

4: (Arora Model)

Symbol Electrons Holes Unit

Amin 88 54.3 cm2/Vs

αm -0.57 -0.57 1

Ad 1252 407 cm2/Vs

αd -2.33 -2.23 1

AN 1.25× 1017 2.35× 1017 cm−3

αN 2.4 2.4 1

Aa 0.88 0.88 1

αa -0.146 -0.146 1
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B. JTE

3 JTE

JTE

tJTE wJTE cJTE 3 wJTE JTE

wJTE

22 μm tJTE cJTE 2

tJTE 2 μm 4 μm 0.1 μm cJTE 8× 1014 2× 1015cm−3

1 × 1014 cm−3 1 Eworst

Eworst tJTE cJTE 2.7μm 1.3 × 1015 cm−3

 2  2.5  3  3.5  4
8x1014

1x1015

1.2x1015

1.4x1015

1.6x1015

1.8x1015

2x1015

8.0×1014

1.0×1015

1.2×1015

1.4×1015

1.6×1015

1.8×1015

2.0×1015

2 2.5 3 3.5 ୎୘୉ݐ4

ܿ ୎୘୉(cm
-3

)

1: Eworst
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C. TCAD

TCAD

Scharffeter–Gummel

(FEM: Finite Element Method)

FEM 3.5 p–n TCAD

2 FEM TCAD 2V

0.22 0.24Ω 100V 93V
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2: I–V

7×1014 1×1015 1.5×1015 2×1015

1×104
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5×104

6×104

0

ܧ ୵୭୰ୱ୲
(V

/c
m

)

(cm-3)

୎୘୉ݐ = 2 um, FEMݐ୎୘୉ = 3 um, FEMݐ୎୘୉ = 4 um, FEM

୎୘୉ݐ = 2 um, TCADݐ୎୘୉ = 3 um, TCADݐ୎୘୉ = 4 um, TCAD

3: TCAD FEM
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D. KS

4 (4.14) (4.15) KS

[1]

KS

KS(fKS) =
1

ρKS
ln

∫
ΩKS

exp (ρKSfKS) dV (15)

fKS ΩKS ρKS KS

fKS Ωhigh fhigh Ωlow = ΩKS\Ωhigh flow

KS

KS(fKS) =
1

ρKS
ln

(∫
Ωhigh

exp (ρKSfhigh) dV

)
+

1

ρKS
ln

(∫
Ωlow

exp (ρKSflow) dV

)
(16)

fhigh � flow

KS(fKS) ≈ 1

ρKS
ln

(∫
Ωhigh

exp (ρKSfhigh) dV

)
(17)

=
1

ρKS
ln

(
exp (ρKSfhigh)

∫
Ωhigh

1dV

)
(18)

= fhigh +
1

ρKS
ln

(∫
Ωhigh

1dV

)
(19)

(19) KS Ωhigh Ωhigh

KKS ΩKS

KS(fKS) = fhigh +
1

ρKS
ln

(
KKS

∫
ΩKS

1dV

)
(20)

(4.14) (4.15)

(4.14) (4.16) KS 4 ρ1 ρ2 Kec Kef

ρ1 ρ2 KS

ρ1 ρ2 5 200 [2] Kec Kef

KS KS

Ωec Ωef |Ji|/Jmin

|Ej |/Emin

Kec Kef
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5: KS

, KS(J1) KS(J2) KS(J3) KS(E1) KS(E2) KS(E3)

5 5 0.1 0.70 0.79 0.70 0.58 0.49 0.58 1.02
5 50 0.1 0.70 0.79 0.70 0.58 0.49 0.58 0.79
5 50 0.05 0.84 0.93 0.84 0.72 0.63 0.72 0.93

0.1 KS

5.4.1 3 KS

1 4

ρ1 ρ2 Kec Kef 5 5 0.1 0.1

(4.24) g > 1

5 KS KS (4.14) (4.15)

0.79 g 1.02 ρ2

KS (4.16) ρ2 50

5 g = 0.79

Kec Kef 0.05

5 KS −1/5 ln(1/2) 0.14

3

103



E.

5 5.7 5.1

5.7 4

5.7

2

4 5

5 10 4

4093 5 Source

Sink 10MHz

5 5 5

Lp1 Lp5 1 5 Kij (i, j = 1, · · · , 5)
i j

S21 6

1 dB

5 4 4 5

4 4 5

7 1 1MHz

5.8(a) 2

1MHz

5.8(b)

2

1 L1 10mH

5.7
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1
2

3

4

5

4:

Lp1

3.528n

C1
{C1}

0AC 1 0

V1

Lp2

9.899n

R2
50

C2
{C2}

R1
50

Lp3

3.527n
Lp4
7.429n

Lp5
7.425n

L1

{L1}
out

.ac oct 100 100 100meg

K12 Lp1 Lp2 1.322E-2
K13 Lp1 Lp3 2.405E-4
K14 Lp1 Lp4 5.198E-19
K15 Lp1 Lp5 1.357E-19
K23 Lp2 Lp3 1.322E-2
K24 Lp2 Lp4 2.793E-19
K25 Lp2 Lp5 6.829E-19
K34 Lp3 Lp4 8.285E-20
K35 Lp3 Lp5 3.640E-19
K45 Lp4 Lp5 1.102E-3

.param C1=10u

.param C2=10u

.param L1=1u

Lp1

3.528n 9 89
Lp4
7.429n

K12 Lp1 Lp2 1.322E-2
K13 Lp1 Lp3 2.405E-4
K14 Lp1 Lp4 5.198E-19
K15 Lp1 Lp5 1.357E-19
K23 Lp2 Lp3 1.322E-2
K24 Lp2 Lp4 2.793E-19
K25 Lp2 Lp5 6.829E-19
K34 Lp3 Lp4 8.285E-20
K35 Lp3 Lp5 3.640E-19
K45 Lp4 Lp5 1.102E-3

Lp2

9.899n

Lp3
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Lp5
7.425n
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F. S

S S21 [3]

S21 =
b2
a1

∣∣∣∣
a2=0

(21)

a1 a2 1 2 b2 2

[4]

a1 =
√

Re(Z1) I1i, a2 =
√

Re(Z2) I2i, b2 =
√
Re(Z2) I2r (22)

Z1 Z2 1 2 I1i I2i 1 2

I2r 2 Re(Z) Z I1i I2i I2r

I1i =
V1i
Z1

, I2i =
V2i
Z2

, I2r =
V2r
Z2

(23)

V1i V2i 1 2 V2r 2 (22)

(23) (21)

S21 =

√
Re(Z2)

Re(Z1)

Z1

Z2

V2r
V1i

∣∣∣∣∣
V2i=0

(24)

5 2 50Ω 1 2

1V 0V Z1 = Z2 = 50 V1i = 1 V2i = 0

V2r = Vem,p,2 − V2i =
1

w2

∫
Γem,p,2

(E · ap,2)dV − V2i (25)

(24) S S21 (5.10)
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G. S

6 S [5, 6]

6.16 8 4 4

1 2 1 3 4

2 S

⎡
⎢⎢⎣
bd1
bd2
bc1
bc2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Sdd11 Sdd12 Sdc11 Sdc12

Sdd21 Sdd22 Sdc21 Sdc22

Scd11 Scd12 Scc11 Scc12

Scd21 Scd22 Scc21 Scc22

⎤
⎥⎥⎦
⎡
⎢⎢⎣
ad1
ad2
ac1
ac2

⎤
⎥⎥⎦ (26)

a∗∗ b∗∗ d c

1 2

a1 a2 a3 a4

b1 b2 b3 b4 [6]

ad1 =
1√
2
(a1 − a2) (27)

ad2 =
1√
2
(a3 − a4) (28)

ac1 =
1√
2
(a1 + a2) (29)

ac2 =
1√
2
(a3 + a4) (30)

bd1 =
1√
2
(b1 − b2) (31)

bd2 =
1√
2
(b3 − b4) (32)

bc1 =
1√
2
(b1 + b2) (33)

bc2 =
1√
2
(b3 + b4) (34)

Sdd21 Scc21

(26)

Sdd21 =
bd2
ad1

∣∣∣∣
ad2=0,ac1=0,ac2=0

(35)

Scc21 =
bc2
ac1

∣∣∣∣
ac2=0,ad1=0,ad2=0

(36)
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8: 4

1

2

(27) (34) (35) (36)

Sdd21 =
b3 − b4
a1 − a2

∣∣∣∣
a1=−a2,a3=0,a4=0

(37)

Scc21 =
b3 + b4
a1 + a2

∣∣∣∣
a1=a2,a3=0,a4=0

(38)

1 ai bi Vi,I Vi,R

1 Z0i [3]

ai =

√
Re(Z0i)

Z∗
0i

Vi,I (39)

bi =

√
Re(Z0i)

Z0i
Vi,R (40)

Z∗ Z (37) (38)

Sdd21 =

√
Re(Z03)

Z03
V3,R −

√
Re(Z04)

Z04
V4,R√

Re(Z01)

Z∗
01

V1,I −
√

Re(Z02)

Z∗
02

V2,I

∣∣∣∣∣∣∣ √
Re(Z01)

Z∗
01

V1,I

=−
√

Re(Z02)

Z∗
02

V2,I,

V3=0,V4=0

(41)

Scc21 =

√
Re(Z03)

Z03
V2,R +

√
Re(Z04)

Z04
V4,R√

Re(Z01)

Z∗
01

V1,I +

√
Re(Z02)

Z∗
02

V2,I

∣∣∣∣∣∣∣ √
Re(Z01)

Z∗
01

V1,I

=

√
Re(Z02)

Z∗
02

V2,I,

V3=0,V4=0

(42)

50Ω
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Z01 = Z02 = Z03 = Z04 (41) (42)

Sdd21 =
V3,R − V4,R
V1,I − V2,I

∣∣∣∣
V1,I=−V2,I,V3=0,V4=0

(43)

Scc21 =
V3,R + V4,R
V1,I + V2,I

∣∣∣∣
V1,I=V2,I,V3=0,V4=0

(44)

1 2

3 4 (43) (44)

S

Sdd21 Scc21 S [7]

Sdd21 =
1

2
(S31 − S32 − S41 + S42) (45)

Scc21 =
1

2
(S31 + S32 + S41 + S42) (46)

4

S S
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