

Title	Improving mechanical properties and reliability of eutectic Sn58Bi alloy and its joints by modified composition
Author(s)	Zhou, Shiqi
Citation	大阪大学, 2019, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/73571
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (ZHOU SHIQI)	
Title	Improving mechanical properties and reliability of eutectic Sn58Bi alloy and its joints by modified composition (組成調整によるSn58Bi共晶合金及びその接合部の機械的特性と信頼性の向上)
<p>Abstract of Thesis</p> <p>Eutectic Sn58Bi alloy has drawn a large amount of attention in electronic industries and research institutes owing to its potential of becoming a promising low-temperature lead-free solder. However, microstructure coarsening during aging and brittleness are two main disadvantages. Alloying minor element(s) into eutectic Sn58Bi allot was the approach in this thesis. Elements, i.e., Ti, Zn, In with different compositions were added into eutectic Sn58Bi by alloying. Microstructures and mechanical properties were examined accordingly.</p> <p>In Chapter 1, a brief introduction on the background of soldering process and solder materials in electronic packaging was provided. Advantages and disadvantages of lead-free solders, specifically, eutectic Sn58Bi was presented. the motivations and design strategies of this thesis was discussed.</p> <p>In Chapter 2, for bulk alloy, the microstructure of eutectic Sn58Bi alloy was refined by a minor Ti addition. Experimental results exhibited that the ultimate tensile strength (UTS) increased, while elongation decreased before aging. For soldered joints, after 1008 h thermal aging, Ni₃Sn₄ intermetallic compound (IMC) layer formed underneath the (Au, Ni)(Sn, Bi)₄ layer on eutectic Sn58Bi/ENIG interface, while only (Au, Ni)(Sn, Bi)₄ layer appeared to form for the Sn58Bi0.5Ti/ENIG system. The shear strength for Sn58Bi0.5Ti joint was higher than that of eutectic Sn58Bi joint, owing to the IMC layer difference.</p> <p>In Chapter 3, for bulk alloy, Zn segregation on Sn-Bi phase boundary was observed in Zn added Sn58Bi alloy after thermal aging. The refined microstructure was therefore obtained. In addition, elongation was also increased. For solder joints, AuZn₃ IMC layer was formed on solder/ENIG interface and remained very thin and stable during aging, which contributed to the improved shear strength.</p> <p>In Chapter 4, for bulk alloy, In and Zn was added in to eutectic Sn58Bi alloy in order to further improving elongation of the Zn-added Sn58Bi alloy by introducing the softening effect of In. Microstructure was refined by Zn addition. Solid solution softening of Sn phase induced by In solid solution was proposed. Improved elongation was obtained due to the combined effects of Zn and In additions. For soldered joints, Au-In/AuZn₃ IMC layers were observed on Sn58Bi0.5In1Zn/ENIG interface. The thicknesses and morphologies of these IMC layers did not change during thermal aging. However, due to the brittleness of AuZn₃ IMC layer, the fracture occurred through the Au-In/AuZn₃ IMC layers. The shear strength of Sn58Bi0.5In1Zn joint was lower than that of Sn58Bi0.5In joint.</p> <p>In Chapter 5, for bulk alloy, Sn₄₅Bi_{2.6}Zn alloy was designed based on the idea of reducing Bi content in eutectic Sn58Bi and maintaining the similar melting temperature at the same time. The composition was calculated based on the thermal dynamic calculation. By this reduction of the Bi the elongation property was improved 112 % before aging. For soldered joints, sound solder joints were made by using the same reflow profile of eutectic Sn58Bi solder alloy. A thin and thermally stable AuZn₃ IMC layer formed. As a result, shear strength remained stable after thermal aging for 1008 h.</p> <p>In Chapter 6, above results and overall environmental assessment were concluded.</p> <p>As conclusion, aforementioned two disadvantages of eutectic Sn58Bi alloy was addressed by alloying various elements. Author believes these newly designed alloys can meet the requirements and replace eutectic Sn58Bi for practical use in the future.</p>	

論文審査の結果の要旨及び担当者

氏名 (ZHOU SHIQI)
論文審査担当者	(職)	氏名	
	主査 教授	西川 宏	(接合科学研究所)
	副査 教授	池 道彦	
	副査 教授	桐原 聰秀	(接合科学研究所)
	副査 准教授	福本 信次	
	副査		
	副査		
	副査		

論文審査の結果の要旨

本論文は、低温鉛フリーはんだとしての Sn-58mass%Bi 共晶合金の機械的性質及び信頼性を改善することを目的として研究をおこなった。特に、高温放置した際の合金微細組織の粗大化および合金の伸びの 2 点について改善を試みた。本論文は以下の 6 つの章で構成されている。

第 1 章では、本論文の研究背景、特に電子パッケージにおけるはんだ付プロセスとはんだ材料の背景および鉛フリーはんだ、特に Sn-58Bi 共晶合金の利点と欠点を整理するとともに、研究目的について説明した。

第 2 章では、Sn-58Bi 共晶合金の微細組織について、Ti を微量添加することにより組織の微細化を試みた。結果として、合金の最大引張強度(UTS)が増加することを示した。また無電解 Ni/Au めっき (ENIG) との接合部については、1008 h の高温放置後、(Au, Ni) (Sn, Bi)₄ 層のみが Sn-58Bi-0.5Ti/Au めっき界面に形成されることが確認された。安定した IMC 形成層のため、Sn-58Bi-0.5Ti 接合部のせん断強度は共晶 Sn58Bi 接合部のそれより高くなることが分かった。

第 3 章では、Sn-58Bi 共晶合金の微細組織について、Zn を微量添加することにより組織の安定化を試みた。結果として、Zn を添加した Sn-58Bi 合金の場合には、高温放置後に Sn/Bi 界面に明確な Zn の偏析が観察され、高温放置中の組織変化も限定的であり、安定な微細組織が得られた。ENIG との接合部では、AuZn₃ の IMC 層がはんだ/ENIG 界面に形成され、高温放置中も薄く安定した層を維持でき、せん断強度が向上した。

第 4 章では、Sn-58Bi 共晶合金に、In と Zn を同時に微量添加した。結果として、組織構造は、Zn 添加によって微細化されるとともに、Sn 相に In が固溶することにより軟化することを明らかにし、Sn 相の固溶軟化を提案し、合金自身の伸びが改善されることが示した。ENIG との接合部では、Au-In / AuZn₃ IMC 層が Sn-58Bi-0.5In1Zn/ENIG 界面で観察され、これらの IMC 層の厚さおよび形態は、高温放置中も変化しなかった。一方で、破断は Au-In/AuZn₃ IMC 層を通して発生した。Sn-58Bi-0.5In1Zn 接合部のせん断強度は Sn-58Bi-0.5In 接合部のせん断強度より低かった。

第 5 章では、Sn-58Bi 共晶合金から Bi 含有量を減らしながら溶融温度を維持することを目指した合金設計を行った。熱力学計算に基づいて組成を計算した。結果として、Bi 含有量を減少したことにより、高温放置前の合金伸びは 112% 改善された。ENIG との接合部については、共晶 Sn58Bi はんだ合金と同じ加熱条件を利用することができ、薄く熱的に安定な AuZn₃ IMC 層が界面に形成されたが、せん断強度は 1008 h の高温放置後も維持されていた。

第 6 章では、前述の結果を総括し、結論を示した。

以上のように、本論文の内容は、環境・エネルギー工学、特に自然エネルギーを有効利用するための次世代有機デバイス製造に向けた有害物質代替プロセスや低温・省エネルギー実装プロセスに寄与するところが大きい。

よって本論文は博士論文として価値あるものと認める。