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Abstract

A unified seakeeping-maneuvering analysis is developed based on the weak-coupling approach
of two-time scale method. At each time step, the second-order horizontal steady forces and
yaw moment are estimated by the far-field method utilizing the Kochin function as a function
of incident-wave frequency and amplitude, relative heading angle between incident wave and
ship, and forward speed, and their magnitudes are added as the wave effect in the maneuvering

motion equations.

The Kochin function representing ship-disturbance waves are evaluated by means of both en-
hanced unified theory (EUT) and new strip method (NSM) to see the difference due to bow wave
diffraction, 3D and forward-speed effects in the final results of second-order steady forces and

moment.

Accordingly, the maneuvering-motion simulation provides the instantaneous forward speed of a
ship and the heading angle to the seakeeping analysis. In order to keep the accuracy of the sim-
ulation model, calm water hull derivatives are taken from the captive tests. Then, maneuvering
simulations in waves are carried out by the coupling between slender-ship theory and modular

maneuvering model in the framework of two-time scale method.

Validation of the seakeeping calculation method is made through comparison with the experi-
ment conducted with bulk-carrier and container ship models advancing in regular oblique waves
and motion-free condition. Good agreement between computed and measured results and also
superiority of EUT to NSM are confirmed for all modes of ship motion and the steady forces

and yaw moment in a wide range of wave frequency.

For the coupled seakeeping-maneuvering model, a comparison of simulated and measured turn-
ing motion in waves indicates the practical reliability of the mathematical model. Improvement
in the estimation of wave-induced steady forces and yaw moment is crucial, particularly in short
waves. Sensitivity study in this wave condition also implies that the steady sway force is the

largest contributor to the phenomenon that the ship drifts to the direction of incident waves.
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Chapter 1

Introduction

1.1 Background

It is well known that the resistance of a ship will increase when the ship is advancing in waves at
constant forward speed. This increment is called the added resistance, which is the longitudinal
component of the wave-induced steady force of second order in the wave amplitude. Since the
prediction of ship resistance is crucial for the economic operation in actual seas, many studies
on the added resistance have been conducted so far. In actual seaways, owing to the nature of
the ocean, ships must sail obliquely to the direction of wave propagation. In oblique waves, not
only the added resistance, but also the same kind of steady sway force and yaw moment may be
exerted. As an effect of these steady sway force and yaw moment, the check helm and drift angle
of the ship may be exerted to attain equilibrium, which will induce another kind of resistance

increase.

On the other hand, IMO (International Maritime Organization) requires that the maneuverability
of a full scale ship is to be evaluated in a calm weather condition through the so-called sea trial.
One of the tests is to measure the steady turning circle with the maximum design rudder angle
until completing at least two turning circles. Then, the maneuverability is judged by the tactical

diameter, advance, transfer, and other information. However, oceangoing ships are expected to
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sail the real seas, with ocean current, wind, and wave. Compared to the ocean current, the wind
and wave are known to be more complex in nature, especially the waves. In certain conditions,
the steady forces can be significantly large to drift the ship from its course, or at least to impair
the course stability. Therefore, it is unsafe to judge the ship maneuverability in waves based
only on the trials performed in calm sea. Accurate prediction of wave-induced steady forces and

moment becomes important in considering the maneuvering motion of a ship in waves.

Early development of the theoretical formulation for the added resistance was provided by
Maruo [1] by means of the principles of momentum and energy conservation. In the calculation
formula derived, the Kochin function, equivalent to the amplitude of ship-generated disturbance
waves far from the ship, is required as the input. Newman [2] studied the wave-induced steady
yaw moment on a floating body at zero speed, and derived a formula using the angular momen-
tum conservation principle. Their analyses were based on the stationary-phase method, which is
expedient for the zero-speed problem, but becomes messy for the case of forward speed. In fact,
Lin and Reed [3] succeeded in obtaining a formula in this condition for the steady sway force
using the stationary-phase method, but they found it difficult to derive a formula for the steady

yaw moment.

Kashiwagi [4-6] proposed an analysis method utilizing the Fourier-transform theory to tackle
the difficulty of stationary-phase method, and consequently derived the formulae for the steady
forces and yaw moment at forward speed. Kashiwagi [5] computed further the Kochin function
and then the added resistance, steady sway force, and steady yaw moment for the forward-speed
but motion-fixed cases by means of the unified theory of Sclavounos [7]. Later Kashiwagi [8]
proposed Enhanced Unified Theory (EUT) as an extension from the unified theory of Newman
[9] and Sclavounos [7], and analyzed surge-related problems by retaining the x-component of
the normal vector in the body boundary condition. The lateral motion modes were treated in the

same fashion as that for heave and pitch, with 3D and forward-speed effects taken into account.

Compared to a large amount of work on the added resistance, few studies have been made on the

steady sway force and yaw moment. Naito et al [10] measured the wave-induced steady forces
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on a tanker model for motion-fixed cases. Iwashita et al [11] compared computed results by the
3D Green function method with measured results for the steady sway force and yaw moment
only for the diffraction problem, but agreement was not good in shorter waves when the forward
speed is present. Another measurement of wave-induced steady forces was conducted by Ueno
et al [12] using a VLCC model at Froude number Fn = 0.069 in a very short wave. Utilizing
a time-domain 3D higher order boundary element method, Joncquez [13] evaluated the second-
order forces and moments for all motion modes at zero speed, but the ship was free to heave and
pitch. When the forward speed is considered, evaluation of forces and moment was done only

for head-wave case.

In the presence of waves, the maneuvering motion equations should be modified to incorporate
these wave-induced steady drift forces into the horizontal motions of the ship. This necessity
requires us to solve not only the maneuvering but also seakeeping problems simultaneously.
Research work on this topic can be classified into two depending on the methods applied: hybrid

method and two-time scale method.

The hybrid method integrates steering and wave-induced motions, then evaluates the convolu-
tion integral of Cummins [14] to account for the wave memory effects. Some of works in this
method are those by Bailey et al [15], Lee [16], Fossen [17], Subramanian and Beck [18], etc.
For instance, Subramanian and Beck [18] utilized the time-domain strip theory taking account
the instantaneous wetted surface when computing Froude-Krylov force, diffracted wave force,
radiated wave memory force and the exact hydrostatic force. The maneuvering forces (viscous
hull derivatives, propeller and rudder forces) were however considered conventionally through
typical model test and semi-empirical formulas. Since the low- and high-frequency problems
are unified in one set of equations of motion, velocity-squared (V¢ - V@) term was taken to es-
timate the steady wave drifts. Alike other similar works, this concept limits the sophistication
of the second-order forces formulation, which are vital in understanding a ship maneuvering in

waves.

In contrast, the two-time scale method evaluates the seakeeping and maneuvering problems
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individually in a weak-coupling framework, with the exchange of information between them.
This separation disposes the need to consider the fluid memory, allows the steady drift forces to
be evaluated in a more precise way, and substantially cuts the computational cost. Some eminent
works in this framework are those of Kobayashi and Wada [19], Yasukawa [20, 21], Skejic and

Faltinsen [25], Seo and Kim [32] and Zhang et al [35, 37].

Yasukawa [20, 21] carried out free running model tests consisting of turning, zig-zag, and stop-
ping motions in regular and irregular waves. SR108 container ship was taken as the subject ship.
The wave effect (drift) to the maneuvering was included in the MMG equations of motion as ad-
ditional force module. The values of horizontal wave drifts were computed and tabulated prior
to the maneuvering simulation. The added resistance in forward speed condition was calculated
using the Maruo [1] formula taking account the influence of reflection waves proposed by Fujii
and Takahashi [22], with the ship motion being estimated by new strip method (NSM). In con-
trast, its value in zero forward speed was evaluated by source distribution method [23] based on
the analyses of Maruo [24] and Newman [2]. Steady sway force and steady yaw moment were

computed in the same fashion for all cases by assuming negligible forward speed effect.

Skejic and Faltinsen [25] presented the details of time-domain maneuvering simulation using
two-time scale. STF strip theory [26] was chosen as the seakeeping module to estimate the
zero-encounter-frequency hydrodynamic coefficients and the second order wave loads. The flow
separation at the stern was taken into account in the linear maneuvering added masses and damp-
ing coeflicients through the introduction of end terms. Then, the nonlinear viscous forces were
estimated by the ITTC’57 frictional resistance (x) and cross flow principle (y and z) explained
in Newman [27] and Faltinsen [28]. Through the turning simulations in regular waves, several
formulation of second-order wave loads were extensively tested, such as those of: Loukakis
and Sclavounos [29], Salvesen [30], as well as the direct pressure integration method and the
short waves asymptotic formulation of Faltinsen et al. [31]. Authors ultimately emphasized the

importance of second-order steady forces and moment to the maneuvering motion in waves.
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Seo and Kim [32] employed the similar concept of two-time scale for a SR108 (or S175) con-
tainer ship. Seakeeping problem was solved by the time-domain Rankine panel method, while
the maneuvering problem was considered by MMG model altogether with the maneuvering
derivatives obtained from model tests. The wave drift forces were accounted by near field
method - direct pressure integration approach. Difficulty in estimating the mean yaw moment
was observed in the validation against experimental data of Yasukawa and Adnan [33], and its
accurate evaluation was mentioned as important future work. The extension of this research was

presented recently for speed loss problem by Lee and Kim [34].

Zhang and Zou [35] addressed the problem in similar way with Seo and Kim [32] for SR108
container ship. The main difference lies in the treatment of double-body basis flow which was
equipped with trailing vortex sheet. Governing Laplace equation was added with a AD term
representing the Kutta condition at the hull trailing edge [36]. This introduction was then
tested through the numerical oblique towing and steady turning motions of Series 60, show-
ing significant underestimation of hydrodynamic forces as drift angle increases. Then, with
the experimentally-derived maneuvering derivatives, simulation was conducted to observe the
time-domain wave-induced motions of a ship turning in regular waves. Their more detailed sur-
vey on the maneuverability in waves was presented in Zhang et al. [37], including their new

experimental data.

Even though various numerical techniques had been presented by world’s researchers, lack of
published experimental data restricted comprehensive validation of the developed codes. How-
ever, since the research on this field has been strongly encouraged by research institutions all
over the world, the amount of experimental works has been increasing recently. SHOPERA
Project published some data on DTC container ship maneuvering in waves through Sprenger et
al. [38], followed with its international benchmark study by Shigunov et al. [39]. Sanada et al.
[40] disclosed an experimental study of maneuvering in waves using Office of Naval Research
Tumblehome (ONRT) surface combatant, as a continuation of Sanada et al. [41]. The tests,

which were performed at The University of lowa ITHR wave basin, comprised of coursekeeping,
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turning and zig-zag tests in calm water and in regular waves. Then, Korean Research Institute
of Ships and Ocean Engineering (KRISO) [42] recently presented an experimental work of the
turning motion of KVLCC2 model in regular waves. This data complements the measurements

for the same ship turning in irregular waves of Yasukawa et al [43].

It is however noteworthy that not every experimental work could be directly used as the bench-
mark for theoretical study. The complete information regarding the model particulars, exper-
imental settings, maneuvering derivatives and coefficients are fundamental for constructing a

prudent numerical validation.

1.2 Objective

The research objective is to develop a practical seakeeping-maneuvering analysis tool by em-
ploying the philosophy of linearized marine hydrodynamics. In this dissertation, the numerical
scheme with high efficiency and reasonable accuracy is proposed through the study of: slender-
ship theory, far-field formulation of wave drift forces, modular mathematical model for calm

water maneuvering and their coupling within two-time scale framework.

In Chapter 2, study is made on the wave-induced added resistance, steady sway force, and
steady yaw moment using the calculation formulae derived by Kashiwagi [4] for the general
forward-speed case. The Kochin functions for symmetric and antisymmetric components of
ship-disturbance waves are important input in those calculation formulae, and they are com-
puted by EUT and NSM. Special attention is paid on the precise integration method to remove
square-root singularities at the limits of integration range and to ensure the convergence in semi-
infinite integrals appearing in the calculation formulae not only for the added resistance, but also
for the steady sway force and yaw moment. Therefore, the calculation method in this paper is
markedly different from conventional ones based on the strip-theory methods in that the numeri-
cal integration is exactly implemented without introducing any artificial convergence factor and

that the computation method for the Kochin function is exact in the framework of the linear



Chapter 1. Objective 7

slender-ship theory and applicable to all frequencies. In the effort to validate this computation
scheme, numerical computations are made for comparison with the experiment conducted by
Yasukawa et al. [44] using a bulk carrier model advancing in regular oblique waves with for-
ward speed and six degrees-of-freedom motion. Validation using a SR108 container ship is also

performed in accordance to Yasukawa and Adnan [33].

In Chapter 3, modular mathematical model is constructed to define the ship steering motions
in calm water, mainly based on the MMG standard method [45]. As previous researches have
acknowledged, the calm water maneuvering model plays a vital role in the coupled analysis
in waves. Therefore, the derivation of motion equations is presented, and associated external
forces are explained. In order to maintain the accuracy, model test results are used to define the
hull derivatives, as well as other maneuvering coefficients. Accordingly, propeller and rudder
forces are estimated by semi-empirical formulas. Numerical simulation is then validated against
tank measurement for SR108 container ship [20], and ship maneuverability is discussed based

on IMO criteria.

In Chapter 4, a unified model is developed by the concept of two-time scale method. The sea-
keeping problem is solved by the slender-ship theory, while the second-order steady forces are
analyzed by the far-field formulae as in Chapter 2. The calm water maneuvering model de-
scribed in Chapter 3 is extended to incorporate wave-induced steady forces and yaw moment,
as functions of incident-wave amplitude and frequency (,, wp), ship-wave relative heading an-
gle (x — ¥), and ship’s forward speed (U). SR108 container ship is taken as the subject ship
since the necessary derivatives and coeflicients are comprehensively available, as well as the
measured maneuvering motions in regular waves [20, 21]. Comparison is also made for the
turning trajectories in regular waves of A/L = 0.5 and 1.0. Sensitivity study in short waves is
also conducted by utilizing the modular nature of external forces. The contribution of each wave

drift is accordingly discussed based on the deviation from the original trajectory.



Chapter 2

Seakeeping Problem by Slender-Ship

Theory and Far-Field Method

2.1 Introduction

As the first step in solving the coupled seakeeping and maneuvering problem, we are going
to address the seakeeping of a ship by the assumption of ideal fluid. Enhanced unified theory
(EUT) is chosen among the slender-ship theory to address the ship-wave interaction. The far-
field formula of steady horizontal forces and moment are constructed by means of the principle
of momentum and energy conservation. On this purpose, the fundamental relations that governs

the linearized fluid domain is going to be described here as explained on Kashiwagi [46].

2.2 Fundamental Equations of Water Waves

In order to derive the governing equations, conservation of mass and momentum is assumed.

Taking a fluid volume in concern as V(#) and defining its density as p, the mass conservation can

d

— av=0 2.1

dt fffv(z)p D
8

be expressed as
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Then, by omitting the viscous shear, and considering only the normal pressure and gravity

forces, we can write following relation expressing the momentum conservation,

d
—fff puidV:—ff pnidS+fff pgoiz dV (2.2)
dt 0 (@) V(o)

with the fluid volume surface S, pressure p acting on it with the i-th component (i=1,2,3) of
the outward-pointing unit normal vector n;, i-th component of the velocity vector u;, gravity

acceleration g and the Kronecker’s delta 6;3, equal to 1 if i = 3 and 0 otherwise.

Here, we may apply following transport theorem [27] to the left-hand sides of (2.1) and (2.2),

ffj;mF v = ff —dv+ffSF,-undS (:fffv[%+(%(muj)} dV) (2.3)

with F; the i-th component of a vector (or scalar) quantity.

The transformation of surface integral in (2.3) into volume integral can be performed by using

] . .
f f f i f fs Ajn;dS 2.4)

together with u,, = u;n;, therefore (2.1) takes the form of

il 1L

The volume V can be composed of an arbitrary group of fluid particles; thus the integrand

Gauss’ theorem,

9
+ aj(pu j)] dv =0 (2.5)

should be equal to zero throughout the fluid. Hence the right-hand side of (2.5) may be replaced

by following partial differential equation,

9

Y (pu]) = (2.6)

which often referred to as the continuity equation.
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For an incompressible fluid having constant density, the continuity equation can be simplified to

a.
M —0orVou=0 2.7)
(‘)xj

In the same fashion, application of transport theorem (2.3) and Gauss’ theorem (2.4) to the

momentum conservation (2.2) gives us

fffv [%(’O”") " aixj(p”f”f)] v = f f fv [—g—i +pg6i3] av 2.8)

Again, since the volume in consideration is arbitrary, (2.8) should hold for the integrands alone:

0 0 dp
—(ou)) + — (puu ;) = —— 5i 2.9
at(/ou)+ axj(pu uj) ax; + 08013 (2.9)

At last, by expanding the products’ derivatives on the left-hand side of (2.9) by the chain rule,
and imposing the continuity equation (2.7), we acquire the Euler’s equation for an incompress-
ible fluid in the form

Ujm— = ———— + 803 (2.10)

so that we have (2.7) and (2.10) as the governing equations for an ideal fluid.

2.3 Potential Flow and Velocity Potential

In linear water waves problem, it is common to assume that the motion of fluid is irrotational;
w = V xu = 0, justifying zero vorticity throughout the fluid. Taking this assumption, the

transformations of (2.7) and (2.10) are considered.

By understanding that an identity of V X V@ = 0 holds for an arbitrary scalar function @(x, 1),
velocity vector u can be described as u = V@ in terms of a scalar function, the so-called velocity

potential @. Thereupon, the flows which may be described with this function are identified as the
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potential flows. This introduction provides an advantage in term of mathematics in which from

a single scalar unknown of velocity potential, all three velocity components can be computed.

By the substitution of u = V@ in the (2.7), we define the Laplace equation,

2
D
a—zOorV-VéDszd):O (2.11)
ox?
J

that expresses the mass conservation and stands as the governing equation for potential flow.

Next, in order to reconstruct the Euler’s equation (2.10) for the potential flow (V X u = 0), the

advection term on its left-hand side can be transformed as

au,-
Mja = ujc')ju,- = uj((')ju,- —Biuj) + ujal-uj
J

1 1
= ujeri(V X W) + 3 0iuju;) = 5V (V- V) (2.12)

Adopting this relation and invoking # = V@& in (2.10) gives

0 (0® 1 p
ZVP-VP + = — = 2.1
ox; ( o 2 T gz) 0 @.13)

Then, the integration of (2.13) with respect to the space variables gives the Bernoulli’s pressure
equation:

o0 | 1 ) (2.14)

—po=-p|l—+-V&. V-
P = o p(at 5 8z

with a constant pg that can be taken equal to the atmospheric pressure p, on the undisturbed

water surface.

2.3.1 Boundary Conditions

In the venture of solving the Laplace equation, it is required to employ appropriate boundary

conditions on the fluid boundaries. Accordingly, we may directly express the velocity potential
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as

D(x, 1) = UlDp(x, 1) + ¢s(x)] + Py(x, 1) (2.15)
Dy(x,1) = R [p(x)e™] (2.16)

with constant forward velocity in x-axis U, the double-body flow potential @p and steady wave-
making flow potential ¢s(x). The latter is taken as zero due to the ship slenderness assumption.
The last term @y is the unsteady velocity potential due to the ship disturbance in waves. This
term is assumed to be time-harmonic with term ¢’ and real part (R) to be taken as in (2.16).

Based on these expressions, the Bernoulli’s pressure equation (2.14) can be decomposed into

P(x,1) = pgz + Ps(x) + Py(x, 1) (2.17)
where
1 2
Ps = SpU'(1-V-V)
1
= 5pU2 (1 =V&p - Vdp -2V - V) + O(¢%) (2.18)
Py = - 2+UV v oy - Lvo, vo
U = P ot U ) U U
d
= —p(a—t +UVDp - V) Dy + O(ps Dy, Dy?) (2.19)
and
V = V(Dp + ¢5) (2.20)

with higher-order terms in ¢ and @y are neglected on (2.18) and (2.19). By substituting the
definition of (2.16) to (2.19), we may write the linearized unsteady pressure as

Py(x,n) =R [p(x)eiwt] (2.21)

p = —p(ivw+ UVPp - V)¢
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Free-Surface Boundary Conditions In order to derive the free-surface boundary condition,

we need to consider the substantial derivative of the zero pressure on the free surface:

(a% . V) [gz + Ps(x) + Pu(x,0] =0 onz=¢ (2.22)

with z = {(x, y, f) expresses the surface elevation.

Next step is to substitute the velocity potential @ (2.15), steady pressure Ps (2.18), unsteady
pressure Py (2.21), and once again omitting the higher order terms of ¢, and ¢. Hence, the

linearized free-surface boundary conditions can be obtained as follows:

U2
— V- V(VPp - Vp) + UN®p - V(VDp - Vo)

2
+U7V(V¢D -V&p) -V, — gaaqss

onz=0 (2.23)

—w*¢ + 2iUWV Dy - Vo + UNDp - V(Dp - V)

2
+%V(V¢D V®p) -V + UV Pp(iw + UVDPp - V) — g‘;—‘p =0onz=0
Z

(2.24)

respectively for the steady and unsteady velocity potentials. Furthermore if the Neumann-Kelvin

assumption is considered (®p = —x), it is then possible to approximate
V@D = —€] (225)

with e; the unit vector along the x-axis. Therefore, (2.23) and (2.24) take the consecutive forms

UZ%_ s

G2 8. =0 onz=0 (2.26)

2
(iw—U%) ¢—ga—¢=0 onz=0 2.27)
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Body Boundary Conditions The boundary condition on the ship hull can also be obtained by

taking the substantial derivative of the hull surface equal to zero.

In the body-fixed coordinate system X = (X, y, 7), it translates into the hull surface being defined
as F(x) = 0. Subsequently, with respect to the space-fixed coordinate system x = (x,y, z), we

obtain

dx
ox ox
+(VF . a—y)ez + (VF . a—z)e3}

Taking the linear theory justification of the small-amplitude ship motions, we may relate x and

(g + Vo(x,1) - V) Fx) = VF. (Z—t + Vd(x, 1) {(VF . (ﬁ)el

0 (2.28)

X as
x=Xx+at) (2.29)
3 3
a(t) = ar(n) + ap(t) X%, ar(t) = Y &Dej, ar(t) = ) Epalbe; (2.30)
j=1 j=1
with the displacement in the j-th mode of ship motions &;(7) being defined as surge, sway, heave,

roll, pitch, yaw for j = 1 ~ 6, respectively.

Taking the division of (2.28) by WF | and the normal vector definition n = VF / WF |, we obtain
Vox, 1) -n=a@) -n+[(VOx, 1) -Va@®)] -n (2.31)

from (2.28) and (2.29). In order to account for the difference between x and x, we apply the

Taylor-series expansion to V@(x, ) that gives following result:

Vd(x, 1)

UV(x)+ VPy(x,t)

UV(x) +Voy(x, 1)

+a(r) - V) [UVE) + VDy(x, )] + O(a?) (2.32)
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By the substitution of (2.32) in (2.31), we may define the linearized body-boundary conditions

to be

6¢D a(ps
V-n=--"12
" on * on

=0 on Sy (2.33)
0dy
Voy -n = on =a(@®) - n+U[(V-V)a@®)—(a@®)-V)V]-n on Sy (2.34)

for steady and unsteady parts, respectively, with S g representing the hull wetted surface. The x
and n have been replaced with x and n since their difference is considered as negligible higher-

order term.

Through the time-harmonic assumption, the unsteady displacement in the j-th mode of motion
can be written in the form of

£i(1) = R|X;e| (2.35)

with the complex amplitude X;. Therefore (2.34) can be transformed into
0 U
X i) X, (n,- + ,—m,-) (2.36)

with

(n1,na,m3) =n, (ng,ns,ng) =xxXn
(my,my,m3)=—-mn-V)V=m (2.37)
(mg,ms,mg) = —(m-V)(xXV)=VXn+xxm
often referred to as the n and m-terms. Moreover, if the uniform flow approximation is taken

(®@p = —x), we obtain V = (-1, 0, 0) so that (2.33) and (2.37) can be simplified into

Ops
on

ni on SH (238)

(my,ma,m3) = (0,0,0)
(2.39)

(my, ms,mg) = (0,n3,—n)
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Note on Radiation Condition At a distance from the ship, we should also impose the radia-
tion condition. Mathematically, one of the known approach is the introduction of the Rayleigh’s
artificial viscosity coefficient (u) into the free-surface boundary conditions. For the uniform-flow

type of free-surface conditions, (2.26) and (2.27) should be rewritten as follows:

Fos  O¢s 0
20°¢ b U¢

o2 5o M ex

=0 onz=0 (2.40)

2
icu—Ui ¢—g%+,u iw—UiqS:O onz=0 (2.41)
0x 0z ox

with p supposed to be very small. This coefficient may be set equal to zero once a solution

satisfying the radiation condition is realized.

2.3.2 Principle of Energy Conservation

The conservation of energy is an important principle in deriving the formula of steady forces and
moment. In the study of mechanics, the total energy is described as the sum of kinetic energy

and potential energy, which can be expressed as
E=E +E, (2.42)
Within a prescribed volume of V, we may write by a volume integral:

E=,0ffj‘:(%u2—gz)dV=pffj‘;(%V@-Vq§—gz)dV (2.43)

with z is positive downward. Using the transport theorem (2.3), the rate-of-change of energy in

function of time can be explained as

dE (1 1
— = —(sVo Vo - V& VP - gz|u, 2.44
i [l e ve-s) v [ o va-sjuas e
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First of all, let us take a look on the integrand of (2.43). Kinetic energy provides the only

contribution to this integral with the form of:

0 (1 0P 0P
—|zV® - VP|=VP.V——=V.[ -V 245
ot (2 ) ot ( ot ) (243)
Meanwhile for the surface integral of (2.44), we may use Bernoulli’s equation (2.14) to define
the integrand as

(2.46)

1 - @
5V(D-V(D—gz=—(u+a—)

Jo, ot

Finally, taking these forms into (2.44) and utilizing the transport theorem, we obtain

dE 0Pod (p-p, 0D
dE _ OPOP _ o .. 24
dr pffs[aran ( P +az)”}ds (247)

The reader should refer to Newman [9] and Kashiwagi [8] for further details on the water waves

problem.

2.4 Formulation of Steady Forces and Moment

The velocity potential and associated steady forces and moment will be explained based on the
approach of Kashiwagi [4]. Mathematical complication of the stationary-phase analysis used
in Maruo formula [1] is resolved by the new analysis method employing the Parseval theorem
(Fourier transform). The derived formulas will allow us to estimate the drift forces and moment
acting on the horizontal plane of a ship: added resistance (x-translation), steady lateral/sway

force (y-translation) and steady yaw moment (z-rotation).

24.1 Asymptotic Form of Velocity Potential in the Far Field

In order to obtain the formula to approximate wave drift forces, we need to introduce the dis-

turbance velocity potential afar from the ship. Firstly, the coordinate system is considered as
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shown in Fig. 2.1. It is assumed that the ship scatters the incident waves while translating
at a constant velocity U to the positive x-axis, and simultaneously having oscillations in six
degrees-of-freedom (DOF). The incident wave amplitude is denoted as ¢,, circular frequency
wo and wavenumber kg (= w(z) /g, with the gravitational acceleration g) at infinitely deep water.
The ship-wave encountering angle is defined to be the following waves for y = 0°, therefore
x = 180° for the head-waves condition. In this case, the encountering frequency is given by
w = wg — koU cos y. Therefore by linear justification that amplitude of incident waves and ship
oscillations are small, in the inviscid and irrotational fluid, the total velocity potential is rewritten

from (2.15) and (2.16) to be

Ficure 2.1: Coordinate system and notations

D(x,y,z,1) = U[Pp(x,y,z,1) + ¢s(x,y,2)] + Py(x,y,2,1) (2.48)

Dy(x,y,2,1) = R[B(x,y,2)e™"] (2.49)

with notations corresponding to (2.15) and (2.16): @p the double-body flow potential, ¢, the
steady disturbance potential due to the steady translation in calm water and @y the unsteady

potential due to wave-induced ship motions. The latter component takes the contributions from
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the diffraction and radiation potentials as follows:

d(x,y,2) = %(900 +¢) (2.50)
with
o = eFoziko(xcosxtysiny) 2.51)
wwy & X;
o= 1= ; e (2.52)

expressing the incident-wave potential and the ship-disturbed velocity potential, respectively.
The ¢7 stands for the diffraction-wave potential, while ¢; denotes the radiation-wave potential
due to the j-th mode of ship oscillation (j = 1 ~ 6) with complex amplitude X;. These potentials

must comply with following boundary conditions:

(L] V=0 (2.53)
(. d )2 o9

[F] iw-U—| ¢—g— =0, onz=0 (2.54)

0x 0z

[B] 6_(;5 =0, atz —» o (2.55)
0z

[H] 6—gb:iwilX-(n-+£m-) onS (2.56)
on N e ) " ’

with n; and m; have been explained previously in (2.37).

By means of Green’s theorem, the disturbance velocity potential that satisfies (2.53) to (2.56) as

well as the radiation condition can be signified as

d 9
p(P) = ff (# - 90(Q)—) G(P; Q) dS(Q) (2.57)
sy \ Ong dng

with the field point P = (x,y,z) and the integration point along the hull wetted surface Q =
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(&,1m,0). The Green function G suitable for the existing problem can be expressed by Fourier

transform as follows

with

G(P, Q)

111
B drn\r 1
1 0 —ik(x—£) f‘” e~ i@+ —ly—n| Vn+k?
- e’ dk - Re ndn
27 J oo 0 (n+ik)Vn? +k?
k k.
_1 [ f . f 4] K k) -y-nl O—T—ik(x=£) g
2 k ks \/kZ _ K2
i o fk3 f‘”} K
+— |- + + _—
2r —o0 ko k4 VKZ — k2
% oK+ O=igily=n| ViF=R=ik(x—§) 1
.
= @RGP+ 0P
rl
1 k?
k = —(w+kU)? =K + 2kt + —
8 Ko
2
P S
g g U?
ki Ko
= -3 [1 + 27+ m]
ko
k3 Ko
= 7[1—27:L Vi-4r |
ky
—1 for —oo < k < kg
g = sgn(w+kU) =

1 for ky <k< o

(2.58)

(2.59)

(2.60)

2.61)

(2.62)

(2.63)

(2.64)

It is understood that wavenumbers k3 and k4 in (2.63) are not real when T > 1/4, hence the

integration limits of (2.58) must be modified to k3 = k4. Moreover, it is noteworthy that we

have discarded the line integral term in (2.57) for the sake of simplicity, which is rational in
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accordance with the slenderness assumption.

Next, we consider the asymptotic approximation of the Green function to formulate the far-field
disturbance potential. When large transverse distance |y| is concerned, only the last term of
(2.58) remains since the other terms represent the local disturbance adjacent to x-axis. Hence,
the substitution of this remaining term into (2.57) provides the expression of the velocity poten-

tial valid at large transverse distance from the x-axis:

; kl k3 00
~ L — + K —KZFigy Vie—I2—ikx
@(x,y,2) 2ﬂ[ j: o+ fk o fk4 ]H ) —===¢ dk (2.65)

with a function representing the complex amplitude of the far-field disturbance wave:

do 0 il
HE(k) = f f (8_""—90—)[@% o g (2.66)
sy \0n on

the so-called Kochin function. The complex signs (+) in previous equations are according to
the sign of y (positive or negative). Understanding that the Kochin function is equal to zero
outside the integration range of (2.65), we may reform the (2.65) into:

1 o0 . )
QD(X, y7 Z) ~ f l'ngi (k) K e—KZ+l8kyVK2—kze—th dk (267)
2 J_ 2 — k2

From here onwards, it is beneficial to define the Fourier transform and the property of Dirac’s

delta function 6(x) correspondingly, as follows:

FLAOIK) = f F()e™ dx = F(k)
00 (2.68)

1 00 .
FUFK)](x) = > f F(k)e ™ dk = f(x)

0o

f f()6(x = x0) dx = f(xo) (2.69)



Chapter 2. Derivation of Added Resistance Formula 22

By the attribute of the Fourier transform, we may recast the far-field disturbance potential as

Fle(x,y,2)]

f @(x,y,2)e™ dx

i H (k) ——e g~ iEry Vi k2 (2.70)
K2 _ k2

The same transformation may be performed for the incident wave potential to obtain:

Fleo(x,y,2] = f @o(x,y,2)e™ dx

[ee)

= ff_‘[e—i(ko COS)())C]e—koz—ik()y sin)( (27 1)

Thus employing the property of (2.69) provides us with the following relation:

1 * —ikx _ 1 —ikox
27TL ok — ko)e dk—zﬂe
1.
F 16k — ko) = 5~ 2.72)
2r

275k — ko) = Fle 0¥

Ultimately, by applying (2.72), the incident wave potential may given as

Fleo(x,y,2)] = 2m8(k — ko cos y)e Kozikoysiny

@o(x,,2) = F 215k — ko cos y)e Koihoysin] (2.73)

2.4.2 Derivation of Added Resistance Formula

The formula of added resistance in waves will be derived by considering the linear momentum
conservation. Transforming the left-hand side of (2.2) by the transport theorem (2.3) gives us

following relation,

aM; _d ([ v ol ([T 2 |
Wzaffj‘;pv,dV—p(ffj‘;at dV+fj;v,undS) 2.74)
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ov;
Taking the substantial derivative, we may write the % on the right-hand side of (2.74) as

E_ ax,‘

(9\1,‘ _ 0 (p
p

- - gz) —v;0,v; (2.75)

with the value of atmospheric pressure p, is taken for pressure p. The term v;d;v; of (2.75) can
be given as

vjajvl- = 6j(vjv,~) - viéjvj (2.76)

with the continuity equation (2.7) defines its last term d;v; = V - v, while the last term can be
modified as d;(v;v;) = d(v;v;)/dx;. Subsequently, the substitution of this term into (2.75) and

(2.74), followed by invoking the divergence theorem, gives the momentum conservation relation

i _ f f [(2 _ gz) n; + vi(vy — un)} ds 2.77)
dt s\p

with the surface integral (§) encloses the hull wetted surface (S g), the still-water free surface

in the form of

(S r) and the control surface (S ¢) afar from the body, as elucidated in Fig. 2.1. Therefore by

considering zero flux across S g and S r and zero value of pressure on S ,

Vv,=u, onSgyandSp
u, =0 onS¢ (2.78)

p=0 onSr
we may write following equation

dM;

o= _fs [(pn; — pgzn;)] dS — ff+ [(pn; — pgzn;) + pviv,] dS (2.79)

Then, by defining v; = V@7 and v, = v; - n; = V@7 - n and accounting only the forces in the

transverse plane (gzn; = 0), we obtain the linear momentum conservation as

% = —ff pndS — ff [pn + pVOr (VD7 - n)] dS (2.80)
dt Su Sk
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Next, we will obtain the force acting on the ship from (2.80). By the substitution of (2.48)
into the linear momentum conservation, considering only the x longitudinal component, then

omitting the steady disturbance potential, we may express the force as follows:

o st [

Since the time average will eliminate the dM,/dt due to the periodicity of fluid motions, there

pny +p( - U) (? - Unx)] ds (2.81)

should be no net increase of momentum in the fluid volume throughout the cycles. Regarding

the resistance as a force pushing back to the negative x-axis, it may be calculated as

*= .

In Maruo [1] the control surface (S ¢) was considered as a circular cylinder extending from the

phy +p(2—i§ - U) (6;45 - Unx)] ds (2.82)

free-surface all the way to the infinitely-deep seabed. However, in this analysis, (S¢) will be
considered as two flat plates located at y = +Y which extend from x = —co to x = o0, as well

as from free surface down to z = +co. Considering n, = 0 on S¢, we can express the added

0D 0D
f‘f;c [ax (’)y] ds (2.83)

with [ 1Y y means taking the difference between the quantity in brackets aty = ¥ and y = —Y.

resistance as follows:

The local wave at the ship vicinity can be neglected due to the large Y assumption. This also
means that the local waves will be zero at x = +oo in the 3D case, while the disturbance waves
radiating away from the x-axis are taken into account. By this control surface, and denoting the

free surface elevation as z = {r, the surface integral (2.83) can be modified as

ff ds = fmdszdx
Sc 143 —00
0 00 00
f +f ]dzf dx (2.84)
93 0 —00




Chapter 2. Derivation of Added Resistance Formula 25

Here, the order of ({F, 0) contribution is higher than 0(@3 ) since integrand itself is on the O( @2),

thus can be neglected. Accordingly, we should recast the (2.84) to be

ff dS:foodzfoodx (2.85)
Sc 0 —00

By means of this equation, the surface integral in (2.83) can be obtained in the form of

0D 0D
f dz f [8)6 Gy] dx (2.86)

Then we substitute @ in (2.49) into (2.86) as

o[ LR e e

Considering time-average approximation of

R[Ae“ R [Beiv'] = %‘R[AB*] (2.88)

with the asterisk (*) denotes the complex conjugate, the (2.87) can therefore be obtained as

1 o6 ¢
= p%f f [ax 6y] dx (2.89)

Next we introduce the definition of velocity potential in (2.49) into (2.89) that gives
= 5900 gy  9g*\|"
R = 9& f f || ax (2.90)
2 dy 9y ]y

By the previously explained assumptions of infinite water depth (kg = w% /g) and zero contri-

follows:

bution of ¢y due to undisturbed incident wave system, the added resistance can be reformed
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into

|
I

pgAz_ng f A ) '
Ox ﬁy Ox dy Ox 9y |_y

_] (2.91)

where

— dp dp

R, = - 2.92
! %f f ax 5y] a (292
— g0 0¢" | O ey 1"

R, = —9& =02 4 2.93
2 f f Ox (9y (9x dy |_y * (2.93)

Then, as derived in Tasrief [47], we are required to: 1) apply the Parseval’s theorem with respect
to the x-integration, 2) differentiate ¢ and ¢g with respect to x and y, 3) solving the integral

equations and 4) invoking the theory of hyperfunction to the sinusoidal terms.

After the lengthy process, we obtain following components:

Rio= gn | e @f P ke

2k
k1
_ TINY) — 12 K
= 871[ f L fk4 ](lH k)|* + |H (k)] )—mk dk (2.94)

k
R, = _w [S [FH(ko, x)* + H(ko,X)]Zy]

ki
= = Cf X5 [~H (ko x)" + H (ko.x) = {H (ko.x)" + H (ko. )}

ko cos y
—=7
2 [

H (kO’/Y)*]

—@8 [H(ko. )] (2.95)

with k3 = k4 in case of 7 > 1/4 for (2.94), and symbol J denotes the imaginary part.
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Hence, the total added resistance can be recast by substituting R, and R, into (2.91) to be:

R 1 fkl fk3 f‘” } K
- - | +| + ————kdk
p8la Sﬂkt)[ o Jl I Vi =12
1

=3 cosxyJ [H (ko, x)] (2.96)

{|H+(k)|2 +|H (K

After completing the analysis based on the principle of momentum conservation, we have to
consider the principle of energy conservation (2.47) to derive the expected formula of added

resistance as explained in [1].

Taking account the boundary conditions of control surfaces in (2.78), we can write (2.47) in the

form

dE D 0D
— = —fSH(p — Da)Vn dS + fSC = 7 45 (2.97)

Considering the time average of (2.47), the rate dE/dt should be zero due to the periodicity of
fluid motions. Therefore, there is no dissipation energy by the ship because there is no external
force aside the constant towing force and gravity force keeping the equilibrium position of the

ship in space.

Then, by treating the surface integrals, employing the time average relation and once again

applying the Fourier transform, we may retransform the added resistance as

I_e 1 k1 k3 00
—=—-| +| +
pgla SﬂkO[ Lx» sz fm

where the symmetric and antisymmetric Kochin functions with respect to the ship y = O plane

(2.98)

" _ (k — kg cos )
([ wF + o} KZ—OkZXdk

Ny

being defined as

H*(k) = C(k) + iggS (k) (2.99)
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with
1
Ck) = {H (k;n =mn) + H*(kyn = -n)}
— ff ( ) -« zk.{-‘( +iggn Vi2—i2 " e:FiskT] sz—kz)dS
Su
= ff (— . ) e e cos (skn Kz—kz)dS
SH
f f ( —p— ) —KC+iks cos(nvkz—kz)ds (2.100)
Su 811
and
. | +
ieS(k) = S{H (kn=n) - H (kn=-m}

ff ( ) —Kk{ tkf( +igrn VK2 —k2 _ eTiEn \/Kz—kz)dS
SH
ff ( ) K gikE {+isin (EkT] K> —kz)}dS

Su

- +lgkff (——<p )—K4+ikfsin(n\//<2—k2)ds 2.101)
Su

At the end, the added resistance in (2.98) can be given in the form

& * k — k
pgg = Tk [ f f fk (IR +1S () ’“2—\/0_‘3;”‘)& (2.102)
a 4 K& —

It is clear that there is no contribution from the interaction between C(k) and S (k) to the added
resistance, where they give only independent contributions. For more detail on the derivation,

reader may refer to Kashiwagi [4] and Tasrief [47].
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2.4.3 Derivation of Steady Sway Force Formula

Based on the (2.80) obtained by the use of Gauss’ theorem and taking account the momentum

conservation, the formula for the sway force as the y-component of (2.82) is

=1,

Moreover, by evaluating (2.103) on the control surface shown in Fig. 2.1 and substituting the

pn, +p(8a—(p - U) (@ - Unx)] ds (2.103)
y

pressure p, the formula can be reduced to

e Ll () (5] o

cae [ @], av+o(#) (2.104)

~
I

where the unsteady wave elevation of the free surface is given by

1 {0D AP
w=—|— -—U— o (®? 2.105
4 g((’)t Bx)zzo+ ( ) ( )

After that, in the same manner with added resistance derivation, we calculate time average in

(2.104) and also substitute velocity potential, so that (2.104) can be written in decomposed form:

- _pgA’ — o
Y = . (Y1+Y2) (2.106)
Y
. 1 00 ) (9(,02 (9(,02 6902
Y1 = - d - . I d
! 4 Jo ZIOO Ox 0z oyl |y o

2 Y

dx (2.107)
-Y

1 © 1 |dp ) Oy
—R Ko+ —|= 2@ —
+4 Im [( el + K, |0x Tty éx)zzo
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oo [ [t sl ot
T Ox 0x 0z 0z 0Oy Oy |_y

1 0pdgy [ ,dp  Og;
_% Koo' + — X770 Y 20
2 Lo [( PPOT K, ox ox +’T(9”Oax “ox )|,

Y

dx
-y

(2.108)
Note that Y| stands for the contribution from ship-generated disturbance waves and Y the con-
tribution from the interaction between incident waves and ship-generated waves.

For the purpose of applying the Parseval’s theorem to the x-integrations in (2.107) and (2.108),

we need to obtain the Fourier transform of ¢ and ¢ which given by

Flo(x,y,2)} = i H* (k)\/%kze‘m"fky vie—iz (2.109)
P
Fl@o (x,,2)} = 216 (k — ko cos x) e~ koz-ikoysiny (2.110)

On the other hand, the z-integration can be performed with

. 1
f ez = — @.111)
0 2k

Specifically for the second term Y», it is sufficient to concentrate on the case of k = ko cos y;
kosiny = +e Vk? —k?; and thus k = ky. As in the added resistance formula, the Y, can
be transformed further by applying the principle of energy conservation. Hence, (2.107) and

(2.108) can be written in the form

ki k3 00
Y| = 4L[_ f + f + f ]S{ZC(k)S*(k)}de (2.112)
4 —00 ky ka
J— 1 ki k3 ) X
2= @kosinx[— f * fk + fk ]{IC(k)|2+|S(k)|2}K2_k2dk (2.113)




Chapter 2. Derivation of Steady Yaw Moment Formula 31

Furthermore, substitution of (2.112) and (2.113) into (2.106) gives the expression for the second-

order steady sway force,

? 1 k1 k3 00 .
v = _M [—Im+fk2 +L ]5{2C(k)S (k)}kdk

i ki k3 )
m - \ 2 2 K
" an [ fosz +fk4 }{IC(k)I + S (k)| }—KZ—kde (2.114)

From this resul, it is clear that the first term Y; comes from the interaction between symmetric

and antisymmetric waves, and the second term Y5 is multiplied by sin y. Thus, the steady sway

force becomes zero in head and following waves for a ship with transverse symmetry.

2.4.4 Derivation of Steady Yaw Moment Formula

In order to relate the steady yaw moment to the far-field velocity potential, we consider the
expression for the rate of change of the vertical component of angular momentum given by
Newman [2]. By taking time average and considering the periodic nature of the fluid motion,

the steady yaw moment expression can be written as

N:—ff [P (@xn), +p(xx V), (neVe)| ds (2.115)
¢
where r is the position vector, and it follows from the velocity potential that

(rxm), = xn, —yn,

op oy
Vo), = x— —y|— —
(rxVe), xay y(ax U)

(noV¢):nx(g—i—U)+nyaa—S; (2.116)



Chapter 2. Derivation of Steady Yaw Moment Formula 32

Evaluating above equations on the control surface, (2.115) can be reduced to

e e G
Epgf xgw] dx + fowdzI:{y‘;if%ﬂ_ydx

+pU fw [yéw‘zif] dx (2.117)
- -Y

(o9

dx

where ¢, is given by (2.105).
Then, performing time-average calculation and substituting the velocity potential gives the de-

composed form of yaw moment formula:

2
A NN, (2.118)

where
— 1 0 0 g 890 8(,0890
N = =R d d
! 4 0 Zfoo[ (5)6 0z ) Yox dy |_ .
Y
1 * 2 d¢ 2 L0p
_4%£w[x([(|| X, |ox +2¢,0a
1 0 ) 1 dp) 0¢ Y
—ZR 2 [ . . d 2.119
i [Joffo 2 ) o e
= La (T 0 [T (22240 , 909 0999 590 B¢y , 9ey dp
N, = =R d Lz > _r 7 x>0 a’
? 2 0 me[x(ax 0x " 0z 0z Oy Oy 0x 8 (’)x (9y o
1 o0 « 1 8 6900 . *6(,0 8900
—E%IOO X(KQDQDO Ea—a—'l‘l‘l'(gooa —()0—

o

__%f‘” e[ 2 é’soo L L (%% ﬁsooaup
o Oﬁy ay Ko \0x dy ax ay
(2.120)

In applying the Parseval’s theorem to the x-integration in (2.119) and (2.120), the Fourier trans-

form of the derivatives of ¢ times the coordinate x must be obtained beforehand. Taking
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x(0¢/0x) as an example, the Fourier transform can be found as

op d N akk  _rie NI
F s — v H_ k KZ+lEky K
{xax} ldk{ ( )}—Kz—kze
it L | S e, iy Vi
dk | \i2 = k2
$Hi(k) Kk (kk” — k) e—sze¢ieky Vk2—k?
K2 _ k2
(2.121)
where
d k
o= 2(T+ 70) (2.122)
Regarding the Fourier transform of d¢* /dx, we also get
8¢* + * EkKk —kzEi€y Vi2—ik2
Fi— -1 =[H (k)] N (2.123)
2 —

In the same way, we can obtain another Fourier transforms which are necessary in performing
the x-integration in (2.119). Based on Parseval’s theorem, we should consider the integration
of products appearing in (2.119) with respect to k, including (2.121) and (2.123). In carrying
out these integrations, it is noteworthy that the integrand originating from the second term on
the right-hand side of (2.121) is pure imaginary, in which it does not contribute to the final
result. Moreover, it can be confirmed that the summation of all the terms linearly proportional
to y, including the contribution from the last term in (2.121), is exactly zero. In addition, the

z-integration in (2.119) can be carried out by using (2.111).

By summarizing above reductions and substituting the Kochin function, following expression

can be derived,

kl k3 00
Ny = i [—f +f +f ] R{C’(k)S (k) — C*(k)S’ (k)}kdk (2.124)
4r —o0 ko ka4

where C’(k) and S’ (k) are the derivatives of C(k) and S (k) with respect to k, respectively. Here,

we can see that only the interaction between symmetric and antisymmetric waves contributes to
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the N term, which is identical to the first term of steady sway force.

The next step is considering the N> which develops from the interaction between the incident
waves and ship-generated waves. Following the preceding procedure, the Parseval’s theorem is
applied by using the Fourier transforms of (2.109) and (2.121). Then, we can put k = kg cos y
due to the property of Dirac’s delta function in (2.109), and ko siny = e m; so that

k = ko. The z-integration in (2.120) can be solved by using (2.110) and following equation

) 1 2
f ze %7 = (ﬂ) (2.125)
0

The result will consist of three parts, which are similar to (2.121): the first (N,1) includes the
derivative of the Kochin function, the second (V2;) constitutes terms which linearly proportional

to y. and the third (N_Qg) is the remainder. These three parts are as follows:

— 1 d .
Ny = =3 siny R {koﬁc [H (k)]} (2.126)
Ny =0 (2.127)
— 1. ko cos x
Ny3 = =3 sinyR< [+ X H(ko, x) (2.128)
0

One should note that H* (k) in (2.126) must be evaluated at k = ko cos y and ko sin y = +&; Vi — k2.
Accordingly, by using the relation ko = k = (w + kU)? /g and substituting the Kochin function,

the final result of N> can be written in the form

N> = Ny +Np+Ny

1 k
= -3 sinxR ko (€ (ko) + 18 (Ko, ) + (T 4 008K ) H(ko, X)}
(2.129)
where C’(ko, x) + iS’(ko, x) is to be defined as
d .
[— {Ck) +iS (k)}] (2.130)
dk k=ko sin y; Vk2—k%=k sin y
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Finally, by substituting (2.124) and (2.129) into (2.118), the formula for the steady yaw moment

in waves can be expressed as

k1 0o
pgéuz 47Tk0[ f f; L ]%{C (k)S " (k) — C"(k)S " (k)}xdk

"
_ Esm)(‘R[C (ko, x) + iS” (ko, ) + —( + OESX)H(kO,X)] (2.131)

In order to correctly solve the integral in this equation, as well as in (2.102) and (2.114), one
should consider numerical issues of square-root singularity and semi-infinite integral. Exact
solutions to address these problems are presented comprehensively in the Appendices A, B and

C.

2.4.5 Kochin Function

Based on the derivations on previous subsections, the final expressions of added resistance,
steady sway force, and steady yaw moment have been obtained in (2.102), (2.114) and (2.131),

respectively.

Kochin function of wave amplitude states that H(k) = C(k) + iS (k), with C(k) stands for sym-
metric component with respect to the center-plane of a ship symmetrical about y = 0, and § (k)
stands for the antisymmetric ones, that can be expressed by the followings
wwy Xj
o = Crlk) === D, ZCik)
13,5
= (2.132)

ww

X
Sk)=S7(k) - — XSj(k)
8 i34

where the j = 1 ~ 6 suffix denotes the radiation wave of j-mode, j = 7 denotes the incident
waves scattered/diffracted by the ship hull. X;/A of each j-mode denotes the nondimensional-

ized ship motion in waves.
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Then, radiation Kochin function C (k) and S j(k) can be computed by

Cj(k) = f Q;(x)e*dx
L

2.133
Ny [ (2139
K L

S j(k) = Dj(x)e™dx = \1 = k2 /K28 (k)

Here, the x-integration range is from the ship’s stern to bow, where the Q;(x) and D;(x), based
on the slender-ship theory, represents the x-axis linear source strength (z = 0 on the free surface)

and doublet strength, respectively.

2.5 Enhanced Unified Theory

Prior to the estimation of the second-order steady force and moment, the unsteady velocity
potential given in (2.16) must be solved by satisfying the governing equations and boundary
conditions. In the framework of slender-ship theory, these equations may be reduced into a

simpler form by introducing the slenderness parameter €.

At a distance far away from the ship (¢ — 0), the ship hull will shrink into a line along the x-axis,
therefore the body boundary condition cannot be imposed; the so-called “outer problem”. By
the transformation of y = €Y and z = €Z, the y and z axes may be zoomed into the body surface.
Hence, we obtain the body-boundary condition to be solved in the magnified ¥ — Z plane. On
the other side, the ship-generated waves at the far field cannot be understood in the vicinity of

the ship, and thus the radiation condition cannot be imposed; the so-called “inner problem”.

With this definition, we will consider symmetric and antisymmetric modes in the radiation prob-

lem (j = 1 ~ 6) and in the diffraction problem (j = 7, 8) with respect to the vertical X — Z plane.

2.5.1 Radiation Problem

In the inner region, due to the small y-perturbation justified by the slenderness assumption, the

flow velocity gradient along the x-axis is small compared to that in transverse sections; then
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the radiation condition may not be imposed. Therefore the unsteady velocity potential for the

radiation waves must satisfy the following boundary conditions:

¢, %9,

8_)12+8_Z2:0 for ZZO (2134)

6 .

g§+x¢j=0 onz>0 (2.135)
Z

C') .

Bi v Y onca (2.136)

on iw

with n and m terms previously explained in (2.37). These are considered on the contour Cg(x)

of the transverse section at position x over the ship length.

Since we are lacking of the radiation condition, a homogeneous solution may be used to con-

struct the general inner solution satisfying the boundary conditions in the following form:

$i(:.2) = ¢7(,2)+Ci(0)"(v,2) (2.137)
U_

ﬁm@::wwa+5%@@ (2.138)

#1700 = {p30,2 - #3019} (2.139)

Here, ¢§) the particular solutions with ¢; and @; correspond to the solutions of the first and
second terms on the right-hand side of (2.139) respectively. ¢§.{ is a homogeneous solution with

the unknown coeflicient C;(x), while the asterisk denotes the complex conjugate.

In the outer region far away from the ship, the body boundary condition cannot be imposed.
Thus the outer solution can be formulated by a line distribution of the 3D source along the

x-axis and expressed in the form

¢j(x.y,2) = fL Q&G (x = &,y,2)dé (2.140)

where G is the 3D Green function given by (2.58) for the translating and oscillating problems,
and Q; is the unknown strength. By the matching between the outer expansion of the inner

solution and the inner expansion of the outer solution in an overlapping (middle) region, the
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unknown C(x) in (2.130) and Q;(x) in (2.140) can be obtained and given as follows:

. v
$;(x) + 2i (1 - 9) = fQj(g)f(x—g)dg =0+ =G (2.141)
Vs o L iw

Cifos — i} = 0; - {ffj + %Ej} (2.142)

with f(x — &) the kernel function containing the 3D and forward-speed effects. The explicit
expression of this function is given in the original unified theory [48]. o; and & ; denote the 2D

Kochin function to be computed from ¢; and @}, respectively.

2.5.2 Diffraction Problem

By assuming that the rapidly-varying component of the scattering potential along the ship length

is of the same form as the incident wave, the scattering potential may be taken in the form

$7(x:y,2) = Yr(xs, y, 2)e'™; 1= —kgcos (2.143)

with 7 the slowly-varying term of the inner solution that satisfies following boundary condi-

tions:

R
5_),2+5_22_ll’[’7:0 onz>0 (2.144)
W1 s hor =0 onz=0 (2.145)
Z
% = koe’koz {(n3 + inj cos y) cos(kgy sin y)
n

+ ny siny sin(kgy siny)} on Cg(x) (2.146)
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Therefore, the general inner solution can be expressed as follows:

V(.2 = Y32+ Crvd (3,2) (2.147)
Yr(y,2) = —e ™ cos(koysiny) (2.148)
vH(.2) = {Yap(x:y,2) + €% cos (koy sinx)| (2.149)

with y»p the numerical solution taking account the body-boundary condition which includes
the n; contribution in (2.146). Using the same procedure in the radiation problem, the unknown
C7(x) can also be obtained by the inner-outer matching procedure. Then by solving an integral

of the source strength in the outer solution, the C7(x) can be calculated from

1 .
Q7(x) + 07 {Q7(x)hl(/\’) - f 076 f(x - f)df} = o7e'™ (2.150)
L
Cr(x)r7e™ = Q7(x) (2.151)
with
hi(x) = csc y cosh™! (| sec y|) — In(2] sec y|) (2.152)

Moreover, details of radiation and diffraction problems on enhanced unified theory are explained

in Kashiwagi [4, 8].

2.6 Wave-Induced Ship Motions

The motion equations for all modes of motion can be computed by the following equation

Z [—wz(M,-j+Al-j)+in,-j+C,-j]Xj:E,- (l: 1 ~6) (2153)
Jj=1~6
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with M;; is the generalized mass matrix and C;; the restoring force matrix. The resulting nonzero

terms from these matrices are

My = Ms3,  Mss = Iss = pVk;,
C33 = pgAy, Cz5 =Cs3 =—pgA,x, (2.154)

C55 = ngGML, C44 = mgW

with the displacement volume V and the gyrational radius in pitch y,. A,, is the waterplane area
with x,, as its center in x-axis and GM| is longitudinal metacentric height. Here, the viscous

damping formulation of Himeno [49] is used to account for nonlinear damping.

2.7 Experiment

2.7.1 JASNAOE-BC084 (Bulk Carrier)

The computed ship in concern is a bulk carrier named JASNAOE-BC084. Comes with bulbous
bow, the 3D projection of its body plan is illustrated on Fig. 2.2. Her principal particulars are

shown in Table 2.1.

TaBLE 2.1: Principal particulars of JASNAOE-BC084

| Item | Value | Unit |
Length between perpendiculars (Lpp) | 320.00 | m
Breadth (B) 58.00 m
Draft (d) 20.80 m
Block coefficient (Cpg) 0.84 -
Midship coefficient (Cyy) 0.99 -
Waterplane coefficient (Cyp) 0.93 -
Center of gravity (OG) 9.80 m
Roll gyrational radius (K,,/B) 0.35 -
Pitch gyrational radius (K, /L) 0.25 -
Yaw gyrational radius (K,;/L) 0.25 -

Experiment was done in the tank of Mitsubishi Heavy Industries for the JASNAOE Strategy

Research Committee on IMO Guideline of Minimum Engine Power. In the experiment, motions
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Ficure 2.2: Body plan of JASNAOE-BC084

and steady forces were measured in four conditions of forward speed (Fn): 0.000, 0.037, 0.074,
0.124. At every Froude number except 0.124, measurements were done in four ship-waves
encountering angles as shown in Fig. 2.3: 30°,90°, 150°, 180°, where 180° signifies the head
waves as the sole heading condition at Fn = 0.124. The wavelengths in measurements were

A/L=04~15.

On each experimental quantity, there are two measured values representing different mecha-
nisms in capturing the incident wave amplitude, which resulted from encountering and station-
ary wave probes. The encountering wave probe is installed on the ship’s carriage, thus runs
together along the ship while measuring the wave amplitude. In contrast, the stationary wave
probe is located close to the side wall of towing tank, and measures the wave amplitude at a

distance from the ship.

By this understanding of technical problem in the experiment, it is rational in physics to judge
that the incident wave amplitude recorded by the stationary wave probe will be less disturbed
by the near-field ship-scattered waves than the distance-wise prone encountering wave probe.
Accordingly, the measured data nondimensionalized by far-field incident wave amplitude are

taken to validate the numerical computation.
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2.7.2 SR108 (Container Ship)

The body plan and principal particulars of SR108 container ship model are presented in Fig. 2.4
and Table 2.2, respectively. In the experiment of Yasukawa [20], the added resistance, steady
sway force , and steady yaw moment of SR108 container ship were measured at F'n = 0.15 with

incident waves of y = 90°, 180° (beam and head waves).
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TaBLE 2.2: Principal particulars of SR108 container ship model

’ Item Value Unit
Length: (L,,) 3.500 m
Breadth: (B) 0.508 m
Draft: (d) 0.190 m
Block coefficient (Cp) 0.572 -
Displacement: (V) 1897.0 N
Metacentric height (W) 20.1 mm
Roll gyrational radius (k.,/B) 0.350 -
Pitch gyrational radius (ky,/L) 0.269 -
Yaw gyrational radius («;/L) 0.269 -

2.8 Computation Results and Discussion

2.8.1 JASNAOE-BC084 (Bulk Carrier)

Motion Based on aforesaid conditions, computed ship motions are depictured on Figs. 2.5 ~
2.10. As representatives, only oblique waves cases are compared for the discussion. Several

findings are described in the followings.

At zero forward speed, comparable motion quantities can be seen on bow and stern waves (30°
and 150°). Slight variation is generated due to the dinstinct hull shapes at both ship ends. When
forward speed is exist, the computed values also correspond with the measured ones. Slight
difference is visible on the resonant frequency of roll motion, which has been corrected by

Himeno’s formulation [49].

The influence of the forward speed can be seen from the visible Doppler effect (shifting of peak)
as the ship speed heightens. In addition, since x-component of normal vector is not retained in
the NSM formulation of body boundary condition, surge motion is virtually predicted as zero
for all frequencies. In few cases of short waves, the computed motions by EUT show minor
spikes due to the slow convergence of unified-theory integral equation. Therefore, this should
be understood as purely numerical issue. Regardless of certain extent of discrepancy, the overall

agreement between computations and measurement is practically exceptional.



Chapter 2. Computation Results and Discussion 44

=3 = ¥
05
ok
1 1 1 | 1 1 . 1 | 1 1 1 |
05 15 2 05 1 15 2 05 15 2
ML ML ML
L5 PR -
~ Nt %
=< = =
x A x
s
05
o
PR PR -
N Y X
=3 =X 2
EUT
————————— NSM
(o] EXP 150°
05 05
o
o
(¢]
OF e o
1 1 1 1 1 1 1 1 1 1 1 1
¢ 0.5 1 15 2 0.5 1 15 2 0.5 1 15 2
ML ML ML
15 PR -
~t % ~t
< = =
x x ®
s
05
ok
1 1 1 1 1 1 L 1 1 1 1 1 1
0 05 I 15 2 0 05 1 15 2 0 05 1 15 2

FiGure 2.6: Motions of JASNAOE-BC084 (y = 150°, U = 0 knot < Fn = 0.0)



Chapter 2. Computation Results and Discussion

45

X\,

Xk,

X\,

Xk,

©

0.5

0.5

54
7

IS4
x
EUT
————————— NSM
O EXP30°
05
a
=]
,,,,,,,,,, = 0
1 1 . 1 |
05 1 15 2
ML
=1
N~
=
x

Xk,

i,

Y
B
EUT
————————— NSM
(o] EXP 150°
05
o
o
o040
,,,,,,,,,,,,,,, (S 0
1 1 1 1
0.5 1 15 2
ML
R
%
=
x

Xk,

0.5 1 15 2

FiGure 2.8: Motions of JASNAOE-BCO084 (y = 150°, U = 4 knot o< Fn = 0.037)



Chapter 2. Computation Results and Discussion 46

X\,

Xk,

X\,

Xk,

- = 1 1
5 54
» K
EUT
————————— NSM
o EXP 30
05 05 051
oF oF [ o
1 1 L 1 1 1 1 L 1 1
0.5 1 1.5 2 0.5 1 1.5 2
ML ML
2F < T < I
= <
15
AN 05 051 o
05
o (1] 3
ok
1 1 1 1 1 1 1 1 1 1 n 1 1
0.5 1 15 2 0.5 1 15 2 0.5 1 1.5 2
ML ML ML
Ficure 2.9: Motions of JASNAOE-BC084 (y = 30°, U = 8 knot «< Fn = 0.074)
I~ < Nl
EUT
————————— NSM
o] EXP 150"
05 05 05
[e]
o
OfF T of o
1 1 1 1 1 1 n 1 1
( 0.5 1 1.5 2 0.5 1 15 2
ML ML
2r N 1 N 1
o <
1.5
n 05 05
05
oF o
ok
1 1 1 1 1 1 1 1
0 0 0.5 1 1.5 2 0 0.5 1 1.5 2
ML ML

FiGure 2.10: Motions of JASNAOE-BCO084 (y = 150°, U = 8 knot « Fn = 0.074)



Chapter 2. Computation Results and Discussion 47

Second-Order Steady Forces and Moment Based on experimental conditions explained on
Fig. 2.3, computations were done by enhanced unified theory (EUT) and new strip method
(NSM). The antisymmetric motion resonant peaks are practically corrected by employing non-
linear viscous damping forces [49] on pure roll and its couplings. The forces behavior and issues

illustrated in Figs. 2.11 ~ 2.41 are presented below.

At zero speed, characteristic of the forces can be observed. Since they are functions of their
corresponding motions, resembling mirrored results can be seen on both conditions, particularly
on longer waves. In short waves, the values differ due to the distinctive bow-stern geometry
since the diffraction wave is sensitive to the shape. Calculations by NSM mostly underestimated

the forces magnitude in shorter waves region.

At Fn = 0.037, steady forces behavior is well predicted on wide range of frequency, and the
agreement is remarkable. It is also investigated that the measured values in bow and stern waves
give different trends due to the existence of forward speed. In shorter waves, the underestimation
of NSM in computing the steady forces and moment are intensified, in contrast to the accurate

observation by EUT.

At Fn = 0.074, the results fluctuate slightly in shorter waves. At this Froude number, the
Hanaoka’s parameter (7) in each ship heading angle needs to be considered since it is exist in-
side the range of computed A/L. This exact point may give drastic changes or bumps in relation
to the quarter of 7. Besides, this might also be contributed by the sensitivity of diffraction com-
ponent to the ship ends’ shapes, which indicates the necessity in improving the ship geometry

interpolation, more especially at the spots where the sectional contours vary rapidly.

Other factor is the integration method of outer source strength in the unified-theory integral
equation. For zero or very low forward speed, linear interpolation is suitable for this integration,
where Chebyshev polynomial is favorable for moderate or higher speeds. The transition between
these two methods has been confirmed and is located around Frn ~ 0.08. Therefore, the case of

Fn = 0.074 falls exactly in this transition zone.
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Finally, at the highest velocity of F'n = 0.1239, EUT estimated the added resistance accurately,
while the NSM predicted around 50% of the measured values at the peak frequency. The steady
sway force and steady yaw moment on the head waves are virtually zero, with some noise shown

in the experiment data.

Hence, computed wave-induced steady forces and moment by both means are showing good

agreement with the measured quantities in experiment, where in general, EUT is more favorable.
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Figure 2.11: Longitudinal drift force of JASNAOE-BCO084 (y = 30°, Fn = 0.0)
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FIGURE 2.15: Sway drift force of JASNAOE-BC084 (y = 30°, Fn = 0.0)
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FiGure 2.16: Sway drift force of JASNAOE-BC084 (y = 90°, Fn = 0.0)
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FiGure 2.17: Sway drift force of JASNAOE-BC084 (y = 150°, Fn = 0.0)
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FiGure 2.18: Sway drift force of JASNAOE-BC084 (y = 180°, Fn = 0.0)
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Chapter 2. Computation Results and Discussion 53

0.6 —
B EUT
--------- NSM
04l n EXP 90°
2
a 0
=)
DU
50
Q
Z O
02
| | | |
-0.4
0 0.5 1 1.5 2

AL

Ficure 2.20: Yaw drift moment of JASNAOE-BC084 (y = 90°, Fn = 0.0)
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Figure 2.21: Yaw drift moment of JASNAOE-BCO084 (y = 150°, Fn = 0.0)
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Figure 2.22: Yaw drift moment of JASNAOE-BC084 (y = 180°, Fn = 0.0)
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FiGure 2.24: Added resistance of JASNAOE-BC084 (y = 90°, Fn = 0.037)
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FiGgure 2.25: Added resistance of JASNAOE-BC084 (y = 150°, Fn = 0.037)
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FiGure 2.27: Steady sway force of JASNAOE-BCO084 (y = 30°, Fn = 0.037)
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FiGure 2.28: Steady sway force of JASNAOE-BCO084 (y = 90°, Fn = 0.037)
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Figure 2.30: Steady sway force of JASNAOE-BC084 (y = 180°, Fn = 0.037)
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FiGure 2.31: Steady yaw moment of JASNAOE-BC084 (y = 30°, Fn = 0.037)
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FiGure 2.34: Steady yaw moment of JASNAOE-BCO084 (y = 180°, Fn = 0.037)
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FiGure 2.37: Steady sway force of JASNAOE-BC084 (y = 30°, Fn = 0.074)
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FiGure 2.38: Steady sway force of JASNAOE-BCO084 (y = 90°, Fn = 0.074)
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FiGure 2.39: Steady yaw moment of JASNAOE-BC084 (y = 30°, Fn = 0.074)
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FiGure 2.40: Steady yaw moment of JASNAOE-BC084 (y = 90°, Fn = 0.074)
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FiGure 2.42: Steady sway force of JASNAOE-BC084 (y = 180°, Fn = 0.124)
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FiGure 2.43: Steady yaw moment of JASNAOE-BC084 (y = 180°, Fn = 0.124)
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2.8.2 SR108 (Container Ship)

From Yasukawa [20], the measured steady forces and moment of SR108 container ship are
available for Fn = 0.15 with y = 90°, 180°. Computations by EUT and NSM are presented in

Figs. 2.44 ~ 2.47 together with the measured data in the experiment.

For the added resistance, we can observe good agreement between measured data and calcu-
lations. In Fig.2.44, a slight issue in the shorter waves can be seen, in which the calculations
underestimated the added resistance contributed mainly from reflected waves around the ship
bow. The same issue is also evident for the beam-wave case shown in Fig. 2.45, while the NSM

predicted virtually zero value.

On the other hand, steady sway force estimation by EUT showed promising agreement, espe-
cially in 4/L =~ 0.5. However, the diffraction part in the steady sway force diminishes very
quickly as the wavelength increases which causes relative discrepancy with the experiment, es-

pecially in the range of /L = 0.6 ~ 1.0.

In the case of steady yaw moment, EUT is able to estimate the trend in a decent way, despite
its underestimation in terms of the magnitude. In general, this validation implies that our sea-
keeping tool is adequately credible to compute the wave-drift forces acting on a ship in oblique

waves.
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FiGure 2.45: Added resistance of SR108 (y = 90°, Fn = 0.15)
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FiGure 2.46: Steady sway force of SR108 (y = 90°, Fn = 0.15)
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FiGure 2.47: Steady yaw moment of SR108 (y = 90°, Fn = 0.15)



Chapter 3

Maneuvering in Calm Water by MMG

Model

3.1 Introduction

As the foundation of MMG model, single-screw single-rudder ship is considered when explain-
ing the maneuvering motion equations and the mathematical model of the fluid force acting on
the ship. The very basic of MMG model was introduced comprehensively in MMG Reports I-V
written collectively by Ogawa et al. [50], Hamamoto [51], Kasai and Yumuro [52], Kose and

Kijima [53] and Ogawa et al. [54].

3.2 Basic Assumptions

As explained in MMG standard method [45], the following basic assumptions are made when

setting up this model:

o Ship as a perfect rigid body.

68
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e Hydrodynamic forces are simply composed of the velocity and acceleration components

(quasi-steady assumption).

e Maneuvering motion is performed with low y-velocity compared to x-velocity. Does not

apply for berthing and reversed propeller stopping motions.

o Adequately low ship speed to ensure negligible steady wave making. Does not apply for

high-speed planing ships.
e Relatively large GM resulting negligible roll coupling (and heel) effect on maneuvering.

e Rudder angle and propeller revolutions are given. Does not consider about torque rich.

3.3 Equations of Motions

In horizontal plane, we may represent the maneuvering of a ship as surge, sway, and yaw motion

equations of

m@@—vr)=X (3.1a)
mv+ur)y=Y (3.1b)
I.i=N (3.1¢)

with u, v, r as the unknowns and right-hand side as the forcing functions. The derivation of (3.1)

is explained to define the problem.

At first, let us consider a ship performing a certain maneuver in calm water by applying rudder
angle, and observe this phenomenon from two different references. Figure 3.1 shows the co-
ordinate systems consisting: space-fixed coordinate system O-xgyo and the moving body-fixed

coordinate system O-xy, in which the vertical z-axis here is independent from them. Now we
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Figure 3.1: Coordinate systems
list all notations in the coordinate systems, as follows:
{uo, vo, 1, g, vo, i, Xo, Yo, N} = space-referenced quantities (3.2a)
{u,v,r,i,v, i, X, Y, N} = body-referenced quantities (3.2b)
{¥} = heading angle (3.2¢)
{B} = drift angle/angle of attack (3.2d)

If xo¢ and yoi are the distances from the O to the ship’s center of gravity, we may, by Newton’s

Law, express the maneuvering forces and moment in space-fixed coordinate system as

Xo = miog = mil
Yo = myoc = mvg

N=I1,%=1I_

(3.3a)
(3.3b)

(3.3¢0)

Then as the ship maneuvers, the ship geometry in the space-fixed coordinate system changes

with time, which dictates the necessity to translate the problem into the body-fixed coordinate
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Ficure 3.2: Transformation of coordinate systems

system for the sake of efficiency. For two axes connected at a point (z) rotated by angle ¥ as

illustrated in Fig. 3.2, their vectorial relation to each other can be written as:

{V} = [RI{Vo} (3.4a)

Vo) = [RI"{V} (3.4b)

with the rotation matrix of

cos? sin¥
[R] = (3.5)

—sin¥ cos¥

According to this identity, we can apply its transpose to transform space-fixed force vectors to

body-fixed force vectors as

X =Xycos ¥+ Yysin¥ (3.6a)
Y =Yycos ¥ — Xysin ¥ (3.6b)

likewise
Xoc =ug=ucos¥ —vsin¥ (3.7a)

Yo =vo = usin ¥ + vcos ¥ (3.7b)
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Then, by taking these definitions, we may write the iy and v in (3.3) as

. d d d .

i = —-uo = E(u cos ¥) - E(V sin ¥)
d d d

Vo = 0= E(u sin ¥) + d—t(vcos ¥)

where each term in the right-hand side has two parts because ¥ is changing with time:

) du d . dv d .
g = coS Y’E +uacos¥’—sm‘[/5 —vEsmﬁV

du d dv d
vo=sin?— +u—sin¥ + YV— 4+ y— V4
Vo = sin 7 u o sin cos 7 vdt cos

and by the chain rule, we get

4 '4
XoG = Uy = cos SVC;—L; + Mdill’ cos Tc;—t — sin SV% — vd% sin Y/dd—t

=pcos¥Y —ursin? —vsin¥ —vrcos ¥

d d v d d dy
VoG = Vo = sin S”d—b: + uﬁ sin TE + cos ‘PE‘; + vﬁ cos ‘PE

=usin? +urcos? +vcos¥ —vrsin ¥

(3.8a)

(3.8b)

(3.92)

(3.9b)

(3.10)

@3.11)

Therefore, by substituting (3.11) in (3.3) and inserting the resulting values of Xy and Yy in (3.6),

we recover the followings:

X =m(it — vr)

Y =m@ + ur)

(3.12a)

(3.12b)

of (3.1) by trigonometric identities. One should note that (3.1) is applicable when the origin O

coincides with the center of gravity (rg = [0, 0, 0]).
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With the forcing functions being defined as the contributions from hull (g), rudder (g) and

propeller (p), the final maneuvering motion equations can be formulated as:

(m+my)it— (m+myvr = Xy + Xg + Xp (3.13a)
(m+my)v+(m+myur =Yy + Yp (3.13b)
(Iz + J)F = Nu + Ng (3.13¢c)

when the horizontal added masses and moment of inertia (m,, my, J;) are included.

3.4 Hull Force

Xy, Yy, and Ny are formulated as

Xy = (1/2)pL,,dUX;,(v', 1) (3.14a)
Yu = (1/2)pL,,dUY,, (v, 1) (3.14b)
Ny = (1/2)pL,,dU*Ny, (v, 1) (3.14¢)

where v/ = v/U and v’ = rL,,/U. X}, Y}, and N}, are expressed as the Ist to 4th order

polynomial function of v" and r':

X,/ 1) = =Ry + X\, V2 + XV + X0+ X, v (3.15a)
Y0 ) = Y + Y+ YV YLV YV Y (3.15b)
Ny (v, 7'y = NV + Ni¥' + N v + N, V2r + N.,.v' i’ + N, (3.15¢)

which are called the hydrodynamic derivatives on maneuvering, complemented by the resistance
coefficient (R;)) for X;,. Evaluation of these derivatives can be made in several ways: model
tests, cross-flow viscous drag analysis and experiment-based empirical formulas. Varieties of

the empirical formulas can be found in many references, for instance in Fossen [55], S6ding
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[56] and Yoshimura and Masumoto [57]. On the other hand, the added masses (m, and m,) and
added moment of inertia (J;) can also be obtained through at least three ways: model test, strip

theory, and Motora chart [S8-61].

3.4.1 Model tests

Experiment in the tank is known to be the most reliable approach to estimate the viscous forces
acting on a ship executing a maneuver. In order to correctly obtain the hull coefficients, control
surfaces and propeller should be included in the measurements. There are several method of

measurements: oblique towing test, circular motion test and planar motion mechanism.

In the oblique towing test, the model ship is fixed at different angles of attack, then we can
measure sway force and yaw moment by towing the model. Rudder coefficients can also be

approximated by applying various rudder angles.

On the other hand, the circular motion test needs a rotating arm device, or a set of main carriage
and sub carriage that can work freely. This method was introduced by Koyama [62]. We measure
the cross-body force and yaw moment as a function of yaw rate r that gives Y, and N,, or to fix
the angle of attack that gives Y, and N,. One measurement is made over one rotation to avoid

the model re-entering its own wake.

At last, the planar motion mechanism (PMM) procedure is to tow the vessel at constant speed
U which is held by two posts located forward and aft, which can impose independent sway,
therefore producing yaw. The comprehensive explanation of this procedure is available in [63],
in order to figure out the linear hull derivatives for a given speed. One may obtain the nonlinear

derivatives by varying the yaw rate and drift angle.
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3.4.2 Strip Theory

By taking only the linear components of (3.15) into consideration and temporarily discarding

the propeller and rudder forces in (3.13), the motion equations can be reduced into

m(it — vr) = —myit + myvr (3.16a)
m(V +ur) = —myv —mur + Y, v+ Y, r (3.16b)
I.i=—-J;7+ Nyv+ N,r (3.16¢)

with remaining added masses [m,,my, J;] and potential dampings [Y,, Y, N,, N,] to be deter-
mined, after considering y-symmetry. These expressions are consistent with the definitions in
Imlay [64]. Then, neglecting the vertical motions (heave, roll and pitch), linearized added mass

and potential damping matrices can be expressed as

A 0 0 — m, 0 O

Ma=10 Axn Ax|=—|0 m, O (3.17)
0 Ag Ags 0 0 J.
Biy 0 0_ X, 0 0

Dy=|10 By Bx|=-|0 VY, Y, (3.18)
| 0 B2 Bes| 10 N N

with notice that ¥, # N, for damping matrix. By this definition, we can readily obtain all

derivatives required in (3.16), for instance, as

L/2
Al = X, = f AP (y, 2)dx (3.19)
-L)2

L/2
Bes = —N, = f 2BCP(y, 2)dx (3.20)
-L)2



Chapter 3. Rudder Force 76

Our numerical survey shows that the slender-ship theory can be adequately accurate to approx-
imate the added masses. However, it is not reliable when calculating the damping coefficients
by the integration of hydrodynamic coeflicients at w, = 0. This is due to the strong lift and
viscous effect on a drifting ship in maneuvering motion. Therefore, MMG model is presented
with the derivatives obtained purely from model tests in order to maintain the level of prediction

accuracy.

3.5 Propeller Thrust

Surge force due to propeller action X), is defined as

Xp=0-1tp)T (3.21)

with constant thrust deduction factor ¢p at a designated propeller load. Thrust 7 is calculated as

T = pnsDpKr(Jp) (3.22)

with propeller revolution per second np, propeller diameter Dp and thrust coefficient Kr. Kr is

approximated as the 2nd polynomial function of propeller advance ratio Jp, as follows:

Kr(Jp) = kaJ% + k1 Jp + ko (3.23)
1 -
gy = A =we) (3.24)
npr

where ko, k1 and k; are the open-water test constants. The u(1 — wp) term stands for the real
fluid velocity considering the effective wake fraction wp. In this propeller force expression, the
rudder influence on the thrust 7" is omitted. However, this component is brought into play at the

rudder force expression Xg.
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3.6 Rudder Force

Fluid forces induced by rudder action are expressed as

Xr =—-(1—-tg)Fn sin o (325&)
Yr = —(1 + ag)Fycosd (3.25b)
Ng = —(xg + agxy)Fy cosd (3.25¢)

with factors 7z, ag and xy representing: the steering resistance deduction, the force on the bare
hull induced by the rudder action (due to hydrodynamic interaction) and the position of addi-
tional lateral force component, respectively. These coefficients can be obtained by experiment

or by empirical formula. Then, the rudder normal force Fy is defined as

1 6.13A
Fy = —pArU>

2p R RTZ,ZS SI ag (326)

with rudder area Ag and rudder aspect ratio A. Ug and @ denote effective inflow velocity and

its angle into the rudder, respectively, which are vital in rudder force estimation.

Uk is defined as the resultant of longitudinal and lateral components of inflow velocity:

Ug = \Jug + vy (327

The x-component ug is taken as

ug = &(1 — wpu \/n{l +k(V1+8Kr/nl2 =D +1-7q (3.28)

The derivation of this expression is explained in Appendix D based on Kashiwagi [65].

Then, the effective rudder inflow angle ay is formulated as

o _si B sy YR{=(v + xgr)}

UR UR

(3.29)
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with the longitudinal position of rudder xg. From this equation, we may comprehend that yz
acts as a correction factor to the lateral inflow velocity —(v+ xgr) due to the existence of the hull.
Hence, the expression of ygr{—(v + xgr)} is used in this study to approximate the y-component of

rudder inflow velocity vg.

Further explanation on coefficients and terms used in MMG model can be found in the MMG

standard method [43], MMG Reports I-V [50-54] and other related articles.

3.7 Experiment

The principal particulars and body plan of SR108 container ship model have been presented in
Table 2.2 and Fig. 2.4, respectively. For the maneuvering simulation, the propulsion particulars
and hull derivatives are shown in Table 3.1 and 3.2. Other necessary coefficients and parameters

are also taken from the measurements [20].

TasLE 3.1: Propulsion particulars of SR108 container ship model

Item \ Real | Model \ Unit ‘
Propeller diameter (Dp) 6.507 | 0.1301 m
Propeller pitch ratio (p) 0.7348 | 0.7348 -
Propeller rotational speed (np) | 1.42 10.05 | rps
Rudder height (Hg) 7.70 0.154 m
Rudder chord (Bg) 4.215 | 0.0843 m
Rudder area (Ag) 32.46 | 0.0130 | m?

Tasre 3.2: SR108 hull derivatives [20]

m | 0.0044 | ¥, | 0.3942
m, | 0.1299 | Y}, | 0.7461

T 00077 | Y, | 0.0326
X, | -00711 | N, | 00710
X/, | 00573 | N, | -0.0409
X/, | 00037 | N, | -0.0275
Xl - | N, |-07811

Y, | 02137 | N/, | -0.0287

Y, | 0.0446 | N/, | -0.0422
Y, | 2.008
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3.7.1 Experimental Settings

The experiment was done in the maneuvering basin of Mitsubishi Heavy Industries, Nagasaki
Laboratory. The turning test was performed in still water condition with approach speed of
Fn = 0.15 (0.879 m/s in model scale). In accordance with the experiment of Yasukawa [20],
the propeller revolution speed np and the rudder turning rate are set equal to 10.05 rps and 12.0

deg/s, respectively, for both turning and zig-zag tests.

3.8 Computation Results and Discussion

3.8.1 Turning Circle

The turning test was performed in still water condition with rudder angle § = —35° (to port-
side). Comparison between the simulated and measured turning trajectories are shown in Fig.
3.3. The result confirms the reliability of our mathematical model for calm water maneuvering
simulation. For additional information, the calculated ship forward speed (U), yaw rate (r), drift
angle (8) and rudder angle (8) are shown in Figs. 3.4 and 3.5 in function of completed turning

angle (¥).

3.8.2 Zig-Zag

The zig-zag test was executed in still water condition with 10°/10° maneuver to the starboard.
Once again, comparison between simulated and measured results shown in Fig. 3.6 shows the
accuracy of our mathematical model. The calculated time series of ship forward speed (U) and

yaw rate (r) are also shown in Fig. 3.7.



Chapter 3. Maneuverability Rating 80

X/L

Cal

Ficure 3.3: Comparsion between simulated and measured turning trajectories

3.8.3 Maneuverability Rating

Turning maneuver criteria Tactical diameter and advance are to be determined from the
turning test defined in Fig. 3.8. IMO requires that the tactical diameter (7'D) is to be less than 5

ship lengths and the advance (Ad) is to be less than 4.5 ship lengths [66]:

Ad <45L (3.30)

Provided that (3.30) is satisfied, the rating of turning ability is found from the following formulae
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Ficure 3.5: Calculated drift angle (8) and rudder angle () in function of turning angle (¥)
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FiGure 3.6: Calculated and measured heading angle (¥) and rudder angle (6)
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Ficure 3.7: Calculated time series of ship forward speed (U) and yaw rate (r)
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if (426-1.62-10°A)L <TD <5L then Rtd = 1
if (3.63-1.62-10°A)L <TD < (426-1.62-10°A)L then Rtd =2
if (2.79-1.62-10°A)L <TD < (3.63-1.62-10°A)L  then Rid =3 (3.31)
if (216-1.62-10°A)L<TD <(2.79-1.62-10°A)L  then Rtd =4
if (2.16-1.62-10"°A)L > TD then Rtd =5

with ship length (L) in meters and displacement (A) in metric tons. Rtd indicates the rating of

turning ability which is based on statistics of sea trials [68]. Accordingly, the turning indices

derived from Fig. 3.3 are shown in Table 3.3. It is noted that the measured and simulated tactical

| .
Ll

TACTICAL DIAMETER

Distance

TRANSFER 90° change

»  of heading

ADVANCE

Drift angle \_ -~

A 4

180° change
of heading

T~ Rudder execute

Approach Course

.
>

Distance

Ficure 3.8: Notations and criteria in turning test [67]
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diameters are close to the lower limit of Rtd =2 at TD < 4.22L.

TasLE 3.3: SR108 turning indices

Index Experiment \ Simulation | IMO
Advance 3.6L 347L <4.5L
Tactical diameter 4.23L 4.28L <5L
Rating of turning ability 1 1 -

10°/10° zig-zag maneuver criteria The first overshoot angle (OSA) in the zig-zag test is a
measure of the vessel’s course checking ability which is defined in Fig. 3.9. The requirements
are also according to IMO [66] based on statistics of sea trials [68]. As measured in the 10°/10°

zig-zag test, the first OSA, a 10y, is to be evaluated with the following function:

v, & (deg)
A
STARBOARD
First Overshoot Angle, 10,
// E
/ __~ Heading Angle,
10— Y /
Second execute / /\
3 g
\ Time (s)
‘\.\ Rudder Angle, 3
10 \ ry
N Second Overshoot Angle, 10,
\ First execute -
PORT
Ficure 3.9: Notations and criteria in zig-zag test [67]
10.0 if L/V <10s
Si01(L/V) =45 +0.5(L/V) if 10s < L/V < 30s (3.32)
20.0 if L/V >30s

with V the vessel speed in m/s. The rating for the first OSA in the 10°/10° zig-zag test, Rtajp = 1,

can be assigned only if:

10.04 + 2.22Cp < f101(L/V) (3.33)
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Provided that (3.33) is satisfied:

if 10.04 +2.22Cp < 101 < fi01(L/V)

if 7.42+2.22Cp < 2101 £10.04 +2.22Cp

If (3.33) is not satisfied:

if 7.42+2.22Cp < a10; < fio1(L/V)
if 3.92+2.22Cp < al0; £7.42+2.22Cp

if 1.29 +2.22Cp < @107 £3.92 +2.22Cp

if al0; <£1.29+2.22Cp

with Rra g expresses the rating for the first OSA.

then Rrajg=1

then Rrajg =2

then Rtajg =2
then Rtajg =3
then Rtajg =4

then Rtajg =5

(3.34)

(3.35)

From our simulation (Fig. 3.6), SR108 does not satisfy the (3.33). Therefore, the evaluation is

done through (3.35) to get Table 3.4. Based on the ratings of turning circle and zig-zag tests, we

understand that the SR108 possesses higher course checking ability (Table 3.4) than its hard-

over turning ability (Table 3.3).

TaBLE 3.4: SR108 zig-zag criteria

] Index

Experiment \ Simulation

al0y
Rating of OSA

6.257°
3

6.831°
3




Chapter 4

Seakeeping and Maneuvering in Waves

by Two-Time Scale Method

4.1 Introduction

In order to solve the seakeeping and maneuvering problem in a weak-coupling framework, the
two-time scale method is described here. The outline follows what has been presented in Skejic
and Faltinsen [25], Seo and Kim [32] and Zhang et al. [37]. The main difference highlighted
in our present study is the application of the developed form of slender-ship theory, the en-
hanced unified theory (EUT) [8], as well as the usage of far-field formulation of Wicaksono and

Kashiwagi [69] in the estimation of second-order horizontal forces and moment.

By the employment of the slender ship theory in the two-time scale coupling method, an efficient
and reasonably accurate mathematical model to address the maneuvering problem in waves is
developed. Supplementary discussions on the results explained in this chapter are also presented

in Wicaksono and Kashiwagi [70].

86
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4.2 Two-Time Scale Method

By appending the second-order steady forces and moment as the added external forces, the
maneuvering motion equations in waves can be rewritten from the MMG motion equations in

calm water (3.13) to

(m+myi— (m+ my)vr = Xp + Xg + Xp + Xw(la, wo, xo — ¥, U)
(m + my)V + (m + myur = Y + Yg + Yw(La» w0, xo — ¥, U) 4.1)

(Iz + J)i = Ny + Ng + Nw(la, wo, xo — ¥, U)

in which the last terms on the right-hand side (X, Yy and Ny) directly alter the initial ship
steering motions in calm water. These added quantities are the functions of the incident wave
amplitude £,, frequency wy, ship-waves encountering angle yo — ¥ and ship forward speed U.
Notice that the symbol of second-order drift forces are changed from R, Y and N (in Chapter
3) into Xy, Yw and Ny, correspondingly, in order to be consistent with the standard notations

of MMG model.

In accordance with previous works employing the two-time scale method, the seakeeping and
maneuvering problems are designed to be coupled in a functional space. The concept is to
separate high-frequency wave-induced motions and low-frequency steering motions of a ship,
with exchange of variables between them. In fact, there is variation with higher frequency in
various forces acting on ship hull, rudder, and propeller due to wave motion. However, once the
time average is taken over several periods which are the time scale in the maneuvering motion
of a ship, the effect of that high-frequency variation can be regarded as almost zero and hence

the influence on the maneuvering motion is little.

As shown in Fig. 4.1, the steps of simulation in this two-time scale method are as follows:

e The MMG model solves the maneuvering motion equations (4.1)

e yand yo — ¥ are provided to the seakeeping code as the input data
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e EUT and NSM determine the Kochin functions to calculate the steady drift forces as in
(2.102), (2.114) and (2.131)

e Added resistance Xy, steady sway force Yy and steady yaw moment Ny are supplied back
to (4.1) as the additional force modules in the MMG model

e MMG model solves the maneuvering motion equations (4.1) for the next time step with the

updated Xy, Yw and Ny

th-1 |:> Maneuvering |:> tn+1
( u,ll} XW!YWJNW
tny [ | Seakeeping | [ t,44

FiGure 4.1: Feedback system in two-time scale method
The step of seakeeping computation in the time marching is also essential to ensure the accurate
estimation of the slowly varying second-order drift forces. This step will be approximated later

in a convergence test.

4.3 Experiment

In the experiment of Yasukawa [20], turning experiment in regular waves were performed with
maximum rudder angle 6 = —35°, space-fixed incident wave direction yo = 180° (initial head
waves) and ¢, /Lpp = 1/100. The incident wave has various length of A/L = 0.5,0.7,1.0, 1.2.
Alike the calm water experiment, the propeller revolution speed np and the rudder turning rate
are set equal to 10.05 rps and 12.0 deg/s. The converged forward speed and drift angle before

the execution of turning maneuver were measured as well, as shown in Fig. 4.2.
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Ficure 4.2: Measured converged forward speed in a straight moving in regular waves [20]

The ship in concern is SR108 container ship. Its body plan, principal particulars, propulsion

particulars and hull derivatives have been described in previous chapters.

4.4 Computation Results and Discussion

4.4.1 Convergence Test of Heading Angle Step

Skejic and Faltinsen [25] recommended the step of seakeeping computation to follow the time-
varying ship heading angle change of A¥ ~ 2 ~ 3°. However, due to the difference of utilized
seakeeping tool and steady forces formulation, the convergence test in function of heading angle
has to be performed. Without considering the converged forward speed in Yasukawa [20], con-
vergence test is done with 6 = —35°, initial heading angle yo = 180° (head waves), 1/L = 1.0

and {/Lpp = 1/100.

As can be seen in Figs. 4.3 and 4.4, the turning test is converged when A¥Y < 0.5°. The
convergence stops beyond this point for all test cases, therefore it is unnecessary to use smaller

heading angle step.
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r EUT
I ettt NSM
L
3k

2 L[

X 2T
1
ol
_17\\\\l\\\\l\\\\l\\\\l\\\\|\\\
5 4 3 2 ] 0

FiGure 4.4: Time-step convergence test with Ay ~ 0.5°
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4.4.2 Comparison with Experiment

The simulations are performed in order to validate the results against the experimental data.
Two representative cases of turning test in short and intermediate incident waves are selected:
A/L = 0.5 and 1.0. Both cases have similar test conditions: § = —35°, space-fixed incident wave
direction yo = 180° (initial head waves) and £,/Lpp = 1/100. The converged forward speed in

these cases are directly taken from Fig. 4.2.

In short-wave case of A/L = 0.5, the simulation was performed with Uy = 0.8259 m/s (Fn =
0.141). The result is depicted in Fig.4.5 along with the measured trajectory. Computed ma-
neuvering trajectories when coupled with EUT and NSM are presented in solid line and dashed
line, respectively. In addition, the time series of the wave-induced added resistance Xy, sway
force Yy, and yaw moment Ny are shown in Fig.4.9. From Fig. 4.5, we can see qualitatively
that NSM gives better agreement in terms of the lateral transfer, especially on the second cir-
cle, whereas the EUT gives better result in the advance distance, as well as the diameter of the

second circle.

In a case of longer wave (1/L = 1.0), the simulation was performed with Uy = 0.4929 m/s
(Fn = 0.0841). The comparison with the experimental trajectory is shown on Fig. 4.6. Due to
underestimation of Yy in longer wavelength region, the EUT-coupled model estimated smaller

drift than NSM and the experiment. This finding justifies the observation in Fig. 2.46.

Nevertheless, we can say that the developed model is able to represent the maneuvering in waves
when the A is relatively long. This finding is understandable due to the significantly smaller wave
drift effect in this wave condition. In addition, the time series of surge velocity (u), sway velocity
(v), drift angle (B), resultant velocity (U) and yaw rate (r) for the EUT-coupled model in two test
conditions are presented in Figs. 4.7 and 4.8 showing the influence of the incident waves to the

ship maneuvering motion.

These two simulations in two different cases of A/L indicate that the effect of steady drift forces

and moment to the maneuvering motion is especially large when the incident wavelength is short
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compared to the ship length. Therefore we extend our survey to the second-order forces acting

on the ship in the short waves condition of 4/L = 0.5.

From the time series of drift forces and moment shown in Fig. 4.9, we can discover some facts.
In beam-wave condition (e.g. |¥] =90°, 270°), EUT estimated larger magnitude of Xy, Yy and
Ny than NSM. The effect can be seen from the advance of Cal (EUT) which is less than that of
Cal (NSM), therefore the result of EUT complies with the experiment. In contrast, NSM pre-
dicted significantly larger value (2-3 times) than EUT for Yy in stern quartering-wave condition
(e.g. || = 135° ~ 230°). The discrepancy between the experiment and the calculations appar-
ently starts when the ship enters [¥| = 270° of turning angle. EUT and NSM clearly estimated
very small values of Xy, while the measurements in the seakeeping test suggests larger values.
This deficit can be clearly observed in Fig. 2.45 thus understandable. In this reduced speed con-
dition, the difference between the computed and real values of Yy and Ny may exist, therefore
contributes to the variation. As the result, the ship forward speed was too high in the simulation

that yields overestimated circle diameter and excessive transfer to the positive Y/L domain.

— Cal (EUT)
x Cal (NSM)
Exp
2__
O__
2+
[}
a4t ® ¢ o °
Fn0=0.141,xo=1800
D R

Y/L
FiGure 4.5: Comparison of turning trajectory in A/L = 0.5 (Fny = 0.141, yo = 180°)
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FiGure 4.6: Comparison of turning trajectory in /L = 1.0 (Fny = 0.141, yo = 180°)
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4.4.3 Sensitivity Study

From the investigation in previous subsection, it became clear that the effect of wave drift to
the low-frequency steering motion is more prominent in short waves. In this condition, relative
discrepancy between computation and measurement could be seen. Therefore, in order to un-
derstand which force contributes the most to the drifting motion of a ship, a sensitivity study
is performed by taking advantage of the modular nature of MMG model. The contribution of
each of Xy, Yw, and Ny to the deviation of turning-motion trajectory is evaluated simply by

alternative inclusion and exclusion of these terms in the motion equations (4.1).

When A/L = 0.5, the simulation results with the exclusion of Xy, Yw and Ny are shown in
Figs.4.10 ~ 4.12 along with the original computed trajectory by EUT and measured data. The
result implies that omission of added resistance Xy or steady yaw moment Ny alters the turning
trajectory in short waves, yet the deviation from the original result is relatively small that the

general properties/shape of the turning circle is basically preserved.

On the other hand, as shown in Fig. 4.11, exclusion of steady sway force Yy caused the maneu-
vering trajectory to almost recover the trajectory in calm water simulation, except some drift to
the space-fixed y-direction. The drift to the direction of the incident wave diminishes to virtu-
ally zero value, and thus the effect of Yy is of critical importance in the investigation of drift

phenomenon in waves.

The maneuvering velocities of the simulations shown in Figs. 4.10 ~ 4.12 are presented in Fig.
4.13. When the steady sway force is neglected, we can see the reduction of sway velocity to
almost constant value, as well as the significant changes in surge velocity and yaw rate. This

further shows the importance of the steady sway force in this problem.
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Next, in order to verify this finding, the numerical simulation is performed for a turning test

considering only Yy as the wave effect by the following equations:

(m+myi— (m+my)vr = Xy + Xg + Xp
(m+my)v + (m+mur = Yy + Yg + Yw(lu, wo, xo — ¥, U) 4.2)

(IZZ + Jz)i’ = NH + NR

where we entirely omit the added resistance Xy and steady yaw moment Ny in the equations.

The computed trajectory is shown in Fig. 4.14. Judging from improved agreement between the
simulated trajectory and the experiment, it can be confirmed that the steady sway force Yy
dictates mostly the maneuvering of a ship in this wave condition (1/L = 0.5). It is also obvious
that this second-order lateral force component takes substantial portion of the total wave drift,

where the diffraction wave provides immense contribution.

Even though the steady sway force Yy plays the most important role in this case, improvement in
the estimation of Xy and Ny is not less vital to improve the prediction accuracy and to represent

the problem in physically rational manner.
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Fno=0.141, y,=180°
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FiGure 4.10: Turning test with Xy = 0in A/L = 0.5 (Fny = 0.141, yo = 180°)
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Chapter 5

Conclusions

In this dissertation, wave-induced motions and steering motions of a ship are formulated as a
unified problem of seakeeping and maneuvering in waves. A study is performed systematically
through three main topics: seakeeping based on slender-ship theory and far-field concept, ma-
neuvering in calm water by the modular mathematical model and their coupling by the two-time
scale method. In each step, basic theories are derived, simulations are performed and validations

with tank experiments are conducted.

In Chapter 2, investigation on the wave-induced steady forces and moment acting on an advanc-
ing ship in oblique waves has been made. We employed enhanced unified theory (EUT) and new
strip method (NSM) for solving the radiation and diffraction problems, computing the ship mo-
tions in waves and the Kochin function equivalent to the complex amplitude of ship-generated
disturbance waves at a distance from the ship. For validation of the computation method, we
used the experimental data conducted by Yasukawa et al. [44] We observed that EUT can predict
the steady horizontal forces and yaw moment better than NSM. When the wavelength is short,
the wave diffraction near the ship ends becomes dominant. The EUT is superior in accounting
for the effect of bow wave diffraction, due to the retained n;-component in the body boundary

condition. For wavelengths longer than A/L ~ 1.0, contribution of the radiation Kochin function
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becomes important and it was found to be rather sensitive to the ship’s forward speed. There-
fore, forward-speed effects must be taken into account in a reasonable way for the wave-induced

steady horizontal forces and yaw moment.

In Chapter 3, the mathematical model of a ship maneuvering in calm water is developed. Basic
principles of MMG model are adopted due to its simplicity, robustness and practical accuracy.
The problem is formulated mainly based on MMG standard method [43]. The viscous hull
derivatives are purely taken from the captive model tests in order to keep the reliability of the
simulation. Validation of the model was peformed through the standard hard-turning test and
10°/10° zig-zag test of SR108 container ship. The model demonstrated high accuracy and ex-

cellent efficiency which is an important base for the seakeeping-maneuvering in waves.

In Chapter 4, study on the importance of the wave drift forces and moment to the steering
motions in waves has been made through the turning tests in regular waves. The EUT and
NSM were coupled with the MMG model using the weak-coupling approach of two-time scale
method. The slender-ship theory is used to define the boundary conditions in the seakeep-
ing problem so that the Kochin functions can be determined to estimate the steady forces and
moment. These quantities are then supplied to the low-frequency MMG motion equations as
the additional force modules. By this scheme, the coupling between the high-frequency wave-
induced motions and the low-frequency maneuvering motions can be realized in a practically
reasonable manner. Based on the comparison with the measured turning motion in waves [20],
we observed that the influence of the slowly-varying drift forces to the maneuvering motion is
especially large in short-wave condition. The steady sway force contributes largely to the total
drift, as well as governs the ship drifting motion to the direction of incident waves. When the
A is comparable to the Lpp, the model is able to represent the experiment better than in shorter

waves.

Through the use of present concept, one may simulate the maneuvering motion of a ship in reg-

ular waves, with robustness of the MMG model, practical accuracy of the far-field drift forces
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formulae, and computational efficiency in the linear slender-ship theory. Nevertheless, funda-
mental improvement is necessary to refine the physics of the model, such as the consideration

of drift angle into the basis flow, the wave effect on the propeller and rudder forces, and so on.



Appendix A

Removal of Singularity at Integration

Limits

Once the Kochin function has been obtained as a function of k, the accuracy in computed values
of the wave-induced steady forces (R and Y) and yaw moment (N) depends on the numerical
integration with respect to k. One of the issues to be considered for correct numerical integration

is the removal of square-root singularity at the limit of integration range k; (j = 1 ~ 4).

In this process, we will have to consider two types of integral:

ks _F() ®  F(k)
= dk, k. Al
R L R U

The square-root singularity exists in these integrals because of Vk? —k> = 0 atk; (j = 2,3,4).
To explain the variable transformation method for this issue, let us consider the following two

integrals in general:

A= f __JO 4
V(x—a)b - x) (A2)

B = f QR NN
» Vx—a)x—-Db)
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For integral A, we will use the following transformation of variable:

b+a+b—a
X =
2 2

&, & =siné. (A.3)

Then A can be transformed into the following form:

1 /2
A= SO e = f(x) db, (A4)

~Jo V1 -¢&2 —n/2

where x is given by (A.3) with 6. We can see no singularity in the last integral with respect to 6,

hence the numerical integration can be done in a straightforward manner.

Next, for integral B, similar idea can be applied and the following variable transformation is

used
: b+a+b—a
2 2

X & = V2 + L. (A.5)

Then we can obtain the result as follows:

AC); foo J(x)
B= dé = du, A6
fl‘ VE -1 ¢ 0 Vur+1 ! (Ao

which contains again no singularity at the integration limit (¢ = 0) so that the numerical inte-
gration can be performed with conventional schemes. In the present study, the Gauss quadrature

has been used to successive integrals with finite integration range.



Appendix B

Semi-Infinite Integral

Many studies using the strip theory have been made so far for computing the Kochin function
and then the added resistance based on (2.102). Most of those studies usually multiply the inte-
grand by an artificial convergence factor, like exp(—«z;), to ensure the convergence as k — oo,
and the value of z; is tuned to see reasonably fast convergence and relatively good agreement
with experiments. However, this treatment implies that the depthwise position of the line distri-
bution of singularities in the outer solution is not on z = 0 and hence inconsistent in the context
of slender-ship theory. Kashiwagi [5, 6] settled this problem by showing no difficulty in conver-
gence of the integral in (2.102) for the added resistance, even if the sources are placed exactly
on z = 0. In this paper, the calculation method in Kashiwagi [5, 6] is extended to the integrals

for Y and N, and an analytical mistake in Kashiwagi [5, 6] is corrected.

As an example for explaining the calculation method, let us consider the following semi-infinite

integral:

« 2k (k — ko cos x)
Ck)| —————=dk
jk; | | Vi? — k2

oo _ — 12 /2)(k —
:f ’C(k)|2(1 V1 —k%/k?)(k — ko cos ) Jk
ky

K2_k2

+R4 — T4 ko cos y, (B.1)
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where

Ry = f " lewf kdk, T4 = f " e dk. (B.2)
ky ky

Note that the first term on the right-hand side of (B.1) arises no problem in convergence, because
1 — V1 — k2/«? in the numerator becomes rapidly zero as k increases. Therefore, our attention

will be focused on how to evaluate the integrals denoted as R4 and 74.

At first, with the assumption that k£ and x are non-dimensionalized with half the ship length L/2,

the Kochin function C(k) is written in the form

1
C(k) = f 0(x)e™ dx. (B.3)
-1

After partial integration, it follows that

S|
Ck) = é f 1 0™ dx, (B.4)

where we have used the assumption of Q(+1) = 0, that is, both ship ends are closed, which is

plausible in the potential-flow problem. Substituting these into (B.2), we have

1 1
Ry = ifl Q(X)dxfl 0'(&) Lié - x)dé

1 ] , (B.5)
T = f 0w ds f 0@ 1e -0 de
where
o e ika(E=)
L(E-x) = f MO dk = n6(¢ - x) — i—, (B.6)
ky é‘: — X

and 6(¢ — x) denotes Dirac’s delta function, which is obtained from the following relations:

lim cos k(¢ — x) _0o
k— o0 f - X

. B.7)
lim sink(& — x) =716 - x)

k—o0 f—x
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Substituting (B.6) in (B.5) gives the following results:

1
Ry = me@QWW
-1

1 . L 0¥ (&)e ks
+ f O dn l%dg, (B.8)
! 2
T4 = nfl 'Q(x)| dx
1 . L o= —iks€
- fl Q(x)elk4x dx 1 Qé%df (B.9)

The first terms on the right-hand side of (B.8) and (B.9) are missing in the analysis of Kashiwagi
[5, 6]. However, we note that these terms have nothing to do with k4, and they will cancel out
with corresponding terms to be obtained from the integral for —co < k < kj. In order to show

this, let us consider the integral for —co < k < kj in the same way. Namely

< k—k
_f cPLE—Rocosn) 4y

Ve-@
_ f—oo |C(k)|2(1 — 1= K2/K2)(k — ko cos ) i
i Vi2 - k2
+R1 — T1 ko cos y, (B.10)
where
R, = fk_m lc®| kak, T = fk_w [Ch)|’ dk. (B.11)
1 1

Following the same procedure as that for R4 and 74, we come across an integral corresponding

to (B.6), which can be written by use of (B.7) in the form

f_ eik(x—f) dk
kq

—iki (6=)
RS —x) — i (B.12)
E—x

L& -x)

It can be seen that the first term on the right-hand side of (B.12) is opposite in sign to that of
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(B.6). Thus, in the end after summing up, there is no contribution from the first terms in (B.8)

and (B.9).

Regarding the singular integral with respect to ¢ in (B.8) and (B.9), the analytical integration
method shown in Kashiwagi [5, 6] can be applied, using the Fourier-series representation for the
line distribution of sources. The resulting singular integral is the same in form as Glauert’s inte-
gral popular in the wing theory and thus can be evaluated analytically. Specifically, introducing
the variable transformation of x = cos 8 and & = cos ¢, we have the following:

[leee e Z " sinngsing

E—x o0 Cosg —cosf

- Z ¢t cos né, (B.13)

where

(o)

O(x)e"™ = Z ¢, sinnd
n=1 (B.14)

2 (T .
cp == f Q(cos 0)e"™ 3% sin no do
T Jo

and v must be understood as k4 or k.

By using these results and performing resultant integrals with respect to 6, R; and 7; (j = 4 or

1) defined in (B.2) and (B.11) can be expressed as

1
R, = Dir [ 0@ W
-1
+?Z_;[kj5(cn cro) + nleal?], (B.15)
) 1 2 7T2 &0
T, = (—1)J7rfl|Q(x)| dx+?ZS(cncZ+]). (B.16)
- n=1

As already mentioned, the first terms on the right-hand side of (B.15) and (B.16) do not con-
tribute to the final result because of cancellation after summing up the terms of j = 1 and
Jj = 4. Needless to say, the same calculation method will be used to the integrals related to the

antisymmetric component of the Kochin function S (k) in (2.132).
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The same technique can be applied to the integrals for the steady sway force Y in (2.114) and
for the steady yaw moment N in (2.131). Let us start with the steady sway force. We will have

to consider the following integral:

f i 5{Ci)Ss (k) dk
- foo K( VI-k/2-1 ) S{C(k)E*(k)} dk

+ f h S{C(kﬁ* (k)} dk, (B.17)

where §(k) is defined in (2.133).

It should be noted again that no problem exists in convergence for the first term on the right-hand

side of (B.17), because 1 —k2/k?> — 1 rapidly as k — oo. Thus we consider the last integral.

Since k = K + 2kt + k*/ Ky, we should evaluate analytically the following integrals:

(o)

Y, = K" S{C(k)E*(k)}dk, n=0,1,2. (B.18)

v

With these results, the last term in (B.17) can be computed from
o0 — 1
f k I{CH)S™ ()} dk = K Yo + 21 Y + = (B.19)
% 0

The analysis for (B.18), using the Fourier-series representation for the line distribution of sources

and doublets, are shown in Appendix C.

Likewise, the semi-infinite integral in the steady yaw moment can be written as follows:

f p %{C(k)S “(k)— S (k)C*(k)} dk
- f (VTR 1)

x?%{ C(k)S (k) — §(k)C*(k)} dk

+ f p %{C(k)§* (k) — 'S‘(k)c*(k)} dk. (B.20)
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The first term on the right-hand side of (B.20) can be numerically integrated without any diffi-

culty. For evaluating the last term in (B.20), we consider analytically the following integrals:

N, = f T R{C()S* ()} dk, n=0,1,2, (B.21)

N, = f k" R{S()C* (k) dk, n=0,1,2. (B.22)
With the results of these integrals, we can readily evaluate the last integral in (B.20) from

f p %{C(k)fv‘*(k) - §(k)C*(k)} dk

= K(No = No) + 2t (N = Np) + KiO(Nz — No). (B.23)

The analytical procedure for computing (B.21) and (B.22) is essentially the same as that for
Y, (n=0,1,2), and we note that the calculation of Nn can be done easily from the result of N,
simply by exchanging C(k) and S (k). The final expressions for NV, and N, (n=0,1,2) are also

summarized in Appendix of this paper.



Appendix C

Analytical integration for V,, N,, and

—~—

Nn

For computing the wave-induced steady sway force and yaw moment, the following integrals

should be integrated analytically:

Y, = f Y S{C(kﬁ*(k)}dk, n=0,1,2,
= f T ‘R{C(kﬁ*(k)}dk, n=0,1,2,
N, = f T %{?(k)c*(k)}dk, n=0,1,2,

where v must be understood as a value equal to or larger than k4 or |ky].

(C.1)

(C2)

(C.3)

We consider Y, first. By substituting the definition of the Kochin functions C(k) and §(k) shown

in (2.133) and performing partial integration with assumption of Q(+1) = 0 and D(+1) = 0, we
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have

- 1 1 00

Yo=9 f O(x)dx f D*(&) dé f M= dk], (C4)
LJ-1 -1 v
- 1 1 )

v, =9 f O(x) dx f D*(&) de f 0 dk], (C.5)
L -1 -1 v
- 1 1 0o

Vo= 9 f 0(x) dx f D*(&) dé f ) dk]. (C.6)
LJ-1 -1 4

The semi-infinite integral with respect to k can be given by the formula of (B.6), but as explained
in the analysis for the added resistance, there is no need to consider the contribution from Dirac’s
delta function in the final result for the steady sway force as well. To evaluate singular integrals

with respect to & to be obtained from the last term in (B.6), we prepare the following Fourier

series: -
D @e™ = )" sisinng
n=1
D* —ngf —
©)e v Z s,

L] . (C.7)

x{ —ivsingsinng + n cos ny}

2 (" ;
sh = ;fo D*(cos p)e™ " *? sinnp dyp

Then the singular integrals with respect to & can be analytically integrated like (B.13), and the

results are written as

* —tv$
Il b f)ex - Z s, cos nf, (C.83)

D@
\[—1 E—x ﬂz

x{iv cosnb +n

sin nH} .9)

sinf

where x = cos 6 has been used. Then after substituting (B.14), resulting integrals with respect

to x can be evaluated as the integrals with respect to 6, for which the following formulae will be



Analytical integration for M, N, and ]\7,1 113

used:

T

f cos mlsinn@sin 6 d6 = %{ Om+1n — Omn+1 ) (C.10)
0
T T T

f cos mé cos nf db :f sin m@ sin nf d6 = 56"1’" (C.11)
0 0

f”sinm'ecosnﬁdg= n form>n (C.12)
0 sin @

0 otherwise

where 9,,, denotes Kroenecker’s delta symbol, equal to 1 when m = n and zero otherwise.

Performing integration by using these formulae, we can obtain the following results:

1y« —ivé
- lf O(x)e vx g f D*(§)e d¢
-1 f - X

—*RZ Cr1 S5 —cu sty ), (C.13)

Yo

Yi

1 . [ p—
S f 0(x)e™* dx f &df]
-1 f—x

—‘R Z[ enst Sy —cn sy} —i(2ncy, s;‘l)] (C.14)

1 ) 1 * —ivé
Yy = 9| -i f 0(x)e™* dx f %dg]
-1 1 E-x

2 (o)
T . *
Z‘R Z[vz{cnﬂ Sy —Cn Sy} —iv(4nc, s;)
n=1
+2n Z(n +2 = D cnoar-1 85— Snaze-1 €3] (C.15)
=1

where the Fourier-series coefficient ¢, is given in (B.14).

Next we consider N, and K/n. We note that K/n can be computed from the results of N,,, simply

by replacing ¢, and s, with s, and ¢}, respectively, in the Fourier-series coefficients.
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In the calculation for N, and Kln, the derivatives of the Kochin functions with respect to k are
needed, which can be given simply as
1 .
C(k) = f ix Q(x)e** dx

! (C.16)

1
S(k) = f ix D(x)e™* dx

1

Since the analytical procedure is almost the same as that for Y, (n = 0, 1,2), only the final

results for N, (n = 0, 1, 2) are written below.

2 (o)
T * %
No = ‘?R Z (Cne2 Sy = Cn 8,00 ), (C.17)
n=1
. .
N = —g‘RZ [v(cn+2 Sy = CnShin)
n—1
=i 2ncper sy + (n+ 1 cn )}, (C.18)
7T2 3 2 * *
Ny = —g‘RZ [v (Ccne2 Sy —CnSyin)
n=1
—ivincpr s+ (m+Deys, |
—dnc, Y {(n+20)5;,,,

-1
+(n+ 20 = 2) 5} 5] ] (C.19)



Appendix D

Derivation of longitudinal rudder

inflow velocity ug

As can be seen from (3.26), it is clear that the averaged inflow velocity dictates the rudder
normal force. In order to understand the nature of this problem, we firstly assume that the ship
advances straightly. In the general theory on propeller wake flow, we will first describe the

simple momentum theory as a foundation.

R_ /
I — .

i ) i —
Up=U1-w) UptUL UptU

e

Aa A AI
( 7°aR7

g

Figure D.1: Momentum theory (actuator disk) [65]
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Ficure D.2: Change in flow velocity [65]

By applying the Bernoulli’s theorem independently in the upstream and downstream of the pro-

peller disk shown in Fig. D.1,

1 2 ’ 1 N2
P0+§puP:P +§p(up+u)

(D.1)
1 7\2 1 2
P+ Ep(up+u) =Po+§p(up+u) ,
then by substraction of both sides,
, u
P-P = g[(up +u) ~up] = puup + 3) (D.2)
and considering the constant flow rate
m = pA(up +u’) = pAoup = pAi(up + u) = pQ (D.3)
as well as thrust,
T =(p-pHA=pQu (D4
substitution of (D.2) and (D.3) into (D.4) obtains
u ’
pAu(up + 5) = pAu(up + u’)
(D.5)

1
therefore u’ = —u
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In Fig. D.2, the flow velocity accelerated at infinity u is twice the flow velocity accelerated by

the propeller disk u’. Next, by substituting (D.2) into (D.4):

T = pu(up + ;)A = Krpn*D* (D.6)
therefore
8Kt
u=up[ 1+ﬂ—12—1] (D.7)

with n the propeller rotational speed, D the propeller diameter, and J the propeller advance ratio
(= M—IP)). Furthermore, from Fig. D.2, since the flow velocity at infinity is given by up + u, we
n
may write (D.7) as:
8Kt

up+u=up 1+m (D.8)

For convenience afterwards, it can be seen that when the flow rate Q is obtained from the equa-

tion (D.3), the following equation is obtained,

1 8Kt
Q = EAMP[I + 1+ 71'__]2] (D9)

Notice that the 8Kz /7J? that appeared in (D.7) through (D.9) is the thrust loading coeflicient

(C7). This can be verified as follows:

T  Krpn*’D*  8Kr
AUy gpr(Yup, I

T (D.10)

Now, the above formula cannot be used unless we understand the propeller characteristics (Kr).
Then, let us consider its expression using a propeller slip (S = 1 — up/nP). Due to assumption
of ideal fluid, it has the maximum velocity at infinity. Since this velocity should be the flow

velocity when the propeller has zero slip, the (D.8) can be rewritten as follows:

up S2-9)
=nP = = 1 _— D.11
up+u=n TS I/tpw/ +(1—S)2 ( )
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therefore

up (D.12)

In the next step, if the rudder height differs from the propeller diameter, we have to describe a

method to consider its influence to the rudder normal force formula.

Ficure D.3: Flow velocity at the rudder position [65]

As shown in the Fig. D.3, u; denotes the propeller wake velocity at rudder position, uy the
velocity on the upper- and bottom-end of rudder unaffected by propeller wake, D the propeller

diameter, H the rudder height and A the aspect ratio (= H/C).

The simplest method is to independently apply the (3.26) to the segment of u; and of uy and

subsequently add them, that can be written as:

1 D 1 H-D
Fy = EP(ARE)MIZ]Z sinéd + Ep(ART)MIZIfQ sind
(D.13)

1 )
= EpAR[(l - 7])u%I + nulz]fa sind

However, since the (3.26) is originally obtained from elliptical field force distribution, it is better
to consider the Fig. D.3 with the same concept. Therefore, if the circulation strengths due to

ur — up and uy are to be written as I’y and Iy, the force-field strength is given as follows:

H

D
- 2 2
L= f , punlndy + f pur(Ty + Tmdy + f; punl'ndy
_n _ D

2 5
2 (D.14)
= puyy f I'ndy + p(uy — ug) f N I'ndy + puy f I'idy

_ D _

SIS}

vl
wlo

S
Sl
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D H
with y = ECOSW , y= Ecose (D.15)

According to the wing theory, the elliptical circulation distribution is given as follows:

1"1 = 2D(MI - uH)al Sinlﬁ

ith ind A’ b AD
witha; = — sin =—==A—
FH = 2Huﬂa2 sin @
2
with ay = sin o
+2
Then, by substituting (D.15) and (D.16) into (D.14),
7 ) T 1 27 .
J1 = f Fde =H unazf sin“ 0d6 = —MHAR— sin o (D.17)
. 0 2 A+2
D H D
Next, since 3 = 5 cos @p from (D.15) can be written as 0p = cos™! (E)’
2 —0p T
J = f I'dy = H2u11a2 f sin” 0d6 = unARAaz[E — 0@p + sinOp cos Op
_D 0
Pl P
1 2\
- EuHARﬁf siné (D.18)
D D\?
with §=—[7r—20031—+2— 1—(—)]
H H
b T
2 2 .2
J3 = f Fldy =D (MI - uH)alf sin l//dl//
_D 0
2
1 2rA
= —(u; — up)A i (D.19)
2(MI uyp). e 2C0 sin ¢
D\ A+2
with Co = (E)—Z
A+ Bim

Then, substitution of (D.17) through (D.19) into (D.14) yields the following equation:

1 27A
L= EpARﬁ[uﬁ + (uy — umuné + (g — w)Co sin & (D.20)
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6.13A

H hen th A) i d as th tion t in the (3.26) (=————
ere, when the f,(A) is used as the correction term in the ( ) ( A 1205

), following ex-

pression is obtained,

1
Fy = 5pAr[(1 = &)ufy + (€ = Coupugs + Cuif | fo(A) 5in 6

2
. D\ A +2.25 (D.21)
Wlth C = (E)W
A+ i

Nevertheless, when we compare (D.13) and (D.21), we see that they can be matched if subse-
quent approximation is taken.

D
gxC=m = (D.22)

Since there will be no significant difference between the two, this approximation seems proper,

therefore (D.13) is considered to be sufficient in order to avoid the complication.

Then, it is important to calculate the u; and uy in Fig. D.3. First, the flow velocity uy; which is

not affected by the propeller wake flow is expressed using the wg at the rudder position as

ug = (1 =wr)U = eup
(D.23)

The value of wg is experimentally obtained by the matching with the rudder normal force when
the propeller is non existent (or when the propeller idles). Next, with respect to the propeller
wake flow uj, the increase in the flow velocity due to the rotation of the propeller is expressed
as follows using the coefficient k. (See Fig. D.2)

AU = k(Uoo - Ltp)
(D.24)

with U, =up+u or nP

And at the time of idling propeller, up = nP(= U) then u; = uyy, so u; can be defined as:

ur = ug + AU

(D.25)
up{e + k(i—‘: - 1)} = up{e + ki}
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The coeflicient k is experimentally obtained by the matching with the rudder normal force when
the ship is stopped. In this case, since S = 1, uyy = 0, u; = knP, the calculation is straightforward,

with rough assumption of k£ = 0.6.

Finally, by substituting (D.23) and (D.25) into (D.13), and by taking the definition of « in (D.7)

into (D.25), the rudder effective inflow velocity ug is given as follows:

Ug = gup \/17{1 + k(N1 + 8K /ml2 = 1)* +1 -7

k06

& &

(D.26)
with « =
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