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Abstract

Anomalous Hall (AH) effect has been known as an important macroscopic phe-
nomenon in materials science because of its application in spintronics such as
electronic probes, switches, and memory devices. The discovery of large AH effect
in non-collinear antiferromagnets with no net magnetization leading an increasing
amount of attention in studying the topological features of electronic band struc-
ture for the AH effect because of the insensitivity against an applied magnetic
field and no stray fields interfering with the neighboring cells as well as faster
spin dynamics than ferromagnets. This thesis aims to get a comprehensive un-
derstanding for AH effect by investigating topological features of electronic struc-
tures which produce large AH effect in the non-collinear antiferromagnetic metallic
states of anti-perovskite manganese nitrides Mng AN(A= Ni, Cu, Ga, Ge, In, Sn, Ir)
by first-principles density-functional-theory calculations. Firstly, the stable mag-
netic structures of these compounds are predicted to be non-collinear antiferro-
magnetic structures characterized by either Ti, or T, irreducible representation
by evaluating the total energy for all of the magnetic structures classified accord-
ing to the symmetry and multipole moments. Secondly, systematic evaluation of
the AH conductivity leads to understanding the chemical trends of band filling
and spin-orbit coupling in the series of materials. In order to understand the
microscopic mechanism of the AH conductivity in a non-collinear magnetic sys-
tem, the topology analysis is next performed for the Wannier based tight-binding
models obtained from the first-principles calculations. This study reveals that
the small Berry curvature which is widely spread around the Fermi surface in the
Brillouin zone, dominantly contributes after the k-space integration to the AH
conductivity. While the locally divergent Berry curvature around Weyl points has

a rather small contribution to the AH conductivity.
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Chapter 1

Introduction

“The science of today is the

technology of tomorrow.”

Edward Teller

1.1 Anomalous Hall effect: a macroscopic trans-
port phenomenon

One hundred forty years ago, Edwin Hall discovered the existence of a voltage
difference in a conductor, transverse to the electric current and the external ap-
plied magnetic field perpendicular to the current as shown in Fig. (a), and
especially the effect in ferromagnet iron was found to be ten times larger than in
non-magnetic conductor |1,2]. The effect, which is called Hall effect, can be ex-
plained by a Lorentz force which pulls electrons to one side of the conductor. The
experiments in 1930 and 1932 proposed a relation between Hall resistivity p,, with

applied perpendicular magnetic field H,, and magnetization M, in ferromagnets:

Pzy = ROHz + RSMZ7 (1.1)



(a) Magnetic field (b) Magnetization

Hall

Conductor voltage Ferromagnetic

Electric current

Figure 1.1: Schematic illustration of the Hall effect in an electrical conductor (a)
and the anomalous Hall effect in a ferromagnet (b). The symbol e~ represents the

electron with a negative electric charge.

where Ry is a coefficient which related only to density of carriers and R, depends
on various properties of materials. The experiments also showed that even no
external magnetic field, there was still a strong conductivity with only its inherent
magnetization as shown in Fig. |L.1] (b). The effect is called “anomalous Hall
(AH) effect” or sometimes called “extraordinary Hall effect”. The AH effect is
the electronic-magnetic phenomenon which has a large amount of attention with
new recent exciting discoveries [3-12]. The AH effect in ferromagnets was widely
applied for spintronic applications where electron spin is used to control and store
information, instead of charge.

In general, the AH effect is also affected by scattering by impurities or disorders
[13,/14]. In this work, we consider the AH effect that is independent of scattering,
it is called intrinsic AH effect. In order to study the intrinsic AH effect which
depends only on the band structure of the perfect crystal, first-principle density-
functional-theory method is effective and convenient. The solution of the density-
functional-calculation for an electron in periodic crystal are Bloch states [15] with

k7 dependent

eigenvalues €(k) and wavefunctions (Bloch functions) (k) = uxe
on position in reciprocal space k, where u,,;, is the periodic part of Bloch function

and 7 is the electron coordinate.



3
1.2 Topological aspects of the anomalous Hall

effect

The AH effect was the “anomalous” matter which could not be explained clearly
for a long time. Until when its topological aspects were considered, understanding
about the macroscopic mechanism of the AH effect was effectively brought out.
This concepts has a relation with electrostatic through Gauss’s Law and Stock’s

theorem which describe properties of vector field A |16]. Stokes’ theorem says:

jiAdl:/S(VxA)-ndS, (1.2)

where S is an arbitrary open surface with the normal vector n and C'is the closed
curve surround S. The curl of the vector field V x A is so-called vector potential.
These electrostatic concepts will be mentioned below to introduce the topological
aspects.

The basic idea is that considering the AH effect is a cyclic adiabatic process.

The phase change under the processes like that is called Berry phase:
c

where A, (k) is k space Berry connection of band with index n, and is defined in

term of the periodic part of Bloch function u,; as follows:
A, (k) =1 (U |Viung) - (1.4)
Berry curvature ,(k) then is defined as the curl of the connection:
Q. (k) = Vi X A, (k) = 0,45 — 05Aa, (1.5)

This adiabatic process is similar to a process when an electron moves in the peri-
odic potential of a solid under perturbations such as weak electric and magnetic
fields, its velocity has an extra term named “anomalous velocity” [17-21]:

. Loe(k)
~h ok

— kx Q(k), (1.6)



4
where €, (k) is the eigenvalue of Bloch state. The AH conductivity in this theory
is calculated by the Brillouin zone integration of the Berry curvature with the

summation of the one-electron bands below the Fermi level [22,23]:

s =5 | Gaafp k)t 1)

where o, f = z,y,z (o # ), and f,(k) = 0(e,(k) — p) is the occupation factor

determined from the eigenvalue of Bloch states €,(k) and the Fermi energy pu.
Under the Berry curvature concept, each band is characterized by a topological

integer called the Chern number which is the Berry-curvature flux through a closed

oriented surface S in k space:

@@_ifwﬂmw, (1.8)

2T

and it is known as the “Chern’s theorem”. When the surface S surrounds a
crossing point between bands n and n 4 1, the Chern number becomes ‘chirality’
of that point y,., with a indicates the ath crossing point between bands n and
n + 1. If that chirality is an integer number unequal zero, the crossing point is
called a Weyl point W,,,. Especially, the like-Gauss’s law V - €2, = 0 is correct

for everywhere in k space except at Weyl points [24]:
Ve Qu(k) =21 Xnad®(k = kna) = 27 Y Xn-1.00°(k = kn_1.)- (1.9)

It can be understood from the above equation that the Weyl point acts as a source
or a sink of Berry flux in the lower band and upper band, respectively as shown in
Fig.[1.2] Therefore, Berry curvature around Weyl point was often assumed to play
important roles in the AH effect. Note that while Berry connection at k can be
changed continuously by modifying the phase choice for the Bloch states around
k, the Berry curvature is fully gauge invariant and referred as a “topological”
nature. Then the contents such as Berry curvature, Chern number, and Weyl

point are regarded as topological aspects of the AH effect.



(a) (b)

N

YINON

Figure 1.2: Schematic illustrations of Weyl points acting as a source (a) or a sink

(b) of Berry curvature, the vectors indicates Berry curvature.

(a) (b) ® Mn
Fictitious field

‘Qf-}\()’-& Sn/Ga/Ge
A
y O/ = YO/ =

Non-colinear
Antiferromagnetic

Figure 1.3: Schematic illustration of the anomalous Hall effect in non-collinear
antiferromagnet (a) crystal and spin structure of MnsZ (Z= Sn, Ge, Ga) (b) with

magnetic moments are sketched in red.

1.3 Anomalous Hall effect in non-collinear anti-

ferromagnets

The AH effect was conventionally assumed proportional to the magnetization lead-
ing to no AH conductivity in antiferromagnets (AFM) with no net magnetization.
Nevertheless, large AH effect was recently predicted by the first-principles calcu-
lations for non-collinear AFM with vanishing net magnetization [4-7]. It was first

observed of large AH effect in a non-collinear AFM MnzSn at room temperature
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by Nakasuji et al. [8] in 2015. They proposed the fictitious field which drives the
AH effect in antiferromagnetic instead of magnetization in ferromagnetic as shown
in Fig. [1.3] (a). They found a residual in-plane magnetic moment in this MngSn.
That tiny moment was then demonstrated in Ref. |10] to not contribute to in-
duce the AH conductivity but to control the chirality of spin triangular structure
shown in Fig.|1.3[(b). The large AH effect in AFM states has attracted an increas-
ing amount of attention because of the insensitivity against an applied magnetic
field and no stray fields interfering with the neighboring cells as well as faster
spin dynamics than ferromagnets [8,9,[25,26]. Those findings of the AH effect in
the non-collinear AFM states urge us to get a comprehensive understanding of
possible AH effect in various magnetic states.

In general, the presence of AH effect in magnetic states is determined by sym-
metry of their Berry curvature or their magnetic symmetry that will be reminded
in Appendix Recently, it has been proposed in Ref. [12] another approach
called “cluster multipole (CMP) theory”. The theory defines CMP moment being
the multipole moment in the magnetic structure in analogous to the local multi-
pole moments for an atom [27-H29]. the CMP then can be characterized for the
AH effect in arbitrary magnetic ordering including AFM structures. In addition,
multipole expansion for magnetic structures was introduced to generate magnetic
structures then classify them into multipoles [30,31]. The summary of the CMP
theory along with multipole expansion for magnetic structure will be explained in
Appendix B.

In particular, the CMP identifies the order parameters which induce the AH
effect as a nature extensive of magnetization in ferromagnets. The theory says that
an arbitrary magnetic order can induce the AH effect by breaking the magnetic
symmetry same as that for ordinary ferromagnetic order. The cluster multipole
theory, therefore, is useful to generate and classify magnetic structures as well
as determine structures including AFM states can induce finite AH conductivity

effectively.



(a) Perovskite 4BO, (b) Anti-perovskite X;4B8

() X : transition metal element

A
O B : transition metal element oRB

Figure 1.4: Crystal structures of perovskite (a) and anti-perovskite (b), respec-

tively.
1.4 Anti-perovskite manganese nitrides Mnz AN

It will be shown here properties and advantages of anti-perovskite manganese
nitrides for studying the AH effect in non-collinear antiferromagnetic systems.
Figure is to introduce crystal structures of perovskite and anti-perovskite
systems. They both have a cubic structure with general formula of ABOj3 for
perovskite and X3AB for anti-perovskite. In a unit cell, perovskite has only one
transition metal element at body-cubic center. In contract, anti-perovskite has
three transition metal elements at face-cubic centers. Many perovskites are known
to be insulators. Therein, the name perovskite was firstly called for CaTiO3 with
little application , the later similar structures known such as BaTiOs; and
PbZrOg are ferroelectricity i.e. having a spontaneous electric polarization .

The increasing number of transition metal elements in a unit cell leading to
exhibiting more some interesting features in anti-perovskites. For example, some
anti-perovskites such as Li3OBr, Li3OCl, and NagOCI show high conductivity
which can be used for batteries and sensors ,. Their properties such as good
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electrical conductor and magnetism were shown mainly related to d-orbital of
transition metal elements [37]. There are also many famous anti-perovskites being
metallic with B representing B, C, or N element; X being a magnetic element, Mn,
Ni or Fe while A being a non-magnetic element, Cu, Zn, Ga, Cd, and Sn. They
exhibit superconductivity, giant magnetoresistance, thermal expansion, and some
rare properties such as giant baro-caloric effect in Mn3GaN and magneto-caloric
effect in Mn3SnC and MnzGaC which are useful for magnetic refrigeration [38].

Especially, among them anti-perovskite manganese nitrides MngAN (A= Ni,
Sn) were found to show non-collinear AFM in the triangular Mn lattice corre-
sponding to irreducible representations T1,(I'} ) and T, (7 ), respectively [39-41]
as shown in Fig. [.5] A recent study on spin-order dependent AH effect in the
non-collinear AFM MnzAN (A= Ga, Zn, Ag, or Ni) also suggested that these
material are an excellent AFM platform for realizing novel spintronics applica-
tions [42]. In this context, they can be regarded as a new playground to explore
the AH effect in antiferromagnetic with many analogues to replace nonmagnetic

elements A.

1.5 Motivation and overview of the thesis

1.5.1 Motivation

In ferromagnetic states, there were many theoretical and experimental works fo-
cused on exploring the relation between the topological feature of electronic band
structures [3]. In particular, the AH effect was suggested mainly arising from large
Berry curvature around the Weyl points in Weyl semimetals [43,/44]. For metal-
lic ferromagnetic bee-Fe, Martinez et al. investigated topological feature related
to the AH effect and found the dominant contribution from the Berry curvature
distribution across the Fermi sheets with the possible enhanced contribution from
the Fermi sheets having the Weyl points very nearby [24]. In non-collinear AFM

Mn3Ge and MnsSn, it was observed multiple Weyl points which can give large



O A= Ga, Zn, Ag, Ni, and so on.

Figure 1.5: Crystal structures of anti-perovskite manganese nitrides in correspond-
ing to irreducible representations T,(I'}) (a) and Ty, (T'3) (b), respectively. Mn,
non-magnetic atom A, and N atoms are located at the face center, corner, center

of the cubic unit cell, respectively.

influence to the AH effect . Nevertheless, topological aspects of the AH effect
in non-collinear AFM Mn3sAN have not been investigated. Therefore this thesis
aims to identify important factors for the large AH effect by detailed analysis of
topological aspects including Weyl points, Berry curvature, and Fermi surfaces in
the platform of MngAN.

1.5.2 Overview

This thesis analyzes the magnetic structures classified according to symmetry and
cluster multipoles and find that non-collinear antiferromagnetic structures char-
acterized by higher rank multipoles are stabilized in those compounds. Symmetry
analysis reveals that the AH effect can emerge in the magnetic configurations
characterized by T, irreducible representation that the magnetic dipole ordering

belongs to. The results of systematic analysis for the AH effect in anti-perovskite
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manganese nitrides Mng AN (A= Ni, Cu, Zn, Ga, Ge, Pd, In, Sn, Ir, Pt) are pro-
vided along with discussion the stability, symmetry, and topological aspects of the
magnetic structures leading to the AH effect.

In particular, this thesis identifies important factors for the large AH effect
with the detailed analysis of Weyl points, Berry curvature, and Fermi surfaces,
which characterize the topological features of the magnetic systems, by means of
first-principle density-functional-theory calculations. The thesis finds that the AH
effect is dominantly contributed from the Berry curvatures widely spread around
the Fermi surfaces induced with the band splitting due to the spin-orbit coupling
and the contribution from the divergent Berry curvature, for instance, around
Weyl points is rather small.

This thesis is organized as follows. Chapter [2| presents methods of calculation
including density functional theory to obtain ground states with eigenvalues and
Bloch functions and Wannier function method to evaluate the AH conductivity.
Therein, the fundamental equation of quantum mechanics named the Kohn-Sham
equation is introduced. The solving method to deal with problems of the Kohn-
Sham equation such as treating potential, choosing basis sets, dealing with spin-
polarized systems, and treating of relativistic effect of electrons.

Results and discussion are presented in Chap. [3| It is firstly provided a sym-
metry analysis related to the AH effect in Mn3AN. Then the chapter present the
result of the stability of magnetic ordering in these compounds which mentioned
in the symmetry analysis. The general results for electronic of the AH conductiv-
ity in Mn3zAN including the calculated AH conductivity and discussion the basic
mechanism for obtaining Berry curvature as well as different AH conductivities.
The main results will be shown as a topology analysis of Weyl points, Berry cur-
vature, and Fermi surface which related to topological aspects in the AH effect.
Then the dominant factor that contributes to the AH conductivity is discussed in

the last of the chapter. Finally, Chap. {4 gives the summary of this thesis.



Chapter 2

Methods

This chapter presents the basic concepts of two methods of calculation in this

thesis. They are density functional theory and Wannier function method.

2.1 Density functional theory

This section introduces the fundamental equation of quantum mechanics named
the Kohn-Sham equation. The solving method to deal with problems of the Kohn-
Sham equation such as treating potential, choosing basis sets, dealing with spin-

polarized systems, and treating of relativistic effect of electrons are mentioned.

2.1.1 Quantum many-body problem

Density functional theory (DFT) calculation is a standard tool for solving mate-
rials problems in many fields such as physics, chemistry, and materials science.
Basically, this calculation aims to obtain the ground state density while other
characteristics can be expressed through this density. The origin of this method
comes from a basis problem in solid state named a quantum many-body problem,

therein it is necessary to solve Schrédinger equation with many degrees of freedom

11
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of N nuclei and ZN electrons:
Hy = B, (2.1)

where E is the total energy, v is the wave function, and H is the Hamiltonian

operator written as follows:

. 1
H=—-
2

eZZ
Z|1% — 7 Z|""z_7ﬂj| Z|1{ R;|’

with the electrons are located at r; and have mass m,, the nucleus are located at R;

(2.2)

and have mass M;. The first and second term are kinetic energy operator of nuclei
and electrons, respectively. The interaction between electron and nuclei, between
electrons and electrons, between nuclei and nuclei are expressed by the Coulomb
interaction in the third, forth, and fifth terms, respectively. This equation can
not be solved exactly and some approximations are necessary to be applied.

The Born-Oppernheimer approximation assumes that the nuclei are ‘freeze’ at
fixed position because they are much heavier and slower than the electrons. The
many-body problem now becomes a problem of many-electron in an ‘external’
potential of the nuclei. The kinetic term of nuclei in Eq. disappears because
the nuclei do not move any more, the Coulomb interaction nuclei-nuclei becomes
a constant. There are left some following terms.

. 1 V2
T:—§§: (2.3)

is the kinetic energy of the electron gas,

e:rt Z |R _ 7']| (24)

is the potential energy of the electron in the ‘external’ potential of nuclei, and

ﬁ’—1§: ¢ (2.5)
ee — 2 |’I°Z .

7|
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is the potential energy due to electron-electron interactions. The Hamiltonian

now write as:
H=T+V,+ V. (2.6)

It is much simple than the problem in Eq. but still can not be solved. Some
approximations were proposed to simplify more Eq. such as the Hatree-Fock
method [45-48]. which is suitable for atoms and molecules in quantum chemistry.
However, this method is less accurate for solid systems. Density functional theory,
which is a more modern and appropriate method for solving the quantum many-

body problem than early approximations.

2.1.2 Density functional theory
Hohenberg and Kohn theorem

Density functional theory (DFT) has been established in 1964 by Hohenberg and
Kohn [49] with two basic theorems.
Theorem 1: The total energy of the system is a unique functional of the
density n(r):
Efn(r)] = Tn(r)] + Veu[n(r)] + Vee[n(r)]. (2.7)

Theorem 2 : The total energy functional En(r)] is minimized for the exact
ground-state density no(r) under the constraint that the total number of electrons
18 kept fized:

E[no(r)] < Eln(r)]. (2.8)

If the form of energy function E[n(r)] is known, the electronic density and total
energy of the ground state are able to obtain. Therefore, it is necessary to find

an approximation for the energy functional.
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Kohn-Sham equation

In 1965, Kohn and Sham proposed an equation that makes DFT to have a large
amount of applications until nowadays. The total energy functional can be rewrit-

ten into four parts:

E[n] = T[n] + Viu[n // nr)nlr) g + By, (2.9)

with the term [ [ ”|r "15,"’ drdr’ and E,.[n] are the Hatree and the exchange-
correlation energy. In this equation, both 7" and E,. are not known. The kinetic
term T can be splited into the kinetic energy of non-interacting particles which
can determine from single-particle wave function v¢;(r) and T,.. Then it turns to

solve the N one-electron equations named Kohn-Sham equation:

=5 v )| ) = () (2.10)

where ¢; is eigenvalue, 1); is the corresponding wave function, and v.s is called

the effective potential, which can be separated into:

Ueff('r> = Uext( + ch | (211)
with vy (r) = (s(E;nc—(J;)T“) is the exchange-correlation potential. In the followings,

the T, is assumed including in the E,..

Including spin-polarization: The beginning content of DFT was introduced for
non-magnetic system, but it can also be applied for spin-polarized system [50] by
adding an external magnetic field Bey. The spin, or magnetization density m(r)
is introduced with the vector Pauli matrices o to construct the 2 x 2 electronic
and magnetization density matrix p(r) = 3[n(r)] + m(r) - o], where I is the 2 x
2 unit matrix. Now, the electric and magnetic density can be written as:

= Z Z W}ia(r)‘z? (2'12)

i a==%

Z Pl (r)opi(r (2.13)
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Figure 2.1: Self-consistency circle of density functional theory

where o« = =+ for spin-up and down. The spin-polarized Kohn-Sham equation has

a form:

—% 2 +vua(r) + o - B | i) = ethi(r), (2.14)

where the effective magnetic field Beg = By + By contain the ‘exchange’ field
arising from the exchange-correlation energy ¢,. as a function of electron density
n(r) and magnetization density m(r):

_ Oeze(n(r), m(r))
om(r) '

B..(r) (2.15)

In the case of “collinear magnetism” Beg(r) = Beg(r)é,, the wavefuntions of

spin-up and spin-down electrons can be solved from the equations:

5 ) 4 Bun(r)| s () = s 1),
(2.16)

[_% 2 +ueg(r) — Beff(’f'):| Vi (r) = €-i_(r),

and the densities of spin-up and spin-down are n(r) = >, ¢y (r)|* and n_(r) =
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> i |- (r)]?, respectively. Then the electron density reads n(r) = ny(r) +n_(r),
and the corresponding magnetization density is m(r) = ny(r) — n_(r).

Treating for non-collinear magnetism: In the approximation of non-collinear
magnetism, it is necessary to define local spin-quantization axis ¢€,, as the z-axis
parallels to the direction of the local magnetic moment. The spin-quantization
axis of each state can vary with position. In some cases, when non-ground state
non-collinear magnetism systems is needed to consider, that means the direction
of the magnetic moments is needed to be constrained. The constrained method
introduce a penalty functional to the Hamiltonian [51-56].

However, this work aim to obtain the non-collinear magnetic configuration
correspond to an energy minimum. Then only an initial magnetic ordering is
needed to be set up. The magnetic states can automatically reach to a ground
state spin order without any constrained approach to spin direction [57].

Including relativistic effects: When the relativistic effect is included in the
Kohn-Sham equations, they are called the massive-one-particle Dirac equations
[58]:

CZ aip; + (B — D)moc® + Veg(r) | ¥(r) = E(r) (2.17)

where ¢ is the speed of light, mg is the electron’s rest mass, p; are its momentum

(1 = x,y,2). a; and [ are determined from 2 x 2 Pauli matrixes and the 2 x 2

0 o;
o = : 2.18
() 218

I 0
B = ) 2.19
- (2.19)
where Pauli matrices are:

(0 1) (0 —z') <1 0 )
01 = ,09 = . ,03 = (220)
10 t 0 0 -1

The eigenvectors are four-component wave functions. The equation including rel-

unit matrix I:

ativistic for mass-velocity, Darwin, and higher terms [58]. It is more complex than
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a non-relativistic equation. There are some approximation methods to include the
relativistic effect. For example, “scalar relativistic approximation” neglects the
spin-orbit coupling (SOC) which was known as a relativistic effect caused by a
coupling of the spin angular momentum (intrinsic magnetic moment) of the elec-
tron and the orbital angular momentum (magnetic field seen in its orbital motion
around the nucleus). However, when a system contains heavy atoms with 4d and
5d electrons, the SOC is quite large and it is necessary to take into account the
SOC effect. In that case, a “second-variation” procedure [59-63] is used to in-
clude SOC based on perturbation theory after obtaining the solution of the “scalar

relativistic” equation.

Treatment of potential

The full-potential method uses full potential and charge density without any
“shape” approximations in the interstitial region and inside the muffin tins. This
method has a high accuracy for various systems. However, some “shape” ap-
proximations were applied to the effective potential for convention in some ap-
proaches. In that case, the potential is called pseudopotential. There is a kind of
pseudopotential named “norm-conserving” proposed by Hamann, Schliiter, and
Chiang [64,65]. In this pseudopotential, the pseudo-wave function ¥pp must have

the same norm as the all-electron wave function ¥, electron:

/ ‘wPP(T)PdT - / ‘wallfelectr0n<r)|2dr (221)
0 0

within chosen core radius r.. The region outside the core radius, the pseudo and
all-electron wave function are identical. In general, the norm-conserving pseu-
dopotentials were shown not good for 3d-transition metals and rare-earth elements
because of their strongly localized orbitals [64,(65]. This problem was solved by
the ultrasoft pseudopotentials proposed by Vanderbilt [66]. The idea of ultra-
soft, pseudopotential is to relax the norm conservation criteria to obtain smoother
pseudo wave functions. Then it can be expanded with a smaller number of plane

waves.
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Exchange and correlation functional

Ground-state properties of any interacting many-electron system can be obtained
if the exchange-correlation E,.[n(7), m(r)] is known. Therefore, some approxi-
mations for the exchange-correlation functional are developed since the exchange-
correlation functional can not been known in Kohn-Sham equation.

Local spin density approzimation (LSDA): Assume the exchange-correlation
can be expressed in term of exchange-correlation density €,. which depends on
electron density n(r) and the magnitude m(r) of the spin density of homogeneous

electronic gas as follows:
EYSPAI(r), m(r)] = /n(r)em(n(r),m(r))dr. (2.22)

The exchange field is aligned with the magnetization direction m and can be

expressed as follows:

B,.(r) = n(r)a%c(ggg;’;@m)m. (2.23)

Structural properties of solid are often good, with a small different with exper-
iments in calculating bulk lattice constants. The ‘local’ here means that only
density in given point is known.

The generalized gradient approzimation (GGA): The ‘local’-density approx-
imation above in some real atoms, molecule, or solids systems is less accurate
because there is only density in given point is known. It is necessary to develop
to another non-local approximation. A step toward the non-local generalization
of this method is called the generalized gradient approximation (GGA) and ex-

pressed as:
EﬂiGA[nT7 ni] = /f(nT7 ng, VTLT, Vm)d”‘- (224)

There are serval versions of the GGA method based on how to choose f(n+, ny, yns, yny).
Therein, the method established by Perdev, Burke, and Ernzerhof (PBE) [67] is

used widely by its accuracy for magnetic systems than LSDA.
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Basis sets for wave functions

There are several methods to create basis sets for atomic cores in all-electron
Kohn-Sham wave functions wn(r) such as plane waves (PW) and the Augmented
Plane Wave (APW)-based methods. The basis sets aim to get solutions with high
accuracy and not so time-consuming.

Remind about Bloch theorem, it said that for a periodicity system like a crystal

system, any eigenfunction can be expanded as [15]:
Up(r) =) e O (2.25)
K

This expansion contains the most simple choice for a basis set named PW basis
set. Accompaniment with it, the PW basis set was fail to deal for the real crystal.
Because potential near nuclei is very strong and the wavefunctions can not describe
by PW functions.

The APW method was proposed originally by Slater [68] to deal with some
cases that need information in the region near the nucleus. The APW basis set
include atomic-like functions inside spheres called a ‘muffin tin sphere’ and plane

waves in the remaining space outside the spheres called ‘interstitial region’

L pilk+K)r in interstitial

Ok = v 2.26
® Zlmaﬁﬁuﬂm,Eﬁ)Y}m(fM) in  muffin tin g ( )

where r, = r,7#, = r — 7,, is the position in the system reference of the ionic
position 7,,. The Y}, are spherical harmonics. The coefficient aﬁfﬁc are determined
in order to the wave functions at the muffin tin continuous. Inside the muffin tin,
the uj' are solutions of the radial Schédinger equation for free atom at a given
energy EJ'. In principle, the eigenvalue can be solved numerically. However,
fixing E}* leading a requirement of large number of APW basis functions and a
limitation of number of energies for which a solution u}" can be found.

One method was proposed by Andersen, Koelling, and Arbman [69,70] giving
a better solution for the above problems. In this method, the wave functions

inside spheres are expressed in a linear combination of different energy between
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unknown-eigenenergy and a fixed energy as expressed in Eq. [2.27] it is so-called
‘linearized augmented plane wave’ (LAPW) basic sets.

Ouy' (ry, E7)
Oe
With this expansion, the LAPW method works well for a broad energy range of

w1, €) = ' (r, B) + (€ = EY') le=mp +O(e— Ef)*. (2.27)

the valence bands. It was used with “full potential” in many modern studies [71].

Numerical procedures

It was well known that wave functions of core electron vary strong near the nuclei
due to the strong Coulomb interaction and reduce when going far the nuclei.
It is necessary to limit the basic set to perform calculation by introduce the
radius K.y, then it should be taken into account K < K... The kinetic energy
corresponding to K. is called the cut off energy:
R K ax
2me

Eewt = (2.28)

A large cutoff energy is needed because core wavefunctions have sharply peaks
near nuclei and the valence wavefunctions have lots of wiggles. The number of the
plane wave is required being too large in most of cases. It leads to computational
problems. Therefore, the pseudopotential methods were proposed to make tails
of wavefunctions inside the atoms smooth. Then number of needed plane waves
needed is only few.

Even the ultrasoft pseudopotential method achieved successfully in dealing
with matters of localized elements, the problem is about the construction of these
pseudopotential needing many parameter and requiring a lot of tests. Therefore,
it was developed further to treat with that matter, the most successful approach
and used widely nowadays named the projector augmented wave (PAW) method
[7274]. This is an extension of augmented wave methods and pseudopotential
approaches [74].

In practice, the PAW and ultrasoft pseudopotentials often require larger cutoff

energy for the charge density than for its plane wave because of their smoother
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Approximations for exchange-correlation part:

Local density approximation (LDA),

Generalized Gradient approximation (GGA),
Kohn-Sham equation: etc.
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Full-potential, Plane wave (PW),
Pseudopotential, ... Linearized augmented plane wave (LAPW),

etc.

Figure 2.2: Variations in density-functional-theory calculations

leading an additional contribution of charge density compare with the square
of the wave function. It was suggested that the cutoff energy for the charge
density should be about 6-12 times larger for ultrasoft and PAW pseudopotential,
and about 4 for norm-conserving pseudopotentials. However, in practice, it is

necessary to test the convergence of this value.

2.2 Wannier functions

This section presents a representation named Wannier functions (WFs) which is
an alternative representation for Bloch functions. This is an effective method to
determine the electronic structure at any point in the phase space as well as to
construct tight-binding models that are useful for evaluating materials properties,
including the AH conductivity. The section firstly reviews basic definitions of
Wannier function. It then presents a Wannier interpolation method applying for
band structure and band derivative. Finally, the way how to obtain Berry curva-

ture and anomalous Hall conductivity from Wannier interpolation is mentioned.
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2.2.1 Basic definitions and properties

The electronic ground state of a periodic system is commonly described in a set
of extended Bloch states ¢,x(r) where the label k indicates a crystal momentum
inside the Brillouin zone (BZ) and n is a band index. This representation is the
most widely used in electronic structure calculations. However, Bloch states meet
troubles to describe matters of local physical processes and phenomena originate
from local electron correlations or impurities in materials.

In 1937, Gregory Wannier [75] proposed an alternative representation that
can resolve these above matters named Wannier representation. The Wannier
function (WF) of the nth isolated energy band at a cell R is a discrete Fourier

transformation of the Bloch state:
1%
(2m)3

where V is the real-space primitive cell volume, the integral is carried over BZ

Rn) — /B R, (2.29)

and the WFs at different R in a crystal are translational images of one another.

Then Bloch states |1),x) can be obtained by an inverse Fourier transform:
[nk) = Y €*F|Rn). (2.30)
R

Wannier functions have been widely used in many applications and efficient for
calculating material properties such as intrinsic AH conductivity and orbital mag-

netization.

2.2.2 Wannier interpolation
Interpolation of band structure

Wannier interpolation procedure starts from calculating first principles calculation
on a coarse uniform reciprocal space k mesh. Therein the Hamiltonian matrix
is noted as H(k). Wannier functions, that localized in real space at position
R, are then constructed from Bloch states in selected bands j as in Eq. .
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Eigenvalues at an arbitrary point k can be next interpolated by an inverse Fourier

transformation:

[k =Y _e*®IRn)  (n=1,..,j). (2.31)

The Wannier interpolation procedure is summarized in Fig. [2.3]

The interpolated single-particle Hamiltonian reads:

HY (k) = (Vs |[H|wn,) = > e*F(0n|H|Rm). (2.32)
R

where the notation (On| indicates the nth Wannier function in the home unit cell
R =0 (in Eq. . The superscript notes W that they are not eigenstates of
Hamiltonian but belongs to “Wannier gauge”. The eigenenergies are obtained by
diagonalization by unitary matrices U (k) as follows:

HE (k) = [UR) HY(E)U(K)]nm = 6pmén(k). (2.33)

Note that the Hamiltonian can be referred to as a tight-binding hopping Hamil-

tonian between localized orbitals:

H=>"Y H,(R— R)Rn)(Rn| (2.34)

RR’ nn'/
The interpolated band is plotted together with DFT bands to determine the
accuracy of the interpolation procedure. In addition, it will be presented here
another important content of the Wannier interpolation so-called interpolation of

the derivative band energy [76]. It is useful to evaluate characteristics of materials.

Derivative of Hamiltonian in Wannier gauge

For quantities in transport coefficients, the derivative of the energy eigenvalues
with respect to k has to take into account. For example, the anomalous Hall
effect has been known to evaluate from Berry curvature which is related to Berry

phase or geometric phase when a system is in adiabatic processes. In numerical
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Figure 2.3: Wannier interpolation procedure.

calculation, the Brillouin zone integration can be replaced by a discrete summation
of finite values on the k-point mesh. It becomes a computational problem if the
quantity under integration changes sharply in some regions. The quick variability
of Berry curvature near band crossings makes a challenge to reach convergence.
The derivative of Hamiltonian in Wannier gauge with respect to k can be written

as:

«

HY (k) = 0.HY (k) => ™ iR, (0|H|R), (2.35)

where 9, = 0/0k,, and a = z,y, z. In similar way, in general the above matrix is
a non-diagonal matrix and needs to diagonalize by the rotated matrix U (k). The

actual band derivatives are:

Ontn(k) = [UR)HY (KU (k)] un (2.36)

Berry curvature and anomalous Hall conductivity

As mentioned in Chap. [I] the AH conductivity is evaluated from the integral of
Berry curvature over BZ:

2

Oap = —%/%Qw(k), (2.37)

where total Berry curvature is the band summation:

Qag(k) =D fulk)Qas(k). (2.38)
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Therein, the Berry curvature of band n is evaluated following the Kubo formula

[22,/77):
Unm,@(":)vmn,ﬁ(k)
lem (k) — €n(k)]?

where the velocity operator is defined in term of the periodic part w,;, of the Bloch

(2.39)

Qnop(k) = —2Im >

m#n

states:

OH (k)
Okq

Unm,a(k) = 7 <un(k)

um(k)> (2.40)

with H(k) = e~k Helkr,

The quick variability of Berry curvature near band crossings can lead to a
computational problem. Wannier interpolation supports a scheme to converge
the AH conductivity calculation from integral of Berry curvature without using
ultra-dense k mesh in BZ. Moreover, one powerful strategy was introduced by
Wang, Yate, Souza, and Vanderbilt by k - p perturbation theory [22] to avoid the
summation over all empty states as in Kubo formula. The idea in Ref. [78] start
from the low-energy physics does not be affected in the large energy range above
the Fermi level.

For transport properties like the AH effect, it only needs to construct WFs in
a limited energy range called “inner window”. The inner window energy range is
often chosen from lowest energy band to a few eV above Fermi energy. Assume
that there are M Wannier function per unit cell, then the total Berry curvature

in Eq. can expressed after Wannier interpolation as:

an YO (k). (2.41)

Using definitions in Ref. [22] for the mth M-component vector matrix U being
||¢m)) and the perturbation theory with respect to k being:

l#n n

|10athn)) =
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Define

Ao
o i n#m
m’  —€n

pU (UT04U ) i (2.43)

ané_

0 if n=m

where O = UTOMU for an arbitrary matrix object O. Remember that Berry

connection is not gauge-covariant and it can be written as:
AW = gt AWMU iU, U = AW 4 ipM (2.44)
The sum over occupied bands in terms of D and A matrixes:
k) :an( anﬁ +Z mr?oaAS;Irzﬁ

Dl A +iD(H) D(H)

nmﬂ nma nm,o nm,B)

(2.45)

After evaluating D and A matrixes from Wannier interpolation including k deriva-
tives, the total Berry curvature can be calculated straightforward. It was also
demonstrated in Ref. [22] that the last term in dominantly contributes to the

total Berry curvature. This term has a Kubo-like form:

(H) g7(H)
H H
DD § : nm,a2Smn, 3
Using notion as in Eq. it is also given as:
QDD —2Im E fn a¢n ||85 gbn( )>> (247)

here n indicate occupied bands.



Chapter 3
Results and discussion

In this chapter, the appearance of the AH effect is discussed along with symme-
try operators including space-inversion and time-reversal symmetry according to
symmetry of Berry curvature in the k space. Then the magnetic symmetry of
Mn3 AN structure is analyzed by generating and classifying them following the
multipole expansion scheme [30]. Magnetic structures that can induce finite AH
effect in these compounds are also pointed out. The first-principle calculation re-
sults are then presented for stability of magnetic orderings which were generated
and classified. Finally, it is intended to investigate the topological features of the
AH effect in non-collinear AFM Mn3AN.

3.1 Analysis of symmetry and anomalous Hall

effect in Mn3; AN

Manganese nitrides Mns AN have the anti-perovskite crystal structure which be-
longs to the space group Pm3m (O}, No. 221). The cubic unit cell of the structure
have Mn atoms located at the face center, N atom at center and non-magnetic
atom A at conner as introduced in Chap. [l The symmetry-adapted multipole
magnetic structure bases for Mnz AN in Fig. are generated following Ref. |30]

27
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Rank-1 Multipole (Dipole)

Tlg(Mm) Tiy(M,) Tig(M)

Rank-2 Toroidal
T29 (sz) TQQ (Tacy)

&g&&

Rank-3 Multipole (octopole)
Thg (M) Ty (M) Tig(MZ)

Figure 3.1: Magnetic configurations of Mng AN corresponding to the basis vectors.

and the method is also summarized in Appendix |[Blin this thesis.

The energetically inequivalent magnetic structures with the ordering vector
q = 0 are classified and shown in Fig. n Therein, the magnetic (M)-dipole struc-
tures (M,, M,, M,) = (001), (110), and (111) represent ferromagnetic structures
oriented along [001], [110], and [111] directions, respectively. The antiferromag-
netic structures are obtained as the magnetic structures orthogonalized to the M-
dipole structures and are, in this compound, obtained as the rank-2 magnetic
toroidal multipoles (MT-quadrupoles) and rank-3 M-multipoles (M-octupoles).
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M-dipoles (M, M, M)

MT-quadrupoles (Ty, Tyy-, Tz )

Figure 3.2: Energetically inequivalent magnetic structures of MngAN classified
according to the multipole moments following Ref. and Ref. [30]. The green,
yellow, and blue balls indicate Mn, A, and N atoms, respectively. Arrows on Mn

atoms indicate the magnetic moments.
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Table 3.1: Symmetry operations of magnetic point groups. The notations x,y and
z are the Cartesian coordinates. F' is the identity operator, C,,, and m, indicate
the n-fold rotation operator along p axis and mirror plane corresponding with v

plane, respectively. I is the spatial inversion operator and T is the time-reversal

operator.
No. | 4/mm/m’ | 4'/mm'm 3m’ 3m m'm'm

1 E E E E E

2 Cy. Cy. Caniy | Cspug Cy.
3 Cars Conio+ | Cspung— | Caping— I

4 Ci— 02[110]— I I m,
5 I I ICsn11) | ICs011) | TCy
6 my my 103[111}7 103[111}7 TCZy
7 ICy.+ miio)+ Tm[im] Mo Tmy,
8 ICy,— m110]- Tm[ﬂo] M[110] Tm,
9 TCy, TCy, Tm[oﬁ] Mo11] -
10 TCy, TCyy TCyio1y| Cofioy -
11 TCz[no}f Tm[no}— TC2[110] 02[110] -
12 | TComoy | Tmpos | TCx011y | Coporr -
13 TI1C,, TI1C,, - - -
14 TICy, TICy, - - -
15 TICQ[HOF T[m[110]+ - - -
16 | TICoyn10+ | TImpi0)- - - -
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Table 3.2: Classification of the magnetic structure with the ordering vector g=0
in MngAN according to the symmetry-adapted multipole [30] as well as the irre-
ducible representation (IR) and magnetic point group (Mag. PG) with its prin-
cipal axis (P. axis). The AH conductivity tensors (AHC) that can be finite un-
der the magnetic point groups are also listed, where o119 = \%(Uyz + 0,,) and

— 1
0111 = Tg(O'yz +O'Zg; + O'xy).

Op-1IR Multipole Mag. PG | P. axis | AHC
Ty, (M, M, M,) = (001) | 4/mm'm’ | [100] | oy,
= (010) | 4/mm'm’ | [010] oo
=(001) | 4/mm/m’ | [001] | o
= (110) m'm'm [110] | o110
= (111) 3m/ 111] | o
Ty, (Tyzy Towy Tyy) = (100) | 4'/mm/m | [100] | None
= (010) | 4'/mm’'m | [010] | None
= (001) | 4'/mm'm | [001] | None
= (110) mm'm [110] | None
= (111) 3m [111] | None
Ty, | (M2, M2, M) = (100) | 4/mm'm’ | [100] | 0.
= (010) | 4/mm/m’/ | [010] | 0.,
= (001) | 4/mm'm’ | [001] | o4
= (110) | m'm'm [110] | o110
= (111) 3m/ 111 | o
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Orthogonalized multipoles which belong to T', and T3, irreducible representa-
tion (IR) are listed in Table 3.2| together with the non-zero AH conductivity ten-
sors. As shown in Table the M-octupoles can induce the AH effect since these
ordered states break the magnetic symmetry same as those of the M-dipoles [12].
On the other hand, MT-quadrupoles, which belong to 75, IR, do not induce the
AH effect with the magnetic structures shown in Fig. due to the presence of
the magnetic symmetry which forbids the finite AH conductivity as we demon-
strate in the last part of Sec.[3.3.1. Symmetry operations of magnetic point groups
presented in Table [3.2] are listed in Table
As discussed in Ref. [12], co-planar magnetic structures induce no AH ef-
fect in the absence of spin-orbit coupling (SOC) in general by the presence of
the “effective time-reversal symmetry” R T, which is the symmetry of conjunct
operation of time reversal 1" and global spin rotation Rs. Note that conven-
tional unit cells of non-collinear magnetic structures (7, 1%, Tyy) = (111) and
(Mg, M, M¢) = (111) include only three Mn atoms making an atom plane and
their magnetic moments all lying on that plane. Therefore, not only ferromag-
netic ordering (i.e. M-dipoles) but also all listed above magnetic structures (i.e.
M-octupoles) with the co-planar AFM spin configurations require SOC to induce
the AH effect due to the R,/T symmetry preserved in the absence of SOC as the
180° spin rotation. In the following section, we proceed to the quantitative eval-
uation of the AH conductivity for the M-octopole structures based on the results

of first-principles calculations considering SOC.

3.2 Stability of magnetic ordering in Mnz AN

3.2.1 Computational details

The stability of magnetic structures in MnsAN is considered by comparing to-
tal energies calculated by the first-principles approach. QUANTUM ESPRESSO

package [79] is used to perform the density functional theory calculations and
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Figure 3.3: Total energy as a function of lattice constants for different magnetic
configurations in MnzGaN. The equilibrium total energy of the (Mg, M, M¢) =
(111) magnetic structure is chosen as the origin of total energy. The values are

fitted to Birch-Murnaghan’s equation of state [87] by the least square method.

to evaluate the electronic and magnetic properties of antiperovskite manganese
nitrides. Generalized gradient approximation in the parametrization of Perdew,
Burke, and Ernzerhof [67] is used for the exchange-correlation functional. The
pseudopotentials in the projector augmented-wavemethod [80] are generated by
PSLIBRARY [81]. We choose kinetic cut-off energies 100 Ry and 800 Ry for the

plane wave basis set and charge density, respectively.

3.2.2 Magnetic stability of Mnzg AN

The optimization of lattice constants for each magnetic structure in Mn3 AN are
performed by calculating lattice constant dependence of the total energy as shown
for Mn3GaN in Fig. [3.3] The optimized lattice constants agree with previous
experimental values [82,83]. It is shown that either (7)., T,., Tyy)= (111) or (M2,
My, Mg)= (111) is obtained as the stable magnetic structure in MngAN. The
thesis hereafter focus on these (111) non-collinear AFM structures and refer the
magnetic structures of (7)., T.q, Ty)= (111) and of (Mg, M, M¢)= (111) as MT-
quadrupole (MTQ) and M-octupole (MO), respectively, following the multipole
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Table 3.3: Equilibrium lattice constants ag(A), local magnetic moments |migeat|(15), and the
difference of total energy AFE (meV) between (111) magnetic orderings and the M-octupole (M2,
Mg M¢)= (111) (MO) configurations. The bold values indicate the lowest AE. The M-dipole
(Mg, My, M,)= (111) and M-T quadrupole (T}, T.s, Tyy)= (111) are referred as the FM [111]
and the MTQ configuration, respectively.

This work Experiments
A Config. ao(A) | [miocatl| |miotal] AE Magnetic configurations (temperature)
(u5) | () | (mev)
FM [111] | 3.827 | 3.12 9.35 345.5 e MO + MTQ (10K < T < 250K) [41]
Ni MTQ 3.832 | 2.99 0.0 0.04 e MO + MTQ (160K < T < 266K) [39]
MO 3.832 | 2.99 0.0 0
FM [111] | 3.851 | 2.74 8.23 257.8
Cu MTQ 3.853 | 2.87 0.0 -7.5 e Ferromagnetic in tetragonal
MO 3.853 | 2.97 0.10 0 (T < 150K) [84]
FM [111] | 3.781 | 1.510 | 4.53 190.8 e AFM but not MTQ (T < 80K) [85]
Zn MTQ 3.866 | 2.74 0.0 -0.4 e MTQ (80K < T < 170K) [39.[85]
MO 3.866 | 2.74 8.23 0
FM [111] | 3.757 | 1.07 3.23 124.8
Ga MTQ 3.865 | 2.61 0.00 -0.4 e MTQ (T < 298K) [39]
MO 3.865 | 2.61 0.08 0
FM [111] | 3.756 | 0.91 2.73 146.3
Ge MTQ 3.858 | 2.49 0.0 -8.6 -
MO 3.858 | 2.49 0.0 0
FM [111] | 3.949 | 3.21 9.66 474.6
Pd MTQ 3.927 | 3.36 0.0 -9.5 -
MO 3.927 | 3.34 -0.01 0
FM [111] | 3.910 | 1.56 4.68 329.3 e Weak FM+ AFM (T < 175K) [85]
In MTQ 3.989 | 2.61 0.0 74.6 e AFM (175K < T < 300K) [85]
MO 3.989 | 2.91 0.05 0
FM [111] | 3.882 | 1.193 | 3.58 236.7 e Complex (T < 237K) [36]
Sn MTQ 3.851 | 2.01 0.0 215.6 e MO and MTQ
MO 3.982 | 2.75 0.0 0 (237K < T < 357K) [39,/86]
FM [111] | 3.870 | 2.94 | 8.81 | 807.8 )
Ir MTQ 3.863 | 2.77 0.00 -3.0 -
MO 3.863 | 2.77 0.06 0.0
FM [111] | 3.949 | 3.25 9.66 483.0
Pt MTQ 3.927 | 3.23 0.0 -6.7 -
MO 3.927 | 3.23 | -0.05 0
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characterization of the magnetic structure proposed in Refs. [12] and [30]. The
total energies for ferromagnetic, MT(Q, and MO magnetic structures are listed
with the relative energy from the MO magnetic structure, i.e. AE = FE — Ey\o,
for the series of Mn3AN.

The table shows that Mns AN with A = Ni, In, Sn prefer the MO configuration,
and those with the other A atoms prefer the MTQ configuration, having the
MO magnetic structure as the secondary stable solution. The energy differences
between the MO and MTQ magnetic structures are small for most of the Mnz AN
compounds. MnzNiN shows only tiny energy difference of 0.04 meV/Mn, which
explain the experimentally reported possible coexistence of the MO and MTO
phases [41]. On the other hand, we may expect that MnzgInN and MnzSnN are
stabilized to the MO phase with AE(MTQ — MO) ~ 74.6 meV and 215.6 meV
and active for the AH effect. The presence of weak ferromagnetism in AFM
states observed for MnsInN [85] implies that the observed AFM structure is the
MO structure since the MO and ferromagnetic structures belong to the same
magnetic symmetry and can coexist in the magnetic phase. In the followings,
thesis will focus on the AH effect in the MO magnetic structure, which is the first

or secondary stable solution for all of Mnz AN and can induce the AH effect.

3.3 Anomalous Hall conductivity in non-collinear

AFM Mn3zAN

This section shows an overall the relation between Berry curvature and electronic
structure in series non-collinear AFM MnzAN. The AH conductivities are eval-
uated along with the Fermi energy dependencies. The change in AH conductiv-
ity is checked by tuning hopping integrals. The analysis of density of state for
time-reversal pair of Mn-spin clusters for non-collinear AFM system, in particu-
lar, MngAN is also mentioned. Band filling effect is discussed as the number of

valence electrons is increased one by one for a group material.
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Figure 3.4: The first Brillouin zone (black) corresponding to the crystal primitive
unit cell with the high symmetry points.The hexagonal plane (green line) shows
minimum periodicity in the (111) plane for the simple cubic Brillouin zone with

the center point at I'. The orange rectangular is the region used to plot the Berry

curvature in Figs. 8.7 and [3.8]

3.3.1 Berry curvature in Mnz AN

The first Brillouin zone (BZ) with minimum periodicity in the (111) plane for the
simple cubic Brillouin zone with the center point at I' is shown in Fig. 3.4l The
presence of Berry curvature after taking band summation, Q! (k) = \/ig (22 sum (k) +
Qe sum (k) + Qay sum (k) with Qupeum (k) =D, flen(k) — p]Q005(k), in k space is
visualized in Fig. in MngIrN for MO magnetic structure. It shows the highest
peak at I'g195 =(0.195, 0.195, 0.195). Let’s see where the center of Berry cur-
vature peak comes from. Electronic band structure and the corresponding Berry
curvature in a k part across I' point in case without SOC and with SOC are shown
in Fig. It shows that with the presence of SOC, band splitting near the Fermi
creates two occupied and unoccupied bands in short range of energy leading to the
finite Berry curvature as shown in Fig. (d). How Berry curvature changes for
a pair materials Mn3GaN and MnsInN is shown in Fig. Two elements Ga and
In have the same number of valence electrons and therefore the electronic bands
are quite similar as shown in (a) and (b). However, the little bit different
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Figure 3.5: The Berry curvature after taking band summation on (111) plane
centered at I'g195 =(0.195, 0.195, 0.195) for MO magnetic structure in Mn3zIrN.
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Figure 3.8: The [111] Berry curvature component after taking band summation,
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sum

in Fig. for Mn3GeN (a) MTO and (b) MO configuration, respectively.

band structure near the Fermi level leads to a large change in the Berry curvature
as shown in Fig. (¢), (d), (e), and (f). The absence of the Berry curvature
region in k space in MnzInN may lead to the difference of the AH conductivity
comparing with MnzGaN.

The difference in symmetry of the Berry curvature for the MO and MTQ
magnetic structures is then illustrated to see how the Berry curvature cancels out
after integral overall Brillouin zone for a given magnetic configuration. Figure (3.8
shows distribution of the Berry curvature component after taking band summation
on the (111) plane shown in Fig. for the MO and MTQ magnetic structures.
The MO and MTQ magnetic structures belong to the magnetic point groups 3m’
and 3m, respectively, and the Berry curvature distribution keeps the three-fold
rotation symmetry on the (111) plane. In contrast to the MO magnetic structure,
the MTQ magnetic structure cancels out the Berry curvature on the (111) plane
with BZ integration due to the mirror symmetry with the vertical mirror planes

and leads to no AH conductivity for the magnetic structure.
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3.3.2 Anomalous Hall conductivity

The Berry curvature and AH conductivity are evaluated by using the tight-binding
models generated from the first-principles calculations [22] by Wannier interpola-
tion scheme using Wannier90 [88]. Including s, p,d orbitals for Mn and A atoms
and s,p orbitals for N atoms, the obtained tight-binding models show almost
complete reproducibility of the energy bands for those obtained from the first-
principles calculations within the energy interval from the lowest energy of the
valence bands to about 4 eV above the Fermi energy for the MngAN series, as
shown in Fig. for Mn3GeN, Mn3PdN and MnzIrN. A k-mesh 18x18x18 is
utilized to sample the first Brillouin zone (BZ) with Methfessel-Paxton smearing
width of 0.005 Ry to get the Fermi level. The AH conductivity was evaluated
with the uniform k-point mesh of 200x200x200 with the adaptive k-mesh re-
finement [89,(90] of 5x5x5 for the absolute values of Berry curvature larger than
100A2.

The AH conductivity, o111 = \/Lg(ayz + 0. + 04y) have been calculated for the
magnetic structures shown in Fig. [3.2 and listed the values in Table Note that
the conductivity (0., 0.4, 0,,) has the transformation property for the magnetic
point group same as that for the magnetization (M., M,, M.) [12], and the time-
reversal counterparts of the magnetic structures hold the opposite sign to the
AH conductivity. Some of MngAN materials show large AH conductivity in the
non-collinear AFM magnetic structure as the same order of the AH conductivity
calculated for the ferromagnetic states such as Fe (750 S/cm) [22,89] and Co (480
S/cm) [91]. The AH conductivity values for the non-collinear antiferromagnet
MnglIr, which shows the same magnetic alignment on Mn atoms in Mn3s AN, is also
evaluated in this work as 233.8 S/cm and in good agreement with the previous
work (218 S/cm) [5].

Some of the AH conductivities theoretically predicted in these compounds are
the same order in this work as listed in Table 3.4 The difference in its value
may come from the details of first-principles calculations such as adopting of

lattice constants from experiments or from optimization procedures. The AH
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Figure 3.9: Energy bands from the first-principles calculations (red) and from
Wannier interpolation (green) of (a) MnsNiN, (b) Mn3GeN, and (c¢) Mn3IrN along
high symmetry points in the first Brillouin zone of a simple cubic shown in Fig.[3.4]
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Table 3.4: Calculated AH conductivity, o111, for the MO magnetic configuration

in Mn3 AN compounds.

0111

(S/cm)

Mns AN This work References
-301 [42]*

Mn3NiN 375.7 -294.5 (04, =-170) [92]*

225.2 (04, = 130) [93)**
MnzCuN -287.7 -
MnsZnN 350.5 -232 [42]*
Mn3GaN 96.3 -99 [42]*

69.3 (0,,=40) [93]*

MnzGeN -624.5 -
MnzPdN 252.6 -
MnsInN 34.6 -
MnzSnN -128.0 230.4 (04, = 133) [93)**
MnsIrN -575.3 -
MnzPtN 799.9 -

*Magnetic moments assumed to calculate the AH conductivity

are opposite to those of this work.

**The sign of the AH conductivity listed in Ref. [93] is uncertain.
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conductivity was recently reported for thin films of MnsNiN as |o,,| = 15 S/cm
at 150K under no external magnetic field [92], which is one order smaller than the
theoretical prediction. The large difference with the experiment and theoretical
prediction can be addressed to the possible mixing of the MO and the MTQ
magnetic structures as discussed in Ref. [92].

The Fermi energy dependence of the AH conductivity is depicted in Fig. [3.10]
Each graph contains results of Mng AN with A elements in the same period (period
4: Cu, Zn) or the same group (group 10: Ni, Pd, Pt), (group 13: Ga, In), (group
14: Ge, Sn) in the periodic table and the result for MnzIrN is shown together with
Mn;Ir.

3.3.3 Tuning hopping integrals

In order to clarify the dependency of AH conductivity on size of Mn-spin moment,
a tight-binding model which intermediate the nonmagnetic state and the MO
magnetic state are employed. The Hamiltonian is written as Hy = Hymag +
A Hag — Homag ) (A = 0) [12], where A is an interpolating parameter that represents
development of the MO magnetic ordering. The Hamiltonian matrix elements
for magnetic state Hpae and one for nonmagnetic state Hpon.s are taken from
Wannier-basis hopping terms projected from the first-principles calculations.

As shown in Fig. the AH conductivity first increases with negative
sign with A, then shows maximum value at A = 0.5, and finally decreases and
change the sign to positive (at 0.6 < A < 1.2). Here we compare the density
of states (DOS) between MO magnetic state (A=1) and intermediate magnetic
state (A=0.5). DOS is projected not onto the spin states (i.e. up- and down-spin
states) but projected onto the time-reversal pair of Mn-spin clusters, characterized
by +Mf,y and =M, ), as shown in Fig. a).

In Fig. [3.11fc), MO magnetic state shows DOS where the majority Mn-spin-
cluster state is almost fully occupied as having the small weight at the Fermi

energy, whereas minority Mn-spin-cluster state has large weight at the Fermi
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Figure 3.11: (a) Two Mn-spin cluster moments of the MO magnetic state for
Mn3AN. (b) The dependence of AH conductivity on the interpolating parameter
(A) in tight-binding model of MnzGaN. Density of states (DOS) and the corre-
sponding AH conductivity value of MnzGaN with A = 1.0 and A = 0.5 are shown
in diagram (c) and (d), respectively. The black line upper panel indicates the
DOS of +M7}; Mn-spin cluster moment, and the one in lower panel indicates the

negative cluster moment —M7y;.
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energy as contributing to the AH conductivity. As shown in Fig. d), the
intermediate magnetic state shows rather large DOS at the Fermi energy both
in the Mn-spin-cluster states. The difference between the majority and minority

Mn-spin-clusters may explain the enhancement of the AH conductivity at A=0.5.

3.3.4 Band filling effect

The band filling effect in a group of Mnz AN with A = Cu, Zn, Ga, and Ge elements
belonging to period 4 in the periodic table is considered. Figure [3.13|shows band
projection and corresponding Berry curvature along the k point path in Mng AN
while the number of valence electrons is increased one by one from MnzCuN to
Mn3GeN.

DOS for Mn-spin clusters states for this group materials are shown in Fig.
However, the large Mn-spin cluster DOS do not guarantee large AH conductivity.
It depends on detailed band structure around the Fermi energy. As the band
structure shows large change in this group materials, the evaluation can be only
fairly judged for them. As an example of comparing with MnzCuN, the presence
of more negative Berry curvature as pointed by a dashed line in Fig. [3.13| (¢)
and (d) leading to more positive AH conductivity for MnzZnN. There is a main
contribution of Mn d-orbital band near the Fermi level in most compounds and
the contribution from other orbitals are quite small except for Mn3GeN. The Ge
p-orbital (blue) in Mn3zGeN is partly occupied, then it can hybridize with Mn d-
orbital (red-brown) and partly contribute to a larger AH conductivity in MnzGeN
than with other compounds. The presence of Ga 4p-orbital and Ge 4p-orbital
peaks are shown in Fig. [3.14]

Note that, the next section will show that the divergent Berry curvature does
not dominantly contribute to the AH conductivity. The Berry curvature can have
drastically large peaks by the mechanism explained here. Nevertheless, those

spiky Berry curvature cannot be the main factor to enhance the AH conductivity.
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Figure 3.12: Density of state (DOS) of Mn-spin clusters in (a) MnzCuN, (b)
MnsZnN, (c¢) MnsGaN, and (d) Mn3zGeN.
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Figure 3.13: Band projection in (a) MnsCuN, (b) MnsZnN, (e) MnsGaN, (f)
Mn3GeN and the corresponding Berry curvature along the k point path in (c)
MngCuN, (d) Mn3zZnN;, (g) MnzGaN, (h) MnzGeN. In the band projection panel,
the black color band structure is for all components, and the red-brown color indi-
cates Mn d-orbital projection. In the Berry curvature panel, cyan, blue, and green
are for A d-orbital, A p-orbital and A s-orbital, respectively. The grey dashed
lines indicate the position which Berry curvature is different between MnzCuN
and Mns;ZnN.



50

(2) , _ MuyCuN (b) o MngZuN

— j j | — j j |

E 2.5 | E 2.5 | |

g 2 3 g 2 3

S 15} | S 15} | 1

Q/ | @, |

2 os| i 2 os| [y
0 i 0 il

-8-6-4-20 2 4 -8-6-4-20 2 4
Energy (eV) Energy (eV)

(c) MnsGalN (d)

— 3 I I ‘ —~ 3

> 25} ; o 25

g 2| | g 2|

T 15} | z 157

L | L

2 05| i 2 0s]
0« i oY : —

-8-6-4-20 2 4 -8-6-4-20 2 4
Energy (eV) Energy (eV)
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3.4 Topology analysis

This section is intends to investigate topological features of the AH effect in non-
collinear AFM Mns;AN.

3.4.1 Berry curvature and Weyl points

In Weyl semimetal, it has been often suggested that the Berry curvature around
the Weyl points dominantly contribute to the AH effect in the local k space regions
[43,/44]. For metallic magnets, Martinez et al. suggested that the Fermi sheets
with Weyl points very nearby tend to contribute more to the AH conductivity
than other Fermi sheets farther from Weyl points by investigating ferromagnetic
bee Fe [24]. In this section, we investigate the Berry curvature, Weyl points which
characterize the topology aspects of the magnetic structures, and their roles in the
resultant AH effect for the AFM states in Mn3 AN. Weyl points are determined by
examining chirality for possible energy crossing points. The converged number of
Weyl points in BZ is obtained by increasing k-point mesh in the first BZ to search
the crossing points, and the chirality is calculated from the Berry flux coming out
of a small sphere S surrounding each Weyl point, i.e. 5= $; ST, (k) [24].

A schematic picture of Berry curvature divergence around a Weyl point in
Fig. shows the Weyl point acts as a source of Berry flux in Fig. (a) and
the divergent behavior of Berry curvature along one direction as in Fig. (b).
When consider band summation, the Berry curvature can show finite values as in
Fig. (e) and (f). Two bands in the left hand side of Fig. (d) are both
unoccupied leading to a zero Berry curvature value, only two bands in the right
hand side give the finite Berry curvature as shown in Fig. (f).

Figure shows the number of Weyl points around the Fermi level which
are presented in the BZ with the calculated AH conductivity for the series of
MnsAN. It is shown that there are several Weyl points within the energy range
-1.0 eV < E < 1.0 eV in all of the investigated compounds, but only Mn3SnN and
Mn3PdN have the Weyl points within £30 meV around the Fermi level. Some
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Figure 3.15: Schematic picture of Berry curvature at a lower band around a Weyl
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23

Table 3.5: List of Weyl points with their relative energies, chirality, and coordinate in MnzPtN

compound.

Energy (meV) Chirality | k,(27/a) | ky(27/a) | k.(27/a)

1 0.40 -0.26 -0.26

-1 -0.40 0.26 0.26

50 1 -0.26 0.40 -0.26
-1 0.26 0.26 -0.40

1 -0.26 -0.26 0.40

-1 0.26 -0.40 0.26

1 0.41 0.00 0.00

-1 -0.41 0.00 0.00

-246 1 0.00 0.41 0.00
-1 0.00 -0.41 0.00

1 0.00 0.00 0.40

-1 0.00 0.00 -0.40

1 -0.12 -0.14 -0.14

1 -0.14 -0.14 -0.12

540 1 -0.14 -0.12 -0.14
-1 0.12 0.14 0.14

-1 0.14 0.12 0.14

-1 0.14 0.14 0.12

550 -1 -0.13 -0.13 -0.13
1 0.13 0.13 0.13

1 -0.15 0.07 0.07

-1 -0.07 0.15 -0.07

560 1 0.07 -0.15 0.07
-1 0.15 -0.07 -0.07

1 0.07 0.07 -0.15

-1 -0.07 -0.07 0.15

1 0.03 0.03 -0.08

-1 -0.03 -0.03 0.08

614 1 0.03 -0.08 0.03
-1 -0.03 0.08 0.03

1 0.08 -0.03 -0.03

-1 0.08 0.03 0.03
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Figure 3.16: Number of Weyl points around the Fermi level (black boxes and blue
boxes) with the calculated AH conductivity (red dots) for the series of MngAN.

Weyl points around the Fermi level in Mn3SnN are picked up to show the band
structures around the Weyl points with its chirality and relative energy measured
from the Fermi level in Fig. (a) with the resulting Berry curvature after
taking the band summation in Fig. (b). Figure (a) shows that the Berry
curvature around Weyl points contributes to producing the sharp peaks of the
band summation of the Berry curvature when the Weyl points are located near the
Fermi level within the energy range of 1 meV as shown in Fig. (b). Meanwhile,
the Weyl points located at the energy more than 1meV below the Fermi energy
in Fig. (a) do not produce finite contribution of the Berry curvature after
taking band summation since the crossing bands are both occupied.

Figure and show the contribution of the Berry curvature, classified
according to its value of | Q1M (k) | in the first BZ, where Q! (k) = \%(Qym(k) +
Quzn(k) + Qyn(k)) is the [111] Berry curvature component of band n at each k
point, to the resultant AH conductivity o1;. Figures and show the Berry
curvature with small value dominantly contribute to the AH conductivity and the
contribution rapidly decreases as the value becomes larger. The plot clearly shows
that the contribution of the divergent Berry curvature to the AH conductivity is
quite small in these AFM states even for the compounds with several Weyl points

around the Fermi level leading to the divergent Berry curvature summation at the

AHC (S/cm)
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Figure 3.17: (a) Band structure and (b) Berry curvature along the [111] direction,

Enh having Weyl points near Fermi energy in Mn3SnN. Each panel shows an
interval 0.109 (A~') along ki1 with Weyl point at the middle of the line. The

relative energies with respect to the Weyl points are written in red, the blue

number +1 and -1 indicate the chiralities of the Weyl points. The value “—0

meV” indicates the Weyl point within the energy range of -1 meV < E < 0 meV.

The coordinates of these Weyl points in the reciprocal space from left to right are
W; = (-0.06, -0.34, -0.34), Wy = (-0.04, 0.34, 0.34), W3 = (-0.05, 0.44, -0.16), W,

= (-0.15, 0.47, 0.05), respectively.

(-0.05, -0.16, 0.44), W5 = (-0.16, -0.05, 0.44), Wg = (-0.34, -0.34, 0.03) and W-
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Figure 3.18: The bar chart showing contribution of the Berry curvature to the

resultant AH conductivity of Mng AN with the A elements having (a) small and

(b) large SOC. The horizontal axis is the absolute intensity of the Berry curvature.
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Figure 3.19: The bar chart showing percent contribution of the Berry curvature

to the resultant AH conductivity of Mng AN with the A elements having (a) small

and (b) large SOC. The horizontal axis is the absolute intensity of the Berry

curvature.
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local k-region.

The contribution of the divergent Berry curvature around the Weyl points
to the AH conductivity are further evaluated by calculating the k-integral in
Eq. within the cubes set around each Weyl point in BZ. Decreasing the size
of the cubes, the converged value of the contribution to the AH conductivity is
obtained around seven percent. The small contribution of the local divergent
Berry curvature to the resultant AH conductivity can be understood from too
small region to produce a large contribution to the AH conductivity or from
cancelling it out with the other contribution that has the opposite sign of the

Berry curvature at different k points in BZ.

3.4.2 Berry curvature and spin-orbit coupling effect

The electronic structure, Berry curvature, and AH conductivity are here investi-
gated in the Mn3AN with A = Ni, Pd, and Pt which belong to the same group
in the periodic table and are expected to have similar electronic valence states

except for the effect of SOC for the purpose to discuss the topological feature
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Figure 3.21: The Berry curvature integrated on the (111) hexagonal area as shown
in Fig. [3.4| with its center changing from I" to R for Mng AN (A= Ni, Pd, Pt).

which enhance the AH conductivity.

Figure shows the Berry curvature integrated on the hexagonal plane with
the minimum periodicity in the (111) plane, as shown in Fig. , moving the
center point of the hexagonal plane from I' to R for the three compounds. As
shown Fig. the integrated Berry curvature shows similar dependency for the
(111) plane, starting from the almost zero value for the plane including T" to the
negative finite values for the one including R, for these compounds. The Berry
curvature after taking band sum is shown for the (111) plane including the R
point in the upper panel of Fig. |3.22] exhibiting the region with sizeable Berry
curvature spread around the Fermi surfaces, which is hereinafter called active area
of the Berry curvature.

Mn3NiN and Mn3PdN show similar values of the AH conductivity through all
of the different (111) planes in Fig.|3.21] This reflects the similarity of the band
structures as shown in Fig. [3.22| (d) and (e), which results in the similar Fermi
surfaces and Berry curvature distribution shown in Fig. [3.22| (a) and (b). On
the other hand, the small difference of the electronic structure can modify the
local structure of the Berry curvature distribution as shown in Fig. [3.21] (g) and
(h). In Fig.3.22| (d) and (g), two sharp negative peaks of the Berry curvature in
Mn3NiN come from the two small gaps around the Fermi level. The SOC of Pd,
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relatively larger than that of Ni, increases those gaps and lower the top peaks for
Mn3PdN compared to those for MnzNiN through the denominator of Eq. [2.39)
making the possible contribution to the AH conductivity smaller than that for
Mn3NiN. Meanwhile, Mn3PtN exhibits larger active area of the Berry curvature
than those for MngNiN and Mn3zPdN in its absolute value as shown in Fig. |3.22
(¢). The enhancement of the Berry curvature over the BZ for Mn3PtN, which can
be seen in Fig.|3.21] is thus associated with the enlarged active area of the Berry
curvature through the large SOC of Pt in MngPtN and leads to the largest AH
conductivity in the calculations within the three compounds.

The enhancements in the cross term of the velocity matrix in Eq. through
SOC for the states around the Fermi surfaces take place in a broad region of BZ,
possibly contributing to the obtained large AH conductivity in the AFM Mn3 AN

compounds.



Chapter 4
Summary

This thesis presents a comprehensive understanding about the AH effect in anti-
perovskite manganese nitrides MnsAN. The fundamental techniques to investi-
gate phenomena based on the first-principles calculations, Wannier interpolation,
and topology analysis are shown. The stable magnetic structures, the AH effect,
and the topology related to the AH effect in anti-perovskite manganese nitrides
Mng AN are also investigated. Their magnetic octupole non-collinear AFM states,
which are the most or second most stable magnetic structures whose magnetic
symmetry allows to induce the AH effect, exhibit the AH conductivities compa-
rable to those in ferromagnetic states. The thesis shows that the Berry curvatures
spreading around the Fermi surfaces in the broad BZ region, resulting from the
band splitting due to the SOC, dominantly contribute to the AH conductivity,
while the locally divergent Berry curvatures give only a small contribution to the
AH conductivity after considering the band summation and BZ integral.

This thesis opens a new viewpoint for a relation between topology and macro-
scopic phenomena of the AH effect in non-collinear AFM materials. Since AFM
systems do not show perturbing stray field, they have many advantages and can
be useful for various spintronics applications. Our study might also motivate
further exciting researches in mechanisms of macroscopic phenomena associating

with topology and AFM spintronic applications.
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Appendix A

Symmetry of Berry curvature in

k space

This appendix is intended to remind an general point of view about the presence
of AH effect in magnetic states.

It is useful to discuss Berry curvature in k space because the Berry cur-
vature determines the presence of the AH conductivity as shown in Eq. [1.7
The vector-form notations for the AH conductivity and Berry curvature, i.e.,
o= (0" 0Y0%) = (0ys, 0z, 04y) and Q, = (8, V) = (L yzs Lz, Qy) are
used for convenience in discussion.

Note that the Berry curvature 2,(k) behaves as an axial vector in k space
and it can be explained from Eq. [2.40, First, the Berry curvature is unchanged
under any translation operations. Second, by rotation operations it transforms
in the same way as ordinary vectors. Third, it keeps its value under the space-
inversion and changes its sign by time-reversal operation. The transformation of
Berry curvature under symmetry operations of magnetic point group 3m’ is shown
in Table ?77.

In particular, systems with space-inversion symmetry hold the relation €, (k) =
Q,(—k) and systems with time-reversal symmetry have Q, (k) = —,(—k). Con-

sequently, the Berry curvature is zero in whole k space, Q,(k) = 0.
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Table A.1: The transformation of Berry curvature under symmetry operations of
magnetic point group 3m’. The notations x, y and z are the Cartesian coordinates.
Chy, and m,, indicate the n-fold rotation operator along u axis and mirror plane
corresponding with v plane, respectively. [ is the spatial inversion operator and
T is the time-reversal operator. The notation ~ indicates anticlockwise rotation

to distinguish with clockwise rotation of rotation operators without the notation.

No. | Symmetry operators Transformation of Berry curvature

1 E Q[m}(k: Ky k) = Quainy (ks ky, k)

2 Csp111] Qnuuy ks, ke, ky) = Quiy (ke by, k)

3 C;[lll] Qnuuy(ky, ke, ka) = Qi (e, ky, k2)

4 I Qi (—kz, —ky, —k.) = Quiny(ka, ky, k=)
5 IC31y Qi (—k., —kz, =ky) = Quainy(ka, ky, k2)
6 103y Q 111]( ky, —kz, —kz) = Quug (ke ky, k)
7 TCypioy Qi ke, ky, ko) = Quug (ke by, k)

8 TCyiio) Qi (ky, bz, kz) = Qpuug (ke by, k2)

9 TCy11) Qi (ke b2y ky) = Quang (ke by, k)
10 Tmion Qi (—k., —ky, —k2) = Quany(ka, ky, k2)
11 T'map1g) Qi (=ky, —kz, —k2) = Quany(ka, ky, k2)
12 Tmajor] Qi (—kz, —k2, —ky) = Quiny(ka, ky, k2)
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Table A.2: List of finite components of the AH effect and the corresponding re-
quired broken symmetry operations of cubic and hexagonal system. The notations
x,y and z are the Cartesian coordinates. C,,, and m, indicate the n-fold rotation
operator along p axis and mirror plane corresponding with v plane, respectively.

I is the spatial inversion operator and 7’ is the time-reversal operator.

System Finite Broken operators
components
Cubic Tij Chij, I1Chij (n = 2,4),
TChij, TIC,;; (n=0,2,4)
o1 Contopy Copori)s Copion]» I Copio)s 1Co011), 1Cq0001
TICun11), T1C,p1y (n=10,3)
Hexagonal Oy Co(ayy, 1022y,
TCozy), T1Coy (n=0,2,3,6)
Oys Chz, ICy, (n=2,3,6), Cyy, 10y,
TC,., TIC,, (n=0,3,6), TCs,, TICy,
foim Chzy IC,, (n=2,3,6), Coy, 1C,
TCy,, TIC,, (n=10,3,6), TCyy, TICs,

Therefore, the presence of magnetic symmetry in each magnetic configura-
tion decides if the structure has finite AH conductivity. The condition of finite

AH conductivity is the condition for non-vanishing Berry curvature as listed in
Ref. |1294195]. It is also shown in Table for references.



Appendix B

Cluster multipole theory and
multipole expansion for magnetic

structures

This appendix introduces the cluster multipole theory (CMP) along with the mul-
tipole expansion for magnetic structure or so-called symmetry-adapted multipole
magnetic structure that we have used in Chap. |3| to generate inequivalent mag-
netic structures. The theory is based on Ref. [12,30].

In this theory, each “atomic cluster” is a set of atoms related by the crystal
symmetry operators and ensured no space translation in the magnetic unit cell
[12,30]. Similar to the definition of local multipole moments for an atom [27-29],

cluster multipole moment for rank-p is summation over the clusters in the magnetic

unit cell:
Ncluste'r
Ne o1
_ atom — (w)
Moo = Ne ¥ Zﬂl M (0

For Mnjslr, the unit cell contains 3 Mn atoms (N2 . = 3), the crystal structure

atom
contains only one atom cluster with 6 Mn atoms. For MnsgSn and Mn3Ge, the
= 6), the crystal structure contains two

= 12). The

unit cell contains 6 Mn atoms (NY%, .

independent atom clusters with 6 Mn atoms in each cluster (NG,
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multipole moment in the magnetic structures so-called CMP moment in the mag-
netic is useful to characterize for AH effect not only in ferromagnetic but also in
antiferromagnetic systems [12].

It is useful to remind about the spatial distribution of magnetic vector potential
in electric charge density p.(7) and electric current density j.(r) given in form of
multipole expansion:

Atr) = 3 (vt TmYm—”) , (B.2)

Im
where Y;! () is the vector spherical harmonics [27,96,97], # = 7 /r, [ is the orbital
angular momentum (I > 1), m = =1, —(l—1),..,0,....,l =1, land I' =1 — 1,1, 1+ 1.
The expansion coefficients M, and T}, are M multipole and MT multipole,

respectively:
2L,
Mlm = zj: (l +31 + Uj) : Olm(rj)v (B?))
T, —Z (2 + 0 )| - Oml(r)) (B.4)
lm — - l—|— 1 l+ 1 J m\"j5), .
with

Oun(r) = [ 5 VIV ) (B.5)

where 1; and o; are orbital and spin angular momentum of an electron at r;.
A systematic procedure to generate a complete basis set for arbitrary magnetic
structures was proposed in following steps [30]:

Firstly, we choose an origin magnetic structure, and determine its space group
as well as Wyckoff sites of magnetic atoms. We determine a ‘virtual” atomic cluster
corresponding to the point group of the target crystal. Consider to magnetic
moments m; of atoms in an atomic cluster and the classify according to the
irreducible representations (IREPs) of the point group, the virtual atomic cluster
is set up through the symmetry adapted multipoles 7.e. M-multipole and MT-

multipole:
Natom

M, = Z u% -my, (B.6)
i=1



5

Natom

T, = Z 'U'lq;z‘ "My, (B.7)
i=1

with v runs from 1 to 2l + 1, Naion is the number of magnetic atom in the atomic
cluster, and u/; = Oy (R;), ui,; = 717 (O (R;) x R;)

Secondly, we generate magnetic configuration according to M-multipoles and
MT-multipoles in the virtual atomic cluster and orthonormalize the bases of multi-
pole magnetic structures by Gram-Schmidt process. Finally, the 3 N4on, orthonor-
malized basis set is obtained, we then can construct any magnetic configuration

from this basis set.
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