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Abstract

Let M be an even-dimensional closed oriented manifold and g a periodic automorphism of
M of order p. In this paper, under the assumption that the fixed points of g* (1 < k < p—1)
are isolated, a calculation formula is provided for the homomorphism I : Z, — R/Z defined
in [6] for equivariant twisted signature operators D over M. The formula gives a new method
to study the periodic automorphisms of oriented manifolds. As examples of the application of
the formula, results about the existence of the cyclic group action for 2,4,6-dimensional closed
oriented manifolds are obtained.

1. Introduction

Let M be a 2m-dimensional closed oriented manifold and G a finite group acting on M.
We assume that the action of G is effective and orientation-preserving. Let g be an element
of G of order p > 2 and Z, = (g) the cyclic group generated by g. In this paper, we set the
following assumption.

Assumption 1.1. Some ¢* (1 < k < p — 1) has a fixed point, and any fixed point of g* is
isolated for 1 <k < p — 1 if g* has a fixed point.

In [6] we introduce a group homomorphism /p by using an elliptic operator D adapted to
a geometric structure of a manifold, and in [7] we apply this homomorphism to the existence
problem of finite group actions on almost complex manifolds under the assumption above.

Let D be a G-equivariant elliptic operator. Then a homomorphism /p from G to R/Z is
defined by

Ip(g) = 5 : logdet(D,g) e R/Z

7T —
for g € G, where det(D, g) is defined by

det(D, g) = det(g| ker D)/ det(g|coker D) € ' c C*

(see [6] Definition 2.1). Then as we see in [6] (3) the next equality holds

,_.

p—

"k
= 1= f

Ind(D,4") (mod Z)

€] Ip(g) = Ind(D)

"BI>—
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where Ind is the Atiyah-Singer index (see [3]) and &, is the primitive p-th root of unity
defined by &, = e2™V-1/r,

We can express the value Ip(g) by the fixed point data of the gt-action (1 <k < p-1)
by using the equality (1) and the fixed point formula of Atiyah-Segal-Singer [2], [3]. Since
Ip is a homomorphism, the equalities Ip(g°) = zIp(g), Ip(gh) = Ip(g) + Ip(h) hold for any
g, h € G and any integer z because R/Z is an abelian group. These properties of I, impose
conditions on the fixed point data and a calculation formula to obtain the precise value of I
can be used to examine the existence of a finite group action on M.

When M is a 2m-dimensional closed almost complex manifold and the g-action preserves
the almost complex structure of M, we give a formula to calculate Ip(g) precisely for the
®’;’:1 (®[f (/\éTM ))—Valued Dolbeault operator D over M in [7] Theorem 2.2. Though the
formula is useful for closed almost complex manifolds, we need a formula to calculate
the precise value of Ip(g) for equivariant elliptic operators D which is adapted for closed
oriented manifolds, which do not necessarily have almost complex structure.

In [9] Zagier gives a formula which enables us to calculate the precise value of Ip(g) for
the equivariant non-twisted signature operator D under Assumption 1.1.

DeriniTion 1.2. For a real number x, a real number ((x)) is defined by

x—[x] - % if x is not an integer

0 if x is an integer

(%) := {

where [x] is the Gauss’ symbol. Note that ((x + a)) = ((x)) for an integer a and that ((—x)) =
—((x)) because [-x] = —[x] — 1 if x is not an integer.

Theorem 1.3 ([9] p.103). Let p be a natural number which is greater than 1 and a, - - -,
a, natural numbers which are prime to p. Then the following equality holds:

p-1

TStttz 3 (8] {5)

k=1 1<k, kn<p
pllarky+-+ayky)

As we see later (see (4)) the left hand side of the equality above is equal to the sum of
indices for the equivariant non-twisted signature operator, and the equality implies that the
sum is a rational number.

In this paper, generalizing the Zagier’s formula, we give a formula to calculate the precise
value of Ip(g) for equivariant twisted signature operators D over 2m-dimensional closed
oriented manifolds to examine the existence of a finite group action on the manifolds.

2. Rotation angles of periodic automorphisms

Let M be a 2m-dimensional closed oriented manifold and p a natural number which is
greater than 1. Assume that the cyclic group Z, = (g) acts on M. Under Assumption 1.1, let
Q be the union of the fixed points of g* for 1 < k < p — 1 and suppose that the image 7()
consists of b points yy, --- , y, € M/Z, where 7 : M — M/Z, is the projection. In this
paper, the Z,-action is called the Z,-action of isotropy orders (pi,--- , pp) if the isotropy
group at a point ¢; € 7~'(y;) (1 < i < b) is the cyclic group of order p;. Then for 1 <i < b
the isotropy group at any points in 77 !(y;) is the cyclic group of order p; generated by g"
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where r; = p/p; and n~!(y;) consists of r; points ¢;, g - g, -+, """ - qi.

RemARk 2.1. Let e(M) be the Euler number of M. Then since Z, acts freely on the
punctured manifold My = M \ {Ub: l7r‘l(y,»)}, the next equality holds:

i

b

) e(M)= )1 (mod p).

i=1
Let&,7, §;,.T""' (1 < j < m) be the eigenvalues of ¢"|T,, M, and
TN, )+ VTR (@ 7 < T, M = )
the corresponding eigenvectors such that
wqi(ﬁAﬁ/\---Am/\m)

is positive with respect to a positive 2m-form w where 7;; (1 < j < m) are natural numbers
suchthat I < 7;; < p;—1 (see ([1] p.473). Since the eigenvalues of g"“|T, M for 1 <k < p;—1
are &,7, &, (1 < j < m), it follows from Assumption 1.1 that 7;; is prime to p; for
1 <i<b, 1< j< m. Inthis paper the set {r;;} (1 < j < m) is called the rotation angle of
g’ around the points in 77!(y;) and the set {r; i} (1 £i<b, 1< j<m)is called the rotation

angle of g. The rotation angle of g is also expressed as

(Tt 5 Tim)s s (Tp1s = 5 Tom)) -

Note that the equality
g (3 - VT = &5 - VT)

implies the equality

27TT,'j 27{‘(','/'
(¢ @ o -m) =@ %) <
“Uij, g Vi) = \Uij, Vij . onty; 21y
Pi Di
and that {7;1, -+, pi = Tij,**+ , Pi — Tit,**+ > Tim} (J # k) is also the rotation angle of g" when

m > 2 because
— - -  — — —  —
wg, (i1 AR A+ A NG A N ATl A+ A gy A Di)

is also positive. Hence if p; is even and some 7;; equals p;/2, {71, , pi — Tik,*** » Tim} 18
also the rotation angle of ¢g" for k # j and therefore we can assume that 1 < 7;; < p;/2.

Corresponding to the irreducible representations of the rotation group, complex Z,-vector
bundles E-n are defined for non-negative integers ¢y, - - - , {,, as follows:

El’l,-n,t’m — ®7z:1 (®£’j (/\E (TM ® C))) P

and the E“{-valued signature operator Dy, ..., is defined. Note that E% is a trivial
line bundle and Dy ... ¢ is the equivariant non-twisted signature operator. Suppose that the
rotation angle of g’ around the points g; in 77! (y;) (1 < i < b) is {1; i} Then the fixed point
set of g* (1 < k < p— 1) exists if and only if k equals rik for 1 <i < b, 1 <k < p; — 1 and it
follows from the signature theorem and the G-signature theorem that
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— — m xi/2
3 Ind(Dy, .. ¢,) = 2"Ch(E"" ' L(M)[M] |L —
(3) nd(Dy ., (E" LM [ (M 1_[ D |
b E KT}
&) nd(Dy,... 1, g") = " rCh(EL ", g™ | ] (—V—l cot ”)
i=1 =1 pi
where o J(xl, -++,x2) for the j-th elementary symmetric function o; is the j-th Pontrjagin

class of M (see [3] (6.5), (6.6), [S] Theorem 13.9), Egl ‘n is the fiber of E++n at q; and
Ch(Ef;‘. ", g'*) is the trace of the linear transformation ¢g' of the fiber Eqi bn (see [3] (6.12),
(6.19), [4] Theorem 2.5), and hence we have

) In, (@)
_ 2= Lymien gt LMy

p
1 b pi—1
S hie

i= =1

Ch(E"' "’,gr’K)l—[( V=T cot = 'f) (mod Z).
pi

Remark 2.2. Since the Chern classes of TM ® C is expressed by the Pontrjagin classes
of TM, the Chern character Ch(E‘+/») is expressed by the Pontrjagin classes of TM (see
Proposition 2.6). Hence the equality (3) above implies that Ind(Dy, ... ) = 0 if m is odd.

ReEmARK 2.3. Assume that p; = 2 for some i. Then since « = 7;; = 1, we have

(- Ten ™) [ (vTeZ) -0

J=1 J=1

in the equalities (4), (5).

DeriniTioN 2.4. Let p be a natural number which is greater than 1 and a, b integers where
b is prime to p. Then using the Euler’s function ¢, we define integers ( a ), b as follows:

<a>:a—p[%} — 0<(a)y<p-1,<ay=a mod p,

b=(b*P'y — bb=1 modp, 1<b<p-1.

In this paper, we call b the mod. p-inverse of b. Note that(a+ p)=<(a), b+ p = b, b=b
mod pbecause (b b)b 0 (mod p)andthat{a;)-{(ax) ={aia ), bi-by = b1by (mod p)
because (b1 b2 —b1by ) biby =0 (mod p) where by, b, are prime to p. Note moreover that

the equality (a; ) + (ax) = (a; + a ) (mod p) holds but the equality b1 + b2 = b +b
(mod p) does not hold.

REMARK 2.5. Assume that a natural number z is prime to p. Then we have (g"%)7 = ¢* for
1 <k < p—1, and hence the fixed point set of g** coincides with that of ¢* and the rotation
angle of g"* is equivalent to {z7;;} mod.p; if the rotation angle of g"* is {7;;}.

Proposition 2.6. Suppose that the total Chern class of TM ® C equals H L1 = xz)
and hence the j-th Pontrjagin class p (TM) of M equals a'](x1,~ - x2) where o ; j is the j- th



EQUIVARIANT DETERMINANT OF ELLIPTIC OOPERATORS 11T 763

elementary symmetric function (see [5] p.228). Then we have
m

(6) Ch(Egl""’g’") — 1—[ O.j(e)m , e R ex,,,, e—xm)lj ]
j=1

Proof.  Since the total Chern class of TM ® C equals H’};l(l + x;)(1 = x;), we have
Ch(/\é (TM®C)) =cje", e ™, - e e ™).

Hence it follows that

Ch(E"tmy = l_[ oie, e, e, e, O
j=1
ExampLE 2.7. Assume that m = 2 and let p; be the first Pontrjagin number of M. Then
we have
2 )Cj/2

27 —n2
ZLih =2 l;[ tanh(x;/2)

1
=4+ 3p(TM),
‘ 4+pi(IM)  (j=1,3),
Ch(E) = oj(e", e, e?,e™) =3 6+2p1(TM) (j=2)

1 (j=0,4)
where E/ = /\{: (TM ® C), and hence it follows from Proposition2.6 that

44 4+ 0,457 py(TM) - (= 1,3),
6% + 20,607 p (TM)  (j =2)

1 (j=0,4)
%)

— Ch(E(©) = (Ch(El))fl (Ch(e?))
— 451 652 +2. 4.51_1652_1 (351 + 452)P1(M)
— IndDy, ¢, = 2°Ch(E")L(M)[M]
= 24967136, + 46, + Dpy = 22070357134 + 46, + D,

DeriniTion 2.8. Let p be a natural number which is greater than 1. Then for any integer
A, areal number p, (1) is defined by

pp() = &, + &,
Clearly p, has the following properties:
Pp(=0) = pp(D), pp(0) =2, pp(Dpp() = pp(d+p) + pp(d — ),
which implies that
(7) Pp(ADPp(A2) ++ pp(d)) = ppldy £ Ay £+ £ 1))
for integers u, Ay, Ay, -+, A; where

ppixdpx---£1)) = Z pp(i + &0 + -+ -+ £;4)).

&=+ 1(2<i<))
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We set that the binomial coefficient (g) and 0° are equal to 1 hereafter.
Proposition 2.9. For 1 <i<b, 1 <j<m, 1 <k < p;—1 set

=,
_j+2
Clkj _ Z (m ‘i+ r)o'jzr(ppi(kTil)7 e ’ppl(lem)) + 8](’11)
2

r=0
where o j_y is the j — 2s-th elementary symmetric function and
o = 1+ (- 1)1 1 (j:even)
I 2 0 (j:odd)
Then we have

Ch(E. ", ™) =
=1

plams
=

kT,' j

Proof.  Since the eigenvalues of g (Tq,.M ® C) are Ay, -+, Aoy Where pjy = &7,

Lj= fl;_kﬂ"" (1 < j < m), we have

Ch(/\é (Tq,M ® C) g™ = Tr (g“k

/\é: (TqiM ® C))
= Z /lil . l/ — O-/(gk‘rll9 é:pk‘m’ . k‘r,m fpk‘rlm)

1<ij<<i;<2m

= ilm(d) (14 a1+ 16,8 - (14 €71+ 1,Km)

:ilm( ) ]—[(z + pp kTt + 1)

ny++n,=j k=1
) = > l_l)((nk)
np+tn,=j k=1
where ny, - - -, n, are integers such that 0 < ny,--- ,n, <2 and

| pplkTy) it =1
X(”")‘{ I ifm=02

Let r, j—2r be the numbers of 2’s and 1’sin ny, -+ ,n,. If 2r < jandng, = -+ = ng,, =1,
we have
H m—j+2r
(8) = > ( ; )pp,.(kr,»so o pp KT )
r=0 1<s;<<sj2,<m
because the number of (#1,--- ,#)suchthat1 <7, <--- <, <mandthatn, =---=n, =2

is (m_]r+2r ) Hence we have
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& m-— j+2r m X
(8) = , O_j—2r(ppi(kTi1)’ s Pp; (lem)) +&; J Cij s
r=0 2
because [Ty, x(m) = 1if 2r = j, [5}] = [4] - 1if jis even and [ 5] = [4] if jis odd.
Therefore we have

O[T

m

chES g™ =[](ch)" . o

j=1
ExampiE 2.10. When m = 1, it follows from Proposition 2.9 that

- ¢ ¢

Ch(E},g") = (C})" = (o1(op @) " = (op(Ta))

Next assume that m = 2 and that (¢;,£,) # (0,0). Let oy the k-th elementary symmetric
polynomial in p,,(71), pp,(Ti2). Then it follows from Proposition 2.9 that

4

%)
¢
o) = (01 (et) == 3 (o

K2=0

= Z( )252 K2 05 (Ti1) +pp,(T12)) (Pp,-(Til)pp,-(Tiz))K2

K= =0
a O \(¢
= Z Z (}Jl)( 2)2[2_’(2/717,-(Til)yl+K2ppi(Ti2)[1_# e
20 x,m0 W1/ VK2
and using the property (7) we can express the value above as a summation of p,,’s. When
(¢1,62) = (0,0), we have
Ch(E)’,g") = o) (02 +2)° =1 = 2Ch(E), g") = p(0).

Remark 2.11. Let A({y,--- ,{,) be a non-negative integer and 6({y,--- ,{,) a natural
number defined by

m ; .
a (m J 2 (W, Ey) is odd)
he, ,fm>—];[(s,(%)) SIS ,fm>-{1 ilen - £} is evem)

It follows from Proposition 2.9 that Ch(Eé:."" e gy is expressed as a summation of products
of p,,(u;)’s with integer coefficients and i(¢y, - - -, {,,) where y;’s are non-negative integers.
Hence 6(¢y, - - - ,fm)Ch(Eg;"“’f’",g"') is expressed as a summation of p, (u)’s with integer
coeflicients because 2 = p(0).

If 0Ch(Eg ™", g™) = ¥, nypp,(uis) and hence OCh(Eg ™", (g™)%) = 3, nypp, (kzpis) where
6 = 1 or 2, ny’s are natural numbers, z is a natural number which is prime to p and y;,’s are
non-negative integers, it follows from (3), (4) and (5) that

© I, G)=" > 2= Lol gCh g0 i TMIM]

b pi—1 m
1 Z Z Z Pp;(Kzplis) l_[ —  TKZTj
— ; L ri ng 1_—5’71( —-V-1 cot i (mod Z)
i= s i

k=1
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So we can calculate 6p, _, (g°) precisely if we can express the value

p’Z' Ppkaptis) 1 1—[ (_ VT cot ﬂ'kZTij)
=1 1 - éjpl _ pi

as a rational number (see Theorem 3.6).

Proposition 2.12. Let p be a natural number which is greater than 1 and R(x) a rational
Jfunction with real coefficients. Then Zf;ll R(f;) is a real number.

Proof. Since R is a rational function with real coefficients, we have

—_

p—

-1
ZR@) = ZR(fp) = ZR( 7= ) RE = pZR(ff,)- o
k=1

p—k=1

Proposition 2.13. Let p be a natural number which is greater than 1, a an integer and
b; (1 £ j < 2vy) natural numbers which are prime to p. Then we have

+1 & 2nak ok bk
(- 1)7“2:51171“1f l—lgp Zsm o o tﬂ—l—[cotﬂ—pj ,
P k=

=1 ,1§p 1 j=1

2y b b2k p-1 2y-1 —

27rak 7rk b by k

y —ka vy
(-1) kE]f,, | | bbzy cos p | |cot—p )

j= k=1 j=1

Proof. It follows from Proposition 2.12 that the left-hand sides of the equalities above
are real numbers. Hence it follows from the equalities below

. 1 prikt/p . ,~mikt/
é‘-‘k'f +1  p2nikt/p 4 1 il % kT
(10) kT _ 1 eka‘r/p _ 1 enikt|p _ g—nikt/p = —V-lcot p
p 2i
k k 4
2 28, &+

= = = =1+ _1—\/ cot—
l_é:p é:p_l é:p p

that

. _agk 127 fbjk+1
(- 1)7125/‘ el G

k=1 L 1é
p—-1 2y
= (-1 Z (cos 27:]{ — V=1 sin 27;1]{)( \/_cot—) 1—[( V=1 cot M)
k=1 j=1

p-1 2y
2 k ﬂbk
sin T ﬂ—ll

p

k=1

ok
é:k 1 2y-1 b Jbe +1

(- 1>7;fp"“§p l_[ =

g
p-1 2y-1 7
b by k
= (—1)72(605 2rak —1 sin 2ﬂak) (—\/—1 cotﬂ—k) (—V—l cotﬂ/—zy]
p

k=1




EQUIVARIANT DETERMINANT OF ELLIPTIC OOPERATORS 11T 767

p-l 2y-1 —
2rak k b by k
=Zcos a cotﬂ—l_[cotj—zy, m]
k=1 p p j=1 P
DeriniTioN 2.14. Let p be a natural number which is greater than 1 and by, -- -, by, nat-
ural numbers which are prime to p. Then a rational number {;(p; by, -+ ,b2;) (0 < j < n)is
defined by
. k kyi
Li(pibiy- e baj) = (=1)72%p Z ((_))((_J))
I<ky, - kpj<p p p

plbiky+-+byjks )
(-1)/

= T Z (ki = p)--- 2koj — p)

]£k1.~-,k2j<p
pl(biky+-+byjkaj)

forl < j<mand{y=-1. Set
e ={buby) (1 <k<n),  di={bybys)(1<k<n-1)

and let a be a non-negative integer. Then an integer 1;(p; a, ban—2j+1, - ,b2y) (0 < j < n)is
defined by no = 1, 1;(p;0,b242j11, -+ ,b2,) =0 (1 < j<n)andifa >0

ni(p;a,bap—sji1, -+ s bay)

acy Cpe1n-1tn-1
= Z l/’(a’ Cns tnfl) Z Ql’(dnfltnfla Cn-15 tn72)
t,-1=0 t—2=0
Cpjr1dn—js1tajs1
w(dn—j+ltn—j+l’ Cn—j+15 tn—j)
l”_‘,':O
for2 < j < nand
acy,
m(p; a,byy-1,b2,) = Z w(a, cus ty-1)
1p-1=0
where i is an integer defined by
-1 (t =ac)
4(L- a) (0 <t < ac and ¢ is a multiple of ¢)

Yla,c; 1) = 4([t

: —a)+2 (0 <t < ac and t is not a multiple of ¢)
—2a+1 (t=0)

Remark 2.15. For j > 0 it follows from Theorem 1.3 that

p-1
bk b, ik
Li(piby, - J?21)=Z]C0t7r—l---cot7r iy
=1 p p

DeriniTioN 2.16. For a non-negative integer n and narural numbers a, ¢, p, ¢, integers
¢u(a,c) and B(n, p, q) are defined by
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ac q
¢l’l(a, C) = Z ',b(a, C;t)tn y B(I’L,p, q) = Z k" .

=0 k=p+1

Proposition 2.17. For narural numbers a, c, we have

(11) dola, ¢) = —2d°c,
a—1
(12) Pn(a,c) =4 Z B, je—1,(j+ De—1)—2Qa—-1)B(n,0,ac — 1)

=1
—"2B(n,0,a- 1) +d"} (n>1).

Proof.  Since there are a — 1 t’s {c, 2c, - - -, (a — 1)c} which satisfy the conditions that
0 <t < ac and that ¢ is a multiple of ¢, we have

do(a,c) = ggb(a,c;t) =-2a+1-1 +2{4([£] —a)+ 2} —-2(a-1)
ac—1 a—1 (j+1)c—1
= 2ac(1 —2a)+4z [2] = 2ac(1 —2a)+4( j)
=1 =1 1=jc
= 2ac(1 - 2a) + 4(§ cj] = 2ac(1 = 2a) + 424D o2,
=1
For n > 1 we have
$nla,c) = i W(a,c; "
t=0
ac—1 a—1
= (=2a+1)-0" + (=1)(ac)" + ; {4 ([é] - a) + 2} ) ;(jc)"

ac—1

=-d'c"+4 Z " [é] + (2 -4a)B(n,0,ac — 1) = 2c"B(n,0,a — 1)
=1

1 t=jc

a-1 (j+De—1
= 4[2 Z jt"] —2Qa - 1)B(n,0,ac — 1) - " {2B(n,0,a — 1) + a"}
j=
a-1
=4 jBn, je=1,(j+ De = 1) =2(2a = DB@,0,ac ~ 1)
j=1
-"{2(n,0,a-1)+d"}. O

ExampLE 2.18. Using the proposition above, we have

771(1?; a, b2n—1a b2n) = ¢0(a, Cn) = _2a2cn 5
$a(a, c)

a-1

= 4Zjﬁ(2,jc —1L(j+ De=1)=2Q2a-1)B2,0,ac— 1) - ? {28(2,0,a - 1) + @’}
j=1
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a-1 (j+1)c-1 ac—1 a-1
=4y j kz—zaa—l)EZk?—ﬁ{z k2+d1
=1 k=jc k=1 k=1

ac

2)_% 43,

and hence it follows that

'72 = '72(p;a9b2n73"” 7b2n)
acy, Cn-1n-1tn-1
= Z 'ﬁ(a, Cns tn—l) Z l;[’(dn—ll‘n—l > Cn—15 tn—2)
tn—l=0 [71—2=0

acy

Z W(a, cp; ty-1)po(dp-16n-1, Cp1)
t,-1=0

acy

> wta e tu) (“2e01d? 2 )) = (<2e01d2 ) dala. c)

1p-1=0

1 1 2
(—2c,,_1d5_1) (—gazcn (1 + ci) - §a4c,3,) = §azcn_1ds_lcn(azc,2, + ci +1).
3. Main results

Theorem 3.1. Let p be a natural number which is greater than 1, n a natural number, u
a non-negative integer and by, - - - , b, natural numbers which are prime to p. Then we have

p-l n
2nmuk nb ik
cos - ﬂ cot—= = 3" Gupibr. - bak(pid.bater. - . by)  (mod p)
=1 j=1 k=0

where a = b,

Proof. When u = 0, as we see in Remark 2.15, the equality above holds. So we assume
that u > O hereafter. Set

0 (k=0)
ar = ap(ty) =3 diti(= (Db M) (1<k<n—1)
a (k=n)

Fory > 0, set

(-1yr*! Zf’“" ]_[ 5+ (=1
8- 1o fp -
&+ 1

_ ak?P —
;f,, oy (y=0)

F,(a,by, -+ ,by) =

k 12}/ 1 beyk

£+ |
(WZ@“ ﬂbw+ y=1)

G’)’(a’bla"' ,be) = - 1 : g

> e (y=0)
k=1
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-l 2y
2rak k
sin na COtﬂ—l—[C t—— (y>1)
- p P
fla,by, -+ by) =4 =) = ,
p-1
. 2mak nk
sin cot — (y=0)
k=1 P p
p-l 2y-
2 k
Zcos na ﬂ— l_l (y=1
- P
gy(a,br,--- b)) =4 7] =
2rak
cos (y=0)
k=1 p

Note that the values F,, G,, f,, g, are invariant under the substitutiona — a+p,b; — b;+p,
and that for any integer a we have

—1 (if a is a multiple of
Go(a) = go(a) = { pl (fa ple of p) =-1 (mod p).

(if a is not a multiple of p)

Note moreover that for a natural number A which is prime to p, we have
(13) g)’(avﬁbla"' 7/lb27) = g)’(aabls"' 7b2)/)

because Abjdby, = /ﬁbjb_zy = bjb_zy (mod p). As we see in Proposition 2.13, F,, G, are
real numbers and the following equalities hold fory > 1:

F}’(aabla e ’b27) = f’y(a’bl,' o 7b27)a
G’y(a’bl,.“ 7b2‘)/) = gy(a,bl,"' 7b2’)/)'
Moreover it follows from Proposition 2.12 and (10) that

4 2rak 2rak k
Fo(a) = Zﬁ,akf Z( MO _ VT sin 7: )(—\/:cot %)
k=1 p k=1

2rak k
—Zsm i cotﬂ— = fola),
p

and similarly that Go(a) = go(a@).

Lemma 3.2. For 0 < k < n the following equality holds:

gi(0,b1,- -+ ,boy) = G(piby,- -+ ,by) (mod p).
Proof. When k& = 0, we have
-1

go(0) = cosO=p-1=¢ (mod p).
1

=

bl
I

For 1 < k < n since the map byk — k gives a bijection of Z,, we have

p-1 T 2k-1 T p—1 2k
borbork b bk b ik
gk(O,bl,,bZk):ZCOtMI—[COtﬂj—Zk:Z Cotﬂ_‘,’

k=1 p j=1

which is equal to {(p; by, - - , byi) as we see in Remark 2.15. m]
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Lemma 3.3. We have

&S onak rk

Jo(a) sin cot— =-2a (mod p).
) p
Proof. It follows from the Eisenstein’s formula
p-1
2rak k
(14) sin 22K oo ™K = _zp((ﬁ)).
= p p p

(see [9] p.103 (22)) that

fol@) = —2p ((3)) - —zp(z - H - 1) = 2a (mod p). o
P p |pl 2

The next Lemma is the key lemma to prove the theorem.

Lemma 3.4. Fory > 1 we have

acy

g’}/(a’ b]7 e 9b2‘}/) = Z l/’(a’ C‘)/; ty—l)gy—l(ay—l(ty—l),bla et 7b2’)/—2) + g‘}/(o’ bl’ et

ty-1 =0
Proof.  Since the map b,k — k gives a bijection of Z,, for y > 1 we have

F)/(a+1 b],“‘ bz’)/)_ 'y(a9bl9'."b2’}/)

k41 2r ik
= (- 1)7“26‘“““)6 ]_[fﬁ,’_k”(l—gf,)
k=1

'f[’ Jj=1 fpj -
p-1 2y
=(-1) kz_;( k(a+1) l_[

pz—l: kabs, —k(a+1)b |7 |1 §bl Zyk 1
a a+ p

- (_1))’ (ép 27 ép 27) Zyk

k:1 1 6:;!

= G,(abay, by, -+ ,b2y) + Gy ((a+ Dbay, by, ,b27>,

and
p-1

771

9b2’}/) .

Fola+1) = Fo(@) = (=1)° > (5;"“"—” + ;"(‘”1%) = Go(aba, ) + Go((a + Dby ),

k=1
F)/(Osbl,"' ,be) :f)’(oabl"" 9b27) = 0

Hence it follows that

Fy(a’bl"" abe) = F’y(a,bl,"' ’be)_Fy(Oabla"' ,bZ'y)
a—1

= {F’y(t+1’b]7...,bZ‘)/)_F‘y(tvb],...,bZ‘)/)}

=0
1

~

N}

{Gy(thay. by, bay) + Gy((t + Dby, b1, , b))
t=0
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(1) =23 Gylthay, b1+ bay) = Gyl@bay, b, -+ bay) = Gy(0, by, ,bay).
=0

Moreover since the map bzy_lak — k gives a bijection of Z,,, for y > 1 we have

Gy(a+1,by,-- bzy)— Aa by, byy)
2’)’1 be

= (- 1)725—“““) ﬂ = (1—5,’;)
= j=1 §b kL

p-1 szy 1Bk 41 2y-2 bjak 41

:(_1)y+1;(§ ka+§—k(a+1)) fh” bk 1‘:' é,bhzy B

p—1 - é:k 1 2y-2 fﬁjbzy,lk +1

_ 7+1 —kabz _1b2 k(a+l)b2 1b2
=(=D Z(fp T fp . f _1]_[ bbyy-1k
I Jj -

k=1 =1 fp’

-1
= _{Fy—l(ab2y—lb2ya bibay_1,++ ,byy2b2y_1)
+F,_1((a + 1)bay_1b2y, b1b2y 1, - - b27—2b2y—1)}
= _{Fy—l(abe—ley’b}I/a"' 2by, o)+ Fyi((a+ Dbay_1bay, b), -+ 27 2)}

where b; =bjbyy_1 (1 < j <2y —2)and hence it follows that
Gy(a’ b17 Y b2)’) - G7(09 bl’ e 9b2)/)

_ Z{Gy(s+ L by, .byy) = Gy(s. b1+ . b))
s=0

a

—_

M [

{Fy—l(Sbe—ley,bT’ e ,bgy_z) + Fy_1((s + Dbay_1b2y, b], - - ,bgy_z)}

s

Il
o ©

=-2 Z Fy_1(sbyy_1b2y, by, - - ,bgy_z) + Fy_1(abyy_1b2y, by, - -- ,bgy_Q)
s=0

because F,_(0,b,- - ,bgyfz) = 0. Therefore for y > 1 it follows from (15) that

G}/(a’bly”' 7b27)

=-2 Z Fy—l(Smbzy, b’ll, oo b;’y_z)
s=0

+ Fyr(abyy b2y, b b)) +Gy(0. by, . bay)

(16) =-2 Z Fyi(Sy-109, 0], -+ bY ) + Fyoi(acy, by, b))

Sy-1 =0

+ G)/(Oa bl’ e ’be)

(Smce ty- lb yo2 = Gy- 1(t=1) 5 Sy- lcyb 5 = ay-1(sy-1¢y) (mod p).)

2y-
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Sy-1Cy

Y ] 2D Gri@ e B B )
- Z ty,I:O
Sy—I:O _Gy—l(ay—l(sy—lcy)’ by’ S b;,y_z) - Gy—l(O, bTa T b‘;},_z
acy
+ 2 Z G)/—l(a}’—l(t’y—l)’ b)]: Y b)zl)/_z)
17_120

- G‘}/—](a’y—](ac‘}/), b’{, ) bg},_z) - G’y—](o’ b’{’ T bgy_z)
+ G)/(O, bla e ,be)

a Sy-1Cy
(17) = _4 Z Z G’yfl(a)/*l(t’}/*I)a b‘{9 ) bg},_z)
Sy-1 =0 by =0

+2 Z Gy-1(ay-1(5y-1¢)), b}, -+, b)) +2 Z Gy-1(0,b7,-- . )

Sy,]:() 577120
+2 3 Gyaayi(ty1), b, By ) = Gyoi(ayi(acy), bl -+ b} )
177120

- G)/—l(o’ by9 RS b;’,),_z) + G}’(O’ bl’ ) be)

-4 + Zé(ly_l, sy_lcy)
a Sy-1Cy
+268(ty-1,0) + 26(sy1, a) L
= - —1(ty-1), b [ ,b
vZ;OtZI—ZO —0(8y-1,@)0(ty-1, $y-1Cy) Gy-1(@y1(ty-). by 27_2)
py- 1=y
_6(s7—19 a)d(ty—l’ 0)
+ g)’(O’bla e ’b27)

acy

= >0 AUy )Gy1(@yr(ty), b7, by ) +gy(0, b1+ bay)
l‘y_1=0

where
=4+ 26(t, 5y-1Cy) t .
AQ) = Z +26(1,0) + 26(sy-1, a) N = c (if c,lt)
B $y-1=N(0) —0(sy-1, (L, $y-165) |7 ) — |+ 1 (otherwise)
! ~6(s,-1,a)d(t, 0) ¢,

Here we have
A(acy) =-4+2+0+2-1-0=-1,

t
A(r):—4(a—i+1)+2+0+2—0—0:4(——a)
Cy Cy

if 0 <t < ac, and ¢ is a multiple of ¢,,

t
—]—a)+2
Cy

if 0 <t < ac, and ¢ is not a multiple of ¢,,
AO)=-4@+1D+2+2a+1)+2-0-1=-2a+1,

t
A(t) = -4 (a - [—

Cy

)+O+O+2—O—0:4(

which implies that A(z,_) is equal to ¥(a, c¢y; t,—1). Therefore it follows from (13) that
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g)’(a’bla"' ab2’y) = Gy(a’ble'” ’b2y)

acy

= Z A(ty-1)Gy-1(@y-1(ty-1), b7, - - ,bg_z) +9y(0,b1,- -+ ,by)

ty_1:0

ya
= Z Y(a, cys ty-1)gy-1(ay-1(ty=1), b1, -+ ,bay2) + g,(0,by,- - ,b2y).
ly_1=0
For2 <v <n-—1sety,(t,-1) = Y(a,(t)), cy; ty-1).
It follows from the result of Lemma 3.4 that

acy,

gna,by, -+ ,byy) = Z Un(tn-1)Gn-1(an-1(tn=1), b1, -+ , b2y—2) + gn(0, by,

t,—1=0
Ap—1Cp-1
- lﬁn—l([n—Z)gn—Z(an—Z(tn—2)a bl PR b2n—4)
= Z ¢n(tn—l) 1’122::0
fut =0 +gn-1(0,b1, -+ ,b2y2)
+gn(0,b1,“‘ ,bZn)
acy Ap—1Cp-1
= Z wn(tn—l) Z lﬁn—l(tn—Z)gn—2(an—2(tn—2)7 bls T, b2n—4)
tp—1=0 t,2=0

acy

+gu1(0,D1, bon2) D Wnltat) + a0 b, -+ ,b2y)

t,-1=0
(18) = > Waltar) -+ D 0(02) )" at)gi(ar(t), b, bo)
t,-1=0 =0 t1=0
n—1 acy Ak+1Ck+1
£ g0, b1 b)) D ) D W (1)
k=2 t,-1=0 #%=0

+gn(0’b]7... ,bZn)-

Here it follows from (16), Example 2.18 and Lemma 3.3 that

ai
gilar,bi,ba) = =2 3" fo(sc) + folarer) + g1(0, b1, bo)
s=0

=-2 Z(—Zscl) —2ajcy +¢1(0,by,by)

s=0
= 2ajcy + 91(0, b1, by) = —go(ar,c1) + g1(0, by, b)
apcy
= 90(0) )" wlar, 13 19) + g1(0,b1,b2)  (mod p),
1o=0
and hence we have
a,Cp acy
Z l//(an,cn;tn—l)"'Zl//(abcz;tl)gl(al,bbbz)
t,—1=0 t1=0
a,cp arco acy

= go(0) Z ll’(an,cn;fn—l)"'Zd/(az,cz;h)zW(al,cl;to)
=0

t,-1=0 1o=0

’bZn)
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anCn axcr

+910,b1,02) ) W@, Cuity1) -+ Y Y@z, cair)

t,-1=0 =0
= gO(O)nn(p’ a7 b17 T, b2n) + gl(()’ b19b2)nl’l—1(p; a’ b3’ e stn) (mOd p) .

Moreover we have

n—1 Cpd Chk+1k+1
gi(0,b1, -+ bo) D alta) -+ Y Yt
k=2 1h-1=0 17=0
n—1
= 910, b1, -+, boy)Nn-i(p; a, bags1, - -+ bon),
k=2

and it follows from 79(a) = 1 that
gn(O, bl’ e stn) = gn(O, bl’ e abZn)UO(a) .

Here since k — b,k gives a bijection of Zp, it follows from Lemma 3.2 that

p-1 2n P 7
2ruk l—l nb jk 2mak l_[ b iby,k
Cos ﬂ-# - = COsS ™ cot . =l = gn(a, b] [IE b2n)
k=1 P j=1 k=1 j=1 p

gk(O, bl9 Tt 9b2k)nn—k(p; a’ b2k+l’ Tt 9b2n)

k=0
= ) Gpibi, - bo)nn-i(psa, bagsrs -+, bay)  (mod p).
k=0
This completes the proof of Theorem 3.1. O

Corollary 3.5. Let p be a natural number which is greater than 1, u a non-negative
integer, q a natural number and by, - - -, byy natural numbers which are prime to p. Then

p-l 29
2muk nb ik
2g-1 | | cot —~

k=1 p p

Jj=1
is an integer.

Proof. It follows from the theorem above that

p—1 2q q
2nuk bk
E cos 1 | |COt pj E L3 by o) Mgt (Ps fthag, bogesrs -+, bag) + pv

k=1 P k=0
where v is an integer. Here since n,_(p; ,ub_zq, bogs1,+ -+, bag) and
PG by by = (DR N (2K = p)--- (ko = )
1<k, . kop<p

Pl(brky+-+bykoy)

are integers for 0 < k < ¢, it follows that

p-1
2muk bk
2q ! cos i 1—[ cot —Z

k=1 j=1 p
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q
= PP Mg j(Pi bag, bajer -+ bag) Li(pib, - by + pP
j=0

is an integer. m|

Theorem 3.6. Suppose that the total Chern class of TM ® C equals ]_[;'.1:1 (1- x?) and that

0Ch(E$j"'[’”,g”') = 2 Nspp,(Uis) where 6 = (€ ---€,) = 1 or 2 (see Remark 2.11), n,’s are
natural numbers and p;;’s are non-negative integers. Let ajs, bjj(1 <i < b, 1 < j<m), hy,
be integers defined by

oy = | HsTin (fmiseven) [T (ifmisoddand j=2n)
v s (ifmisodd) ’ v 7;; (otherwise)

. 2m=b (if m is even)
"o 0  (iffmisodd)

’

and z a natural number which is prime to p. Then the next equality holds as an element of
R/Z.

/2
HID[ lm (gz) - eh 0-] (exl e - R Xm ,e xrﬂ)[.f = [M]
’ l_[ lj:ll tanh(x;/2)

1
+ (_I)HHE Z ri Z ng Z Gc(pisbits -+ s bio M-k (P; Gis, bidks1, -+ 5 Dion) -
i=1 K k=0

Proof. It follows from (10) that

" ke 1 (g o R K
(19) le_fp A|Vreo =) —;@
j_ =
where
kzﬂts kzﬂis m ZTij
+¢ +1
R(&,) = . :

- f p J=1 *f];;zm -
Then Proposition 2.12 implies that the both sides of (19) are real numbers, and the map
kz — k gives a bijection of Z, because z is prime to p. Hence we have

p-1

Pp (kzﬂzs) ﬂkZTi'
21 l_[(—\/—_lcot pf)

k=1 =
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2n
2rkzitg l_l kzT;;

(m=2n-1)

Hence it follows from Theorem 3.1 that

p-1 m
(kzpts kzT;
(20) oullii) ]_[(—V—_lcot” ZT’)
k=1 1-& j=1 p

= (=1 > Zi(psbr, - bo) (D3 i bajir, -+ bon).
Therefore it follows from (3), Proposition 2.6 and (9) that

p-1 - - T xj/2
o1 ¢ =—9hm| | (€5, e e et e ) ,| |
Dy, ot g°) | oje,e . tanh(x]/2) M)

b n
1
+(—1)"+1; E T § ng E G(pisbit, -+ 3 bio)Nn-ik(P; Gis, bioks1, -+ 5 bion) -
i:l N k:O

This completes the proof of Theorem 3.6. O

Corollary 3.7. Assume that the cyclic group Z,, = {g) acts on 2m-dimentional closed
oriented manifold where m is even. Then for non-negative integers {,--- ,{, we have
IDII_”_M (9) =0if pis odd and 2911)(1‘_“_(”1 (9) =0if piseven.

Proof. Since m is even, OID[I .., (g%) does not depend on the natural number z which
is prime to p because ajy, b;; in the theorem above does not depend on z. Hence setting
z = p — 1 which is prime to p, we have

{ rlp,,. ,.(9) =1Ip, , (g") =0
0Ip,, ., (9) =0Ip, _, (9" H=6p- Dip,, . ,.(9)
= 0(2-plp,, (9 =20Ip, ,(9)=0

which imply that /, Dty tm (9) = 01if p is odd because 26 is prime to p. m]
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4. Examples

ExampLE 4.1. In this example we consider the case that m = 1, namely the case that M is
a compact Riemann surface. Let p be an odd prime number and Z, a cyclic group generated

by g. Then we have p; = p, in other words, r; = 1 for 1 <i < b. Let ty,--- ,1, be natural
numbers such that 1 < #,---,#, < p — 1, z a natural number which is not a multiple of p,
and set

b

1
fltrs e 10,2) = = ) Qati+ &P 2)

i=1
Then we have
b

1 —
S0 = 2 3 (APED) D+ 1 L(pitD) (mod 2)

i=1

1 b
=2 2, Gompian 2 + Gt D)

i=1

If {t;,- -, 1,} is the rotation angle of a Z,-action, namely if there exists an action of Z,, = (g)
on a compact Riemann surface such that the rotation angle of g is {#1, - - - , 1}, it follows from
Theorem 3.6 that f(#1,- - ,1,2) = Ip,(g°) € R/Z because Ind(D;) = 0 and Ch(E}b,, g) =
pp(1;) (see Example 2.10), and hence the following equality holds:

(21) f, - tp,20) —z2f(t1,--+ 1, 1) =0 (mod Z).

Here as we see in the proof of Proposition 4.6 in [7], {#;,--- , 1} is the rotation angle of a
Z,-action if the equality

b
(22) Z =0 (mod p)
i=1

holds. In this example we show that the equality (22) follows from the equality (21), which

implies that the equality (21), which corresponds to the equality Ip,(g°) = zlp,(g), is the

necessary and sufficient condition for {#;,- -, #,} to be the rotation angle of a Z,-action.
Here we assume that the equality (21) holds. Since

kiti+kz=0 & (kit;i+ky2)z=kitiz+k =0 & ky = —kit;z (mod p) s

it follows that

e 3 (- SN

pl(tik+zks)

p—1
k kt;z
- S(GNE)
kZ_; p p
and hence we have

(|
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Then since

i (v by B vl o A o b B

:2[’%]_22
p

is an integer and the map k#; — k gives a bijection of Z,, it follows that

- wa=sSENE)-()
S5
8- )

))} = lT X F(p,z)
p

554 ()

g rea- s G- ()

Therefore it follows from the assumption that

23)  2p{2f (- oty 1) = ft1, -+ 15,2)) = T X 2F(p,2) =0 (mod p).
J-(5)
p
g k 2% [2k] 1
=8> k{2 —o-1|- (== -2
Z {(p ) (p [p} 2)}

u] 23 (2% Y (2%
=38 k[—]—4 k=38 k[—]—Zp(p—l)ESZk[—] (mod p)
1 p k=1 p

<

\

<

I
/\»

"B?v‘
._>—-

NG
S PSRN

where

M.

Here we have

-1
=3 Z =@Bp-D(p-1)=1 (mod p),

—prl
k= 2

and hence it follows from (23) that 7 = 0 (mod p), namely the equality (22) holds.

ExampLE 4.2. In this example we consider the case that m = 2, namely the case that
M is a 4-dimensional closed oriented manifold, which does not necessarily admit an almost
complex structure (see Example 3.2 in [7]). In this example using Theorem 3.6, we show that
a relationship between the rotation angle of a Z,-action on M and the signature of M exists
(see (28),(29) below). Let g be an orientation-preserving periodic diffeomorphism of M of
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order p. Let oo(M) be the signature of M and suppose that QCh(E;‘.’fz, g’ = Xynspp,(Uis)
(60 = Tor 2). Then since the first Pontrjagin number p; is equal to 30 (M), it follows from
Example 2.7, Example 2.18 and Theorem 3.6 that
-1
01, ,(9) = T5— 02203030, + 46, + Dor(M)
’ 14

1

b
1 _
+ 21 o Z ng Z G(pisTit, s Ti2idM k(P MisTi2s Tiks 15> Ti2)
=

s k=0

—1
- p_zp 022+030(3¢, + 46, + Do(M)

b
+) pi D (D (22 i) i) + Gi(pi i ) - 1)
— i=1 s

-1
24)  pblp, . (9) = pT 0220723536, + 46, + Do (M)

b b
Y [Z znsﬂa]m Y (Z ] fpiaTa) (mod p).
= N = N

Here as we see in Example 2.10 we have
Ch(EL ", g) = o (02 +2)°
where o7 is the k-th elementary symmetric polynomial in p,,(7;1), pp,(7i2). Hence we have
1
Ch(Ey’, g) = 1 = 5p,(0) > 2Ch(E.",9) = p,,(0),
Ch(E;;O, g) = o1 = pp,(Ti1) + pp,(Ti2)
Ch(E)". 9) = 02 +2 = pp,(Ti1)pp,(Ti2) + 2 = pp,(Tit + Ti2) + (it = Ti2) + p, (0) .

Set A = 1if pisodd and A = 2 if p is even. Then it follows from Corollary 3.7, (24) and the
equalities above that

b
(25) 24pIp,,(9) = Ap — Do (M) + /12 rii(pis T, T2) =0 (mod p),
i=1

b b
P, (9) = 8A(p = Do (M) +24 ) ri(z}y + TH)TiTa + 24 ) 1l (pi T, Ti)

i=1 i=1
b b

(26) = —8Ac(M) + 2/12 ri(TinT + TiTp) + 2/12 ri{1(pi;Ti,T2) =0 (mod p).
i=1 i=1

Since (151 + 7)? + (1 — T)* + 02 = 2(13, + 73) , the next equality also holds.

pAlp,,(9)

b b
(27) = —15A0(M) + 41 > ri(raTa + Tatn) + 30 ) rli(pis T, 72) =0 (mod p).
i=1 i=1

Here we have
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2 X (25) - (26) = 6A0(M) — 21 Zi’:l ri(thTn + Tate) =0 (mod p)
3x(25) - (27) = 12A0(M) — 44 Zle ri(tnTio +Tit) =0  (mod p)

b
= 21 Z r(ThTa + Titn) = 610(M)  (mod p),
i=1

and since 2 is prime to p if p is odd, it follows that

b
(28) 4 Z ri(tiTn + TTn) = 120(M) (mod p) if piseven,
i=1
b
(29) Z ri(taTn + Tatp) = 30(M) (mod p) if pisodd.
i=1
For example, we consider the case that M = CP?. Let p be a prime number which is greater
than 3 and a, b natural numbers such that 1 < a < b < p. Then

CP’3q=1lz:2 2] = g-q=ln:&u: &l € CP?

defines an action of the cyclic group Z, = (g). The fixed point set of FA<k<sp-1)
consistsof g =[1:0:0], g2 =[0:1:0], g3 =[0:0: 1], and the rotation angle of g is

((T11, T12), (721, T22), (31, T32)) = (@, b), (p —a, b —a),(p — b,p + a—b)).

Then r; = 1 for 1 <i < 3 and we have
3 — —— —— f—
D ritiTa + Titn) = ab + @b — a(b — @) + =a(b — a) - b(a — b) - b(a — b)
i=1

=ab+ab—-alb—-a)—ab+1+bb-a)—ba+1

=(b-a)b-a)+1+1=3=30(CP* (mod p).

On the other hand since 3 = 30(M) < 3(c(M)—-1) =0 (mod p), M does not admit an
Zp,-action with the rotation angle above if o-(M) — 1 is not a multiple of p.

For example let p be any prime number such that p + 3 is a multiple of 4 and set n =
(p+3)/2. Let M be the connected sum of n copies of CP? and n—2 copies of CP? which is the
underlying manifold of CP? with the orientation reversed. Then the Euler number e(M) of M
is equal to 2n and the equality (2) is satisfied for » = 3. Butsince c(M)—1 = n—(n-2)-1 =1
is not a multiple of p, M does not admit an Z,-action with the rotation angle above. Note
that M does not admit any almost complex structure because e(M) + o(M) = 2n+ 2 isnot a
multiple of 4 (see [8] p.1625).

ExampLE 4.3. Let M be a 6-dimensional closed oriented manifold, which does not nec-
essarily admit an almost complex structure (see Example 3.3 in [7]). In this example using
Theorem 3.6, we show that M does not admit the Zg-action of isotropy orders

(plap?»p?n'” 9p1/+2) :(693727”' ’2)
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Here we assume that M admits a Ze¢-action of isotropy orders above. Then it follows from
the equality (2) that the Euler number e(M) of M satisfies the equality:

v+2
(v +1- e(M)

Dori—e(M)=1+2+3v—e(M) =3 )so (mod 6),
i=1
which implies that there does not exist such a Zg-action above unless the following condition

is satisfied:

e(M)

30) e(M) is amultiple of 3 and v + 1 — is an even number .

So we assume that the condition above is satisfied.

Let g be a generator of Zg and {7;1, 7)o, 73} the rotation angle of ¢"'. Note that 7; = 1 or
5and 1p; = 1 or 2 for 1 < j < 3 and hence the mod. p;-inverse of 7;; is equal to 7;; itself for
i = 1, 2. Here it follows from Proposition 2.9 that

Ch(EY™ g) = Ch = pp (T £ To £ T3) +2 Y pp(Ti) = . nspp,(tt)

1<j<3 s
where
(i) = (Lo + 1 +73),  (m2, ) = (Lt + T2 — 73)
(3, pi3) = (Lt = Tn + 73), (4, pia) = (1,70 — T2 — 73)
(ns,pis) = (2,701), (e, pie) = (2,72),  (n7,pi7) = (2,7i3) -
Then since Ind(Dg ;) vanishes as we see in Remark 2.2 and {y = -1, 1o = 1, it follows

from Theorem 3.6 that

v+2

1
(31) oy (67 = = D71 ) miFu(i.2)
i=1

N

where
Fs(i, 2) = —ma(pis 2is, Tins Tias T35 2) + $1(pis Tans T)M (Pis 2> Ti3, 2) + 2(pis T11, T12, T135 2) -
Here it follows from Example 2.18 for n = 2 that

1
O=apsTT)=—— Y (Qki-p)Qka-p),

sk kg <p;

pil(Tiki1+7i2ka)

1
O = O(pis T, T, Ti3,2) = — Z 2k, — pi) Cky — pi) ks — pi) Cky — pi)
pi L<ky ky. k3, kg<p;

pil(tinki+Tinka+7i3ks+2ks)

M = m(pis s T3, 2) = —2a3,62 = =2(i) (Ta 2)
_ 2
n2 = m2(pis 2is, Tia, Tz, T3, 2) = gaicldfq (aic% + c% + 1)
2 _ _ _ _ _
= 5@ X Tinmn X Tt (Ta 0 {(ui) (Ta 2 +(T52) + 1.
Wheni=1,p;=6, z=1, (111,712, 713) = (1,1, 1), we have
i =1+1+1=3, up=1+1-1=1,u3=1-1+1=1,uyy=1-1-1=-1,
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Mis=pme=p17=1, z=1,
and direct computation shows that

20
0165711, T12) = 1(651,1) = 3

_ 164
(65711, T12,7T13,2) = $(651,1,1,1) = o5

m(6; zu11,713,2) = m(6;3,1,1) = =18

m(6; zu1a, 713,2) = m(6; -1, 1,1) = -2,

m(6; zus, 713,2) = m(6; 1, 1, 1) = =2 (s =2,3,5,6,7),

m2(6; zp11, T11, Ti2, T13,2) = 1m2(6:3, 1, 1, 1, 1) = 66,

1m2(05 2114, T11, Ti2, T13,2) = 2(6; -1, 1, 1,1, 1) =2
65z, T11, T12, T13,2) = (65 1, 1, 1,1, 1) =2 (s =2,3,5,6,7),

and hence we have
4

20 164 20 164 1276
Znst(l’l):Z{(—l)uls 3vh+—} 22{( Dus + -0 + } 5

s s=1
Where (ulh Ull) = (66’_18)a (uls’ Uls) = (27 _2) (S = 2’ 3’4a 59 67 7)‘
Wheni=2,p; =3, z=1, (121,722,723) = (1, 1,2), we have
/121=1+1+2=4,,ll22=1+1—2=0,/.123=1—1+2=2,ﬂ24=1—1—2=—2,
Mos = o6 =1, py7 =2,

and direct computation shows that
2
4B, m2) = 40G51,1) = 3

OBt T2, 713,20 = B35 1L, 1,2, 1) = _ga
m@3;zu21,723,2) = m3;4,2,1) = -64

M35 zu2,723,2) =m3;0,2,1) =0

m@3s zu2s,713,2) = m(3;2,2,1) = =16 (s = 3,7),

M35 zu24,713,2) = m35-2,2,1) = -

m@3;zu25,713,2) = M35 1,2,1) = =4 (s = 5,6),

235 2121, T21, T22, T23,2) = M2(3;4, 1, 1,2, 1) = 5888,

235 2020, T11, T12, T13,2) = 72330, 1, 1,2, 1) =

235 225, T11, T12, T13,2) = 12352, 1,1,2,1) = 448 (s = 3,7),
m2(35 224, T11, T12, 713, 2) = 12(3;-2,1,1,2,1) = 448,

M35 225, T11, T12,T13,2) = 2351, 1, 1,2, 1) = 48 (s = 5,60),

and hence we have

2 z 2 2 71732
P CRIE {( Dita + Z02 = 5} 2y {(—1)M2s + 300 - 5} =-—
K s= s=5

M»
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where (uz1,v21) = (5888, -64), (uxn,v) = (0,0), (u,v2) = (448,-16) (s = 3,4,7),
(MZSa U2s) = (487 _4) (S = 5’ 6)
When 3 <i <v+2, p; =2 and it follows from Remark 2.3 and (20) that

ZnSFs(i, 1)=0.

N
Hence it follows from (5) and (31) that

v+2

Iou @) = ~2 > 11 3 mEL,2)
i=1

N

1127 71732 7237 1
=8( 96+2- 93 +0)=ﬂ——oeR/Z.

27 27
Using the same method, we have
17
ID(),(),] (gS) =—eR/Z,

27
and therefore it follows that

7
IDO.OJ(gS) - SIDO_O_I(Q) = § eR/Z.
Namely the equality

IDoyoyl (gs) = 51D0'0_1 (g)

does not hold for (711, 712, T13; T21, T22,T23) = (1, 1,1; 1,1, 2).
The direct computation using the same argument shows that the equality

I Do .1 (95) =51 Do.1 (g)

does not hold for 7y; = 1,5 (1 < j<3)and 75; = 1, 2 (1 < j < 3). This is a contradiction
and therefore M does not admit the Zg-action of isotropy orders above.

For example let N be a 4-dimensional closed oriented manifold, R a compact Riemann
surface of genus r such that r = 1 (3) and set M = N X R. Then the Euler number of M is
a multiple of 6 because the Euler number of R is 2(1 — r), and the condition (30) is satisfied
for any odd natural number v. Then it follows from the result above that M does not admit
the Zg-action of isotropy orders (pi, p2, p3,- - > Pv+2) = (6,3,2,---,2) .

RemaARrk 4.4. In the example above, M is an almost complex manifold if N is an almost
complex manifold. But the Zg-action does not necessarily preserve the almost complex
structure and the result above can not be obtained from the methods in [7], where the action
is assumed to preserve the almost complex structure.
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