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Abstract
Let M be an even-dimensional closed oriented manifold and g a periodic automorphism of

M of order p. In this paper, under the assumption that the fixed points of gk (1 ≤ k ≤ p − 1)
are isolated, a calculation formula is provided for the homomorphism ID : Zp → R/Z defined
in [6] for equivariant twisted signature operators D over M. The formula gives a new method
to study the periodic automorphisms of oriented manifolds. As examples of the application of
the formula, results about the existence of the cyclic group action for 2,4,6-dimensional closed
oriented manifolds are obtained.

1. Introduction

1. Introduction
Let M be a 2m-dimensional closed oriented manifold and G a finite group acting on M.

We assume that the action of G is effective and orientation-preserving. Let g be an element
of G of order p ≥ 2 and Zp = 〈g〉 the cyclic group generated by g. In this paper, we set the
following assumption.

Assumption 1.1. Some gk (1 ≤ k ≤ p − 1) has a fixed point, and any fixed point of gk is
isolated for 1 ≤ k ≤ p − 1 if gk has a fixed point.

In [6] we introduce a group homomorphism ID by using an elliptic operator D adapted to
a geometric structure of a manifold, and in [7] we apply this homomorphism to the existence
problem of finite group actions on almost complex manifolds under the assumption above.

Let D be a G-equivariant elliptic operator. Then a homomorphism ID from G to R/Z is
defined by

ID(g) =
1

2π
√−1

log det(D, g) ∈ R/Z

for g ∈ G, where det(D, g) is defined by

det(D, g) = det(g| ker D)/ det(g|coker D) ∈ S 1 ⊂ C∗

(see [6] Definition 2.1). Then as we see in [6] (3) the next equality holds

(1) ID(g) ≡ p − 1
2p

Ind(D) − 1
p

p−1∑
k=1

1
1 − ξ−k

p
Ind(D, gk) (mod Z)
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760 K. Tsuboi

where Ind is the Atiyah-Singer index (see [3]) and ξp is the primitive p-th root of unity
defined by ξp = e2π

√−1/p.
We can express the value ID(g) by the fixed point data of the gk-action (1 ≤ k ≤ p − 1)

by using the equality (1) and the fixed point formula of Atiyah-Segal-Singer [2], [3]. Since
ID is a homomorphism, the equalities ID(gz) = zID(g), ID(gh) = ID(g) + ID(h) hold for any
g, h ∈ G and any integer z because R/Z is an abelian group. These properties of ID impose
conditions on the fixed point data and a calculation formula to obtain the precise value of ID

can be used to examine the existence of a finite group action on M.
When M is a 2m-dimensional closed almost complex manifold and the g-action preserves

the almost complex structure of M, we give a formula to calculate ID(g) precisely for the
⊗m

j=1

(
⊗� j

(
∧ j
C

TM
))

-valued Dolbeault operator D over M in [7] Theorem 2.2. Though the
formula is useful for closed almost complex manifolds, we need a formula to calculate
the precise value of ID(g) for equivariant elliptic operators D which is adapted for closed
oriented manifolds, which do not necessarily have almost complex structure.

In [9] Zagier gives a formula which enables us to calculate the precise value of ID(g) for
the equivariant non-twisted signature operator D under Assumption 1.1.

Definition 1.2. For a real number x, a real number ((x)) is defined by

((x)) :=
{

x − [x] − 1
2 if x is not an integer

0 if x is an integer

where [x] is the Gauss’ symbol. Note that ((x + a)) = ((x)) for an integer a and that ((−x)) =
− ((x)) because [−x] = −[x] − 1 if x is not an integer.

Theorem 1.3 ([9] p.103). Let p be a natural number which is greater than 1 and a1, · · · ,
an natural numbers which are prime to p. Then the following equality holds:

(
−√−1

)n
p−1∑
k=1

cot
πa1k

p
· · · cot

πank
p
= 2n p

∑
1≤k1 , ··· , kn<p

p|(a1k1+···+ankn)

((
k1

p

))
· · ·

((
kn

p

))
.

As we see later (see (4)) the left hand side of the equality above is equal to the sum of
indices for the equivariant non-twisted signature operator, and the equality implies that the
sum is a rational number.

In this paper, generalizing the Zagier’s formula, we give a formula to calculate the precise
value of ID(g) for equivariant twisted signature operators D over 2m-dimensional closed
oriented manifolds to examine the existence of a finite group action on the manifolds.

2. Rotation angles of periodic automorphisms

2. Rotation angles of periodic automorphisms
Let M be a 2m-dimensional closed oriented manifold and p a natural number which is

greater than 1. Assume that the cyclic group Zp = 〈g〉 acts on M. Under Assumption 1.1, let
Ω be the union of the fixed points of gk for 1 ≤ k ≤ p − 1 and suppose that the image π(Ω)
consists of b points y1, · · · , yb ∈ M/Zp where π : M −→ M/Zp is the projection. In this
paper, the Zp-action is called the Zp-action of isotropy orders (p1, · · · , pb) if the isotropy
group at a point qi ∈ π−1(yi) (1 ≤ i ≤ b) is the cyclic group of order pi. Then for 1 ≤ i ≤ b
the isotropy group at any points in π−1(yi) is the cyclic group of order pi generated by gri
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where ri = p/pi and π−1(yi) consists of ri points qi, g · qi, · · · , gri−1 · qi.

Remark 2.1. Let e(M) be the Euler number of M. Then since Zp acts freely on the
punctured manifold M0 = M \ {∪b

i=1π
−1(yi)}, the next equality holds:

e(M) ≡
b∑

i=1

ri (mod p) .(2)

Let ξτi j
pi , ξ

−τi j
pi (1 ≤ j ≤ m) be the eigenvalues of gri |Tqi M, and

−→ui j −
√−1−→vi j,

−→ui j +
√−1−→vi j

(−→ui j,
−→vi j ∈ Tqi M � R2m

)
the corresponding eigenvectors such that

ωqi

(−→ui1 ∧ −→vi1 ∧ · · · ∧ −−→uim ∧ −→vim

)
is positive with respect to a positive 2m-form ω where τi j (1 ≤ j ≤ m) are natural numbers
such that 1 ≤ τi j ≤ pi−1 (see ([1] p.473). Since the eigenvalues of griκ|Tqi M for 1 ≤ κ ≤ pi−1
are ξκτi j

pi , ξ
−κτi j
pi (1 ≤ j ≤ m), it follows from Assumption 1.1 that τi j is prime to pi for

1 ≤ i ≤ b, 1 ≤ j ≤ m. In this paper the set {τi j} (1 ≤ j ≤ m) is called the rotation angle of
gri around the points in π−1(yi) and the set {τi j} (1 ≤ i ≤ b, 1 ≤ j ≤ m) is called the rotation
angle of g. The rotation angle of g is also expressed as

((τ11, · · · , τ1m), · · · , (τb1, · · · , τbm)) .

Note that the equality

gri ·
(−→ui j −

√−1−→vi j

)
= ξ

τi j
pi

(−→ui j −
√−1−→vi j

)
implies the equality

(
gri · −→ui j , g

ri · −→vi j

)
=

(−→ui j ,
−→vi j

) ⎛⎜⎜⎜⎜⎜⎝ cos 2πτi j

pi
− sin 2πτi j

pi

sin 2πτi j

pi
cos 2πτi j

pi

⎞⎟⎟⎟⎟⎟⎠
and that {τi1, · · · , pi − τi j, · · · , pi − τik, · · · , τim} ( j � k) is also the rotation angle of gri when
m ≥ 2 because

ωqi

(−→ui1 ∧ −→vi1 ∧ · · · ∧ −→vi j ∧ −→ui j ∧ · · · ∧ −→vik ∧ −→uik ∧ · · · ∧ −−→uim ∧ −→vim

)
is also positive. Hence if pi is even and some τi j equals pi/2, {τi1, · · · , pi − τik, · · · , τim} is
also the rotation angle of gri for k � j and therefore we can assume that 1 ≤ τi j ≤ pi/2.

Corresponding to the irreducible representations of the rotation group, complex Zp-vector
bundles E�1,··· ,�m are defined for non-negative integers �1, · · · , �m as follows:

E�1,··· ,�m = ⊗m
j=1

(
⊗� j

(
∧ j

C (TM ⊗ C)
))
,

and the E�1,··· ,�m-valued signature operator D�1,··· ,�m is defined. Note that E0,··· ,0 is a trivial
line bundle and D0,··· ,0 is the equivariant non-twisted signature operator. Suppose that the
rotation angle of gri around the points qi in π−1(yi) (1 ≤ i ≤ b) is {τi j}. Then the fixed point
set of gk (1 ≤ k ≤ p − 1) exists if and only if k equals riκ for 1 ≤ i ≤ b, 1 ≤ κ ≤ pi − 1 and it
follows from the signature theorem and the G-signature theorem that
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Ind(D�1,··· ,�m) = 2mCh(E�1,··· ,�m)L̂(M)[M]

⎛⎜⎜⎜⎜⎜⎜⎝L̂(M) =
m∏

j=1

x j/2
tanh(x j/2)

⎞⎟⎟⎟⎟⎟⎟⎠ ,(3)

Ind(D�1,··· ,�m , g
riκ) =

b∑
i=1

riCh(E�1···�m
qi

, griκ)
m∏

j=1

(
−√−1 cot

πκτi j

pi

)
(4)

where σ j(x2
1, · · · , x2

m) for the j-th elementary symmetric function σ j is the j-th Pontrjagin
class of M (see [3] (6.5), (6.6), [5] Theorem 13.9), E�1,··· ,�m

qi is the fiber of E�1,··· ,�m at qi and
Ch(E�1···�m

qi , griκ) is the trace of the linear transformation griκ of the fiber E�1···�m
qi (see [3] (6.12),

(6.19), [4] Theorem 2.5), and hence we have

ID�1 ,··· ,�m (g)(5)

≡ p − 1
p

2m−1Ch(E�1,··· ,�m)L̂(M)[M]

− 1
p

b∑
i=1

ri

pi−1∑
κ=1

1
1 − ξ−κpi

Ch(E�1···�m
qi

, griκ)
m∏

j=1

(
−√−1 cot

πκτi j

pi

)
(mod Z) .

Remark 2.2. Since the Chern classes of TM ⊗ C is expressed by the Pontrjagin classes
of TM, the Chern character Ch(E�1,··· ,�m) is expressed by the Pontrjagin classes of TM (see
Proposition 2.6). Hence the equality (3) above implies that Ind(D�1,··· ,�m) = 0 if m is odd.

Remark 2.3. Assume that pi = 2 for some i. Then since κ = τi j = 1, we have
m∏

j=1

(
−√−1 cot

πκτi j

pi

)
=

m∏
j=1

(
−√−1 cot

π

2

)
= 0

in the equalities (4), (5).

Definition 2.4. Let p be a natural number which is greater than 1 and a, b integers where
b is prime to p. Then using the Euler’s function ϕ, we define integers 〈 a 〉, b as follows:

〈 a 〉 = a − p
[

a
p

]
⇐⇒ 0 ≤ 〈 a 〉 ≤ p − 1 , 〈 a 〉 ≡ a mod p ,

b = 〈 bϕ(p)−1 〉 ⇐⇒ bb ≡ 1 mod p , 1 ≤ b ≤ p − 1 .

In this paper, we call b the mod.p-inverse of b. Note that 〈 a + p 〉 = 〈 a 〉 , b + p = b , b ≡ b
mod p because (b−b)b ≡ 0 (mod p) and that 〈 a1 〉·〈 a2 〉 ≡ 〈 a1a2 〉 , b1 ·b2 ≡ b1b2 (mod p)
because

(
b1 · b2 − b1b2

)
b1b2 ≡ 0 (mod p) where b1, b2 are prime to p. Note moreover that

the equality 〈 a1 〉 + 〈 a2 〉 ≡ 〈 a1 + a2 〉 (mod p) holds but the equality b1 + b2 ≡ b1 + b2

(mod p) does not hold.

Remark 2.5. Assume that a natural number z is prime to p. Then we have (gkz)z = gk for
1 ≤ k ≤ p − 1, and hence the fixed point set of gkz coincides with that of gk and the rotation
angle of griz is equivalent to {zτi j} mod.pi if the rotation angle of gri is {τi j}.

Proposition 2.6. Suppose that the total Chern class of TM ⊗ C equals
∏m

j=1(1 − x2
j)

and hence the j-th Pontrjagin class p j(TM) of M equals σ j(x2
1, · · · x2

m) where σ j is the j-th
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elementary symmetric function (see [5] p.228). Then we have

Ch(E�1,··· ,�m) =
m∏

j=1

σ j(ex1 , e−x1 , · · · , exm , e−xm)� j .(6)

Proof. Since the total Chern class of TM ⊗ C equals
∏m

j=1(1 + x j)(1 − x j), we have

Ch(∧ j
C (TM ⊗ C)) = σ j(ex1 , e−x1 , · · · , exm , e−xm) .

Hence it follows that

Ch(E�1,··· ,�m) =
m∏

j=1

σ j(ex1 , e−x1 , · · · , exm , e−xm)� j . �

Example 2.7. Assume that m = 2 and let p1 be the first Pontrjagin number of M. Then
we have

22L̂(M) = 22
2∏

j=1

x j/2
tanh(x j/2)

= 4 +
1
3

p1(TM) ,

Ch(E j) = σ j(ex1 , e−x1 , ex2 , e−x2 ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4 + p1(TM) ( j = 1, 3) ,
6 + 2p1(TM) ( j = 2)
1 ( j = 0, 4)

,

where E j = ∧ j
C (TM ⊗ C), and hence it follows from Proposition2.6 that

Ch(⊗� j E j) =
(
Ch(E j)

)� j
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4� j + � j4� j−1 p1(TM) ( j = 1, 3) ,
6� j + 2� j6� j−1 p1(TM) ( j = 2)
1 ( j = 0, 4)

=⇒ Ch(E�1,�2 ) =
(
Ch(E1)

)�1
(
Ch(E2)

)�2

= 4�16�2 + 2 · 4�1−16�2−1 (3�1 + 4�2) p1(M)

=⇒ IndD�1,�2 = 22Ch(E�1,�2 )L̂(M)[M]

= 2 · 4�16�2−1(3�1 + 4�2 + 1)p1 = 22�1+�23�2−1(3�1 + 4�2 + 1)p1 .

Definition 2.8. Let p be a natural number which is greater than 1. Then for any integer
λ, a real number ρp(λ) is defined by

ρp(λ) = ξλp + ξ
−λ
p .

Clearly ρp has the following properties:

ρp(−λ) = ρp(λ) , ρp(0) = 2 , ρp(λ)ρp(μ) = ρp(λ + μ) + ρp(λ − μ) ,

which implies that

ρp(λ1)ρp(λ2) · · · ρp(λ j) = ρp(λ1 ± λ2 ± · · · ± λ j)(7)

for integers μ, λ1, λ2, · · · , λ j where

ρp(λ1 ± λ2 ± · · · ± λ j) =
∑

εi=±1(2≤i≤ j)

ρp(λ1 + ε2λ2 + · · · + ε jλ j) .
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We set that the binomial coefficient
(

0
0

)
and 00 are equal to 1 hereafter.

Proposition 2.9. For 1 ≤ i ≤ b, 1 ≤ j ≤ m, 1 ≤ k ≤ pi − 1 set

Ck
i j =

[
j−1
2

]∑
r=0

(
m − j + 2r

r

)
σ j−2r(ρpi(kτi1), · · · , ρpi(kτim)) + ε j

(
m
j
2

)

where σ j−2s is the j − 2s-th elementary symmetric function and

ε j =
1 + (−1) j

2
=

{
1 ( j : even)
0 ( j : odd)

.

Then we have

Ch(E�1,··· ,�m
qi

, grik) =
m∏

j=1

(
Ck

i j

)� j
.

Proof. Since the eigenvalues of grik|
(
Tqi M ⊗ C

)
are λ1, · · · , λ2m where λ2 j−1 = ξ

kτi j
pi ,

λ2 j = ξ
−kτi j
pi (1 ≤ j ≤ m), we have

Ch(∧ j
C

(
Tqi M ⊗ C

)
, grik) = Tr

(
grik

∣∣∣∣∧ j
C

(
Tqi M ⊗ C

) )
=

∑
1≤i1<···<i j≤2m

λi1 · · · λi j = σ j(ξkτi1
pi
, ξ−kτi1

pi
, · · · , ξkτim

pi
, ξ−kτim

pi
)

=
1
j!

lim
t→0

(
d
dt

) j

(1 + tξkτi1
pi

)(1 + tξ−kτi1
pi

) · · · (1 + tξkτim
pi

)(1 + tξ−kτim
pi

)

=
1
j!

lim
t→0

(
d
dt

) j m∏
k=1

(t2 + ρpi(kτik)t + 1)

=
∑

n1+···+nm= j

m∏
k=1

lim
t→0

1
nk!

(
d
dt

)nk

(t2 + ρpi(kτik)t + 1)

=
∑

n1+···+nm= j

m∏
k=1

χ(nk)(8)

where n1, · · · , nm are integers such that 0 ≤ n1, · · · , nm ≤ 2 and

χ(nk) =
{
ρpi(kτik) if nk = 1

1 if nk = 0, 2
.

Let r, j− 2r be the numbers of 2’s and 1’s in n1, · · · , nm. If 2r < j and ns1 = · · · = nsj−2r = 1,
we have

(8) =

[
j
2

]∑
r=0

∑
1≤s1<···<s j−2r≤m

(
m − j + 2r

r

)
ρpi(kτis1 ) · · · ρpi(kτis j−2r )

because the number of (t1, · · · , tr) such that 1 ≤ t1 < · · · < tr ≤ m and that nt1 = · · · = ntr = 2
is

(
m− j+2r

r

)
. Hence we have
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(8) =

[
j−1
2

]∑
r=0

(
m − j + 2r

r

)
σ j−2r(ρpi(kτi1), · · · , ρpi(kτim)) + ε j

(
m
j
2

)
= Ck

i j ,

because
∏m

k=1 χ(nk) = 1 if 2r = j,
[

j−1
2

]
=

[
j
2

]
− 1 if j is even and

[
j−1
2

]
=

[
j
2

]
if j is odd.

Therefore we have

Ch(E�1···�m
qi

, grik) =
m∏

j=1

(
Ck

i j

)� j
. �

Example 2.10. When m = 1, it follows from Proposition 2.9 that

Ch(E�1
qi
, gri) =

(
C1

i1

)�1
=

(
σ1(ρpi(τi1))

)�1
=

(
ρpi(τi1)

)�1
.

Next assume that m = 2 and that (�1, �2) � (0, 0). Let σk the k-th elementary symmetric
polynomial in ρpi(τi1), ρpi(τi2). Then it follows from Proposition 2.9 that

Ch(E�1,�2
qi

, gri) =
(
C1

i1

)�1
(
C1

i2

)�2
= σ�1

1 (σ2 + 2)�2 =

�2∑
κ2=0

(
�2

κ2

)
2�2−κ2σ�1

1 σ
κ2
2

=

�2∑
κ2=0

(
�2

κ2

)
2�2−κ2

(
ρpi(τi1) + ρpi(τi2)

)�1
(
ρpi(τi1)ρpi(τi2)

)κ2

=

�1∑
μ1=0

�2∑
κ2=0

(
�1

μ1

)(
�2

κ2

)
2�2−κ2ρpi(τi1)μ1+κ2ρpi(τi2)�1−μ1+κ2 ,

and using the property (7) we can express the value above as a summation of ρpi’s. When
(�1, �2) = (0, 0), we have

Ch(E0,0
qi
, gri) = σ0

1 (σ2 + 2)0 = 1 =⇒ 2Ch(E0,0
qi
, gri) = ρ(0) .

Remark 2.11. Let h(�1, · · · , �m) be a non-negative integer and θ(�1, · · · , �m) a natural
number defined by

h(�1, · · · , �m) =
m∏

j=1

(
ε j

(
m
j
2

))� j

, θ(�1, · · · , �m) =
{

2 (h(�1, · · · , �m) is odd)
1 (h(�1, · · · , �m) is even)

.

It follows from Proposition 2.9 that Ch(E�1,··· ,�m
qi , gri) is expressed as a summation of products

of ρpi(μi)’s with integer coefficients and h(�1, · · · , �m) where μi’s are non-negative integers.
Hence θ(�1, · · · , �m)Ch(E�1,··· ,�m

qi , gri) is expressed as a summation of ρpi(μ)’s with integer
coefficients because 2 = ρ(0).

If θCh(E�1···�m
qi , gri) =

∑
s nsρpi(μis) and hence θCh(E�1···�m

qi , (gri)kz) =
∑

s nsρpi(kzμis) where
θ = 1 or 2, ns’s are natural numbers, z is a natural number which is prime to p and μis’s are
non-negative integers, it follows from (3), (4) and (5) that

θID�1 ,··· ,�m (gz) ≡ p − 1
p

2m−1θCh(E�1,··· ,�m)L̂(M)[M](9)

− 1
p

b∑
i=1

ri

∑
s

ns

pi−1∑
κ=1

ρpi(κzμis)
1 − ξ −κpi

m∏
j=1

(
−√−1 cot

πκzτi j

pi

)
(mod Z) .
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So we can calculate θID�1 ,··· ,�m (gz) precisely if we can express the value

pi−1∑
k=1

ρpi(kzμis)

1 − ξ−k
pi

m∏
j=1

(
−√−1 cot

πkzτi j

pi

)

as a rational number (see Theorem 3.6).

Proposition 2.12. Let p be a natural number which is greater than 1 and R(x) a rational
function with real coefficients. Then

∑p−1
k=1 R(ξk

p) is a real number.

Proof. Since R is a rational function with real coefficients, we have

p−1∑
k=1

R(ξk
p) =

p−1∑
k=1

R( ξk
p ) =

p−1∑
k=1

R(ξp−k
p ) =

p−1∑
p−k=1

R(ξp−k
p ) =

p−1∑
k=1

R(ξk
p) . �

Proposition 2.13. Let p be a natural number which is greater than 1, a an integer and
b j (1 ≤ j ≤ 2γ) natural numbers which are prime to p. Then we have

(−1)γ+1
p−1∑
k=1

ξ−ka
p

ξk
p + 1

ξk
p − 1

2γ∏
j=1

ξ
b jk
p + 1

ξ
b jk
p − 1

=

p−1∑
k=1

sin
2πak

p
cot

πk
p

2γ∏
j=1

cot
πb jk

p
,

(−1)γ
p−1∑
k=1

ξ−ka
p

ξk
p + 1

ξk
p − 1

2γ−1∏
j=1

ξ
b jb2γk
p + 1

ξ
b jb2γk
p − 1

=

p−1∑
k=1

cos
2πak

p
cot

πk
p

2γ−1∏
j=1

cot
πb jb2γk

p
.

Proof. It follows from Proposition 2.12 that the left-hand sides of the equalities above
are real numbers. Hence it follows from the equalities below

ξkτ
p + 1

ξkτ
p − 1

=
e2πikτ/p + 1
e2πikτ/p − 1

=
i−1 eπikτ/p+e−πikτ/p

2
eπikτ/p−e−πikτ/p

2i

= −√−1 cot
πkτ

p
(10)

2
1 − ξ−k

p
=

2ξk
p

ξk
p − 1

= 1 +
ξk

p + 1

ξk
p − 1

= 1 − √−1 cot
πk
p
,

that

(−1)γ+1
p−1∑
k=1

ξ−ka
p

ξk
p + 1

ξk
p − 1

2γ∏
j=1

ξ
b jk
p + 1

ξ
b jk
p − 1

= (−1)γ+1
p−1∑
k=1

(
cos

2πak
p
− √−1 sin

2πak
p

) (
−√−1 cot

πk
p

) 2γ∏
j=1

(
−√−1 cot

πb jk
p

)

=

p−1∑
k=1

sin
2πak

p
cot

πk
p

2γ∏
j=1

cot
πb jk

p
,

(−1)γ
p−1∑
k=1

ξ−ka
p

ξk
p + 1

ξk
p − 1

2γ−1∏
j=1

ξ
b jb2γk
p + 1

ξ
b jb2γk
p − 1

= (−1)γ
p−1∑
k=1

(
cos

2πak
p
− √−1 sin

2πak
p

) (
−√−1 cot

πk
p

) 2γ−1∏
j=1

⎛⎜⎜⎜⎜⎜⎝−√−1 cot
πb jb2γk

p

⎞⎟⎟⎟⎟⎟⎠
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=

p−1∑
k=1

cos
2πak

p
cot

πk
p

2γ−1∏
j=1

cot
πb jb2γk

p
. �

Definition 2.14. Let p be a natural number which is greater than 1 and b1, · · · , b2n nat-
ural numbers which are prime to p. Then a rational number ζ j(p; b1, · · · , b2 j) (0 ≤ j ≤ n) is
defined by

ζ j(p; b1, · · · , b2 j) = (−1) j22 j p
∑

1≤k1 , ··· , k2 j<p

p|(b1k1+···+b2 jk2 j)

((
k1

p

))
· · ·

((
k2 j

p

))

=
(−1) j

p2 j−1

∑
1≤k1 , ··· , k2 j<p

p|(b1k1+···+b2 jk2 j)

(2k1 − p) · · · (2k2 j − p)

for 1 ≤ j ≤ n and ζ0 = −1 . Set

ck = 〈 b2k−1b2k 〉 (1 ≤ k ≤ n) , dk = 〈 b2kb2k+1 〉 (1 ≤ k ≤ n − 1)

and let a be a non-negative integer. Then an integer η j(p; a, b2n−2 j+1, · · · , b2n) (0 ≤ j ≤ n) is
defined by η0 = 1 , η j(p; 0, b2n−2 j+1, · · · , b2n) = 0 (1 ≤ j ≤ n) and if a > 0

η j(p; a, b2n−2 j+1, · · · , b2n)

=

acn∑
tn−1=0

ψ(a, cn; tn−1)
cn−1dn−1tn−1∑

tn−2=0

ψ(dn−1tn−1, cn−1; tn−2)

· · ·
cn− j+1dn− j+1tn− j+1∑

tn− j=0

ψ(dn− j+1tn− j+1, cn− j+1; tn− j)

for 2 ≤ j ≤ n and

η1(p; a, b2n−1, b2n) =
acn∑

tn−1=0

ψ(a, cn; tn−1)

where ψ is an integer defined by

ψ(a, c; t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
−1 (t = ac)

4
(

t
c − a

) (
0 < t < ac and t is a multiple of c

)
4
([

t
c

]
− a

)
+ 2

(
0 < t < ac and t is not a multiple of c

)
−2a + 1 (t = 0)

.

Remark 2.15. For j > 0 it follows from Theorem 1.3 that

ζ j(p; b1, · · · , b2 j) =
p−1∑
k=1

cot
πb1k

p
· · · cot

πb2 jk
p

.

Definition 2.16. For a non-negative integer n and narural numbers a, c, p, q, integers
φn(a, c) and β(n, p, q) are defined by
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φn(a, c) =
ac∑
t=0

ψ(a, c; t)tn , β(n, p, q) =
q∑

k=p+1

kn .

Proposition 2.17. For narural numbers a, c, we have

φ0(a, c) = −2a2c ,(11)

φn(a, c) = 4
a−1∑
j=1

j β(n, jc − 1, ( j + 1)c − 1) − 2(2a − 1) β(n, 0, ac − 1)(12)

− cn {2β(n, 0, a − 1) + an} (n ≥ 1) .

Proof. Since there are a − 1 t’s {c, 2c, · · · , (a − 1)c} which satisfy the conditions that
0 < t < ac and that t is a multiple of c, we have

φ0(a, c) =
ac∑
t=0

ψ(a, c; t) = −2a + 1 − 1 +
ac−1∑
t=1

{
4
([ t

c

]
− a

)
+ 2

}
− 2(a − 1)

= 2ac(1 − 2a) + 4
ac−1∑
t=1

[ t
c

]
= 2ac(1 − 2a) + 4

⎛⎜⎜⎜⎜⎜⎜⎝
a−1∑
j=1

( j+1)c−1∑
t= jc

j

⎞⎟⎟⎟⎟⎟⎟⎠
= 2ac(1 − 2a) + 4

⎛⎜⎜⎜⎜⎜⎜⎝
a−1∑
j=1

c j

⎞⎟⎟⎟⎟⎟⎟⎠ = 2ac(1 − 2a) + 4c
a(a − 1)

2
= −2a2c .

For n ≥ 1 we have

φn(a, c) =
ac∑
t=0

ψ(a, c; t)tn

= (−2a + 1) · 0n + (−1)(ac)n +

ac−1∑
t=1

{
4
([ t

c

]
− a

)
+ 2

}
tn − 2

a−1∑
j=1

( jc)n

= −ancn + 4
ac−1∑
t=1

tn
[ t
c

]
+ (2 − 4a)β(n, 0, ac − 1) − 2cnβ(n, 0, a − 1)

= 4

⎛⎜⎜⎜⎜⎜⎜⎝
a−1∑
j=1

( j+1)c−1∑
t= jc

jtn

⎞⎟⎟⎟⎟⎟⎟⎠ − 2(2a − 1)β(n, 0, ac − 1) − cn {2β(n, 0, a − 1) + an}

= 4
a−1∑
j=1

j β(n, jc − 1, ( j + 1)c − 1) − 2(2a − 1) β(n, 0, ac − 1)

− cn {2β(n, 0, a − 1) + an} . �

Example 2.18. Using the proposition above, we have

η1(p; a, b2n−1, b2n) = φ0(a, cn) = −2a2cn ,

φ2(a, c)

= 4
a−1∑
j=1

j β(2, jc − 1, ( j + 1)c − 1) − 2(2a − 1) β(2, 0, ac − 1) − c2
{
2β(2, 0, a − 1) + a2

}



Equivariant Determinant of Elliptic Ooperators III 769

= 4
a−1∑
j=1

j
( j+1)c−1∑

k= jc

k2 − 2(2a − 1)
ac−1∑
k=1

k2 − c2

⎧⎪⎪⎨⎪⎪⎩2
a−1∑
k=1

k2 + a2

⎫⎪⎪⎬⎪⎪⎭
= −1

3
a2cn

(
1 + c2

n

)
− 1

3
a4c3

n ,

and hence it follows that

η2 = η2(p; a, b2n−3, · · · , b2n)

=

acn∑
tn−1=0

ψ(a, cn; tn−1)
cn−1dn−1tn−1∑

tn−2=0

ψ(dn−1tn−1, cn−1; tn−2)

=

acn∑
tn−1=0

ψ(a, cn; tn−1)φ0(dn−1tn−1, cn−1)

=

acn∑
tn−1=0

ψ(a, cn; tn−1)
(
−2cn−1d2

n−1t2
n−1

)
=

(
−2cn−1d2

n−1

)
φ2(a, cn)

=
(
−2cn−1d2

n−1

) (
−1

3
a2cn

(
1 + c2

n

)
− 1

3
a4c3

n

)
=

2
3

a2cn−1d2
n−1cn(a2c2

n + c2
n + 1) .

3. Main results

3. Main results
Theorem 3.1. Let p be a natural number which is greater than 1, n a natural number, μ

a non-negative integer and b1, · · · , b2n natural numbers which are prime to p. Then we have

p−1∑
k=1

cos
2πμk

p

2n∏
j=1

cot
πb jk

p
≡

n∑
k=0

ζk(p; b1, · · · , b2k)ηn−k(p; a, b2k+1, · · · , b2n) (mod p)

where a = μb2n.

Proof. When μ = 0, as we see in Remark 2.15, the equality above holds. So we assume
that μ > 0 hereafter. Set

ak = ak(tk) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 (k = 0)

dktk(= 〈 b2kb2k+1 〉tk) (1 ≤ k ≤ n − 1)
a (k = n)

.

For γ ≥ 0, set

Fγ(a, b1, · · · , b2γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(−1)γ+1

p−1∑
k=1

ξ−ak
p

ξk
p + 1

ξk
p − 1

2γ∏
j=1

ξ
b jk
p + 1

ξ
b jk
p − 1

(γ ≥ 1)

−
p−1∑
k=1

ξ−ak
p

ξk
p + 1

ξk
p − 1

(γ = 0)

,

Gγ(a, b1, · · · , b2γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)γ
p−1∑
k=1

ξ−ak
p

ξk
p + 1

ξk
p − 1

2γ−1∏
j=1

ξ
b jb2γk
p + 1

ξ
b jb2γk
p − 1

(γ ≥ 1)

p−1∑
k=1

ξ−ak
p (γ = 0)

,
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fγ(a, b1, · · · , b2γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p−1∑
k=1

sin
2πak

p
cot

πk
p

2γ∏
j=1

cot
πb jk

p
(γ ≥ 1)

p−1∑
k=1

sin
2πak

p
cot

πk
p

(γ = 0)

,

gγ(a, b1, · · · , b2γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p−1∑
k=1

cos
2πak

p
cot

πk
p

2γ−1∏
j=1

cot
πb jb2γk

p
(γ ≥ 1)

p−1∑
k=1

cos
2πak

p
(γ = 0)

.

Note that the values Fγ, Gγ, fγ, gγ are invariant under the substitution a→ a+p, b j → b j+p,
and that for any integer a we have

G0(a) = g0(a) =
{

p − 1 (if a is a multiple of p)
−1 (if a is not a multiple of p)

≡ −1 (mod p) .

Note moreover that for a natural number λ which is prime to p, we have

gγ(a, λb1, · · · , λb2γ) = gγ(a, b1, · · · , b2γ)(13)

because λb jλb2γ ≡ λλb jb2γ ≡ b jb2γ (mod p). As we see in Proposition 2.13, Fγ, Gγ are
real numbers and the following equalities hold for γ ≥ 1:

Fγ(a, b1, · · · , b2γ) = fγ(a, b1, · · · , b2γ) ,

Gγ(a, b1, · · · , b2γ) = gγ(a, b1, · · · , b2γ) .

Moreover it follows from Proposition 2.12 and (10) that

F0(a) = −
p−1∑
k=1

ξ−ak
p

ξk
p + 1

ξk
p − 1

= −
p−1∑
k=1

(
cos

2πak
p
− √−1 sin

2πak
p

) (
−√−1 cot

πk
p

)

=

p−1∑
k=1

sin
2πak

p
cot

πk
p
= f0(a) ,

and similarly that G0(a) = g0(a).

Lemma 3.2. For 0 ≤ k ≤ n the following equality holds:

gk(0, b1, · · · , b2k) ≡ ζk(p; b1, · · · , b2k) (mod p) .

Proof. When k = 0, we have

g0(0) =
p−1∑
k=1

cos 0 = p − 1 ≡ ζ0 (mod p) .

For 1 ≤ k ≤ n since the map b2kk → k gives a bijection of Zp, we have

gk(0, b1, · · · , b2k) =
p−1∑
k=1

cot
πb2kb2kk

p

2k−1∏
j=1

cot
πb jb2kk

p
=

p−1∑
k=1

2k∏
j=1

cot
πb jk

p
,

which is equal to ζk(p; b1, · · · , b2k) as we see in Remark 2.15. �
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Lemma 3.3. We have

f0(a) =
p−1∑
k=1

sin
2πak

p
cot

πk
p
≡ −2a (mod p) .

Proof. It follows from the Eisenstein’s formula
p−1∑
k=1

sin
2πak

p
cot

πk
p
= −2p

((
a
p

))
.(14)

(see [9] p.103 (22)) that

f0(a) = −2p
((

a
p

))
= −2p

(
a
p
−

[
a
p

]
− 1

2

)
≡ −2a (mod p) . �

The next Lemma is the key lemma to prove the theorem.

Lemma 3.4. For γ ≥ 1 we have

gγ(a, b1, · · · , b2γ) =
acγ∑

tγ−1=0

ψ(a, cγ; tγ−1)gγ−1(aγ−1(tγ−1), b1, · · · , b2γ−2) + gγ(0, b1, · · · , b2γ) .

Proof. Since the map b2γk → k gives a bijection of Zp, for γ ≥ 1 we have

Fγ(a + 1, b1, · · · , b2γ) − Fγ(a, b1, · · · , b2γ)

= (−1)γ+1
p−1∑
k=1

ξ−k(a+1)
p

ξk
p + 1

ξk
p − 1

2γ∏
j=1

ξ
b jk
p + 1

ξ
b jk
p − 1

(1 − ξk
p)

= (−1)γ
p−1∑
k=1

(
ξ−ak

p + ξ−k(a+1)
p

) 2γ∏
j=1

ξ
b jk
p + 1

ξ
b jk
p − 1

= (−1)γ
p−1∑
k=1

(
ξ
−kab2γ
p + ξ

−k(a+1)b2γ
p

) ξk
p + 1

ξk
p − 1

2γ−1∏
j=1

ξ
b jb2γk
p + 1

ξ
b jb2γk
p − 1

= Gγ(ab2γ, b1, · · · , b2γ) +Gγ((a + 1)b2γ, b1, · · · , b2γ) ,

and

F0(a + 1) − F0(a) = (−1)0
p−1∑
k=1

(
ξ
−kab2γ
p + ξ

−k(a+1)b2γ
p

)
= G0(ab2γ ) +G0((a + 1)b2γ ) ,

Fγ(0, b1, · · · , b2γ) = fγ(0, b1, · · · , b2γ) = 0 .

Hence it follows that

Fγ(a, b1, · · · , b2γ) = Fγ(a, b1, · · · , b2γ) − Fγ(0, b1, · · · , b2γ)

=

a−1∑
t=0

{
Fγ(t + 1, b1, · · · , b2γ) − Fγ(t, b1, · · · , b2γ)

}

=

a−1∑
t=0

{
Gγ(tb2γ, b1, · · · , b2γ) +Gγ((t + 1)b2γ, b1, · · · , b2γ)

}
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= 2
a∑

t=0

Gγ(tb2γ, b1, · · · , b2γ) −Gγ(ab2γ, b1, · · · , b2γ) −Gγ(0, b1, · · · , b2γ) .(15)

Moreover since the map b2γ−1b2γk → k gives a bijection of Zp, for γ ≥ 1 we have

Gγ(a + 1, b1, · · · , b2γ) −Gγ(a, b1, · · · , b2γ)

= (−1)γ
p−1∑
k=1

ξ−k(a+1)
p

ξk
p + 1

ξk
p − 1

2γ−1∏
j=1

ξ
b jb2γk
p + 1

ξ
b jb2γk
p − 1

(1 − ξk
p)

= (−1)γ+1
p−1∑
k=1

(
ξ−ka

p + ξ−k(a+1)
p

) ξb2γ−1b2γk
p + 1

ξ
b2γ−1b2γk
p − 1

2γ−2∏
j=1

ξ
b jb2γk
p + 1

ξ
b jb2γk
p − 1

= (−1)γ+1
p−1∑
k=1

(
ξ
−kab2γ−1b2γ
p + ξ

−k(a+1)b2γ−1b2γ
p

) ξk
p + 1

ξk
p − 1

2γ−2∏
j=1

ξ
b jb2γ−1k
p + 1

ξ
b jb2γ−1k
p − 1

= −
{
Fγ−1(ab2γ−1b2γ, b1b2γ−1, · · · , b2γ−2b2γ−1)

+Fγ−1((a + 1)b2γ−1b2γ, b1b2γ−1, · · · , b2γ−2b2γ−1)
}

= −
{
Fγ−1(ab2γ−1b2γ, b

γ
1, · · · , bγ2γ−2) + Fγ−1((a + 1)b2γ−1b2γ, b

γ
1, · · · , bγ2γ−2)

}
,

where bγj = b jb2γ−1 (1 ≤ j ≤ 2γ − 2) and hence it follows that

Gγ(a, b1, · · · , b2γ) −Gγ(0, b1, · · · , b2γ)

=

a−1∑
s=0

{
Gγ(s + 1, b1, · · · , b2γ) −Gγ(s, b1, · · · , b2γ)

}

= −
a−1∑
s=0

{
Fγ−1(sb2γ−1b2γ, b

γ
1, · · · , bγ2γ−2) + Fγ−1((s + 1)b2γ−1b2γ, b

γ
1, · · · , bγ2γ−2)

}

= −2
a∑

s=0

Fγ−1(sb2γ−1b2γ, b
γ
1, · · · , bγ2γ−2) + Fγ−1(ab2γ−1b2γ, b

γ
1, · · · , bγ2γ−2)

because Fγ−1(0, bγ1, · · · , bγ2γ−2) = 0. Therefore for γ ≥ 1 it follows from (15) that

Gγ(a, b1, · · · , b2γ)

= −2
a∑

s=0

Fγ−1(sb2γ−1b2γ, b
γ
1, · · · , bγ2γ−2)

+ Fγ−1(ab2γ−1b2γ, b
γ
1, · · · , bγ2γ−2) +Gγ(0, b1, · · · , b2γ)

= −2
a∑

sγ−1=0

Fγ−1(sγ−1cγ, b
γ
1, · · · , bγ2γ−2) + Fγ−1(acγ, b

γ
1, · · · , bγ2γ−2)(16)

+Gγ(0, b1, · · · , b2γ)(
Since tγ−1bγ2γ−2 ≡ aγ−1(tγ−1) , sγ−1cγb

γ
2γ−2 ≡ aγ−1(sγ−1cγ) (mod p) .

)
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= −2
a∑

sγ−1=0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2

sγ−1cγ∑
tγ−1=0

Gγ−1(aγ−1(tγ−1), bγ1, · · · , bγ2γ−2)

−Gγ−1(aγ−1(sγ−1cγ), b
γ
1, · · · , bγ2γ−2) −Gγ−1(0, bγ1, · · · , bγ2γ−2)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
+ 2

acγ∑
tγ−1=0

Gγ−1(aγ−1(tγ−1), bγ1, · · · , bγ2γ−2)

−Gγ−1(aγ−1(acγ), b
γ
1, · · · , bγ2γ−2) −Gγ−1(0, bγ1, · · · , bγ2γ−2)

+Gγ(0, b1, · · · , b2γ)

= −4
a∑

sγ−1=0

sγ−1cγ∑
tγ−1=0

Gγ−1(aγ−1(tγ−1), bγ1, · · · , bγ2γ−2)(17)

+ 2
a∑

sγ−1=0

Gγ−1(aγ−1(sγ−1cγ), b
γ
1, · · · , bγ2γ−2) + 2

a∑
sγ−1=0

Gγ−1(0, bγ1, · · · , bγ2γ−2)

+ 2
acγ∑

tγ−1=0

Gγ−1(aγ−1(tγ−1), bγ1, · · · , bγ2γ−2) −Gγ−1(aγ−1(acγ), b
γ
1, · · · , bγ2γ−2)

−Gγ−1(0, bγ1, · · · , bγ2γ−2) +Gγ(0, b1, · · · , b2γ)

=

a∑
sγ−1=0

sγ−1cγ∑
tγ−1=0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−4 + 2δ(tγ−1, sγ−1cγ)
+2δ(tγ−1, 0) + 2δ(sγ−1, a)
−δ(sγ−1, a)δ(tγ−1, sγ−1cγ)
−δ(sγ−1, a)δ(tγ−1, 0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠Gγ−1(aγ−1(tγ−1), bγ1, · · · , bγ2γ−2)

+ gγ(0, b1, · · · , b2γ)

=

acγ∑
tγ−1=0

Λ(tγ−1)Gγ−1(aγ−1(tγ−1), bγ1, · · · , bγ2γ−2) + gγ(0, b1, · · · , b2γ)

where

Λ(t) =
a∑

sγ−1=N(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−4 + 2δ(t, sγ−1cγ)
+2δ(t, 0) + 2δ(sγ−1, a)
−δ(sγ−1, a)δ(t, sγ−1cγ)
−δ(sγ−1, a)δ(t, 0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , N(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
t

cγ

(
if cγ|t

)
[

t
cγ

]
+ 1 (otherwise)

.

Here we have

Λ(acγ) = −4 + 2 + 0 + 2 − 1 − 0 = −1 ,

Λ(t) = −4
(
a − t

cγ
+ 1

)
+ 2 + 0 + 2 − 0 − 0 = 4

(
t

cγ
− a

)
if 0 < t < acγ and t is a multiple of cγ,

Λ(t) = −4
(
a −

[
t

cγ

])
+ 0 + 0 + 2 − 0 − 0 = 4

([
t

cγ

]
− a

)
+ 2

if 0 < t < acγ and t is not a multiple of cγ,

Λ(0) = −4(a + 1) + 2 + 2(a + 1) + 2 − 0 − 1 = −2a + 1 ,

which implies that Λ(tγ−1) is equal to ψ(a, cγ; tγ−1). Therefore it follows from (13) that
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gγ(a, b1, · · · , b2γ) = Gγ(a, b1, · · · , b2γ)

=

acγ∑
tγ−1=0

Λ(tγ−1)Gγ−1(aγ−1(tγ−1), bγ1, · · · , bγ2γ−2) + gγ(0, b1, · · · , b2γ)

=

cγa∑
tγ−1=0

ψ(a, cγ; tγ−1)gγ−1(aγ−1(tγ−1), b1, · · · , b2γ−2) + gγ(0, b1, · · · , b2γ) . �

For 2 ≤ ν ≤ n − 1 set ψν(tν−1) = ψ(aν(tν), cν; tν−1).
It follows from the result of Lemma 3.4 that

gn(a, b1, · · · , b2n) =
acn∑

tn−1=0

ψn(tn−1)gn−1(an−1(tn−1), b1, · · · , b2n−2) + gn(0, b1, · · · , b2n)

=

acn∑
tn−1=0

ψn(tn−1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
an−1cn−1∑
tn−2=0

ψn−1(tn−2)gn−2(an−2(tn−2), b1, · · · , b2n−4)

+gn−1(0, b1, · · · , b2n−2)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
+ gn(0, b1, · · · , b2n)

=

acn∑
tn−1=0

ψn(tn−1)
an−1cn−1∑
tn−2=0

ψn−1(tn−2)gn−2(an−2(tn−2), b1, · · · , b2n−4)

+ gn−1(0, b1, · · · , b2n−2)
acn∑

tn−1=0

ψn(tn−1) + gn(0, b1, · · · , b2n)

=

acn∑
tn−1=0

ψn(tn−1) · · ·
a3c3∑
t2=0

ψ3(t2)
a2c2∑
t1=0

ψ2(t1)g1(a1(t1), b1, b2)(18)

+

n−1∑
k=2

gk(0, b1, · · · , b2k)
acn∑

tn−1=0

ψn(tn−1) · · ·
ak+1ck+1∑

tk=0

ψk+1(tk)

+ gn(0, b1, · · · , b2n) .

Here it follows from (16), Example 2.18 and Lemma 3.3 that

g1(a1, b1, b2) = −2
a1∑

s=0

f0(sc1) + f0(a1c1) + g1(0, b1, b2)

≡ −2
a1∑

s=0

(−2sc1) − 2a1c1 + g1(0, b1, b2)

= 2a2
1c1 + g1(0, b1, b2) = −φ0(a1, c1) + g1(0, b1, b2)

≡ g0(0)
a1c1∑
t0=0

ψ(a1, c1; t0) + g1(0, b1, b2) (mod p) ,

and hence we have
ancn∑

tn−1=0

ψ(an, cn; tn−1) · · ·
a2c2∑
t1=0

ψ(a2, c2; t1)g1(a1, b1, b2)

≡ g0(0)
ancn∑

tn−1=0

ψ(an, cn; tn−1) · · ·
a2c2∑
t1=0

ψ(a2, c2; t1)
a1c1∑
t0=0

ψ(a1, c1; t0)
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+ g1(0, b1, b2)
ancn∑

tn−1=0

ψ(an, cn; tn−1) · · ·
a2c2∑
t1=0

ψ(a2, c2; t1)

≡ g0(0)ηn(p; a, b1, · · · , b2n) + g1(0, b1, b2)ηn−1(p; a, b3, · · · , b2n) (mod p) .

Moreover we have
n−1∑
k=2

gk(0, b1, · · · , b2k)
cna∑

tn−1=0

ψn(tn−1) · · ·
ck+1ak+1∑

tk=0

ψk+1(tk)

=

n−1∑
k=2

gk(0, b1, · · · , b2k)ηn−k(p; a, b2k+1, · · · , b2n) ,

and it follows from η0(a) = 1 that

gn(0, b1, · · · , b2n) = gn(0, b1, · · · , b2n)η0(a) .

Here since k → b2nk gives a bijection of Zp, it follows from Lemma 3.2 that

p−1∑
k=1

cos
2πμk

p

2n∏
j=1

cot
πb jk

p
=

p−1∑
k=1

cos
2πak

p

2n∏
j=1

cot
πb jb2nk

p
= gn(a, b1, · · · , b2n)

≡
n∑

k=0

gk(0, b1, · · · , b2k)ηn−k(p; a, b2k+1, · · · , b2n)

≡
n∑

k=0

ζk(p; b1, · · · , b2k)ηn−k(p; a, b2k+1, · · · , b2n) (mod p) .

This completes the proof of Theorem 3.1. �

Corollary 3.5. Let p be a natural number which is greater than 1, μ a non-negative
integer, q a natural number and b1, · · · , b2q natural numbers which are prime to p. Then

p2q−1
p−1∑
k=1

cos
2πμk

p

2q∏
j=1

cot
πb jk

p

is an integer.

Proof. It follows from the theorem above that
p−1∑
k=1

cos
2πμk

p

2q∏
j=1

cot
πb jk

p
=

q∑
k=0

ζk(p; b1, · · · , b2k) ηq−k(p; μb2q, b2k+1, · · · , b2q) + pν

where ν is an integer. Here since ηq−k(p; μb2q, b2k+1, · · · , b2q) and

p2q−1ζk(p; b1, · · · , b2k) = (−1)k p2q−2k
∑

1≤k1 , ··· , k2k<p
p|(b1k1+···+b2kk2k)

(2k1 − p) · · · (2k2k − p)

are integers for 0 ≤ k ≤ q, it follows that

p2q−1
p−1∑
k=1

cos
2πμk

p

2q∏
j=1

cot
πb jk

p
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= p2q−1
q∑

j=0

ηq− j(p; μb2q, b2 j+1, · · · , b2q) ζ j(p; b1, · · · , b2 j) + p2qν

is an integer. �

Theorem 3.6. Suppose that the total Chern class of TM⊗C equals
∏m

j=1(1− x2
j) and that

θCh(E�1···�m
qi , gri) =

∑
s nsρpi(μis) where θ = θ(�1 · · · �m) = 1 or 2 (see Remark 2.11), ns’s are

natural numbers and μis’s are non-negative integers. Let ais, bi j (1 ≤ i ≤ b, 1 ≤ j ≤ m), hm

be integers defined by

ais =

{
μisτi 2n (if m is even)

zμis (if m is odd)
, bi j =

{
z (if m is odd and j = 2n)
τi j (otherwise)

,

hm =

{
2m−1 (if m is even)

0 (if m is odd)

and z a natural number which is prime to p. Then the next equality holds as an element of
R/Z.

θID�1 ,··· ,�m (gz) =
p − 1

p
θhm

m∏
j=1

σ j(ex1 , e−x1 , · · · , exm , e−xm)� j

m∏
j=1

x j/2
tanh(x j/2)

[M]

+ (−1)n+1 1
p

b∑
i=1

ri

∑
s

ns

n∑
k=0

ζk(pi; bi1, · · · , bi 2k)ηn−k(p; ais, bi 2k+1, · · · , bi 2n) .

Proof. It follows from (10) that
p−1∑
k=1

ρpi(kzμis)

1 − ξ−k
p

m∏
j=1

(
−√−1 cot

πkzτi j

p

)
=

p−1∑
k=1

R(ξk
p)(19)

where

R(ξk
p) =

ξ
kzμis
p + ξ

−kzμis
p

1 − ξ−k
p

m∏
j=1

ξ
kzτi j
p + 1

ξ
kzτi j
p − 1

.

Then Proposition 2.12 implies that the both sides of (19) are real numbers, and the map
kz→ k gives a bijection of Zp because z is prime to p. Hence we have

p−1∑
k=1

ρpi(kzμis)

1 − ξ−k
p

m∏
j=1

(
−√−1 cot

πkzτi j

p

)

=

p−1∑
k=1

ξ
kzμis
p + ξ

−kzμis
p

2
2

1 − ξ−k
p

m∏
j=1

(
−√−1 cot

πkzτi j

p

)

=

p−1∑
k=1

cos
2πkzμis

p

(
1 − √−1 cot

πk
p

) m∏
j=1

(
−√−1 cot

πkzτi j

p

)
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)n
p−1∑
k=1

cos
2πkzμis

p

2n∏
j=1

cot
πkzτi j

p

= (−1)n
p−1∑
k=1

cos
2πkμis

p

2n∏
j=1

cot
πkτi j

p
(m = 2n)

(−1)n
p−1∑
k=1

cos
2πkzμis

p
cot

πk
p

2n−1∏
j=1

cot
πkzτi j

p

= (−1)n
p−1∑
k=1

cos
2πkμis

p
cot

πkz
p

2n−1∏
j=1

cot
πkτi j

p
(m = 2n − 1)

= (−1)n
p−1∑
k=1

cos
2πμisk

p

2n∏
j=1

cot
πb jk

p
.

Hence it follows from Theorem 3.1 that
p−1∑
k=1

ρpi(kzμis)

1 − ξ−k
p

m∏
j=1

(
−√−1 cot

πkzτi j

p

)
(20)

≡ (−1)n
n∑

j=0

ζ j(p; b1, · · · , b2 j) ηn− j(p; ais, b2 j+1, · · · , b2n) .

Therefore it follows from (3), Proposition 2.6 and (9) that

θID�1 ,··· ,�m (gz) =
p − 1

p
θhm

m∏
j=1

σ j(ex1 , e−x1 , · · · , exm , e−xm)� j

m∏
j=1

x j/2
tanh(x j/2)

[M]

+ (−1)n+1 1
p

b∑
i=1

ri

∑
s

ns

n∑
k=0

ζk(pi; bi1, · · · , bi 2k)ηn−k(p; ais, bi 2k+1, · · · , bi 2n) .

This completes the proof of Theorem 3.6. �

Corollary 3.7. Assume that the cyclic group Zp = 〈g〉 acts on 2m-dimentional closed
oriented manifold where m is even. Then for non-negative integers �1, · · · , �m we have
ID�1 ,··· ,�m (g) = 0 if p is odd and 2θID�1 ,··· ,�m (g) = 0 if p is even.

Proof. Since m is even, θID�1 ,··· ,�m (gz) does not depend on the natural number z which
is prime to p because ais, bi j in the theorem above does not depend on z. Hence setting
z = p − 1 which is prime to p, we have{

pID�1 ,··· ,�m (g) = ID�1 ,··· ,�m (gp) = 0 ,
θID�1 ,··· ,�m (g) = θID�1 ,··· ,�m (gp−1) = θ(p − 1)ID�1 ,··· ,�m (g)

=⇒ θ(2 − p)ID�1 ,··· ,�m (g) = 2θID�1 ,··· ,�m (g) = 0 ,

which imply that ID�1 ,··· ,�m (g) = 0 if p is odd because 2θ is prime to p. �
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4. Examples

4. ExamplesExample 4.1. In this example we consider the case that m = 1, namely the case that M is
a compact Riemann surface. Let p be an odd prime number and Zp a cyclic group generated
by g. Then we have pi = p, in other words, ri = 1 for 1 ≤ i ≤ b. Let t1, · · · , tb be natural
numbers such that 1 ≤ t1, · · · , tb ≤ p − 1, z a natural number which is not a multiple of p,
and set

f (t1, · · · , tb, z) =
1
p

b∑
i=1

(2zti + ζ1(p; ti, z)) .

Then we have

f (t1, · · · , tb, z) ≡ 1
p

b∑
i=1

(
−2(zti)2〈 ti z 〉 · (−1) + 1 · ζ1(p; ti, z)

)
(mod Z)

=
1
p

b∑
i=1

(ζ0 η1(p; zti, ti, z) + ζ1(p; ti, z) η0) .

If {t1, · · · , tb} is the rotation angle of a Zp-action, namely if there exists an action of Zp = 〈g〉
on a compact Riemann surface such that the rotation angle of g is {t1, · · · , tb}, it follows from
Theorem 3.6 that f (t1, · · · , tb, z) = ID1 (g

z) ∈ R/Z because Ind(D1) = 0 and Ch(E1
qi
, g) =

ρp(ti) (see Example 2.10), and hence the following equality holds:

f (t1, · · · , tb, z) − z f (t1, · · · , tb, 1) ≡ 0 (mod Z) .(21)

Here as we see in the proof of Proposition 4.6 in [7], {t1, · · · , tb} is the rotation angle of a
Zp-action if the equality

b∑
i=1

ti ≡ 0 (mod p)(22)

holds. In this example we show that the equality (22) follows from the equality (21), which
implies that the equality (21), which corresponds to the equality ID1 (g

z) = zID1 (g), is the
necessary and sufficient condition for {t1, · · · , tb} to be the rotation angle of a Zp-action.

Here we assume that the equality (21) holds. Since

k1ti + k2z ≡ 0 ⇐⇒ (k1ti + k2z)z ≡ k1tiz + k2 ≡ 0 ⇐⇒ k2 ≡ −k1tiz (mod p) ,

it follows that

ζ1(p; ti, z) = −4p
∑

1≤k1 , k2<p
p|(tik1+zk2)

((
k1

p

)) ((
k2

p

))
= −4p

p−1∑
k1=1

((
k1

p

)) ((−k1tiz
p

))

= 4p
p−1∑
k=1

((
k
p

)) ((
ktiz
p

))
,

and hence we have

f (t1, · · · , tb, z) =
1
p

b∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝2zti + 4p
p−1∑
k=1

((
k
p

)) ((
ktiz
p

))⎞⎟⎟⎟⎟⎟⎟⎠ .
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Then since

2
{

z
((

kti
p

))
−

((
ktiz
p

))}
= 2z

(
kti
p
−

[
kti
p

]
− 1

2

)
− 2

(
ktiz
p
−

[
ktiz
p

]
− 1

2

)

= 2
[
ktiz
p

]
− 2z

[
kti
p

]
+ 1 − z

is an integer and the map kti → k gives a bijection of Zp, it follows that

z f (t1, · · · , tb, 1) − f (t1, · · · , tb, z) = 4
b∑

i=1

p−1∑
k=1

((
k
p

)) {
z
((

kti
p

))
−

((
ktiz
p

))}

= 2
b∑

i=1

p−1∑
k=1

(
2k
p
− 1

) {
z
((

kti
p

))
−

((
ktiz
p

))}

=
4
p

b∑
i=1

p−1∑
k=1

k
{

z
((

kti
p

))
−

((
ktiz
p

))}

=
4
p

b∑
i=1

p−1∑
k=1

kti

{
z
((

k
p

))
−

((
kz
p

))}
=

1
p

T × F(p, z)

where

T =
b∑

i=1

ti , F(p, z) = 4
p−1∑
k=1

k
{

z
((

k
p

))
−

((
kz
p

))}
.

Therefore it follows from the assumption that

2p {2 f (t1, · · · , tb, 1) − f (t1, · · · , tb, 2)} = T × 2F(p, 2) ≡ 0 (mod p) .(23)

Here we have

2F(p, 2) = 8
p−1∑
k=1

k
{

2
((

k
p

))
−

((
2k
p

))}

= 8
p−1∑
k=1

k
{(

2
k
p
− 0 − 1

)
−

(
2k
p
−

[
2k
p

]
− 1

2

)}

= 8
p−1∑
k=1

k
[
2k
p

]
− 4

p−1∑
k=1

k = 8
p−1∑
k=1

k
[
2k
p

]
− 2p(p − 1) ≡ 8

p−1∑
k=1

k
[
2k
p

]
(mod p)

= 8
p−1∑

k= p+1
2

k = (3p − 1)(p − 1) ≡ 1 (mod p) ,

and hence it follows from (23) that T ≡ 0 (mod p), namely the equality (22) holds.

Example 4.2. In this example we consider the case that m = 2, namely the case that
M is a 4-dimensional closed oriented manifold, which does not necessarily admit an almost
complex structure (see Example 3.2 in [7]). In this example using Theorem 3.6, we show that
a relationship between the rotation angle of a Zp-action on M and the signature of M exists
(see (28),(29) below). Let g be an orientation-preserving periodic diffeomorphism of M of
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order p. Let σ(M) be the signature of M and suppose that θCh(E�1,�2
qi , gri) =

∑
s nsρpi(μis)

(θ = 1 or 2). Then since the first Pontrjagin number p1 is equal to 3σ(M), it follows from
Example 2.7, Example 2.18 and Theorem 3.6 that

θID�1 ,�2
(g) =

p − 1
2p

θ 22�1+�23�2 (3�1 + 4�2 + 1)σ(M)

+

b∑
i=1

1
pi

∑
s

ns

1∑
k=0

ζk(pi; τi1, · · · , τi,2k)η1−k(p; μisτi2, τi 2k+1, τi2)

=
p − 1
2p

θ 22�1+�23�2 (3�1 + 4�2 + 1)σ(M)

+

b∑
i=1

1
pi

∑
s

ns

{
(−1)

(
−2 (μisτi2)2 τi1τi2

)
+ ζ1(pi; τi1, τi2) · 1

}
⇐⇒

pθID�1 ,�2
(g) =

p − 1
2

θ 22�1+�23�2 (3�1 + 4�2 + 1)σ(M)(24)

+

b∑
i=1

ri

⎛⎜⎜⎜⎜⎜⎝∑
s

2nsμ
2
is

⎞⎟⎟⎟⎟⎟⎠ τi1 τi2 +

b∑
i=1

ri

⎛⎜⎜⎜⎜⎜⎝∑
s

ns

⎞⎟⎟⎟⎟⎟⎠ ζ1(pi; τi1, τi2) (mod p) .

Here as we see in Example 2.10 we have

Ch(E�1,�2
qi

, g) = σ�1
1 (σ2 + 2)�2

where σk is the k-th elementary symmetric polynomial in ρpi(τi1), ρpi(τi2). Hence we have

Ch(E0,0
qi
, g) = 1 =

1
2
ρpi(0) ⇐⇒ 2Ch(E0,0

qi
, g) = ρpi(0) ,

Ch(E1,0
qi
, g) = σ1 = ρpi(τi1) + ρpi(τi2) ,

Ch(E0,1
qi
, g) = σ2 + 2 = ρpi(τi1)ρpi(τi2) + 2 = ρpi(τi1 + τi2) + ρpi(τi1 − τi2) + ρpi(0) .

Set λ = 1 if p is odd and λ = 2 if p is even. Then it follows from Corollary 3.7, (24) and the
equalities above that

2λpID0,0 (g) = λ(p − 1)σ(M) + λ
b∑

i=1

riζ1(pi; τi1, τi2) ≡ 0 (mod p) ,(25)

pλID1,0 (g) = 8λ(p − 1)σ(M) + 2λ
b∑

i=1

ri(τ2
i1 + τ

2
i2)τi1τi2 + 2λ

b∑
i=1

riζ1(pi; τi1, τi2)

≡ −8λσ(M) + 2λ
b∑

i=1

ri(τi1τi2 + τi1τi2) + 2λ
b∑

i=1

riζ1(pi; τi1, τi2) ≡ 0 (mod p) .(26)

Since (τi1 + τi2)2 + (τi1 − τi2)2 + 02 = 2(τ2
i1 + τ

2
i2) , the next equality also holds.

pλID0,1 (g)

≡ −15λσ(M) + 4λ
b∑

i=1

ri(τi1τi2 + τi1τi2) + 3λ
b∑

i=1

riζ1(pi; τi1, τi2) ≡ 0 (mod p) .(27)

Here we have
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2 × (25) − (26) ≡ 6λσ(M) − 2λ

∑b
i=1 ri(τi1τi2 + τi1τi2) ≡ 0 (mod p)

3 × (25) − (27) ≡ 12λσ(M) − 4λ
∑b

i=1 ri(τi1τi2 + τi1τi2) ≡ 0 (mod p)

⇐⇒ 2λ
b∑

i=1

ri(τi1τi2 + τi1τi2) ≡ 6λσ(M) (mod p) ,

and since 2 is prime to p if p is odd, it follows that

4
b∑

i=1

ri(τi1τi2 + τi1τi2) ≡ 12σ(M) (mod p) if p is even ,(28)

b∑
i=1

ri(τi1τi2 + τi1τi2) ≡ 3σ(M) (mod p) if p is odd .(29)

For example, we consider the case that M = CP2. Let p be a prime number which is greater
than 3 and a, b natural numbers such that 1 < a < b < p. Then

CP
2 � q = [z0 : z1 : z2] → g · q = [z0 : ξa

pz1 : ξb
pz2] ∈ CP2

defines an action of the cyclic group Zp = 〈g〉. The fixed point set of gk (1 ≤ k ≤ p − 1)
consists of q1 = [1 : 0 : 0], q2 = [0 : 1 : 0], q3 = [0 : 0 : 1], and the rotation angle of g is

((τ11, τ12), (τ21, τ22), (τ31, τ32)) = ((a, b), (p − a, b − a), (p − b, p + a − b)) .

Then ri = 1 for 1 ≤ i ≤ 3 and we have
3∑

i=1

ri(τi1τi2 + τi1τi2) ≡ ab + ab − a(b − a) + −a(b − a) − b(a − b) − b(a − b)

≡ ab + ab − a(b − a) − ab + 1 + b(b − a) − ba + 1

= (b − a)(b − a) + 1 + 1 ≡ 3 = 3σ(CP2) (mod p) .

On the other hand since 3 ≡ 3σ(M) ⇐⇒ 3(σ(M) − 1) ≡ 0 (mod p), M does not admit an
Zp-action with the rotation angle above if σ(M) − 1 is not a multiple of p.

For example let p be any prime number such that p + 3 is a multiple of 4 and set n =
(p+3)/2. Let M be the connected sum of n copies of CP2 and n−2 copies of CP2 which is the
underlying manifold of CP2 with the orientation reversed. Then the Euler number e(M) of M
is equal to 2n and the equality (2) is satisfied for b = 3. But sinceσ(M)−1 = n−(n−2)−1 = 1
is not a multiple of p, M does not admit an Zp-action with the rotation angle above. Note
that M does not admit any almost complex structure because e(M) +σ(M) = 2n + 2 is not a
multiple of 4 (see [8] p.1625).

Example 4.3. Let M be a 6-dimensional closed oriented manifold, which does not nec-
essarily admit an almost complex structure (see Example 3.3 in [7]). In this example using
Theorem 3.6, we show that M does not admit the Z6-action of isotropy orders

(p1, p2, p3, · · · , pν+2) = (6, 3, 2, · · · , 2) .
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Here we assume that M admits a Z6-action of isotropy orders above. Then it follows from
the equality (2) that the Euler number e(M) of M satisfies the equality:

ν+2∑
i=1

ri − e(M) = 1 + 2 + 3ν − e(M) = 3
(
ν + 1 − e(M)

3

)
≡ 0 (mod 6) ,

which implies that there does not exist such a Z6-action above unless the following condition
is satisfied:

e(M) is a multiple of 3 and ν + 1 − e(M)
3

is an even number .(30)

So we assume that the condition above is satisfied.
Let g be a generator of Z6 and {τi1, τi2, τi3} the rotation angle of gri . Note that τ1 j = 1 or

5 and τ2 j = 1 or 2 for 1 ≤ j ≤ 3 and hence the mod.pi-inverse of τi j is equal to τi j itself for
i = 1, 2. Here it follows from Proposition 2.9 that

Ch(E0,0,1
qi

, g) = C1
i3 = ρpi(τi1 ± τi2 ± τi3) + 2

∑
1≤ j≤3

ρpi(τi j) =
∑

s

nsρpi(μis)

where

(n1, μi1) = (1, τi1 + τi2 + τi3) , (n2, μi2) = (1, τi1 + τi2 − τi3) ,

(n3, μi3) = (1, τi1 − τi2 + τi3) , (n4, μi4) = (1, τi1 − τi2 − τi3) ,

(n5, μi5) = (2, τi1) , (n6, μi6) = (2, τi2) , (n7, μi7) = (2, τi3) .

Then since Ind(D0,0,1) vanishes as we see in Remark 2.2 and ζ0 = −1 , η0 = 1, it follows
from Theorem 3.6 that

ID0,0,1 (g
z) = −1

p

ν+2∑
i=1

ri

∑
s

nsFs(i, z)(31)

where

Fs(i, z) = −η2(pi; zμis, τi1, τi2, τi3, z) + ζ1(pi; τi1, τi2)η1(pi; zμis, τi3, z) + ζ2(pi; τ11, τ12, τ13, z) .

Here it follows from Example 2.18 for n = 2 that

ζ1 = ζ1(pi; τi1, τi2) = − 1
pi

∑
1≤k1 , k2<pi

pi |(τi1k1+τi2k2)

(2k1 − pi) (2k2 − pi) ,

ζ2 = ζ2(pi; τi1, τi2, τi3, z) =
1
p3

i

∑
1≤k1 , k2 , k3 , k4<pi

pi |(τi1k1+τi2k2+τi3k3+zk4)

(2k1 − pi) (2k2 − pi) (2k3 − pi) (2k4 − pi) ,

η1 = η1(pi; zμis, τi3, z) = −2a2
isc2 = −2(zμis)2〈 τi3 z 〉 ,

η2 = η2(pi; zμis, τi1, τi2, τi3, z) =
2
3

a2
isc1d2

1c2

(
a2

isc
2
2 + c2

2 + 1
)

=
2
3

(zμis)2〈 τi1τi2 〉〈 τi2τi3 〉2〈 τi3 z 〉
{
(zμis)2〈 τi3 z 〉2 + 〈 τi3 z 〉2 + 1

}
.

When i = 1, pi = 6 , z = 1 , (τ11, τ12, τ13) = (1, 1, 1), we have

μ11 = 1 + 1 + 1 = 3 , μ12 = 1 + 1 − 1 = 1 , μ13 = 1 − 1 + 1 = 1 , μ14 = 1 − 1 − 1 = −1 ,
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μ15 = μ16 = μ17 = 1 , z = 1 ,

and direct computation shows that

ζ1(6; τ11, τ12) = ζ1(6; 1, 1) =
20
3
,

ζ2(6; τ11, τ12, τ13, z) = ζ2(6; 1, 1, 1, 1) =
164
9

,

η1(6; zμ11, τ13, z) = η1(6; 3, 1, 1) = −18 ,

η1(6; zμ14, τ13, z) = η1(6;−1, 1, 1) = −2 ,

η1(6; zμ1s, τ13, z) = η1(6; 1, 1, 1) = −2 (s = 2, 3, 5, 6, 7) ,

η2(6; zμ11, τ11, τ12, τ13, z) = η2(6; 3, 1, 1, 1, 1) = 66 ,

η2(6; zμ14, τ11, τ12, τ13, z) = η2(6;−1, 1, 1, 1, 1) = 2 ,

η2(6; zμ1s, τ11, τ12, τ13, z) = η2(6; 1, 1, 1, 1, 1) = 2 (s = 2, 3, 5, 6, 7) ,

and hence we have∑
s

nsFs(1, 1) =
4∑

s=1

{
(−1)u1s +

20
3
v1s +

164
9

}
+ 2

7∑
s=5

{
(−1)us +

20
3
vs +

164
9

}
= −1276

9

where (u11, v11) = (66,−18), (u1s, v1s) = (2,−2) (s = 2, 3, 4, 5, 6, 7).
When i = 2, pi = 3 , z = 1 , (τ21, τ22, τ23) = (1, 1, 2), we have

μ21 = 1 + 1 + 2 = 4 , μ22 = 1 + 1 − 2 = 0 , μ23 = 1 − 1 + 2 = 2 , μ24 = 1 − 1 − 2 = −2 ,

μ25 = μ26 = 1 , μ27 = 2 ,

and direct computation shows that

ζ1(3; τ21, τ22) = ζ1(3; 1, 1) =
2
3
,

ζ2(3; τ11, τ12, τ13, z) = ζ2(3; 1, 1, 2, 1) = −2
9
,

η1(3; zμ21, τ23, z) = η1(3; 4, 2, 1) = −64 ,

η1(3; zμ22, τ23, z) = η1(3; 0, 2, 1) = 0 ,

η1(3; zμ2s, τ13, z) = η1(3; 2, 2, 1) = −16 (s = 3, 7) ,

η1(3; zμ24, τ13, z) = η1(3;−2, 2, 1) = −16 ,

η1(3; zμ2s, τ13, z) = η1(3; 1, 2, 1) = −4 (s = 5, 6) ,

η2(3; zμ21, τ21, τ22, τ23, z) = η2(3; 4, 1, 1, 2, 1) = 5888 ,

η2(3; zμ22, τ11, τ12, τ13, z) = η2(3; 0, 1, 1, 2, 1) = 0 ,

η2(3; zμ2s, τ11, τ12, τ13, z) = η2(3; 2, 1, 1, 2, 1) = 448 (s = 3, 7) ,

η2(3; zμ24, τ11, τ12, τ13, z) = η2(3;−2, 1, 1, 2, 1) = 448 ,

η2(3; zμ2s, τ11, τ12, τ13, z) = η2(3; 1, 1, 1, 2, 1) = 48 (s = 5, 6) ,

and hence we have∑
s

nsFs(2, 1) =
4∑

s=1

{
(−1)u2s +

2
3
v2s − 2

9

}
+ 2

7∑
s=5

{
(−1)u2s +

2
3
v2s − 2

9

}
= −71732

9
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where (u21, v21) = (5888,−64), (u22, v22) = (0, 0), (u2s, v2s) = (448,−16) (s = 3, 4, 7),
(u2s, v2s) = (48,−4) (s = 5, 6).

When 3 ≤ i ≤ ν + 2, pi = 2 and it follows from Remark 2.3 and (20) that∑
s

nsFs(i, 1) = 0 .

Hence it follows from (5) and (31) that

ID0,0,1 (g) = −1
6

ν+2∑
i=1

ri

∑
s

nsFs(i, z)

=
1
6

(
1276

9
+ 2 · 71732

9
+ 0

)
=

72370
27

=
10
27
∈ R/Z .

Using the same method, we have

ID0,0,1 (g
5) =

17
27
∈ R/Z ,

and therefore it follows that

ID0,0,1 (g
5) − 5ID0,0,1 (g) =

7
9
∈ R/Z .

Namely the equality

ID0,0,1 (g
5) = 5ID0,0,1 (g)

does not hold for (τ11, τ12, τ13; τ21, τ22, τ23) = (1, 1, 1; 1, 1, 2).
The direct computation using the same argument shows that the equality

ID0,0,1 (g
5) = 5ID0,0,1 (g)

does not hold for τ1 j = 1, 5 (1 ≤ j ≤ 3) and τ2 j = 1, 2 (1 ≤ j ≤ 3). This is a contradiction
and therefore M does not admit the Z6-action of isotropy orders above.

For example let N be a 4-dimensional closed oriented manifold, R a compact Riemann
surface of genus r such that r ≡ 1 (3) and set M = N × R. Then the Euler number of M is
a multiple of 6 because the Euler number of R is 2(1 − r), and the condition (30) is satisfied
for any odd natural number ν. Then it follows from the result above that M does not admit
the Z6-action of isotropy orders (p1, p2, p3, · · · , pν+2) = (6, 3, 2, · · · , 2) .

Remark 4.4. In the example above, M is an almost complex manifold if N is an almost
complex manifold. But the Z6-action does not necessarily preserve the almost complex
structure and the result above can not be obtained from the methods in [7], where the action
is assumed to preserve the almost complex structure.
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