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Abstract

In this paper, we study the Cauchy problem for a nonlinear wave equation with frictional
and viscoelastic damping terms in R”. As is pointed out by [10], in this combination, the
frictional damping term is dominant for the viscoelastic one for the global dynamics of the
linear equation. In this note we observe that if the initial data is small, the frictional damping
term is again dominant even in the nonlinear equation case. In other words, our main result is
diffusion phenomena: the solution is approximated by the heat kernel with a suitable constant.
Especially, the result obtained for the n = 3 case is essentially new. Our proof is based on
several estimates for the corresponding linear equations.

1. Introduction

In this paper we are concerned with the following Cauchy problem for the wave equation
with two types of damping terms:

{fu—Au+@u—A@u:fwx t>0, xeR"

(1.1)
u(0, x) = up(x), Ou(0,x) =u;(x), xeR"

where uo(x) and u;(x) are given initial data, and about the nonlinearity f(«) we shall consider
only the typical case such as

f =", (p>1),

without loss of generality (see Remark 1.3 below).

Concerning the following equation with frictional damping:

{fu—Au+au=fwx t>0, xeR"

(1.2)
u(0, x) = up(x), Ou(0,x) =u(x), xeR",

nowadays one can find an important result called as the critical exponent problem such
as following: there exists an exponent p, > 1 such that if the power p of nonlinearity
f(u) satisfies p. < p, then the corresponding problem (1.2) has a small data global in time
solution, while in the case when 1 < p < p, the problem (1.2) does not admit any nontrivial
global solutions for some initial data. We call p. as the critical exponent. In the frictional
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808 R. IkEHATA AND H. TAKEDA

2
damping case, we have p,. = pr := 1 + —, which is called as the Fujita exponent in the

n
semi-linear heat equation case. For those results, we refer to [4], [5], [8], [12], [15], [16],
[18], [19], [20], [24], [25], [26] and the references therein.

Quite recently, Ikehata-Takeda [11] has treated the original problem (1.1) motivated by a
previous result concerning the linear equation due to Ikehata-Sawada [10], and solved the

Fujita critical exponent one. They have discovered the value p. = 1 + — again only in the
n

low dimensional case (i.e., n = 1,2). Then, the problem of the critical exponent to (1.1) is
still open for all » > 3. This result due to [11] implies an important recognition that the

dominant term is still the frictional damping d,u, although the equation (1.1) has two types
of damping terms. Note that in the viscoelastic damping case,

{G?M—Au—Aatu:f(u), t>0, xeR",

(1.3)
u(0, x) = up(x), Ou(0,x) =u(x), xeR",

we still do not know the “exact” critical exponent p,. Several interesting results about this
critical exponent problem including optimal linear estimates for (1.3) can be observed in the
literature due to D’ Abbicco-Reissig [2, see Theorem 2, and Section 4]. But, it seems to be a
little far from complete results on the critical exponent problem of (1.3). In fact, in [2] they
studied a more general form of equations such that

6?14 —Au+ (=N 0 = uf(u)

with o € [0,1] and u > 0. Pioneering and/or important contributions for the case o = 1
(i.e., strong damping one) can be found in several papers due to [7], [13] ( both in abstract
theory), [21], [23] and the references therein.

We should also mention some results for the asymptotic behavior of solutions to the lin-
earized compressible Navier-Stokes systems, since the main results of this paper are largely
overlapping with the results in that fields. We also note that it is well known that the so-
lution of (1.3) is corresponding to the density of the Navier-Stokes system. In this case,
Hoff-Zumbrun [6] firstly pointed out that the asymptotic behavior of the solution in terms of
LP-norms with H*N L' data for some s > 0, has two possibilities as  — co: When p > 2, the
dominant term is given by the pure diffusive part. On the other hand, if p < 2, the solution
asymptotically behaves like the diffusion wave. Kagei-Kobayashi [14] extended the results
of [6] to the half space case. In a more simple setting, Kobayashi- Shibata [17] proved sharp
decay estimates of the solutions and recently, Ikehata-Onodera [9] obtained the lower bound
of solutions in terms of L2.

From observations above one naturally encounters an important problem such that
even in the higher dimensional case for n > 3, can one also solve the critical exponent
problem of (1.1)?

Our first purpose is to prove the following global existence result of the solution together
with suitable decay properties to problem (1.1).

2 .
Theorem 1.1. Letn = 1,2,3, € > O and p > 1 + =. Assume that (ug,u;) € (W21 n
n

Wite®)x (L' N L®) with sufficiently small norms. Then, there exists a unique global solution
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u € C([0, 00); L' N L*™) to problem (1.1) satisfying

—nep=1
(1.4) lee(t, Mlzaceny < CCluolly ey ey + Ntllzins) (1 + 072077

forq e [1,].

Our second aim is to study the large time behavior of the global solution given in Theorem
1.1. For this we define the Gauss kernel by

n X2
Gi(x) = (4mt) B
Theorem 1.2. Under the same assumptions as in Theorem 1.1, the corresponding global
solution u(t, x) satisfies

(1.5) tim 2072 u(t, ) = MGlluaqe = 0,

for1 < q < oo, where M := (uo(y) + u1(y))dy + foo f(u(s,y))dyds.
R 0 JR

Remark 1.3. We should remark that our results are easily extended to the nonlinear term
f(u) satisfying the locally Lipschitz growth condition

|f(w)] < Clul”,
If@) = f@) < CulP™" + [p]” Hlu - o]

for some constant C > 0, with minor modification of the proofs.

RemMark 1.4. By combining the blowup result given in [11, Theorem 1.3] and Theorems
1.1 and 1.2 with n = 3, one can make sure that even in the n = 3 case the critical exponent p.
to (1.1) is given by the Fujita exponent p. = pr. Such sharpness has already been announced
in the low dimensional cases (i.e., n = 1,2) by [11, Theorems 1.1 and 1.3]. So, the result
for n = 3 is essentially new. It is also worth mentioning that we need not to assume the
upper bound of the growth order p in Theorems 1.1 and 1.2, since we construct the global
solution of (1.1) in the class C([0, o0); L' N L™) under the restriction n < 3. These are our
main contributions to problem (1.1) in this paper. It is still open to show the global existence
part for all n > 4, however, this part will be studied in our forthcoming project.

Before closing this section, we summarize notation, which will be used throughout this
paper.

Let f denote the Fourier transform of f defined by
f@r=a [ iy

with ¢, = (27)7%. Also, let F~![ flor f denote the inverse Fourier transform.
We introduce smooth, radial cut-off functions to localize the frequency region as follows:
XL» xm and yy € C(R") are defined by

Ll <

X&) = {0’ .

, (o E=3,
XH@—{O’ oo,

ENT[USIN ST
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xm(&) =1—=xr(&) — xu(é).
Fork>0and 1 < p < oo, let WAP(R™) be the usual Sobolev spaces
WEPR™) = {f 1 R" = Ril| fllwireny = Il + NV fllio < oo,

where LP(R") is the Lebesgue space for 1 < p < oo as usual. When p = 2, we denote
WKE2(R™) = H*(R™). For the notation of the function spaces, the domain R" is often abbre-
viated. We frequently use the notation || f||, = ||fllz-r Without confusion. Furthermore, in
the following C denotes a positive constant, which may change from line to line.

The paper is organized as follows. Section 2 presents some preliminaries. In Section
3, we show several point-wise estimates of the propagators for the corresponding linear
equation in the Fourier space. Section 4 is devoted to the proof of linear estimates, which
play crucial roles to get main results. In sections 5 and 6, we give the proof of our main
results.

2. Preliminaries

In this section, we collect several basic facts on the Fourier multiplier theory, the decay
estimates of the solution for the heat equation and elementary inequalities to obtain the decay
property of the solutions.

2.1. Fourier multiplier. For f € L> N L”, 1 < p < o0, let m(¢) be the Fourier multiplier
defined by

FmfI) = e f ¥ Em(E) f€)de.

n

We define M, as the class of the Fourier multiplier with 1 < p < co:
M, = {m : R" — R; measurable|
There exists a constant A, > 0 such that ||F_1[mf]||p < Apllfllp}.

Form € M, we let

17~ [mfll,
M = - TR—
pm) = sup =

The following lemma describes the inclusion among the class of multipliers.
Lemma 2.1. Let 1 + l/ =1withl < p < p’ <oo. Then M,, = M, and for m € C*(R"),
it holds that Py
M,(m) = M, (m).
Moreover, if m € M, then m € M, for all q € [p, p'] and
2.1 M,(m) < M,(m) = M, (m).

We recall the Carleson-Beurling inequality, which is used to show the L” boundedness of
the Fourier multipliers.
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n
Lemma 2.2 (Carleson-Beurling’s inequality). If m € H® with s > > then m € M, for all
1 < r < 0. Moreover, there exists a constant C > 0 such that
1—21 L
(2.2) Moo (m) < Cllmlly *{lml| ..
For the proof of Lemmas 2.1 and 2.2, see [1].

2.2. Decay property of the solution of heat equations. The following lemma is also
well-known as the decay property and approximation formula of the solution of the heat
equation. For the proof, see e.g., [3].

Lemma23. Letn>1,¢>0,k>k>0and1 <r< q < oo. Then there exists a constant
C > 0 such that

_nel _1y_p kK 7
(2.3) [0 VEegll, < Ct72G 77|V,
Moreover, if g € L' N L4, then it holds that

(24) lim 1207073V (e'g — G|, = 0,
where m = f g(y)dy.

2.3. Useful formula. In this subsection, we recall useful estimates to show several results
in this paper. The following well-known estimate will be frequently used to obtain time
decay estimates.

Lemma 24. Letn > 1, k> 0and 1 < r < 2. Then there exists a constant C > O such
that
k

(2.5) [ glke TR < C(1+ 1)

The next lemma is also useful to compute the decay order of the nonlinear term in the
integral equation.

Lemma 2.5. (i) Let a > 0 and b > 0 with max{a, b} > 1. There exists a constant C > 0
depending only on a and b such that for t > 0 it is true that

t
(2.6) f (41— 571+ 5)ds < C(1 + py~minted),
0

(iyLet1 >a >0, b>0andc>0. There exists a constant C > 0, which is independent of t
such that for t > 0 it holds that

2.7) f et — )71+ 5)Pds < C(1+ 1)
0

The proof of Lemma 2.5 is well-known (see e.g. [22]).

3. Point-wise estimates in the Fourier space

In this section, we show point-wise estimates of the Fourier multipliers, which are im-
portant to obtain linear estimates in the next section. Now, we recall the Fourier multiplier
expression of the evolution operators to the linear problem. According to the notation of
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[10] and [11] we define the Fourier multipliers Ky(t, &) and ICy(z, &) as

—A_et + A, et 3 e 1P _ |€]%e™!

Ko(t, &) = = ,
0(2,6) Lol rE
—e 4 ot e—t\§|2 — et
Ki(1,6) = = 5
Ay — A 1 -4
and the evolution operators K(t)g and K, (t)g to problem (1.1) by
3.1) Ki(hg := F~ (1, 6)d]

for j = 0,1, where A. are the characteristic roots computed through the corresponding
algebraic equations (see Section 3 of [11])

2+ (1 +1EHA+1E” = 0.

Moreover, using the cut-off functions y (k = L, M, H), we introduce the “localized” evolu-
tion operators by

(3.2) Kj(Hg = F K, 631,
where K (1,&) := Kj(t,Exx, for j=0,1, k=L, M,H.

3.1. Estimates for the low frequency parts. We begin with the following point-wise
estimates on small |£| region in the Fourier space.

Lemma 3.1. Let n > 1 be an integer and |¢] < 1/2. Then there exists a constant C > 0
such that

(3.3) el — e¢P| < Ce I
(3.4) Ve(e ™ — g < Ce™IFRF (1 + )i,
3.5) V27 — eeP)] < CemTE (1 + 1+ 2.

1
Proof. The proof is straightforward. Noting |£] < 3 we easily see that

|e—t|,f|2 _ e—l|§|2| < C(e—ll-fl2 + e—l) < Ce—(1+l)|§|2’
and
Ve(e ™ — e IP)] < Ce™™ P rlé] + Celel < CemEF (1 + pje,
which prove the estimates (3.3) and (3.4), respectively. Finally we show the estimate (3.5).
Taking the second derivative and using |£] < 3 again, we have
V2" — e leP)| = 2IVe(e ¥ 1 - e78)
< C(e ™ (1l + 1) + €™
< Ce P (1 41 4+ 21,

which is the desired estimate (3.5), and the proof is complete. O
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The following estimates are useful to obtain the decay property and the large time behav-
ior of the evolution operator K (?)g.

Lemma 3.2. Let n > 1 be an integer and |¢| < 1/2. Then there exists a constant C > 0
such that

(3.6) |e*tlé-’|2 —e < Ce*(lﬂ)IfIZ’
3.7) Ve(e ™ — &) < Cem 0P g,
(3.8) |v§(e-f'f'2 — e )| < Ce” MR (1 4 21,

Proof. The proof is standard. We have (3.6) by similar arguments to (3.3). When k£ > 0,
by applying Vi(e ™" — ™) = Vie™F, (3.7) and (3.8) can be derived. O

As an easy consequence of Lemmas 3.1 and 3.2, we arrive at the point-wise estimates for
the Fourier multipliers with small |&|.

Corollary 3.3. Under the assumptions as in Lemmas 3.1 and Lemma 3.2, it holds that

(3.9) K (t,6)] < Ce™1¥08Py

(3.10) VK (1. 6)] < Ce (1 + iélyy + Ce iy,

(3.11) V2K 1.1, &) < Ce™ M ¥E (Lt 1+ 2P )p + Ce 3 ()] + /D)
for j=0,1.

Proof. The estimates (3.9), (3.10) and (3.11) for j = 1 are shown by the same argument.
Here we only show (3.11) with j = 0. We first note that

Clel, fork =1,

(3.12) Vel =177 <
¢ d C, for integers k > 0.

In addition, it is easy to see that

(3.13) IVEKoL(t,€)] < Ce™t

on supp x; U suppx; by (3.3) - (3.5) and (3.12) with k = 0, 1. Thus, a direct calculation,
(3.12), (3.13) and Lemma 3.1 show that

P )
K (6 = |§|2|§| XL)
< CylVAe ™ = eeP)] + CylélVe(e ™ — el
+ Cxrle™ — e7eP| + Ce™5 () + I}
< Cxi(l + 1+ PigP)e ™ 4 Oy fePe (0
+ Cyre” " 4 Ceni ()] + ey
< Cem M (14 1+ APy + CeH (g + ey D

IViKoL(1,6) < C

which is the desired estimate (3.11) with j = 0. The proof of Corollary 3.3 is now complete.
O
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The following result plays an important role to obtain asymptotic profiles of the evolution
operators Ko(#)g and K;(t)g.

Corollary 3.4. Under the same assumption as in Lemmas 3.1 and Lemma 3.2, it holds

that
(3.14) i (t,&) — e ¥y | < Clee 0y,
(3.15) V(K0 (1,€) — €0y )l < Cem P11 + Py, + CeH i),
(3.16) V2O (1, €) — e xp)

< Cem MR (1 4 e + Pl + Ce? () + D)
for j=0,1.

Proof. We first consider the case j = 0. Combining the estimate (3.9) with j = 1 and the
fact that

(3.17) Kor(t, &) — ey = PRI, ),

one can get (3.14) with j = 0. In order to show (3.15) and (3.16), by using (3.17) again we
see that

G18)  [VEKo(r.) - ey
3 { CUENKC (8, &) + EPIVeK1. (1, ) for k = 1,
T CUR )]+ EIVER L1 O] + PRIV (1, €) for k = 2.

Combining (3.18) and (3.10) with j = 1 yields the estimate (3.15) with j = 0. We now apply
this argument again to (3.10) with j = 1 replaced by (3.11) with j = 1, to obtain the estimate
(3.16) with j = 0. Finally we prove (3.14) - (3.16) with j = 1. Noting that

e—tlfl2 |§|2 —e!
- —
1—[¢)

and applying a similar argument to (3.6), one gets (3.14) with j = 1. Moreover, using
VE(e P ¢l — ™) = VE(e ¥ |¢?) for k > 0, we can deduce that

(3.19) Ki(t,6) — ey, =

(3.20) [Ve(e ™1 = )] < Clel(L + dgPe ™,
(321 V2162 — ) < C(1 + 1P + Pler)e "

Therefore, by (3.14) with j = 1 and (3.20), we obtain (3.15) with j = 1. Likewise, we use
(3.14) and (3.15) with j = 1 and (3.21) to meet (3.16) with j = 1, and the corollary follows.
O

3.2. Estimates for the middle and high frequency parts. The following lemma states
that the middle part for |£] has a sufficient regularity and decays fast.

Lemma 3.5. Letn > 1 and k > 0. Then there exists a constant C > 0 such that

(3:22) VEK jua (2, Exml < Ce*xm
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for j=0,1.

Proof. The support of the middle part VéIC im(t,E)xm is compact and does not contain a
neighborhood of the origin £ = 0. Therefore, we can estimate the polynomial of |£| by a
constant. This implies the desired estimate (3.22), and the proof is now complete. |

The rest part of this subsection is devoted to the point-wise estimates for the high fre-
quency parts Ky (t)g for j =0, 1.

Lemma 3.6. Letn=1,2,3, &> 0and a € {2, g + &}. Then it holds that

2—-a
(3.23) V_’;(F' e )m) € L*(R")
fork=0,1,2.
Proof. It is easy to see that

(3.24 Vi) - ot

1 -l

|2—a

as || — oo and 2(—a — k) < —n. Moreover the support of 1—||2XH does not have a
neighborhood of [£] = 1. Summing up these facts, we can assert (3.23), and the proof is
complete. m|

Lemma 3.7. Letn > 1 and |é| > 3. Then there exists a constant C > 0 such that
(3.25) V(e 7 — ™) < Ce ™ g,
(3.26) V2™ — ™)) < Ce (1 + ),
Proof. Applying Vf,’i(e‘”‘f'2 —e) = Vije"'f'z for k > 0 again, we easily have Lemma 3.7.

O

Corollary 3.8. Under the same assumptions as in Lemma 3.7, there exists a constant
C > 0 such that

(3.27) K1 (t.€)] < Ce™elxn,
(3.28) IVekCi(t,6)| < Ce 2 1€ (e + WD),
(3.29) V2K 1(1, )] < Ce™2 I Qvm + Iyl + i)

Proof. Since (3.27) - (3.29) are shown by the similar way, we only check the validity of
(3.29). We first note that

(3.30) Kt x| + |Veke (e, Enxly| + K0t x| < Ce2 (il +

for j = 0, 1. Indeed, the support of y/, and y7; is compact and does not include a neighbor-
hood of ¢ = 0. So, the direct calculation and (3.24) - (3.26) show
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(3.31) V21 (2,€)]
< CIV2 )€1 + CIVee P (IVe(1 = [62)7"] + Ce™™F V21 - 1e®) 7]
< Ce™e ™5 (e + 2D + 714 + 1)
< Ce 2|
for |£] > 3. Thus combining (3.30) and (3.31), we see
IVEC1a(1, )] < CxulVEK (1, ) + Ce 2 (Il + i)
< Ce 2|2 Ovn + eyl + WD

which is the desired conclusion. O

The following estimates are useful for the estimates for Kyy(t)g.

Corollary 3.9. Under the same assumptions as in Lemma 3.7, there exists a constant
C > 0 such that

(3.32) |KCo(t, T xy| < Ce I3y,
(333) [V (Kot )| < CeHE 2 O + i,
(3.34) [V2 (Kote, 01 )| < Cem 515 e + Il + .

Proof. Let k = 0, 1, 2. Observing the fact that

. e—tlflzlé_-l—(%+s) _ e—t|§|2—(%+a)
V.g XH

1 —1¢P
R P 5re
Viﬁ( e M V( P X”)

|¢1?

we see that the first factor in the right hand side of (3.35) satisfy the following estimates

(3.35)

Pl ik |§|—(%+8)
1 —|&?

Palin -G +e)
V. [—5 ~
6( 1— &P XH)

e—t|§|2|§|—<%+8)
v —
f( r—jge

as in Corollary 3.8. Furthermore, by using (3.24) with @ = g + ¢, and (3.31) with j =1, the

(3.36) | < Ce ™2y,

< Ce 2|82y + D,

Ce™ 21752 v + Iyl + D

second factor in the right hand side of (3.35) is estimated as follows
i )
NVE S —x
( —1gr "
Summing up these estimates (3.35) - (3.37), one can conclude (3.32) - (3.34). m]

(3.37) < Ceilg iy
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4. Linear estimates

In this section, we shall study an important decay property of the solution u(z, x) to the
corresponding linear equation:

{8?u—Au+0,u—A8tu:O, t>0, xeR"

4.1)
u(0, x) = up(x), Ou(0,x) =u(x), xeR"

in order to handle with the original semi-linear problem (1.1). Our purpose is to show
the following proposition, which suggests large time behaviors of the solution to the linear
problem above in L' N L™ framework.

Proposition 4.1. Letn = 1,2,3 and € > 0. Assume that (ug, u;) € (Wis! 0 Wite®) x
(L' N L™®). Then, there exists a unique solution u € C([0, c0); L' N L™) to problem (4.1) such
that

4.2) (2, Mgy < C(1+ 720D,
(4.3) (. ) = MG o = o 2070) (£ = o)

for g € [1, 0], where M= f (uo(y) + u1(y))dy.
Rn

4.1. Decay estimates for “localized” evolution operators. In this subsection, we pre-
pare several decay properties of the evolution operators.

Lemma 4.2. Letn =1,2,3, 1 <r < g < oco. Then there exists a constant C > 0 such that
_ncl_1
(4.4) IKi(®glly < C1+ 1725 2|gl,
for j=0,1.

Lemma 4.3. Letn = 1,2,3, e > 0and 1 < r < g < oo. Then there exists a constant
C > 0 such that

(4.5) IKou(Dglly < Ce 2|V, 15+2gll,,
Ce2|igll, forn = 1,
(4.6) 1K1z (t)glly <
Ce 2|lglly forn = 2,3,
and
4.7 IK e (Dgll, < Ce2igll, for j = 0,1.
Proof of Lemma 4.2. To show (4.4), it is sufficient to show that
(4.8) IKir(Dglle < CA + )2 lgll1,
(4.9) IKr(Dgll, < Cligll,

for 1 < g < oo. Indeed, once we have (4.8) and (4.9), the Riesz-Thorin complex interpolation
theorem yields (4.4). So, we first show (4.8). By the Hausdorff-Young inequality and (2.5),
we see that
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IK;L(Dglleo < CIIEC;L(2, Ol < KD 1191l
_ 2 _n
<lle™ " Yy llglly = €1 + 12 gl

which show the desired estimate (4.8). Next, we prove (4.9) by applying (2.2). Then by
using (3.9) - (3.11) and (2.5), we can assert the upper bounds of ||VS’§leL(t)||2 fork=0,1,2
as follows:

(4.10) IV (0)ll2 < C(1L +1)78+2,
Therefore for n = 1, we apply (4.10) with £ = 0, 1 and (2.2) with s = 1 to have
@.11) Mo (K1) < CIK 0l I 01,
< IOy IVeK (o)
<CU+07 51+ <C.
On the other hand, for n = 2, 3, we use (4.10) with k£ = 0,2 and (2.2) with s = 2 to see
(4.12) MK (0)) < CICly Il
< CIKC0lly IV 013
<C+n7 DA+ it < €
By combining (4.11), (4.12) and (2.1) one can obtain
My(Kj (1) < Moo(Kjr(1) < C
for 1 < g < oo, which proves the desired estimate (4.9) by the definition of M,,. m|
Proof of Lemma 4.3. Firstly, we remark that (4.5) and (4.6) can be derived by the same
idea. Hence we only check (4.6). As in the proof of Lemma 4.2, we only need to show
(4.13) IK1a(Dglle < Ce™llgll1,
forn =1 and
(4.14) IK12(D)glly < Ce™*igll,
forl <g<ooandn =1,2,3. For n = 1, the Hausdorft-Young inequality and (3.27) yield
1K1 (O)gllo < 11T EGI < Ce 1E v ull gl < Cellgll,

since |&]2yy € L'(R), which is the desired estimate (4.13). In order to show (4.14), we
again apply the same argument as (4.9). Indeed, by (3.27) - (3.29), we see

(4.15) IVEK (2, )l < Ce™>
for k = 0, 1, 2. Here we have just used the fact that
€172 O + eyl + ) € LR
for n = 1,2, 3. Therefore, we apply (4.15) with k = 0, 1, (2.1) and (2.2) with s = 1 to have
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_1 1

(4.16) My (K1) £ Moo(K1a(1)) < C”KIH(I)”; N HOIL,
< CIIICm(t)II;_EIIV§IC1H(I)||§
< Ce_%,

for the case n = 1. When n = 2,3, by (4.15) with k = 0,2, (2.1) and (2.2) with s = 2 one
can find that

1=z n
(4.17) My(Krp (1) £ Moo (K11 (1) < CIE 5Ol K H O,
1-2 n
< ClIK 1Nl IVEE1H @3
< Ces.
By the definition of M,, with the help of (4.16) and (4.17), we obtain the desired estimate
(4.14) forn =1,2,3.
Finally, we check (4.7). The proof of (4.7) is immediate. Indeed, we now apply the

argument for (4.4), with (4.10) replaced by (3.22) to obtain (4.7), and the proof of Lemma
4.3 is now complete. m|

4.2. Asymptotic behavior of the low frequency part. In this subsection, we state that
the evolution operators K;.(t)g for j = 0,1 are well-approximated by the solution of the
heat equation.

Lemmad4.4. Letn =1,2,3,1 <r < g < oo. Then there exists a constant C > 0 such that

_nel _1y_
(4.18) IK;r(Dg — e * glly, < C(1+ 072070 Y g]l,
for j=0,1.

Proof. For the proof, we again apply the similar argument to the proof of Lemma 4.2.
Namely, we claim that

(4.19) IKir(t)g — e (¥ * g)llo < C(1+ D727 lgll1,
(4.20) IK (g — (¥ * @lly, < CA + )7 gl

for 1 < g < co. Here we recall that (4.19), (4.20) and the Riesz-Thorin interpolation theorem
show (4.18). Therefore it suffices to prove (4.19) and (4.20) in order to get (4.18).

We first show (4.19). The Hausdorff - Young inequality, (3.14) and (2.5) with k = 2 and
r = 1 show

v — &2 ~
IKjL(Dg — e (L * 9lleo < CIIC (1) — e ™ ¥ Dl
< CIKC (1) — eyl 191l
_ 2 _n_
< CllIEPe™ MRy 1 hllglh < €1+ 6727 Yiglly,

which is the desired estimate (4.19).
Next, we prove (4.20). Observing (3.14) - (3.16) and (2.5), we get

(4.21) IVE(KCj1.() - ey Dl < C(1 + )73 1%2

fork=0,1,2.
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In order to check (4.20) for the case n = 1, we apply (2.2) with s = 1 and (4.21) with
k=0,1to get

_ _ 1-1 _ 1
422)  Mo(Kju(0) - e xp) < CIK () — eyl 21K () — eyl
_1léR 1-1 2 1
< CIK (1) = e xilly 2 IVeUCin() — e x )3
<CL+ 0301+ 028D <o+,

Namely, we have arrived at (4.20) with n = 1 since combining (2.1) and (4.22) gives (4.20).
In the case when n = 2, 3, we use (4.21) with £k = 0,2 and (2.2) with s = 2 to obtain

_ _ 1-2 _ n
Mo (Kje(0) = e ¥ x) < CIKC() = e xerlly * () — e ¥yl
_ 1-2 _ n
< CIR (1) — eyl *IVEE () — e I
<C(1+p)i V=D + i = c1 +0)7".
That is, M,(Kj(1) — ¢ " y1) < Moo(KCj(t) — e ¥ y) < C(1 + 1) for 1 < g < co by (2.1)

again. This shows (4.10) with n = 2, 3, which proves Lemma 4.4. m|

4.3. Proof of Proposition 4.1. In this subsection, we shall prove Proposition 4.1.
We start with the observation that the results obtained in previous subsections guarantee
the decay property and large time behavior of the evolution operators Ko(¢) and K;(?).

Corollary 4.5. Letn = 1,2,3, e > 0and 1 < r < g < co. Then there exists a constant
C > 0 such that

(4.23) IKo(Dgll, < C(1+ 1y 2 D|igll, + Ce 2 |[V.5 gl

(4.24) 1K1 (Dgll, < C(1+ 1y 2 D)igll, + Ce™2lgll,,

(4.25) I(Ko(r) — ¢™)gll, < CA+ D720 gll, + Ce 21V .2 gll,,
(4.26) KL (1) = eM)glly < C(1+ 07207 gll, + Ce2igll,.

REMARK 4.6. We note that under the statement above for n = 1, we see that

1

i1
IK1(Hglly < C(1+ 072 gll,.
KK, (1) = e“)glly < €A+ 072D gl
since Ce™2 llgll, is estimated by C(1 + t)_%(%_i)_1
the case ¢ = r, namely,

(4.27) IK1(Dglly < liglly»
(4.28) I(K1(2) = e®)gll, < C(1+ 1) gl

|lgll-. The same reasoning can be applied to

Proof. The proof of the estimates (4.23) - (4.26) is similar. Here we only show the proof
of (4.23). Combining (4.4) with j = 0, (4.5) and (4.7) with j = 0, and the definition of the
localized operators, we see that

IKo)glly < - Kok (gl

k=L.M.H
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< C(1L+ 07307 Dligll, + Ce2gll, + Ce™ 2|1 IVAE gl
< 1+ 0730 ligll, + Ce™H | IV32g]l,
which show the desired estimate (4.23). This completes the proof of Corollary 4.5. m|
By combining (4.25), (4.26) and (2.4), we can assert the approximation formula of the
evolution operators Ky(¢) and K(¢) in terms of the heat kernel for large ¢.

Corollary 4.7. Letn = 1,2,3, £ > 0 and (g9, g1) € (Wi*s! 0 Wite4) x (L' N L9). Then
it is true that

=1
(4.29) IK(t)g; — m;G,ll, = o(t* -,

ast — oo for j=0,1, where mj = f gj(y)d!/-
RV!
Proof. For j = 0, we apply (4.25) and (2.4) to get
DKo (190 — moGil
< 2 DlIKo (1) = egol + 124l go — moGil

-1 _1 n neq-1 A
< C(1+ 1) llgolly + Ce V2 *glly + 122 lle™ go = moGill,

-0

as t — oo, which is the desired estimate (4.29) with j = 0. We now apply this argument with
(4.25) replaced by (4.26), to obtain the estimate (4.29) with j = 1, and Corollary 4.7 now
follows. |

Now, we are in a position to prove Proposition 4.1 by combining Corollaries 4.5 and
4.7. Proof of Proposition 4.1. We recall that the solution to (4.1) is expressed as u(t,-) =
Ko(t)ug + Ki(t)u;. Then it follows from (4.23) and (4.24) with r = 1,

_nep_1
lu®ll, < IKo(Duolly + 1K (i ll, < C(1+ 72070,

which is the desired estimate (4.2). Also we see at once (4.3). Indeed, (4.25), (4.26) with
r =1 and (4.29) give

llu(t, ) = MG)lly < I(Ko(t) — e®uoll, + (K1 (1) — e®ull,
+[I(e(up + uy) — MG,
<C(1+ 07300 4 o300

as t — oo, which is the desired estimate (4.3). This proves Proposition 4.1. |

5. Existence of global solutions

This section is devoted to the proof of Theorem 1.1. Here we prepare some notation,
which will be used soon. We define the closed subspace of C([0, c0); L' N L™) as

X := {u € C([0,00); L' N L); |lully < M},
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where

llllx = sup{llu®)lly + (1 + 1) lu(®)]]eo}

>0

and M > 0 will be determined later. We also introduce the mapping @ on X by

6.1 DOlu](®) := Ko(Hup + K1 (H)u; + \fo Ki(t— 1) f(u)(r)dr.

For simplicity of notation, we denote the integral term of (5.1) by I[u](¢):

(5.2) I[u](?) := fot Ki(t = 1) f(u)(r)dr.
In this situation, we claim that

(5.3) lDLulllx < M

forall u € X and

(5.4) 1901 = Dol < 3l ol

for all u,v € X. For the proof of Theorem 1.1, it suffices to show (5.3) and (5.4). Indeed,
once we have (5.3) and (5.4), we see that @ is a contraction mapping on X. Therefore it
is immediate from the Banach fixed point theorem that ® has a unique fixed point in X.
Namely, there exists a unique global solution # = ®[u] in X and Theorem 1.1 can be proved.
We remark that the linear solution Ky(f)up + K;(f)u; is estimated suitably by linear estimates
stated in Proposition 4.1. In what follows, we concentrate on estimates for I[u](z) defined
by (5.2). Firstly we prepare several estimates of the norms for f(«) and f(u) — f(v), which
will be used below.
By using the mean value theorem, we can see that there exists 6 € [0, 1] such that

f@) = f) = f'(Ou+ (1 - 0)(u—wv).

Therefore, by noting the definition of || - ||x, we arrive at the estimate
(5.5 lf @) = fIl < (1f"(Qu + (1 = O))lleollu = vlly

< Cll6u + (1 = OyolZ = vl

< CQlllZ ™+ 1oliZ e = vlly

< CA+ D)2 Dl + ol Dl - vllx

<C(1+ 1) 2P Dy - o||x
for u,v € X. By the similar way, we have
(5.6) 1£) = FO)lleo < ClllZ "+ 0112 Dl = vlleo

<CL+1) TMP Mu -y
for u,v € X. If we take v = 0in (5.5) and (5.6), and if we recall ||ul|x < M, we easily see that
(5.7) @l < C1+7)~2P D mP,
If@lleo < C(1+7)7 7 MP
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foru € X.

Now, by using the above estimates in (5.7), let us derive the estimate of ||/[u](?)||; for
n=1,2,3.
To begin with, we apply (4.27) with g = 1, (5.8), (2.4) and (2.5) to have

(5.8) III[M](I)IthOIIKl(t—T)f(u)IlldTSCfoIIf(u)IIIdT

!
< Cllully f (1+7)2" Vdr < CcM?,
0

2
since ——(p— H<—-1lforp>1+-
Secondly by the similar way to (5 8), we calculate ||I[u](¢) — I[v](?)||; as follows:

(5.9) ML) — IO, < fo 1K1 = D)) — F)l, dr
<c fo 1f@) — ), dr

[
< CMP |u = ullx f (1+7) 2% Vgr
0
< CMP M ju - vllx,

for u,v € X, where we have just used (5.5) and (5.6).

For the proof of Theorem 1.1, it still remains to get the estimates for ||®[u](?)||. and
|O[u])(r) — O[](D)]co-

Now, in order to obtain the estimate for ||®[u](?)||., We split the nonlinear term into two
parts:

£ t
G100l < [ Ik D@ldr [ 1K= Dfwildr
0 5
=: J1(0) + JL(1).
To obtain the estimate of J;(¢), we apply (4.24) with g = co and r = 1 and (5.7) to have

5.11) Jl(t)SCfi(IH—T); ||f<u)||1dr+cfz T W)l dr
0 0

<CU+1) f2(1 +r>—%<P-1>dTMP+ce-%’f2(1 + 1) T dTM?
0 0
<C(1+n72MP,

where we have used the fact that —E(p -1)<-1.
For the term J,(¢), by using (4.27) with g = co and (5.7) we obtain

! !
(5.12) (D) < Cf If @l dr < cf 1+ FdrM? < C(1 + "2 M?,

where we remark that the power in the right hand side —% + 1 is strictly smaller than —g

since —% +1= —g(p “D+1- g and —g(p ~ 1) < —1. By combining (5.10) - (5.12), we
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arrive at
(5.13) Iu)(0)lles < J1 (D) + J2(t) < C(1 + )72 MP.
Next, we estimate ||®[u](r) — P[v](H)]|w. Again, we divide |[I[u](t) — I[v](?)]|. Into two
parts:

(5.14) 1{ul(r) = I[v](Dlle < f02 1K1 (1 = D)(f () = f)le, dT

+ f 1K1 (= D) — fO)ll dr
=: J3(t) + J4(0).

As in the proof of (5.11), we can deduce that
(5.15) I <C f (14107 W) - fO, dr
0
i C f T W) — fO)ll dr
0
n % n
<C+02 f (1 + )22 DarmP~u - v|lx
0

% n
+Ce%ff (1 +7) TdrMP ||u - vllx
0

< C( + 072 MP|u — oIy,
np n .
where we have used the fact that Y +1< =3 again. In the same manner as (5.12), we
can get

(5.16) J4(I)SCf||f(u)—f(v)lloodT

!
< cf(l + 1) TdTMP u — vlly
%

<CA+6" T MPu - vlly.
Thus, (5.14) - (5.16) yield
(5.17) I1[ul(®) = I[0](D)lleo < J3(0) + Ja(®) < C(L+ )72 M7 M = v]lx.
By (4.23), (4.24), (5.8) and (5.13), we deduce that
(5.18) IP[ullx < [[Ko(Duo + Ki(O)usllx + [/ Tulllx
< Collltolly gous y gone + litllpi) + C1 M

for some Cy > 0 and C; > 0.
Similar arguments can be applied to ||®[u] — @[v]||x by using (5.9) and (5.17), and then
one can assert that

(5.19) L] - DLollx < [1[u] = I[ollx < CaMP™"|lu - vllx
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for some C, > 0. By choosing ||uollwg+g,lnwg+g.m
sure the validity of the inequality such as

+ ||lu1 || sufficiently small, we can make

1 1
(5.20) C\MP < EM, CoMP~! < 5

because of the relation M = 2C0(||140||W%+g,1OW%W)o + ||u1]lz1Ar~). By combining (5.18), (5.19)
and (5.20) one has the desired estimates (5.3) and (5.4), and the proof is now complete.

6. Asymptotic behavior of the solution

In this section, we show the proof of Theorem 1.2. For the proof of Theorem 1.2, we pre-
pare slightly general setting. Here, we introduce the function F = F(t, x) € L'(0, co; L' (R"))
satisfying

6.1) IF@ll, < C(1 + £ "2 PD=30-0)

2 . o .
for1 < g < ooand p > 1+ —. We can now formulate our main statement in this section.
n

2
Proposition 6.1. Letn > 1 and p > 1 + —, and assume (6.1). Then it holds that
n

(6.2) ”(f Kl(l—T)F(T)dT—foof F(T,y)dydT-G,(x))
0 0 JRr

ast — oo,

n 1
= ot 2177
q

As a first step of the proof of Proposition 6.1, we split the integral terms into five parts.
Namely, we see that

f K\(t - )F(t)dr — foof F(7,y)dydt - G,(x)
0 0 "

- f 5(1(1 (t - 1) — " PMNF(r)dr + f [ K (t — T)F(t)dt
0 :

+ f E(e<’—T>A—efA)F(T)dT+ f i (e’AF(T)— f F(r, y)dy-G,(x)) dr
0 0 R~

- f ) f F(r, y)dydr - G (x),

and here we set each terms as follows:

A = f i(K, (t— 1) — INF(1)dr,
0

A1) = f Ki(t — T)F(t)dt, As(t) = f E(.e“—”A—em)i«“(r)dr,
% 0

Au(f) = f ' (e’AF(T)— f F(t, y)dy-Gt(x))dT
0 R~

As(t) = —foof F(t,y)dydt - G,(x).



826 R. IkEHATA AND H. TAKEDA

In what follows, we estimate each A;(r) for j = 1,---, 5, respectively.

Lemma 6.2. Under the same assumptions as in Proposition 6.1, there exists a constant
C > 0 such that

(6.3) A1 (D)ll, < C(1 + 1) 2=,
(6.4) IA; (Dl < CrE0-D-30=D4 (5= 9 5),
Cri D og2+1), p>1+4
> 1+,
(6:3) A5l < { Critmp3=el 2 o p o d

(66) a0l = oft207),
ast— ocoforl < g < oo,

Proof. First, we show (6.3). By (4.26) with r = 1 and (6.1) we see that

AL (DIl < fo ’ (K (t — 7) — " PN F(7)|| ,dT

% n 2 =t
scf (1+t—r)‘7<“é>‘1||F(r)||1dr+cf e T ||F(7)ll,dr
0 0

n % n
sc<1+z)‘f<1‘$>‘1f (1+ 1) Ddr
0

t i n n
+Ce‘7f (1+7) 30 D=30-0gr
0

< C(1 40091,

which is the desired estimate (6.3). Next, we show (6.4) wit j = 2. By (4.27) and (6.1), we
see that

a0l < f 1K\t = DF@llydr < C f IF @)l dr

t
n 1 n
<C f (1+7)7 207972 Vg
5

< C(1 + 1) 20541

which is the desired estimate (6.4) with j = 2.
Thirdly, we show (6.4) with j = 5. By the combination of (6.1) and the direct computa-
tion, we get

IlAs(t)IIqu IF @Il dllGlly

0 n _n=y_n,
sf (1+ 1) 2 V|G |, < 273 he

2

which is the desired estimate (6.4) with j = 5.
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Let us prove (6.5). To begin with, observe that there exists 8 € [0, 1] such that
Gi(x —y) = Gi(x — y) = (-1)0,G e (x — 1),

because of the mean value theorem on 7. Then, we can apply (2.3) with k = 0, £ = 1 and
r = 1to have

%
A5 (0)ll, < f ("4 — e F(7)||,dT
0

%
= f |0, F (1)l dT
0

% —2(1-14)-1
<C T(t—71) 2 "« ||F(r)|hdr
0

n 1 2 n
scm“r:“f (1 + 1) 27 Vadr
0

< Ccrit=iog2+n, pz1+4,
I ey L LU A S W APy
b n n’
which implies (6.5).

Finally, we prove (6.6). To show the estimate for A4(¢), we first divide the integrand into
two parts:

(6.7) f ’ (efAF(T,x)— f F(r, y)dy-Gt(x))dT
0 n

R
- f 5 f . f E f (Gix— 1)~ GUF(r.y)dydr = Aqs(1) + As(0.
0 ly|<t# 0 ly|>t4

In what follows, we estimate A4;(f) and A4»(¢), respectively. For the estimate of A4 (7), we
apply the mean value theorem again on x to have

Gi(x = y) = Gi(x) = (=) - V.G(x — Oy)

with some @ € [0, 1], where - denotes the standard Euclid inner product. Then we arrive at
the estimate

(6.8) lA41 (Dllg < f; f NGx = y) = GOl 2 |F (T, y)ldydT

lyl<t#
% ~
= f f =y - ViGitx = By IF (z, y)ldydr
0 lyl<t4 A
< crriu-h-i+} f F@ldr
0

!
np_iy_1 2 gy _nq_ly_1
<crty) f (1+7) 20 Vdr < crit=as,
0

by direct calculations. On the other hand, for the term A4;(#), we recall the fact that

f |F (1, y)ldydt < co implies
0 R»
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1imf f |F (T, yldydr = 0.
f—o0 0 |y|2t3

%
A, < f f UG/ x = llg + IGADIIF (T, ldyd
0 lyl>14
< ity f f |F(z, y)ldydx,
0 ly|=t%

nep_1
6.9) 12D A, — 0

Thus we see that

so that

as t — oo. Therefore, by combining (6.7), (6.8) and (6.9) one has
1A5Olly < 1As @l + 1A @)ll, = 0”277

as t — oo, which is the desired estimate (6.6). We complete the proof of Lemma 6.2. |

Proof of Proposition 6.1. For 1 < g < co, Lemma 6.2 immediately yields (6.4). Indeed,
from (6.2) and (6.3) - (6.6) it follows that

(f K\(t —1)F(r)dr — foof F(r, y)dydT-G,(x))
0 0 n

5
<0 140l - 0
j=1

A0=D

q

as t — oo, which is the desired conclusion. ]

Now we are in a position to prove Theorem 1.2. Proof of Theorem 1.2. From the proof
of Theorem 1.1, we see that the nonlinear term f(u) satisfies the condition (6.1). Then we
can apply Proposition 6.1 to F(t,y) = f(u(t, y)), and the proof is now complete. m|
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