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Abstract
£(-) being the Riemann zeta function, {,(¢) := ’((Z;;’) is, for o > 1, a characteristic function of

some infinitely divisible distribution y,-. A process with time parameter o~ having y, as its mar-
ginal at time o is called a Riemann zeta process. Ehm [2] has found a functional limit theorem
on this process being a backwards Lévy process. In this paper, we replace £(-) with a Dirichlet
series 7(-; a) generated by a nonnegative, completely multiplicative arithmetical function a(-)
satisfying (3), (4) and (5) below, and derive the same type of functional limit theorem as Ehm
on the process corresponding to 7(+; a) and being a backwards Lévy process.

Introduction

Let £(-) be the Riemann zeta function. Then {,(¢) = "V(g;’) is, for oo > 1, a characteristic
function of some infinitely divisible distribution . This U 1s called the Riemann zeta
distribution indexed by parameter . We are interested in a (stochastic) process with time
parameter oo whose marginal distribution at time o is u,-. Such a process is called a Riemann
zeta (stochastic) process.

Ehm [2] has constructed this process so as to be a backwards Lévy process, and found a
functional limit theorem on the process.

In this paper, we generalize the setting of Ehm. We replace {(s) with a Dirichlet se-
ries n(s;a) = X0, @ where a(-) is a nonnegative, completely multiplicative arithmetical
function satisfying (3), (4) and (5) below, and then derive the same type of functional limit
theorem as Ehm on the process (-Z(c; a)), ., corresponding to 7(-; @) and being a back-
wards Lévy process, which is shortly called the 7(-; a)-process.

In Section 1, we review Ehm’s result. In Section 2, we state our main result (cf. Theo-
rem 1) and prove it, and in Section 3 give some examples of a(-).

In Section 4, we generalize a(-) more, and then investigate limit theorems on Z(o; a) as

o\, 1 (cf. Theorems 2 ~ 4).

1. Review of Ehm’s result

1.1. Riemann zeta distribution. The Riemann zeta function {(-) has two representa-
tions:
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p:prime P*
Here s = o +it, 0 > 1, t € R. The former is a Dirichlet series representation and the latter is

an Euler product representation. For fixed o= > 1, (o +i-) is positive deﬁmte as a function of

R. In other words, {,(¢) = g(éffr;t) is a characteristic function of u, := El {(<r>n" 7o Olog L. Indeed,

by the former representation,
z(log ) ©

1 N ixt 1 _
L) = g—Z’f - [ D i v (0 =)

U 1s called a Riemann zeta distribution with parameter o~. Furthermore, it is easy to see that
U 1s an infinitely divisible distribution: By the latter representation and

1

(1) 1+z=exp{f < ds}, z€C\ (-0, —1],
o 1+2zs

it is checked that

L
p(r

L= ]

1
piprime pori

_L 1 L
exp{f ds—f P . ds}
o l——==
P
exp{f ’(log%)m - l)ds}

(e l)vg<dx>},

piprime

p:prime

= exp{
R\{0}

where
voldn) = ) Z 0o (@), X €RA\(O)
p:prime n=1

is a Lévy measure.
{(-) is extended meromorphically to the whole complex plane with only a simple pole at
1 with residue 1. Thus, asymptotically

(s—=DLs)=1+0(s—1]) ass— 1.
By this, we easily have the following limit theorem for y, as o\ 1:

Claim 1. As o\, 1,

ol 5=

7 dx) — 1(0.00)(x)e”"dx (= the exponential distribution with parameter 1).
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Proof. For "z € R,

) ~1 (o
Lelmﬂo—((f— 1dx) _ \[Relt(( ‘)y),ug(dy)

= Lo (=to = 1))
_ {(o +i(=t(o - 1)))
{(o)
N liit :fo e e dx aso \ 1.

O

1.2. Riemann zeta process. A process with time parameter o € (1, o) having p, as its
marginal at o is called a Riemann zeta process. Following Ehm [2], we construct the process
so as to be a backwards Lévy process.

DeriNtTION 1. A process (Y (u)),.,.; on some probability space (€2, 7, P) is called a geo-
metric process if the following (a) ~ (d) hold:

(a) Foreachu € [0,1), Y(u) € {0, 1, 2,...}. Especially Y(0) = 0.
(b) [0,1) > u — Y(u) € R is right-continuous and non-decreasing.
(©) (Y(4))y<,<; is a Lévy process, i.e., forevery 0 < ug < u; < --- < u, <1,

Y(up), Y(uy) — Y(uo), - . ., Y(u,) — Y(u,—1) are independent,

and, foreach u € (0,1), Y(u) = Y(u—) a.s.
(d) ForeachO<u<v<l,
e o-vany 2 1z ue” 1-0

1-u 1-vet
In particular
1-u
1 — ueit’
Thus P(Y(u) = n) = u"(1 —u), n € {0,1,2,...}, in other words, Y(u) is geometrically
distributed with parameter 1 — u.

E[eitY(u)] —

DeriNiTiON 2. Let {Y),},:prime be @ sequence of independent geometric processes on some
(Q, F, P). Then we define

Zo)= ) Y(plogp, o€l 00).

piprime

Claim 2. (-Z(0)),_, ., is a Riemann zeta process, and a backwards Lévy process. This
means the following:
(1) (1,00) 3 0 = Z(0) € [0, 00) is left-continuous and non-increasing;
(i) Foro > 1, Z(o+) = Z(o) a.s., Z(1+) = 00 a.s. and Z(0) = 0;
(iii)) Foreveryoo > gg> o0y > ---> 0, > 1,
Z(0y), Z(oy) = Z(00), - .., Z(0y) — Z(0y-1) are independent.
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Proof. Claim 2 is contained in Claim 7 below. So the proof of Claim 2 is omitted. m|

1.3. Ehm’s functional limit theorem. Claim 1 can be restated in terms of Z(¢):
Claim 3. As o\ 1,
the distribution of (o~ — 1)Z(0) — the exponential distribution with parameter 1.

Proof. As o\ 1,

-1
P((o - 1)Z(o) € dx) = ,u(,-(mdx)

— the exponential distribution with parameter 1.

This limit theorem is generalized as a functional limit theorem:
Fact 1 (cf. [2]). Let ¢ : (1,00) — (0, 00) be a C', strictly decreasing function such that
@(1+) = oo, @(c0) =0,

w(o) ~ as o\ 1.

_
(o~ 1)

Let N(dsdu) be a Poisson random measure on (0, 00) X (0, 00) with mean measure
1
n(dsdu) = Ee_”/‘/gs_yzdsdu, s,u> 0.

Then the following holds:

(%Z(QD_I(TI)))[ZO LS ( fo II),«’) uN(dsdu))tZO

in D([0,00) > R) as T — oo.

Here D([0, ) — R) is the space of all real functions on [0, co) that are right-continuous
and have left-hand limits. This space is endowed with the J;-topology (cf. [8, 1]), so that it
becomes a Polish space. (#Z(fp‘] (T1))),50 and ( fon(o,oo)”N (dsdu)),,, are random elements
of D([0, ) — R), that is, they are D([0, o) — R)-valued random variables. In other words,
almost all samples ¢ — #Z(go_l(Tt)) and 7 — fon(o oo)uN(dsdu) belong to D([0, ) — R),

and for each r € [0, o), #Z((p_l(Tt)) and fOH f(o o) uN(dsdu) are real random variables. The
convergence above denotes the weak convergence of the distribution of (#Z((,D‘I(Tt)))t20

to that of (Jj'f,, . uN(ds du)),.
The statement of this fact is different from that of Ehm [2]. Suited to our theorem stated
in Section 2, the above fact has been presented.
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2. Our main result

2.1. Completely multiplicative arithmetical function a(-). If an arithmetical function
a : N — R satisfies

2) a(mn) = a(m)a(n), vm, YneN,

then a(-) is said to be completely multiplicative. a(-) = 0 (i.e., a(n) = 0 ("n € N)) and
a) =1 (Ge.,an) =1 ("n € N)) are clearly such arithmetical functions. For a completely
multiplicative a(-), it should be remarked that

a() #0 (e, “ng €N s.t. a(ng) # 0) e a(l) =1,

in other words, a(-) = 0 @ a(l) = 0. Since a(-) = 0 is too trivial, it is excluded from

completely multiplicative compamons Thus, from now on a : N — R is called completely
multiplicative if a(1) = 1 and (2) is satisfied. In this case, if n = [], p®™ is the prime
factorization of n € N, where

a,(n) = max{m € {0,1,2,...}; p" | n},
then
a(n) = [ a(py.
p

Here let x° = 1 for x € R. Thus, the value of a(-) is completely determined by that of
(a(p))p:prime-

In the following, let a : N — [0, c0) be a completely multiplicative arithmetical function'
such that

3) sup a(p) < co, sup @ <1,
p p P
) Y120 st ZM = (r+o(1))logx asx — oo,
p=x
) 7+ #{p;a(p) = p} > 0.

Note that 0 < #{p;a(p) = p} < oo since sup, a(p) < oo. When 7 > 0 in (4), (5) holds
automatically. When 7 = 0 in (4), (5) becomes #{p;a(p) = p} > 0. By Mertens’ first
theorem:

]
(6) > 8P _logx+0O(1) asx— oo

P<x

(cf. [5, Theorem 425] or [10, Chapter 1.1, Theorem 7]), a(-) = 1 is a typical example. In
Section 3, we will give some other examples.
In what follows up to the end of Section 2, let us fix such an arithmetical function a(-).

2.2. Presentation of Theorem 1. To state our main result — Theorem 1, we need some
definitions:

IFor simplicity, we restrict completely multiplicative arithmetical functions appearing in this paper to be
nonnegative.
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DerinitiON 3. For s = o+ it (0 > 1, t € R), we define

n(s;a) = iagj) = l—[ 1_1M'

n=1 )4 p*

By virtue of Claims 4 and 5 below, this is well-defined. When a(-) = 1, n(-; 1) = £(-)!

DEeriniTION 4. For o € (1, 00), we define

n(o +it;a)

ne(t;a) = , teR.

n(o;a)

If us(dx;a) and v,(dx;a) are a 1-dimensional probability measure and a Lévy measure,
respectively, defined by

o (dx; a) = Z (“(’ano_ Blog (),

Vo(dx;a) = Z Z a(i)(r nlog 1(dx),

p n=1

then
No(t;a) = p (5 a)t) = exp{ f (€ = Dy (dx; a)}.
R\{0}
Us(+; a) is called the 7n(-; a)-distribution with parameter o.

DeriniTion 5. Let {Y,}, be a sequence of independent geometric processes on some
(Q, F, P). Then we define

Zoia) =) Y ;p))logp, o € (1,0).
p

By Claim 7 below, (—Z(07; @)), ., .., is @ backwards Lévy process whose marginal distri-
bution at ¢ is p,(-; a). Thus, by imitating (—Z(0)),_,, ... this is called an 7(-; a)-process.
Our main result is the following:

Theorem 1. Let ¢ : (1,00) — (0, ) be a C', strictly decreasing function such that
(7) @(1+) = co, @(c0) =0

(8) w(o) ~ as o\ 1.

_
(o —1)?
Letp == 7+ #{p;a(p) = p} > 0 (cf. Claim 6 below), and N (dsdu) be a Poisson random
measure on (0, ) X (0, 00) with mean measure

©)) n)(dsdu) = 26 Vs stdu s,u> 0.

Then the following holds:

(%Z(SD_I(Tt);a))IZO 3 (‘ftf(;’m) uN(”)(dsdu))tZO
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in D([0,00) > R) as T — oo.

RemMark 1. In the definition of (Z(0))i<s<e (cf. Definition 2), we replaced p~ with
% and obtained a functional limit theorem on the resultant process (Z(07; @))|<o<co- Since
(Z(07; a))1<o<wo 18 a process defined from n(-; @), we could even say that this functional limit
theorem comes from a topic of the number theory. As a different generalization of [2], Ehm
[3] replaced log p with more general coefficient ¢, and considered a functional limit theorem
on the resultant process. In this case, though this process is of zeta type, its functional limit

theorem is no longer related to the number theory.

2.3. Some claims. To make definitions given in the preceding subsection meaningful, we
here present some claims:

Claim4. (i) X<, % = (r+o(1))loglogx as x — co. Whent >0, 3, @ = oo,

(i) Foro > landt € R, [], 1+<[,) is convergent. That is, ] <, 1+(1,) is convergent as
P P

T +it T +it

x> oo As o\ 1, le_+(_m o0,
7
Proof. (i) For simplicity, let

(10) C= Y %, xeR

p<x

C(-) is non-decreasing, right-continuous, C(x) = 0 ("x < 2), and

a(p)log p
11 C(df) = § — 225, (dh).
(11) (dt) 4 P p(dt)
If, for x > 1, we set
(12) 5= SX _ ¢

log x

then 6(+) is of bounded variation on every bounded closed interval of (1, c0), and by (4),

(13) lim 6(x) = 0.

X—00

(11) and C(¢) = tlogt + 6(¢) log ¢ tell us that for x > 3,

alp) _x 1 a(p)logp
Zp ZlOgP p

p<x P=x
C(dt
=f @ [where 0 < & < 1]
(2—¢,x] logt

*odt oo
Tf +f ® dt+f o(dr)
2 tlogt - tlogt (2-&,x]

T dt )
Tf +f @ dt +o(x) + 1.
2_e tlogt 2 tlogt
By letting € N\ 0,

*dt oot
Z@=Tf +f © dt + 7+ 6(x)
p » tlogt » tlogt

P=x
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- 1 1 2 + 1 (5 ! og log x)u
= loglog x(r + 7(zloglog ) + () + f (S(ee(l Hosy )a’u)
loglog x loglog x loglog?
[by the change of variables llggg:g:; = u]

Since, by (13) and the bounded convergence theorem,

1
lim 5" " Ydu = 0,

X—00 loglog2
loglog x

we have

Z ap) _ = (loglog x)( + o(1)) as x — oo,

P<x

(i1) First, (1) is rewritten as

1
(14) l4z7= ezexp{—zzf u ds}, 2€C\ (=c0, -1].
0 1+ZS
Let o > 1 andt € R. Since, by (3),
1 1 1
(15) |Z(E’Ijl)t = po-—l a(lf) < prr—l < 2o-1 <l
(14) implies that
1 atp) 2 1
(16) ( — ep0'1+n CXP{ Gz([?mf S( : ds}
-k P o 1- 28

p(7'+ll

Multiplication in p < x yields that

l_l 1 Z a(p) a(p)2
1— a(p) = eXp p0'+it Y p<x 20‘+12t _ a((r]j?, '

P=x u—+zt pP<x

Here, by noting that

5 ap? (s s a(p)2
. p20'+i2t 01— a[(r]:l)t 01— HL(TZ’)r
(supp a(p))* 1
<——— ) —= [cf. (15)] < o0
2(1 = 57) Z o

the convergence of [T, - a(p) is reduced to that of 3, 7 “P) - Since

XLl -

a(p)
Z P < supa(p)z — < Supa(p)z — < o0,
[1, — E,w is convergent.

LT+[Z

Next we check the divergence of [], Tap A T N 1. First

1
o)
P

= R

pap)=p = p”1 " pa(p)<p

a(p
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(1 m)eelX 5P el 3 2]

pia(p)=p pol p psa(p)=p
ap (s
xexp{ Z Pl N Msds}.
pa(p)<p 7
Here note that
a
(17 sup @ <1.
qalg<qg 4

This tells us that for p with a(p) < p,

1 1
(18) _awp) = _aw) — = —( sup «4) — > —( sup aq) > -1,
P’ P ga@<q 4 ' P7 qalq)<q 4
so that
2 ! (sup,. a(q))® 1
)y a(;;; f s o @ 2 <
pap<p P 0 I=2Fs 201 =8Upy g =) T P
Thus
2 1 2 1
lim1 exp{ Z a(iz f Sa(p) ds} :exp{ Z a(pz) f i(p) ds} < oo,
T pia(p)<p p o 1- o S p:a(p)<p p o 1= >3
Clearly
, 1 —#pa(p)=p)
il{r}exp— Z IF = ¢ "WPEPIEPT < oo,
pia(p)=p
When 7 > 0,

imeo{ 522 - eof 572 -

by (i). When 7 = 0,

) 1
(lrlg}l_[ 1—1_00

p:a(p)=p P!

since {p; a(p) = p} # 0. Therefore, putting all together, we have

1
lim =0
o\l ] —4»
P pv

O

Claim 5. Foro > landt e R, ), % is absolutely convergent, and coincides with

1
[,

poit

Proof. Fix oo > 1 and 7 € R. Let p; be the jth prime number. Note that
N ={p{"---p{"0<ai,....,ap <L} /N asL — co.

By the completely multiplicative property of a(-),
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3 a(n) _ D a(py"--- p7*)
nu-+it (p(lll . pZL)()'+it

neNg 0<ajy,....a <L

a(p)®™ o a(pr)™

ocaih <1 (pa'+zt)a1 (p0'+it)aL
L+1 L+1
1 - () 1 (e
T T _am T Cam [ef. (15)]
p(17+1f pz+”

L

=)=

1 - P j=1

By (1),
L L 1
a(p;)\L+1 a(pi)\L+1 1
[1(1- G2 =exn{ S(-E) [ i)
=1 P = P 0o 1- (rjr+n)
Since
i( (a(pj))LH)fl 1 d’
- - —— ds
= pzjr+zt 01— (a(ljrpi,“))LHS
1 1 1
<L) [cf. (15)] = 0 as L — oo,
Do-1 1= (%)LH
we have
L
lim (1 - (“(”J.))L”) -1
L—oo 1 po_-'Ht
J=1 J

which implies

. 1
Jm Z :;Y:z)t = l_[ _

neNy poHi

When ¢ = 0, the monotone convergence theorem tells us that

N . 1
YRy him Y [ | <

n=1 neN neNy p I

This shows the absolute convergence of ¥, % so that

S5 5[]

n=1 neN neNy o

is obtained.

Claim 6. _ (59) ~P as o\ 1, where p = v+ #{p;a(p) = p} > 0 (cf. (5)).
n(o;a) o-1
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Proof. It is divided into 5 steps.
1° Since, by Definition 3,
a(p)
logn(o;a) = - log 1—— ,
Zp: pa' )

differentiating in o yields that

a(p)

' (o;a) _ M
nosa) Zp: 1 - 22

log p a(p) 1
+ Z p2o-bq _ 1 + Z P (logp)l_w
pia(p)= p 7T palp)<p pT
=: the first term + the second term + the third term.

2° Clearly
1 -1l
(0 — 1) X the second term = Z 1 (c—-1logp
polele-Dlogp 1
psa(p)=p
p:a(p)=p
3° By (11),
1 1
the first term = Z w
p
cd
:f (_)IC) [where 0 < & < 1]
(2—&,00) X

_ f dx f&(x) f IngcS(d)
2-¢ X 2-¢ (2-s,00) X7
=f f@dx
2-¢ X 2—-¢&

i j(;_&oo)( (l;)gfo(x)) 5(x)d(x~7* log x))

[by integration by parts]
“d log(2 -
:T(f —X+Lf))+(a—1) (5(x)
2

—& x7 (2 - 8)0 ! -&

Letting € \ 0 yields that
“dx log2 1
the first term = T(f ax o8 )+ (o — l)f 5(x) 282 dx
2

X 20— 1
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00

ila
= — (1+ (o -1)log2)+
- 112071 (=1 log?2

[by the change of variables (o — 1)log x = z].

8(erT )e‘zzdz}

Since, by (13) and the Lebesgue convergence theorem,

lim §(e71)ezdz = 0,
NI J(o-1)log2

we have
(0 —1)xthe firstterm —» 7 as o\ 1.

4° Since, by (17),

2
1
the third term < E (p) (log p) ,
a(q)
pia(p)<p ~ SUPga(g)<q q

we have
(00— 1) xthe third term — 0 aso \, 1.
5° By putting 1° ~ 4° together,

7' (o a)

n(o_,a))—>7+#{P;a(P)=p} =p aso \, .

(o-—l)x(—

O

Claim 7. (-Z(0; a)), ., is a backwards Lévy process whose marginal distribution at o
is po (- a).

Proof. It is divided into 3 steps.
1° Since, foro > 1,
ZP(YP(@) > )_ Z@ < oo,
p P p pe
Borel-Cantelli’s first lemma tells us that

a(P))

P(poprlmest Y( 0, p>p) 1.
p7

This implies that

Z Yp(a;p))logp is a finite sum a.s.
P

Thus Z(o; a) is well-defined.
2° Since, for each prime p, (1,0) 3 o - Yp(%) € {0,1,2,...} is left-continuous and

non-increasing, so is (1,00) 3 o — Z(0; a) € [0, o).
Since % Ve % aso” N\, o (> 1) (“p;a(p) > 0),

(L) 1)< v, as Cpra > 0)
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By the monotone convergence theorem,
Z(o';a) / Z a(p) log p as.

Thus, in the case where o= > 1, Z(o+;a) = Z(o;a) a.s.
Foro’ > 1,

Z(o";a) = Z Y,,( p(p))log

P
= Z ( log p+ Z (p) log
p:a(p)=p pia(p)<p

=: the first term + the second term.
In the same way as above,

lim the second term = Z Y (a(p ))

Jimy f logp as.

pia(p)<p
When 7 > 0, Claim 4(i) tells us that
> P(Y (“(p))>0)= > “ap) _
psa(p)<p p pia(p)<p p

By the independence of {Y,}, and Borel-Cantelli’s second lemma,

lim the second term = co  a.s.
o'\ 1

When 7 = 0, {p;a(p) = p} # 0. By noting that ¥,(1-) = o0 a.s.,
lim the first term = oo a.s.
Thus Z(1+;a) = oo a.s.
As o o, “;{j) \, 0, and hence YP(%) N\ ¥,(0) = 0. By the Lebesgue convergence
theorem, Z(co;a) = 0
From Definition 1(c) and the independence of {Y,},, it follows that for every co > oo >
o> >0 > 1,

Z(oosa), Z(oy;a) — Z(00s @), . . ., Z(0y; @) — Z(0y—1; a) are independent.
3° ForteR,

E[ eit(—Z(o-;a))] _ l_[ [ it(log 1)Y, (:j[;)]

p
a(p)

_HI_G(P)

zr-Hl

_ nlo +it;a)

=n,(t;a) = fe”x,u(,(dx; a).
n(o; a) R
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2.4. Proof and corollary of Theorem 1. We are now in position to prove Theorem 1.

Proof of Theorem 1. Let us fix the ¢(:) in Theorem 1. The proof is divided into 2 steps.
1° Fix T > 0. By Claim 7, (X7(t;a) = #Z(go‘l(Tt);a))tZO is, in the usual sense, a Lévy
process with increasing paths (cf. It [6]). Here we set X7(0;a) := 0 by ¢ 1(0) = ¢~ (0+) =
oo and Z(oo0;a) =0

Let Ny(dsdu) be a Poisson random measure on (0, o0) X (0, co) defined by Xr(-; a):

Nr(A) = #{t > 0; (. Xr(t:0) - Xr(t—;a)) € A}, A € B((0,0) X (0, 00)).

Then, the Lévy-Itd decomposition of Xr(-; a) is given as

I+
XT(t;a):ff uN7(dsdu), t> 0.
0 J(0,00)

And, a mean measure ny(dsdu) of Ny(dsdu) is given as

- o (Tenn -T
(190 nr(dsdu) = ;;(a@p 7Y 0g PSS o ().

Proof. Temporarily let n’.(dsdu) be a right-hand side of (19). Clearly n’.(dsdu) is a
measure on (0, o0) X (0, 00), and

f f unT(dsdu)—ZZ f (a(p)p™ )" (lo 2P ST ((p_l T \/_n( og p)ds

O<s<t p n=l

u>0
zz [ @pynaog prar
7 n=l e I(T1)

[by the change of variables ¢~ (T's) = r]

L z(i@(mp—w»w)mp

a(p)

< 00,
o=¢~(T1)

-1m> 1 n'(o;a)
\/— Z 1_ ap) ﬁ (_ n(o-;a))

)

By this and ff (u A Dny(dsdu) < o0, it suffices to check that for t and A > 0,

O<s<t
u>0
(20) E[e¥r0] = exp{— ff(l - e‘ﬂu)n’T(dsdu)}.
0<s§t

For, let

Xr(t;a) = m(t) + f f uN7(dsdu)
0 J(0,00)

be the Lévy-Itd6 decomposition of X (:; a), where m(-) is a deterministic, continuous and
non-decreasing process with m(0) = 0. Then
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E[e—/er(t;a)] — exp{—/lm(l) — ff(l - e_’l”)nr(dsdu)}.

O<s<t
u>0

If, moreover, (20) holds, then

m(t) = ff nT(dsdu) - ff nT(dsdu)
O<s<t O<s<t
u>0 u>0

-0 asd—> .

This convergence immediately follows from the Lebesgue convergence theorem since 0 <
e < QA =un)y <unt Faz1), [[ @A Dnjpdsdu) < oo, [[ A

O<s<t O<s<t
u>0 u>0
1) ny(dsdu) < oo and hm =0 (Yu > 0). This implies that

Xr(t;a) = f f uNy(dsdu), nr(dsdu) = n(dsdu).
(0,00)
(20) is shown in the following way: By Definition 5, Definition 1(d) and (1),

E[e~ 0] = ]_[ E[e oz )Y, (app™* ””)]
p

L —a(p)p*" "
L
p L—a(p)p=¢'Tp vr

_ _ _4
e { f‘ —apyp " fl —a(p)p™#"p T ds}
0 1- a(P)p_‘pil(Tt)S 01— a(p)p_sﬂ_l(Tt)p_/TlTs

-1
P o 1—a(p)p= T ¢ (¢~ (Tr)

. 4
N fl a(p)p™® l(T[)P v ptp"(Tt)p—so'l(Tr)(_ logp)T—dr
01— NP VT ¢ (¢~ !(Tr))
I —a(p)p= "Pp ¥

[by the change of variables r = F¢(p~!(T1) + 1ng)]

B —e Ty -1 log p T
- Uexp{fo ;(G(P)P P (Rl te T )(Ing)ga’(go‘l(Tl”))dr}

= exp{— ff(l - e_A”)n’T(dsdu)}. O

O<s<t
u>0

2° By Claims 8 and 9 below,

nr(dsdu) — n¥(dsdu) vaguely as T — oo,

hm lim sup ff uny(dsdu) = Yt > 0.

k—oo 700
O<s<t

uE(O,oo)\[; k]
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Applying the general theory of Kasahara-Watanabe [7], we have

( f f uNT(dsdu) f f N(p)(dsdu))
0 J(0,00) (0,00)

in D([0,00) > R) as T — oo,

which is the assertion of the theorem.
As for Claims 8 and 9, we begin with the following lemma:
Lemma 1. For A>0andt > 0,

Tlim f f e Muny(dsdu) = f f Ayn® (dsdu).

O<s<t O<s<t
u>0 u>0

Proof. Fix 4 > 0 and 7 > 0. By (19),

ff e Muny(dsdu)

O<s<t
u>0

Lalo s -T
= Z Zf oep n(log p)a(p)p™® @ )) (lo gp)m

p n=1

= —= > ogp) Y (a(pp* T "
ﬁ; g Zl< P )

a(p)
-I(Tx)+‘/, Ing

1 n'(o;a)
\/—Zl_—a(p):ﬁ(_n((r;a))

oL+ L F

o=¢" U (TH+ #

Since ¢ (T1) \y 1 as T — oo, and thus o = ¢~ (T?) + % \\ 1, Claim 6 tells us that

(o - 1)(_77 (U;a)) S
n(o; a)
On the other hand, by (8),
1 1
e ' (T -1~ =

oo (TD)  VTVE
and thus

VT(o - 1) = VT (9™ (T1) + % )= A NT@ T - 1) - A+ %

Combining two convergences above, we have

ﬁ( 77((:5))) x/‘(;—l) (0_1)(_137’((;;5)))_>/1f

Next, by (9),

-
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! 00
ffe‘ﬂ”un(p)(dsdu) =gf s_%dsf ue gy,
0 0

O<s<t
Pft 3 ds
- - S 2 —_—
2 Jo (%u)z

u>0
[since fooo ue Mdu = L% (1> 0)]
o
A+

Sl

0

Claim 8. As T — oo, ny(dsdu) — n®(dsdu) vaguely. That is, for Vj € C¢([0, o)

X(0, 0)),
ff Jj(s, wnr(dsdu) — ff J(s, wWn'® (dsdu).

(0,00)%(0,00) (0,00)x(0,00)
Here C.([0, o) X (0, 00)) is the set of all real-valued continuous functions on [0, o) X (0, )
with compact support.
Proof. It is divided into 6 steps.
1° For A > 0, let fy(u) = e~**. Then

J1 € Cu([0,00)) if 1>0, fo=1¢€ Cp([0,0)).
Here
Cp([0, 0)) = the set of all real-valued, bounded, continuous functions on [0, o),
Caa([0,09)) = {f € Co([0,00)); lim f(a0) = O},
Cc([0, 00)) = {f € Cv([0, )); supp f is compact}.
Let [0, co] be the one-point compactification of [0, o). If, at point co, we define

0 if 1>0,
Ja() “{1 if 1=0,

then f; € C([0,])% Letting A c C([0, o0]) be the set of all linear combinations of f;,
A > 0, we can check that

e A is an algebra,
e A separates points on [0, o],
e A vanishes at no point of [0, co].

Thus, by the Stone-Weierstrass theorem (cf. [9, Theorem 7.32]), A = C([0, ]). Particu-
larly, for ¥ f € C.([0, 00)) and "& > 0,

3g €A st. sup |f(u)—gu)l<e.

0<u<eco

2The extension of fato [0, co] is denoted by the same symbol f;.
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2° For "t > 0and ¥ f € C.([0, o)),

Tlim fff(u)lmT(dsdu)zf f(u)un(p)(dsdu).

O<s<t O<s<t
u>0 u>0

Proof. Fix t > 0 and f € C.([0, )). By 1°, f can be approximated by a sequence {g;} of A.

Since, by Lemma 1,
lim f f gi(wyuny(dsdu) = f f gr(Wun® (dsdu),

O<s<t O<s<t
u>0 u>0

it follows in a routine way that

lim f f fwyunr(dsdu) = f Fyun®(dsdu).

O<s<t O<s<t
u>0 u>0

3° For "t > 0,

lim lim sup ff uny(dsdu) = 0.
ANO T—oo

O<s<t
uz

I=IA

Proof. Fix ¢t > 0. Noting that for 4 > 0 and u > 0,

1 —e ™= f (—e™"Ydv = f 1<, de™dv,
0 (0,00)

we obtain the following lower estimate:

ff unt(dsdu) — ff e Muny(dsdu)

O<s<t O<s<t
u>0 u>0
=f (1 — e™"“Yuny(dsdu)
O<s<t
u>0
= ffunr(dsdu) 1, e Pdv
(0,00)
O<s<t
u>0
= f e Y dy f f ung(dsdu)
0.0 0<s<t

u=v

= f e dw H unt(dsdu) [by the change of variables Av = w]
(0,00)
0

<s<t
u=%

1
> f e Y dw ff unr(dsdu) [since [%,00) D [%,oo) forO <w < 1]
0
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=(1-e) ffunr(dsdu)

0<v<t
u>—
By Lemma 1,
lim sup ff uny(dsdu) < — Thm( ff uny(dsdu) — ff unT(dsdu))
o <s<t O<s<t O<s<t
uZ% u>0 u>0
1) At
= -0 asAd\,0.
l—e' 14241
O
4° For "t > 0 and " f € Cy([0, o)),
lim f f fwuny(dsdu) = f f fwyun® (dsdu).
O<s<t O<s<t
u>0 u>0
Proof. Fix t > 0 and f € Cy([0, »)). For each m € N, set h,, € C.([0, 0)) by
hm (1)
1 ,—\
0 m m+1 u
Note that f - i, € C([0, o)) and
(2D |£@) = (f - ) @)| = [ @I = By @) < 1| Fllo L0y (10)-
By 2°,
lim f f (f - hp)wuny(dsdu) = f (f - hy)Wun®(dsdu).
O<s<t O<s<t
u>0 u>0
Also, by (21) and 3°,
hm sup f f |(f - ) @) = f(w)|ung(dsdu) - 0 asm — oo.
o O<s<t
u>0
Thus, it follows in the usual way that
Tlim ff f@uny(dsdu) = f f(u)un(p)(dsdu).
O<s<t O<s<t
u>0 u>0
O

5° For "h € C([0, o) x [0, c0)),

lim ff h(s, w)uny(dsdu) = ff h(s, wyun® (dsdu).

T—o0

(0,00)x(0,00) (0,00)x(0,00)
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Proof. Fix h € C.([0, o) X [0, c0)). Since A is uniformly continuous on [0, c0) X [0, c0),

(22) Ye>0,7>0 st [s—5| <6 lu—u'| <= |h(s,u)-

<e.
Also, since supp & is compact,

>0 st supph C [0, ] x [0, £].
Take a large n € N such that £ < §, and rewrite

ff h(s, w)uny(dsdu) = ff h(s, u)uny(dsdu)

(0,00)x(0,00) (0 1]x(0,¢]

-1
t, u)unT (dsdu)

1
t, u))unr(dsdu),

+ ff (h(s,u)—h(k_

=1
(=L 50,1

h(s, wyun® (dsdu) = f f
k —
+ Z ff (h(s, u) — h(

k=1,
(&L k0.0

t u un(p)(dsdu)

(0,00)%(0,00)

1
t, u))un(p) (dsdu).

Then, by (22),
ff h(s, wyunr(dsdu) — ff (s, wyun®(dsdu)
(0,00)x(0,00) (0,00)x(0,00)
(ff t u unT(dsdu) - ff t u un(”)(dsdu)
0<s< t 0<s< ol
u>0 u>0
ff t u unT(dsdu) — ff t u un(p)(dsdu)))‘
0<s<&ly 0<s<ily
u>0 u>0
( ff h(s,u) — t u) uny(dsdu)
k=1 (=L 5 11%(0,1)
f f ‘h(s u) — h z u) un(p)(dsdu))

(=L k% (0,1]

= 1( ff o Junz(dsdu) ff

0<s< t 0<s< t
u>0 u>0

t u un(p) (dsdu)
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ff t u unT(dsdu) - ff

L un(”)(dsdu)))‘

0<s<k=ly 0<s<&ly
u>0
+ 8( ff uny(dsdu) + ff un(”)(dsdu))
O<s<t O<s<t
u>0 u>0

=: the first term + the second term.

By 4°, limy_, the first term = 0 since h( 11,)) € Cu([0,00)), and by Lemma 1,

lim7_,. the second term = 81/_\f — 0 ase\,O. Thus we have the assertion of 5°. ]

6° For 7j € C.([0, 00) x (0, 0)), set

1

—j(s,u) if u>0,
h(s,u) =% u
0 if u=0.

Then i € C.([0, ) X [0, )) and j(s, ) = h(s, u)u. By 5°,

Tlgn ff Jj(s,u)nr(dsdu) = Th_r)n ff h(s, uyuny(dsdu)

(0,00)%(0,00) (0,00)%(0,00)
f f h(s, wyun®(dsdu)
(0,00)x(0,00)

= ff (s, wyn”(dsdu).
(0,00)x(0,00)

Claim 9. For "t > 0,

khm lim sup f f uny(dsdu) = 0
=0 T oo

O<s<t
ue(0,00)\[ 1 k]

Proof. Fix t > 0. First

ff uny(dsdu) = ff uny(dsdu) + ff uny(dsdu)

O<s<t O<s<t O<s<t
u€(0,00)\[1.,K] O<u<i} u>k
ﬂ]k(u)unT(dsdu) + ff uny(dsdu).
O<s<t O<s<t
u>0 u>L

Here ji € C.([0, 0)) is as follows:
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0

b )

1
I3

By 2° and 3° in the proof of Claim 8§,

lim sup f f uny(dsdu)
T—

O<s<t
ue(0,00)\[ £.k]

< f f Ji(wun® (dsdu) + lim sup f f uny(dsdu) = 0 as k — oo.
T—oo

O<s<t O<s<t
u>0 u2+

Corollary 1. Foreacht > 0,

1 1 _ _x
the distribution of —Z(¢™ 1 (T1); a) = 1ig.co0(X) —— (V1) Px* e Vidx as T — oo.
N2 (¢ ) = L) F(p)( )

(The limiting distribution is the gamma distribution with parameters p, \t.) In particular,
letting t = 1 and o = ¢~'(T) and then noting that

Toowoeor\ 1, (c-D¥0)->1 aso\ 1
tell us that

1
the distribution of (o — 1)Z(0; a) — 1(0,00)(x)r—(p)xp71e7xdx as o\ 1.

Proof. Fix 4 > 0 and ¢ > 0. By Theorem 1,
lim E[e_/l#Z((p_l(Tt);a)] = E[e_/l ()Hf(o,w) “N(p)(deH)]

T—co
= exp{— f (1- e_’l”)n(p)(dsdu)}.

O<s<t
u>0

Here, by Lemma 1,

1
ff(l — e ") (dsdu) = fff e~ uda ' (dsdu)
0

O<s<t O<s<t
u>0 u>0
Lop
:Af —da = plog(1 + V1.).
0o al+ —

Vi
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Substituting this into the last right-hand side of the preceding expression, we have

lim E[e_ﬁﬁz(w_l(m;a)] = exp{—plog(1 + Vi)

T—o0

=(1+ Vi)

1 foo —(1+Vt )y, p-1
= — e d
T©) Jo ¥ dy
[since u* = FL(p) fooo e My=ldy (u > 0)]

1 f‘” et Fep ol
= — e (V) Px e Vidx
L'(p) Jo (V1)
[by the change of variables x = Vry],

which shows the assertion of the corollary. m|

3. Examples of arithmetical function a(-)

ExampLE 1. Let a sequence (a(p)), be nonnegative, i.e., a(p) > 0 (Vp). Ifa(p) — c €
[0, 00) as p — oo, then
1
Z ap)logp =(c+o(l))logx asx — oo.

pP<x

Thus the condition (4) holds with T = c.

Proof. By Mertens’ first theorem (6),

1 Z a(p)logp C‘

log x o p
_| 1 chogp Z(a(p)—c)logp C‘
log x P log x = )4
log x + 0(1)
‘ log X
Z (alp)—c)logp Z (a(p) — ) log p‘
log X p log p

y<p<x
[where we fix y € (2, x) arbitrarily]

< ol Z (alp) —©) 10gp'
log x logx )4

(sup la(p) — cl)(l + lO(l)l).

P>y log x

By letting x — oo,

lim sup

X—00

<supla(p)—c| =0 asy — oo.
P>y

1 Z alp)logp
log x p

pP<x

This shows the assertion of Example 1. |
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ExampLE 2. For coprime a,m € N, we set E,,,, := {p; p = a (mod m)}. Then

Ig,(p)logp 1
2. p B (¢(m)

+ 0(1)) logx asx — oo,

P<x

where ¢(-) is Euler’s function. Thus, (1, ,(p)), satisfies the condition (4) with 7 = L

P(m)
Proof. We use the prime number theorem for arithmetic progressions in the following
form:
(23) Jam(0) = Y 1p,,(p)logp = (— +o(l))x asx — co.

¢(m)

psx

¥4.m(+) is non-decreasing, right-continuous and 9, () = 0 "t < 2). Noting that

Jam(dr) = Y 1g,, (p)(log p)s,(dr),
P

we compute that for 0 < & < 1,

1 lo 1
D E.,(P)logp _ f L
P 2-ex] f

p<x
= La(— v
f(; &,x] t (¢( )+t (t))
[where 6(1) i= Fam(@®)/t = 1/p(m) (t = 1)]

1 dt o(t) 1
=5 o fz O+ ey

By letting € \, 0,

1g,,(p)logp f dt f 5(1) 1
20+ 800 + ——
2T r o)+

p<x
—log2+1 :
—(logx)( (1+ 2827 )+f 5O )dr + (x))
d(m) log x log2 log x
[by the change of variables logt =r].

Since, from lim d(x) = 0 (cf. (23)) and the bounded convergence theorem,
X—00

1
lim o(x"dr =

X—00 log2
]ogx

we have

I, (p)logp 1
2 p - (¢(m>

+o(1))logx as x — oo,

p<x

O

ExampLE 3. If a sequence (a(p)), with 0 < a(p) < 1 (Vp) satisfies that ., @ < 09,

then
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3 PRED _ (1 oogx asx e

p<x

Thus the condition (4) holds with 7 = 1.

Proof. For simplicity,
1-
D)=y 1-ap) g
P=X p

D(-) is non-decreasing, right-continuous, D(c0) < oo and D(x) = 0 ("x < 2). Since, by
Mertens’ first theorem (6),

a(p)log p logp 1—a(p)
D P T

p<x p<x p<x

=logx + O(1) - Z ;(p) og p,

p<x

it suffices to show that

Z # log p = o(log x).

p<x

D@ =}, 1_;(” s »(dr) and integration by parts tell us that for x > 2,

Z 1 —a(p) log p
P

P=x

= f (logt)D(dt) [where 0 < & < 1]
2—e,x
= f (d(D(r)log 1) - D(z)ﬂ)
(2-e.x] t
= D(x)log x — f b® [since D(t) =0 ("t < 2)]
1

= (log x) f (D(x) — D(x"))dr [by the change of variables lsgg; =r].

By noting that for each r € (0, 1],
0 < D(x) — D(x") < D(x) < D(00) < 00 ("x>2), lim (D(x) - D(x")) = 0

it follows from the bounded convergence theorem that

lim ! Z 1_a(p)logp:O.

x—co log x o p

O

RemMARK 2. When 0 < a(p) < 1 ("p), there is no implication between the condition for
(a(p)), in Example 1 and that in Example 3.
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(i) Let a subset E C {pis prime} be such that’ #E = oo, ZpeEé < co. Then (a(p) =
1 - 15(p)), satisfies 3, % < oo, but limsup, a(p) = 1 and liminf,a(p) = 0. This
(a(p)), 1s in Example 3, but not in Example 1.

(i) Let 0 < a(p) < 1besuchthata(p)=1- (p > 1). Then, clearly a(p) — 1, but

1
loglog p
2p ) _Z(p ) = oo, This (a(p)), is in Example 1, but not in Example 3.

Proof. (i) Since E is an infinite set by assumption, a(p) = 0 i.0. Since 3’ ¢ % = oo by
> » % = oo and assumption, and thus, since {p is prime} \ E is also an infinite set, a(p) = 1
1.0.
(i1) We use the prime number theorem in the following form (cf. (23)):

Hx) = Zlogp =(l+o(l))x asx— oo.
p<x
J(-) is non-decreasing, right-continuous and 9¥(¢) = 0 "t < 2). 8(r) = @ -1 (t>0)is
of bounded variation on every bounded closed interval of (0, c0), and lim 6(¢r) = 0. Take a
—00

prime go large enough such that 1 — a(p) = m (p > qo). Then

Z 1-alp) _ Z log p
P plog ploglog p

qo<p=x qo<p=<x

3 f I(dr)
B (o] tlogtloglogt

d(t + 15(1))

1
f(qO,xJ tlogtloglogt
(" 1 dt N b o(1) dt

¢ (loglogn(logt) ¢ ¢ (loglogn(logt) ¢

. f o(dr)
(o] logtloglogt

[0
q (oglogn(logi) ¢ 5 (loglogn(logt) ¢

(1) 1
+ d(—————) - 5(t)d(———— )
\f(;(),x]( (IOgIIOg IOgt) © (logtlog logt)

[by integration by parts]
3 f’“ 1 dt N f" o(1) dt
¢ (loglogn(logt) ¢ ¢ (loglogn(logt) ¢
. fx o()(1 +loglogr) dt
(logtloglogr)? t
500 8qo)
log xloglog x  log gologloggo

1 1 1 1 (vlogloglog x
= loglog log x(] _ 1080870840 + f 5(e glog log )dv)
logloglog x log log Iog g

logloglog x

q0

3Such an E exists. For example, take a sequence {g;};2, of prime numbers such that ¢, = 2, g;4; > qf (i=1),
and set E := {g;;1 > 1}. Then this E clearly satisfies the above conditions.
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log log x . 1 d
+ f 51+ ~)e
1 r r

oglogqo
0(x) B 6(q0)
log xloglogx loggologlogqo
[by the change of variables logloglog? = u].

This implies that

1 1-
Z a(p)_)l as x — oo,
logloglogxq p

o<p=x

and thus

L—ap) _
i

p

REmARK 3. E,,, is an infinite set. By Mertens’ first theorem (6) and Example 2,

Z (I-1g,,(p)logp Z logp Z 1g,,.(p)logp
14 p )4

p=x P<X p<x

1
=(1-——+o0(l))logx asx — co.
(1= Gy *e)oe
Since ¢(m) > 2 for m > 3, and thus 1 — ﬁ > 0, {pis prime} \ E,,;, is also an infinite
set. Therefore lim sup, 1g,,(p) = 1 and liminf, 1, (p) = 0. This tells us that for m > 3,
(1g,,,(p))p is not in Example 1.

a,m

4. Behavior of Z(o; a) as o | 1 for more general a(-)

Roughly speaking, the aim of this section is as follows:
In case 7 + #{p; a(p) = p} = 0in (5), how does Z(o; a) behave as o \, 1 ?

To this end, for a nonnegative, completely multiplicative arithmetical function a(-), we con-
sider, instead of (3) and (4), the following conditions:

(24) supa(p) < oo, sup “2 < 1,
p p P
a(p)log p
25 AP)OEP _
(25) Zp] .

In the case where 7+ #{p;a(p) = p} =0 v =0and a(p) # p (vp), (3) becomes (24). But
(4) does not always imply (25). In this paper, let us consider this convenient condition for
us.

We begin with the following claim, which states that Claim 5 is valid even under the
slightly weak condition (24):
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Claim 10. (i) For o e R\ {1},

Za(p) =00 if —o<o <1,
> p’ | <o if o> 1.
a(n)

n=1 po+it

(i) Foro > landt €R, [], . m,) is convergent and Y - is absolutely convergent,

o+
potit

and these coincide with each other.
(iii)) Foro e R\ {1},

ia(n = oo if —0 <o <1,
n? | <oo if o> 1.
Foro =1,

o a(n) a(p)
;T:""%’ZTZ

)4
Proof. (i) From an inequality x > log x (x > 0), the following implication is seen: For
o € R and prime p,

log p

1
P >logp M =(1-0)logp = — > (1 —-0)
pU'

a(p)

1
pﬂ'

In the case where o € (=0, 1), 1 — o > 0 and (25) imply

Z&{:) > (1 _O_)Z a(p)logp _ o
p ~p

p

In the case where o € (1, ), (24) implies

a(p) sup, a(q) - 1
< < — .
E o S § P sgpa(q) ;:1 <

P p

(i) Leto > 1 and t € R. By (24),
|a(p)

p0'+it

= a(p) < a(p) < sup@ <1,

P7 p g 4

so that

1 a(p) ap? (! s
— e exp { z(p)_2 f ds}
[ _ «» pRoiian | ap)

u'+n‘ L7'+zr

Multiplication in p < x yields that

I a(p) a(p)®
l—l 1 — a(p) - CXP{Z po-+it}ex {pq 20+i2t 01— a(p)

pgx prr+it pgx (r+tt

Here, by noting that
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a(p)? : K (sup a(Q))Z 1
2(f+)izrf a()d‘< - a()z_2<°°’
p 01— 2(1 - sup, “2) &4 p

cr+zt s Supq q

)4
the convergence of [], T —L— is reduced to that of ¥ »y

[,(r+11
Z alp)| _
o‘+tt -

by (1), [1] P aq,) (o> 1,t € R) is convergent.

o+it

a

{(,’f), Since, in the case where o > 1,

a(p)

O’

Let o > 1 and ¢ € R again. First, from the proof of Claim 5, note that

> - (] (- (2

neNg, Jj= W j=1 p]
L L
a L+1 a L+l 1

l_[(l _( (ij,? ’ ) {Z( ((fj—]n? ' )f a(p;)\L+1 ds},
j=1 pj Jj=1 ] 0 1- ( z]r+rr)
L 1

a(pi)\L+1 1
Z(_( (o'p+jz3) ' )f a(pj)\L+1 dSI
j:1 pJ 0 1 ( ij-HI) N

L+1 1

< L(sup a(p)) : — 0 asL — oo.

p P 1 —(sup, %”))L”

In the case where o > 1,

. a(n) 1
Jm n‘””_l_ll_M

neNy poit

When ¢ = 0, the monotone convergence theorem tells us that

[ee]

D= Y = m 3 <

n=1 neN neNy

Thus we have the absolute convergence of ¥, | %2 and
i a(n) 1—[ 1

AT

(iii) In the case where o < 1,

by (i). In the case where o > 1,

by (ii).
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From the proof of (ii), it follows that

[ee]

L

a(n) . a(n) . 1 3 1
2 = him > =E = him [[— = [ [
n=1 neNy, i=1 Di p P

1
[ coe YW
1 —4» iff p

p V4 p

Combining these, we have

DeriniTiON 6. (i) By virtue of Claim 10, for s = o + it (0 € (1, ), t € R), we define

(o]

n(s;a) = Zax) =11 1 _IM.

n=1 P px

And, for o € (1, 00), we set

ne(t;a) = M, teR.
(o a)
As before (cf. Definition 4), let u,(dx;a) be a 1-dimensional probability measure corre-
sponding to 1,(-; a).
(i1) For a sequence {Y,}, of independent geometric processes on some (£, 7, P), we define

a(p)

Zria) =y Y,,(p—l;)logp, o e (1, 00).
P

Then (-Z(0;a)) ., ., is @ backwards Lévy process whose marginal distribution at o is

Us(+;a). But, as compared with Z(o; a) in Definition 5, there is the following difference: If

2 % < oo, then Z(1+;a) < o a.s., andif ), @ = oo, then Z(1+;a) = o a.s.

Our interest is the behavior of Z(o;a) as o Ny 1. To see this, for a nonnegative, com-
pletely multiplicative arithmetical function a(-) satisfying (24) and (25), we further suppose
the following:

p<e*

a(p)log p . . .
26) { Raxm Z ———— € [0, 00) is regularly varying at co with exponent
Y € [0, ).

First of all, note that y < 1 from Mertens’ first theorem. For, let L(-)* be a slowly varying
function at co defined as

@7 > % = Y'L(x),

p<e*

then (24) and (6) tell us that

a(p)log p

In this paper, we call this L(-) a slowly varying part of a regularly varying function x - 3, .« -
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xYL(x) < supa(q) Z loﬂ = sup a(g)(loge* + O(1)) = sup a(g)(x + O(1)).
q q

p<er 4

This implies

(28) lim sup x” ' L(x) < sup a(q),

X—00 q

so that it must be that y < 1.
We treat the following two cases:

Casel y<1
or

<L
y=1 and f ﬁdx<oo,
X

< L
Case2 y=1 andf %dx:oo

Theorem 2. In Case 1, Zp % < oo, and thus Z(1+;a) < oo a.s. In Case 2, Zp % = 00,
and thus Z(1+;a) = oo a.s.

Proof. First, by (10) and (27),
(29) C(e") = x"L(x).

From (11), it follows that for x > 2,

Z@ _ Z a(p)logp 1
pP<x p pP<x p Ing

= f cldn [where 0 < & < 1]
(2—¢,x] IOgl

C(p) 1 dt . .
= a’(—)+C(t) —) by integration by parts
L—a,x]( log 1 (logt)* ¢ [by integ y parts]
_ Cx) N T C() ﬂ
“logx  J, (logr)? t

[since C(r) =0 ("1 < 2)]

C log x C(e*
— _(x) + f (i ) ds [by the change of variables log7 = s].
log x log2 S

By (29), this is rewritten as
a L(x * L(s
3L [ L0,
p<e* p X log2 s
In the case where ¥y < 1, 1 —y > 0 and the slow variation of L(-) at oo yield that

. L(x)
lim - =
x—oo x17Y

<L < L
f st:f ds <o
§2-Y sl+l=y

0,

from which, it follows that
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Z a(p) c o
> P
In the case where y = 1 and foo @dx < 00, (28) implies

D= im 3P = (e [P

S
P og2

* L
< supa(qg) + f ﬁds < o0
q log?2 s

In the case where y = 1 and foo @dx = oo,

Z@:limzﬁzlimfx @ds=fm iS)dS=°<’
p o P e !

p p<e* og?2 s o0g2 s
O
'(o7; 1 1
Claim 11. In Case 2, _n (@39) ~ ( ) as o\ 1.
no;a) o-1 ‘o-1

Proof. By 1° in the proof of Claim 6,

_(oa) _ 3 &{:)bgl, = a(p)* logp

. - 20 a(p) *
nosa) & AR

Since the second term is convergent as o \, 1, we may investigate the asymptotics of the
first term as o \, 1.

By (11) and (29),

a(p) a(p)logp 1
(30) —logp=) —————
Zp: P Zp: pp!

= f cldx) [where 0 < & < 1]
(

2—g,00) xa-_l

f (d(%) - C(x)(1 - o-)x”dx) [by integration by parts]
(2-¢,00)

* C(x) since C(1) =0 (vt < 2) and by (29),
= (O' - 1)f ?dx
1

C(x) _ C(e°2*) _ logxL(log x)
= = =

— 0 asx > o0

xo=1 xo-1

= (o - 1)f e D5C(e)ds  [by the change of variables log x = s]
0

— - 1) fo el fo ).

Here, since, by (29), x — C(e") is regularly varying at co with exponent 1, Feller [4, Chapter

VIII, Theorem 1] tells us that
sC(e¥)
|5 Cleydx

— 2 as s — oo,

and thus
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s 1 1
f C(e")dx ~ =sC(e®) = =s°L(s) as s — oo.
o 2 2

This, by Feller [4, Chapter XIII, Theorem 2], implies

31 fo ) e-<”—1)Sd( fo ) C(ex)dx) ~ (0 - 1)‘%(%) as o\ 1.

Therefore we have
1 1
Z@logp~ —L(—) aso N\, 1,
> P’ oc—-1 ‘o-1
which is the assertion of the claim. m]

We divide Case 2 into three cases:

Case 2.1 lim L(x) = 7 € (0, 00),
X—00

Case 2.2 lim L(x)=0

X—00

Case 2.3 Neither Case 2.1 nor Case 2.2.
Since Case 2.3 is hard to deal with, this case is excluded from our consideration. Case 2.1
is C(e*) = x(t + o(1)) as x — oo, i.e.,
1
Z M = (log x)(t + o(1)) as x — oo.

P=x

This is just the condition (4), so the answer to Case 2.1 is given from Corollary 1 in the
following way:

1
the distribution of (o0 — 1)Z(07; a) = 10,00)(X) = I ) e Fdx aso N\ 1.

Theorem 3. In Case 2.2, limy~,| E[e" " DZ@0] = | (YA > 0). Thus
(c-1DZ(o;a) =0 ip. aso N\ 1.
Proof. Fix A > 0. First, by (14),
E[e-No-DZ@a)] = l—[ E[e—ﬂ(o——l)aogp)Y,,(%)]

b4
a(p)

- l—[ a(p) 1

p7 pleD

l—[ a(p) _ap)? (M s J
- P Jo 19 *

ap) 1 ap? 1 s
+ o pAo-1) + 200 p2A(0-1) alp) s §
P p p= p 0 1--=-+

e pﬂ(u' 1)

a(p) 1 a(P)2
= exp{_z p(r (1 - p/l(O'—l)) fO‘ 1— a(p)

p
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a(p)2 1 ! S
+Z p20' pZ/l(U—l) 01— alp) s ds .

p po plle=D

Since, as o \ 1,

2 1 2 1
E a(;;) f > ds - E a(p) f a ds,
P Jo 1- g > P Jo 1- 42
p p-

p
2 1 2l

Z a(fz 2/1(10'—1) f a(s) ds — Z a(pz) f fz( ) ds,

a4 0 l—p—fp,,(f,_l) a4 0 I—T"s
it suffices to show that

a(p) 1
(32) Z G (1- pw_l)) =0.
p

Rewriting 1 — ﬁ as

1 L
1- p—/l(O'—l) = Ao - 1)[0 —p/l(g_l)l log p dt

and then using (30) yield that

(p) 1
(33) Z api (1 - pﬂ((r—l))

p

1 00 X
= Ao —-1) f (o — 1)(1 + A)dt f e_("_”(”’”)sd( f C(ex)dx).
0 0 0

Here, by (31),

0 ) y 1 /1
Kf e”“d(f C(ex)dx) ~ —L(—) as k \, 0,
0 0 K K
and thus, for 0 < Ve < 1,

K fooo e"“d(fos C(e*)dx)

>0 st O<k<d=>1l-6< T <l+e
<L(+)
. 5
Since, for 1 <o <1+ 153,

O<(@-DA+A)<(@@-DA+)<s 0<r<),
it follows that
(0= DA+ ) [ e DA+0sg( [* C(e)dx)

<l+e (0<r<).

1 1
(o=1)(1+1) L( (o=1D)(1+A11) )

Using this estimate in (33), we have

a(p) 1 b2 1
0< Z,,“ o (1- pﬂ(a_fl))g(l +g)fo 1+/UL((O__ o +/U))dt.

Finally, noting that by lim L(x) = 0 and the bounded convergence theorem,
X—00
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1
1 |
I L di =0,
J{I}fo 1+ ((0'— (1 +/lt))

we obtain (32). ]

To investigate the behavior of Z(o;a) as o N 1 in Case 2.2 in more detail, we suppose
the following:

(34) u +— L(e") is regularly varying at co with exponent 6.

Then note that —1 < ¢ < 0. For, let (-) be its slowly varying part, then

00 = foo @dx [cf. Case 2]

X

= f L(e")du [by the change of variables log x = u]

= fw W l(w)du,

0 = lim L(x) [cf. Case 2.2] = lim L(e") = lim u°l(u).

u—00

These convergences imply neither 6 < —1 nor ¢ > 0,1i.e., -1 <6 <0.
We divide Case 2.2 into the following cases:

Case2.2.1 -1<6<0,
Case 2.2.2 6=-1,
Case 2.2.2.1 lim l(u) = oo,

U—00

Case 2.2.2.2 lim l(u) = « € (0, o),
Case 2.2.2.3 lim I(u) = 0.

U—00

Theorem 4. (i) In Case 2.2.1 or Case 2.2.2.1, limy~ E[e @D 2@0] = 0 (Y1 >
0,0 <A < 1). Thus

(- 1D*Z(osa) > 0 ip. aso \ 1, 0<"A<1.

(ii) In Case 2.2.2.2, limy E[e’ﬂ(”’l)AZ(‘T;“)] = A (Y1 >0,0 < YA < 1). Thus, (o -
2Z(0; a) being regarded as a [0, co]-valued random variable,

the distribution of (o — )*Z(c-; a)
S AS+(1 =AY aso N1, 0<"A<].
(iii) In Case 2.2.2.3, limy j E[e "2 =1 (V1> 0,0 < YA < 1). Thus
(c—D*Z(0:a) >0 ip. aso\y1, 0<"A<I1.

Proof. Fix 4 > 0 and 0 < A < 1. First, from the proof of Theorem 3, it is seen that as
o\
~Ao-1)*Z(o;a a(P) 1
E[e oD )]~exp—Z (1— ),

> pU' p/l(O'—l)A
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(p) 1
Z ap{r) (1 N p/l(o-—l)A)

p

1 00 s
= Ao — DA f (0 =1+ A - DP)dr f el trdlr =i g f C(e")dx)
0 0

0

1
1 1
~ Ao — DA f L( )dt
0 o—1+A(c—-DA ‘\o—1+Ac - 1At

log ¢+
= f 1 L(e")du [by the change of variables log

1 _
1T lo—Drr ul
log

o—1+A(oc-1)A
1

lOg -1
= f Wl(u)du.
log -1

o—1+A(c—1)A

In the case where —1 < § < 0, we take € > 0 such that -1 < 6§ — ¢ < ¢ < 0. Since
u® < l(u) <u® (u> 1) by the slow variation of /(-) at o, and § — & + 1 > 0, it follows that

log =5 s log -4 .
wl(u)du > u’"%du
log PR S log — L

0
o—1+A(c-DA v A

1 1 \o-e+l log % o-+1
0—e+1 o—1 log ﬁ

— o0 aso \ l.

Thus

lim E[e-D"Z@@] = ¢,
o\ 1

In the case where 6 = —1,

log # log log U‘_l
f u  l(u)du = f l(e")dv [by the change of variables log u = v]
log u'—1+A]((r—1)A loglog o-l+A(@-DA

where, for simplicity

A f) =1,

B (o) f()dv a(o) = loglog m,
B(o) = loglog <r+1

PO fw + a(0))

= - %4 .

fo Fatoy @@

Here, note that as o \ 1,

1

ﬁ(o-) - (I(O’) = log 1 - 10g R

A+ log (o=DI-A A

log ﬁ
(o) — oo,
I(e® a(o)

/ (;)(;(Z_()O)-)) = (le( e( ))) =3 1 [by the slow variation of I(-) at co].

e?\ o c

From these, it follows that
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0

Sla(o) A
so that
00 if lim [(u) = oo,
log ﬁ 1
lim u ' l(w)du = klog — = —log A“ if lim l(u) = « € (0, 00),
NI Jiog m A u—co
0 if lim l(u) = 0.
U—00
Thus

0 if lim I(u) = oo,

Uu—00

lim E[e-e-D"Ze0] = ] A% if lim l(u) = & € (0, ),
o\l U—00

1 if lim l(u) = 0.

Uu—00

O

Before closing this paper, we give some examples of a(-). For this, we need the following
lemma:

Lemma 2. Let tg > 0, and [ : (ty,0) — (0,00) be of class C' and ultimately non-
increasing, i.e., I > 19 st f' <0 on [t;,0). Then, for qy := min{p:prime;ty < p} and
0<e<(qo—10)A(go—1),

Z logpf(p)=fx @dl+0(l) as x — co.

to<p<x qo—¢

Proof. For simplicity, we set

1
M=y 2P eR

P<x

Clearly M(-) is non-decreasing, right-continuous, M(x) = 0 ("x < 2), and

M@dx) =y loip 8,(d).
P

Note that sup . [M(x) — log x| < co by Mertens’ first theorem (6). By integration by parts,

logp 3 log p
2, fw= ) = )

ty<p<x qo—E<p<Xx

f SOM(dr)
(go—&.x]

f( ](d<f(t)M(t)) — M) f'(t)dt)
qo—&,X

= f(0)(ogx + n(x)) — flqo — e)log(qo — &) + n(qo — €))

- (logt + n(2))f'(t)dt [where n(x) := M(x) — log x|

qgo—¢&
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f @dt + ) = f(g0 = €)(go ~ ) = f nf (ar

qo—¢ qo—¢

) @dHO(l)—f n(0)f (Hdt  as x — oo.

qo—¢ qo—¢

Here, since —f" > 0 on [t;, ),

qo—& 0—& Hvl1

H V1
f n@of ()dt

qgo—¢&

X V1 X
’—f U(t)f'(t)dt‘ = —f U(t)f'(t)dt+f n(t)(—f'(t))dt’
q

IA

+ f In(OI(= ()

nvl

V1
< f n(t)f’(t)dt‘+(su¥) nOI)(=f () + £t v 1)

qo—¢

=0(1) asx — oo.
This, together with the preceding, implies the assertion of the lemma. O

: _ 1 1 1 1
Lettlng f(t) ~ (logt)? or (loglog 1) or (log log £)¢(log log log 1)4 or (logloglog ¢
the following example, whose details are omitted:

5 in Lemma 2 yields

ExampLE 4. (i) For b > 0,
o(l) if b>1,
logp 1 .
Z ——— = ¢ loglog x + O(1) if b=1, as x — oo,
p (logp) { b .
15 dogx)™"+0(1) if 0<b<1

P=x

Thus

Zlogp 1 <co if b>1,
~ p (ogp) |=c0 if 0<b<1.
logp__1
p (logp)

In the latter case, x > .«
(i1) For ¢ > 0,

is regularly varying at co with exponent 1-b € [0, 1).

lo 1 lo
Z =L log 1 c 1 lgx - as x — 09,
S, p (loglogp)y  (loglog x)
loep 1 I . _ '
Thus 3., =" (1ogl(l,g o = 00, and x > Yo pepr o8 (1og13>g 57 is regularly varying at co with

exponent 1 and its slowly varying part L(x) ~ as x — oo, so that

1

(log x)°
< L <oo if ¢>1,

lim L(x) = 0, f £OD 4 ,

X—00 X =00 if 0<c< 1.

In the latter case, u — L(e") is regularly varying at co with exponent —c € [-1,0).
(iii)) For ¢ > 0and d € R,

as x — oo,

Z log p 1 log x
p (loglog p)(logloglog p)@  (loglog x)°(log log log x)4

e°<p<x
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log p 1 _ log p 1 :
Thus 2. p (Qoglog py(logloglog? . > and x 5 Ylecpeer p (oglog p)(logloglog py? 'S TE8U"

larly varying at oo with exponent 1 and its slowly varying part L(x) ~

1
(og nr(oglognd a8 X — ©9, 80 that

lim L(x) =0,

X—00

f‘”L(x)d <oo if ¢>1 or c=1landd > 1,
* =0 if 0<c<lorc=1landd < 1.

In the latter case, u — L(e") is regularly varying at co with exponent —c € [—1,0) and its

slowly varying part /(1) ~ W as u — oo, so that in the case where c = 1 and d < 1,
oo if d <0,
lim l(u) =41 if d=0,
U— 00
0 if 0<d<.

(iv) Ford > 0,

Z log p 1 log x
p (logloglog p)¥  (logloglog x)4

as x — oo,

ee<p<x

log p 1 _ log p 1
Thus Zl’>e" p (logloglog)? — co, and x 23E<P59X p  (logloglog p)?

with exponent 1 and its slowly varying part L(x) ~ 7 as X — 00, 50 that

1
(loglog x
©
lim L(x) = 0, f ) 4 = co,

X—00 X

is regularly varying at oo

u +— L(e") is regularly varying at co with exponent 0 (= slowly varying at co).
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