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Abstract
ζ(·) being the Riemann zeta function, ζσ(t) := ζ(σ+it)

ζ(σ) is, for σ > 1, a characteristic function of
some infinitely divisible distribution μσ. A process with time parameter σ having μσ as its mar-
ginal at time σ is called a Riemann zeta process. Ehm [2] has found a functional limit theorem
on this process being a backwards Lévy process. In this paper, we replace ζ(·) with a Dirichlet
series η(·; a) generated by a nonnegative, completely multiplicative arithmetical function a(·)
satisfying (3), (4) and (5) below, and derive the same type of functional limit theorem as Ehm
on the process corresponding to η(·; a) and being a backwards Lévy process.

Introduction

Let ζ(·) be the Riemann zeta function. Then ζσ(t) � ζ(σ+it)
ζ(σ) is, for σ > 1, a characteristic

function of some infinitely divisible distribution μσ. This μσ is called the Riemann zeta
distribution indexed by parameter σ. We are interested in a (stochastic) process with time
parameter σwhose marginal distribution at time σ is μσ. Such a process is called a Riemann
zeta (stochastic) process.

Ehm [2] has constructed this process so as to be a backwards Lévy process, and found a
functional limit theorem on the process.

In this paper, we generalize the setting of Ehm. We replace ζ(s) with a Dirichlet se-
ries η(s; a) =

∑∞
n=1

a(n)
ns , where a(·) is a nonnegative, completely multiplicative arithmetical

function satisfying (3), (4) and (5) below, and then derive the same type of functional limit
theorem as Ehm on the process

(−Z(σ; a)
)
1<σ<∞ corresponding to η(·; a) and being a back-

wards Lévy process, which is shortly called the η(·; a)-process.
In Section 1, we review Ehm’s result. In Section 2, we state our main result (cf. Theo-

rem 1) and prove it, and in Section 3 give some examples of a(·).
In Section 4, we generalize a(·) more, and then investigate limit theorems on Z(σ; a) as

σ↘ 1 (cf. Theorems 2 ∼ 4).

1. Review of Ehm’s result

1. Review of Ehm’s result1.1. Riemann zeta distribution.
1.1. Riemann zeta distribution. The Riemann zeta function ζ(·) has two representa-

tions:
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ζ(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
n=1

1
ns ,

∏
p:prime

1
1 − 1

ps

.

Here s = σ+ it, σ > 1, t ∈ R. The former is a Dirichlet series representation and the latter is
an Euler product representation. For fixed σ > 1, ζ

(
σ+ i·) is positive definite as a function of

R. In other words, ζσ(t) = ζ(σ+it)
ζ(σ) is a characteristic function of μσ �

∞∑
n=1

1
ζ(σ)nσ δlog 1

n
. Indeed,

by the former representation,

ζσ(t) =
1
ζ(σ)

∞∑
n=1

ei(log 1
n )t

nσ
=

∫
R

eixt
∞∑

n=1

1
ζ(σ)nσ

δlog 1
n
(dx) = μ̂σ(t).

μσ is called a Riemann zeta distribution with parameter σ. Furthermore, it is easy to see that
μσ is an infinitely divisible distribution: By the latter representation and

1 + z = exp
{∫ 1

0

z
1 + zs

ds
}
, z ∈ C \ (−∞,−1],(1)

it is checked that

ζσ(t) =
∏

p:prime

1 − 1
pσ

1 − 1
pσ+it

=
∏

p:prime

exp
{∫ 1

0

− 1
pσ

1 − s
pσ

ds −
∫ 1

0

− 1
pσ+it

1 − s
pσ+it

ds
}

=
∏

p:prime

exp
{∫ 1

0

∞∑
n=1

sn−1

pnσ

(
ei(log 1

p )nt − 1
)
ds

}

= exp
{∫
R\{0}

(
eixt − 1

)
νσ(dx)

}
,

where

νσ(dx) �
∑

p:prime

∞∑
n=1

1
npnσ δn log 1

p
(dx), x ∈ R \ {0}

is a Lévy measure.
ζ(·) is extended meromorphically to the whole complex plane with only a simple pole at

1 with residue 1. Thus, asymptotically

(s − 1)ζ(s) = 1 + O
(|s − 1|) as s→ 1.

By this, we easily have the following limit theorem for μσ as σ↘ 1:

Claim 1. As σ↘ 1,

μσ
( −1
σ − 1

dx
)
→ 1(0,∞)(x)e−xdx (= the exponential distribution with parameter 1).



Functional Limit Theorems on the η(·; a)-process 845

Proof. For ∀t ∈ R,∫
R

eitxμσ
( −1
σ − 1

dx
)
=

∫
R

eit
(
−(σ−1)y

)
μσ(dy)

= ζσ
(−t(σ − 1)

)
=
ζ
(
σ + i(−t(σ − 1))

)
ζ(σ)

→ 1
1 − it

=

∫ ∞

0
eitxe−xdx as σ↘ 1.

�

1.2. Riemann zeta process.
1.2. Riemann zeta process. A process with time parameter σ ∈ (1,∞) having μσ as its

marginal at σ is called a Riemann zeta process. Following Ehm [2], we construct the process
so as to be a backwards Lévy process.

Definition 1. A process
(
Y(u)

)
0≤u<1 on some probability space (Ω, , P) is called a geo-

metric process if the following (a) ∼ (d) hold:

(a) For each u ∈ [0, 1), Y(u) ∈ {0, 1, 2, . . .}. Especially Y(0) = 0.
(b) [0, 1) � u 	→ Y(u) ∈ R is right-continuous and non-decreasing.
(c)

(
Y(u)

)
0≤u<1 is a Lévy process, i.e., for every 0 < u0 < u1 < · · · < un < 1,

Y(u0), Y(u1) − Y(u0), . . ., Y(un) − Y(un−1) are independent,

and, for each u ∈ (0, 1), Y(u) = Y(u−) a.s.
(d) For each 0 ≤ u < v < 1,

E
[
eit(Y(v)−Y(u))] = 1 − ueit

1 − u
1 − v

1 − veit .

In particular

E
[
eitY(u)] = 1 − u

1 − ueit .

Thus P
(
Y(u) = n

)
= un(1 − u), n ∈ {0, 1, 2, . . .}, in other words, Y(u) is geometrically

distributed with parameter 1 − u.

Definition 2. Let {Yp}p:prime be a sequence of independent geometric processes on some
(Ω, , P). Then we define

Z(σ) �
∑

p:prime

Yp(p−σ) log p, σ ∈ (1,∞).

Claim 2.
(−Z(σ)

)
1<σ<∞ is a Riemann zeta process, and a backwards Lévy process. This

means the following:
(i) (1,∞) � σ 	→ Z(σ) ∈ [0,∞) is left-continuous and non-increasing;
(ii) For σ > 1, Z(σ+) = Z(σ) a.s., Z(1+) = ∞ a.s. and Z(∞) = 0;
(iii) For every∞ > σ0 > σ1 > · · · > σn > 1,

Z(σ0), Z(σ1) − Z(σ0), . . ., Z(σn) − Z(σn−1) are independent.
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Proof. Claim 2 is contained in Claim 7 below. So the proof of Claim 2 is omitted. �

1.3. Ehm’s functional limit theorem.
1.3. Ehm’s functional limit theorem. Claim 1 can be restated in terms of Z(σ):

Claim 3. As σ↘ 1,

the distribution of (σ − 1)Z(σ)→ the exponential distribution with parameter 1.

Proof. As σ↘ 1,

P
(
(σ − 1)Z(σ) ∈ dx

)
= μσ

( −1
σ − 1

dx
)

→ the exponential distribution with parameter 1.

�

This limit theorem is generalized as a functional limit theorem:

Fact 1 (cf. [2]). Let ϕ : (1,∞)→ (0,∞) be a C1, strictly decreasing function such that

ϕ(1+) = ∞, ϕ(∞) = 0,

ϕ(σ) ∼ 1
(σ − 1)2 as σ↘ 1.

Let N(dsdu) be a Poisson random measure on (0,∞) × (0,∞) with mean measure

n(dsdu) �
1
2

e−u/
√

ss−3/2dsdu, s, u > 0.

Then the following holds:( 1√
T

Z
(
ϕ−1(Tt)

))
t≥0

→
(∫ t+

0

∫
(0,∞)

uN(dsdu)
)

t≥0

in D
(
[0,∞)→ R) as T → ∞.

Here D
(
[0,∞) → R) is the space of all real functions on [0,∞) that are right-continuous

and have left-hand limits. This space is endowed with the J1-topology (cf. [8, 1]), so that it
becomes a Polish space.

( 1√
T

Z(ϕ−1(Tt))
)
t≥0 and

(∫ t+
0

∫
(0,∞)uN(dsdu)

)
t≥0 are random elements

of D
(
[0,∞)→ R), that is, they are D

(
[0,∞)→ R)-valued random variables. In other words,

almost all samples t 	→ 1√
T

Z(ϕ−1(Tt)) and t 	→ ∫ t+
0

∫
(0,∞)uN(dsdu) belong to D

(
[0,∞) → R),

and for each t ∈ [0,∞), 1√
T

Z(ϕ−1(Tt)) and
∫ t+

0

∫
(0,∞) uN(dsdu) are real random variables. The

convergence above denotes the weak convergence of the distribution of
( 1√

T
Z(ϕ−1(Tt))

)
t≥0

to that of
(∫ t+

0

∫
(0,∞)uN(ds du)

)
t≥0.

The statement of this fact is different from that of Ehm [2]. Suited to our theorem stated
in Section 2, the above fact has been presented.
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2. Our main result

2. Our main result2.1. Completely multiplicative arithmetical function a(·).2.1. Completely multiplicative arithmetical function a(·). If an arithmetical function
a : N→ R satisfies

a(mn) = a(m)a(n), ∀m, ∀n ∈ N,(2)

then a(·) is said to be completely multiplicative. a(·) = 0 (i.e., a(n) = 0 (∀n ∈ N)) and
a(·) = 1 (i.e., a(n) = 1 (∀n ∈ N)) are clearly such arithmetical functions. For a completely
multiplicative a(·), it should be remarked that

a(·) � 0 (i.e., ∃n0 ∈ N s.t. a(n0) � 0)⇔
iff

a(1) = 1,

in other words, a(·) = 0 ⇔
iff

a(1) = 0. Since a(·) = 0 is too trivial, it is excluded from

completely multiplicative companions. Thus, from now on a : N → R is called completely
multiplicative if a(1) = 1 and (2) is satisfied. In this case, if n =

∏
p pαp(n) is the prime

factorization of n ∈ N, where

αp(n) = max
{
m ∈ {0, 1, 2, . . .}; pm | n}

,

then

a(n) =
∏

p

a(p)αp(n).

Here let x0 = 1 for x ∈ R. Thus, the value of a(·) is completely determined by that of
(a(p))p:prime.

In the following, let a : N→ [0,∞) be a completely multiplicative arithmetical function1

such that

sup
p

a(p) < ∞, sup
p

a(p)
p
≤ 1,(3)

∃τ ≥ 0 s.t.
∑
p≤x

a(p) log p
p

=
(
τ + o(1)

)
log x as x→ ∞,(4)

τ + #{p; a(p) = p} > 0.(5)

Note that 0 ≤ #{p; a(p) = p} < ∞ since supp a(p) < ∞. When τ > 0 in (4), (5) holds
automatically. When τ = 0 in (4), (5) becomes #{p; a(p) = p} > 0. By Mertens’ first
theorem: ∑

p≤x

log p
p
= log x + O(1) as x→ ∞(6)

(cf. [5, Theorem 425] or [10, Chapter I.1, Theorem 7]), a(·) = 1 is a typical example. In
Section 3, we will give some other examples.

In what follows up to the end of Section 2, let us fix such an arithmetical function a(·).

2.2. Presentation of Theorem 1.
2.2. Presentation of Theorem 1. To state our main result – Theorem 1, we need some

definitions:

1For simplicity, we restrict completely multiplicative arithmetical functions appearing in this paper to be
nonnegative.
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Definition 3. For s = σ + it (σ > 1, t ∈ R), we define

η(s; a) �
∞∑

n=1

a(n)
ns =

∏
p

1

1 − a(p)
ps

.

By virtue of Claims 4 and 5 below, this is well-defined. When a(·) = 1, η(·; 1) = ζ(·)!
Definition 4. For σ ∈ (1,∞), we define

ησ(t; a) �
η(σ + it; a)
η(σ; a)

, t ∈ R.

If μσ(dx; a) and νσ(dx; a) are a 1-dimensional probability measure and a Lévy measure,
respectively, defined by

μσ(dx; a) �
∞∑

n=1

a(n)
η(σ; a)nσ

δlog 1
n
(dx),

νσ(dx; a) �
∑

p

∞∑
n=1

a(p)n

npnσ δn log 1
p
(dx),

then

ησ(t; a) = ̂μσ(·; a)(t) = exp
{∫
R\{0}

(
eixt − 1

)
νσ(dx; a)

}
.

μσ(·; a) is called the η(·; a)-distribution with parameter σ.

Definition 5. Let {Yp}p be a sequence of independent geometric processes on some
(Ω, , P). Then we define

Z(σ; a) �
∑

p

Yp

(a(p)
pσ

)
log p, σ ∈ (1,∞).

By Claim 7 below,
(−Z(σ; a)

)
1<σ<∞ is a backwards Lévy process whose marginal distri-

bution at σ is μσ(·; a). Thus, by imitating
(−Z(σ)

)
1<σ<∞, this is called an η(·; a)-process.

Our main result is the following:

Theorem 1. Let ϕ : (1,∞)→ (0,∞) be a C1, strictly decreasing function such that

ϕ(1+) = ∞, ϕ(∞) = 0,(7)

ϕ(σ) ∼ 1
(σ − 1)2 as σ↘ 1.(8)

Let ρ � τ + #{p; a(p) = p} > 0 (cf. Claim 6 below), and N(ρ)(dsdu) be a Poisson random
measure on (0,∞) × (0,∞) with mean measure

n(ρ)(dsdu) �
ρ

2
e−

u√
s s−

3
2 dsdu, s, u > 0.(9)

Then the following holds:( 1√
T

Z
(
ϕ−1(Tt); a

))
t≥0

→
(∫ t+

0

∫
(0,∞)

uN(ρ)(dsdu)
)

t≥0
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in D
(
[0,∞)→ R) as T → ∞.

Remark 1. In the definition of (Z(σ))1<σ<∞ (cf. Definition 2), we replaced p−σ with
a(p)
pσ and obtained a functional limit theorem on the resultant process (Z(σ; a))1<σ<∞. Since

(Z(σ; a))1<σ<∞ is a process defined from η(·; a), we could even say that this functional limit
theorem comes from a topic of the number theory. As a different generalization of [2], Ehm
[3] replaced log p with more general coefficient cp and considered a functional limit theorem
on the resultant process. In this case, though this process is of zeta type, its functional limit
theorem is no longer related to the number theory.

2.3. Some claims.
2.3. Some claims. To make definitions given in the preceding subsection meaningful, we

here present some claims:

Claim 4. (i)
∑

p≤x
a(p)

p =
(
τ + o(1)

)
log log x as x→ ∞. When τ > 0,

∑
p

a(p)
p = ∞.

(ii) For σ > 1 and t ∈ R,
∏

p
1

1− a(p)
pσ+it

is convergent. That is,
∏

p≤x
1

1− a(p)
pσ+it

is convergent as

x→ ∞. As σ↘ 1,
∏

p
1

1− a(p)
pσ
↗ ∞.

Proof. (i) For simplicity, let

C(x) �
∑
p≤x

a(p) log p
p

, x ∈ R.(10)

C(·) is non-decreasing, right-continuous, C(x) = 0 (∀x < 2), and

C(dt) =
∑

p

a(p) log p
p

δp(dt).(11)

If, for x > 1, we set

δ(x) �
C(x)
log x

− τ,(12)

then δ(·) is of bounded variation on every bounded closed interval of (1,∞), and by (4),

lim
x→∞ δ(x) = 0.(13)

(11) and C(t) = τ log t + δ(t) log t tell us that for x ≥ 3,∑
p≤x

a(p)
p
=

∑
p≤x

1
log p

a(p) log p
p

=

∫
(2−ε,x]

C(dt)
log t

[
where 0 < ε < 1

]
= τ

∫ x

2−ε
dt

t log t
+

∫ x

2−ε
δ(t)

t log t
dt +

∫
(2−ε,x]

δ(dt)

= τ

∫ x

2−ε
dt

t log t
+

∫ x

2−ε
δ(t)

t log t
dt + δ(x) + τ.

By letting ε↘ 0,∑
p≤x

a(p)
p
= τ

∫ x

2

dt
t log t

+

∫ x

2

δ(t)
t log t

dt + τ + δ(x)
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= log log x
(
τ +
τ(− log log 2 + 1)

log log x
+
δ(x)

log log x
+

∫ 1

log log 2
log log x

δ
(
ee(log log x)u)

du
)

[
by the change of variables log log t

log log x = u
]
.

Since, by (13) and the bounded convergence theorem,

lim
x→∞

∫ 1

log log 2
log log x

δ
(
ee(log log x)u)

du = 0,

we have ∑
p≤x

a(p)
p
= (log log x)

(
τ + o(1)

)
as x→ ∞.

(ii) First, (1) is rewritten as

1 + z = ez exp
{
−z2

∫ 1

0

s
1 + zs

ds
}
, z ∈ C \ (−∞,−1].(14)

Let σ > 1 and t ∈ R. Since, by (3),∣∣∣∣ a(p)
pσ+it

∣∣∣∣ = 1
pσ−1

a(p)
p
≤ 1

pσ−1 ≤
1

2σ−1 < 1,(15)

(14) implies that

1

1 − a(p)
pσ+it

= e
a(p)

pσ+it exp
{

a(p)2

p2σ+i2t

∫ 1

0

s

1 − a(p)
pσ+it s

ds
}
.(16)

Multiplication in p ≤ x yields that∏
p≤x

1

1 − a(p)
pσ+it

= exp
{∑

p≤x

a(p)
pσ+it

}
exp

{∑
p≤x

a(p)2

p2σ+i2t

∫ 1

0

s

1 − a(p)
pσ+it s

ds
}
.

Here, by noting that∑
p

∣∣∣∣∣ a(p)2

p2σ+i2t

∫ 1

0

s

1 − a(p)
pσ+it s

ds
∣∣∣∣∣ ≤∑

p

a(p)2

p2σ

∫ 1

0

s

1 − | a(p)
pσ+it s|ds

≤ (supp a(p))2

2(1 − 1
2σ−1 )

∑
p

1
p2σ

[
cf. (15)

]
< ∞,

the convergence of
∏

p
1

1− a(p)
pσ+it

is reduced to that of
∑

p
a(p)
pσ+it . Since

∑
p

∣∣∣∣ a(p)
pσ+it

∣∣∣∣ =∑
p

a(p)
pσ
≤ sup

p
a(p)

∑
p

1
pσ
≤ sup

p
a(p)

∑
n

1
nσ
< ∞,

∏
p

1
1− a(p)

pσ+it
is convergent.

Next we check the divergence of
∏

p
1

1− a(p)
pσ

as σ↘ 1. First

∏
p

1

1 − a(p)
pσ
=

( ∏
p;a(p)=p

1
1 − 1

pσ−1

)( ∏
p;a(p)<p

1

1 − a(p)
pσ

)
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=

( ∏
p;a(p)=p

1
1 − 1

pσ−1

)
exp

{∑
p

a(p)
pσ

}
exp

{
−

∑
p;a(p)=p

1
pσ−1

}

× exp
{ ∑

p;a(p)<p

a(p)2

p2σ

∫ 1

0

s

1 − a(p)
pσ s

ds
}
.

Here note that

sup
q;a(q)<q

a(q)
q
< 1.(17)

This tells us that for p with a(p) < p,

−a(p)
pσ
= −a(p)

p
1

pσ−1 ≥ −
(

sup
q;a(q)<q

a(q)
q

) 1
pσ−1 > −

(
sup

q;a(q)<q

a(q)
q

)
> −1,(18)

so that ∑
p;a(p)<p

a(p)2

p2σ

∫ 1

0

s

1 − a(p)
pσ s

ds ≤ (supq;a(q)<q a(q))2

2(1 − supq;a(q)<q
a(q)

q )

∑
p

1
p2 < ∞.

Thus

lim
σ↘1

exp
{ ∑

p;a(p)<p

a(p)2

p2σ

∫ 1

0

s

1 − a(p)
pσ s

ds
}
= exp

{ ∑
p;a(p)<p

a(p)2

p2

∫ 1

0

s

1 − a(p)
p s

ds
}
< ∞.

Clearly

lim
σ↘1

exp
{
−

∑
p;a(p)=p

1
pσ−1

}
= e−#{p;a(p)=p} < ∞.

When τ > 0,

lim
σ↘1

exp
{∑

p

a(p)
pσ

}
= exp

{∑
p

a(p)
p

}
= ∞

by (i). When τ = 0,

lim
σ↘1

∏
p;a(p)=p

1
1 − 1

pσ−1

= ∞

since {p; a(p) = p} � ∅. Therefore, putting all together, we have

lim
σ↘1

∏
p

1

1 − a(p)
pσ
= ∞.

�

Claim 5. For σ > 1 and t ∈ R,
∑∞

n=1
a(n)
nσ+it is absolutely convergent, and coincides with∏

p
1

1− a(p)
pσ+it

.

Proof. Fix σ > 1 and t ∈ R. Let p j be the j th prime number. Note that

NL �
{
pα1

1 · · · pαL
L ; 0 ≤ α1, . . . , αL ≤ L

}↗ N as L→ ∞.
By the completely multiplicative property of a(·),
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∑
n∈NL

a(n)
nσ+it =

∑
0≤α1,...,αL≤L

a(pα1
1 · · · pαL

L )
(pα1

1 · · · pαL
L )σ+it

=
∑

0≤α1,...,αL≤L

a(p1)α1

(pσ+it
1 )α1

× · · · × a(pL)αL

(pσ+it
L )αL

=
1 − ( a(p1)

pσ+it
1

)L+1

1 − a(p1)
pσ+it

1

× · · · ×
1 − ( a(pL)

pσ+it
L

)L+1

1 − a(pL)
pσ+it

L

[
cf. (15)

]

=

( L∏
j=1

1

1 − a(p j)
pσ+it

j

) L∏
j=1

(
1 −

(a(p j)
pσ+it

j

)L+1
)
.

By (1),

L∏
j=1

(
1 −

(a(p j)
pσ+it

j

)L+1
)
= exp

{ L∑
j=1

(
−
(a(p j)

pσ+it
j

)L+1
) ∫ 1

0

1

1 − ( a(p j)
pσ+it

j

)L+1s
ds

}
.

Since ∣∣∣∣∣∣
L∑

j=1

(
−
(a(p j)

pσ+it
j

)L+1
) ∫ 1

0

1

1 − ( a(p j)
pσ+it

j

)L+1s
ds

∣∣∣∣∣∣
≤ L

( 1
2σ−1

)L+1 1
1 − ( 1

2σ−1 )L+1

[
cf. (15)

]→ 0 as L→ ∞,

we have

lim
L→∞

L∏
j=1

(
1 −

(a(p j)
pσ+it

j

)L+1
)
= 1,

which implies

lim
L→∞

∑
n∈NL

a(n)
nσ+it =

∏
p

1

1 − a(p)
pσ+it

.

When t = 0, the monotone convergence theorem tells us that
∞∑

n=1

a(n)
nσ
=

∑
n∈N

a(n)
nσ
= lim

L→∞

∑
n∈NL

a(n)
nσ
=

∏
p

1

1 − a(p)
pσ
< ∞.

This shows the absolute convergence of
∑∞

n=1
a(n)
nσ+it , so that

∞∑
n=1

a(n)
nσ+it =

∑
n∈N

a(n)
nσ+it = lim

L→∞

∑
n∈NL

a(n)
nσ+it =

∏
p

1

1 − a(p)
pσ+it

is obtained. �

Claim 6. −η
′(σ; a)
η(σ; a)

∼ ρ

σ − 1
as σ↘ 1, where ρ = τ + #{p; a(p) = p} > 0 (cf. (5)).
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Proof. It is divided into 5 steps.

1◦ Since, by Definition 3,

log η(σ; a) = −
∑

p

log
(
1 − a(p)

pσ
)
,

differentiating in σ yields that

−η
′(σ; a)
η(σ; a)

=
∑

p

− a(p)
pσ log 1

p

1 − a(p)
pσ

=
∑

p

a(p)
pσ

(log p)
(
1 +

a(p)
pσ

1 − a(p)
pσ

)

=
∑

p

a(p)
pσ

log p

+
∑

p;a(p)=p

log p
p2(σ−1)

1
1 − 1

pσ−1

+
∑

p;a(p)<p

a(p)2

p2σ (log p)
1

1 − a(p)
pσ

� the first term + the second term + the third term.

2◦ Clearly

(σ − 1) × the second term =
∑

p;a(p)=p

1
pσ−1

(σ − 1) log p
e(σ−1) log p − 1

→
∑

p;a(p)=p

1 = #{p; a(p) = p} as σ↘ 1.

3◦ By (11),

the first term =
∑

p

1
pσ−1

a(p) log p
p

=

∫
(2−ε,∞)

C(dx)
xσ−1

[
where 0 < ε < 1

]
= τ

∫ ∞

2−ε
dx
xσ
+

∫ ∞

2−ε
δ(x)
xσ

dx +
∫

(2−ε,∞)

log x
xσ−1 δ(dx)

= τ

∫ ∞

2−ε
dx
xσ
+

∫ ∞

2−ε
δ(x)
xσ

dx

+

∫
(2−ε,∞)

(
d
( log x

xσ−1 δ(x)
)
− δ(x)d

(
x−σ+1 log x

))
[
by integration by parts

]
= τ

(∫ ∞

2−ε
dx
xσ
+

log(2 − ε)
(2 − ε)σ−1

)
+ (σ − 1)

∫ ∞

2−ε
δ(x)

log x
xσ

dx.

Letting ε↘ 0 yields that

the first term = τ
(∫ ∞

2

dx
xσ
+

log 2
2σ−1

)
+ (σ − 1)

∫ ∞

2
δ(x)

log x
xσ

dx
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=
1
σ − 1

{
τ

2σ−1

(
1 + (σ − 1) log 2

)
+

∫ ∞

(σ−1) log 2
δ
(
e

z
σ−1

)
e−zzdz

}
[
by the change of variables (σ − 1) log x = z

]
.

Since, by (13) and the Lebesgue convergence theorem,

lim
σ↘1

∫ ∞

(σ−1) log 2
δ
(
e

z
σ−1

)
e−zzdz = 0,

we have

(σ − 1) × the first term→ τ as σ↘ 1.

4◦ Since, by (17),

the third term ≤
( ∑

p;a(p)<p

a(p)2

p2 (log p)
) 1

1 − supq;a(q)<q
a(q)

q

,

we have

(σ − 1) × the third term→ 0 as σ↘ 1.

5◦ By putting 1◦ ∼ 4◦ together,

(σ − 1) ×
(
−η
′(σ; a)
η(σ; a)

)
→ τ + #{p; a(p) = p} = ρ as σ↘ 1.

�

Claim 7.
(−Z(σ; a)

)
1<σ<∞ is a backwards Lévy process whose marginal distribution at σ

is μσ(·; a).

Proof. It is divided into 3 steps.

1◦ Since, for σ > 1, ∑
p

P
(
Yp

(a(p)
pσ

)
> 0

)
=

∑
p

a(p)
pσ
< ∞,

Borel-Cantelli’s first lemma tells us that

P
(
∃p0: prime s.t. Yp

(a(p)
pσ

)
= 0, ∀p > p0

)
= 1.

This implies that ∑
p

Yp

(a(p)
pσ

)
log p is a finite sum a.s.

Thus Z(σ; a) is well-defined.

2◦ Since, for each prime p, (1,∞) � σ 	→ Yp
( a(p)

pσ
) ∈ {0, 1, 2, . . .} is left-continuous and

non-increasing, so is (1,∞) � σ 	→ Z(σ; a) ∈ [0,∞).
Since a(p)

pσ′ ↗ a(p)
pσ as σ′ ↘ σ (> 1)

(∀p; a(p) > 0
)
,

Yp

(a(p)
pσ′

)
↗ Yp

(a(p)
pσ
−
)
= Yp

(a(p)
pσ

)
a.s.

(∀p; a(p) > 0
)
.
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By the monotone convergence theorem,

Z(σ′; a)↗
∑

p

Yp

(a(p)
pσ

)
log p a.s.

Thus, in the case where σ > 1, Z(σ+; a) = Z(σ; a) a.s.
For σ′ > 1,

Z(σ′; a) =
∑

p

Yp

(a(p)
pσ′

)
log p

=
∑

p;a(p)=p

Yp

( 1
pσ′−1

)
log p +

∑
p;a(p)<p

Yp

(a(p)
pσ′

)
log p

� the first term + the second term.

In the same way as above,

lim
σ′↘1

the second term =
∑

p;a(p)<p

Yp

(a(p)
p

)
log p a.s.

When τ > 0, Claim 4(i) tells us that∑
p;a(p)<p

P
(
Yp

(a(p)
p

)
> 0

)
=

∑
p;a(p)<p

a(p)
p
= ∞.

By the independence of {Yp}p and Borel-Cantelli’s second lemma,

lim
σ′↘1

the second term = ∞ a.s.

When τ = 0, {p; a(p) = p} � ∅. By noting that Yp(1−) = ∞ a.s.,

lim
σ′↘1

the first term = ∞ a.s.

Thus Z(1+; a) = ∞ a.s.
As σ ↗ ∞, a(p)

pσ ↘ 0, and hence Yp
( a(p)

pσ
) ↘ Yp(0) = 0. By the Lebesgue convergence

theorem, Z(∞; a) = 0.
From Definition 1(c) and the independence of {Yp}p, it follows that for every ∞ > σ0 >

σ1 > · · · > σn > 1,
Z(σ0; a), Z(σ1; a) − Z(σ0; a), . . ., Z(σn; a) − Z(σn−1; a) are independent.

3◦ For t ∈ R,

E
[
eit(−Z(σ;a))] =∏

p

E
[
eit(log 1

p )Yp

(
a(p)
pσ

)]

=
∏

p

1 − a(p)
pσ

1 − a(p)
pσ+it

=
η(σ + it; a)
η(σ; a)

= ησ(t; a) =
∫
R

eitxμσ(dx; a).

�
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2.4. Proof and corollary of Theorem 1.
2.4. Proof and corollary of Theorem 1. We are now in position to prove Theorem 1.
Proof of Theorem 1. Let us fix the ϕ(·) in Theorem 1. The proof is divided into 2 steps.

1◦ Fix T > 0. By Claim 7,
(
XT (t; a) � 1√

T
Z(ϕ−1(Tt); a)

)
t≥0 is, in the usual sense, a Lévy

process with increasing paths (cf. Itô [6]). Here we set XT (0; a) � 0 by ϕ−1(0) = ϕ−1(0+) =
∞ and Z(∞; a) = 0.

Let NT (dsdu) be a Poisson random measure on (0,∞) × (0,∞) defined by XT (·; a):

NT (A) � #
{
t > 0;

(
t, XT (t; a) − XT (t−; a)

) ∈ A
}
, A ∈ (

(0,∞) × (0,∞)
)
.

Then, the Lévy-Itô decomposition of XT (·; a) is given as

XT (t; a) =
∫ t+

0

∫
(0,∞)

uNT (dsdu), t ≥ 0.

And, a mean measure nT (dsdu) of NT (dsdu) is given as

nT (dsdu) =
∑

p

∞∑
n=1

(
a(p)p−ϕ

−1(T s))n(log p)
−T

ϕ′(ϕ−1(T s))
ds δ 1√

T
n log p(du).(19)

Proof. Temporarily let n′T (dsdu) be a right-hand side of (19). Clearly n′T (dsdu) is a
measure on (0,∞) × (0,∞), and

�

0<s≤t
u>0

un′T (dsdu) =
∑

p

∞∑
n=1

∫ t

0

(
a(p)p−ϕ

−1(T s))n(log p)
−T

ϕ′(ϕ−1(T s))
1√
T

n(log p) ds

=
1√
T

∑
p

∞∑
n=1

∫ ∞

ϕ−1(Tt)

(
a(p)p−r)nn(log p)2dr

[
by the change of variables ϕ−1(T s) = r

]
=

1√
T

∑
p

( ∞∑
n=1

(
a(p)p−ϕ

−1(Tt))n
)

log p

=
1√
T

∑
p

a(p)
pϕ−1(Tt)

log p

1 − a(p)
pϕ−1(Tt)

=
1√
T

(
−η
′(σ; a)
η(σ; a)

)∣∣∣∣∣
σ=ϕ−1(Tt)

< ∞.

By this and
�

0<s≤t
u>0

(u ∧ 1)nT (dsdu) < ∞, it suffices to check that for t and λ > 0,

E
[
e−λXT (t;a)] = exp

{
−
�

0<s≤t
u>0

(
1 − e−λu

)
n′T (dsdu)

}
.(20)

For, let

XT (t; a) = m(t) +
∫ t+

0

∫
(0,∞)

uNT (dsdu)

be the Lévy-Itô decomposition of XT (·; a), where m(·) is a deterministic, continuous and
non-decreasing process with m(0) = 0. Then



Functional Limit Theorems on the η(·; a)-process 857

E
[
e−λXT (t;a)] = exp

{
−λm(t) −

�

0<s≤t
u>0

(
1 − e−λu

)
nT (dsdu)

}
.

If, moreover, (20) holds, then

m(t) =
�

0<s≤t
u>0

1 − e−λu

λ
n′T (dsdu) −

�

0<s≤t
u>0

1 − e−λu

λ
nT (dsdu)

→ 0 as λ→ ∞.
This convergence immediately follows from the Lebesgue convergence theorem since 0 <
1−e−λu
λ
≤ 1
λ

(
(λu) ∧ 1

)
= u ∧ ( 1

λ
) ≤ u ∧ 1 (∀λ ≥ 1),

�
0<s≤t
u>0

(u ∧ 1)n′T (dsdu) < ∞,
�

0<s≤t
u>0

(u ∧

1) nT (dsdu) < ∞ and lim
λ→∞

1−e−λu
λ
= 0 (∀u > 0). This implies that

XT (t; a) =
∫ t+

0

∫
(0,∞)

uNT (dsdu), nT (dsdu) = n′T (dsdu).

(20) is shown in the following way: By Definition 5, Definition 1(d) and (1),

E
[
e−λXT (t;a)] =∏

p

E
[
e−

λ√
T

(log p)Yp

(
a(p)p−ϕ−1(Tt)

)]

=
∏

p

1 − a(p)p−ϕ−1(Tt)

1 − a(p)p−ϕ−1(Tt) p−
λ√
T

=
∏

p

exp
{∫ 1

0

−a(p)p−ϕ−1(Tt)

1 − a(p)p−ϕ−1(Tt)s
ds −

∫ 1

0

−a(p)p−ϕ−1(Tt) p−
λ√
T

1 − a(p)p−ϕ−1(Tt) p−
λ√
T s

ds
}

=
∏

p

exp
{∫ t

0

−a(p)p−ϕ−1(Tt)

1 − a(p)p−ϕ−1(Tr)
pϕ
−1(Tt) p−ϕ

−1(Tr)(− log p)
Tdr

ϕ′(ϕ−1(Tr))

+

∫ t

0

a(p)p−ϕ−1(Tt) p−
λ√
T

1 − a(p)p−ϕ−1(Tr) p−
λ√
T

pϕ
−1(Tt) p−ϕ

−1(Tr)(− log p)
Tdr

ϕ′(ϕ−1(Tr))

}
[
by the change of variables r = 1

T ϕ
(
ϕ−1(Tt) + log 1

s
log p

)]
=

∏
p

exp
{∫ t

0

∞∑
n=1

(
a(p)p−ϕ

−1(Tr))n(−1 + e−λ
n√
T

log p)(log p)
−T

ϕ′(ϕ−1(Tr))
dr

}

= exp
{
−
�

0<s≤t
u>0

(
1 − e−λu

)
n′T (dsdu)

}
. �

2◦ By Claims 8 and 9 below,

nT (dsdu)→ n(ρ)(dsdu) vaguely as T → ∞,

lim
k→∞

lim sup
T→∞

�

0<s≤t
u∈(0,∞)\[ 1

k ,k]

unT (dsdu) = 0, ∀t > 0.
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Applying the general theory of Kasahara-Watanabe [7], we have(∫ t+

0

∫
(0,∞)

uNT (dsdu)
)

t≥0

→
(∫ t+

0

∫
(0,∞)

uN(ρ)(dsdu)
)

t≥0

in D
(
[0,∞)→ R) as T → ∞,

which is the assertion of the theorem. �

As for Claims 8 and 9, we begin with the following lemma:

Lemma 1. For λ ≥ 0 and t > 0,

lim
T→∞

�

0<s≤t
u>0

e−λuunT (dsdu) =
ρ

λ + 1√
t

=

�

0<s≤t
u>0

e−λuun(ρ)(dsdu).

Proof. Fix λ ≥ 0 and t > 0. By (19),�

0<s≤t
u>0

e−λuunT (dsdu)

=
∑

p

∞∑
n=1

∫ t

0
e−λ

1√
T

n log p 1√
T

n(log p)
(
a(p)p−ϕ

−1(T s))n(log p)
−T

ϕ′(ϕ−1(T s))
ds

=
1√
T

∑
p

(log p)
∞∑

n=1

(
a(p)p−ϕ

−1(Tt)− λ√
T
)n

=
1√
T

∑
p

a(p)

p
ϕ−1(Tt)+ λ√

T
log p

1 − a(p)

p
ϕ−1(Tt)+ λ√

T

=
1√
T

(
−η
′(σ; a)
η(σ; a)

)∣∣∣∣∣
σ=ϕ−1(Tt)+ λ√

T

.

Since ϕ−1(Tt)↘ 1 as T → ∞, and thus σ = ϕ−1(Tt) + λ√
T
↘ 1, Claim 6 tells us that

(σ − 1)
(
−η
′(σ; a)
η(σ; a)

)
→ ρ.

On the other hand, by (8),

ϕ−1(Tt) − 1 ∼ 1√
ϕ(ϕ−1(Tt))

=
1√

T
√

t
,

and thus
√

T (σ − 1) =
√

T
(
ϕ−1(Tt) +

λ√
T
− 1

)
= λ +

√
T

(
ϕ−1(Tt) − 1

)→ λ + 1√
t
.

Combining two convergences above, we have

1√
T

(
−η
′(σ; a)
η(σ; a)

)
=

1√
T (σ − 1)

· (σ − 1)
(
−η
′(σ; a)
η(σ; a)

)
→ ρ

λ + 1√
t

.

Next, by (9),
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�

0<s≤t
u>0

e−λuun(ρ)(dsdu) =
ρ

2

∫ t

0
s−

3
2 ds

∫ ∞

0
ue−

(
1√
s +λ

)
udu

=
ρ

2

∫ t

0
s−

3
2

ds( 1√
s + λ

)2

[
since

∫ ∞
0 ue−μudu = 1

μ2 (μ > 0)
]

=
ρ

λ + 1√
t

.

�

Claim 8. As T → ∞, nT (dsdu) → n(ρ)(dsdu) vaguely. That is, for ∀ j ∈ Cc
(
[0,∞)

×(0,∞)
)
, �

(0,∞)×(0,∞)

j(s, u)nT (dsdu)→
�

(0,∞)×(0,∞)

j(s, u)n(ρ)(dsdu).

Here Cc
(
[0,∞)× (0,∞)

)
is the set of all real-valued continuous functions on [0,∞)× (0,∞)

with compact support.

Proof. It is divided into 6 steps.

1◦ For λ ≥ 0, let fλ(u) = e−λu. Then

fλ ∈ C∞
(
[0,∞)

)
if λ > 0, f0 = 1 ∈ Cb

(
[0,∞)

)
.

Here

Cb
(
[0,∞)

)
= the set of all real-valued, bounded, continuous functions on [0,∞),

C∞
(
[0,∞)

)
=

{
f ∈ Cb

(
[0,∞)

)
; lim

u→∞ f (u) = 0
}
,

Cc
(
[0,∞)

)
=

{
f ∈ Cb

(
[0,∞)

)
; supp f is compact

}
.

Let [0,∞] be the one-point compactification of [0,∞). If, at point∞, we define

fλ(∞) �
{

0 if λ > 0,
1 if λ = 0,

then fλ ∈ C
(
[0,∞]

)2. Letting  ⊂ C
(
[0,∞]

)
be the set of all linear combinations of fλ,

λ ≥ 0, we can check that
•  is an algebra,
•  separates points on [0,∞],
•  vanishes at no point of [0,∞].

Thus, by the Stone-Weierstrass theorem (cf. [9, Theorem 7.32]),  = C
(
[0,∞]

)
. Particu-

larly, for ∀ f ∈ Cc
(
[0,∞)

)
and ∀ε > 0,

∃g ∈  s.t. sup
0≤u<∞

| f (u) − g(u)| < ε.

2The extension of fλ to [0,∞] is denoted by the same symbol fλ.
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2◦ For ∀t > 0 and ∀ f ∈ Cc
(
[0,∞)

)
,

lim
T→∞

�

0<s≤t
u>0

f (u)unT (dsdu) =
�

0<s≤t
u>0

f (u)un(ρ)(dsdu).

Proof. Fix t > 0 and f ∈ Cc
(
[0,∞)

)
. By 1◦, f can be approximated by a sequence {gk} of .

Since, by Lemma 1,

lim
T→∞

�

0<s≤t
u>0

gk(u)unT (dsdu) =
�

0<s≤t
u>0

gk(u)un(ρ)(dsdu),

it follows in a routine way that

lim
T→∞

�

0<s≤t
u>0

f (u)unT (dsdu) =
�

0<s≤t
u>0

f (u)un(ρ)(dsdu).

�
3◦ For ∀t > 0,

lim
λ↘0

lim sup
T→∞

�

0<s≤t
u≥ 1
λ

unT (dsdu) = 0.

Proof. Fix t > 0. Noting that for λ > 0 and u > 0,

1 − e−λu =
∫ u

0

(−e−λv
)′dv = ∫

(0,∞)
1v≤uλe−λvdv,

we obtain the following lower estimate:�

0<s≤t
u>0

unT (dsdu) −
�

0<s≤t
u>0

e−λuunT (dsdu)

=

�

0<s≤t
u>0

(
1 − e−λu

)
unT (dsdu)

=

�

0<s≤t
u>0

unT (dsdu)
∫

(0,∞)
1v≤uλe−λvdv

=

∫
(0,∞)
λe−λvdv

�

0<s≤t
u≥v

unT (dsdu)

=

∫
(0,∞)

e−wdw
�

0<s≤t
u≥ wλ

unT (dsdu)
[
by the change of variables λv = w

]

≥
∫ 1

0
e−wdw

�

0<s≤t
u≥ 1
λ

unT (dsdu)
[
since [w

λ
,∞) ⊃ [ 1

λ
,∞) for 0 < w ≤ 1

]
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=
(
1 − e−1)�

0<s≤t
u≥ 1
λ

unT (dsdu).

By Lemma 1,

lim sup
T→∞

�

0<s≤t
u≥ 1
λ

unT (dsdu) ≤ 1
1 − e−1 lim

T→∞

(�
0<s≤t
u>0

unT (dsdu) −
�

0<s≤t
u>0

e−λuunT (dsdu)
)

=
ρ

1 − e−1

λt

1 + λ
√

t
→ 0 as λ↘ 0.

�
4◦ For ∀t > 0 and ∀ f ∈ Cb

(
[0,∞)

)
,

lim
T→∞

�

0<s≤t
u>0

f (u)unT (dsdu) =
�

0<s≤t
u>0

f (u)un(ρ)(dsdu).

Proof. Fix t > 0 and f ∈ Cb
(
[0,∞)

)
. For each m ∈ N, set hm ∈ Cc

(
[0,∞)

)
by

Note that f · hm ∈ Cc
(
[0,∞)

)
and∣∣∣ f (u) − ( f · hm)(u)

∣∣∣ = | f (u)|(1 − hm(u)) ≤ ‖ f ‖∞1[m,∞)(u).(21)

By 2◦,

lim
T→∞

�

0<s≤t
u>0

( f · hm)(u)unT (dsdu) =
�

0<s≤t
u>0

( f · hm)(u)un(ρ)(dsdu).

Also, by (21) and 3◦,

lim sup
T→∞

�

0<s≤t
u>0

∣∣∣( f · hm)(u) − f (u)
∣∣∣unT (dsdu)→ 0 as m→ ∞.

Thus, it follows in the usual way that

lim
T→∞

�

0<s≤t
u>0

f (u)unT (dsdu) =
�

0<s≤t
u>0

f (u)un(ρ)(dsdu).

�
5◦ For ∀h ∈ Cc

(
[0,∞) × [0,∞)

)
,

lim
T→∞

�

(0,∞)×(0,∞)

h(s, u)unT (dsdu) =
�

(0,∞)×(0,∞)

h(s, u)un(ρ)(dsdu).
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Proof. Fix h ∈ Cc
(
[0,∞) × [0,∞)

)
. Since h is uniformly continuous on [0,∞) × [0,∞),

∀ε > 0, ∃δ > 0 s.t. |s − s′| < δ, |u − u′| < δ⇒ ∣∣∣h(s, u) − h(s′, u′)
∣∣∣ < ε.(22)

Also, since supp h is compact,

∃t > 0 s.t. supp h ⊂ [0, t] × [0, t].

Take a large n ∈ N such that t
n < δ, and rewrite�

(0,∞)×(0,∞)

h(s, u)unT (dsdu) =
�

(0,t]×(0,t]

h(s, u)unT (dsdu)

=

n∑
k=1

�
k−1

n t<s≤ k
n t

u>0

h
(k − 1

n
t, u

)
unT (dsdu)

+

n∑
k=1

�

( k−1
n t, kn t]×(0,t]

(
h(s, u) − h

(k − 1
n

t, u
))

unT (dsdu),

�

(0,∞)×(0,∞)

h(s, u)un(ρ)(dsdu) =
n∑

k=1

�
k−1

n t<s≤ k
n t

u>0

h
(k − 1

n
t, u

)
un(ρ)(dsdu)

+

n∑
k=1

�

( k−1
n t, kn t]×(0,t]

(
h(s, u) − h

(k − 1
n

t, u
))

un(ρ)(dsdu).

Then, by (22),∣∣∣∣∣∣
�

(0,∞)×(0,∞)

h(s, u)unT (dsdu) −
�

(0,∞)×(0,∞)

h(s, u)un(ρ)(dsdu)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
n∑

k=1

(�
0<s≤ k

n t
u>0

h
(k − 1

n
t, u

)
unT (dsdu) −

�

0<s≤ k
n t

u>0

h
(k − 1

n
t, u

)
un(ρ)(dsdu)

−
( �
0<s≤ k−1

n t
u>0

h
(k − 1

n
t, u

)
unT (dsdu) −

�

0<s≤ k−1
n t

u>0

h
(k − 1

n
t, u

)
un(ρ)(dsdu)

))∣∣∣∣∣∣

+

n∑
k=1

( �

( k−1
n t, kn t]×(0,t]

∣∣∣∣∣h(s, u) − h
(k − 1

n
t, u

)∣∣∣∣∣unT (dsdu)

+

�

( k−1
n t, kn t]×(0,t]

∣∣∣∣∣h(s, u) − h
(k − 1

n
t, u

)∣∣∣∣∣un(ρ)(dsdu)
)

≤
∣∣∣∣∣∣

n∑
k=1

(�
0<s≤ k

n t
u>0

h
(k − 1

n
t, u

)
unT (dsdu) −

�

0<s≤ k
n t

u>0

h
(k − 1

n
t, u

)
un(ρ)(dsdu)
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−
( �
0<s≤ k−1

n t
u>0

h
(k − 1

n
t, u

)
unT (dsdu) −

�

0<s≤ k−1
n t

u>0

h
(k − 1

n
t, u

)
un(ρ)(dsdu)

))∣∣∣∣∣∣

+ ε

(�
0<s≤t
u>0

unT (dsdu) +
�

0<s≤t
u>0

un(ρ)(dsdu)
)

� the first term + the second term.

By 4◦, limT→∞ the first term = 0 since h
( k−1

n t, ·) ∈ Cb
(
[0,∞)

)
, and by Lemma 1,

limT→∞ the second term = ε 2ρ
1/
√

t
→ 0 as ε↘ 0. Thus we have the assertion of 5◦. �

6◦ For ∀ j ∈ Cc
(
[0,∞) × (0,∞)

)
, set

h(s, u) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
u

j(s, u) if u > 0,

0 if u = 0.

Then h ∈ Cc
(
[0,∞) × [0,∞)

)
and j(s, u) = h(s, u)u. By 5◦,

lim
T→∞

�

(0,∞)×(0,∞)

j(s, u)nT (dsdu) = lim
T→∞

�

(0,∞)×(0,∞)

h(s, u)unT (dsdu)

=

�

(0,∞)×(0,∞)

h(s, u)un(ρ)(dsdu)

=

�

(0,∞)×(0,∞)

j(s, u)n(ρ)(dsdu).

�

Claim 9. For ∀t > 0,

lim
k→∞

lim sup
T→∞

�

0<s≤t
u∈(0,∞)\[ 1

k ,k]

unT (dsdu) = 0.

Proof. Fix t > 0. First�

0<s≤t
u∈(0,∞)\[ 1

k ,k]

unT (dsdu) =
�

0<s≤t
0<u< 1

k

unT (dsdu) +
�

0<s≤t
u>k

unT (dsdu)

≤
�

0<s≤t
u>0

jk(u)unT (dsdu) +
�

0<s≤t
u≥ 1

1
k

unT (dsdu).

Here jk ∈ Cc
(
[0,∞)

)
is as follows:
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By 2◦ and 3◦ in the proof of Claim 8,

lim sup
T→∞

�

0<s≤t
u∈(0,∞)\[ 1

k ,k]

unT (dsdu)

≤
�

0<s≤t
u>0

jk(u)un(ρ)(dsdu) + lim sup
T→∞

�

0<s≤t
u≥ 1

1
k

unT (dsdu)→ 0 as k → ∞.

�

Corollary 1. For each t > 0,

the distribution of
1√
T

Z
(
ϕ−1(Tt); a

)→ 1(0,∞)(x)
1
Γ(ρ)

(√
t
)−ρxρ−1e−

x√
t dx as T → ∞.

(The limiting distribution is the gamma distribution with parameters ρ,
√

t.) In particular,
letting t = 1 and σ = ϕ−1(T ) and then noting that

T → ∞⇔ σ↘ 1, (σ − 1)2ϕ(σ)→ 1 as σ↘ 1

tell us that

the distribution of (σ − 1)Z(σ; a)→ 1(0,∞)(x)
1
Γ(ρ)

xρ−1e−xdx as σ↘ 1.

Proof. Fix λ > 0 and t > 0. By Theorem 1,

lim
T→∞ E

[
e−λ

1√
T

Z(ϕ−1(Tt);a)]
= E

[
e−λ

∫ t+
0

∫
(0,∞) uN(ρ)(dsdu)

]
= exp

{
−
�

0<s≤t
u>0

(
1 − e−λu

)
n(ρ)(dsdu)

}
.

Here, by Lemma 1,
�

0<s≤t
u>0

(
1 − e−λu

)
n(ρ)(dsdu) =

�

0<s≤t
u>0

∫ 1

0
e−aλuλuda n(ρ)(dsdu)

= λ

∫ 1

0

ρ

aλ + 1√
t

da = ρ log(1 +
√

tλ).
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Substituting this into the last right-hand side of the preceding expression, we have

lim
T→∞ E

[
e−λ

1√
T

Z(ϕ−1(Tt);a)]
= exp

{−ρ log(1 +
√

tλ)
}

= (1 +
√

tλ)−ρ

=
1
Γ(ρ)

∫ ∞

0
e−(1+

√
tλ)yyρ−1dy[

since μ−ρ = 1
Γ(ρ)

∫ ∞
0 e−μyyρ−1dy (μ > 0)

]
=

1
Γ(ρ)

∫ ∞

0
e−λx(√t

)−ρxρ−1e−
x√
t dx[

by the change of variables x =
√

ty
]
,

which shows the assertion of the corollary. �

3. Examples of arithmetical function a(·)

3. Examples of arithmetical function a(·)Example 1. Let a sequence (a(p))p be nonnegative, i.e., a(p) ≥ 0 (∀p). If a(p) → c ∈
[0,∞) as p→ ∞, then ∑

p≤x

a(p) log p
p

=
(
c + o(1)

)
log x as x→ ∞.

Thus the condition (4) holds with τ = c.

Proof. By Mertens’ first theorem (6),∣∣∣∣∣ 1
log x

∑
p≤x

a(p) log p
p

− c
∣∣∣∣∣

=

∣∣∣∣∣ 1
log x

∑
p≤x

c log p
p
+

1
log x

∑
p≤x

(a(p) − c) log p
p

− c
∣∣∣∣∣

=

∣∣∣∣∣c log x + O(1)
log x

− c

+
1

log x

∑
p≤y

(a(p) − c) log p
p

+
1

log x

∑
y<p≤x

(a(p) − c) log p
p

∣∣∣∣∣[
where we fix y ∈ (2, x) arbitrarily

]
≤ c|O(1)|

log x
+

1
log x

∣∣∣∣∣∑
p≤y

(a(p) − c) log p
p

∣∣∣∣∣ + (
sup
p>y
|a(p) − c|

)(
1 +
|O(1)|
log x

)
.

By letting x→ ∞,

lim sup
x→∞

∣∣∣∣∣ 1
log x

∑
p≤x

a(p) log p
p

− c
∣∣∣∣∣ ≤ sup

p>y
|a(p) − c| → 0 as y→ ∞.

This shows the assertion of Example 1. �
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Example 2. For coprime a,m ∈ N, we set Ea,m �
{
p; p ≡ a (mod m)

}
. Then∑

p≤x

1Ea,m(p) log p
p

=
( 1
φ(m)

+ o(1)
)

log x as x→ ∞,

where φ(·) is Euler’s function. Thus, (1Ea,m(p))p satisfies the condition (4) with τ = 1
φ(m) .

Proof. We use the prime number theorem for arithmetic progressions in the following
form:

ϑa,m(x) �
∑
p≤x

1Ea,m(p) log p =
( 1
φ(m)

+ o(1)
)
x as x→ ∞.(23)

ϑa,m(·) is non-decreasing, right-continuous and ϑa,m(t) = 0 (∀t < 2). Noting that

ϑa,m(dt) =
∑

p

1Ea,m(p)(log p)δp(dt),

we compute that for 0 < ε < 1,∑
p≤x

1Ea,m(p) log p
p

=

∫
(2−ε,x]

1
t
ϑa,m(dt)

=

∫
(2−ε,x]

1
t

d
( t
φ(m)

+ tδ(t)
)

[
where δ(t) � ϑa,m(t)/t − 1/φ(m) (t ≥ 1)

]
=

1
φ(m)

∫ x

2−ε
dt
t
+

∫ x

2−ε
δ(t)

t
dt + δ(x) +

1
φ(m)

.

By letting ε↘ 0,∑
p≤x

1Ea,m(p) log p
p

=
1
φ(m)

∫ x

2

dt
t
+

∫ x

2

δ(t)
t

dt + δ(x) +
1
φ(m)

= (log x)
( 1
φ(m)

(
1 +
− log 2 + 1

log x

)
+

∫ 1

log 2
log x

δ(xr)dr +
δ(x)
log x

)
[
by the change of variables log t

log x = r
]
.

Since, from lim
x→∞ δ(x) = 0 (cf. (23)) and the bounded convergence theorem,

lim
x→∞

∫ 1

log 2
log x

δ(xr)dr = 0,

we have ∑
p≤x

1Ea,m(p) log p
p

=
( 1
φ(m)

+ o(1)
)

log x as x→ ∞.

�

Example 3. If a sequence (a(p))p with 0 ≤ a(p) ≤ 1 (∀p) satisfies that
∑

p
1−a(p)

p < ∞,
then
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∑
p≤x

a(p) log p
p

=
(
1 + o(1)

)
log x as x→ ∞.

Thus the condition (4) holds with τ = 1.

Proof. For simplicity,

D(x) �
∑
p≤x

1 − a(p)
p
, x ∈ R.

D(·) is non-decreasing, right-continuous, D(∞) < ∞ and D(x) = 0 (∀x < 2). Since, by
Mertens’ first theorem (6),∑

p≤x

a(p) log p
p

=
∑
p≤x

log p
p
−

∑
p≤x

1 − a(p)
p

log p

= log x + O(1) −
∑
p≤x

1 − a(p)
p

log p,

it suffices to show that ∑
p≤x

1 − a(p)
p

log p = o(log x).

D(dt) =
∑

p
1−a(p)

p δp(dt) and integration by parts tell us that for x ≥ 2,∑
p≤x

1 − a(p)
p

log p

=

∫
(2−ε,x]

(log t)D(dt)
[
where 0 < ε < 1

]
=

∫
(2−ε,x]

(
d
(
D(t) log t

) − D(t)
dt
t

)
= D(x) log x −

∫ x

1

D(t)
t

dt
[
since D(t) = 0 (∀t < 2)

]
= (log x)

∫ 1

0

(
D(x) − D(xr)

)
dr

[
by the change of variables log t

log x = r
]
.

By noting that for each r ∈ (0, 1],

0 ≤ D(x) − D(xr) ≤ D(x) ≤ D(∞) < ∞ (∀x ≥ 2), lim
x→∞

(
D(x) − D(xr)

)
= 0,

it follows from the bounded convergence theorem that

lim
x→∞

1
log x

∑
p≤x

1 − a(p)
p

log p = 0.

�

Remark 2. When 0 ≤ a(p) ≤ 1 (∀p), there is no implication between the condition for
(a(p))p in Example 1 and that in Example 3.
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(i) Let a subset E ⊂ {p is prime} be such that3 #E = ∞,
∑

p∈E 1
p < ∞. Then (a(p) =

1 − 1E(p))p satisfies
∑

p
1−a(p)

p < ∞, but lim supp a(p) = 1 and lim infp a(p) = 0. This
(a(p))p is in Example 3, but not in Example 1.
(ii) Let 0 ≤ a(p) ≤ 1 be such that a(p) = 1 − 1

log log p (p � 1). Then, clearly a(p) → 1, but∑
p

1−a(p)
p = ∞. This (a(p))p is in Example 1, but not in Example 3.

Proof. (i) Since E is an infinite set by assumption, a(p) = 0 i.o. Since
∑

p�E
1
p = ∞ by∑

p
1
p = ∞ and assumption, and thus, since {p is prime} \ E is also an infinite set, a(p) = 1

i.o.
(ii) We use the prime number theorem in the following form (cf. (23)):

ϑ(x) �
∑
p≤x

log p =
(
1 + o(1)

)
x as x→ ∞.

ϑ(·) is non-decreasing, right-continuous and ϑ(t) = 0 (∀t < 2). δ(t) � ϑ(t)
t − 1 (t > 0) is

of bounded variation on every bounded closed interval of (0,∞), and lim
t→∞ δ(t) = 0. Take a

prime q0 large enough such that 1 − a(p) = 1
log log p (p > q0). Then

∑
q0<p≤x

1 − a(p)
p

=
∑

q0<p≤x

log p
p log p log log p

=

∫
(q0,x]

ϑ(dt)
t log t log log t

=

∫
(q0,x]

1
t log t log log t

d
(
t + tδ(t)

)
=

∫ x

q0

1
(log log t)(log t)

dt
t
+

∫ x

q0

δ(t)
(log log t)(log t)

dt
t

+

∫
(q0,x]

δ(dt)
log t log log t

=

∫ x

q0

1
(log log t)(log t)

dt
t
+

∫ x

q0

δ(t)
(log log t)(log t)

dt
t

+

∫
(q0,x]

(
d
( δ(t)
log t log log t

)
− δ(t)d

( 1
log t log log t

))
[
by integration by parts

]
=

∫ x

q0

1
(log log t)(log t)

dt
t
+

∫ x

q0

δ(t)
(log log t)(log t)

dt
t

+

∫ x

q0

δ(t)(1 + log log t)
(log t log log t)2

dt
t

+
δ(x)

log x log log x
− δ(q0)

log q0 log log q0

= log log log x
(
1 − log log log q0

log log log x
+

∫ 1

log log log q0
log log log x

δ
(
eeev log log log x )

dv
)

3Such an E exists. For example, take a sequence {qi}∞i=1 of prime numbers such that q1 = 2, qi+1 > q2
i (i ≥ 1),

and set E � {qi; i ≥ 1}. Then this E clearly satisfies the above conditions.
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+

∫ log log x

log log q0

δ(eer
)
(
1 +

1
r

)
e−r dr

r

+
δ(x)

log x log log x
− δ(q0)

log q0 log log q0[
by the change of variables log log log t = u

]
.

This implies that

1
log log log x

∑
q0<p≤x

1 − a(p)
p

→ 1 as x→ ∞,

and thus ∑
p

1 − a(p)
p

= ∞.

�

Remark 3. Ea,m is an infinite set. By Mertens’ first theorem (6) and Example 2,∑
p≤x

(1 − 1Ea,m(p)) log p
p

=
∑
p≤x

log p
p
−

∑
p≤x

1Ea,m(p) log p
p

=
(
1 − 1
φ(m)

+ o(1)
)

log x as x→ ∞.

Since φ(m) ≥ 2 for m ≥ 3, and thus 1 − 1
φ(m) > 0, {p is prime} \ Ea,m is also an infinite

set. Therefore lim supp 1Ea,m(p) = 1 and lim infp 1Ea,m(p) = 0. This tells us that for m ≥ 3,
(1Ea,m(p))p is not in Example 1.

4. Behavior of Z(σ; a) as σ ↘ 1 for more general a(·)

4. Behavior of Z(σ; a) as σ ↘ 1 for more general a(·)Roughly speaking, the aim of this section is as follows:
In case τ + #{p; a(p) = p} = 0 in (5), how does Z(σ; a) behave as σ↘ 1 ?

To this end, for a nonnegative, completely multiplicative arithmetical function a(·), we con-
sider, instead of (3) and (4), the following conditions:

sup
p

a(p) < ∞, sup
p

a(p)
p
< 1,(24)

∑
p

a(p) log p
p

= ∞.(25)

In the case where τ+ #{p; a(p) = p} = 0⇔ τ = 0 and a(p) � p (∀p), (3) becomes (24). But
(4) does not always imply (25). In this paper, let us consider this convenient condition for
us.

We begin with the following claim, which states that Claim 5 is valid even under the
slightly weak condition (24):
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Claim 10. (i) For σ ∈ R \ {1},
∑

p

a(p)
pσ

⎧⎪⎪⎨⎪⎪⎩= ∞ if −∞ < σ < 1,
< ∞ if σ > 1.

(ii) For σ > 1 and t ∈ R,
∏

p
1

1− a(p)
pσ+it

is convergent and
∑∞

n=1
a(n)
nσ+it is absolutely convergent,

and these coincide with each other.
(iii) For σ ∈ R \ {1},

∞∑
n=1

a(n)
nσ

⎧⎪⎪⎨⎪⎪⎩= ∞ if −∞ < σ < 1,
< ∞ if σ > 1.

For σ = 1,
∞∑

n=1

a(n)
n
= ∞ ⇔

iff

∑
p

a(p)
p
= ∞.

Proof. (i) From an inequality x > log x (x > 0), the following implication is seen: For
σ ∈ R and prime p,

p1−σ > log p1−σ = (1 − σ) log p⇒ 1
pσ
> (1 − σ)

log p
p

⇒ a(p)
pσ
≥ (1 − σ)

a(p) log p
p

.

In the case where σ ∈ (−∞, 1), 1 − σ > 0 and (25) imply∑
p

a(p)
pσ
≥ (1 − σ)

∑
p

a(p) log p
p

= ∞;

In the case where σ ∈ (1,∞), (24) implies

∑
p

a(p)
pσ
≤

∑
p

supq a(q)

pσ
< sup

q
a(q)

∞∑
n=1

1
nσ
< ∞.

(ii) Let σ ≥ 1 and t ∈ R. By (24),∣∣∣∣ a(p)
pσ+it

∣∣∣∣ = a(p)
pσ
≤ a(p)

p
≤ sup

q

a(q)
q
< 1,

so that

1

1 − a(p)
pσ+it

= e
a(p)

pσ+it exp
{

a(p)2

p2σ+i2t

∫ 1

0

s

1 − a(p)
pσ+it s

ds
}
.

Multiplication in p ≤ x yields that∏
p≤x

1

1 − a(p)
pσ+it

= exp
{∑

p≤x

a(p)
pσ+it

}
exp

{∑
p≤x

a(p)2

p2σ+i2t

∫ 1

0

s

1 − a(p)
pσ+it s

ds
}
.

Here, by noting that



Functional Limit Theorems on the η(·; a)-process 871

∑
p

∣∣∣∣∣ a(p)2

p2σ+i2t

∫ 1

0

s

1 − a(p)
pσ+it s

ds
∣∣∣∣∣ ≤ (supq a(q))2

2(1 − supq
a(q)

q )

∑
p

1
p2 < ∞,

the convergence of
∏

p
1

1− a(p)
pσ+it

is reduced to that of
∑

p
a(p)
pσ+it . Since, in the case where σ > 1,

∑
p

∣∣∣∣ a(p)
pσ+it

∣∣∣∣ =∑
p

a(p)
pσ
< ∞

by (i),
∏

p
1

1− a(p)
pσ+it

(σ > 1, t ∈ R) is convergent.

Let σ ≥ 1 and t ∈ R again. First, from the proof of Claim 5, note that

∑
n∈NL

a(n)
nσ+it =

( L∏
j=1

1

1 − a(p j)
pσ+it

j

) L∏
j=1

(
1 −

(a(p j)
pσ+it

j

)L+1
)
,

L∏
j=1

(
1 −

(a(p j)
pσ+it

j

)L+1
)
= exp

{ L∑
j=1

(
−
(a(p j)

pσ+it
j

)L+1
) ∫ 1

0

1

1 − ( a(p j)
pσ+it

j

)L+1s
ds

}
,

∣∣∣∣∣∣
L∑

j=1

(
−
(a(p j)

pσ+it
j

)L+1
) ∫ 1

0

1

1 − ( a(p j)
pσ+it

j

)L+1s
ds

∣∣∣∣∣∣
≤ L

(
sup

p

a(p)
p

)L+1 1

1 − (supp
a(p)

p )L+1
→ 0 as L→ ∞.

In the case where σ > 1,

lim
L→∞

∑
n∈NL

a(n)
nσ+it =

∏
p

1

1 − a(p)
pσ+it

.

When t = 0, the monotone convergence theorem tells us that
∞∑

n=1

a(n)
nσ
=

∑
n∈N

a(n)
nσ
= lim

L→∞

∑
n∈NL

a(n)
nσ
< ∞.

Thus we have the absolute convergence of
∑∞

n=1
a(n)
nσ+it and

∞∑
n=1

a(n)
nσ+it =

∏
p

1

1 − a(p)
pσ+it

.

(iii) In the case where σ < 1,
∞∑

n=1

a(n)
nσ
≥

∑
p

a(p)
pσ
= ∞

by (i). In the case where σ > 1,
∞∑

n=1

a(n)
nσ
< ∞

by (ii).
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From the proof of (ii), it follows that

∞∑
n=1

a(n)
n
= lim

L→∞

∑
n∈NL

a(n)
n
= lim

L→∞

L∏
i=1

1

1 − a(pi)
pi

=
∏

p

1

1 − a(p)
p

,

∏
p

1

1 − a(p)
p

< ∞ ⇔
iff

∑
p

a(p)
p
< ∞.

Combining these, we have
∞∑

n=1

a(n)
n
< ∞ ⇔

iff

∑
p

a(p)
p
< ∞.

�

Definition 6. (i) By virtue of Claim 10, for s = σ + it (σ ∈ (1,∞), t ∈ R), we define

η(s; a) �
∞∑

n=1

a(n)
ns =

∏
p

1

1 − a(p)
ps

.

And, for σ ∈ (1,∞), we set

ησ(t; a) �
η(σ + it; a)
η(σ; a)

, t ∈ R.

As before (cf. Definition 4), let μσ(dx; a) be a 1-dimensional probability measure corre-
sponding to ησ(·; a).
(ii) For a sequence {Yp}p of independent geometric processes on some (Ω, , P), we define

Z(σ; a) �
∑

p

Yp

(a(p)
pσ

)
log p, σ ∈ (1,∞).

Then
(−Z(σ; a)

)
1<σ<∞ is a backwards Lévy process whose marginal distribution at σ is

μσ(·; a). But, as compared with Z(σ; a) in Definition 5, there is the following difference: If∑
p

a(p)
p < ∞, then Z(1+; a) < ∞ a.s., and if

∑
p

a(p)
p = ∞, then Z(1+; a) = ∞ a.s.

Our interest is the behavior of Z(σ; a) as σ ↘ 1. To see this, for a nonnegative, com-
pletely multiplicative arithmetical function a(·) satisfying (24) and (25), we further suppose
the following:

(26)

⎧⎪⎪⎪⎨⎪⎪⎪⎩ R � x 	→
∑
p≤ex

a(p) log p
p

∈ [0,∞) is regularly varying at ∞ with exponent

γ ∈ [0,∞).

First of all, note that γ ≤ 1 from Mertens’ first theorem. For, let L(·)4 be a slowly varying
function at∞ defined as ∑

p≤ex

a(p) log p
p

= xγL(x),(27)

then (24) and (6) tell us that

4In this paper, we call this L(·) a slowly varying part of a regularly varying function x 	→ ∑
p≤ex

a(p) log p
p .
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xγL(x) ≤ sup
q

a(q)
∑
p≤ex

log p
p
= sup

q
a(q)

(
log ex + O(1)

)
= sup

q
a(q)

(
x + O(1)

)
.

This implies

lim sup
x→∞

xγ−1L(x) ≤ sup
q

a(q),(28)

so that it must be that γ ≤ 1.
We treat the following two cases:

Case 1 γ < 1
or
γ = 1 and

∫ ∞ L(x)
x

dx < ∞,

Case 2 γ = 1 and
∫ ∞ L(x)

x
dx = ∞.

Theorem 2. In Case 1,
∑

p
a(p)

p < ∞, and thus Z(1+; a) < ∞ a.s. In Case 2,
∑

p
a(p)

p = ∞,
and thus Z(1+; a) = ∞ a.s.

Proof. First, by (10) and (27),

C(ex) = xγL(x).(29)

From (11), it follows that for x ≥ 2,∑
p≤x

a(p)
p
=

∑
p≤x

a(p) log p
p

1
log p

=

∫
(2−ε,x]

C(dt)
log t

[
where 0 < ε < 1

]
=

∫
(2−ε,x]

(
d
(C(t)
log t

)
+C(t)

1
(log t)2

dt
t

) [
by integration by parts

]
=

C(x)
log x

+

∫ x

2

C(t)
(log t)2

dt
t

[
since C(t) = 0 (∀t < 2)

]
=

C(x)
log x

+

∫ log x

log 2

C(es)
s2 ds

[
by the change of variables log t = s

]
.

By (29), this is rewritten as ∑
p≤ex

a(p)
p
=

L(x)
x1−γ +

∫ x

log 2

L(s)
s2−γ ds.

In the case where γ < 1, 1 − γ > 0 and the slow variation of L(·) at∞ yield that

lim
x→∞

L(x)
x1−γ = 0,∫ ∞ L(s)
s2−γ ds =

∫ ∞ L(s)
s1+1−γ ds < ∞,

from which, it follows that
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∑
p

a(p)
p
< ∞.

In the case where γ = 1 and
∫ ∞ L(x)

x dx < ∞, (28) implies∑
p

a(p)
p
= lim

x→∞

∑
p≤ex

a(p)
p
= lim

x→∞

(
L(x) +

∫ x

log 2

L(s)
s

ds
)

≤ sup
q

a(q) +
∫ ∞

log 2

L(s)
s

ds < ∞.

In the case where γ = 1 and
∫ ∞ L(x)

x dx = ∞,∑
p

a(p)
p
= lim

x→∞

∑
p≤ex

a(p)
p
≥ lim

x→∞

∫ x

log 2

L(s)
s

ds =
∫ ∞

log 2

L(s)
s

ds = ∞.

�

Claim 11. In Case 2, −η
′(σ; a)
η(σ; a)

∼ 1
σ − 1

L
( 1
σ − 1

)
as σ↘ 1.

Proof. By 1◦ in the proof of Claim 6,

−η
′(σ; a)
η(σ; a)

=
∑

p

a(p)
pσ

log p +
∑

p

a(p)2

p2σ

log p

1 − a(p)
pσ
.

Since the second term is convergent as σ ↘ 1, we may investigate the asymptotics of the
first term as σ↘ 1.

By (11) and (29),∑
p

a(p)
pσ

log p =
∑

p

a(p) log p
p

1
pσ−1(30)

=

∫
(2−ε,∞)

C(dx)
xσ−1

[
where 0 < ε < 1

]
=

∫
(2−ε,∞)

(
d
(C(x)

xσ−1

)
−C(x)(1 − σ)x−σdx

) [
by integration by parts

]
= (σ − 1)

∫ ∞

1

C(x)
xσ

dx

⎡⎢⎢⎢⎢⎢⎢⎣since C(t) = 0 (∀t < 2) and by (29),
C(x)
xσ−1 =

C(elog x)
xσ−1 =

log x L(log x)
xσ−1 → 0 as x→ ∞

⎤⎥⎥⎥⎥⎥⎥⎦
= (σ − 1)

∫ ∞

0
e−(σ−1)sC(es)ds

[
by the change of variables log x = s

]
= (σ − 1)

∫ ∞

0
e−(σ−1)sd

(∫ s

0
C(ex)dx

)
.

Here, since, by (29), x 	→ C(ex) is regularly varying at∞ with exponent 1, Feller [4, Chapter
VIII, Theorem 1] tells us that

sC(es)∫ s
0 C(ex)dx

→ 2 as s→ ∞,

and thus
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0
C(ex)dx ∼ 1

2
sC(es) =

1
2

s2L(s) as s→ ∞.

This, by Feller [4, Chapter XIII, Theorem 2], implies∫ ∞

0
e−(σ−1)sd

(∫ s

0
C(ex)dx

)
∼ (σ − 1)−2L

( 1
σ − 1

)
as σ↘ 1.(31)

Therefore we have ∑
p

a(p)
pσ

log p ∼ 1
σ − 1

L
( 1
σ − 1

)
as σ↘ 1,

which is the assertion of the claim. �

We divide Case 2 into three cases:

Case 2.1 lim
x→∞ L(x) = τ ∈ (0,∞),

Case 2.2 lim
x→∞ L(x) = 0,

Case 2.3 Neither Case 2.1 nor Case 2.2.

Since Case 2.3 is hard to deal with, this case is excluded from our consideration. Case 2.1
is C(ex) = x

(
τ + o(1)

)
as x→ ∞, i.e.,∑
p≤x

a(p) log p
p

= (log x)
(
τ + o(1)

)
as x→ ∞.

This is just the condition (4), so the answer to Case 2.1 is given from Corollary 1 in the
following way:

the distribution of (σ − 1)Z(σ; a)→ 1(0,∞)(x)
1
Γ(τ)

xτ−1e−xdx as σ↘ 1.

Theorem 3. In Case 2.2, limσ↘1 E
[
e−λ(σ−1)Z(σ;a)] = 1 (∀λ > 0). Thus

(σ − 1)Z(σ; a)→ 0 i.p. as σ↘ 1.

Proof. Fix λ > 0. First, by (14),

E
[
e−λ(σ−1)Z(σ;a)] =∏

p

E
[
e−λ(σ−1)(log p)Yp

(
a(p)
pσ

)]

=
∏

p

1 − a(p)
pσ

1 − a(p)
pσ

1
pλ(σ−1)

=
∏

p

exp
{
−a(p)

pσ
− a(p)2

p2σ

∫ 1

0

s

1 − a(p)
pσ s

ds

+
a(p)
pσ

1
pλ(σ−1) +

a(p)2

p2σ

1
p2λ(σ−1)

∫ 1

0

s

1 − a(p)
pσ

s
pλ(σ−1)

ds
}

= exp
{
−

∑
p

a(p)
pσ

(
1 − 1

pλ(σ−1)

)
−

∑
p

a(p)2

p2σ

∫ 1

0

s

1 − a(p)
pσ s

ds
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+
∑

p

a(p)2

p2σ

1
p2λ(σ−1)

∫ 1

0

s

1 − a(p)
pσ

s
pλ(σ−1)

ds
}
.

Since, as σ↘ 1,∑
p

a(p)2

p2σ

∫ 1

0

s

1 − a(p)
pσ s

ds→
∑

p

a(p)2

p2

∫ 1

0

s

1 − a(p)
p s

ds,

∑
p

a(p)2

p2σ

1
p2λ(σ−1)

∫ 1

0

s

1 − a(p)
pσ

s
pλ(σ−1)

ds→
∑

p

a(p)2

p2

∫ 1

0

s

1 − a(p)
p s

ds,

it suffices to show that ∑
p

a(p)
pσ

(
1 − 1

pλ(σ−1)

)
→ 0.(32)

Rewriting 1 − 1
pλ(σ−1) as

1 − 1
pλ(σ−1) = λ(σ − 1)

∫ 1

0

1
pλ(σ−1)t log p dt

and then using (30) yield that∑
p

a(p)
pσ

(
1 − 1

pλ(σ−1)

)
(33)

= λ(σ − 1)
∫ 1

0
(σ − 1)(1 + λt)dt

∫ ∞

0
e−(σ−1)(1+λt)sd

(∫ s

0
C(ex)dx

)
.

Here, by (31),

κ

∫ ∞

0
e−κsd

(∫ s

0
C(ex)dx

)
∼ 1
κ

L
(1
κ

)
as κ ↘ 0,

and thus, for 0 < ∀ε < 1,

∃δ > 0 s.t. 0 < κ < δ⇒ 1 − ε < κ
∫ ∞

0 e−κsd
(∫ s

0 C(ex)dx
)

1
κ
L
( 1
κ

) < 1 + ε.

Since, for 1 < σ < 1 + δ
1+λ ,

0 < (σ − 1)(1 + λt) ≤ (σ − 1)(1 + λ) < δ (0 ≤ ∀t ≤ 1),

it follows that

(σ − 1)(1 + λt)
∫ ∞

0 e−(σ−1)(1+λt)sd
(∫ s

0 C(ex)dx
)

1
(σ−1)(1+λt) L

( 1
(σ−1)(1+λt)

) < 1 + ε (0 ≤ ∀t ≤ 1).

Using this estimate in (33), we have

0 ≤
∑

p

a(p)
pσ

(
1 − 1

pλ(σ−1)

)
≤ (1 + ε)

∫ 1

0

λ

1 + λt
L
( 1
(σ − 1)(1 + λt)

)
dt.

Finally, noting that by lim
x→∞ L(x) = 0 and the bounded convergence theorem,
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lim
σ↘1

∫ 1

0

λ

1 + λt
L
( 1
(σ − 1)(1 + λt)

)
dt = 0,

we obtain (32). �

To investigate the behavior of Z(σ; a) as σ ↘ 1 in Case 2.2 in more detail, we suppose
the following:

(34) u 	→ L(eu) is regularly varying at∞ with exponent δ.

Then note that −1 ≤ δ ≤ 0. For, let l(·) be its slowly varying part, then

∞ =
∫ ∞ L(x)

x
dx

[
cf. Case 2

]
=

∫ ∞
L(eu)du

[
by the change of variables log x = u

]
=

∫ ∞
uδl(u)du,

0 = lim
x→∞ L(x)

[
cf. Case 2.2

]
= lim

u→∞ L(eu) = lim
u→∞ uδl(u).

These convergences imply neither δ < −1 nor δ > 0, i.e., −1 ≤ δ ≤ 0.
We divide Case 2.2 into the following cases:

Case 2.2.1 −1 < δ ≤ 0,

Case 2.2.2 δ = −1,

Case 2.2.2.1 lim
u→∞ l(u) = ∞,

Case 2.2.2.2 lim
u→∞ l(u) = κ ∈ (0,∞),

Case 2.2.2.3 lim
u→∞ l(u) = 0.

Theorem 4. (i) In Case 2.2.1 or Case 2.2.2.1, limσ↘1 E
[
e−λ(σ−1)ΔZ(σ;a)] = 0 (∀λ >

0, 0 ≤ ∀Δ < 1). Thus

(σ − 1)ΔZ(σ; a)→ ∞ i.p. as σ↘ 1, 0 ≤ ∀Δ < 1.

(ii) In Case 2.2.2.2, limσ↘1 E
[
e−λ(σ−1)ΔZ(σ;a)] = Δκ (∀λ > 0, 0 < ∀Δ ≤ 1). Thus, (σ −

1)ΔZ(σ; a) being regarded as a [0,∞]-valued random variable,

the distribution of (σ − 1)ΔZ(σ; a)

→ Δκδ0 + (1 − Δκ)δ∞ as σ↘ 1, 0 < ∀Δ ≤ 1.

(iii) In Case 2.2.2.3, limσ↘1 E
[
e−λ(σ−1)ΔZ(σ;a)] = 1 (∀λ > 0, 0 < ∀Δ ≤ 1). Thus

(σ − 1)ΔZ(σ; a)→ 0 i.p. as σ↘ 1, 0 < ∀Δ ≤ 1.

Proof. Fix λ > 0 and 0 < Δ < 1. First, from the proof of Theorem 3, it is seen that as
σ↘ 1,

E
[
e−λ(σ−1)ΔZ(σ;a)] ∼ exp

{
−

∑
p

a(p)
pσ

(
1 − 1

pλ(σ−1)Δ

)}
,
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∑
p

a(p)
pσ

(
1 − 1

pλ(σ−1)Δ

)

= λ(σ − 1)Δ
∫ 1

0

(
σ − 1 + λ(σ − 1)Δt

)
dt

∫ ∞

0
e−(σ−1+λ(σ−1)Δt)sd

(∫ s

0
C(ex)dx

)
∼ λ(σ − 1)Δ

∫ 1

0

1
σ − 1 + λ(σ − 1)Δt

L
( 1
σ − 1 + λ(σ − 1)Δt

)
dt

=

∫ log 1
σ−1

log 1
σ−1+λ(σ−1)Δ

L(eu)du
[
by the change of variables log 1

σ−1+λ(σ−1)Δt = u
]

=

∫ log 1
σ−1

log 1
σ−1+λ(σ−1)Δ

uδl(u)du.

In the case where −1 < δ ≤ 0, we take ε > 0 such that −1 < δ − ε < δ ≤ 0. Since
u−ε < l(u) < uε (u � 1) by the slow variation of l(·) at∞, and δ − ε + 1 > 0, it follows that∫ log 1

σ−1

log 1
σ−1+λ(σ−1)Δ

uδl(u)du ≥
∫ log 1

σ−1

log 1
σ−1+λ(σ−1)Δ

uδ−εdu

=
1

δ − ε + 1

(
log

1
σ − 1

)δ−ε+1(
1 −

(
Δ +

log 1
λ+(σ−1)1−Δ

log 1
σ−1

)δ−ε+1)
→ ∞ as σ↘ 1.

Thus

lim
σ↘1

E
[
e−λ(σ−1)ΔZ(σ;a)] = 0.

In the case where δ = −1,∫ log 1
σ−1

log 1
σ−1+λ(σ−1)Δ

u−1l(u)du =
∫ log log 1

σ−1

log log 1
σ−1+λ(σ−1)Δ

l(ev)dv
[
by the change of variables log u = v

]

=

∫ β(σ)

α(σ)
f (v)dv

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
where, for simplicity

f (v) � l(ev),
α(σ) � log log 1

σ−1+λ(σ−1)Δ ,

β(σ) � log log 1
σ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

∫ β(σ)−α(σ)

0

f (w + α(σ))
f (α(σ))

dw f (α(σ)).

Here, note that as σ↘ 1,

β(σ) − α(σ) = log
1

Δ +
log 1

λ+(σ−1)1−Δ
log 1

σ−1

→ log
1
Δ
,

α(σ)→ ∞,
f (w + α(σ))

f (α(σ))
=

l(eweα(σ))
l(eα(σ))

⇒
c

1
[
by the slow variation of l(·) at∞]

.

From these, it follows that
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0

f (w + α(σ))
f (α(σ))

dw→ log
1
Δ

as σ↘ 1,

so that

lim
σ↘1

∫ log 1
σ−1

log 1
σ−1+λ(σ−1)Δ

u−1l(u)du =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ if lim
u→∞ l(u) = ∞,

κ log
1
Δ
= − logΔκ if lim

u→∞ l(u) = κ ∈ (0,∞),

0 if lim
u→∞ l(u) = 0.

Thus

lim
σ↘1

E
[
e−λ(σ−1)ΔZ(σ;a)] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if lim
u→∞ l(u) = ∞,

Δκ if lim
u→∞ l(u) = κ ∈ (0,∞),

1 if lim
u→∞ l(u) = 0.

�

Before closing this paper, we give some examples of a(·). For this, we need the following
lemma:

Lemma 2. Let t0 > 0, and f : (t0,∞) → (0,∞) be of class C1 and ultimately non-
increasing, i.e., ∃t1 > t0 s.t. f ′ ≤ 0 on [t1,∞). Then, for q0 � min{p:prime; t0 < p} and
0 < ε < (q0 − t0) ∧ (q0 − 1),∑

t0<p≤x

log p
p

f (p) =
∫ x

q0−ε
f (t)
t

dt + O(1) as x→ ∞.

Proof. For simplicity, we set

M(x) =
∑
p≤x

log p
p
, x ∈ R.

Clearly M(·) is non-decreasing, right-continuous, M(x) = 0 (∀x < 2), and

M(dx) =
∑

p

log p
p
δp(dx).

Note that supx≥1 |M(x) − log x| < ∞ by Mertens’ first theorem (6). By integration by parts,∑
t0<p≤x

log p
p

f (p) =
∑

q0−ε<p≤x

log p
p

f (p)

=

∫
(q0−ε,x]

f (t)M(dt)

=

∫
(q0−ε,x]

(
d( f (t)M(t)) − M(t) f ′(t)dt

)
= f (x)(log x + η(x)) − f (q0 − ε)(log(q0 − ε) + η(q0 − ε))
−

∫ x

q0−ε
(log t + η(t)) f ′(t)dt

[
where η(x) � M(x) − log x

]
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=

∫ x

q0−ε
f (t)
t

dt + f (x)η(x) − f (q0 − ε)η(q0 − ε) −
∫ x

q0−ε
η(t) f ′(t)dt

=

∫ x

q0−ε
f (t)
t

dt + O(1) −
∫ x

q0−ε
η(t) f ′(t)dt as x→ ∞.

Here, since − f ′ ≥ 0 on [t1,∞),∣∣∣∣∣−
∫ x

q0−ε
η(t) f ′(t)dt

∣∣∣∣∣ =
∣∣∣∣∣−

∫ t1∨1

q0−ε
η(t) f ′(t)dt +

∫ x

t1∨1
η(t)(− f ′(t))dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t1∨1

q0−ε
η(t) f ′(t)dt

∣∣∣∣∣ +
∫ x

t1∨1
|η(t)|(− f ′(t))dt

≤
∣∣∣∣∣
∫ t1∨1

q0−ε
η(t) f ′(t)dt

∣∣∣∣∣ + (
sup
t≥1
|η(t)|

)(− f (x) + f (t1 ∨ 1)
)

= O(1) as x→ ∞.
This, together with the preceding, implies the assertion of the lemma. �

Letting f (t) = 1
(log t)b or 1

(log log t)c or 1
(log log t)c(log log log t)d or 1

(log log log t)d in Lemma 2 yields
the following example, whose details are omitted:

Example 4. (i) For b > 0,

∑
p≤x

log p
p

1
(log p)b =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
O(1) if b > 1,
log log x + O(1) if b = 1,

1
1−b (log x)1−b + O(1) if 0 < b < 1

as x→ ∞.

Thus ∑
p

log p
p

1
(log p)b

⎧⎪⎪⎨⎪⎪⎩< ∞ if b > 1,
= ∞ if 0 < b ≤ 1.

In the latter case, x 	→ ∑
p≤ex

log p
p

1
(log p)b is regularly varying at∞with exponent 1−b ∈ [0, 1).

(ii) For c > 0, ∑
e<p≤x

log p
p

1
(log log p)c ∼

log x
(log log x)c as x→ ∞.

Thus
∑

p>e
log p

p
1

(log log p)c = ∞, and x 	→ ∑
e<p≤ex

log p
p

1
(log log p)c is regularly varying at ∞ with

exponent 1 and its slowly varying part L(x) ∼ 1
(log x)c as x→ ∞, so that

lim
x→∞ L(x) = 0,

∫ ∞ L(x)
x

dx

⎧⎪⎪⎨⎪⎪⎩< ∞ if c > 1,
= ∞ if 0 < c ≤ 1.

In the latter case, u 	→ L(eu) is regularly varying at∞ with exponent −c ∈ [−1, 0).
(iii) For c > 0 and d ∈ R,∑

ee<p≤x

log p
p

1
(log log p)c(log log log p)d ∼

log x
(log log x)c(log log log x)d as x→ ∞.
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Thus
∑

p>ee
log p

p
1

(log log p)c(log log log)d = ∞, and x 	→ ∑
ee<p≤ex

log p
p

1
(log log p)c(log log log p)d is regu-

larly varying at ∞ with exponent 1 and its slowly varying part L(x) ∼
1

(log x)c(log log x)d as x→ ∞, so that

lim
x→∞ L(x) = 0,

∫ ∞ L(x)
x

dx

⎧⎪⎪⎨⎪⎪⎩< ∞ if c > 1 or c = 1 and d > 1,
= ∞ if 0 < c < 1 or c = 1 and d ≤ 1.

In the latter case, u 	→ L(eu) is regularly varying at ∞ with exponent −c ∈ [−1, 0) and its
slowly varying part l(u) ∼ 1

(log u)d as u→ ∞, so that in the case where c = 1 and d ≤ 1,

lim
u→∞ l(u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∞ if d < 0,
1 if d = 0,
0 if 0 < d ≤ 1.

(iv) For d > 0, ∑
ee<p≤x

log p
p

1
(log log log p)d ∼

log x
(log log log x)d as x→ ∞.

Thus
∑

p>ee
log p

p
1

(log log log)d = ∞, and x 	→ ∑
ee<p≤ex

log p
p

1
(log log log p)d is regularly varying at ∞

with exponent 1 and its slowly varying part L(x) ∼ 1
(log log x)d as x→ ∞, so that

lim
x→∞ L(x) = 0,

∫ ∞ L(x)
x

dx = ∞,
u 	→ L(eu) is regularly varying at∞ with exponent 0 (= slowly varying at∞).
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