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Introduction

Let G be a finite group, k a field of characteristic p > 0 and B a block of the
group algebra kG. Let θ be a connected component (AR-component for short) of
the stable Auslander-Reiten quiver of B. Erdmann showed that if B is a wild block
of kG, then the tree class of θ is AOQ [6]. In this note we investigate where simple
modules lie in the Auslander-Reiten quiver of B. Let Λ be a symmetric algebra and
M a simple Λ-module. Then the Auslander-Reiten sequence A(Ω~1M) terminating
in Ω~1M is of the form 0 -> ΩM -> HM®PM -> Ω~αM -» 0, where Ω is the Heller
operator, PM is the projective cover of M and HM is the heart RadPM/SocPM of
PM (see [1, Proposition 4.11]), and sequences of this type will be called standard
sequences. Therefore if the tree class of the AR-component θ containing M is A^,
then M lies at the end of θ if and only if HM is indecomposable.

In Section 1, we consider for general symmetric algebras what happens if some
AR-component with tree class AQQ contains a simple module not lying at the end
of its AR-component. In Section 2 we give certain conditions which imply that all

simple modules in B lie at the ends of AR-components.
The notation is almost standard. All the modules considered here are finite

dimensional over k. Concerning some basic facts and terminologies used here, we
refer to [2] and [5].

1. AR-components of symmetric algebras and simple modules

In the case of general symmetric algebras, Jost gave some conditions which
imply that all simple modules contained in an AR-component with tree class A^
lie at the end of this component [7, Theorem 3.3], Now we consider what happens
if some simple module does not lie at the end of an AR-component with tree class
AOO. In this section, let Λ be a symmetric algebra and θ an AR-component with tree
class AOQ of the stable Auslander-Reiten quiver of Λ, and suppose that θ contains
some simple Λ-module not lying at the end of θ. Under this assumption θ is of
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the form ZA^ or (Z/m)A00 (so called an m-tube), and we may assume that θ or
Ωθ contains some simple module 5 not lying at the end and that the wing W(5)
spanned by S:

S

βι/ \ «ι
Xl

X2

\ / \ / \α3

Ω2Xn Xn

with Ω^Xn (0 < ί < n) lying at the end, satisfies the condition that
(*) there are no projectives in ^(Ω2*^) for 0 < ί < j < n.

Indeed, if this is not the case, then the AR-sequence Λ^l^Xj] terminating in Ω2τXj
is standard for some 1 < j < n — 1 and some 0 < ί < j because standard ones are
only those which involve projectives. Thus, Ω2 zXj is isomorphic to Ω~15/ for some
simple module 5X, and 57 does not lie at the end. Hence we start with S' instead
of S, and therefore we finally get a wing with the above property (*).

In the above situation, we shall see that the AR-sequences *4(Ω2ΐ Xn) terminating
in Ω2ίJfn (0 < i < n — 1) are standard. Also in the case where θ is an infinite
m-tube, we shall see that n + 1 < m, i.e., Xn φ Ω2ΐXn for 0 < i < n.

First we recall the following easy result (see, e.g., the argument in [3, Section
3]), which will be used repeatedly.

Lemma 1.1. Let Λ(U) :O^X-^Y®Z^U-*0 with Y and Z non-
projective be an AR-sequence terminating in U. Assume that the irreducible map
a. : Y — > U is a monomorphism. Then the irreducible map a' : X — > Z is also a
monomorphism and Cokerα = Cokera'. Dually, if the irreducible map a.' : X — > Z
is an epίmorphism, then the irreducible map a : Y — > U is also an epimorphism and
Kerα ^ Kerα7.

Now we give attention to the modules X\, Ω2Xι and Ω2X2

Lemma 1.2. Xι, Ω2Xι and Ω2JΓ2 are uniserίal and their Loewy series are as
follows for some simple K-modules TI and Tn :
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(
'T

1 1 O2 V . ί 1 n'2 V .
c I » Ω AI : ] , Ω Λ 2 :

^

Proof. Since 5 is simple, the irreducible map βι : Ω2Xι —> 5 is an epi-
morphism and the irreducible map αi : 5 —> AΊ is a monomorphism. By the
property(*) and Lemma 1.1, it follows that A(Xn) and ̂ .(Ω2^"1)^) are standard,
i.e., Ω2^-1)^ = Ω~lTι and Xn 9* Ω~lTn for some simple Λ-modules 7\ and Tn.
Also, Lemma 1.1 yields that Cokerai ^ TI and Kerβ1 ^ Tn. D

Next we consider the modules Xi (1 < ί < n).

Lemma 1.3. For the modules Xi and the irreducible maps α^ : Xi-ι —> Xi (1 <
i < n), the following hold.
(1) 77ze irreducible maps α^ α^ monomorphisms.

(2) Ω^-^Jfn ^ Ω-1^ /or some simple K-module T f(l < i < n).
(3) T^ appears in the head ofXi and the composition factors ofXi, from the head,

are given by {T^T^, - - -,7\, 5}.
(4) The socle of Xi is isomorphic to S.

Proof. In the case i = 1, the statements follow by Lemma 1.2. Assume
that the statements hold for Xj(l < j < ί — 1). Note that the AR-sequences
Λ(Xi)(l < i < n — 1) are not standard. We consider the following mesh:

Xi-l

(1) Assume contrary that c^ is an epimorphism. Since the socle of Xi-ι is simple
and isomorphic to 5, the socle of Kerc^ is isomorphic to 5 and 5 does
not appear as a composition factor of Xif Since the irreducible map β :
Ω2JΓί+ι —> Xi is an epimorphism and Ker/3 = Tn, 5 does not appear as a

/ S \
composition factor of Ω2X ΐ+ι. Now we see that Ω2Xι = ί ) C Ω2^ by

\ίn /
induction. However, since S lies in the head of Ω2Xι, we have Ω2JΓι C Kerα,
where a is the irreducible map from Ω2JQ to Ω2JQ+ι, but this contradicts that
Keΐoti = Kerα.

(2) Note that the statement (1) above, Lemma 1.1 and the property (*) imply

that A(tt2(n-^Xn) is standard. Hence we have Ω2(n~^Xn ^ Ω"1^ for some
simple Λ-module T^.
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(3) This follows since Cokera» = Ti by (2).
(4) By the inductive hypothesis, we have SocXi-ι ~ S. Since Xi-ι is a maximal

submodule of Xi and Xi is indecomposable, we have SocXi^i = SocXi.

D

Proposition 1.4. Using the same notation as in Lemma 1.3, the wing W(S)
spanned by S is as follows.

S

f s \
Tn

Tn-1

T2

\ s
5

\ Ϊ 3 /

\

S
V τn

\

\
5 /

/Tn-l\

Tn-2

S
V Tn

\
τn \

Γ2

! particular, all modules in W(S) are uniserial.

Proof. We continue to use the notation in Lemma 1.3. From Lemma 1.3(2)
and the property (*), the irreducible maps Ω<2sXi —» Ω^JQ+i are monomorphisms
and the irreducible maps Ω2(s+1)jQ+ι —> Ω2sXi are epimorphisms for 1 < i < n — 1
and 0 < s < i. Therefore Xi is a homomorphic image of Ω-1T^ and the head of Xi
is isomorphic to T^. Thus Xi (1 < i < n) are uniserial. In particular JΓn_ι( = the
heart of the project!ve cover of Tn) is uniserial and so is Ω2Xn(= ΩTn). Since
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Ω2Jf; (1 < i < n) are submodules of Ω2Xn, they are uniserial. Using this argument
repeatedly, we see that all modules in W(5) are uniserial. D

From Lemma 1.3 and Proposition 1.4, we have the following immediately.

Theorem 1.5. Let Λ be a symmetric algebra and θ an AR-component of A
with tree class A^. Suppose that θ contains some simple module not lying at the
end ofθ. Then for some simple K-modules 5,T\, , Tn the projectίve covers Py. of
Ti (1 < i < n) are uniserial and the Loewy series are as follows :

.* =

Tl

S

Tn-l

T3

\ T2 /

T2

Ti
S

In particular, the Cartan matrix for Λ looks like

Tn \

T2

TI
S
τn

( 2 1 1 ••• 1 \
121 . Γ]11 . . i U
: ' - . 2 1
1 1 ... 1

o *
Proof. By Lemma 1.3(2), the AR-sequences *A(Ω2(n ^Xn) are standard and

ςp(n-i)χn ^ Ω"1^ for some simple Λ-modules Γi(l < i < n). Also by Proposition

1.4, the hearts Ω2(n~^JΓn_ι of P^ are uniserial and their Loewy series, from the
head, are given by T^i, T;_2, - - , Γ1? 5, Tn, Γn_ι, - , Ti+1. We claim that T» ^ Γ^ if
i ^ j. Indeed, since 5 appears only in the (i + l)th head of Pτi9 we have P^ ^ PT\

i f ί ^ J . Π

REMARK 1.6. Under the same notation as in Proposition 1.4, suppose that θ
is an infinite m-tube. Then it follows that n + 1 < m since Ω"1^ φ Ω"1!} if i / j.
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2. AR-components of group algebras and simple modules

In this section, we show that under certain conditions all simple modules in a
wild block B of the group algebra kG lie at the ends of the AR-components.

Theorem 2.1. Let B be a mid block ofkG. Suppose that G has a non-trivial
normal p-subgroup and k is algebraically closed. Then all simple modules in B lie
at the ends of the AR-components.

Proof. Let Q be a non-trivial normal p-subgroup of G. Assume contrary that
some simple module in B does not lie at the end. Then for some simple modules
5, TI, , Tn, the projective covers P^ of T; (1 < ί < n) are uniserial and the Loewy

series are as in Theorem 1.5. In particular the Cartan integers cTίTi = 2.

CLAIM 1. n = 1, i.e., for some simple modules S and T, the Loewy series of
the projective cover Pτ of T is given by T, 5, T.

Proof of the Claim 1. From the result of Tsushima [10, Lemma 3], J are
projective as k (G/Q) -modules, i.e., vx(T ) = Q and the trivial /cβ-module /CQ is a
source of TI. Now assume contrary that n > 2. Since TI = Ω2T2, it follows that
kQ = Ω2/cg and Q is cyclic. However, by the result of Erdmann [4, Theorem] T;
belong to a block with a cyclic defect group, a contradiction.

CLAIM 2. We have p = 2 and Q is the Klein four group.

Proof of the Claim 2. Since T [Q and S IQ are direct sums of copies of A Q,
the length of Loewy series of Pτ IQ is at most 3. Hence Q is the Klein four group
by the result of Okuyama [9].

Let HS be the heart of the projective cover Ps of S and θ the AR-component
containing Ω5. Then #5- = T®X for some indecomposable non-projective module
X. We consider the wing spanned by X :

X

/ \ / \
Ω2Γ Γ Ω~2Γ.

CLAIM 3. vx(X) ^ Q.

Proof of the Claim 3. Assume contrary that vx(X) — Q. Note that the
AR-component containing S is not a tube, since kQ\S [Q and /CQ is not a periodic
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module. Since vx(T) = Q, from the result of Okuyama and Uno [8, Theorem], all

the indecomposable modules in Θ have the same vertex Q. Since θ is of the form
Z^Loo, the class of the Q-sources of the indecomposable modules in θ consists of
infinitely many Ω2-orbits. However this would be impossible because non-periodic
indecomposable fcQ-modules are the syzygies of the trivial module &Q only (see,

e.g., [2]).

Now we consider the following two cases.

CASE 1. vx(Ω~lS) > Q. The AR-sequence ^(Ω-1^) |Q restricted to Q splits
[2, Proposition 4.12.10]. However, Ω~1S IQ (resp. Ω5 JQ) is a direct sum of copies

of Ω^/CQ (resp. Ω&Q) but T [Q is a direct sum of copies of &Q, a contradiction.

CASE 2. vxίΩ-1^) - Q, vx(X) £ β. The AR-sequence ^(Ω-1^) |Q re-
stricted to Q is a direct sum of split sequences and ra copies of AR-sequence
Λ(ίl'lkQ) for some ra. Since S |Q^ (dimS)kQ and Ω~1S [Q^ (dimS)ΩA Q,

we have πi < dim S. On the other hand, since dim(Soc(P5 |Q)) > dim S and
(dimS')fcQlPs |Q, we have ra > dim5. Therefore ra = dim5. This means that
the AR-sequence V4(Ω~15) |Q restricted to Q is a direct sum of (dim 5) copies
of the AR-sequence A(Ω~lko) and X [Q is a direct sum of copies of /CQ. Since
vx(X) > Q, the AR-sequence A(X)\,Q restricted to Q splits. However Ω/CQ is a di-
rect summand of Ω5 |Q, which is a direct summand of the middle term of Λ(X) |Q,
a contradiction. Π

Corollary 2.2. Let B a wild block ofkG. Suppose that G is p-solvable and
k is algebraically closed. Then all simple modules in B lie at the ends of the AR-
components.

Proof. Assume that some simple module does not lie at the end. Then by
Theorem 1.5 and the result of Tsushima [10, Theorem], there is a finite group
H with normal p-subgroup such that B and kH are Morita equivalent. However
by Theorem 2.1 all simple &#-modules lie at the ends of the AR-components, a
contradiction. Π
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