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                         ABSIilRACT

     Mhis paper represents the first successful co]nparison between

experimental results and exact solutions for a simplith'ed phase-

transition problem in the pre"sence of a finite magnetic field.

     Changes in the posi.tion of paramagnetic absorption lines in
                     'two typical one-dimensional Heisenberg antiferromagnets, CsMnCls2H20
                             'and (CHs)4NMnCls, were investigated theoreticaUy and experimentally

in the shoi?t-range-o]rdered spin state. . Mhe pi?esent theory with

the classical spin model properly predicts the magnitude and tem-

perature dependence of the shiÅít of resonant field for both crys-

tals. The shift oi'  resonance lines observed for CsMnCls2H20 can

be e><lplained by taking account only of the dipolar term as an

an:' Lsotropy t,erT-n. Fo-r (CH.s)4-N.IY[-nCly h.ow.ever, ,q.ince the si=ngle-

ion anisotropy is considerably largeT, the effect of the D-term

has to be taken into account in the explanation of the temperature

variation of respnant field.

     Morque measurements were done in order to investigate the
                                         'ani$otropy in the paramagnetie susceptibility of CsMnCls2H20 and

the results are compared with the t-heoretical predictÅ}ons based

on the classical spin model including only a small dipolar teTm

as an anisotropy term. The agreement is satisfactory.

     Mhe results of tlLe present work are remarkable especially
                                                       iwhen one considers the tremendous labor involved in the corre-

sponding problem for two- or three-dimensional systems.
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g4. !ntroduction
     Much of the theoreticalA) and experimental2) studies of the

critical phenomena by means of the eZectTon paramagnetic resonance

in an antifeTromagnet has been related to the line width which,

when the critical point is approached, increase$ anomalously

because of the divergent nature of the random torque. On the
other hand, few studiesS)N6) of the temperature dependence of the

position of the resonance Zine in the vicinity of the N6el tempe-

rature have been Teported. The position of the paramagnetic

resonance lines in a magnetically concentrated sa]t may shift with

decreasing temperature by the eÅífect oÅí the short range order in the

spin system as well as the effect of the bulk magnetization. For

general three-dimensional systems, it does not seem possible at the

present stage to discuss quantitatively the eÅífect of the short

range order on the resonance position, because it requires the

knowledge of the correlation functions in the presence of a finite
                            'magnetic field.

     However, there is a couple of cases where such correiation

Åíunctions can explicitly be calculated as a function of tempera-

ture and the guantitative discus$ion of the short-range-order

efÅíects may then be possible. One of the exactly soluble cases

is a one-dimensional system with Heisenberg Hamiltonian. As
Fisher7) firstly point out, the Heisenberg linear c]Lain problem

with zero external Åíield becomes exactly soluble in the (classical)

limit of infinite spin. Recently it was found that this class-
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ical Heisenberg' model properÅ}y predicted some of magnetic
behavi-'o]?s of. siJtci.n. aei.:iJtan. si.TsaJer.n,s as Cs]iV[iyihCILs2}-I2•08) and (CHs)LtrlrvlnCljs9)

 (hereafter denoted as TMMC). Acco]rdingly, it can be naturaUy

expected that, if we restrict ourselves to such a Heisenberg

iinear chain antiferromagnet, t]Le temperature varlation Qf the

resonance position Å}n the sho]7't-range-o]?de]?ed spin state may be

described quantitatively in terms of the clas$ical spin model.

In the present thesis, tine theoretical and experimental results

on the paramagnetic resonance in CsMnCls2H20 and MwwC will be

given as wel! as tshe result on the magnetic anisotropy in

csMnC1s2H2O-
     Both csMncls2H2oAO) and TMMclA) contain Mn2" ions (s=s/2) as

magnetic carrier and belong to a class of substances which may

be dese-nibed as linear chain a]itife' ]7]7omagnets. Zn these mate]?ials,

from structural rea$ons, dominant superexchange coupling between
  2+Mn ions occurs in -MnCin- chains which extend in each specified

dzrection of the crystals and are magnetically insulated frora

each other by two or more intervening atoms. orhe thermal and

magnetic properties of the two antiferi?omagnets have been actually
                                                                   'Åíound to be consistent with the expectation based on Fisher's
exact solution7) of the cla$sical one-dimensional Heisenberg

antiferromagnets, above about ao K for csMncls2H2o8)'12) and A.4 K

fo]? Tmuc9),i5) respectively. The two materials, therefore, ai?e

much favourable to study the static and dsrnamic behaviors of a

one-dimensional system with• considerably lone-range one-dimensional
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correlata'ons in the absence of the three-dimensional efÅíects.
     As repoyt.ed ]:nd the p]?evi:ous $h.ort notte5), [DazukLe an-d tvhe

author discovered firstly for CsMnCls2H20 anomalously large shfits

oÅí the paramagnetic resonance lines when the tempevature was

reduced and the Neel point was approached. Furthermore, a simxlar

temperature dependence of the resonance positions was recently

observed for MMMC by them. The shiÅíts of both materials have a

uniaxial symetry referred to the directions of chains and their

amplitudes seem to reflect the deveZopment oÅí intrachain spin

correlations. Besides the torque measurement performed on

CsMnCls2H20 by the author revealed that, though the magnetie

carrier of this salt is regarded as isotropic in magnetic moment,

the anomalously large axial anisotropy appeaTs in the paramagnetic

susceptibUity in th.e s.hort--Tange--ord-ered spin .q.tate. AccorAvingl>r,

it can be deduced that the magnetic dipole interactions among

short-range-ordered spins in the chain may be responsible Åíor the

line-shifting mechanism and the enhancement of anisotropy.

     The conÅíirmation of the above inference ]?equires the knowl-

edges on the relation between the resonance frequencies or

susceptibilities and the correlation functions and on the explicit

expressions oi' the correZation functions in the presence oÅí a

finite magnetic field as a function of temperature. Theoretical
                                    'discussions for these pToblems are given in next section and the

results are compared with our experimental data in section 5.

Mhe agreements are excellent, particularly for CsMnCls2H20. Whis

-5-



work then represents the

exp. em: rn- ent al ye sul t, s and

phase-transition problem

Åíield.

first successful comparison between

ap. exac•t soi-uti"'-on fo]? a :i.'-mplif-;ed

                                    'in the presence of a finite magnetic
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g2. Theory

     In a Zinear chain system consisting of atomic spins coupled

with each other by isotropic exchange interaction, a most impor-

tant source of magnetic anisotropy energy with uniaxial symmetry

referred to the direction of chain (hereafter denoted as the z•-

direction) is the purely magnetic dipolar interactions between

spins given by

        22,     izJ. g.2. i.s (gi• gj - ssizsjz)• (4)

For a one-dimensional lattice, such a dipolar siam converges rapi--

dlye When one can approximate Eq. (1) by an interaction betvveen

the nearest neighbors, that is,

     22    g.gi jz.i(gj•gj-4 -- ssjzsj.-4z), . (2)

where ro is the nearest-neighbor separation in the c]Lain. Accor-

dingly the Hamiltonian for such a linear chain system of N+1 atoms

of spin S in an external magnetic field H can be written as
         '
                  N-s -> N N,.m. .->-     y - d-2J(1+oc)jZ.4SiSj..1 + 6JctjZ.ISjZSj"Z - gpBjZ.oSj'H (5)

with

     oc--4/(2J)(g2pB2/ro5). (4)
     Xn the following subsections, the electron paramagnetic

--  5 --



resonance frequencies for the linear chain system wUl be consi-

A nn it . i t 7 t. n- "=-. pt pt.- "nuereQ xor vne case wnere an exvernai magneuc neia ls sulnclenvÅ}y
strong as compared with the dipolaT interaction between adjacent

spins and the temperature variation of the shift of the effective

g-values wUl be calculated explicitly in the classical limit of

infinite spin. Continuously the anisotropy in the paramagnetic

susceptibility for the one-dimensional system will be quantita-

tively described according to the classical spin m6del and the
                                                                  '
relation between the shiÅít of resonance lines and the anisotropic

susceptibUity will be dis'cussed.

A) Paramagnetic Resona]Lce Frequencies

     It may be pjetured for paramagnetic resonances that the bulk
                4U>magnetic moment''' of entire spectmen makes a pTecessional motion

about the statie magnetic field at an angle which depends on the

amplitude of the r-f field, the proximity to resonance, and
                                                   .-nbdamping factors. Such motion of the total spin S is determined

by the quantum mechanicai equation of motion,

             '         .b .A     ih(dS/dt)-[S,st], (5)
where st is a Hamiltonian as in Eq. (5). We shaU here consider

the statistical average of the commutator, [SP ,S+]., rt comes

out from Eq. (5) to be

             e     ift <[ S- ,S']> = <[ S- ,[ S',st]] >, (6)

-6-



where we denote the thermal average by < >. Xf we neglect the

eÅífect of relaxation on the resonance frequency and assume that

S+ and S- are good normal modes, the time dependence of each
                                         '                         -gStransverse component of S can be taken to be proportional to

exp(iuat), that is,

                                                               '
The physical plausibility of Eq. (7) may be certified for the

case where the operating frequency is sufficiently larger than

the dipolar f]7equency. This situation could be ]realized in the

present experiments. By putting Eq. (7) intsQ Eq. (6), the

eigen-frequency can be obtained as

          <[s'",[s',"]]>

                '

As is seen in Appendix A, t]Lis approach to the frequency corres-

ponds to the caZculation of the first moment of lmX(w), the

imaginary part of the high frequency magnetÅ}c susceptibility.

Moreover, the expression (8) can also be derived fTom the density
matrix approach by Kanamori and TachikY5).

     Let us consider the case of a linear chain system desc]ribed

by Hamiltonian (5) with,an external Åíield H along the z-direction.

For this case, the x- and y-directÅ}ons are equivalent because

of uniaxial symetry. By a simple calculation one can obtain

from the relation (8) the resonance Åírequency as

-7-



     hcell = gnBtt -

For the •ca$e where

x-direction, the

is

     hcol =

Since we have

interactions, Eq.

     hWl = E;liBH +

     <sZ> in Eq•

magnetic

     <SZ>HllZ =

and

     <SX>Hllx =

respectively.

     For the case

gible, the average
<smZ>2 for HHz and

4 2JctN< SmZSm.4z - SmXSm+1X>ui1 r7

  ISrl L.J

[gpBH(gpBH

   con,fined

       (10)

       6JctN< S

          <SZ>HUZ

  an external field

analogous expreg, sion

       4 2JctN< SmZSm+1

     "

            .

is applied parallel

 fo]? the Tesonance

Z - SmXSm+i>HIIX

             < SX>Hll X

ourselves to the case of

can.be reduced to

 mXSm"X ' SmZSm+1Z>[HIIix

                      <sX>u v
                         iÅ}. .IL

        (9) and <SX> in Eq. (41) are

susceptibilities by

      (Xii HI)/( guB)

      (xiH)/(gpB),

         where the short-range-order
          <SmZSm+1Z - SmXSm"X> can
          -<smX>2 for Hilx, and then

                    -- 8-

  smaU

 .

related

     (9)

   to the

  frequency

)]1/2 (lo)

dipolar

     (M)

to the

 effects are

be replaced

Eq. (9) and

  (12)

 negli-

by

(41)



reduce to

            '                     !l 2J'ccX ,l
     hco" = e;li BH(4 " ililg 2p.2) (45)

and
                     6JctXi
     hcoi=gniBH(1+Ng2pB2)• (14)
    '
Accordingly the resonanee frequencies are temperature dependent

only through the temperature dependence of the magnetic suscep-

tibUities. This does not explain our experimental results,

indicating the importance of the short-range-order effects.

     In the present problem, it is essential to calculate the
correlation Åíunction <SmZSm"Z - SmXSm+IX> as a function of
                                     '
temp.e-raturre takin-g full. aceournt of Lvhe -.q.hort-ranbcre--order efiPenv+vt

several years ago, Fisher7) pointed out that the purely isotropic

Heisenberg chain problem becarne exactly soluble for H=O in the

classical limit of infinite spin. He obtained compact closed
                                                                   '
expressions for the pair correlation functions of such a system.

However, his result for H=O is not directly applicable to ouT
problem; the correlation function <SmZSm+IZ - SmXSm"X> vanishes.

Then we shall attempt to extend the calculation to the Qase oÅí

finite H and sznall anisotropy effects.

     To go over to the classical iimit, the quantum-mechanical

spin operators in the Hamiltonian (5) have to be replaced with
       'classical vectors. Following Ieisher's pvocedure, we shall
            '

                              -9-



introduce unit vector operators s-" J. r- S(S+1)-1/2S-" J. associated with

the j-th spin and treat them as classical vectors. Mhe correc-

tion for large finit S with respect to the classical results for
s=co is of order 4/s2 7). The resuiving classical Hamutonian
       '
for a smaU ct can be expressed by

                    N IN     st . -2Js(s.4)jz--gj,gj-4 + 6Js(s+a)ctjz.lsjZsj..4Z

                                     N .-..                    -- gi.LB[s(s+4)]4/2jz.ogj•H. . (is)

For the simple' case wit]L purely isotropic Heisenberg coupling

and zeTo exte]?nal field, the paiT correlation functions have been

obtained in the classical limit by Fisher as follows;

                                               '
     <s.Zs..iZ>o - (4 /s)Cu(K)}lil, (i6)

where

          2JS(S+1)

and

     u(K)=cQth K- 1/K. (48)
                                     '
     If we restnict ourselves to the physical condition that the

dipolar energy is sufficiently smaller than the Zeeman energy,

we can neg'lect the effect of dipolar interactions on the short

range order and treat the Zeeman terms as a perturbing HamUtonian.
              '

                              -AO-



Using the Hamiltonian
                                    '
    y- -2Js(s+1)j/L4g`j•g•j-1 -- gvB[s(s")]4/2jg.o.=Li fi, (lg)

the correlation function <SmZSm"Z- SmXSm+i> in the presence of

a small external field parallel to the z-direction can be expressed

in terms of the higher order spÅ}n correlations in zero field.

Mo the $econd order in H, we have

     <S.ZS."Z - S.XS..4X>H". = (4/2)[gn Hs(s.4)/(kor)]2

               NN           Å~ iZ.o J.L:.o<(SmZSm+IZ - SmXSm+IX)Si Sj >o. (20)

Fo]? the case vvith a field parallel to the x-direction. the                           -i
analogous expression can be obtained only by interchanging
(smZsm+AZ) with (smXsm+i). Then we have
                          '

     <SmZSm+4Z - SmXSm+IX>H"z = --<SmZSm"Z - SmZSm"Z>Hllx. (21)

                                                           '     Mhe summation in the right-hand side of Eq. (20) are given

in Appendix B for a large system and only t]Le results are presented

here:

     NN    iZ.o jX.o<(SmZSm+4Z - SmXSm+4X)siZsjZ>o

                          2 (2-u/K) 4K (4+u)
                       = 15 (A -u)2 ' 4.s (4-.) ' (22)

                              - 14 -



      Mhe magnetic susceptibUities, w]Lich appear in the Tesonance

 coniditions •(9) anu" (44) thr•ough thÅë- r•elations (42), can 'oe appr•o--

ximately subsbituted by Fisher's ex]p]?ession for zero field:

                         '          Ng2pB2s(s") (4+u)

                           -- , (25)      x ='
              5kT (1-u)

                                                   'which is easUy'derived from the relation (46). Accordingly,

the frequency--shift terms in Eq. (9) and (11) can now be expressed

explicitly as a function oÅí temperatuvee. For J<O, one obtains

             42lJlctN<SmZSm+4Z - SmXS..i>H"z
     Ah co il =
                           <SZ>H"Z

           =42ocg;'p,BI{ F(x) (24-)
and

     Ah ooL = •- (1/2) Zts,h co ii, (25)
where

              1 2+ux 2     F(X)=lo. (4-.2-s.) (26)
and
            kT
     X" 21Jls(s")= --4/K• (27)
Mhe numerical results of F(x) are shown in Fig. 4(a). At low
temperatures F(x) is asymptoticany proportionai to T-2, whiie at

                                                                    '

                              -12-



high

Eg. (

temperatures it is proportional to T- Z being consistent

'i5) and ('14).

with

B) Magnebic Susceptibility

     As is well known, the magnetic susceptÅ}bÅ}lity for a weak

magnetic field parallei to the y-divection can be calculated from

the Åíluctuation relation

     Å~(N) - giillB2il.lo jlo<siySjy>, , (2s)

when diamagnetic effects are neglected. Going to t]te same

elassical Zimit'employed Å}n the preceding subsection, we write

    1AAx'T")-q. Ldu] as

     Å~([D) . g21iilT2s(s+4) il.lo.jl.io<.iy.jy>. (2g)

We shall now calculate the pair correlation functions in Eq. (29)

by a perturbation procedure, considering the dipolar and Zeeman
   '                                'terms as a perturbing Hamiltonian. Using the total,HamUtonian
    '(15), the resulting expression for the susceptibilitsr for Hllz in

terms oÅí unperturbed spin-correlation functions becomes, to first

order in Jct,

-15-



     Å~" . g2pkR.is(s+fi){..\-o jtz.ifo<.iz•.jz> . 61Jl{is")ct ig.o jg.o kg.4

         Å~ [<SiZSjZ(SkZSk.-IZ)>o -" <SiZSjZ>o<SkZSk..IZ>o]}, (50)

                '                                                  '         'where < .>o reÅíers to an average with respect to the unperturbed

E[amiltonian. The analogous expression for xi differs only in
the substitution of (skXsk-.4X) for (skZsk-4Z). Consequently the

anisotropy in the susceptibUity turns out to be written in the

Åíollowing simple form:

              - 61Jlct[guBs(s+4)]2 y z}<f Nz
     Å~" - xi              - (kT)2 i.o J• -- o k-1
                        '

                Å~ <SiZSJ•Z(SkZSk-IZ - SkXSk-IX)>o. (5A)
                '
     '
Mhe suramations 'in the Tight-hand side of Eq. (5fi) has been given

in Eg. (22). Putting the result into Eg. (54),

     Å~" - xi . NgJtoc[gi{}lwsi:+4)]2 -ll{iilll{ili2 + •{lt; 1-'".}

              =Nct2ro5 p(x), (s2)
where

                      '                                                               '              2 2+ux 2 (1+u)
     P(X) " sx2{ (4 -.)2- ;. (1 .-.)}' (55)

                              -44-



whtch has the high-temperature expansion,

     Ip(x) - (2/Is)x'2 - (s2/LFs)x-i5 + ...

and the low-temperature 'expansion,

     P(X) = ('1/'15)X"-2 + (A/50)x-'1 + ...

                                         '
Mhe numenical results of P(x) are s]Lown in

anisotropy given by Eq.. (52), then vanishes

and increases monotonously with decreasing

(54)

                 (55)

Fig. 4(b). Mhe

at high temperatures

temperaturee

C) Effect$ of the Single Ion Anisotropy Energy

     In this paragraph, we shall consider briefly the eÅífects of

the one'-ion type anisotropy energy on the paramagnetic resonance

frequencies and the ani.sotropy in the susceptibility. IÅí the

crystalline environment of each magnetic ion has axial symetTy

referred to the chain direction, single ion energy of the form
D(sjZ)2 may does play an iinportant role in the shift of the

resonance frequencies and t"he anisotropy in the magnetic s.uscepti-

bility. Mhe Hamiltonian Åíor a linear chain system with such

uniaxial single-ion anisotropy has the following additional term

to Eq•.(5):

            N'     yD - DjE-o(SjZ)2, • (s6)

-15-



where D is the same constant for each oÅí N+4 atoms in the chain.

"s'he eff'eets of such D--term on the g-shift and the anisotropy

can be evaluated in a similar way to the dipoZar teTm.

     For the paramagnetic resonance frequencies, we obtain the

correction oÅí the D•-term as

                -2ND<(s.Z)2 - (s.X)2>Hit.

      (Ah oo" )D= <sz>H". (57)
and

                -N"D<(s.Z)2 -- (s.i'i)2>iEiiit.

     (Ah WL )D= <sx>[Ei it. " (58)

As leng as we concern tshe physical condition that the Zeeman
                                                                  'energy is sufficiently larger than the axial anisotropy energy,

     <(s.Z)2 - (s.X)2>Hi,. = - <(s.Z)2 - (s.X)2>[E[".o (sg)

                                                'mhe thermai average, <($mZ)2 - (smX)2>, can aiso be caicuiated
                                                      '
by the classical spin model with a classical perturbing Hamiltonian
                                      '
                   N     YD - ])S(S+4 )j/L o(SJ• Z)? (Li- o)

                                 'which are given in Appendix C. Putting the resuZt into Eq. (57)

and (58), we obtain

.-  A6 -



(Ah co il )D
= -- ( DN/< sZ> }i n, )[ g;P B :iS"4 )H] 2

   ]g N              zx2  XiZ.o j:.o<{(s. 7 -

. -(D/IJi)gri,BH G(x)

( smX') 'P-} siZsjZ>o

(44)

and

(AhW2)D = -(4/2)(Aft co" )D, (42)

where

G(x)

     The

from the

Åíollows:

(Å~ ii

 =ii.F{t?.-U2'-SMsix}'

additional anisotropy zn

D-term, can be obtain zn

- Xi)D = '
D[guBs(s+i)]2

the

the

susceptibUibyT

same cZassicai

(kas)2

NN            Z{(.kZ)2 X x <s.z$.
j=O k=O Z J

5 D/(21Jl) Q(x),

(45)

, resulting

model as

   N
  Å~:
   i=o

= -Nctr o

- (skX)2}>o

(44)

where

Q(x)
   2
= 4sx2{

(1+u)(4+v)

(4--u)(4--v)

     2u
" (4--u)2}

 .h 47 -

(45)



and

Zn cGntranst to the monotonous temperatu]re-variation of F(x) o]?

P(x), both G(x) and Q(x) pass through a round maximum and turn

into negative values at a temperature of (IJi/k)S(S+1), when the

temperatuTe is Åéeduced. T]Le negative values of G(>c) or Q(x) '

suggest that it is favorable for the spins to tend towards

directions perpendicular to the external magnetic fieZd below

the tempeTature of (IJI/k)S(S+4). erhe numerical results oÅí G(x)

and Q(x) are shown in Fig. 2(a) and 2(b), respectively.

D) Expressions of the g•-Shifts in Ter-rns oÅí Xi{ and Xi

     AS was mensioned in the preceding paTagraphs, the shiÅít oÅí

the effective g-values in the paramagnetic resonance for a class-

ical Heisenberg linear chain system with smaU dipolar- and

D-terms can be- expressed as follows:

                        '                             2                   g;T.LBs ( s" )
     Agn = (g/X ll )[ ]
                     kru

               NN           Å~ N i-.-o i.o{61JIct<(smZsm"Z - smXsm.4X)siZsjZ>o

                                                 '
                - D<r(s.Z)2 - (s.X)2]siZ$jZ>o}, • (LF7)

-48-



and

     Ag. = 'b (1/2)(X ls /Å~-L)Agn• (48)
with the use of the relations (51) and (44), these expressions

becoine following compact Åíorms:

     Agn/g = (Å~{l '" Xi)/Xll,

     Ag./g -- (xi-xR/(2xD• (zi-g)
It should be noticed that, in the above calculations of the

resonance frequencies and the susceptibilities,• we neglected the

higher terms than the quadratic terms in Jct or D. It then seems

that Eq. (49) hold only for tlte case where the operating frequency

is suÅíficiently larger than the axial anisotropy frequency of

the relevant magnetic system.

- 49 --



g5. Magnetical One-Dimensionality of CsMnCls2H20 and TMMC

     The f.i•rDr"t evidence of linear chain behavior in CsMnUls2H20
                                                               8)was given by the susceptibiZtirsr measureinent of Fyiedberg et al.

They found that, when the tempeTature decreased, a rounded maximum

in the EusceptibUity was observed near 25 K, as expected Åíor a
spin system consisting of independent iinear chains of Mn2+ ions

coupled by antiferromagnetic isotropic exchange with J=-5.0 K.

This magnetical one-dimensionality in CsMnCls2H20 can be understood
from the crystaZlographic structure determined by Jensen et al.40>'

ThÅ}s matevÅ}al Åíorms orthorho]nbÅ}c crystals characterized by the
                                                               'space group Pcca-D2h, with a=9.060 A, b=7.285 A, and c=M.455 A,

                             'containing four formula units in a unit cell. A projection oÅí

the structure on the (O04) plane is shown in Fig. 5. This

orthorhoinbic str-uctur•e mayJ be regarded as a set of chains parallel
to the a-axis. Each Mn2+ ion is surrounded by a highly distoTted

octahedron of four Cl ions and two oxygen atoms. Since neigh•-

bQring octahedra along the a-axis share a Cl ion as a comnon
ligand, dominant superexchange coupling oÅí Mn2+ ions occurs

only in a chain of -cl--Mn2+-clbu-Mn2+- along the a-axis, wheTeas

the chains are in relative isolation from one another in the
perpendicular dii?ections. Recently neutron diffraction studyi2)

has revealed that substantial intrachain spin correlations

develop well between 10 and 40 K.
                                                 '     CsMnCls2H20 exhibits three-dimensional antiÅíerroma'gnetic
long-range ordering at 4.sg K46) and the magnetic behaviors below
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the Neel point can be understood as a usual three-dimensional
ant iÅíe]7 ir oma an et4 2) , A 7)•v 2o ) .

           v     Recent magnetic studies of TIv[Mc15) have indÅ}catsed thats ishis

salt is a mox'e ideal one-dimensional antiferromagnet than
CsMnCl.)2H20. Mhe crystal sti?uctu]?eM) of TMMG belongs to the

                                                          2+ .                   2$pace group P6s/m-C6h, with a=9.454 A and c=6.494 A. Mn zons
occupy special positions at (OOO) and (OOI/2) and aye surrounded

by trigonaUy distorted octahedra of Cl ions. A projection of
the structu]re on the (OOI) plane is shown in Fig. 4(a). This

structure may be regarded as a hexagonal arTay oÅí antiferromagnetic

-MnCls- chains along the e-axis which are shown in Mg. 4(b).

Because these -MnCls- chains are magneticaUy insulated from each
other by intervening large [N(CHs)4]+ ions, three-diinensionaZ

long-range ovdeT in t•his antiÅíerroraagtnet is estahlished at veTy

low teinperatuTe as O.84 K through the action oÅí the weak inter-

chain dipolar interactions, although the e>rpected broad maximum
in the susceptibility is observed nea]? ss K45). The intrachain

spin correlations9) have also been directiy observed above 1.4 K

zn the quasielastic neutron expe]7Å}ments of TwwC.
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g4. Experimental Procedure

A> Preparm..tion of ti.e SpecÅ}mens

     CsMnCls2H20 crystals used in the present experiment were

grown by slow evaporation of saturated aqueous solutions of CsCl

and MnGl2LL]i[20 at about 50 C. With care it was possible to
obtain pink single cr.vstals up to 10Å~5Å~1 mm5 in size. orhese

crystals have a (O04) preferred growth plane and exhibit well

developed (100) type faces. orhen the specimens can be easily

oriented from the morphology.

     Crystals of TMMC were grown by slowly evaporating a neariy

1-mole HCI solution of tetramethylammonium chloride and IVlazC124H20.

The rose-co].o,red crystais obtained are in the Åíorm of slender

hexagonal prisms with a preferred growth axis parallel to the
chain di-rec-tion [Oel]. To prerv'erÅ}t deliquescence wtu=cli brjngs

freguentl,y undesirable impurity-signal besides a foundamental

line, the specimons had to be coated with pure clock oil.

B) ESRMeasurement

     Usual experimental apparatus and techmiques for the microwave

reflection method were used in the range of 5LL GHz to observe the

paramagnetic resonance absorptions in CsMnCls2]i[20 and TlumC. Whe

large Zine-width up to 5 kOe for these material$ required the

cylindrical cavity spectvometer with variabZe coupling iris the
several samples with ltv o.1 mm5 Å}n size. The sample magnetiza-

                             -- 22 -



tion effects were not found important except Åíor high temperature

regions i.n the pra..sent- worY., beceuse the observed-changes of

resonance positions were too large to correct for such effects.

     The temperature of the sample mounted on the bottora of the

resonant cavity was controlled by the Åíollowing procedure. orhe

cavity co.7Lneeted to the end of the Cu-Ni wave guide was placed
inside of double Dewar vessels above the level of liquid HeLF and

                                        4                                           gas. Mwo heaters, onewas cooled by the Åílow oÅí the cooled He

immersed Å}n the liquid helium and the other placed close to the

cayity, could maintain the sample-temperature Åíluctuation within

Å}O.1tK during each run. The temperature measurements were made

by using a commercial carbon thermometer below 50 K and AuCo-Cu

thermocouple above 50 K.

     The crystal orientatiori$ w"ere perforimed by th'e inorphoiogy

and were checked by observing the angular dependence of the

antiferromagnetic resonance in CsMnCls2H20 at 4.5 K and the

angular dependence of the high temperature line-width in MMMC.

It is believed that the erystal orientation usually was better
than +20.
     -

C) Torgue Measurement

     The magnetic torque caused by the anisotropy in the suscep-

tibility of CsMnCls2H20 was measured by using the automatic

recording type torquemeter. The measuring temperature could
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be varÅ}ed

range of

 between 1 K and

the magnitude of

room

the

 temperature and the

toTque was from 4 to

measurable
4o4 dyne-cm.

-- 24 --



g5. Experimental Results and Discussions

A) Paramagnetic Resonance

a) CsMnClg2H20
         --     Measurements of the position of the paramagnetic resonance

line in CsMnCls2H20 were made at 54.4 GHz as a function of tempe-

rature and orientation. The values of the shift in the resonant

Åíiled Åírom the high temperature limit are shown in Fig. 5 for

three orientations of the magnetic field (parallel to the ortho-

rhombic a-, b- and c-axis). It is interesting to note that,
       'when the temperature decreases, the resonant field begins to shift

with a uniaxial symet-ry referyed .to the chain--direction (a-axis)
                      'at the temperature oÅí about 40TN below which the development of

intrachain spi]L correlations ]Las been observed in the neutTon
                 nAXdiffraction study'`7 of this salt. This shift in the resonant
   'field cannot be due to the effect of the sample magnetization,

for the susceptibiUty of CsMnCls2H20 may be rather regarded to
                                                           'be roughly temperature-independent in the temperature region

where nhe shift could be observed. Mhe previous antiferromagnetic
resonance study by the autho]? and' Tazuke47) has concluded that

the magnetic anisotropy in this material mainly arises from the
      'purely magnetic dipolar interaction between spins. If the'

relevant magnetic system can be $ubstantially regarded as a linear

chain magnet, such dipolar interaction must have a uniaxial

symmetry, particularly, of easy plane type for an antiferromagnet.

As will be seen later, the uniaxial anisotropy in this antiferro-
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magnet has been confirmed by the torque measurements in the same ,

temperature region as this Tesonanc-e sV.udy. asheTefor• e7 the

observed results on the shift in the resonant field can be directly

coinpared with Eq. (24) and (25). As is seen in Fig. 5, the
         'agreement is excellent at alZ temperatures betvveen 2MN and 40TN

for the exchange constant of J=-5.57 K which was determined by
                                 42)the spin wave spectrum below TN                                     and the nearest-neighbor
                                                           '     'separation, ro=4.550 A. So the present theory is a very good

description of the temperature dependence oÅí paramagnetic resonance

field for such a Heisenberg linear chain system with considerably

large spins as this manganese salt.
     As reported in the previous note5), the broadening of para-

magnetic resonance line could be observed in the same temperature
range as thtis w.o]?k-. Compa]?:'Lson w:'Lt]?. Mori's tlrieor'or-1), howJe'ver,

does not give good agreement. The absorption line shapes seemed

to be synmetric and typical Lorentzian at aU temperatures oÅí

this experiment.

b) MMMC

     Analogous measurements were made for single crystals oÅí the

one-dimensional antiferromagnet TMMC at 54.9 GHz. Fig. 6 shown

the temperature dependence of the position of the resonance line

for two orientations oÅí the magnetÅ}c fielct (Hilc and Hsc). As is

seen in Fig. 6, comparison with Eq. (24) and (25) (solid lines)
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for J=-6.s K45) and the nea]?est-neighbor separation of 5.247 A

does not give so good agreement as in CsMnCl.2HDO.
                                              7L
     Most possible mechanism to explain the quantitative dis-

agr•eiement r-cughly by a factor of 2 i$ an additional one-ion type
                       Nanisotropy given by Dz (s.Z)2. Each Mn2+ ion in thÅ}s sait is
                      j=O J ,
surrounded by a slightly distorted octahedron of. Iigands and

lies on a three-fold axis parallel to the chain-direction (c-axis)

and then the c-axis of the crys' tal corresponds to the z-direction

oÅí the one-ion anisotyopy. orhe effect of such Drterm on the

resonance frequency-shift was considered in section 2 and the

corrections of the D-term have been given by Eq. (Lt4) and (42).

Mhe theoreticaX ]?esults indicate that, when the coefÅíi6ient D
                                                      'is negative, the effects of the d-term and the dipolar term on
                                               'the ]resonance f]?equency a2?e inclined to cancel each othe]?. Mhe

dotted Iines in Fig. 6 show the corrected values by taking account
of the singie-ion anisotropy with D=-o.lo cm-1. The quantity

          -1                                                             2+D=-O.dO cm             measures the splitting in zero field of the Mn

ion ground state into three KTamers doublets. This value of D

inferred from our results is Teasonably compared with the value
assumed in bhe optical study of this salt24).

     It is somewhat difficult to discuss the origin of this

easy-axis type anisotropy. We shall here only note that the

considerably iarge g-value observed as 2.005 at room temperatures
                                                         'may be related to tn" e uniaxial anisotropy.
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B) Anisotropy in the susceptibility

      Tn ordei" to study the anisotr•opy in the magnetic suscepti-

bility of a Heisenberg linear chain antiferromagnet, the torque
           'measurements were perfomned for a single crystal of CsMnCls2H20

at temperatures between 4.2 and 77.5 K by rotating an external

magnetic field in the ab- and bc-plane. The observed torque

curves are ordinary paramagnetic sin2Åë cuTves for both planes

at all temperatures above the N6el point and show that the para-

magnetic principal axes coincide with the orthorhombic axes of

this crystal. For measuTemenL's at a constant temperature, when
we plot the amplitudes of the sin2o curves against H2, the

square of 'bhe field strength, the points fall weU on a straight

line and then from the slope of the line we can obtai4 the

val-u'e oi' the- anisotropy of' the susceptibility at the temperature.
                  'The results are given as a function of temperature in Fig. 7.

It is interest to note that the anisotsropy in the susceptibUity

of CsMnCls2H20 has an essentially uniaxtai symmetry reÅíerred to
         'the direction oÅí chain (a-axis) above about 2TDI and becomes
                                                             'orthorhombic below 2MN. This is consistent with the results
of neutron diÅífraction study by skalyo et ai.12) and can be

understood as the reÅílection of the magneticaily efÅíective dimen-

sionality of the system, that is, the uniaxial symetry above 2TN

may result from the substantial intrachain spin correlations and

the orthorhombicity below 2TN may be caused by the evolution oÅí

three-dimensional magnetic correlationse
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     We shail here attempt to describe quantitatively the uniaxial

antsotir'opl}fan, >'<' a-Xb, abcve abc-u't n:tAv• K' ii"i ter•ms of ".• he .classical

spin model discussed in section 2. As is seen from Fig. 5,

there is no reason to expect that the single-ion anisotropy of

this crystal should have an axtal symietry reÅíerred to the a-axis.

Accordingly, the most important source of the axial anisotropy

is the purely magnetic dipolar interactions between spins given

by Eq. (4). Then Eq. (52) can be directly applied to the p]?esent

problem. Fig. 8 shows the comparison of Eq. (52) with the experi-

mentai data, where J and ro are taken as -5.57 K and 4.550 A,

respectively. As is seen in the figure, the agreement is satis-

factory. So the classical spin model, including only a small

dipolar term as an anisotropy term, is a good description of the

magnit.ude and temperature variation of' the uniaxiai magnetic

anisotropy in CsMnCls2H20 as well as in the matter of the g-shift

of paramagnetie resonance.

C) Summary of Results

     This work repovts the first studies of the short-range-order

effects on the paramagnetic resonance frequency and the para-

magnetic susceptibility. T]Le present theory with the classical

spin model properly predicts the magnitude and temperature vari-

ation of the shift of paramagnetic resonance lines for both

crystals, CsMnCls2H20 and MMMC, as well as those of the anisotropy
                '
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in the susceptibUity of CsMnCls2H20. This is a remarkable
re.q.i.,.Zt e.q.pee-iaU.v v.v.hep- one considers- the tremendous labor involved

in the corresponding problem for the two and th]?ee-dimensional

systems.

     Mhe shift oÅí resonance lines and the magnetic anisotropy,

observed for CsMnCls2H20, could be explained by taking account

only of the dipolar term as an anisotropy term. Fo]? TMMC,

however, since the single-ion anisotropy is cons.id,erably larger,

the effect of the D-term had to be taken into account in the

analysis of the temperature variation of the resonant fie]d.

     Mhe present approach to the calculation of paramagnetie

Tesonance frequencies may be equivalent to that by the method

of line moments. When the magnitude of the external magnetic

f'ield .;s comparable with or s-rnaller th.an the ani,q.otropsr f:.eld,

its validity is lost. For such case, it seems much more compli-

cated to treat the paramagnetic resonance frequency in the whole

temperature range above the transition point.
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APPE]NDXX A:
     ' rTl. 1.L .. -A J. IA --- jL "M A-A -la AP A v- -L e! A -A A-A -A -: el AAP--i v{ AA za .e -.
     LLUe "-iJ" -UULUUU U-L a XtJVUUetliUe .LV LLV.L.LUUU U,Y

       '
            Aco      p.=j' confmX"-(w)dn, (A--1)
           -oo

where lrmx+- (w) is the imaginary part of the high frequency

magnetic susceptibility whose quantum mechanical expression is

given by

                      '
      x'-(co) - ri(gpB)2/h]Icodt e(t)<[s-,s"(t)]>e-ieet (A-2)

                          --co •
with

      e(t) =o for t<o
                                               '           =1 for t> O. ' (A-5)
                                                               '
It is convenient to make Fourier transformation of the suscep-

tibility (A-2):

         '         '             co      1/( 2x )J dco Å~' -' (w )eico t

            -co

        = [i(gpB)2/h]!:dt' 6(t•-tt)e(tt)<[s-',s'(tt)]> E Åë(t).

                                                       ' (A--4)

Exzpanding both sides of Eq. (A--4) into powers of t, we obtain

                                                   '             co co (ico )n .                                        Åën(+ o)      1/(2")r dnÅ~+m(.)z tn .z tn. (A-s)
                                    n=O            -co n=O                            n!                                          n!

                 '
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:ll?n:.AEII9. :esrO-th and first moments are easiiy obtained

                                '
     ia•o = j]:.zTmÅ~"-(co)dn = -z;me(+o)

        F [(g;pB)2/h]<[S-,s']> - - [2(gpB)2/h]<sZ>

     P4 = !: co ITm x'-(ua ) dn = - ReÅë' (+O)

        = -(gpB/h)2<[s-,[s",st]]>.

We therefore have

     hco = hpl/po = '<[S ,[S ,st]]>/2<sZ>.

               '                   '

APPENDIX B: Derivation oÅí Eq. (22)
                                                     N
     For convenience we shall divide the summations Z
                                                    i=o
Eq. (20) into four parts as follows:

      [N N mN Nm      zz =,z :+z z     i=O j=O i=O j=m+1 i=m+1 j=O

                            mm NN                         +z z+z x.
                           i=O j=O i=m+1 j=m+4

Each correlation  function  :n  :e:os -field whiCh iS tO be

 from

    (A-6)

    (A-7)

    (A-8)

  N
  Z in
 j=o

    (A-9)

summed



in Eq. (A-9) can be written as

     <smY sm" YsiZsjz> .

     ' = zN-V'd2rcO •.• t Elil21 (smYsm+iYsiZsjZ)exp(Kn/llFn ll;n-i)'

                                                           (A-1O)

where dS)j is the element of solid angle for the vector gj and the

partition function ZN has been given by Fisher as

     ZN-[(sinh K)/K]N.• (A--M)
     To pe]?form the integrals, we detine two sets of polar angles
    .-)for sJ• as indicated in Fig. 9, one is a set of ej and tpj reÅíerred

   ) -n.to Sj+1 (or sjh4) as polar axis and the other is a set of @j and

di rn"nrTM kA Lhn 7..avl cr rphara ora -ha ?AllATiT{nr" Tiale-"•Anq-J' -LV.;.Vh=--L-VN--. VV U--V " --NA.Pe -;.A-LLt.LLt U.S. Lt U"..LLt .s-v-L"L.vvv;.ia.b .Ls.t-LaV".u.Liv

     cos @j = cos @j+4cos ej + sin @j+4sinj@cos Åëj,

     sin ejcos dij = sin @j+4cos ajj.4cos ej

                      - cos @j"cos dij"sin ejcos Åëj

                      - sin Qj"sin ejsin Åëj, ,

     sin @jsin Qj = sin @j.4sin Qj+4cos ej

       '                      - cos @j"sin dij"sin ejcos Åëj
                                                             '                                                           '                                                      '
                      + cos Åëj"sin ojsin Åëj, (A-42)

                                                         '
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     We shall here evaluate a f'ourth order spin correlation func-

tion for Jt>i.>m+A and y=z as an example. By Fisher's method,

the integTals for n<m, n>j, i<n<--j, and n=m can be performed,

which yield

     r(sinh K)/K]M, [(sinh K)/KIN-j,

                 --        cos @iuj-:[(sinh K)/K]j-i, and cos @."u[(sinh K)/K]

respectively. Mhe remainder then becomes

                       d9                                  dR.     [K/(.i.h K)]i-m-'IJ 41:+4 ••- S4.l

                               iL         Å~ cos2@m+4cos2@iexp(n.S+2gn' gn-i)

      '
and, by usinq the anqular relations (A-12) recurrently. reduces to

                                                           '             zzz     <s.Zs..4 si sj > - (4/g)vLj"i"4{1 + (4/s)vi'"M-1}, (A-4s)

                      '                                       '   '
                                                      'where v is defined by Eq. (46).

     For other typical cases, only the results are presented in
   '

for j>i> m+4 and y=x,

     <s.Xs..IXsiZsjZ> . (1/g).j-i+A{1 - (2/s).i-m-A},                                                           (A•-14)

for i<m, j>m+1, and y=z,

     <s.Zs..4ZsiZsjZ> . (1/s)uj-i-"4{4 -. (4/s)(u/K)},                                                           (A--45)

                                                                 '                       .t
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for

B[sr

Eqe

 i<m, j>m+4, and' y=x,

  <smX sm"Xb"•i Zsj Z> •= (1 /-"t s)u j" -' i' -A' v. (A. tl 6)

                                                        '                                            -{suming up these results according to Eq. <A-9), we obtain

 (22) in the text.

APPENDIX C:
                                                                 '     using the Hamutonian (ig), <(smZ)2 - (smX)2> in the presence

oÅí a small external ÅíÅ}eld parallel to the z-direction can be

expressed in terms of the'hig]Ler order spin correlation functions

in zero field. Mo second order in H, we have

     <(s.Z)2 ... (s.x)2>Hll. ., (i/2)rii;ia'BkHST(S"i)]2

                NN            Å~ iX. o j\ o< [ ( s.Z> 2 -. ( s.X) 2] si Z sj Z > o. , ( A-4 7)

Mhe sumations in the rig]Lt-hand side of Eq. (A-17) can be

perforined in the same way as in the case of Appendix B and

result in

         tt
     2 (4+u)(1+v) 2u'
    75 {(4 •-u) (4-v) ' 'o •-u)2} '                                                             (A-48)

- 56 -



(A)

 (2)

 (5)

 (4)

 (5)

 (6)

 (7)

 (8)

 (9)

(40)

(M)
(42)

                  R[EFER[ENCES

For example, H. Mori and K. Kawasaki: PTogr. theor. Phys.

26 (4962) 971; H. Mori: ibid. 55 (4965) 599; H. Mori:

symposium on Inelastic Scattering Neutrons by Condensed

systems, Brookhaven National ]]aboratry (4965) 940 (C-45);

H. Mori: Mokyo Sumner Lectures in Mheoretical Physics, Part
il (A966) il7.

For example, M. S. Seehra: J. appl. Phys; 42 (1971) 4290;

K. Nagata and M. Date: J. ]?hys. Soc. Japan 19 (4964) 1825;

E. Toyota and K. Hirakawa: ibid. 29 (1970) 1095•

D. H;'il•',Douglass and M. W. P. Strandberg: Physica 27 (A964) 4.

M. P.' Petrov and S. A. Kizhaev: Soviet Physics-Solid State

M "q7o> 4qAg.   N -tV/ -VV'
Y. Tazuke'and K. Nagata: J. Phys. Soc. Japan.50 (1971) 285.

Y. Morimoto and M. Date: J. Phys. Soc. Japan 29 (4970) 1095•

M. E. Fisher: Am. J. Phys. 52 (4964) 545. '
re. Smith and S. A. Friedberg: Phys. Rev. 476 (1968) 660s

E[e Kobayashi and S. A. Friedberg: private communÅ}cation

R. J. Birgeneau, R. Dingle, M. M. Hutchings, G. Shirane, and

                                                            'S. L. Holt: Phys. Rev. Letters 26 (1971) 748.

S. J. Jensen, P. Andersen and S. E. Rasmussen: Acta chem.

Scand. 46 (4962) 1890. •
B. Moi?osin and E. if. Graever: Acta cryst. 25 '(1967) 766.

J. Skalyo, G. Shirane, S. A. Friedberg, and ]i[. Kobayashi:
                                            '

                         -- 57 -



"i 73>
- -l

(44)

(45)

(46)

(47)

(A8)

(19)

(20)

(24)

Phys. Rev. B2 (4970) 1510, B2 (4970) 4652.

R. Dri'nu-'].=Le. M.. E. L'ines. e.:,-d,,,i. S. k. H'(-T")]•.-t: tthrv's. Rev. 187 (4"s-,6q>
                                                                '
645•

F. Bloch: Phys. Rev. 70 (a9Lv6) LF60.

J. Kanamori and M. Tachiki: J. Phys. Soc. JapaiL17 (4962)

4584.

R. D. Spence, J. A. Casey, and V. Nogarajen:. J. appl. Phys.
59 ( -l 968) 4OA il .

K. Nagata and Y. Tazuke: Phys. I]ettei?s 51A (A970) 925e

R. D. Spence, W. J. M. de Jonge, and K. V. S. ' Rama Rao:

J. chem. Phys. 54 (4969) 4694• '
G. J. Butterwort]L and J. A. Woolam: Phys. ])etters 29A

(1969) 259•

A iF"i DA4-4-..v..-n" TEr T 1rc =:- T'--- .- ."= n .-.T n=tÅ}. v. Duuuu'"ia") vv. u. ivt. ue dollge7 ancL y. Qe aJeeuw; rnys.

Letters 50A (1969) 450.

K. E. Lawson: J. chem. Phys. 47 (1967) 5627.

- 58 -



Fig•

Fig•

Fig.

Fig•

Fig.

Fig•

Iig•

1(a)

1(b)

2(a)

2(b)

5

4(a)

/l r-h N'
-T- NV1

Fig• 5

Fig. 6

         FIGURE CAPTIONS

Behavior of the function F(x).

Behavior of the function ]P(x).

Behavior of the function G(x).

Behavior of the function Q(x)•

Projection of half of the unit celZ of CsMnCis2H20

on the c-plane.
                             '
Projection of a unit cell of TMMC on the c-plane.

-MnCls - chains extend infinitely along the c-axis.
[N(CHs)4]+ ions a're located between these chains
in a highly disordered manner. •Mn2+ positions aTe

(OOO) and (O04/2).
                                            'A sketc]rt of "uhe -MnCl -- ehain fourÅ}d in rz"•rv"llMC. FLn•he
                      5
octahedral environment about the Mn2+ ion is slightly

                                        'distorted, corresponding to a lengthening along the

chain.

Comparison of theory with experiment in the shift of

resonance field in CsMnCls2H20 at 54.4 GHz in the

temperature range up to 70 K. Measured values of the
shi ft aTe indicat ed by +(Htt a) , O( ll Il b) and es (Hli c) .

The solid eurves are computed with Eq. (24) and (25)

of the text. The ]Ligh temperature g-value is 2.000.

Comparison of theory with experiment in the shift oÅí

resonance field in MMMC at 5L".9 GIIz in the tempera-
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Fig.

Fig.

7

8

Fig• 9

ture rangeT upn te AOO K. Measurth•ed values of' the shift

are indicated by +(IIuc) and O(HÅ}c). The solid

curves are computed with Eq. (24) and (25) of the

text. Mhe dotted curves are the theoreticaL vesuXts

with the correction of the D-term. The dashed line

repre'sents the DPPH-position. The high temperature

g-value is 2.005.

Measured magnetic anisotropy of CsMnCls2H20.

Comparison of theory wÅ}th expeyiment on the uniaxial

anisotropy of CsMnCZs2H20. Mhe solid curve is

computed with Eq. (52) of the text.
                                               ..nsDefinition of the two sets oÅí polar angles fo]? sj
referred- to tr} j" and the z-dz'r'e-ction.
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