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ABSTRACT

This paper represents the first successful comparison between
experimental results and exact solutions for a éimplified phase-
transition problem in the pregence of a finite magnetic field.

Changes in the‘position of paramagnetic absorption lines in
two typical one—diménsional Heisenberg antiferromagnets, CsMnClEEHEO

and (CH NMnClB, were investigated theoretically and experimentally

5)4
in the short-range-~ordered spin state. The present theory with
the classical spin model properly predicts the magnitude and tem~
perature dependence of the shift of resonant field for both crys-

tals. The shift of resonance lines observed for CsMnClBEHEO can

be explained by taking account only of the dipolar term as an

For (CH, ), NMnC] however, since the single-

Hy) 4umu,+5, h
ion anisotropy is considerably larger, the effect of the D-term

has to be taken into account in the explanation of the temperature
variation of resonant field.

Torque measurements were done in order to investigate the
anisotropy in the paramagnetic Susceptlblllty of CsMnCl5 O and
the results are compared with the theoretical predictions based
on the classical spin model including only a small dipolar term
as an anisotropy term. The agreement is satisfactory.

The results of the present work are remarkable especially
when one considers the tremendous labor involved in the corre-

sponding problem for two- or three-dimensional systems.
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¢1. Introduction

Much of the ‘cl’xeore’cical/l> and experimentale) studies of the
critical phenomena by means of the electron paramagnetic resonance
in an antiferromagnet has been related to the line width which,
when the critical point is approached, increases anomalously
because of the divergent nature of the random torque. On the
other hand, few studiesa)~6) of the temperature dependence of the
position of the resonance line in the vicinity of the Néel tempe-
rature have been reported. The position of the paramagnetic
resonance lines in a magnetically concentrated salt may shift with
decreasing temperature by the effect of the short range order in the
spin system as well as the effect of the bulk magnetization. For
general three-dimensional systems, it does not seem possible at the
present stage to discuss quantitatively the effect of the short
range order on the resonance position, because 1t requires the
knowledge of the correlation functions in the presence of a finite
magnetic field.

However, there is a couple of cases where such correlation
functions can explicitly be calculated as a function of tempera-
ture and the quantitative discussion of the short-range-order
effects may then be possible. One of the exactly soluble cases
is a one-dimensional system with Heisenberg Hamiltonian. As
Fisher7) firstly point out, the Heisenberg linear chain problen
with zero external field becomes exactly soluble in the (classical)

limit of infinite spin. Recently it was found that this class-



ical Heisenberg model properly predicted some of magnetic
behaviors of such actual systems as CquC152h2u / and (CH5)4NNn01
(hereafter denoted as TMMC). Accordingly, it can be naturally
expected that, if we restrict ourselves to such a Heisenberg
linear chain antiferromagnet, the temperature variation of the
resonance position in the short-range-ordered spin state may be
described quantitatively iﬁ terms of the classical spin model.
In the present thesis, the theoretical and experimental results
on the paramagnetic resonance in CsMnCl5 O and TMMC will be
given as well as the result on the magnetic anisotropy in
CsMnC1,2H,0.

z<Hp

Both CSMnClBQH

2
magnetic carrier and belong to a class of substances which may

010)

11 . 2+ .

and TMMC ) contain Mn ions (8=5/2) as
be described as linear chain antiferromagnets. In these materials,
from structural reasons, dominant superexchange coupling between

Mn2+

ions occurs in —MnCln— chains which extend in each specified
direction of the crystals and are magnetically insulated from

each other by two or more intervening atoms. The thermal and
magnetic properties of the two antiferromagnets have been actually
found to be consistent with the expectation based on Fisher's
exact solution7> of the classical one-dimensional Heisenberg
antiferromagnets, above about 10 K for CsMnC152H208>’12) and 1.1 K
for TMM09>’ 3) respectively. The two materials, therefore, are

much favourable to study the static and dynamic behaviors of a

one-dimensional system with considerably lone-range one-dimensional



correlations in the absence of the three-dimensional effects.

As reported in the previous short noteB)i Tazuke and the
author discovered firstly for CsMnClBEHgo anomalously large shfits
of the paramagnetic resonance lines when the temperature was
reduced and the Néel point was approached. Furthermore, a similar
temperature dependence of the resonance positions was recently
observed for TMMC by then. The shifts of both materials have a
uniaxial symmetry referred to the directions of chains and their
amplitudes seem to reflect the development of intrachain spin
correlations. Besides the torque measurement performed on
CsMnClBEHzo by the author revealed that, though the magnetic
carrier of this salt is regarded as isotropic in magnetic moment,
the anomalously large axlal anisotropy appears in the paramagnetic
susceptibility in the short-range-ordered spin state. Accordingly
it can be deduced that the magnetic dipole interactions among
short-range-ordered spins in the chain may be responsible for the
line-shifting mechanism and the enhancement of anisotropy.

The confirmation of the above inference requires the knowl-
edges on the relation between the resonance frequencies or
susceptibilities and the correlation functions and on the explicit
expressions of the correlation functions in the presence of a
finite magnetic field as a function of temperature. Theoretical
discussions for these problems are given in next section and the
results are compared with our experimental data in section 5.

The agreements are excellent, particularly for CsMnClBEHEO. This



work then represents the

experimental results and

phase-transition problem

field.

first successful comparison between

for z simplified

the presence of a finite magnetic



§2. Theory

In a linear chain system consisting of atomic spins coupled
with each other by isotropic exchange interaction, a most impor-
tant source of magnetic anisotropy energy with uniaxial symmebtry
referred to the direction of chain (hereafter denoted as the z-
direction) is the purely magnetic dipolar interactions between
spins given by

5 5 (S.-8. - 338.%3.%). (0

i3 i

. 3 j
ij rij

For a one-dimensional lattice, such a dipolar sum converges rapi-
dly. Then one can approximate Eq. (1) by an interaction between

the nearest neighbors, that is,

g2u 2
B = .o z zZ
S (8.8, , - 38.%5. %) (2)
rOE j=1 o 71 J g
where To is the nearest-neighbor separation in the chain. Accor-

dingly the Hamiltonian for such a linear chain system of N+1 atoms

of spin & in an external magnetic field H can be written as

N N
S.+ 8. + 6Jo X
g=1 § "1 j="

szsj_qz - BUp 'S-{H (3)

o d

=
I

N
z

WM

23 (1+a)
J

with
-4/(2J)(g2u32/r05)- ()

Q
I

In the following subsections, the electron paramagnetic



resonance frequencies for the linear chain system will be consi-
dered for the case where an external magnetic field is sufficiently
strong as compared with the dipolar interaction between adjacent
spins and the temperature variation of the shift of the effective
g-values will be calculated explicitly in the classical limit of
infinite spin. Continuously the anisotropy in the paramagnetic
susceptibility for the one-dimensional system will be quantita-
tively described according to the classical spin model and the
relation between the shift of resonance lines and the anisotropic

susceptibility will be discussed.

A) Paramagnetic Resonance Frequencies

It may be pictured for paramagnetic resonances that the bulk
magnetic momentqQ) of entire specimen makes a precessional motion
about the static magnetic field at an angle which depends on the
amplitude of the r-f field, the proximity to resonance, and
damping factors. Such motion of the total spin g is determined

by the quantum mechanical equation of motion,

in(ds/dt) = [8,8], (5)
where ¥ is a Hamiltonian as in Eq. (3). We shall here consider
the statistical average of the commutator, [S_,é+]. It comes

out from Eq. (5) to be

in([87,8%1) = ([s7,[s%,81]y, (6)



where we denote the thermal average by ( Y If we neglect the
effect of relaxation on the resonance frequency and assume that
S* and 8 are good normal modes, the time dependence of each
transverse component of 5 can be taken ﬁo be proportional to

exp(iwt), that is,
st = iws*. (7)

The physical plausibility of Eq. (7) may be certified for the
case where the operating frequency is sufficiently larger than
the dipoiar frequency. This situation could be realized in the
present experiments. By putting Eq. (7) into Eq. (6), the

elgen-frequency can be obtained as

([s~,[st,411)
B 2(s%)

AW . (8)
As is seen in Appendix A, this approach to the ffequency corres-
ponds to the calculation of the first moment of ImX(w), the
imaginary part of the high frequency magnetic susceptibility.
Moreover, the expression (8) can also be derived from the density
matrix approach by Kanamori and TachikiqS).

Let us consider the case of a linear chain system described
by Hamiltonian (3) with an external field H along the z-direction.
For this case, the x- and y—-directions are equivalent because

of uniaxial symmetry. By a simple calculation one can obtain

from the relation (8) the resonance frequency as



12JaN(8_“%s % - 8 *8
m  m+ m

X
m m+ >HHZ
(8%

flw” = g’[J,BH i (9)

Hiz
For the case where an external field is applied parallel to the
x-direction, the analogous expression for the resonance frequency
is
z Z X X
12008(8, "8, 4~ = By Bpi 4 ik 11772
(8%

Hix

Since we have confined ourselves to the case of small dipolar

interactions, Eq. (10) can be reduced to

6JoaN(s. *s X -8 % %
A, = gu H + m m+1 m m+1 “Hlix . (11)
B (%Y.

~r
i A&

(SZ> in Eq. (9) and (8%) in Eq. (11) are relatéd to the

magnetic susceptibilities by

<SZ>H“Z = (X“H)/(g’uB)

and

<SX>H‘|X = (XJ_H)/(EUJB)’ (12)

respectively.
For the case where the short-range-order effects are negli-
Z X x
aed = Om Smed > can be replaced by
2 for Hix, and then Eq. (9) and (11)

gible, the average (SmZS

(sz)2 for Hiz and —(SmX>



reduce to

B - (13)
AWy = gug - 5 2
Ng Un
and
eJax,
AW = guBH(ﬂ +-§—§——§). (14)
g€ Vg

Accordingly the resonance frequencies are temperature dependent
only through the temperature dependence of the magnetic suscep-
tibilities. This does not explain our experimental results,
indicating the importance of the short-range-order effects.

In the present problem, it is essential to calculate the

i X z zZ - X X )
correlation function (Sm Sm+1 - 8 Sm+1 ) as a function of

ull account of

it

=y

temperature ta the short-ran

U aking effect.
Several years ago, Fisher7) pointed out that the purely isotbtropic
Heisenberg chain problem became exactly soluble for H=0 in the
classical limit of infinite spin. He obtained compact closed
expressions for the pair correlation functions of such a system.
However, his result for H=0 is not directly applicable to our
problem; the correlation function (SmZSm+1Z - SmXSm+1X> vanishes.
Then we shall attempt to extend the calculation to the case of
finite H and small anisotropy effects.

To go over to the classical 1imit, the quantum-mechanical
spin operators in the Hamiltonian (%) have to be replaced with

classical vectors. Following Fisher's procedure, we shall



introduce unit vector operators §j==S(S+1)_1/2§j associated with
the j-th spin and treat them as classical vectors. The correc-
tion for large finit S with respect to the classical results for
S== is of order ’l/S2 7>. The resulting classical Hamiltonian

for a small a can be expressed by

S.+8. 4 + 6I8(8+)a T sjzs.

H = =2J8(8+1) 3=

J=1 J J 3=1

= —

N
- gu [S(S+1)]4/2 % s..H. (15)
B 35=0 J

For the simple case with purely isotropic Heisenberg coupling
and zero external field, the pair correlation functions have been

obtained in the classical 1limit by Fisher as follows:

<smzsm+lz>0 = <4/5){u(K)},lla' (16)
where
2JS(8+1)
K= —— 17
kT ,
and
u(K) = coth K - 1/K. (18)

If we restrict ourselves to the physical condition that the
dipolar energy is sufficiently smaller than the Zeeman energy,
we can neglect the effect of dipolar interactions on the short

range order and treat the Zeeman terms as a perturbing Hamiltonian.

- 10 -



Using the Hamiltonian

- —235(8+1) >z a [s(s+1)171/2 z i, (19)
H= - + Sj'“j—ﬂ gy + sJ

j:q J=O

. . z Z Xy .
the correlation function (Sm Sm+ﬂ - Sm Sm+1 > in the presence of

a small external field parallel to the z-direction can be expressed
in terms of the higher order spin correlations in zero field.

To the second order in H, we have

<szsm+’lZ - SmXSm+’lX>HHz = (1/2)Legn HS(S+1>/(kT)]2

V4 Z X

N N

X ((s (20)

1=0 j=0

For the case with a field parallel to the x-direction, the
analogous expression can be obtained only by interchanging

(s %s 1 Yy with (s % Then we have

m m+ m m+1 )

{8 %s .2 _-8%%s %

Z Z X b'e
(8,78 - B, ) m “m+1 m m+l

m m+1 n m+" (21)

Hiz = Hix®

The summation in the right-hand side of Eq. (20) are given -
in Appendix B for a large system and only the results are presented

here:

N
o1 ((s_% 2 - g% Xs, %s. %)
1=0 =0 n “m+d m nm+’ ) i J 0

2 (2-u/K) 4K (1+u)
= — 5+ . (22)
15 (1-u) 45 (1-u)

- 11 -



The magnetic susceptibilities, which appear in the resonance

- - ER N\ o . ey e
and (11 elations (12), can be appro-

N

conditions (9
ximately substituted by Fisher's expression for zero field:
Ng“ug=8(8+1) (1+u)

= ’ (2)
X 3kT (M1-u) 2

which is easily derived from the relation (16). Accordingly,
the frequency-shift terms in Eq. (9) and (11) can now be expressed

explicitly as a function of temperature. For J<0, one obtains

Z Z X X
12|J|aN<Sm S .4 = 5,8 )

Muwy = - m m+1 "Hilz
(5 >Hllz
= 20gu H F(x) (24)
and
M, = =(1/2)0awy (25)
where
1 2+ux 2
F(x) = — (g - —) (26)
10x  1=-u 23X
and
kT
X = = -1/K. (27)
21 3] 8(8+1)
The numerical results of F(x) are shown in Fig. 1(a). At low

temperatures F(x) is asymptotically proportional to T_g, while at

- 12 -



high temperatures it is proportional to T—q, being consistent with

Eg. (13) and (14).

B) Magnetic Susceptibility
As is well known, the magnetic susceptibility for a weak
magnetic field parallel to the y-direction can be calculated from

the fluctuation relation

2. 2
gug N N :
B % £ (8,¥8.V, (28)
kT 1i=0 j=0 J

x(T) =

when diamagnetic effects are neglected. Going to the same
classical limit employed in the preceding subsection, we write
Eq. (28) as

gZuBES(S+1) N N

T3 (siYs.Y). (29)
kT i=0 =0 J

x(T) =

We shall now calculate the pair correlation functions in Eq. (29)
by a perturbation procedure, considering the dipolar and Zeeman

terms as a perturbing Hamiltonian. Using the total Hamilbtonian
(15); the resulting expression for the susceptibility for Hiz in
terms of unperturbed spin-correlation functions becomes, to first

order in Jo,

- 1% -



gSus(s+) ¥omw 6|J|S(S+1)a §¥ N N
- N

Xy = = {2 Z(s;7s.) + Tz
kT i=0 j=0 d KT i=0 j=0 k=1
zZ_ 2z Z Z zy 2 Z
x [{(s; 55 (s 8pq Vg = (55 ) <Sk -1 20},  (30)
where ¢ v>O refers to an average with respect to the unperturbed

Hamiltonian. The analogous expression for %, differs only in
. . . X X Z zZ
the substitution of (s, s, _47) for (s, "'s,_4"). Consequently the
anisotropy in the susceptibility turns out to be written in the
following simple form:
6|7lalgugs(8+1H]° N N N

X, - X = %3
o (x1)° i=0 §=0 k=1

Va V4 Z VA X X

The summations in the right-hand side of Eq. (31) has been given

in Eq. (22). Putting the result into Eq. (31),

N J|algngS(8+1)1° 4 2-u/K 2K 1+u

- = — — —]
X (xT)° 5 (-2 3 1-u
= Nafr? B(x), (32)
where
() 2 {2+ux 2 (1+u)
%) = I
5x° (1-u)? 3x (1-u) (52)

- A4 -



which has the high-temperature expansion,
-2 -3
P(x) = (2/32)x © - (32/45)x ~ + ... (34)
and the low-temperature expansion,
N2 o -1
P(x) = (1/15)x = + (1/30)x  + ... (35)

The numerical results of P(x) are shown in Fig. 1(Db). The
anisotropy given by Eq. (32) then vanishes at high temperatures

and increases monotonously with decreasing temperature.

C) Effects of the Single Ion Anisotropy Energy

In this paragraph, we shall consider briefly the effects of
the one-ion Type anisotropy energy on the paramagnetic resonance
frequencies and the anisotrdpy in the susceptibility. If the
crystalline environment of each magnetic ion has axial symmetry
referred to the chain direction, single ion energy of the form
D(sz)2 may does play an important role in the shift of the
resonance frequencies and the anisobtropy in the magnetic suscepti-

bility. The Hamiltonian for a linear chain system with such

uniaxial single-ion anisotropy has the following additional term

to Eq. (3):

N
j=0 d

- 15 -



where D is the same constant for each of N+1 atoms in the chain.
The effects of such D-term on the g-shift and the anisotropy
can be evaluatéd in a similar way to the dipolar term.

For the paramagnetic resonance frequencies, we obtain the

correction of the D-term ss

ZN 2 2
_END<(Sm )T - (Smx) >HHZ

(bawy ) = (37)
P <SZ>HHZ
and
-ND((S_%)° - (8_%)%)
(thwy )y = T (38)
(B >HHX

As long as we concern bthe physical condition that the Zeeman

energy is sufficiently larger than the axial anisotropy energy,
ZN\2 X2 3 Z\2 X\ 2
(8. = (8. )y = = (8, = (8, g0 (39)

The thermal average, <(sz)2 - (SmX)Z}, can also be calculated

by the classical spin model with a classical perturbing Hamiltonian

N
) DS(8+1) £

(s.%)% (40)
j=0 J

which are given in Appendix C.  Putting the result into Eq. (37)

and (38), we obtain

- 16 -



e S(S+1)H
(Brwy )py = =(DN/(ED g Y= 12

kT
xilzjo Eo“(sm‘%2 = (SmX)E}SleJZ>O
= -(0/17)eugh &(x) (41)
and
(brwy g = —(1/2)(Aﬁw“)D, (42)
where
G(x) = - (£ -4 - -5, (43)
5x 1-u 2ux
The additional anisotropy in the susceptibility, resulting

from the D-term, can be obtain in the same classical model as

follows:
| D[ guyS(S+1)1°
Oy = % )p = - (k)2
N N N
2 2
o jio k§o<SiZSJZ{<SkZ) - () g
= -Nar,” D/(2]3]) Q(x), (44)
where
2 (M) (M+v) 2u
Q%) = } (45)

1552 (1) (ev)  (1—u)?

- 17 -



and

v = 1 + 3ux. (46)

In contrast to the monotonous temperature-variation of F(x) or
P(x), btoth G(x) and Q(x) pass through a round maximum and turn
into negative values at a temperature of (17| /x)8(8+1), when the
temperature is reduced. The negative.values of G(x) or Q(x)
suggest that it is favorable for the spins to tend towards
directions perpendicular to the external magnetic field below

the temperature of (|J|/k)S(S+1). The numerical results of G(x)

and Q(x) are shown in Fig. 2(a) and 2(b), respectively.

D) Expressions of the g-Shifts in Terms of X, and X

As was mensioned in the preceding paragraphs, the shift of
the effective g-values in the paramagnetic resonance for a class-
ical Heisenberg linear chain system with small dipolar- and

D-terms can be expressed as follows:

g8 (5+1) ©
Ag" = (g/Xu)["_”':_B'—"_—"—]
N N Z Z X X z Z
X Njio J-Z=O{6lJlO°<(Sm Sp4q ~ Sy Speq )84 8 5 ’6
- (5% - (8,708,785, 03, (47)

_ 18 -



and

AgJ_ = -(4/2><X“/XJ_)Ag”. (4_8)

with the use of the relations (31) and (44), these expressions

become following compact forms:

Ag”/g = (X” - Xl>/X|la

It

bg /g = (xyp = % )/(2x) - (49)

It should be noticed that, in the above calculations of the
resonance frequencies and the susceptibilities, we neglected the
higher terms than the gquadratic terms in Ja or D. It then seems
that Eq.-(49) hold only for the case where the operating frequency
is sufficiently larger than the axisdl anisotropy frequency of

the relevant magnetic system.

- 19 -



§3. Magnetical One-Dimensionality of CsMnClB2H20 and TMMC

ct

Th

.
firs

D

evidence of linear chain behavior in CsMnClBEHgO
was given by the susceptibility measurement of Friedberg et al.8)
They found that, when the temperature decreased, a rounded maximum
in the susceptibility was observed near 25 K, és expected for a

spin system consisting of independent linear chains of Mn2+

ions
coupled by antiferromagnetic isotropic exchange with J=-3.0 K.

This magnetical one-dimensionality in CsMn0152H20 can be understood
from the crystallographic structure determined by Jensen et al.qo)
This material forms orthorhombic crystals characterized by the
space group Pcca-D3, , with a=9.060 A, b=7.285 4, and c=11.455 4,
containing four formula units in a unit cell. A projection of
the structure on the (001) plane is shown in Fig. 3. This

bic structure may be regarded as a set of chains parallel
to the a-axis. Each Mn2+ ion is surrounded by a highly distorted
octahedron of four Cl  ions and two oxXygen atoms. Since neigh-
boring octahedra along the a-axis share a C1  ion as a common
ligand, dominant superexchange coupling of Mn2+ ions occurs

2+ 2+

only in a chain of -C1 -Mn“ -C1l -Mn“"- along the a-axis, whereas

the chains are in relative isolation from one another in the
perpendicular directions. Recently neutron diffraction studyqz)
has revealed that substantial intrachain spin correlations
develop well between 10 and 40 K.

CsMnC1 ZHZO exhibits three-dimensional antiferromagnetic

5
16)

long-range ordering at 4.89 K and the magnetic behaviors below

- 20 -



the Neel point can be understood as a usual three-dimensional
antiferromagnetqe)’17)~2O)=

Recent magnetic studies of TMMCqB) have indicated that this
salt 1s a more ideal one-dimensional antiferromagnet than
CsMnClBEHzO. The crystal structureqq) of TMMC belongs to the
space group P63/m—C§h, with a=9.151 A and c¢=6.494 A. Mn2+ ions
occupy special positions at (000) and (001/2) and are surrounded
by trigonally distorted octahedra of Cl~ ions. A projection of
the structure on the (001) plane is shown in Fig. 4(a). This
structure may be regarded as a hexagonal array of antiferromagnetic
-MnClB— chains along the c-axis which are shown in Fig. 4(Db).
Because these —MnClB— chains are magnetically insulated from each
1% ions, three-dimensional

other by intervening large [N(CH

51

ntifer

long-range order in this

O]

low temperature as 0.84 K through the action of the weak inter-
chain dipolar interactions, although the expected broad maximum
in the susceptibility is observed near 55'K15). The intrachain
spin correlationsg) have also been directly observed above 1.1 K

in the quasielastic neutron experiments of TMMC.

- 21 -



§4. Experimental Procedure
A) Preparation of the Specimens

CsMnCl 2H20 crystals used in the present experiment were

5
grown by slow evaporation of saturated aqueous solutions of CsCl
and MnCl24H20 at about 30 C. With care it was possible to

obtain pink single crystals up to 10x5x1 m’ in size. These
crystals have a (001) prefefred growth plane and exhibit well
developed (100) type faces. Then the specimens can be easily
oriented from the morphology.

Crystals of TMMC were grown by slowly evaporating a nearly
1-mole HC1l solution of tetramethylammonium chloride and MnClZ4H2O.
The rose-colored crystals obtained are in the form of slender
hexagonal prisms with a preferred growth axis parallel to the
chain direction [001]. To prevent deliquescence which
frequently undesirable impurity-signal besides a foundamental

line, the specimens had to be coated with pure clock oil.

B) ESRMeasurement

Usual experimental apparatus and technigues for the microwave
reflection method were used in the range of 34 GHz to observe the
paramagnetic resonance absorptions in CsMn0152H2O and TMMC. The
large line-width up to 3 kOe for these materials required the
cylindrical cavity spectrometer with variable coupling iris the

several samples with 1~ 0.1 mm5 in size. The sample magnetiza-

- 22 -



tion effects were not found important except for high temperature
regions in the present work, because the observed-c
resonance positions were too large to correct for such effects.
The temperature of the sample mounted on the bottom of the
resonant cavity was controlled by the following procedure. The
cavity connected to the end of the Cu-Ni wave guide was placed
inside of double Dewar vessels above the level of liquid He4 and
was cooled by the flow of the cooled He4 gas. Two heaters, one
immersed in the liquid helium and the other placed close to the
cavity, could maintain the sample-temperature fluctuation within
+0.1 K during each run. The temperature measurements were made

by using a commercial carbon thermometer below 50 K and AuCo-Cu

thermocouple above 50 K.

ations were performed by the morphology
and were checked by observing the angular dependence of the
antiferromagnetic resonance in CsMn0152H20 at 1.5 K and the
angular dependence of the high temperature line-width in TMMC.

It is believed that the crystal orientation usually was better

than +2°.

C) Torgue Measurement
The magnetic torque caused by the anisotropy in the suscep-

tibility of CsMnCl 2H20 was measured by using the automatic

>

recording type torquemeter. The measuring temperature could

- 2% -



be varied between 1 K and rcoom temperature and the measurable

range of the magnitude of the torque was from 1 to 10" dyne-cm.
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§5. Experimental Results and Discussions
A) Paramsgnetic Resonance
a) CSMnClEEHaO
Measurements of the position of the paramagnetic resonance

line in CsMnCl 2H2O were made at %4.4 GHz as a function of tempe-

5
rature and orientation. The values of the shift in the resonant
filed from the high temperature limit are shown in Fig. 5 for
three orientations of the magnetic field (parallel to the ortho-
rhombic a-, b- and c-axis). It is interesting to note that,

when the temperature decreases, the resonant field begins to shift
with a uniaxial symmetry referred to the chain-direction (a-axis)
at the temperature of about 1OTN below which the development of
intrachain spin correlations has been observed in the neutron
diffraction studng) of this salt. This shift in the resonant
fieid cannot be due to the effect of the sample magnetization,

for the susceptibility of CsMnCl 2H20 may be rather regarded to

5
be roughly temperature-independent in the temperature region

where the shift could be observed. The previous antiferromagnetic
resonance study by the author and Tazukeq7> has concluded that

the magnetic anisotropy in this material mainly arises from the
purely magnetic dipolar interaction between spins. If the
relevant magnetic system can be substantially regarded as a linear
chain magnet, such dipolar interaction must have a uniaxial

symmetry, particularly, of easy plane type for an antiferromagnet.

As will be seen later, the uniaxial anisotropy in this antiferro-
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magnet has been confirmed by the torque measurements in the same
temperature region as this resonance study. Therefore, the
observed results on the shift in the resonant field can be directly
compared with Eq. (24) and (25). As is seen in Fig. 5, the
agreement is excellent at all temperatures between ETN and 4OTN

for the exchange constant of J=-3%.57 K which was determined by

the spin wave spectrum below TNqE) and the nearest-neighbor
separation, ro=4.550 A. S0 the present theory is a very good
description of the temperature dependence of paramagnetic resonance
field for such a Heisenberg linear chain sysftem with considerably
large spins as this manganese salt.

As reported in the previous not65>, the broadening of para-
magnetic resonance line could be observed in the same temperature
range as this work. Comparison with Mori's theory >, however,
does not give good agreement. The absorption line shapes seemed

to be symmetric and typical Lorentzian at all temperatures of

this experiment.

D) TMMC

Analogous measurements were made for single crystals of the
one-dimensional antiferromagnet TMMC at 34.9 GHz. Fig. 6 shown
the temperature dependence of the position of the resonance line
for two orientations of the magnetic field (Hilc and Hic). As is

seen in Fig. 6, comparison with Eq. (24) and (25) (solid lines)
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for J=-6.3 Kﬂa) and the nearest-neighbor separation of 3.247 A
does not give so good agreement as in CSMnClEEHEO.

Most possible mechanism to explain the quantitative dis-
agreement roughly by a factor of 2 is an additional one~ion type
anisotropy given by D % (sz)g. Each Mn°' ion in this salt is
surrounded by a slighgig distorted octahedron of ligands and
lies on a three-fold axis parallel to the chain-direction (c-axis)
and then the c-axis of the crystal corresponds to the z-direction
of the one-ion anisotropy. The effect of such therm on the
resonance frequency-shift was considered in section 2 and the
corrections of the D—term have been given by Eq. (41) and (42).
The theoretical results indicate that, when the coefficient D
is negative, the effects of the d-term and the dipolér term on
the resonance frequency are inclined to cancel each other. The
dotted lines in Fig. © show the corrected values by taking account
of the single-ion anisotropy with D=-0.710 cm—q. The quantity
D=-0.10 cm~ | measures the splitbting in zero field of the Mn°*
ion ground state into three Kramers doublets. This value of D
inferred from our results is reasonably compared with the value
assumed in the opbical study of this salt= ).

It is somewhat difficult to discuss the origin of this
easy—-axis type anisotropy. We shall here only note that the

considerably large g-value observed as 2.005 at room temperatures

may be related to the uniaxial anisotropy.
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B) Anisotropy in the susceptibility
In order to study the anisotropy in the magnetic suscepti-
bility of a Heisenberg linear chain antiferrdmagnet, the torque
measuremenﬁs were performed for a single crystal of CsMnClBZHEO
at temperatures between 4.2 and 77.3 K by rotating an external
magnetic field in the ab- and bc-plane. The observed torque
curves are ordinary paramagnetic sinZ¢ curves for both planes
at all temperatures above the Néel point and show that the para—‘
magnetic principal axes coincide with the orthorhombic axes of
this crystal. For measurements at a constant temperature, when
we plot the amplitudes of the sin2¢ curves against H2, the
square of the field strength, the points fall well on a straight
line and then from the slope of the line we can obtain the

the anisotropy of the susceptibility at the temperature.

y

value o
The results are given as a function of temperature in Fig. 7.

It is interest to note that the anisotropy in the susceptibility
of CsMnClBZHEO has an essentially uniaxial symmetry referred to
the direction of chain (a-axis) above about 2TN and becomes
orthorhombic below 2T. This is consistent with the reéults

N
of neutron diffraction study by Skalyo et 31.12)

and can be
understood as the reflection of the magnetically effective dimen-
sionality of the system, that is, the uniaxial symmetry above 2TN
may result from the substantial intrachain spin correlations and

the orthorhombicity below ETN may be caused by the evolution of

three-dimensional magnetic correlations.
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We shall here attempt to describe quantitatively the uniaxial

anisotropy, xa-xb, above about 10 XK in terms of the .classical
spin model discussed in section 2. As is seen from Fig. 3,

there is no reason to expect that the single-ion anisotropy of
this crystal should have an axial symmetry referred to the a-axis.
Accordingly, the most important source of the axial anisotropy

is the purely magnetic dipolar interactions between spins given
by Eq. (1). Then Eq. (32) can be directly applied to the present
problem. Fig. 8 shows the comparison of Eq. (32) with the experi-
mental data, where J and r, are taken as -5%.57 K and 4.5%0 A,
respectively. As is seen in the figure, the égreement is satis-
factory. S0 the classical spin model, including only a small
dipolar term as an anisotropy term, is a good description of the
magnitude and temperature variation of the uniaxial magnetic

anisotropy in CsMnCl 2H20 as well as in the matter of the g-shift

5

of paramagnetic resonance.

C) Summary of Results

This work reports the first studies of the short-range-order
effects on the paramagnetic resonance frequency and the para-
magnetic susceptibility. The present theory with the classical
spin model properly predicts the magnitude and temperature vari-
ation of the shift of paramagnetic resonance lines for both

crystals, CsMnClB2H2O and TMMC, as well as those of the anisotropy
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in the susceptibility of CsMnClB2H2O. This is a remarkable
result especially when one considers the tremendous labor involved
in the corresponding problem for the two and three-dimensional
systems.

The shift of resonance lines and the magnetic anisotropy,
observed for CsMnClEEHEO, could be explained by taking account
only of the dipolar term as an anisotropy term. For TMMC,
however, since the single-ion anisotropy is considerably larger,
the effect of the D-term had to be taken into account in the
analysis of’the temperature variation of the resonant field.

The present approach to the calculation of paramagnetic

resonance frequencies may be equivalent to that by the method

of line moments. When the magnitude of the external magnetic

H

ield is comparable with or smaller than the anisotropy field,
its validity is lost. For such case, it seems much more compli-
cated to treat the paramagnetic resonance frequency in the whole

temperature range above the transition point.
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APPENDIX A:

J Wi Tmxt " (w)dw, (4=1)

-0

=
[m}
1]

where ImX' (w) is the imaginary part of the high frequency

magnetic susceptibility whose quantum mechanical expression is

given by
X"Tw) = [iCeug)®/nl] at e(v)([87,8%(5)1)e 10" (4-2)
with
6(t) = O for £t <O
= for t> O. (A-3)

It is convenient to make Fourier transformation of the suscep-

tibility (A-2):
1/(2n)f (1(1))(+"(u.))einG

= [iCeng)®/a1] at' 6(s-t")6(t" (87,87 (t)D) = ¢(t).
(A-4)
Expanding both sides of Eq. (A-4) into powers of t, we obtain
(iw)™ @ ¢7(+0)

4/(2n)[ dwx (w) = t2 = 3
—o n=0 n! n=

£, (A-5)

O n!
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Then, the zero-th and first moments are easily obtained from

Eq. (A-5) as

bo = | X" @a = Ino(+0)

-0

- [(eng)?/al87,8%1) = - [2(gug)?/nl(s™ (4-6)
and
by = ] wInx"(@)an = - Reg’ (+0)
= —(gng/n) 8™, [87,11). (A-7)

We therefore have

A = hlg/ug = ([S 08 ,u11)/2(s%). (4-8)

APPENDIX B: Derivation of Eq. (22)

N N

For convenience we shall divide the summations X X in
i=0 j=0

Eq. (20) into four parts as follows:

N N m N N m

PN r = X by + bX =

i=0 j=0 i=0 j=nm+1 i=m+1 j=0

m m N N
P D R 5 S, (A-9)

1i=0 j=0 i=m+1 j=m+"

Each correlation function in zero field which is to be summed
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in Eq. (A-9) can be written as

Yo Yo By 2
(s 's; .1 85 S5 )

daQ an
= ZN_I]J"'—L;EQ... f

N
N Y Y. 2. Z = =
s_'S s. 8. )exp(K Z s_ s
L ( m m+1 Y1 T ) ( n=1 B n—1>’
(A-10)
where dﬂj is the element of solid angle for the vector Eﬁ and the

partition function ZN has been given by Fisher as
. N
Zy = [ (sinh K)/K]". (A-11)

‘To perform the integrals, we define two sets of polar angles

for s, as indicated in Fig. 9, one is a set of ej and ¢j referred

) as polar axis and the other is a set of ®. and

—_

to s 4 (or s

J+ 3= J
6. referred to the z-axis. There are the following relations
J (&)
among these angles:
cos @j = CoS @j+1C°S ej + sin.@j+4sinj@cos ¢j’
sin @J.cos@‘j = sin @j+4cos §j+ﬂcos ed
- cos @j+1cos §j+1sin ejcos ¢j
- sin §j+181n ejsin ¢j,
sin ® .,sin &, = sin ®., ,8in &. ,cos O.
J J 95+ J+1 J
- COS ®:,481in &. ,.,sin B6.cos ¢.
J+1 J+1 J J
+ cos §j+151n @381n ¢j’ (A-12)
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We shall here evaluate a fourth order spin correlation func-
tion for j>1>m+1 and y=2 as an example. By Fisher's method,
the integrals for n<m, n>j, i<n<j, and n=m can be performed,

which yield

[(sinh K)/K]%, [ (sinh K)/K1N"
cCos 0. u [(51nh K)/K]J , and cos m+1u[(51nh K) /K]

respectively. The remainder then becomes
. dn aq.
[K/(sinh K)]l‘m’qf——gi1 - j——i
41 4y

2 2 i
x cos"® cos® exp( X s_s )
m+1 i P n=m+2 n l’l— 1

and, by using the angular relations (A-12) recurrently, reduces to
d i-m-1
<sm Sm+1 sl sj ¥y = (1/9u e NV e (A-13)

where v is defined by Eq. (46).
For other typical cases, only the results are presented in

the following:
for j>i>m+1 and y=x,

(1/9)ud™ N — (2/5)viTm Ty (A-14)

bie X, %2 %
<Sm Sm+’| Si sj )

for i<m, j>m+1, and y=z,

(/531 - (4/3) (wK)Y, (4-15)

Z zZ., 2.2
<Sm Smy1 5S4 Sj )

i
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for i<m, j>m+1, and y=X,

~r 7 z ey =] .
(sp"Sg,q7 8y 850 = (/157 v (a-16)

By summing up these results according to Eq. (4-9), we obtain

Eq. (22) in the text.

APPENDIX C:

Using the Hamiltonian (19), ((8_ %)% - (8_)%) in the presence
of a small external field parallel to the z-direction can be
expressed in terms of the higher order spin correlation functions

in zZero field. To second order in H, we have

guHS(8+1)
((8,%)% - (8, %y,, = (1/2) BkT 12

g g (¢ 7N 2 XN 2 Z 7 (A=17)
X %o 520 sy ) - (s ) )sy S 5 >0- =17

The summations in the right-hand side of Eg. (A-17) can be
performed in the same way as in the case of Appendix B and

result in

2 (M+u)(M+v) 2u
—_— - 2}.
15 (1=-u)(1=-v) (1-u)

(A-18)
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FIGURE CAPTIONS

Behavior of the function F(x).

Behavior of the function P(x).

Behavior of the function G(x).

Behavior of the function Q(x).

Projection of half of the unit cell of CsMnClBZHzo
on the c-plane.

Projection of a unit cell of TMMC on the c-plane.
-MnCl,”- chains extend infinitely along the c-axis.
[N(CH5)4]+ ions are located between these chains

in a highly disordered manner. -Mn2+ positions are

(000) and (001/2).

-y

octahedral environment about the Mn2+ ion is slightly
distorted, corresponding to a lengthening along the
chain.

Comparison of theory with experiment in the shift of
resonance field in CsMnClB2H20 at 34.4 GHz in the
temperature range up to 70 K. Measured values of the
shift are indicated by +(Hia), o(HIDb) and ©(Hlc).

The solid curves are computed with Eq. (24) and (25)
of the text. The high temperature g-value is 2.000.
Comparison of theory with experiment in the shift of

resonance field in TMMC at 34.9 GHz in the tempera-
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ured values of the shift

n

ture range up to 100 K. Mea
are indicated by +(Hic) and O(Hlc). The solid
curves are computed with Eq. (24) and (25) of the
text. The dotted curves are the theoretical results
with the correction of the D-term. The dashed iine
represents the DPPH-position. The high temperature
g-value is 2.005.

Fig. 7 Measured magnetic anisotropy of CsMn0152H20.

Fig. 8 Comparison of theory with experiment on the uniaxial
anisotropy of CsMnClBEHgo. The solid curve is
computed with Eq. (32) of the text.

Fig. 9 Definition of the two sets of polar angles for Es

referred to Sj+ﬂ and the z~direction.
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