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1. Introduction

Let Q be a bounded smooth domain R?. In this paper, we consider the follow-
ing mean field equation in statistical mechanics of pointiges; see [6, 7, 15]:
u
—Au = pe—u
(P) Jae
u=0 on 9.

in Q, p>0

We note that the problem (P) for < O is treated in [14]; see also [6, 7]. Analogous
problems under Neumann boundary conditions are considareelation to stationary
problems of the Keller-Segel system of chemotaxis in [28haldgous problems on
two-dimensional manifolds are also considered in relatmithe prescribed Gauss cur-
vature problem or Chern-Simons-Higgs gauge theory; see J1226, 29] and refer-
ences therein.

It should be also remarked that the following non-lineareaiglue problem called
the Gel'fand problem (see, for example, [3, 32]) also raldte our problem (P):

—Au=Xe" in Q, A>0

G
©) u=0 on 02.

Indeed, every solution of (G) corresponds to the solutiorfR)ffor p = fQ Aexpu dx .
(P) is the Euler-Lagrange equation of the following funictib

1
Jo(u) = > /Q |Vu|? — p|Og/Qe" for u € H}(Q).

Caglioti et al. show the following facts on (P):
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Facts 1.1([6]; see also [7]).
(1) From the Moser-Trudinger inequality [23],

inf  J,(u) >—oco for 0<p<8r.
u€HX(Q)

Moreover, the problem (P) for & p < 87 has a solution that minimizeg,.

(2) The disks admit no solution of (P) for evepy > 8n. More generally, let2 be
a strictly star-shaped domain, that is, there exists a aahsty > 0 such that X -
u)(fm do)™1 > a9 on 0K, wherev is the exterior unit outer normal vector field to
0 anddo is the arclength measure @f2. Then (P) admits no solutions jf > 4/aq
from the Pohaaev identity [27]. We note thato = 1/(27) when Q is a disk.

(3) Each annulus admits the unique radial solution for eyeeyR.

It should be remarked that parts of Fact 1.1 are already krasvresults on (G).
Indeed, Bandle [3, Theorem 4.16] and Suzuki and Nagasakil[8Bma 3] obtained
similar conclusions to Fact 1.1 (2) for (G) from the Pahev identity (see also [3,
p. 201]). The existence of radial solutions of (G) on annudisworoved by Nagasaki
and Suzuki [24] (see also [30, 32, 34]) and independently oy [L9]. Their studies
on the solutions are sufficient to obtain Fact 1.1 (3) for- 0. We note that they
also studied, in different ways, the existence of non-tfasidutions of (G) on annuli.
It should be also remarked that, in the course of the studyG)f Suzuki proved the
unigue existence of solutions of (P) wheén is simply conreeeed 0< p < 87 [33]
(see also [32, p. 263)).

We note that, on general domains other than disks and anibul, not clear
whether a solution of (P) fop > 8r exists. Caglioti et al. proved the existence of
a minimizer of Jg(-), that is, a solution of (P) fop = 8r when Q is sufficientlythin
by analyzing the dual functional tdg.(-) [6, p. 523]. In this case, supposing addition-
ally that Q is strictly star-shaped and admits the unique temiuof (P) for p = 8,
they also proved the existence of a sequepce— 8x + 0 such that (P) fop, has
at least two solutions [7, Theorem 7.1]. On the other handenM2 is simply con-
nected and satisfies some additional conditions, we knowexigtence of the Weston
branch of large solutions\(u,) of (G) for sufficiently small\ [36], which blows up
at one point inQ as\ — 0. We note that Moseley [22] and subsequently Suzuki
[31] (see also [32, Section 3.4]) reduced some sufficientditimms on to construct
the branch. Suzuki and Nagasaki proved that the Weston tbreatisfies

/)\e”*dx:87r+C)\+0()\) as A\ — 0,
Q

where C is a constant determined by a conformal map@a(d) onto Q [35, Ap-
pendix I] (see also [32, Proposition 4.36]). This formulaligates that, on the do-
mains satisfyingC > 0, the solutions of (P) fop > 87 and sufficiently close to 8
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exist. Moreover, Mizoguchi and Suzuki proved that the Westaanth and the triv-
ial solution ¢\, u) = (0, 0) of (G) are connected under the additional conditions
Q [21, Theorem 13]. This result indicates additionally thastence of solutions of
(P) for p = 87 as well as forp > 87 and sufficiently close to 8 on the appropri-
ate domains, an example of which is given in [21, pp. 207-20& note that this
example is alsahin in some sense. It should be remarked that Nagasaki and Suzuki
[25] (see also [32, Section 3.3]) proved that, when a famflys@utions {()\,, u,)} of
(G) on a general domain (not necessarily a simply connectex) satisfies\, — 0
and fQ A expu,dx — Yo asn — oo, the limit Xy must be &m for some
m € {0,00} UN. They also proved that, whem € N, the solutionu, of (G) blows
up at distinctm points i as — oo and obtained several necessary conditions
of the limiting function ofu, . We note that this result reseelthe later results of
Brezis and Merle [5] and Li and Shafrir [18], which we refer aacF2.5 in this pa-
per. Recently, Baraket and Pacard [4] considered the ceaveroblem to this result
of Nagasaki and Suzuki [25]. Baraket and Pacard gave, foh eaec N, a sufficient
condition of limiting functions that enables us to constracone-parameter family of
solutions{(\, u,)} of (G) satisfying that[, A expuydx — 8rm andu, converges to
such a limiting function as\ — 0. This result also suggests the existence of solutions
of (P) at least neap = 8mm on the appropriate domains for eaehe N.

Recently, a new proof of the existence of a solution of (P)as 87 appeared.
Ding et al. proved the following fact by the minimax variate&d method:

Fact 1.2 ([12]). On every smooth bounded domain whose complementagon
a bounded region, that is, on every smooth bounded domaim avihole, the mean
field equation (P) has a solution for alle (8w, 16m).

The purpose of this paper is to investigate the behavior isfgblution as the hole
of the domain shrinks to a point. To simplify the presentatiassuming that @ €2,
we study the behavior of solutions of (P) éh = Q\B.(0) ase — 0, whereB.(0) =
{x € R?: |x| < }. We refer (P) forQ. as (R) and the functional/,(-) on H3(.)
for (P:) as J; ().

Here we recall the minimax method used in [12] for the cas§. (Bet D; be a
family of continuous functiong B1(0) ={(r,0) : 0<r < 1,0 € [0, 21)} — HZ(RQ:)
satisfying

(1.1) rliIPL J5 (h(r, 0)) — —o0
and

(1.2) |in’}-I’HQE(h(I‘, -)) is a continuous curve enclosingB.(0),
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where

) / )
mq u) = Xﬁ.
o, Jo @

Ding et al. proved that for every € (8w, 167) the minimax value

oS = inf  sup J(u)
p heD}i u€eh(B1(0)) g

is achieved by a critical point of ; in H}(S2.), which is a solution of (B.
In the following, we assume each element&if(2.) to be an element off3 ()
by extending it by 0 onB.(0). Our result is stated as follows:

Main Theorem. Fix p € (8x, 167), a sequence, | 0 asn — oo, and a solu-
tion u, of (P.,) that attains the minimax valuaf;f. Then

ell”

Jo e

where y(ﬁ) = C(§)* denotes the space of signed Radon measures over the compact
space2 and o denotes the Dirac measure supported at the ori@ia .

— 09 weaklyx in M(ﬁ) as n — oo,

We note that Lewandowski [16] obtained a concentration ph@mmon similar
to our Main Theorem in the following higher dimensional pexbl with the critical
Sobolev exponent:

—Au=uyWNA/WN=2 50 in QcRY for N>5,

) u=0 on 9.
Assuming that is a smooth bounded star-shaped domain and20 Lewandowski
considered (P also on the domai®. = \B.(0). We note that Coron [9] proved that
Q. admits a solution of (1 for sufficiently smalle; see also [2] for the more general
existence result for (P Let u. be a solution of (B on Q. satisfying the appropriate
conditions. Then Lewandowski proved thafu.|> — (Sy)V/260 ase — 0, where
Sy is the best constant in the Sobolev inequality, thatSig, Ffinf [Vul? :u e
HY(RNM), ||M||L2N/(N—2)(RN) =1}.
In contrast to our results, Lewandowski proved more on thieabier of u. as
¢ — 0. Indeed, letw.(x) be a blow-up around an appropriate paintc RV, that is,
we(x) = téN’z)/ZuE(tE(x +a.)) for appropriately chosen. € (0, 1) satisfyings. — 0.
Thenw.(x) converges to a solution of (Pfor Q@ = R" in an appropriate topology.
Thus, also for our problem, it is natural to ask more precishalior of u, it-
self. It seems interesting to study the behaviorugpf by thevhip analysis for (P)
developed by Li and Shafrir [18], though the author now tkitlkat it seems difficult.
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2. Proof of Main Theorem

The key of the proof of Main Theorem is the following estimate the minimax
value ag:

Proposition 2.1. For everyp € (8w, 16m),

a, — —oco as ¢-—0.
Assuming this proposition, which we prove in Section 3, wevperMain Theorem
in this section.
Set

(%)
:u'n(-x) - fQ e“n(")dx'

We regard{u,} as a bounded set i/ §0. Thus, choosing a subsequence if necessary,

we may assume that

Ln — oo Weakly x in M(§) as n— o0

for some u., € M(Q). In the rest of this section, we proye, is alwaysdo, Which
implies thatu, — do without choosing a subsequence, that is, we obtain Main The-
orem.

We prove s, = dp by the following three steps:

STEP 1. fie =0, for somex,, € Q.

STEP 2. xo & 0R2.

STEP 3. xs & ©2\{0}, that is,xo, = 0.
We start from recalling the improved Moser-Trudinger indifya

Fact 2.2 ([12, Lemma 2.2]; see also [1, €heme 4] and [8, Theorem 2.1]). Let
S, and S, be two subsets of2 satisfying distf1, S2) > dp > 0 and letyy be a number
satisfyingvo € (0, 1/2). Then for any= > 0, there exists a constant c¢=, o, 70) > 0
such that

1 2
. u <
(2.1) /Qe cexp{327r€/QVu| +c}

holds for allu € H}(S2) satisfying

f el f el
[Ze“ >~ and fie“ > .

From Fact 2.2, we obtain the following lemma:
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Lemma 2.3. Suppose that a sequenée,} C H3(Q) satisfies

el

Jo(u,) — —oo and mq(u,) (:/xMHI/x ) — X AaS n— 00
Q Q er“n

for somep € (8w, 167) and somex,, € R2. Thenx,, € Q and
iy — 0, weaklyx in  M(Q).

Although we are able to prove this lemma easily by similamuargnt to the proof
of [12, Lemma 2.3], we give a proof of Lemma 2.3 in Appendix @mmvenience.

Proof of Step 1. It is obvious thaf,(u,) < J;"(u,) becauses, = 0 in B (0).
Thus J,(u,)(< J5" (u,) = ) — —oo asn — oo from Proposition 2.1. On the other
hand, there exists a subsequencengf u,, ( ) that converges leeQaiss bounded. Us-
ing Lemma 2.3, we obtain the conclusion becapse— . [

To make the next step, we recall the following fact from [10]:

Fact 2.4 ([10, p. 51 (8)]; see also [20, p. 628].). Le¥ C R? be a neighbor-
hood of 9Q (not 9Q.) and setwy = Q N N. Then, there exist positive constants
v, and C depending o®Q and wg satisfying the following propertiesy = {x €
Q: dist(x, 02) < e} is a subset ofvy and, for allx € w, there exists a measurable
set I, such that
(1) meas(; )> 7,

(2) I, Cc {y € wo: dist(y, 902) > ¢/2},
(3) u(x) < Cu(f) for all € € I,
whereu is anyC?(wp) function satisfying

—Au = f(w) and u>0 in wiNQ(CQ),
u=0 on wyNai(=0R)

for some locally Lipschitz functiory R — R.

We note that Fact 2.4 is proved by the moving plane methodlkstted in [13].

Proof of Step 2. Fix a neighborhood C R? of 9Q such thatQ., N N is in-
dependent ofr . Applying Fact 2.4 to thi§ , we obtainC Q satisfying the several
properties stated in Fact 2.4. We prove below that, §up|/.~,) < oo, which pre-
ventsx,, € 9Q since fQ e'" — oo asn — oo from Proposition 2.1 and Fact 1.1
@).

Let wy =, Iy C Q. Then we obtain that

XEw

0§un(x)§%/

C C
u,(y)dy < ;HMHHU(M) < ;HunHLl(Q) for everyx € w,
I
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that is,
C
sup||unHL°°(w) < = supHunHLl(Q)-
n Y on

It is rather standard to estimate gUja,||.:q). Indeed, let

)= [ (52 100k 517 = 5 logldiam@)I ) (o).

€n

It is obvious that

eln

—AY, = puy, :pf s in Q,,
Q

€n

v, >0 on 09.,.

We note thaty, — u, is harmonic inQ. and non-negative oA<2.,. Applying the
maximum principle of harmonic functions t0, — u,, we obtainy, —u, > 0, that is,
Y, > u,(>0) in Q.. Using the Young inequality for convolutions, we obtain

lunlze) = lunllze.,) < ¥nllye.,)
p _
< g” log| - | 1||L1(Bdiam(g)(0))' a1,y + €

< ' < o0
for some constant€” and C” independent of:  becaugu,|11q. ) = 1. (Il

To make the final step, we recall the results of [5] and [18]ceoning the solu-
tions of —Au = V(x) expu . Combining their results, we obtain the followingtfa

Fact 2.5 ([5, Theorem 3] and [18, Theorem]). L& be a bounded domain in
R? and let{w,} C C(R) be a sequence of solutions of

—Aw =pe” in D(Q)

for somep > 0 such that sup[,e” < co. Then, there exists a subsequer{esg, }
satisfying one of the following alternatives:

(1) {uy,} is bounded inL.(€2),

(2) u,, — —oo uniformly on compact subsets &t

(3) there exists a finite non-empty blow-up set {a,...,a,} C Q such that, for
anyi = 1...,m, there exists{x,,} C @ satisfyingx,, — a;, up (x,,) — o0,
andu,, (c)— —oo uniformly on compact subsets &t\S. Moreover, p expl,, ) —
>, 8wm;d, weakly in the sense of measures @n , where is a positive intege

forali=1,...,m.
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It should be remarked that, prior to [5] and [18], an analeyoesult to Facts 2.5
for the asymptotic behavior of the solutions of (G) &s— 0 exists [25], which we
mentioned in Section 1.

Proof of Step 3. Suppose,. € ©2\{0}. Then, we are able to tak® > 0 such
that Q., D Br(x) for sufficient largen . Letw, X ) 7, X ) log fszg u,(x)dx. Then
this {w,(x)} satisfies the assumptions of Fact 2.5 on the bounded doBgin..). (
Since pexpw, ) = pu. — pdx__, only the alternative (3) is able to occur with =
{xs} and p must be &m for some positive integem . Neverthelegs,c (8, 16r)
from the hypothesis. This is a contradiction and we obtain= 0. L]

3. Estimate of the minimax value
To prove Proposition 2.1, it is enough to constracte D7 such that

(3.1) sup J (u) — —oc as €-—0.
u€h(B1(0))

Fix so > 0 and set
4Iogs—O 0<t <y,
S

us (1) = 4|ogst—O s <t < s,

0 so < t.

We useu, { ) to construck.. It is obvious thatu, , £ ) =u, [k — p|) € H}(Q.) C
H}(RQ) if By (p) C Q. Moreover, we are able to obtain the following estimates:

Proposition 3.1. SupposeB,,(p) C Q.. Then we obtain

(3.2) / Vg p 2 = / Vs (x])? = 32 log 2,
Q. By, (0)\ B,(0) §

1 s\ 2
(3.3) / e > / e (D = —Zﬂsg 1- <>
Q. By (0)\ B;(0) § 50

for every0 < s < so. Especially we have

(3.4 N 5, weaklyx in M(Q) as s—0,
fQ els.p
1
(3.5) g, (us,p) < —2(p — 8m)log N +0(1)— —oc0 as s — 0,

where O(1) is independent of and p .

Since we obtain Proposition 3.1 by elementary calculatioves omit the proof.
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We are able to take positive numbeRs  ad< R such thatBsg(0)\B2r(0) C
Q. for sufficiently smalle and Bag+,(0) C Q. Takes =s €) — 0 ase — 0 such
thate < s < 59, which we specify later. We define

hO p . us,p(4Rr,9)(x) 0 <r
c(r, 0)(x) == 1

l
2
U2(1—r)s, p(4Rr,0) ()C) 2= 1

where p ¢, 60) = (rcosd, rsinf) € R2 From (3.4) and (3.5), it is easy to see that
ho(r, 0)() satisfies (1.1) and (1.2), thougi(r, 0)(-) ¢ HX(Q.) if r is small, that is,
h2() & Dj yet.

We introduce the following logarithmic cut-off function, hich is also used in
[11]:

0, 0<r<e
— 2log(t/e)
ne(t) = q =212 <t<
: loge ’ e<t< Ve
1, Ve <t.

Let
he(r, 0)(x) = n(1x)h2(r, 0)(x).

This h. obviously belongs taD; and we are able to prove the following fact:

Proposition 3.2. For everyd > 0, if we take sufficiently small positive number
o< 1/2 and sets =¢?(> /e > ¢), we obtain

sup  J,(he(r, 0)(x)) < —20{p — (1 +0)8r} |Og +0@) as ¢ —0.
(r,0)€B1(0)

Proof. We note that:.(r, 0)(x) = ho(r, 0)(x) if 1/2 < r < 1. From (3.5), we
obtain that

JE(h(r, )

1
Js(MZ(lfr)s,p(‘erﬁ)) < —2(p — 8n)log m *

(3.6) §72(p787r)log}+0(1) as s — 0 |if %§r<1.
N
For everyr < 1/2 and everys > 0, we obtain

[Vhe(r, 0)]?

e

(3.7) 5
0
< (1+3) [ 1980002+ co) ((suplnte o) [ 190007,
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where C §) is a constant depending only @n We note that:%(r, 6)(x) is a translation
of u,(|x|) if 0 < r < 1/2 and sup@®(1/2, 0) = B,,(p(2R, 0)) C Q.. Thus we obtain

from (3.2) that
w0 < [ |99 (5.0)
Q. 2

1
:/ |Vus,p(2R,9)\2 =32rlog-—+0(1) as s — 0.
Q. s

2

(3.8) e

It is easy to see that

(3.9) sup|h2(r, 6)(x)| = suplu,(1)| = 4log="
xEQ, t N
and
(3.10) [ w00 = ot
| " l0g(1/2)’
Combining (3.7-10) and choosing &£ for sufficiently smallo € (0, 1/2), we obtain
/ \Vho(r, 0)]% < 32r <1+ 5) log = +C(3) Iogs| 09~ Lo
(3.11) < 3270(1 +9) Iog B +0(1) as ¢ —0,

where C ¢)’ is a constant independent of
On the other hand, we obtain from (3.3) that

/ ehgo,e)z/ ehg(o,mz/ (D
Q. Q. B (0\B.(0)
1, sV .1, e\?
ZS—ZWSO |f]. (g) ‘| - E’/TSO 1- g .

Combining (3.11-12), we obtain

(3.12)

(3.13) JE(he(r, 0)) < —20{p— (1 +0)8r} Iog%+0(1) as ¢ —0 if 0<r<

NI

Thus we obtain the conclusion from (3.6) and (3.13). O

Proof of Proposition 2.1. As we assumed that- 8w, we are able to take a
sufficiently smallé > 0 such thatp— (1+0)8m > 0. Thenh. satisfies required property
(3.2). O
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Appendix. Proof of Lemma 2.3

It is enough to see that, for every sufficiently smalt> O, there existsy,, € Q
such that

(A1) / pp >1—r
QNB, (x,.)

if nis sufficiently large.
(2.1) is equivalent to the inequality

p—16r +(/2)

A.2
(A-2) 321 —¢

/ |Vul?+J,(u) > — plogc — pe.

Q

Since we assumed that < 16w, we are able to take a sufficiently smallsuch that
p—16r+(c/2) < 0. Then (A.2) with thise does not hold fom, with sufficiently large
n because/,(u,) — —oo. Accordingly, for everysy > O, every two subsets; and
S, of Q satisfying distf1, S2) > dp > 0, and everyy, € (0, 1/2), we obtain

) ]’ eu,, f eu,, )
(A.3) min { =, =%— | = min </ L / [Ln) <
er ! fge ! S1 S2
if nis sufficiently large.
Let Q,(r) be the concentration function @f,, that is,

Qn(r) = sup in-

x€Q JQNB,(x)

For everyr > 0, takex,, € Q such thatme‘/z(M)un = Q,(r/2). Applying (A.3)
for 0o = r/2, 81 = QN B, /o(xrn), and Sz = Q\B,(x,,), We obtain that, for every
7 € (0, 1/2),

. i r
A4 w | b ) = \2)1- '
Ay ([ [ ) m'n<Q (3) /mB,(xr‘n)”)m

if nis sufficiently large.
Since fQ i1, =1, it is easy to see that there exists a const@ant independent o
such that

0,(r) > Cr? for every 0< r < diam@)

Taking sufficiently smalhyo such thatQ, £/2) > 40 > 0, we obtain (A.1) from (A.4).
O
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