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We define the categories of log motives and log mixed motives. The latter gives
a new formulation for the category of mixed motives. We prove that the former
is a semisimple abelian category if and only if the numerical equivalence and
homological equivalence coincide, and that it is also equivalent to the latter being
a Tannakian category. We discuss various realizations, formulate Tate and Hodge
conjectures, and verify them in the curve case.
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1. Introduction

1.1. In this paper, we define:

(1) the category of log motives over an fs log scheme, and

(2) the category of log mixed motives over an fs log scheme.

(1) is a generalization of the category of Grothendieck motives over a field with
respect to the homological equivalence. The category (2) has ⊕,⊗, dual, kernel
and cokernel. We prove that the following (i), (ii), and (iii) are equivalent.

(i) The numerical equivalence and homological equivalence coincide in the cate-
gory (1).

(ii) The category (1) is a semisimple abelian category.

(iii) The category (2) is a Tannakian category.

The equivalence of (i) and (ii) is the log version of the famous theorem of
Jannsen [1992].

MSC2010: primary 14C15; secondary 14A20, 14F20.
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1.2. We explain the organization briefly. In this paper, except in 2.1, an fs log
scheme means an fs log scheme which has charts Zariski locally.

Let S be an fs log scheme. We fix a prime number ` and assume that ` is
invertible over S.

After we give preparations in Section 2, we define in Section 3 the category
of log motives over S, which is the log version of the category of motives of
Grothendieck. In Section 4, we define the category of log mixed motives over
S using the theory in Section 3.

Here we work modulo homological equivalence using `-adic log étale cohomol-
ogy theory.

In the case where the log structure of S is trivial, our construction gives a cate-
gory of mixed motives over S modulo homological equivalence. This does not use
the theory of Voevodsky [2000], though we hope our theory is connected to it. In
the case S = Spec(k) for a field k of characteristic 0 with trivial log structure, our
definition of the category of mixed motives over S is different from the definition
of the category of mixed motives over k given by Jannsen [1990]. The difference
lies in the definition of morphisms. We use K-theory whereas he uses absolute
Hodge cycles.

Vologodsky [2015] and Park [2016] also defined log motives, respectively. They
work with the formalism of triangulated categories à la Voevodsky. Our approach
is more elementary to define the category of log mixed motives directly without
defining its derived category. One can ask to compare our theory with theirs.

In Section 5, we introduce realizations that are not `-adic. In Section 6, we
discuss examples.

We explain each section of this paper more.

1.3. In Section 2, we give preparations on log geometry. We review results on log
étale cohomology, log Betti cohomology, log de Rham cohomology, and log Hodge
theory in 2.1, and then review or prove results on fans (2.2), on log modifications
(2.3), and on the Grothendieck group of vector bundles on log schemes (2.4).

1.4. We explain more about Section 3.
Fix a prime number ` and let S be an fs log scheme on which ` is invertible. We

define the category of log motives over S by imitating the definition of motive by
Grothendieck modulo homological equivalence.

Recall that for a field k whose characteristic is not `, the category of motives
over k modulo (`-adic) homological equivalence is defined as follows (see [Scholl
1994]). For a projective smooth scheme X over k and for r ∈ Z, consider a sym-
bol h(X)(r). For projective smooth schemes X , Y over k and for r, s ∈ Z, by
a morphism h(X)(r)→ h(Y )(s), we mean a homomorphism

⊕
i H i (X)`(r)→
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i H i (Y )`(s) which comes from CH(X × Y )Q. Here H i (X)` is the étale coho-

mology group H i
ét(X ⊗k k̄,Q`) with k̄ a fixed separable closure of k, (r) denotes

the r-th Tate twist, the same for Y and s, and where CH=
⊕

i CHi is the Chow
group and (·)Q means ⊗Q. A motive over k is a pair (h(X)(r), e), where X is
a projective smooth scheme over k, r ∈ Z, and e is an idempotent of the ring of
endomorphisms of h(X)(r).

Imitating this, we define the category of log motives over S is as follows. (See 3.1
for details.) For a projective vertical log smooth fs log scheme X over S and for
r ∈Z, consider a symbol h(X)(r). For projective vertical log smooth fs log schemes
X , Y over S and for r, s ∈ Z, by a morphism h(X)(r)→ h(Y )(s), we mean a
homomorphism h :

⊕
i H i (X)`(r)→

⊕
i H i (Y )`(s) satisfying the condition (C)

below. Here H i (X)` is the smooth Q`-sheaf on the log étale site on S defined to
be the i-th relative log étale cohomology of X over S, (r) denotes the r-th Tate
twist, and the same for Y and s.

(C) For any geometric standard log point p (2.1.11) over S, the pullback of h
to p comes from an element of

⊕
i gri K(Z)Q for some log modification Z

of X p ×p Yp, where K(Z) denotes the Grothendieck group of the category of
vector bundles on Z and gri denotes the i-th graded quotient for the γ -filtration
[SGA 6 1971].

A log motive over S is a pair (h(X)(r), e), where X over S and r are as above
and e is an idempotent of the ring of endomorphisms of h(X)(r) (3.1.7).

The reason we need log modifications is explained in 3.1.5.
In the case where S = Spec(k) for a field k with the trivial log structure we have

gri K(Z)Q = CHi (Z)Q for any smooth scheme Z over k and our category of log
motives over S coincides with the category of motives over k modulo homological
equivalence due to Grothendieck.

We will also define the category of log motives over S modulo numerical equiv-
alence by taking the quotient of the set of morphisms by numerical equivalence.
We prove the following log version of the theorem of Jannsen.

Theorem (Theorem 3.4.1). (1) The category of log motives over S modulo nu-
merical equivalence is a semisimple abelian category.

(2) The category of log motives over S (defined in 3.1) is a semisimple abelian cat-
egory if and only if the numerical equivalence for morphisms of this category
is trivial.

1.5. We explain more about Section 4. Let S and ` be as in 1.4. Roughly speaking,
we follow the method of Deligne [1971; 1974], who constructed mixed Hodge
structures of geometric origin by using only projective smooth schemes over C.

Our definition of log mixed motives is rather simple and is easily obtained by
using the category of log (pure) motives in Section 3. This may seem strange



736 TETSUSHI ITO, KAZUYA KATO, CHIKARA NAKAYAMA AND SAMPEI USUI

because usually it is impossible to take care of mixed objects by using only pure
objects. The reason why such a simple definition works is explained in 4.3.

We will prove the following result, which is a part of Theorem 4.4.2.

Theorem. Assume that the category of log motives over S is semisimple; that is,
the numerical equivalence coincides with the homological equivalence for this cat-
egory (see (2) of the previous theorem). Then the category of log mixed motives
over S is a Tannakian category. In particular, it is an abelian category.

1.6. In Sections 2–4, our discussion only uses `-adic étale realization. We consider
in Section 5 more realizations, and formulate Tate conjecture and Hodge conjec-
ture for log mixed motives. In the final section, Section 6, we prove that these
conjectures are true in certain cases (Propositions 6.3.2, 6.3.4, 6.4.3). To prove the
results on morphisms between H 1 of log curves (Propositions 6.3.4 and 6.4.3), we
use the theory of log abelian varieties in [Kajiwara et al. 2008b] and the theory of
log Jacobian varieties [Kajiwara 1993].

2. Preparations on log geometry

Basic references on log geometry are [Kato 1989; Illusie 1994]. Basic references
on log étale cohomology are [Nakayama 1997; 1998; 2017b; Illusie 2002]. Basic
references on algebraic cycles and K-groups are [SGA 6 1971; Fulton 1998].

In this paper, except in 2.1, for technical reasons, we consider only fs log
schemes which have charts Zariski locally. (We hope that a generalization of our
theory can be developed without such a restriction, but we guess that the result-
ing categories are not very different from the current ones.) A monoid means a
commutative semigroup with a unit element which is usually denoted by 1.

Let X be an fs log scheme over an fs log scheme S. We say that X is projective
if the underlying scheme of X is projective over the underlying scheme of S. We
say that X is vertical if for any point x of X , whose image in S is denoted by s, the
face of MX,x̄ spanned by the image of MS,s̄ is the whole MX,x̄ . See [Nakayama
1997, Definition and Notation (7.3)].

A morphism f : X → Y of integral log schemes is exact if for any x ∈ X , an
element of Mgp

Y, f (x)
whose image in Mgp

X,x̄ belongs to MX,x̄ belongs to MY, f (x). See
[Kato 1989, Definition (4.6)].

2.1. Log cohomology theories. We review some theorems on log étale cohomol-
ogy, log Betti cohomology, and log de Rham cohomology.

First we discuss the theorems on log étale cohomology. There are two versions
of étale cohomology in log geometry. One is obtained using the Kummer étale
(két) site, while the other is obtained using the full log étale (lét) site. In this paper
we mainly use log étale cohomology defined using the full log étale site.
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Let f : X→ S be a morphism of fs log schemes. Let ` be a prime number which
is invertible on S. Let 3= Z/`nZ (n ≥ 1).

Proposition 2.1.1. Assume that f : X → S is proper and log smooth. Then
Rq flét∗3 (the higher direct image for the full log étale topology) is locally constant
and constructible (see [Nakayama 2017b, 8.1] for the definition) for all q ∈ Z.

Proof. This follows from [Nakayama 2017b, Theorem 13.1(1)]. �

2.1.2. As in the classical case, we define a constructible Z`-sheaf as an inverse
system (Fn)n , where Fn is a constructible sheaf of Z/`n+1Z-modules such that
Z/`nZ⊗ Fn

∼=
→ Fn−1. A smooth Z`-sheaf is a constructible Z`-sheaf (Fn)n with

each Fn locally constant. The smooth Z`-sheaves form an abelian category. We
define the category of constructible Q`-sheaves as the localization of this abelian
category by torsion objects, that is, those killed by some power of `. By the above
proposition, we have, under the assumption there, a smooth Q`-sheaf on Slét, which
we denote by Rq flét∗Q`.

Proposition 2.1.3 (Poincaré duality). Let d ≥ 0. Assume that f : X → S is
proper, log smooth, vertical, and, full log étale locally on S, all fibers are of equi-
d-dimensional. Then there is a natural isomorphism

R2d−i flét∗3(d)
∼=
−→Hom(Ri flét∗3,3)

for any i .

Proof. This is by [Nakayama 2017b, Theorem 14.2(3)]. �

Corollary 2.1.4. Under the same assumptions, suppose further that S is noether-
ian. Then, there is a natural isomorphism

R2d−i flét∗Q`(d)
∼=
−→Hom(Ri flét∗Q`,Q`)

for any i .

Proposition 2.1.5 (Künneth formula). Assume that S is quasicompact and that
f : X→ S is proper. Let g : Y → S be another proper morphism of fs log schemes.
Let h be the induced morphism X ×S Y → S. Then there is a natural isomorphism

R flét∗3⊗
L
3 Rglét∗3

∼=
−→ Rhlét∗3.

Proof. This is by [Nakayama 2017b, Theorem 9.1]. �

As a corollary, we have:

Corollary 2.1.6. Assume that S is quasicompact and that f : X→ S is proper and
log smooth. Let g : Y → S be another proper and log smooth morphism of fs log
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schemes. Let h be the induced morphism X ×S Y → S. Then, for each n ≥ 0, there
is a natural isomorphism⊕

p+q=n

R p flét∗Q`⊗ Rq glét∗Q`

∼=
−→ Rnhlét∗Q`.

Proof. The natural homomorphism is seen to be bijective at stalks by the previous
proposition. �

Next the theorems on log Betti cohomology are as follows. Let f : X→ S be a
morphism of fs log analytic spaces.

Proposition 2.1.7. Assume that f : X → S is proper (i.e., the underlying map
is universally closed and separated) and log smooth. Then Rq f log

∗ Z is a locally
constant sheaf of finitely generated abelian groups for all q ∈ Z.

Proof. This is [Kajiwara and Nakayama 2008, Corollary 0.3]. �

Proposition 2.1.8 (Poincaré duality). Let d ≥ 0. Assume that f : X→ S is proper,
log smooth, vertical, and all fibers are of equi-d-dimensional. Then there is a
natural isomorphism

R2d−i f log
∗ Q

∼=
−→Hom(Ri f log

∗ Q,Q)

for any i .

Proof. The case where f is exact is by [Nakayama and Ogus 2010, Theorem 5.10(3)].
The general case is reduced to this case by exactification as follows. First, we
assume that S has a chart by an fs monoid and fix such a chart. Then, by exac-
tification [Illusie et al. 2005, Proposition (A.4.4)], there is a log blow-up [Illusie
et al. 2005, Definition (6.1.1)] p : S′→ S such that the base-changed morphism
f ′ : X ′ := X×S S′→ S′ is exact. By the exact case, we have the natural isomorphism

R2d−i f ′ log
∗ Q

∼=
−→Hom(Ri f ′ log

∗ Q,Q) (∗)

on S′log. Below we will prove that sending this by plog
∗ gives us an isomorphism

R2d−i f log
∗ Q

∼=
→Hom(Ri f log

∗ Q,Q) on Slog. To see that the last isomorphism is
independent of the choices of log blow-ups, we can argue as in [Nakayama 2017b,
(14.10)], where the `-adic analogue of the same problem is treated. Then, it implies
that the isomorphism is independent also of the choices of charts, and is glued into
the desired isomorphism.

Now we calculate plog
∗ of each side of (∗). Since R j f ′ log

∗ Q is locally constant for
any j (Proposition 2.1.7), by [Kajiwara and Nakayama 2008, Proposition 5.3(2)],
we have

plog
∗ R f ′ log

∗ Q= Rplog
∗ R f ′ log

∗ Q= R f log
∗ plog

∗ Q= R f log
∗ Q,
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where we denote the base-changed morphism of p by the same symbol and the last
equality is by [Kajiwara and Nakayama 2008, Proposition 5.3(1)]. Hence,

plog
∗ R2d−i f ′ log

∗ Q= R2d−i f log
∗ Q.

On the other hand, as for the right-hand-side of (∗), again by [loc. cit., Proposi-
tion 5.3(2)], we have

Ri f ′ log
∗ Q= plog−1 plog

∗ Ri f ′ log
∗ Q,

and it is isomorphic to plog−1 Ri f log
∗ Q by the same argument for the left-hand-side.

Then,

plog
∗ Hom(Ri f ′ log

∗ Q,Q)= plog
∗ Hom(plog−1 Ri f log

∗ Q,Q)

=Hom(Ri f log
∗ Q, plog

∗ Q)=Hom(Ri f log
∗ Q,Q),

where the last equality is again by [loc. cit., Proposition 5.3(1)]. Thus we have an
isomorphism

R2d−i f log
∗ Q

∼=
−→Hom(Ri f log

∗ Q,Q). �

Proposition 2.1.9. Let f : X→ S be a proper and log smooth morphism of fs log
analytic spaces. Let g : S′→ S be any morphism of fs log analytic spaces. Let
f ′ : X ′ := X ×S S′→ S′ and g′ : X ′→ X be the base-changed morphisms. Let
L be a locally constant sheaf of abelian groups on X log. Then the base change
homomorphism

glog−1 R f log
∗ L→ R f ′ log

∗ g′ log−1L

is an isomorphism.

Proof. We may assume that S has a chart. By exactification [Illusie et al. 2005,
Proposition (A.4.4)], we take a log blow-up p : S1→ S such that the base-changed
morphism f1 : X1 := X ×S S1→ S1 is exact. Then, by proper log smooth base
change theorem in log Betti cohomology [Kajiwara and Nakayama 2008, Theo-
rem 0.1], the cohomologies of R f log

1∗ plog−1
X L are locally constant, where pX is

the base-changed morphism X1→ X . Hence, by the invariance of cohomology
under log blow-up [loc. cit., Proposition 5.3], to prove Proposition 2.1.9, we can
replace f and g by the base-changed ones with respect to p, and L by its pullback
plog−1

X L . Thus we may assume that f is exact. Then the conclusion follows from
the log proper base change theorem [loc. cit., Proposition 5.1] (see [loc. cit., Re-
mark 5.1.1]). �

Proposition 2.1.10 (Künneth formula). Let the notation and assumption be as in
the previous proposition. Assume that g is proper. Let h : X ′→ S be the induced
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morphism. Then there is a natural isomorphism

R f log
an∗Q⊗

L
Q Rglog

an∗Q
∼=
−→ Rhlog

an∗Q.

Proof. This is by Proposition 2.1.9 and the usual projection formula. �

Next is a comparison between log Betti cohomology and log étale cohomology.

2.1.11. A standard log point means the fs log scheme Spec(k) for a field k endowed
with the log structure associated to N→ k ; 1 7→ 0. If we like to present k, we
call it a standard log point associated to k. The standard log point associated to an
algebraically closed field is called a geometric standard log point.

Proposition 2.1.12. Let f : X→ S be a proper, log smooth and vertical morphism
of fs log schemes with S being of finite type over C. Let

X log
an

η
−→ Xkét

κ
←− X lét

be natural morphisms of topoi (for η, see [Kato and Nakayama 1999, Remark (2.7)]).
Let n ≥ 1 and 3= Z/`nZ. Then we have

η∗R fkét∗3= R f log
an ∗3, κ∗R fkét∗3= R flét∗3.

Proof. The second one is shown in 13.4 of [Nakayama 2017b]. We prove the first
one. First, note that the cohomologies of the left-hand-side are locally constant
and constructible by [loc. cit., Theorem 13.1(2)] and those of the right-hand-side
are locally constant by Proposition 2.1.7.

We reduce to the case where f is exact. We may assume that S has a chart by
an fs monoid and fix such a chart. Then, by [loc. cit., Lemma 3.10], there is a log
blow-up p : S′→ S such that the base-changed morphism f ′ : X ′ := X ×S S′→ S′

is exact. By [loc. cit., Theorems 5.5(1) and 5.8(1)], we have

p∗két R fkét∗3= p∗két R fkét∗Rpkét∗3= p∗két Rpkét∗R f ′két∗3= R f ′két∗3,

where we denote the base-changed morphism of p by the same symbol.
Similarly, by [Kajiwara and Nakayama 2008, Proposition 5.3], we have

plog ∗R f log
∗ 3= plog ∗R f log

∗ Rplog
∗ 3= plog ∗Rplog

∗ R f ′ log
∗ 3= R f ′ log

∗ 3.

Thus we may and will assume that f is exact.
Since the cohomologies of both sides are locally constant, we can work at stalks.

Let s0 be a point of S. By the following Proposition 2.1.13, there are a morphism
s→ S from the standard log point s over C whose image is s0, and a log blow-up
X ′ of Xs := X×S s such that the composition X ′→ Xs→ s is strict semistable, i.e.,
a log deformation with smooth irreducible components. It is enough to show that
the homomorphism at a stalk over a point of slog

0 is bijective. Then by the exact
proper base change theorem ([Nakayama 1997, Theorem (5.1) and Remark (5.1.1)]
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for the log étale cohomology, [Kajiwara and Nakayama 2008, Proposition 5.1, Re-
mark 5.1.1], and the usual proper base change theorem for topological spaces for
the log Betti cohomology), we may assume that S = s, and further, by [Kajiwara
and Nakayama 2008, Proposition 5.3(1); Nakayama 2017b, Theorem 5.5(1)], we
may assume that X = X ′, that is, in the original setting, we may assume that S is
the standard log point over C and X is strict semistable over S.

Here we use the Steenbrink–Rapoport–Zink (SRZ, for short) spectral sequences
as follows. In the proof of [Fujisawa and Nakayama 2003, Theorem 7.1], it is
shown that there is a natural isomorphism between the `-adic SRZ spectral se-
quence and the Betti SRZ spectral sequence. Since these converge to the stalk of
`-adic log étale cohomologies and that of log Betti cohomologies, respectively, we
have the desired isomorphism. �

Proposition 2.1.13. Let s = (Spec k,N) be a standard log point. Let X → s be
a quasicompact, vertical, and log smooth morphism of fs log schemes. Then there
are a positive integer n and a log blow-up [Nakayama 2017b, 2.2] X ′→ X ×s sn ,
where sn :=

(
Spec k, 1

n N
)
, such that the composition X ′→ sn is strict semistable.

This is a variant of the semistable reduction theorem of D. Mumford. The state-
ment here is due to [Vidal 2004, Proposition 2.4.2.1]. (See [Kajiwara et al. 2008c,
Remark after Assumption 8.1].) Another reference is [Saito 2004, Theorem 2.9].
Both papers based on the method of [Yoshioka 1995]. (Actually, [Yoshioka 1995;
Saito 2004] treat the case of log smooth fs log schemes over a discrete valuation
ring, but the proof is in the same way. [Saito 2004] treats the nonvertical case also.)
See 2.3.14 for a variant of Proposition 2.1.13.

Finally, we discuss log de Rham cohomology and log Hodge theory.

Proposition 2.1.14. Let k be a field of characteristic zero. Let f : X → S be a
projective, log smooth and vertical morphism of fs log schemes with S being log
smooth over k. Let q ∈ Z. Then we have the following.

(1) Hq
dR(X/S) := Rq fkét∗ω

·,két
X/S is a vector bundle endowed with a natural quasi-

nilpotent integrable connection with log poles, and, for all p, the Hodge filters
Rq fkét∗ω

·≥p,két
X/S are subbundles of Hq

dR(X/S).

(2) When k = C, we have a natural log Hodge structure on Skét of weight q which
is underlain by Hq

dR(X/S) with the Hodge filter.

Proof. We may assume k = C, and (1) is deduced from (2). We obtain (2) by [Kato
et al. 2002, Theorem 8.1], the main theorem there. �

Lemma 2.1.15. Let f : X→ S be a proper, log smooth and vertical morphism of fs
log analytic spaces with S being ideally log smooth over C [Illusie et al. 2005, Def-
inition (1.5)]. Assume that for any x , the cokernel of (MS/O×S )

gp
f (x)→ (MX/O×X )

gp
x
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is torsion-free. Assume also that either S is log smooth or f is exact. Then we have
a canonical isomorphism

Rq f∗ω
·,két
X/S = ε

∗Rq f∗ω ·X/S

for any q ∈ Z. Here ε is the forgetting-log morphism, i.e., the projection from the
két site to the usual site.

Proof. By [Illusie et al. 2005, Theorems (6.2) and (6.3)], the local system Rq f log
∗ C

corresponds to Rq f∗ω
·,két
X/S by the két log Riemann–Hilbert correspondence, and

it does to Rq f∗ω ·X/S by the nonkét log Riemann–Hilbert correspondence, respec-
tively. Hence the desired isomorphism follows from the compatibility of the both
Riemann–Hilbert correspondences [Illusie et al. 2005, Theorem (4.4)]. �

Lemma 2.1.16. Let the notation and the assumption be as in the previous lemma.
Let X ′ → X be a log blow-up and f ′ : X ′ → X → S the composite. Then the
canonical homomorphism

Rq f∗ω ·X/S→ Rq f ′
∗
ω ·X ′/S

is an isomorphism.

Proof. By [Illusie et al. 2005, Theorem (6.3)], this homomorphism corresponds
by the log Riemann–Hilbert correspondence to the homomorphism Rq f log

∗ C→

Rq f ′ log
∗ C of local systems, which is an isomorphism by [Kajiwara and Nakayama

2008, Proposition 5.3(1)]. �

Proposition 2.1.17. Let k be a field of characteristic zero. Let f : X → s be a
projective, log smooth and vertical morphism of fs log schemes with s being the
standard log point associated to k. Let q ∈ Z. Then we have the following.

(1) Hq
dR(X/s) := Rq fkét∗ω

·,két
X/s is a vector bundle with a natural quasinilpotent

integrable connection with log poles.

(2) When k = C, Hq
dR(X/s) carries a natural log Hodge structure on skét of

weight q.

Proof. We may assume k = C, and (1) is deduced from (2). We prove (2). For
this, we can use a general result in [Fujisawa and Nakayama 2018]. Here we
give a direct proof, which is essentially a part of the arguments in [loc. cit.]. In
[Fujisawa and Nakayama 2015], the nonkét version of the case of (2) where f
is strict semistable is proved with the Hodge filter Rq f∗ω

·≥p
X/s . We reduce (2) to

this result as follows. To prove (2), we slightly generalized the statement to the
case where s is the spectrum of a log Artin ring C[N]/(xn) for some n ≥ 1, where
x is the generator of log. In the rest of this proof, (2) means this generalized
statement. We may assume that f satisfies the assumptions in Lemma 2.1.15 by
két localization of the base s. By a variant of Proposition 2.1.13, we may assume
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further that there exists a log blow-up X ′→ X such that the special fiber of X ′→ s
is strict semistable. By Lemma 2.1.15, we see that it is enough to show the nonkét
version of (2). By the argument in [Illusie et al. 2007] and the strict semistable
case in [Fujisawa and Nakayama 2015], Rq f ′

∗
ω ·X ′/s with the Hodge filters gives a

log Hodge structure. The nonkét version of (2) is reduced to this by Lemma 2.1.16
and the induced Hodge filtration on Rq f∗ω ·X/s from Rq f ′

∗
ω ·X ′/s does not depend

on the choice of X ′. �

Proposition 2.1.18. Let f : X → S be a projective, log smooth and vertical mor-
phism of fs log schemes with S being log smooth over C. Let s→ S be a standard
log point associated to C over S. Let fs : Xs→ s be the base-changed morphism.
Let q ∈ Z. Then the pullback of the log Hodge structure Hq

dR(X/S) is naturally
isomorphic to the log Hodge structure Hq

dR(Xs/s).

Proof. Since there is a natural base change map, it is enough to show that the local
system can be base-changed, which is by Proposition 2.1.9. �

2.2. Fans in log geometry. Let (fs) be the category of fs log schemes which have
charts Zariski locally. From now on, in the rest of this paper, an fs log scheme
means an object of this (fs).

We review the formulation of fans in [Kato 1994] as unions of Spec of monoids.
This is a variant of the theory of polyhedral cone decompositions in [Kempf et al.
1973; Oda 1988].

The material in Paragraphs 2.2.16 and 2.2.17 is new and was not discussed in
[Kato 1994].

2.2.1. For a monoid P , an ideal of P means a subset I of P such that ab ∈ I for
any a ∈ P and b ∈ I . A prime ideal of P means an ideal p of P such that the
complement P r p is a submonoid of P . We denote the set of all prime ideals of
P by Spec(P).

2.2.2. For a monoid P and for a submonoid S of P , we have the monoid S−1 P =
{s−1a | a ∈ P, s ∈ S} obtained from P by inverting elements of S. Here s−1

1 a1 =

s−1
2 a2 if and only if there is an s3 ∈ S such that s3s2a1 = s3s1a2.

In the case where S = { f n
| n ≥ 0} for f ∈ P , S−1 P is denoted also by P f .

2.2.3. By a monoidal space, we mean a topological space T endowed with a sheaf
of monoids P such that (Pt)

×
= {1} for any t ∈ T . Here Pt denotes the stalk of P

at t and (·)× means the subgroup consisting of all invertible elements.

2.2.4. For a monoid P , Spec(P) is regarded as a monoidal space in the following
way.

We endow Spec(P) with the topology for which the sets

D( f )= {p ∈ Spec(P) | f /∈ p} with f ∈ P
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form a basis of open sets.
The sheaf P of monoids on Spec(P) is characterized by the property that for

f ∈ P , P(D( f ))= P f /P×f .
The stalk of P at p∈Spec(P) is identified with Pp/(Pp)

×, where Pp=(Prp)−1 P .

2.2.5. For a monoidal space 6 with the structure sheaf P of monoids and for a
monoid P , the natural map Mor(6,Spec(P))→ Hom(P,P(6)) is bijective.

2.2.6. A monoidal space is called a fan if it has an open covering (Uλ)λ such that
each Uλ is isomorphic, as a monoidal space, to Spec(Pλ) for some monoid Pλ.

A fan which is isomorphic to Spec(P) for some monoid P is called an affine fan.
The functor P 7→ Spec(P) is an antiequivalence from the category of monoids P
such that P× = {1} to the category of affine fans. The converse functor is given by
6 7→ P(6), where P is the structure sheaf of 6.

2.2.7. For a fan 6, let
[6] : (fs)→ (Sets)

be the contravariant functor which sends X ∈ (fs) to the set of all morphisms
(X,MX/O×X )→6 of monoidal spaces.

If 6 = Spec(P), we have [6](X)= Hom(P, 0(X,MX/O×X )).

Lemma 2.2.8. The functor 6 7→ [6] from the category of fans to the category of
contravariant functors (fs)→ (Sets) is fully faithful.

Proof. Let 6,6′ be fans. We have to prove that

Mor(6,6′)→Mor([6], [6′]) (†)

is bijective.
First, we prove the case where both 6 and 6′ are affine, that is, we prove that the

contravariant functor P 7→ [Spec(P)] from the category of monoids P such that
P× = {1} to the category of contravariant functors (fs)→ (Sets) is fully faithful.
For monoids P and Q such that P× = {1} and Q× = {1} and for X = Spec(Z[Q]),
we have [Spec(P)](X)= Hom(P, 0(X,MX/O×X ))= Hom(P, Q). From this, we
obtain easily that the map Hom(P, Q)→Mor([Spec(Q)], [Spec(P)]) is bijective.

Next, we prove the case where 6 = Spec(Q) (Q× = {1}) is affine and 6′ is
any. We prove that (†) is surjective. Let f : [6] → [6′] be a morphism. Let x
be an fs log point lying over X = Spec(Z[Q]) such that the homomorphism Q→
(MX/O×X )X,x̄ is bijective. Let ((x,Mx/O×x )→6′)∈ [6′](x) be the image by f (x)
of ((x,Mx/O×x )→ (X,MX/O×X )→ Spec(Q)) ∈ [6](x). Let U ′ be the smallest
neighborhood in 6′ of the image s ′ of this morphism (x,Mx/O×x )→6′. Then f
factors through [U ′], which is by the fact that any morphism (X,MX/O×X )→6′

sending x to s ′ factors through U ′. Since U ′ is affine, the surjectivity of (†) is
reduced to the previous case.
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The injectivity of (†) is also reduced to the previous case as follows. Let a, b
be two morphisms from 6 to 6′ and assume that the induced morphisms from
[6] to [6′] coincide. Considering an fs log point lying over each point of 6,
we see that the underlying maps of sets of a and b coincide. Then both a and b
factor through the smallest neighborhood U ′ in 6′ of the image of the closed point.
Since [U ′] → [6′] is injective, we reduce to the previous case. Alternatively, we
use, instead of the previous case, the fact that (X,MX/O×X ) → Spec(Q) is an
epimorphism in the category of monoidal spaces.

Finally, the bijectivity of (†) for any 6 and any 6′ is reduced to the case where
6 is affine because 6 is the limit of an inductive system of affine fans and open
immersions. �

2.2.9. According to Lemma 2.2.8, we will often identify a fan 6 with the func-
tor [6].

For an fs log scheme X and for a fan 6, we will regard a morphism

(X,MX/O×X )→6

of monoidal spaces as a morphism X→[6] from the functor X on (fs) represented
by X to the functor [6]. We sometimes also denote a morphism X→ [6] simply
by X→6.

Lemma 2.2.10. For an fs log scheme X , a fan 6, and a morphism X → 6, the
following conditions (i) and (ii) are equivalent.

(i) The corresponding morphism (X,MX/O×X )→6 of monoidal spaces is strict.
Here we say that a morphism f : (T,P)→ (T ′,P ′) of monoidal spaces is
strict if f −1(P ′)→ P is an isomorphism.

(ii) Locally on X , there is an open set Spec(P) of 6 with P a monoid such that
X → 6 factors as X → Spec(Z[P])→ Spec(P) ⊂ 6, where Spec(Z[P])
is endowed with the standard log structure and the homomorphism P→ MX

corresponding to the first arrow is a chart of X (that is, the first morphism is
strict, where we say a morphism of log schemes X → Y is strict if the log
structure of X coincides with the inverse image of the log structure of Y ).

Proof. (ii)⇒ (i). Since the projection Spec(Z[P])→ Spec(P) satisfies the condi-
tion (i), (ii) implies (i).

(i)⇒ (ii). Let x ∈ X and we work around x . First, localizing X , we may assume
that X has a chart P such that P → (MX/O×X )x̄ is bijective. Next, localizing 6,
we may assume 6 = Spec(Q) with Q→ (MX/O×X )x̄ being bijective. Then P is
isomorphic to Q and, after further localizing X , we may replace Q with P . �

2.2.11. We will say X→6 is strict if the equivalent conditions in Lemma 2.2.10
are satisfied.
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2.2.12. Polyhedral cone decompositions which appear in toric geometry [Kempf
et al. 1973; Oda 1988] are related to the above notion of fan (2.2.6) as follows.

Let N be a free Z-module of finite rank, and let NR := R⊗Z N . A rational
polyhedral cone in NR is a subset of the form

σ =

{ r∑
i=1

xi Ni

∣∣∣ xi ∈ R≥0

}
for some N1, . . . , Nr ∈ N . A rational polyhedral cone σ is called strongly convex
if it does not contain a line, i.e., σ ∩ (−σ)= {0}. A subset τ ⊂ σ is called a face of
σ if there exists an element h ∈ HomR(NR,R) such that σ ⊂ {x ∈ NR | h(x)≥ 0}
and τ = σ ∩ {x ∈ NR | h(x)= 0}. A face of σ is also a rational polyhedral cone.

A rational polyhedral cone decomposition in NR (or a rational fan in NR) is a
nonempty set 6 of strongly convex rational polyhedral cones in NR satisfying the
following two conditions: (i) If σ ∈ 6 and τ is a face of σ , then τ ∈ 6; (ii) If
σ, τ ∈6, the intersection σ ∩ τ is a face of σ .

We regard a rational fan 6 in NR as a fan in the sense of 2.2.6 as follows.
We endow 6 with the topology for which the sets face(σ ) of all faces of σ for

σ ∈6 form a basis of open sets.
We endow 6 with the sheaf P of monoids characterized by P(face(σ )) =

Pσ/(Pσ )×, where

Pσ = {h ∈ Hom(N ,Z) | h(x)≥ 0 for all x ∈ σ }.

The open set face(σ ) of 6 is identified with Spec(Pσ ).

2.2.13. For a rational fan 6 in NR, we have the toric variety

Toric6 =
⋃
σ∈6 Spec(Z[Pσ ])

over Z corresponding to 6 with the standard log structure, on which the torus
N ⊗ Gm acts naturally. We have

[6] = Toric6/(N ⊗Gm)

as a sheaf on (fs), where Toric6 is identified with the sheaf on (fs) that it represents.

2.2.14. For an fs log scheme X , in the following Cases (i) and (ii), we can define
a fan 6X associated to X and a strict morphism X→6X in a canonical way.

Case (i). X is log regular ([Kato 1994]).

Case (ii). X is vertical and log smooth over a standard log point.

Case (i) was considered in [Kato 1994]. Case (ii) is explained below.
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2.2.15. We first review Case (i). See [Kato 1994] for the definition of log regularity.
As a set, 6X is the set of all points x of X such that the maximal ideal mx of OX,x

is generated by the image of MX,x rO×X,x , where MX,x is the stalk at x of the
direct image of MX to the Zariski site. The topology of 6X is the restriction of the
topology of X . The structural sheaf P of 6X is defined as the inverse image of the
sheaf MX/O×X on X . The morphism (X,MX/O×X )→6X is defined as follows. As
a map, it sends x ∈ X to the point of X corresponding to the prime ideal of OX,x

generated by the image of MX,x rO×X,x . If x ∈ X and if y ∈ X is the image of x
in 6X , there is a chart P→ MU for some open neighborhood U of x in X such
that P→ (MX/O×X )x is an isomorphism, and via the composite homomorphism
P→ (MX/O×X )x→ (MX/O×X )y , Spec(P) is identified with an open neighborhood
of y in 6X . The chart defines a morphism (U,MU/O×U )→ Spec(P) and hence
a morphism (U,MU/O×U )→6X and these local definitions are glued to a global
definition of (X,MX/O×X )→6X .

2.2.16. We consider Case (ii). As a set, 6X is the disjoint union 6′X
∐
{η} of the

set 6′X of all points x of X such that the maximal ideal mx of OX,x is generated
by the image of MX,x rO×X,x and the one-point-set {η}. The topology on 6X is as
follows. First define the topology of 6′X to be the restriction of the topology of X .
A closed subset of 6X is either a closed subset of 6′X or 6X . The structure sheaf
P of monoids on 6X is defined as follows. First let the sheaf P ′ on 6′X be the
inverse image of MX/O×X . Let P = i∗P ′, where i :6′X → X is the inclusion map.

Then 6X is a fan. This is reduced to the log regular case as follows. Let x ∈ X
and let P = MX,x/O×X,x = MX,x̄/O×X,x̄ . Since the problem is local on X , we can
work around x . Since X is strict étale over some Spec k[Q]/(q), where Q is an fs
monoid and q is an interior of Q, Spec(OX,x̄) is locally isomorphic to the part t = 0
of a log regular scheme Y , where t is a section of log structure MY of Y such that
the part of Y where t is invertible coincides with the part where MY is trivial. By
Case (i), we have a fan 6Y , which is affine and naturally isomorphic to Spec(Q).
Let 6′Spec(OX,x̄ )

be the set of all points y of Spec(OX,x̄) such that the maximal
ideal at y is generated by the image of MX,ȳ rO×X,ȳ . We define a monoidal space
6Spec(OX,x̄ ) =6

′

Spec(OX,x̄ )

∐
{η} similarly to 6X . Then this is isomorphic to 6Y .

On the other hand, since X has a chart Zariski locally, we may assume that X
has a chart by P such that P→ MX → MX,x/O×X,x is the identity. Then, for any
nonempty prime ideal p of P , the ideal generated by the image of p in OX,x is
a prime ideal because its image generates a prime ideal in the strict localization.
Thus we have a map f from Spec(P)r {∅} to the set 6′Spec(OX,x )

of all points
y of Spec(OX,x) such that the maximal ideal at y is generated by the image of
MX,yrO×X,y , and we also have a factorization of the above isomorphism Spec(P)∼=
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6Y ∼=6Spec(OX,x̄ ) as

Spec(P)→6′Spec(OX,x )

∐
{η} →6Spec(OX,x̄ ),

where the first morphism is induced from f , and the second is by the projection
Spec(OX,x̄)→ Spec(OX,x). We see that the second morphism is an isomorphism
so that the first is also an isomorphism. Shrinking X if necessary, we may assume
that 6′Spec(OX,x )

∼=6′X so that Spec(P)∼=6X .
We define a map X→6X in the similar way to Case (i) described above. The

proof for the gluing also reduces to Case (i). The resulting map in fact factors
through X→6′X .

2.2.17. Outside Cases (i) and (ii) in 2.2.14, it seems difficult to develop a general
theory of fans canonically associated to fs log schemes (see [Abramovich et al.
2016]). We give an example of an fs log scheme X having the following nice prop-
erty (1) but such that for any fan 6, there is no strict morphism (X,MX/O×X )→6.

(1) X is locally isomorphic to a closed subscheme of a log regular scheme Y
defined by an ideal of OY generated by the images of sections of the log
structure MY of Y under MY →OY endowed with the log structure induced
by the log structure of Y . As a scheme, X is a union of two P1

k obtained by
identifying 0 of each P1 with∞ of the other P1.

Let k be a field. Endow Spec(k[x1, x2, x3, x4]) with the log structure associated
to

N4
→ k[x1, x2, x3, x4], n 7→

∏4
i=1 xn(i)

i .

Let
Z = Spec(k[x1, x2, x3, x4]/(x1x2, x3, x4))

with the induced log structure, and let Z ′ be a copy of Z . (Hence as schemes, Z
and Z ′ are isomorphic to Spec(k[x, y]/(xy)).) Denote the copy of xi on Z ′ by x ′i .
Let U be the part of Z on which x1 is invertible and let V be the part of Z on which
x2 is invertible. Let U ′ and V ′ be the copies of U and V in Z ′, respectively. Let X
be the union of Z and Z ′ which we glue by identifying the open set U

∐
V of Z

and the open set U ′
∐

V ′ of Z ′, as follows. We identify U and U ′ by identifying x ′1
with 1/x1, x ′2 with x2

1 x2, x ′3 with x3, and x ′4 with x4 in the log structure. (Hence x2

is identified with (x ′1)
2x ′2 in the log structure.) We identify V and V ′ by identifying

x ′2 with 1/x2, x ′1 with x1x2
2 , x ′3 with x4, and x ′4 with x3 in the log structure. (Hence

x1 is identified with x ′1(x
′

2)
2 in the log structure.)

We show that there is no strict morphism f : X→6 to any fan 6.
Assume f exists. Let p be the point of Z at which all xi have value 0, let p′ ∈ Z ′

be the copy of p, let u be the generic point of U , and let v be the generic point
of V . Let P be the structure sheaf of monoids of 6. Then P f (p) is identified with
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(MX/O×X )p∼=N4 which is generated by x1, x2, x3, x4. 6 has an open neighborhood
which is identified with Spec(P f (p)). Since p belongs to the closure of u in X , f (u)
belongs to Spec(P f (p)). We have a commutative diagram

P f (p) //

��

P f (u)

��

(MX/O×X )p // (MX/O×X )u

in which vertical homomorphisms are isomorphisms, and hence f (u) is the prime
ideal of P f (p) generated by x2, x3, x4. The open neighborhood of u in 6 which
is identified with Spec(P f (u)) is regarded as an open set of Spec(P f (p)). In this
identification, the prime ideal of P f (p) generated by x3 is identified with the prime
ideal of P f (u) generated by x3. Similarly, Spec(P f (u)) is identified with an open
set of Spec(P f (p′)) and the prime ideal of P f (u) generated by x3 is identified with
the prime ideal of P f (p′) generated by x ′3.

Similarly Spec(P f (v)) is identified with an open set of Spec(P f (p)) and also with
an open set of Spec(P f (p′)). The prime ideal of P f (v) generated by x4 is identified
with the prime ideal of P f (p) generated by x4 and it is also identified with the prime
ideal of P f (p′) generated by x ′3. This shows that the prime ideal of P f (p) generated
by x3 is equal to the prime ideal generated by x4. Contradiction.

2.3. Subdivisions of fans and log modifications.

2.3.1. We shall mainly consider fans 6 (2.2.6) satisfying the following condition
(like in [Kato 1994]).

(Sfan) There exists an open covering (Uλ)λ such that for each λ, Uλ
∼= Spec(Pλ) as

a fan for some fs monoid Pλ.

2.3.2. Let N be as in 2.2.12, let σ be a strictly convex rational polyhedral cone in
NR, and let 6 be the rational fan face(σ ) in NR consisting of all faces of σ . Then a
finite subdivision of 6 means a finite rational fan 6′ in NR such that σ =

⋃
τ∈6′ τ .

Lemma 2.3.3. Let 6 = (6,P) and 6′ = (6′,P ′) be fans satisfying the condition
Sfan and let f :6′→6 be a morphism of fans. Then the following conditions (i)
and (ii) are equivalent.

(i) f satisfies:

(i-1) For any t ∈6, the inverse image f −1(t) is finite.
(i-2) For any t ∈6′, Pgp

f (t)→ (P ′)gp
t is surjective.

(i-3) The map Mor(Spec(N),6′)→Mor(Spec(N),6) is bijective.

(ii) There exists an open covering (Uλ)λ of 6 such that for each λ, there are a
finitely generated free Z-module Nλ, a strongly convex rational polyhedral
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cone σλ in Nλ,R, a finite subdivision Vλ of face(σλ), and a commutative dia-
gram of fans

U ′λ
∼=

//

��

Vλ

��

Uλ

∼=
// face(σλ)

where U ′λ denotes the inverse image of Uλ in 6′.

Proof. This is essentially proved in [Kato 1994, Section 9]. In fact, in (ii), each
Vλ→ face(σλ) satisfies the condition (i) by [loc. cit., (9.5)]. Hence (ii) implies (i).
Conversely, if f satisfies (i), then any base change of f by an open immersion
from an affine fan Uλ to 6 also satisfies (i). Again by [loc. cit., (9.5)], we can find
Nλ, σλ and so on. �

2.3.4. Let 6 be a fan satisfying Sfan. A finite subdivision of 6 (called a proper sub-
division of 6 in [Kato 1994]) is a fan 6′ satisfying Sfan endowed with a morphism
6′→6 satisfying the equivalent conditions (i) and (ii) in Lemma 2.3.3.

Lemma 2.3.5. Let 6 be a fan satisfying the condition Sfan, let X be an fs log
scheme, let X→6 be a morphism (2.2.9), and let 6′ be a finite subdivision of 6.
Then the functor X ×6 6′ : (fs)→ (Sets) is represented by an fs log scheme X ′

which is proper and log étale over X. Here X ×6 6′ denotes the fiber product of
the functors X =Mor(·, X) and 6′ = [6′] (2.2.7) on (fs) over the functor 6 = [6]
on (fs) (it does not mean the set theoretic fiber product of X and 6′ over 6).

Proof. We are reduced to the case 6 = face(σ ) for a strongly convex rational
polyhedral cone σ and 6′ is a finite subdivision of 6. Locally on X , X → 6 is
the composition X→ Spec(Z[Pσ ])→6. Hence we are reduced to the case X =
Spec(Z[Pσ ]). Then X×66′ is represented by the toric variety

⋃
τ∈6′ Spec(Z[Pτ ])

over Z associated to 6′, which is proper and log étale over X . �

2.3.6. We call a morphism X→ Y of fs log schemes a log modification if locally
on Y , there exist a fan 6 satisfying Sfan, a morphism Y →6, and a finite subdivi-
sion 6′ of 6 such that X represents Y ×6 6′.

Log modifications were studied in [Kato and Usui 2009] for fs log analytic
spaces over C.

The following lemma is easy to prove.

Lemma 2.3.7. (1) A log modification is proper and log étale.

(2) If X→Y is a log modification, the induced morphism of functors Mor( ·, X)→
Mor(·, Y ) on (fs) is injective.

(3) If X i→Y (i = 1, 2) are log modifications, X1×Y X2→Y is a log modification.
Here X1×Y X2 denotes the fiber product in the category of fs log schemes.
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(4) If X→ Y and Y → Z are log modifications, the composition X→ Z is a log
modification.

Proposition 2.3.8. Let f : X→ Y be a log modification of fs log schemes.

(1) Let F be a torsion sheaf of abelian groups on Ylét. Then the natural homomor-
phism F→ R flét∗ f ∗lét F is an isomorphism.

(2) Let ` be a prime number which is invertible on Y . Then the natural homomor-
phism Q`→ R flét∗Q` is an isomorphism.

Proof. Assertion (2) is reduced to (1). Assertion (1) is a slight generalization of
Theorem 5.5(2) of [Nakayama 2017b], and the proof is similar, which is reduced
easily to Lemma 2.3.7(2). �

2.3.9. (1) Let 6 be a fan with the structure sheaf P of monoids. We say 6 is free
if for any t ∈6, the stalk Pt is isomorphic to Nr(t) for some r(t)≥ 0.

(2) Let X be an fs log scheme. We say MX/O×X is free if for any x ∈ X , (M/O×X )x∼=
Nr(x) for some r(x)≥ 0.

Proposition 2.3.10. Let 6 be a finite fan satisfying the condition Sfan. Then there
is a finite subdivision 6′→6 which is free (2.3.9(1)).

This is already explained in [Kato 1994].

Lemma 2.3.11. Let 6 be a finite fan satisfying the condition Sfan with the struc-
tural sheaf P , let t ∈ 6, and let P be an fs submonoid of Pgp

t containing Pt .
Then there is a finite subdivision 6′ of 6 such that there is an open immersion
Spec(P)→6′ over 6.

Proof. Regard 6 as a conical polyhedral complex with an integral structure [Kempf
et al. 1973, Chapter II, §1, Definitions 5 and 6, pp. 69–70]. Let σ be its cell corre-
sponding to Pt and τ ⊂ σ be the subcone corresponding to P . Take a rational homo-
morphism f :σ→R≥0 such that f −1({0}) is trivial, where R≥0 is the monoid of the
nonnegative real numbers with addition. Let f0 : S :=

⋃
σ ′∈6 Sk1(σ ′)∪Sk1(τ )→R

be the zero extension of the restriction of f to Sk1(τ ), that is, for any s ∈ S,
f0(s)= f (s) if s ∈ Sk1(τ ) and f0(s)= 0 otherwise. Here Sk1 means the 1-skeleton
[loc. cit., Chapter I, §2, p. 29]. Let f1 : |6| → R≥0 be the convex interpolation of
f0 [loc. cit., Chapter I, §2, p. 29 and Chapter II, §2, p. 92], where |6| is the support
of 6. Then, f1 coincides with f on τ , and the coarsest subdivision of the conical
polyhedral complex 6 on any cell of which f1 is linear owes τ as a cell. Hence the
corresponding finite subdivision 6′ of the fan 6 satisfies the desired property. �

Proposition 2.3.12. Let X be a quasicompact fs log scheme, let 6 be a finite fan
satisfying the condition Sfan with the structure sheaf P , and let f : X → 6 be a
morphism (2.2.9) such that for any x ∈ X , the map P f (x)→ (MX/O×X )x is surjective.
Then for a sufficiently fine finite subdivision 6′ of 6, X ×6 6′→6′ is strict.
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Proof. First notice that the problem is local on X as the category of finite subdivi-
sions of 6 is directed. Let x ∈ X , and let P be the fs submonoid of (P f (x))

gp con-
sisting of all elements whose images in (Mgp

X /O
×

X )x are contained in (MX/O×X )x .
Then P/P×→ (MX/O×X )x is an isomorphism. Since X is quasicompact and the
problem is local on X , replacing X by an open neighborhood of x , we may assume
that X → 6 factors as X → Spec(P)→ Spec(P f (x))→ 6 and the first arrow is
strict. Let 6′ be a finite subdivision of 6 such that there is an open immersion
Spec(P)→6′ over 6 (Lemma 2.3.11). Then the morphism X = X ×6 6′→6′

is strict because it is the composition of strict morphisms X→ Spec(P)→6′. �

Remark 2.3.13. This Proposition 2.3.12 will be used later in Proposition 3.1.4 to
make the diagonal of a vertical log smooth fs log scheme over a standard log point
a regular immersion, by log modification.

2.3.14. In the next section, we will use the following corollary of Proposition 2.1.13.
Let X be a projective vertical log smooth fs log scheme over a standard log

point s. Then, for some morphism of standard log points s ′→ s whose underlying
extension of the fields is an isomorphism, we have a projective strict semistable fs
log scheme X ′ over s ′ which is a log blow-up of X ×s s ′.

2.4. Grothendieck groups of vector bundles and log geometry.

2.4.1. Recall the following theory in [SGA 6 1971] until 2.4.2.
For a scheme X , let K(X) be the Grothendieck group of the category of lo-

cally free OX -modules on X of finite rank. It is a commutative ring in which the
multiplication corresponds to tensor products.

The K-group K(X) has a decreasing filtration (Fr K(X))r∈Z called the γ-filtration
(for details, see [SGA 6 1971; Fulton and Lang 1985, Chapter III, V]). It satisfies
F0K(X)= K(X) and Fr K(X) · F s K(X)⊂ Fr+s K(X). We define

grr K(X) := FrK(X)/Fr+1K(X).

2.4.2. For a morphism X→ Y of schemes, the pullback homomorphism K(Y )→
K(X) is defined and it respects the γ -filtration.

On the other hand, for a morphism f : X→Y of schemes which is projective and
locally of complete intersection (see [SGA 6 1971, Exposé VIII, définition 1.1]),
the pushforward homomorphism K(X)→ K(Y ) is defined (see [SGA 6 1971, Ex-
posé IV, 2.12]). It sends F i K(X)Q to F i−d K(Y )Q. Here d is the relative dimension
of f which is a locally constant function on X characterized as follows. Locally
on X , f is a composition X i

→ Z g
→ Y , where i is a regular immersion and g is

smooth. The relative dimension of f is d1− d2, where d1 is the relative dimension
of g and d2 is the codimension of i .
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2.4.3. If X and Y are projective smooth schemes over a field k, any morphism
X → Y over k is projective and locally of complete intersection and hence the
pushforward homomorphism K(X)→ K(Y ) is defined. However, in log geometry,
we have no such nice property if we replace the smoothness by log smoothness.

We give some preliminaries to treat log smooth situations which we encounter
in later sections.

Proposition 2.4.4. Let S be an fs log scheme of log rank ≤ 1 (this means that for
any s ∈ S, (MS/O×S )s is isomorphic to either N or {1}). Let f : X → S be a log
smooth morphism. Then the underlying morphism of schemes of f is flat.

Proof. [Kato 1989, Corollaries (4.4), (4.5)]. �

Proposition 2.4.5. Let S be an fs log scheme of log rank ≤ 1, and let f : X→ Y be
a morphism of fs log schemes over S. Assume that X, Y are log smooth over S, and
assume that MX/O×X and MY /O×Y are free (2.3.9). Then the underlying morphism
of schemes of f is locally of complete intersection.

Proof. Working étale locally on X and on Y , we may assume that f is the base
change of f ′ : X ′ → Y ′ over S′ = Spec(Z[N]) by a strict morphism S → S′,
where S′ is endowed with log by N and X ′ and Y ′ are log smooth over S′. By
the assumption on the log of X and Y , we may assume that M/O× of X ′ and that
of Y ′ are also free (2.3.9) and hence X ′ and Y ′ are smooth over Z as schemes.
Hence f ′ is locally of complete intersection. Since X ′ and Y ′ are flat over S′,
f is also locally of complete intersection. Here we used the fact that any base
change of a morphism f ′ : X ′→ Y ′ of locally complete intersection of schemes
which are flat over a scheme is locally of complete intersection. A proof of this
fact is as follows. Locally, f ′ is the composition of a regular immersion followed
by a smooth morphism, and hence we may assume that f ′ is a regular immersion.
But for a closed immersion defined by an ideal I being a regular immersion is
equivalent to the condition that I/I 2 is locally free and I n/I n+1

= Symn(I/I 2) for
any n. The last property is stable under any base change. �

2.4.6. For an fs log scheme X , we define

Klim(X) := lim
−−→X ′ K(X ′),

where X ′ ranges over all log modifications (2.3.6) of X .

Lemma 2.4.7. Let X be a quasicompact fs log scheme, let 6 be a finite fan satisfy-
ing the condition Sfan with the structure sheaf P , and let f : X→6 be a morphism
(2.2.9) such that for any x ∈ X , the map P f (x)→ (MX/O×X )x is surjective. Then
we have an isomorphism

lim
−−→6′

K(X ×6 6′)
∼=
→ Klim(X),

where 6′ ranges over all finite subdivisions of 6.



754 TETSUSHI ITO, KAZUYA KATO, CHIKARA NAKAYAMA AND SAMPEI USUI

Proof. Let X ′→ X be a log modification. Then the composition f ′ : X ′→ X→6

satisfies the condition that P f ′(x)→ (MX ′/O×X ′)x is surjective for any x ∈ X ′. Hence
by Proposition 2.3.12, there is a finite subdivision 6′ of 6 such that the morphisms
X ×6 6′→6 and X ′×6 6′→6′ are strict. This shows that the log modification
X ′×6 6′→ X ×6 6′ is strict and hence X ′×6 6′

∼=
→ X ×6 6′. �

2.4.8. Let s be a geometric standard log point (2.1.11), and let X be an fs log
scheme over s. Let ` be a prime number which is different from the characteristic
of s and let H m(X)` := Rm f∗Q`, where f is the morphism X → s and Rm f∗ is
the m-th higher direct image for the log étale topology (2.1.2). We will identify
H m(X)` with its stalk.

We have a Chern class map gri K(X)Q→ H 2i
ét (X,Q`)(i) to the classical étale

cohomology, which coincides with the Chern character map. By composing this
with the canonical map H 2i

ét (X,Q`)(i)→ H 2i (X)`(i) and by going to the inductive
limit for log modifications using the invariance Proposition 2.3.8 for the log étale
cohomology, we obtain the Chern class map

gri Klim(X)Q→ H 2i (X)`(i).

Proposition 2.4.9. Let X (resp. Y ) be a projective and vertical log smooth fs log
scheme over a geometric standard log point s (2.1.11) such that M/O× of X and
that of Y are free (2.3.9). Let f : X→ Y be a morphism over s of relative dimen-
sion d. (d can be < 0. See 2.4.2.) Let ` be a prime number which is different from
the characteristic of s. Then for any i ∈ Z, the following diagram is commutative.

gri+d K(X)Q //

��

H 2(i+d)(X)`(i + d)

��

gri K(Y )Q // H 2i (Y )`(i)

Here the left vertical arrow is defined by Proposition 2.4.5 and 2.4.2 and the right
vertical arrow is the pushforward map (the dual of H 2 j (Y )`( j)→ H 2 j (X)`( j) for
Poincaré duality (Corollary 2.1.4), where j = dim(Y )− i).

Remark. In the above, d (resp. dim(Y )) is considered as a locally constant func-
tion on X (resp. Y ) (see 2.4.2). In general, if m is a locally constant function on X ,
H m(X) means

⊕
i H m(i)(X i ), where X i are connected components of X and m(i)

is the value of m on X i . The meaning of grm K(X)Q is similar.

Proof. Let X◦ (resp. Y ◦) be the underlying scheme of X (resp. Y ). The morphism
f is the composition of two morphisms X→ Pn

×Y → Y in which the underlying
morphism of schemes of the first arrow is a closed regular immersion and the
second arrow is the projection. It is sufficient to prove Proposition 2.4.9 for each of
these two morphisms. The proof for the latter morphism is standard. We consider
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the first morphism. It is sufficient to prove the commutativity of the two squares
in the diagram

gri K(X◦)Q

��

// H 2i
ét (X

◦,Q`)(i)

��

// H 2i (X)`(i)

��

gri+c K(Y ◦)Q // H 2i+2c
ét (Y ◦,Q`)(i + c) // H 2i+2c(Y )`(i + c)

assuming that the morphism X◦→ Y ◦ is a closed regular immersion of codimen-
sion c. Here the central vertical arrow is the Gysin map which is defined as follows.
Let ξ ∈ H 2c

X◦(Y
◦,Q`)(c) be the localized Chern class of the OY -module OX [Iversen

1976]. By using the cup product

H i
ét(X

◦,Q`)× H j
X◦(Y

◦,Q`)→ H i+ j
X◦ (Y

◦,Q`),

let the Gysin map be the product with ξ . (See [Baum et al. 1975, Section 5.4].)
The left square is commutative by the Riemann–Roch theorem in Corollary 1

in Section 5.3 of [Baum et al. 1975] (see also [Fulton 1998]). We prove that the
right square is commutative. By 2.3.14, we may assume that X and Y are strict
semistable. Let X ′ be X◦ with the inverse image of the log structure of Y . Hence
X→ Y factors as X→ X ′→ Y . Consider the diagram

H i
ét(X

◦,Q`) //

��

H i (X ′)` //

��

H i (X)`

��

H i+2c
X◦ (Y ◦,Q`)(c) // H i+2c

X ′ (Y )`(c) // H i+2c(Y )`(c)

The left square is evidently commutative. The composition

H i
ét(X

◦,Q`)→ H i+2c
ét (Y ◦,Q`)(c)→ H i+2c(Y )`(c)

coincides with the composition

H i
ét(X

◦,Q`)→ H i+2c
X◦ (Y ◦,Q`)(c)→ H i+2c

X ′ (Y )`(c)→ H i+2c(Y )`(c).

Hence it is sufficient to prove the commutativity of the right square. Let p :=
dim(X), so dim(Y ) = p + c. Let j = 2p − i . It is sufficient to prove that for
a ∈ H i (X ′)` and b ∈ H j (Y )`(p), we have (a ∪ ξ ∪ b)Y = (a ∪ b|X )X in Q`.
Using z = a ∪ b|X ′ ∈ H 2p(X ′)`(p), we see that it is sufficient to prove that for
z ∈ H 2p(X ′)`(p), the image of z under

H 2p(X ′)`(p)→ H 2p+2c
X ′ (Y )`(p+ c)→ H 2p+2c(Y )`(p+ c)→Q`

(the first arrow is the product with ξ ) and the image of z under H 2p(X ′)`(p)→
H 2p(X)`(p)→Q` coincide. H 2p(X ′)`(p) is generated by the Chern classes of the
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OX -modules [κ(u)], where u ranges over all nonsingular closed points of X and
κ(u) is the residue field at u. For z = [κ(u)], the image of z in H 2p+2c(Y )`(p+ c)
is the Chern class of the OY -module κ(u). Hence the image of this z in Q`

via H 2p+2c(Y )`(p + c) is 1. On the other hand, the image of this z in Q` via
H 2p(X)`(p) is 1. Thus both images coincide. �

Corollary 2.4.10. Let X be a projective vertical log smooth fs log scheme over a
geometric standard log point s. Let X ′ be a log blow-up of X such that MX ′/O×X ′
is free (2.3.9). Then the image of the Chern class map gri Klim(X)→ H 2i (X)`(i)
coincides with the image of the Chern class map gri K(X ′)→ H 2i (X)`(i).

Proof. Let Y be any log blow-up of X and let a ∈ gri K(Y )Q. Take a log blow-
up Y ′ of Y such that MY ′/O×Y ′ is free and such that Y ′ is also a log blow-up of
X ′. Let a′ be the image of a in gri K(Y ′) by pullback, and let b be the image of
a′ in gri K(X ′)Q by pushforward. Then by Proposition 2.4.9, the image of a in
H 2i (X)`(i) coincides with the image of b. �

2.4.11. The above Proposition 2.4.9 contains the following trace formula in [Kato
and Saito 2004]. Let X be a projective vertical log smooth fs log scheme over
a geometric standard log point s. Assume that X is purely of dimension d. Let
(X × X)′ be a log blow-up of X × X , let α ∈ grd K((X × X)′)Q, and let fα be the
image of α under the composition

grd Klim(X × X)Q→ H 2d(X × X)`(d)∼=
⊕

i Hom(H i (X)`, H i (X)`),

where the last isomorphism is by Poincaré duality (Corollary 2.1.4) and the Künneth
formula (Corollary 2.1.6). We consider the trace Tr( fα). Let X ′ be the log blow-up
X ×X×X (X × X)′ of the diagonal, and let the intersection of α with the diagonal
α ·1X ∈Q be the image of α under the composition

grd K((X × X)′)Q→ grd K(X ′)Q→ K(s)Q =Q,

where the first arrow is the pullback by X ′→ (X × X)′ and the second arrow is
the pushforward. Then we have the trace formula

Tr( fα)= α ·1X ∈Q.

This follows from Proposition 2.4.9 as follows. Consider the diagram

grd Klim(X × X)Q //

��

grd Klim(X)Q //

��

gr0 K(s)Q =Q

��

H 2d(X × X)`(d) //
OO

∼=

H 2d(X)`(d) // H 0(s)` =Q`

⊕
i Hom(H i (X)`, H i (X)`)
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where the first arrow in the lower row is the pullback by the diagonal. The left
square is clearly commutative and, by Proposition 2.4.9, the right square is commu-
tative. The image of fα ∈

⊕
i Hom(H i (X)`, H i (X)`) in Q` under the composition

of the bottom isomorphism and the lower row is Tr( fα). This gives a proof of the
trace formula.

3. Log motives

In this Section 3, let S be an fs log scheme and let ` be a prime number which is
invertible on S. We define and study the category of log (pure) motives.

3.1. The category of log motives. We define the category of log motives over S.

3.1.1. For a projective vertical log smooth fs log scheme X over S and for r ∈ Z,
consider the symbol h(X)(r).

Let

h(X)(r)` :=
⊕

m

H m(X)`(r), where H m(X)` = Rm f∗Q` (see 2.4.8)

with f : X→ S and with Rm f∗ for the log étale topology. This is a smooth Q`-sheaf
on the log étale site of S (see 2.1.2).

3.1.2. Let X and Y be projective vertical log smooth fs log schemes over a geo-
metric standard log point (2.1.11). Let r, s ∈ Z.

An element α of gri Klim(X×Y )Q with i = d+s−r , where d = dim(X) induces
a homomorphism h(X)(r)`→ h(Y )(s)` as follows.

Let β be the image of α under the Chern class map

gri Klim(X × Y )Q→ H 2i (X × Y )`(i).

Then for m, n ∈ Z such that m− 2r = n− 2s, we have the composition

H m(X)`(r)→ H m(X × Y )`(r)→ H m+2i (X × Y )`(r + i)

→ H m+2i−2d(Y )`(r + i − d)= H n(Y )`(s).

Here the first arrow is the pullback, the second arrow is the cup product with β,
the third arrow is the pushforward by the projection X × Y → Y . This gives a map
h(X)(r)`→ h(Y )(s)`.

3.1.3. Let X and Y be projective vertical log smooth fs log schemes over S and let
r, s ∈ Z.

By definition, a morphism f : h(X)(r) → h(Y )(s) is a homomorphism f :
h(X)(r)`→ h(Y )(s)` of Q`-sheaves such that for any geometric standard log point
p over S, the pullback h(X p)(r)`→ h(Yp)(s)` of f is induced by an element of
grd+s−r Klim(X p×p Yp)Q with d = dim(X p) in the above way.
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Proposition 3.1.4. (1) The identity morphism h(X)(r)` → h(X)(r)` is a mor-
phism h(X)(r)→ h(X)(r).

(2) More generally, for a morphism Y → X over S, the induced map h(X)(r)`→
h(Y )(r)` is a morphism h(X)(r)→ h(Y )(r).

Proof. We may and do assume that S is a geometric standard log point s. Let d be
the dimension of X .

We prove (1). Let Z = X × X (the fiber product over S = s) and consider
the fan 6 :=6Z associated to Z (2.2.16). By Proposition 2.3.12, there is a finite
subdivision 6′→ 6 such that X ′ := X ×6 6′→ 6′ and Z ′ := Z ×6 6′→ 6′

are strict. Hence the morphism X ′ → Z ′ is a strict closed immersion. Since a
strict closed immersion between log smooth schemes is a regular immersion as is
seen as in the classical case (see [Kato 1989, Proposition (3.10)]), this morphism
X ′→ Z ′ is a regular immersion. Consider the OZ ′-module OX ′ and its class [OX ′] ∈

grd K(Z ′)Q with d = dim(X). By Poincaré duality (Corollary 2.1.4) and by the
Künneth formula (Corollary 2.1.6), this class induces the identity map h(X)`(r)→
h(X)`(r).

Assertion (2) follows from (1). The homomorphism h(X)`(r)→ h(Y )`(r) as-
sociated to f is induced by an element of grd Klim(X × Y )Q with d = dim(X)
which is obtained from the above element of grd Klim(X × X)Q giving the identity
morphism, by pulling back by 1× f . �

3.1.5. The above Proposition 3.1.4 explains the reason why we must use Klim

(not just K ) in the definition of morphism of the category of log motives. For
a projective vertical log smooth fs log scheme X over a geometric standard log
point s, the diagonal X → X × X is usually not a regular immersion and cannot
define an element of K(X× X). We need a log modification Z→ X× X to have an
element of K(Z) corresponding to the diagonal, which gives the identity morphism
h(X)→ h(X).

Proposition 3.1.6. For morphisms

f : h(X1)(r1)→ h(X2)(r2) and g : h(X2)(r2)→ h(X3)(r3),

the composition g ◦ f : h(X1)(r1)→ h(X3)(r3) is a morphism.

Proof. We may assume that S is a geometric standard log point. If f is induced by
α ∈ gr Klim(X1×X2)Q and g is induced by α′ ∈ gr Klim(X2×X3)Q, g◦ f is induced
by the following element α′′ of gr Klim(X1×X3)Q. Let u ∈ gr Klim(X1×X2×X3)Q

be the product of the pullbacks of α and α′. Let (X1× X3)
′ be a log blow-up of

X1 × X3 having free M/O× (2.3.9), and let (X1 × X2 × X3)
′ be a log blow-up

of X1 × X2 × X3 having free M/O× such that u comes from an element v of
gr K((X1× X2× X3)

′)Q and such that we have a morphism (X1× X2× X3)
′
→
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(X1× X3)
′ which is compatible with the projection X1× X2× X3→ X1× X3. Let

α′′ be the pushforward of v by the morphism (X1× X2× X3)
′
→ (X1× X3)

′. Then
g ◦ f is induced by α′′ by Proposition 2.4.9. �

3.1.7. Imitating the definition of motives by Grothendieck, we define the category
LM(S) of log motives over S as the category of the symbols (h(X)(r), e), where e
is an idempotent in the endomorphism ring of h(X)(r). The set of morphisms is
defined as

Hom
(
(h(X1)(r1), e1), (h(X2)(r2), e2)

)
:= e2 ◦Hom(h(X1), h(X2)) ◦ e1 ⊂ Hom(h(X1), h(X2)).

The identity morphism of (h(X), e) is e.
The `-adic realization M` of the log motive M= (h(X), e) is defined to be eh(X)`.

3.1.8. In the case where the underlying scheme of S is Spec(k) for a field k,
there is a natural functor from the category of motives over k modulo homo-
logical equivalence defined by Grothendieck to our category LM(S) sending the
motive defined by a projective smooth scheme X over k to the log motive de-
fined by X endowed with the pullback log structure from S. This is because
CHr (X × Y )Q = grr K(X × Y )Q.

Further, when the log structure of S is trivial, this functor is an equivalence. This
is because, in this case, we have grr K(X × Y )Q = grr Klim(X × Y )Q.

3.1.9. For a morphism S′→ S of fs log schemes, we have the evident pullback
functor LM(S)→ LM(S′).

3.1.10. For a két morphism p′→ p of standard log points whose underlying ex-
tension of fields is Galois, we have

HomLM(p)(h(X)(r), h(Y ))(s))
∼=
−→ HomLM(p′)(h(X ′)(r), h(Y ′)(s))G,

where X ′ and Y ′ are the base-changed objects from X and Y , r, s ∈ Z, and ( ·)G

denotes the G-invariant part for G = Autp(p′).

3.2. Basic things.

3.2.1. Direct sums and direct products exist in LM(S), and they coincide.
In fact, we have h(X)⊕ h(Y ) := h

(
X
∐

Y
)
, and if r ≤ s, h(X)(r)⊕ h(Y )(s)=(

h
(
(X × Pn)

∐
Y
)
(s), e

)
for n ≥ s− r and for some e.

Conjecture 3.2.2. For a projective vertical log smooth fs log scheme X of relative
dimension d over S, h(X) has a decomposition

h(X)= h0(X)⊕ h1(X)⊕ · · ·⊕ h2d(X)

in the category LM(S) of log motives such that hi (X)` = H i (X)`.
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Note that such a decomposition is unique if it exists.

3.2.3. We have the following: h(Pn) =
⊕n

i=0 h2i (Pn). Canonically, h2i (Pn) ∼=

Q(−i) for 0≤ i ≤ n. Here Q= h(S).

3.2.4. We define the category LMspl(S) as follows. For a projective vertical log
smooth fs log scheme X over S and for m, r ∈ Z, consider the symbol hm(X)(r).

For projective vertical log smooth fs log schemes X and Y over S and for
m, n, r, s ∈ Z, a morphism h : hm(X)(r)→ hn(Y )(s) means a homomorphism
H m(X)`(r)→ H n(Y )`(s) of smooth Q`-sheaves on S satisfying the following
condition. If m − 2r 6= n − 2s, then h = 0. If m − 2r = n − 2s, then for any
geometric standard log point p over S, the pullback of h to p comes from an
element of grd+s−r Klim(X p×p Yp), where d = dim(X0).

An object of LMspl(S) is (hm(X)(r), e), where X is a projective vertical log
smooth fs log scheme over S, m, r ∈ Z, and e is an idempotent of the ring of
endomorphism of hm(X)(r). Morphisms are defined like the case of LM(S).

3.2.5. Similarly to the case of LM(S) (3.2.1), direct sums exist in LMspl(S). We
have a functor

LM(S)→ LMspl(S), h(X)(r) 7→
⊕

m

hm(X)(r).

Conjecture 3.2.2 is that this functor is an equivalence of categories.

3.2.6. Tensor products are defined in LM(S) as follows:

(h(X)(r), e)⊗ (h(X ′)(s), e′) := (h(X × X ′)(r + s), e⊗ e′).

For a log motive M over S, the Tate twist M(−r) (r ≥ 0) is identified with
M ⊗ h2r (Pn) with n ≥ r .

3.2.7. Compared with LM(S), a disadvantage of the category LMspl(S) is that the
tensor products cannot be defined.

3.2.8. Duals are defined in LM(S) as follows:

(h(X)(r), e)∗ = (h(X)(d − r), e(d − 2r)),

where d is the relative dimension of X over S.
Note that, by Poincaré duality (Corollary 2.1.4), any morphism h(X)(r) →

h(Y )(s) induces a homomorphism (h(Y )(s)∗)`→ (h(X)(r)∗)` of Q`-sheaves. We
can easily check that this homomorphism gives a morphism

h(Y )(s)∗ = h(Y )(d ′− s)→ h(X)(d − r)= h(X)(r)∗

of motives, where d ′ is the relative dimension of Y over S by using the same
elements of gri Klim(X p×p Yp)Q, where p is a geometric standard log point over
S and i = d + s− r = d ′+ (d − r)− (d ′− s).
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3.2.9. Let X be a projective vertical log smooth fs log scheme over S. We conjec-
ture that, for any morphism s→ S from a standard log point associated to some
finite field and for each m ∈ Z, the filtration (the monodromy filtration) on the
stalk over s of H m(X)` determined by the monodromy operator coincides with the
Frobenius weight filtration. We call this the monodromy-weight conjecture for X .

Proposition 3.2.10. Let X and Y be projective vertical log smooth fs log schemes
over S. Assuming the monodromy-weight conjecture for X and Y , we have the
following:

If m − 2r > n− 2s and if S is of finite type over Z, there is no nonzero
homomorphism H m(X)`(r)→ H n(Y )`(s).

Proof. This is reduced to the case where S is a standard log point associated to a
finite field k. Let w =m−2r , w′ = n−2s. The monodromy-weight conjecture as-
serts that as a finite-dimensional Q`-vector space with actions of Gal(k̄/k) and the
monodromy operator N , the stalk of H m(X)`(r) (resp. H n(Y )`(s)) is isomorphic
to a direct sum of subobjects Q (resp. R) being isomorphic to Symi H 1(E)`⊗ V ,
where the action of Gal(k̄/k) on V is of weight w− i (resp. w′− i) and the action
of N on V is trivial. Hence, it is enough to show that there is no nonzero Q`-
linear map Q→ R which is compatible with the actions of Gal(k̄/k) and N . Let
Q→ R be such a map. For any nonzero element x ∈ R of weight u ≥w′, we have
N u−w′(x) 6= 0. But as a Q`-vector space with an action of N , Q is generated by
an element y of weight u ≥ w such that N u−w+1(y) = 0. The image x of this y
in R is of weight u ≥ w′ and N u−w′(x) = 0 because u−w′ ≥ u−w+ 1. Hence
x = 0. Therefore the map Q→ R is the zero map. �

Remark 3.2.11. On the other hand, a nontrivial homomorphism H m(X)`(r)→
H n(Y )`(s) can exist even if m− 2r < n− 2s and even if S is of finite type over Z.
In fact, let S be a standard log point, X = S, and Y the log Tate curve. Then we
have an exact sequence 0→Q`→ H 1(Y )`→Q`(−1)→ 0. Hence a nontrivial
homomorphism H 0(X)`→ H 1(Y )` exists.

3.2.12. For an X strict semistable over a standard log point, H 1(XZar,Mgp
X /O

×

X )=0
because Mgp

X /O
×

X
∼= p∗Z, where p : X ′→ X is a normalization, is a flasque sheaf,

which implies that Pic (X)= H 1(XZar,O×X )→ H 1(XZar,Mgp
X ) is surjective. Hence

by 2.3.14, we have:

Let X, Y be projective vertical log smooth fs log schemes over an fs log
scheme S. Then an element of H 1((X × Y )Zar,Mgp

X×Y ) gives a homo-
morphism h(X)(r)→ h(Y )(r + 1− d), where r ∈ Z and d is the relative
dimension of X over S.

To see this, it is enough to show that the induced homomorphism h(X)(r)` →
h(Y )(r+1−d)` comes from an element of the K-group after the base change to any
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geometric standard log point. We assume that the base S is a geometric standard log
point over a field k. Apply 2.3.14 to X×Y , and find a strict semistable X ′ over X×Y
after the base change by the morphism S′= (Spec k,N)→ S= (Spec k,N) induced
by the multiplication by n for some n ≥ 1. If n = 1, since Pic (X ′)= gr1 K(X ′), we
have a desired element of gr1 Klim(X ×Y )Q. For a general n, after the base change,
take a desired element a of gr1 Klim(X × Y ×S S′)Q. Then the 1/n times of Tr(a)
is a desired element.

3.3. Numerical equivalence.

Proposition 3.3.1. For any log motive M over S and for any morphism f :M→M ,
Tr( f ) ∈Q` belongs to Q. (Precisely speaking, Tr( f ) is a locally constant function
S→Q. It is constant if S is connected.)

Proof. We are reduced to the case where S is a geometric standard log point. Then
the result follows from the trace formula 2.4.11. �

Definition 3.3.2 (numerical equivalence). For objects M and M ′ of LM(S) and for
a morphism f : M→ M ′, we say that f is numerically equivalent to 0 if for any
morphism g : M ′→ M , we have Tr(g f )= 0, that is, Tr( f g)= 0. (Note that when
S is the spectrum of a field endowed with the trivial log structure, it coincides with
the usual definition; see [Jannsen 1992, Lemma 1].)

Morphisms f, g : M → M ′ are said to be numerically equivalent if f − g is
numerically equivalent to 0.

Lemma 3.3.3. Let ∼ be the numerical equivalence. Let f, g : M → N be mor-
phisms in LM(S). Assume f ∼ g. Then

(1) f h ∼ gh for any morphism h : L→ M from a log motive L over S.

(2) h f ∼ hg for any morphism h : N → L to a log motive L over S.

Proof. We may assume that g is 0.

(1) Let k : N → L be any morphism. Then Tr( f hk) = Tr( f (hk)) = 0. Hence
f h ∼ 0.

(2) Let k : L → M be any morphism. Then Tr(kh f ) = Tr((kh) f ) = 0. Hence
h f ∼ 0. �

3.3.4. By Lemma 3.3.3, we have the category LMnum(S) of log motives over S
modulo numerical equivalence.

Conjecture 3.3.5. In LM(S), f ∼ g implies f = g. That is, LM(S)= LMnum(S).

3.3.6. When S is a geometric standard log point, the category LMnum(S) is in-
dependent of the choice of `. This is a consequence of Proposition 3.3.1 since
in this case, the group Hom(h(X)(r), h(Y )(s)) is identified with a quotient of
grd+s−r Klim(X ×S Y )Q in the notation in 3.1.3.



ON LOG MOTIVES 763

3.4. Semisimplicity.

Theorem 3.4.1. (1) The category LMnum(S) is a semisimple abelian category.

(2) The category LM(S) is a semisimple abelian category if and only if the nu-
merical equivalence for morphisms of this category is trivial.

To prove this, we imitate the method of U. Jannsen [1992].

3.4.2. The following fact is known: A pseudoabelian category C is a semisimple
abelian category if the following (i) and (ii) are satisfied for any objects X and Y .

(i) Hom (X, Y ) is a Q-vector space, the composition of morphisms is bilinear,
and any idempotent of End (X) has a kernel.

(ii) End (X) is a finite-dimensional semisimple Q-algebra.

Lemma 3.4.3. Let F be a field, A, B finite-dimensional F-vector spaces, ( ·, ·) :
A× B→ F an F-bilinear map, F0 a subfield of F , A0 an F0-subspace of A, and
B0 an F0-subspace of B. Assume that A is generated by A0 over F , B is generated
by B0 over F , and (a, b) ∈ F0 for any a ∈ A0 and b ∈ B0. Let

K = {a ∈ A | (a, b)= 0 for any b ∈ B},

K0 = {a ∈ A0 | (a, b)= 0 for any b ∈ B0}.

Then:
F ⊗F0 A0/K0

∼=
−→ A/K .

In particular, A0/K0 is finite-dimensional over F0.

Proof. Take an F0-subspace A′0 of A0 such that F⊗F0 A′0
∼=
→ A and an F0-subspace

B ′0 of B0 such that F ⊗F0 B ′0
∼=
→ B. Then A′0 and B ′0 are finite-dimensional over F0.

Let K ′0= {a ∈ A′0 | (a, b)= 0 for any b ∈ B} = {a ∈ A′0 | (a, b)= 0 for any b ∈ B ′0}.
Let L ′0 = {b ∈ B ′0 | (a, b)= 0 for any a ∈ A} = {b ∈ B ′0 | (a, b)= 0 for any a ∈ A′0}.
The composition

A′0/K ′0→ A0/K0→ Hom(B ′0/L ′0, F0)

is an isomorphism and the two arrows here are injective. Hence we have

A′0/K ′0→ A0/K0 is an isomorphism. (?)

On the other hand, the paring A× B→ F is identified with F⊗F0 of the pairing
A′0× B ′0→ F0. Hence we have

F ⊗F0 A′0/K ′0→ A/K is an isomorphism. (??)

By (?) and (??), we have that F ⊗F0 A0/K0→ A/K is an isomorphism. �



764 TETSUSHI ITO, KAZUYA KATO, CHIKARA NAKAYAMA AND SAMPEI USUI

Lemma 3.4.4. Let F be a field of characteristic 0, V a finite-dimensional F-vector
space, and A an F-subalgebra of EndF (V ). Let J be the Jacobson radical of A,
that is, J is the largest nilpotent two-sided ideal of A. Let

I = {a ∈ A | Tr(ab)= 0 for any b ∈ A}.

Here Tr is the trace of an F-linear map V → V . Then I = J .

Proof. Let a ∈ J . Then for any b ∈ A, ab is nilpotent and hence Tr(ab) = 0.
Hence a ∈ I . Next we prove I ⊂ J . We may assume that F is algebraically
closed. It is sufficient to prove that all elements of I are nilpotent. Let a ∈ I . Let
(αi )1≤i≤n (n = dimF (V )) be the eigenvalues of a counted with multiplicity. We
have 0= Tr(an)=

∑n
i=1 α

n
i for any n ≥ 1. This proves that αi = 0 for all i . Hence

a is nilpotent. �

Lemma 3.4.5. Let F be a field of characteristic 0, V a finite-dimensional F-
vector space, A an F-subalgebra of EndF (V ), F0 a subfield of F , and A0 an
F0-subalgebra of A. Assume that A0 generates the F-vector space A and assume
that Tr(a)∈ F0 for any a ∈ A0. Let I0= {a ∈ A0 |Tr(ab)= 0 for any b ∈ A0}. Then
I0 is a two-sided ideal of A0, A0/I0 is a finite-dimensional semisimple F0-algebra,
and all elements of I0 are nilpotent.

Proof. The fact that I0 is a two-sided ideal of A0 is shown easily. Let

I = {a ∈ A | Tr(ab)= 0 for any b ∈ A}.

Then I is nilpotent and A/I is a semisimple algebra by Lemma 3.4.4. Hence all
elements of I0 are nilpotent. By Lemma 3.4.3, A0/I0 is finite-dimensional and
F ⊗F0 A0/I0 is isomorphic to A/I . Hence A0/I0 is semisimple. �

3.4.6. We prove Theorem 3.4.1(1). Let M be a log motive over S. In Lemma 3.4.5,
take F =Q`, F0 =Q, and let A be the Q`-subalgebra of EndQ`

(M`) generated by
A0 := EndLM(S)(M). Then the endomorphism ring of M in the category of log mo-
tives over S modulo numerical equivalence is A/I0, where I0 is as in Lemma 3.4.5.
By Lemma 3.4.5, A/I0 is a finite-dimensional semisimple Q-algebra. This proves
(1) of Theorem 3.4.1.

We prove Theorem 3.4.1(2). The if part follows from (1). We prove the only if
part. Let F =Q`, F0=Q, and A, A0, I0 be as in the proof of (1). By Lemma 3.4.5,
all elements of I0 are nilpotent. Assume that A0 is semisimple. Since I0 is a two-
sided ideal of A0 and all elements of I0 are nilpotent, we have I0 = 0. That is, the
numerical equivalence is trivial.

4. Log mixed motives

We define the category of log mixed motives.
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4.1. The category CS.

4.1.1. Let ` be a prime number. Let S be an fs log scheme over Z[1/`] of finite
type.

Let CS be the following category.

Objects:
(
F,W, (Xw)w∈Z, (Vw,1)w∈Z, (Vw,2)w∈Z, (ιw)w∈Z

)
.

Here F is a smooth Q`-sheaf on the log étale site of S. W is an increasing filtration
on F by smooth Q`-subsheaves. The Xw are projective vertical log smooth fs log
schemes over S. For each w ∈ Z, Vw,1 and Vw,2 are smooth Q`-subsheaves of⊕

r∈Z Hw+2r (Xw)`(r) such that Vw,1 ⊂ Vw,2. The ιw are isomorphisms grW
w F ∼=

Vw,2/Vw,1.
W is called the weight filtration.
A morphism(

F,W, (Xw)w∈Z, (Vw,1)w∈Z, (Vw,2)w∈Z, (ιw)w∈Z

)
→
(
F ′,W ′, (X ′w)w∈Z, (V ′w,1)w∈Z, (V ′w,2)w∈Z, (ι

′

w)w∈Z

)
in CS is a homomorphism of Q`-sheaves F → F ′ which respects the weight
filtrations such that for each w ∈ Z, the pullback of grW

w F → grW ′
w F ′ to any

geometric standard log point s over S is induced from the sum of morphisms
h(Xw ×S s)(r)→ h(X ′w ×S s)(r ′) for various r, r ′ ∈ Z which sends Vw,i to V ′w,i
over s for i = 1, 2.

4.1.2. The category CS has ⊕, kernels, and cokernels. Furthermore, ⊗, the dual,
and Tate twists are defined in CS . These are explained in 4.1.3–4.1.7.

4.1.3. We have(
F,W, (Xw)w∈Z, (Vw,1)w∈Z, (Vw,2)w∈Z, (ιw)w∈Z

)
⊕
(
F ′,W ′, (X ′w)w∈Z, (V ′w,1)w∈Z, (V ′w,2)w∈Z, (ι

′

w)w∈Z

)
=

(
F ⊕F ′,W ⊕W ′,

(
Xw

∐
X ′w
)
w∈Z

, (Vw,1⊕ V ′w,1)w∈Z, (Vw,2⊕ V ′w,2)w∈Z,

(ιw⊕ ι
′

w)w∈Z

)
.

4.1.4. The kernel of a morphism(
F,W, (Xw)w∈Z, (Vw,1)w∈Z, (Vw,2)w∈Z, (ιw)w∈Z

)
→
(
F ′,W ′, (X ′w)w∈Z, (V ′w,1)w∈Z, (V ′w,2)w∈Z, (ι

′

w)w∈Z

)
is
(
F ′′,W ′′, (X ′′w)w∈Z, (V ′′w,1)w∈Z, (V ′′w,2)w∈Z, (ι

′′
w)w∈Z

)
, where F ′′ is the kernel of

F→F ′, W ′′ is induced from W , X ′′w= Xw, V ′′w,2 is the kernel of Vw,2→V ′w,2/V ′w,1,
V ′′w,1 = V ′′w,2 ∩ Vw,1, and ι′′w is induced from ιw.
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4.1.5. The cokernel of the above morphism is(
F ′′,W ′′, (X ′′w)w∈Z, (V ′′w,1)w∈Z, (V ′′w,2)w∈Z, (ι

′′

w)w∈Z

)
,

where F ′′ is the cokernel of F→ F ′, W ′′ is induced from W ′, X ′′w = X ′w,

V ′′w,2 = V ′w,2+ Image(Vw,2), V ′′w,1 = V ′w,1+ Image(Vw,2),

and ι′′w is induced by ι′w.

4.1.6.(
F,W, (Xw)w∈Z, (Vw,1)w∈Z, (Vw,2)w∈Z, (ιw)w∈Z

)
⊗
(
F ′,W ′, (X ′w)w∈Z, (V ′w,1)w∈Z, (V ′w,2)w∈Z, (ι

′

w)w∈Z

)
is defined as (

F ′′,W ′′, (X ′′w)w∈Z, (V ′′w,1)w∈Z, (V ′′w,2)w∈Z, (ι
′′

w)w∈Z

)
,

where F ′′ =F⊗F ′, W ′′ is the convolution of W and W ′, X ′′w =
∐

i+ j=w X i × X ′j ,
V ′′w,2 =

⊕
i+ j=w Vi,2 ⊗ V ′j,2, V ′′w,1 =

⊕
i+ j=w(Vi,1 ⊗ V ′j,2 + Vi,2 ⊗ V ′j,1), ι

′′
w =⊕

i+ j=w ιi ⊗ ι
′

j .

4.1.7. The definition of the dual and the Tate twists are the evident ones.

4.2. The category of log mixed motives. Deligne [1971; 1974], showed how we
can obtain mixed Hodge structures of geometric origin basing on the theory of pure
Hodge structures. We imitate his method to formulate objects of CS of geometric
origin.

In this 4.2, S denotes an fs log scheme and ` denotes a prime number which is
invertible on S.

For an fs log scheme X over S, H m(X)(r)` denotes Rm f∗Q`(r), where f is
the morphism X→ S.

4.2.1. Consider (U, X, D), where X is a projective vertical log smooth fs log
scheme over S, D = (Dλ)λ∈3 is a finite family of Cartier divisors on X , and U is
the open subscheme of X defined as the complement of

⋃
λ∈3 Dλ in X satisfying

the following condition:

For any subset 3′ of 3, D3′ :=
⋂
λ∈3′ Dλ with the inverse image of the

log structure of X is log smooth over S, and of codimension ](3′) in X
at each point of it.

To describe a typical example, let X be a projective and strict semistable family
over a trait S = Spec A endowed with natural log structures. Let D = (Dλ)λ∈3 be
a finite family of Cartier divisors on X . Assume that strict étale locally on X , X
is strict étale over Spec(A[T1, . . . , Tn]/(T1 · · · Ti −π)), where i ≤ n, π is a prime
element of A and the log of X is given by T1, . . . , Ti , and that for some i ≤ j ≤ n,
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each of the Ti+1, . . . , T j gives some Dλ and the other Dλ are empty there. Then
these satisfy the above condition.

4.2.2. Let the notation and the assumptions be as in 4.2.1. For i ≥ 0, let D(i) be the
disjoint union of D3′ for all3′⊂3 such that ](3′)= i . In particular, D(0)

= X . For
i ≥ 0, we have a smooth Q`-sheaf H m(D(i))` on the log étale site of S (see 2.1.2).

4.2.3. Let the notation and the assumptions be as in 4.2.1. Endow U with the
inverse image of the log structure of X .

Then H m(U )` is a smooth Q`-sheaf on the log étale site of S and we have a
spectral sequence

E i, j
1 = H 2i+ j (D(−i))`(i)⇒ Em

∞
= H m(U )`

in the category of smooth Q`-sheaves. In fact, first, by relative purity in log étale
cohomology [Higashiyama and Kamiya 2017], we have a spectral sequence with
finite coefficients. By Proposition 2.1.1, the E1-terms of this spectral sequence
determines a smooth Q`-sheaves, which implies the above facts.

4.2.4. Consider a simplicial system (U•, X•, D•) of objects (U, X, D) of 4.2.1
(here we follow [Deligne 1974]). Let Hm(U•)` be the smooth Q`-sheaf on S
defined to be the m-th hypercohomology (relative to S) of the simplicial system.
The spectral sequence in 4.2.3 is generalized to the spectral sequence

E i, j
1 =

⊕
s≥0

H j−2s(D(s)
s+i )`(−s)⇒ Em

∞
= Hm(U•)`.

4.2.5. Let the notation be as in 4.2.4. Let m ∈ Z. We define an increasing filtration
W on Hm(U•)`, which we call the weight filtration, as the filtration defined by the
spectral sequence in 4.2.4.

4.2.6. If S is of finite type over Z[1/`], let Cmot
S be the full subcategory of CS

consisting of objects which are obtained from the following standard objects in
4.2.7 below by taking ⊕, kernels, cokernels, ⊗, the duals, and Tate twists.

4.2.7. In the above, a standard object means:

Consider (U•, X•, D•,m), where (U•, X•, D•) is as in 4.2.4 and m ∈ Z.
The associated standard object is as follows:

Let F = Hm(U•)` on S.
Let W be the filtration on Hm(U•)` defined by the spectral sequence in 4.2.5.

Then, for w ∈ Z, grW
w Hm(U•)` = V ′w,2/V ′w,1 for some Q`-subsheaves V ′w,1, V ′w,2

of
⊕

s≥0 Hw−2s(D(s)
s+m−w)`(−s) such that V ′w,1 ⊂ V ′w,2.

Let Xw =
⊔

s≥0 D(s)
s+m−w. Consider the natural projection⊕

r∈Z Hw+2r (Xw)`(r)→
⊕

s≥0 Hw−2s(D(s)
s+m−w)`(−s).
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For i = 1, 2, let Vw,i be the pullbacks of V ′w,i by this natural projection. Then we
have the isomorphism ιw : grW

w F ∼= Vw,2/Vw,1.

4.2.8. If S is affine and is the inverse limit of the Sλ which are of finite type over
Z[1/`], we define Cmot

S as the inductive limit of the categories Cmot
Sλ . This does not

depend on the choice of limits.

4.2.9. We define the category of log mixed motives LMM(S) over S as the Zariski
sheafification of the categories Cmot

S in 4.2.8. More precisely, to give a log mixed
motive M over S is to give an affine covering (Si )i∈I of S, objects Mi of Cmot

Si
,

affine coverings (Si jλ)λ of Si ∩ S j for each i, j ∈ I , and isomorphisms between the
restrictions of Mi and M j to each Si jλ which are compatible to each other. The
set of morphisms is similarly defined as the quotient of the set of compatible local
morphisms over affine open sets under an appropriate equivalence.

4.2.10. For a morphism S′→ S of fs log schemes, we have the pullback functor
LMM(S)→ LMM(S′).

4.2.11. We have a fully faithful functor

LMspl(S)→ LMM(S)

which sends H m(X)(r) to the object associated to (U•, X•, D•,m)(r) with X• de-
termined by X , U• = X•, D• empty.

4.2.12. If the log structure of S is trivial, we define the category MM(S) of mixed
motives to be the category of log mixed motives over S.

4.3. Justifications of our definition. Here we explain the reason why we think our
definition of log mixed motives is reasonable.

4.3.1. The reader may feel strange that in our definition of a morphism of log mixed
motives (4.1.1), we do not put much conditions other than the condition that its grW

is motivic, though it is usually impossible to take care of mixed objects by using
only pure objects.

We hope that the following Proposition 4.3.4 (resp. Proposition 4.3.5) justifies
our definition of log mixed motive (resp. of morphism of log mixed motives) in
4.2 (resp. 4.1.1).

We hope that if S is of finite type over Z and if we take the category of log mixed
motives over S and the category of smooth Q`-sheaves on the log étale site of S
as C1 and C2, respectively, the conditions in 4.3.2 below are satisfied. (Especially
we hope that the finiteness assumption on S assures that the condition (v) in 4.3.2
below is satisfied.)

4.3.2. Let C1 and C2 be abelian categories. Assume that we have exact subfunctors
Ww : C1→ C1 (w ∈ Z) of the identify functor C1→ C1 such that Ww ◦Ww = Ww
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and such that Ww′ ⊂ Ww if w′ ≤ w. Assume that we have a functor F : C1→ C2.
Assume that these satisfy the following six conditions.

(i) For each object M of C1, WwM = M if w� 0 and WwM = 0 if w� 0.

(ii) The functor F is exact.

(iii) Let w ∈ Z and let M and N be objects of C1. Assume that M and N are pure
of weight w (that is, WwM = M , Ww−1 M = 0, WwN = N , Ww−1 N = 0). Then
the canonical map HomC1(M, N )→ HomC2(F(M), F(N )) is injective.

(iv) Let w,w′ ∈ Z and assume w >w′. Let M and N be objects of C1 and assume
that M is pure of weight w and N is pure of weight w′. Then HomC1(M, N )= 0
and HomC2(F(M), F(N ))= 0.

(v) Let w,w′ ∈ Z and assume w ≥ w′. Let M and N be objects of C1 and assume
that M is pure of weight w and N is pure of weight w′. Then the canonical map
Ext1C1

(M, N )→ Ext1C2
(F(M), F(N )) is injective.

(vi) Let w ∈ Z. Then the full subcategory of C1 consisting of all objects which are
pure of weight w is semisimple.

Remark. By Proposition 3.2.10, Hom(F(M), F(N ))= 0 in the condition (iv) is
reasonable. (This is clearly reasonable if the log structure of S is trivial, but not
trivial otherwise.) Further, the condition (v) is related to Tate conjecture. In fact,
it means that an extension of motives splits if the `-adic realization splits; two
extensions are isomorphic if their `-adic realizations are isomorphic. These are
analogues of Tate conjectures.

Lemma 4.3.3. Let the notation and the assumptions be as in 4.3.2 and let M and
N be objects of C1.

(1) The morphism HomC1(M, N )→ HomC2(F(M), F(N )) is injective.

(2) If there is aw∈Z such that WwM = 0 and WwN = N , then HomC1(M, N )= 0,
HomC2(F(M), F(N ))= 0, and the map Ext1C1

(M, N )→Ext1C2
(F(M), F(N ))

is injective.

Proof. By the induction on the lengths of the weight filtrations of M and N together
with the assumptions (i) and (ii), both statements reduce to the case where M and
N are pure. Let w (resp. w′) be the weight of M (resp. N ).

(1) Ifw=w′ (resp.w>w′), (1) is by (iii) (resp. (iv)). Ifw<w′, HomC1(M, N )=0,
and (1) holds.

(2) Since w >w′, (iv) and (v) imply (2). �

Proposition 4.3.4. Let the notation and the assumptions be as in 4.3.2. Let M be
an object of C1 and let V be a subobject of F(M) in C2 such that for any w ∈ Z, the
subobject grW

w V := (V ∩F(WwM))/(V ∩F(Ww−1 M)) of F(grW
w M) is F(Nw) for
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some subobject Nw of grW
w M in C1. Then there is a unique subobject N of M in C1

such that V coincides with F(N ).

Proof. By downward induction on w, we may assume that Ww−1 M = 0 and that
if we denote V ∩ F(WwM) by V ′, the subobject V ′′ := V/V ′ of F(M/WwM)
coincides with F(N ′′) for some subobject N ′′ of M/WwM . By the assumption, the
subobject V ′ of F(WwM)= F(grW

w M) coincides with F(N ′) for some subobject
N ′ of WwM .

Let the exact sequence 0→ WwM → U → N ′′ → 0 be the pullback of the
exact sequence 0→ WwM → M → M/WwM → 0 by N ′′→ M/WwM . Then
class(F(U )) ∈ Ext1C2

(F(N ′′), F(WwM)) coincides with the image of class(V ) ∈
Ext1C2

(F(N ′′), F(N ′)) under the homomorphism

Ext1C2
(F(N ′′), F(N ′))→ Ext1C2

(F(N ′′), F(WwM))

induced by the morphism N ′→WwM .

Claim 4.3.4.1. There are an object N of C1 and an exact sequence

0→ N ′→ N → N ′′→ 0
such that

class(F(N )) ∈ Ext1C2
(F(N ′′), F(N ′)) and class(V ) ∈ Ext1C2

(F(N ′′)), F(N ′))

coincide.

We prove Claim 4.3.4.1. By the condition (vi) in 4.3.2 on semisimplicity, there
is a morphism WwM = grW

w M→ N ′ such that the composition N ′→WwM→ N ′

is the identity morphism. Let the exact sequence 0→ N ′→ N → N ′′→ 0 be
the pushforward of 0→ WwM → U → N ′′→ 0 under WwM → N ′. Then this
satisfies the condition in Claim 4.3.4.1.

Claim 4.3.4.2. class(U )∈Ext1C1
(N ′′,WwM) coincides with the image of class(N )∈

Ext1C1
(N ′′, N ′) under the homomorphism induced by N ′→WwM.

This follows from the injectivity of

Ext1C1
(N ′′,WwM)→ Ext1C2

(F(N ′′), F(WwM))

(Lemma 4.3.3) and the fact that class(F(U )) ∈ Ext1C2
(F(N ′′), F(WwM)) coincides

with the image of class(V ) ∈ Ext1C2
(F(N ′′), F(N ′)) under the homomorphism in-

duced by the morphism N ′→WwM .
By Claim 4.3.4.2, there is a morphism N → M such that the diagram

0 // N ′ //

��

N //

��

N ′′ //

��

0

0 // WwM // M // M/WwM // 0
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is commutative. This proves Proposition 4.3.4. �

Proposition 4.3.5. Let the notation and the assumptions be as in 4.3.2 (actually the
condition (vi) is not used for this proposition). Let M and N be objects of C1. Then
we have a bijection from HomC1(M, N ) to the set of pairs (h, (hw)w∈Z), where h
is a morphism F(M)→ F(N ) and hw is a morphism grW

w M→ grW
w N satisfying

the following conditions (i) and (ii).

(i) h sends F(WwM) to F(WwN ) for any w ∈ Z.

(ii) For any w ∈ Z, the morphism F(grW
w M)→ F(grW

w N ) induced by h coincides
with F(hw).

Proof. We first prove:

Claim 4.3.5.1. Let M and N be objects of C1. Let w ∈ Z. Then we have a bijection
from HomC1(M, N ) to the set of pairs (a, b), where a is a morphism WwM→WwN
and b is a morphism M/WwM→ N/WwN satisfying the following condition (∗).

(∗) The image of

class(M) ∈ Ext1C1
(M/WwM,WwM) in Ext1C1

(M/WwM,WwN )

under the map induced by a coincides with the image of

class(N ) ∈ Ext1C1
(N/WwN ,WwN ) in Ext1C1

(M/WwM,WwN )

under the map induced by b.

Proof of Claim 4.3.5.1. Let a : WwM→ WwN and b : M/WwM→ N/WwN be
morphisms. Let the exact sequence 0→ WwN → X → M/WwM → 0 be the
pushforward of 0→ WwM → M → M/WwM → 0 under a, and let the exact
sequence 0→ WwN → Y → M/WwM → 0 be the pullback of 0→ WwN →
N → N/WwN → 0 under b. Then the condition (∗) is that the extension classes
of X and Y coincide. On the other hand, a morphism M → N which induces
a and b corresponds bijectively to a morphism X → Y which induces identity
morphisms of WwN and M/WwM . By the first part of (2) of Lemma 4.3.3, we
have HomC1(M/WwM,WwN )= 0. Hence we have the bijection in Claim 4.3.5.1

�

We can prove similarly:

Claim 4.3.5.2. Let M and N be objects of C1. Let w ∈ Z. Then we have a bi-
jection from {h ∈ Hom(F(M), F(N )) | h(F(WwM)) ⊂ F(WwN )} to the set of
pairs (a, b), where a is a morphism F(WwM)→ F(WwN ) and b is a morphism
F(M/WwM)→ F(N/WwN ) satisfying the following condition (∗∗).
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(∗∗) The image of

class(F(M)) ∈ Ext1C2
(F(M/WwM), F(WwM))

in Ext1C2
F((WwM), F(WwN )) under the map induced by a coincides with the

image of

class(F(N )) ∈ Ext1C2
(F(N/WwN ), F(WwN ))

in Ext1C2
(F(M/WwM), F(WwN )) under the map induced by b.

Now we prove Proposition 4.3.5. By downward induction on w, we may as-
sume that there is a w ∈ Z such that Ww−1 M = M , Ww−1 N = N and such that
Proposition 4.3.5 is true if we replace M and N by M/WwM and N/WwN , re-
spectively. By Claims 4.3.5.1 and 4.3.5.2, we have a commutative diagram with
exact rows

0 // A //

��

B //

��

C

��

0 // A′ // B ′ // C ′

where

A = HomC1(M, N ), A′ = HomC2,W (F(M), F(N )),

B = HomC1(WwM,WwN )×HomC1(M/WwM, N/WwN ),

B ′ = HomC2(F(WwM), F(WwN ))×HomC2,W (F(M/WwM), F(N/WwN )),

C = Ext1C1
(M/WwM,WwN ), C ′ = Ext1C2

(F(M/WwM), F(WwN )).

Here HomC2,W means the set of homomorphisms of C2 which respect the filtra-
tions W . The vertical arrows are injective by Lemma 4.3.3. This proves

A
∼=
−→ {x ∈ A′ | the image of x in B ′ comes from B},

which proves Proposition 4.3.5 by downward induction on w. �

4.4. Main theorem.

4.4.1. Recall that the following (i) and (ii) are equivalent (Theorem 3.4.1(2)).

(i) In the category of log motives, homological equivalence (i.e., the trivial equiv-
alence) coincides with the numerical equivalence.

(ii) The category of log motives is a semisimple abelian category.

Theorem 4.4.2. (i) and (ii) are equivalent to the following (iii).

(iii) The category of log mixed motives is a Tannakian category [Saavedra Rivano
1972; Deligne 1990].
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4.4.3. We prove (ii) ⇒ (iii). It is sufficient to prove that a morphism f is an
isomorphism if it induces an isomorphism F→ F ′. By (ii), there is a morphism
h(X ′w)→ h(Xw) which induces the inverse map V ′w,2/V ′w,1→ Vw,2/Vw,1. Thus
the inverse map F ′→ F is a morphism of log mixed motives.

We prove (iii)⇒ (i). Let X be a projective vertical log smooth fs log scheme
over S. Consider a morphism f : h(X)→ h(X) which is numerically equivalent
to 0. We prove f =0. Let V1 be the kernel of f :h(X)`→h(X)` and let V2=h(X)`.
On the other hand, let V ′1 = 0 and V ′2 be the image of f : h(X)`→ h(X)`. Then
f induces an isomorphism f : V2/V1

∼=
→ V ′2/V ′1. By (iii), there is a morphism

g : h(X)→ h(X) which induces the inverse map V ′2/V ′1 → V2/V1. Then f g :
h(X)`→ h(X)` is a projection to V ′2. Hence Tr( f g)= dim(V ′2). Hence Tr( f g)= 0
implies V ′2 = 0 and hence f = 0.

4.4.4. One can consider the following unconditional variant of the above state-
ment (iii).

Let LMMnum(S) be the category of log mixed motives over S modulo numerical
equivalence. Here morphisms f, g : F→ F ′ of log mixed motives are said to be
numerically equivalent if gr( f ) and gr(g) are numerically equivalent. Then one
can ask if LMMnum(S) is a Tannakian category.

This is a mixed analogue of Theorem 3.4.1(1).

5. Formulation with various realizations

In Sections 3 and 4, we considered `-adic realizations of log mixed motives fixing
a prime number `. Here we consider various realizations.

5.1. Log motives and log mixed motives with many realizations.

5.1.1. Let R be the union of the set of all prime numbers and the set of three letters
{B, D, H}: B means Betti realization; D means de Rham realization; H means
Hodge realization.

Let S be an fs log scheme. Let R be a nonempty subset of R. If a prime number
` is contained in R, assume that S is over Z[1/`]. If B ∈ R, assume that S is
locally of finite type over C. If D ∈ R, assume that S is log smooth over a field of
characteristic 0 or S is a standard log point associated to a field of characteristic 0.
If H ∈ R, assume that S is log smooth over C or S is the standard log point
associated to C.

5.1.2. We define the categories

LMR(S), LMMR(S)

of log motives over S and of log mixed motives over S, respectively, with respect
to realizations in R.
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The definition of LMR(S) is similar to Section 3. For a projective vertical log
smooth fs log scheme f : X → S over S and for r ∈ Z, consider the symbol
h R(X)(r).

When a prime ` belongs to R, let

h R(X)(r)` :=
⊕

m

H m(X)`(r).

When B ∈ R, let

h R(X)(r)B :=
⊕

m

H m(X)B(r), where H m(X)B = Rm f log
∗ Q.

This is a locally constant sheaf of finite dimensional Q-vector spaces on Slog (see
Proposition 2.1.7).

When D ∈ R, let

h R(X)(r)D :=
⊕

m

H m(X)D(r), where H m(X)D = Rm fkét∗ω
·,két
X/S .

This is a locally free sheaf of Okét-modules of finite rank with a quasinilpotent inte-
grable connection with log poles on Skét (see Propositions 2.1.14(1) and 2.1.17(1)).

When H ∈ R, let

h R(X)(r)H :=
⊕

m

H m(X)H (r), where H m(X)H = Rm fkét∗ω
·,két
X/S

endowed with the natural log Hodge structures. This is a log mixed Hodge structure
on Skét (see Propositions 2.1.14(2) and 2.1.17(2)).

A morphism h R(X)(r)→ h R(Y )(s) is defined as a family of morphisms be-
tween realizations for each element of R satisfying, for any geometric standard
log point p over S, the pull-backed morphism is induced by a common element
of gr of the K-group. Note that we do not impose any comparison isomorphism
between different realizations. The rest is the same as in 3.1, and we have the
category LMR(S). Here we use the Poincaré duality (Proposition 2.1.8) and the
Künneth formula (Proposition 2.1.10) in log Betti cohomology, which implies the
necessary corresponding theorems in log de Rham and log Hodge theory via log
Riemann–Hilbert correspondence [Illusie et al. 2005, Theorem (6.2)]. We also use
the Riemann–Roch theorems.

5.1.3. The definition of LMMR(S) is also similar to the case where R consists of
one prime. We first define CS,R as follows.

First, for an R consisting of one prime `, CS,R is CS in 4.1.1.
Second, for R = {B}, we define CS,R as the following category.

Objects:
(
F,W, (Xw)w∈Z, (Vw,1)w∈Z, (Vw,2)w∈Z, (ιw)w∈Z

)
.
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Here F is a locally constant sheaf of finite dimensional Q-vector spaces on Slog
an .

The W is an increasing filtration on F by locally constant Q-subsheaves. The Xw
is a projective vertical log smooth fs log scheme over S. For each w ∈ Z, Vw,1
and Vw,2 are locally constant Q-subsheaves of

⊕
r∈Z Hw+2r (Xw)B(r) such that

Vw,1 ⊂ Vw,2. The ιw is an isomorphism grW
w F ∼= Vw,2/Vw,1.

A morphism(
F,W, (Xw)w∈Z, (Vw,1)w∈Z, (Vw,2)w∈Z, (ιw)w∈Z

)
→
(
F ′,W ′, (X ′w)w∈Z, (V ′w,1)w∈Z, (V ′w,2)w∈Z, (ι

′

w)w∈Z

)
is a homomorphism of Q-sheaves F → F ′ which respects the weight filtrations
such that for each w ∈ Z, the pullback of grW

w F → grW ′
w F ′ to any geometric

standard log point s associated to C over S is induced from the sum of morphisms
h{B}(Xw ×S s)(r)→ h{B}(X ′w ×S s)(r ′) for various r, r ′ which sends Vw,i to V ′w,i
over s for i = 1, 2.

Third, for R = {D}, we define CS,R as the following category.

Objects:
(
F,W, (Xw)w∈Z, (Vw,1)w∈Z, (Vw,2)w∈Z, (ιw)w∈Z

)
.

Here F is a locally free OSkét-modules of finite rank endowed with a quasinilpotent
integrable connection with log poles. The W is an increasing filtration on F by
locally free OSkét-submodules with the compatible connections such that the graded
quotients are also locally free. The Xw is a projective vertical log smooth fs log
scheme over S. For each w ∈ Z, Vw,1 and Vw,2 are locally free OSkét-submodules
with the compatible connections of

⊕
r∈Z Hw+2r (Xw)D(r) such that Vw,1 ⊂ Vw,2.

The ιw is an isomorphism grW
w F ∼= Vw,2/Vw,1.

A morphism(
F,W, (Xw)w∈Z, (Vw,1)w∈Z, (Vw,2)w∈Z, (ιw)w∈Z

)
→
(
F ′,W ′, (X ′w)w∈Z, (V ′w,1)w∈Z, (V ′w,2)w∈Z, (ι

′

w)w∈Z

)
is a homomorphism of OSkét-modules F→ F ′ which respects the weight filtrations
such that for each w ∈ Z, the pullback of grW

w F → grW ′
w F ′ to any geometric

standard log point s over S is induced from the sum of morphisms

h{D}(Xw×S s)(r)→ h{D}(X ′w×S s)(r ′)

for various r, r ′ which sends Vw,i to V ′w,i over s for i = 1, 2.
Fourth, for R = {H}, we define CS,R as the following category.

Objects:
(
F,W, (Xw)w∈Z, (Vw,1)w∈Z, (Vw,2)w∈Z, (ιw)w∈Z

)
.

Here (F,W ) is a log mixed Hodge structure on Skét. The Xw is a projective vertical
log smooth fs log scheme over S. For each w ∈ Z, Vw,1 and Vw,2 are sub-log
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Hodge structures of
⊕

r∈Z Hw+2r (Xw)H (r) such that Vw,1 ⊂ Vw,2. The ιw is an
isomorphism grW

w F ∼= Vw,2/Vw,1.
A morphism(

F,W, (Xw)w∈Z, (Vw,1)w∈Z, (Vw,2)w∈Z, (ιw)w∈Z

)
→
(
F ′,W ′, (X ′w)w∈Z, (V ′w,1)w∈Z, (V ′w,2)w∈Z, (ι

′

w)w∈Z

)
is a homomorphism of log mixed Hodge structures (F,W )→ (F ′,W ′) such that
for each w ∈ Z, the pullback of grW

w F → grW ′
w F ′ to any standard log point s

associated to C over S is induced from the sum of morphisms h{H}(Xw×S s)(r)→
h{H}(X ′w×S s)(r ′) for various r, r ′ which sends Vw,i to V ′w,i over s for i = 1, 2.

Lastly, for any R, we define CS,R as follows.

Objects: (Yρ)ρ∈R , where Yρ is an object of CS,{ρ}, satisfying the condition that for
any w ∈ Z, the Xw of Yρ is common.

A morphism (Yρ)ρ∈R→ (Y ′ρ)ρ∈R is ( fρ)ρ∈R , where fρ : Yρ→ Y ′ρ is a morphism
of CS,{ρ}, satisfying the condition that for any w, r, r ′ ∈ Z and any s → S, the
element of gr of the K-group inducing the morphism

hρ(Xw×S s)(r)→ hρ(X ′w×S s)(r ′)
is common.

Note that in this definition, we do not impose any comparison isomorphism
between different realizations.

5.1.4. We define Cmot
S,R ⊂ CS,R and LMMR(S) imitating 4.2. Here the objects asso-

ciated to standard objects for B, D, and H are defined by virtue of Propositions
2.1.7, 2.1.14, and 2.1.17.

5.2. Conjectures and results. We state the conjecture that our categories LMR(S)
and LMMR(S) are independent of the choices of the family R of realizations. We
also state Tate conjecture and Hodge conjecture. For the latter, we explain in
Section 6 that they hold in a simple case. In there, we use the theories of log
abelian varieties and log Jacobian varieties.

Conjecture 5.2.1. Let R′ be a nonempty subset of R. Then the restriction of
realizations give an equivalence of categories

LMR(S)
'
−→ LMR′(S), LMMR(S)

'
−→ LMMR′(S).

Theorem 5.2.2. The following (i)–(iii) are equivalent.
(i) In the category LMR(S), homological equivalence (i.e., the trivial equiva-

lence) coincides with the numerical equivalence.

(ii) The category LMR(S) is a semisimple abelian category.

(iii) The category LMMR(S) is a Tannakian category.
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Proof. Similar to Theorems 3.4.1(2) and 4.4.2. �

For ρ ∈ R, we denote the realization for ρ of M ∈ LMM(S) by Mρ .

Conjecture 5.2.3 (Tate conjecture for log mixed motives). Assume that ` is invert-
ible over S. Assume that either one of the following (i) and (ii) is satisfied.

(i) S is of finite type over some field which is finitely generated over the prime
field.

(ii) S is of finite type over Z.

Then for any objects M and N of LMM{`}(S), we have

Q`⊗Hom(M, N )
∼=
−→ HomW (M`, N`).

Here the right-hand-side denotes the set of homomorphisms of Q`-sheaves which
respect the weight filtrations.

Remark. If either the log structure of S is trivial or M and N are pure, “W ” on
the right-hand-side in this conjecture can be eliminated (for the weight filtrations
are automatically respected).

Conjecture 5.2.4 (the second Tate conjecture). Assume that S is of finite type
over Q and let M, N be objects of LMM{`,B}(S). Then we have a bijection from
Hom(M, N ) to the set of all pairs (a, b), where a is a morphism M`→ N`, and b
is a homomorphism MB→ NB defined on (S⊗C)

log
an , such that the pullback of a

on (S⊗C)
log
an is induced from b (see Proposition 2.1.12).

5.2.5. The above second Tate conjecture follows from Tate conjecture. In fact,
in Q` ⊗ Hom(M, N )→ Q` ⊗ {(a, b)} → Hom(M`, N`), the composition is an
isomorphism if Tate conjecture is true and the second map is an injection.

Conjecture 5.2.6 (Hodge conjecture for log mixed motives). Assume that S is log
smooth over C or is the standard log point over C. Let M and N be objects of
LMM{H}(S). Then we have

Hom(M, N )
∼=
−→ Hom(MH , NH ).

By Proposition 2.1.18, the Conjecture 5.2.6 is reduced to the case where S is
the standard log point associated to C.

6. Examples

6.1. Log abelian varieties. This 6.1 and 6.2 are preparations for 6.3 and 6.4. In
this 6.1, we review the theory of log abelian varieties [Kajiwara et al. 2008b] and
supply some results. See [Nakayama 2017a] for a survey of the theory. We only
consider log abelian varieties over a standard log point, for we need only this case
in 6.3 and 6.4.
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6.1.1. For an fs log scheme S, let (fs /S) be the category of fs log schemes over S,
and let (fs /S)ét be the site (fs /S) endowed with the classical étale topology. A log
abelian variety over S is a sheaf of abelian groups on (fs /S)ét satisfying certain
conditions. If s is the standard log point associated to a field k, a log abelian variety
over s is described as in 6.1.2–6.1.5 below.

6.1.2. Let Gm,log be the sheaf U 7→ 0(U,Mgp
U ) on (fs /s)ét.

For a semiabelian variety G over k with the exact sequence 0→ T → G →
B→ 0, where T is a torus over k and B is an abelian variety over k, let G log be the
pushout of G← T → Hom(X (T ), Gm,log) in the category of sheaves of abelian
groups on (fs /s)ét. Here X (T ) := Hom(T, Gm) is the character group of T . We
have G ⊂ G log.

Let M1 be the category of systems (0,G, h), where 0 is a locally constant sheaf
of free Z-modules of finite rank on (fs /s)ét, G is a semiabelian variety over k, and
h is a homomorphism 0→ G log.

An object of M1 was called a log 1-motif in [Kajiwara et al. 2008b].

6.1.3. For an object (0,G, h) of M1 with T the torus part of G, we have the
Z-bilinear paring

〈·,·〉 : X (T )×0→ Z

(called the monodromy pairing) defined as follows. The map h induces 0 →
G log→ G log/G ∼= Tlog/T and hence X (T )×0→ X (T )× Tlog/T → Gm,log/Gm .
Since Gm,log/Gm restricted to the small étale site of the underlying scheme Spec(k)
of s is Z, we have the above monodromy pairing.

6.1.4. Let E = (0,G, h) be an object of M1. The dual E∗ = (0∗,G∗, h∗) of E
is an object of M1 defined as in [Kajiwara et al. 2008b]. We have 0∗ = X (T ),
the torus part T ∗ of G∗ is Hom(0, Gm), and the abelian variety G∗/T ∗ is the dual
abelian variety B∗ of B = G/T .

Let E = (0,G, h) be an object of M1.
A polarization on E is a homomorphism p : E→ E∗ satisfying the following

conditions (i)–(iv).

(i) The homomorphism B→ B∗ induced by p is a polarization of the abelian
variety B.

(ii) The homomorphism 0⊗Q→ 0∗⊗Q induced by p is an isomorphism.

(iii) The pairing 0 × 0→ Z, (a, b) 7→ 〈p(a), b〉 is a positive definite symmet-
ric bilinear form, where 〈·,·〉 denotes the monodromy pairing (6.1.3) and p
denotes the homomorphism 0→ 0∗ = X (T ) induced by p.

(iv) The homomorphism Tlog→ (T ∗)log induced by p comes from

T → T ∗ =Hom(0, Gm)



ON LOG MOTIVES 779

which is dual to the homomorphism 0→ 0∗ = X (T ) induced by p.

Let M0 be the full subcategory of M1 consisting of objects which have polar-
izations after base change to k̄.

6.1.5. For an object (0,G, h) of M1, we have a subgroup sheaf G(0)
log of G log

containing G and h(0) defined as in [Kajiwara et al. 2008b].
A log abelian variety over s is a sheaf of abelian groups A on (fs /s)ét such that

A = G(0)
log /h(0) for some object (0,G, h) of M0. Let LAV(s) be the category of

log abelian varieties over s. We have an equivalence of categories

M0 −→
∼ LAV(s), (0,G, h) 7→ G(0)

log /h(0)

by [Kajiwara et al. 2008b, Theorem 3.4] (see [loc. cit., Proposition 4.5 and Theo-
rem 4.6(2)]).

6.1.6. Let E be an object of M0 and let A be the corresponding log abelian variety.
Then the log abelian variety A∗ corresponding to the dual E∗ of E is called the
dual log abelian variety of A. We have an embedding A∗ ⊂ Ext1(A, Gm,log). A
polarization of A gives a homomorphism A→ A∗.

6.1.7. For an additive category C, let C ⊗Q be the following category. Objects
of C ⊗Q are the same as those of C. For objects E, E ′ of C, HomC⊗Q(E, E ′) =
HomC(E, E ′)⊗Q.

6.1.8. The category M1 ⊗Q is an abelian category as is seen easily. M0 ⊗Q

is stable in M1⊗Q under taking kernels, cokernels, and direct sums (see [Zhao
2017]), and hence, it is an abelian category. Hence LAV(s)⊗Q is an abelian
category.

6.1.9. Let A be a log abelian variety over s corresponding to an object (0,G, h)
of M0. Let ` be a prime number which is different from the characteristic of k.
Then the `-adic Tate module T`A is defined in the natural way as a smooth Z`-sheaf
on the log étale site of s (see [Kajiwara et al. 2015, 18.9]). Let V`A =Q`⊗ T`A.

We have an exact sequence 0→ T`G → T`A→ 0 ⊗ Z` → 0 (see [loc. cit.,
18.10]).

We have T`(A∗)=Hom(T`A,Z`(1)).
If T is the torus part of G, the monodromy operator N : T`A → T`A(−1)

coincides with the composition T`A→ 0⊗Z`→ T`T (−1)→ T`A(−1), where
the second arrow 0⊗ Z`→ T`T (−1) = Hom(X (T ),Z`) is the map induced by
the monodromy pairing 〈·,·〉 : X (T )×0→ Z (6.1.3).

6.1.10. Let A be a polarizable log abelian variety over s. Fix a polarization p :
A→ A∗. Then p is an isomorphism in LAV(s)⊗Q. For f ∈ EndLAV(s)⊗Q(A), let
f ] := p−1 f ∗ p ∈ EndLAV(s)⊗Q(A), where f ∗ : A∗→ A∗ is the dual of f .
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Proposition 6.1.11. Let A and p be as above and let f ∈ EndLAV(s)⊗Q(A), f 6= 0.
Then Tr( f f ]) > 0. Here Tr is the trace of the induced Q`-linear map V`A→ V`A.

Proof. Let E = (0,G, h) be an object of M0 corresponding to A, let T be the
torus part of G, and let B = G/T be the quotient abelian variety of G. Let f0, f ]0 :
0 ⊗Q`→ 0 ⊗Q`, f1, f ]1 : V`B → V`B, and f2, f ]2 : V`T → V`T be the map
induced by f , f ], respectively. Then

Tr( f f ])=
2∑

i=0

Tr( fi f ]i ).

By the usual theory of abelian varieties, Tr( f1 f ]1 )≥ 0 and it is nonzero if f1 6= 0.
Tr( f0 f ]0 ) ≥ 0 and this is nonzero if f0 6= 0, for we have a positive definite sym-
metric form. We have Tr( f2 f ]2 )≥ 0 and it is nonzero if f2 6= 0 by duality. Hence
Tr( f f ]) ≥ 0 and this is nonzero unless f0 = f1 = f2 = 0. If f0 = f1 = f2 = 0,
f = 0 because any homomorphism B→ T is zero. �

Corollary 6.1.12. The category LAV(s)⊗Q is semisimple.

Proof. This is deduced from the above proposition by the arguments in 3.4. �

6.1.13. Let A be a log abelian variety over s. Assume k = C. Then we have the
polarizable log Hodge structure over s of weight −1 corresponding to A [Kaji-
wara et al. 2008a], which we denote by H1(A)H . The underlying locally constant
sheaf of finite-dimensional Q-vector spaces on the topological space slog

an (which
is homeomorphic to a circle S1) will be denoted by H1(A)B . If (0,G, h) denotes
the object of M0 corresponding to A, we have an exact sequence

0→H1(G,Z)→ H1(A)B→ 0→ 0.

Proposition 6.1.14. Let A1 and A2 be log abelian varieties over s.

(1) If k is finitely generated over a prime field, we have

Z`⊗Z Hom(A1, A2)
∼=
−→ Hom(T`A1, T`A2).

(2) If k is a subfield of C which is finitely generated over Q, we have a bijection
from Hom(A1, A2) to the set of pairs (a, b), where a is a homomorphism
T`A1→ T`A2 and b is a homomorphism H1(A1)B→ H1(A2)B on (s⊗k C)log

such that the pullback of a on (s⊗k C)log is induced by b.

(3) If k = C, Hom(A1, A2)
∼=
−→ Hom(H1(A1)H , H1(A2)H ).

Proof. For an object E = (0,G, h) of M1, define the filtration W on E by WwE =
E for w ≥ 0, W−1 E = (0,G, 0), W−2 E = (0, T, 0) with T the torus part of G, and
WwE = 0 for w ≤−3. Then grW

0 E = (0, 0, 0), grW
−1 E = (0, B, 0), where B is the

abelian variety G/T , grW
−2 E = (0, T, 0), and grW

w E = 0 for w 6= 0,−1,−2. Let
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C1 =M1 ⊗Q and let C2 be the category of smooth Q`-sheaves on the log étale
site of s. Then (1) and (2) follow from the Tate conjecture on homomorphisms of
abelian varieties proved by Faltings [1983] and from the injectivity of G(k)⊗Q→

H 1(k, V`G) for a semiabelian variety G over k, by the method of 4.3.
Assertion (3) follows from [Kajiwara et al. 2008a]. �

6.2. Log Jacobian varieties. We review the theory of log Jacobian varieties of log
curves over a standard log point in [Kajiwara 1993], and supply some results. In
this subsection and the next, we omit some details of proofs, which will be treated
in a forthcoming paper.

6.2.1. Let s be the standard log point associated to a field k. Let X be a projective
vertical log smooth connected curve over s which is strict semistable, whose double
points are rational and whose components are geometrically irreducible.

Then we have a log abelian variety over s associated to X called the log Jacobian
variety of X . We will denote it by J .

This J is essentially constructed by Kajiwara [1993]. We explain his construc-
tion below in 6.2.4.

This J has the following properties 6.2.2 and 6.2.3.

6.2.2. Let H1(X,Mgp) be the sheafification of the presheaf U 7→ H 1(X×s U,Mgp)

on (fs /s)ét. We have a degree map H1(X,Mgp) → Z. Let H1(X,Mgp)0 ⊂

H1(X,Mgp) be the kernel of the degree map. Then J is a subgroup sheaf of
H1(X,Mgp)0.

6.2.3. Let E = (0,G, h) be the object of M0 corresponding to J , let T be the
torus part of G, and let B = G/T be the quotient abelian variety of G. Then 0, T ,
B are described as follows.

Let 0 be the first homology group of the graph of X as usual, that is, 0 =
Ker

(⊕
I1

Z→
⊕

I0
Z
)
, where I0 is the set of generic points of X , and I1 is the

set of singular points of X . Hom (T, Gm)= Hom(0,Z). B =
∏
ν∈I0

JD(ν), where
D(ν) is the closure of ν in X which is a projective smooth curve over k and JD(ν)

is the Jacobian variety of D(ν). We have a canonical isomorphism J ∼= J ∗ (see
6.2.7) which induces the evident isomorphisms 0 ∼= 0∗, T ∼= T ∗ and B ∼= B∗.

6.2.4. We explain the construction of J , which is essentially due to Kajiwara. For
simplicity, we assume that k is algebraically closed. By [Kajiwara 1993, (2.18)],
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we have a commutative diagram

0

��

0

��

0

��

0

��

G log

��

H1(X,Mgp)

0 //
⊕

I1
Z //

��

P log
X/s

//

��

H1(X,Mgp) //

��

0

0 //
⊕

I0
Z

��

⊕
I0

Z // 0

Z

with exact rows and columns, where G = Ker(H1(X, Gm)→
⊕

I0
Z), and P log

X/s is
defined in [Kajiwara 1993]. This diagram yields a log 1-motif (0,G, h :0→G log)

and the degree map H1(X,Mgp)→ Z whose kernel H1(X,Mgp)0 ∼= G log/h(0)
contains G(0)

log /h(0). The last sheaf is J .

6.2.5. Let Y := X ×s X . We have a Mgp
Y -torsor on Y called the Poincaré torsor,

defined as follows.
Let U = Y r

⋃
x∈I1

({x} × {x}). Let M ′U be the pushout over the trivial log
structure on U of the log structure MY |U and the log structure consisting of the
sections of OU which are invertible outside the diagonal X in Y . Let M ′Y be the
unique fs log structure on Y whose restriction to U coincides with M ′U . (See the
following local description for the existence of such an fs log structure.) We have
Mgp

Y ⊂ (M
′

Y )
gp. There is a unique global section t of (M ′Y )

gp/Mgp
Y having the

following property: Let π be a generator of the log structure of s. At any singular
point x of X , let f1, g1 be generators of the log of the left X in X ×s X around x
such that f1g1 = π , and let f2, g2 be the copies of them for the right X in X ×s X .
Let f1− f2 be the section of M ′Y around {x}× {x} which is f1− f2 on the locus
{g1 = g2 = 0}, which is f1 on the locus {g1 = f2 = 0}, which is − f2 on the locus
{ f1 = g2 = 0}, and which is (−πg−1

1 g−1
2 )(g1 − g2) on the locus { f1 = f2 = 0}.

Define g1−g2 similarly. Then, we have g1−g2= (−π f −1
1 f −1

2 )( f1− f2) in (M ′Y )
gp

and −π f −1
1 f −1

2 ∈ Mgp
Y . The desired t coincides around {x} × {x} with the class

of f1 − f2 which is also the class of g1 − g2. Note that the ideal of OY which
defines the diagonal is generated around {x}× {x} by the image of f1− f2 and by
the image of g1− g2.
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Let the Poincaré torsor be the inverse image of t−1 in (M ′Y )
gp under (M ′Y )

gp
→

(M ′Y )
gp/Mgp

Y . This is an Mgp
Y -torsor.

If X is a projective smooth curve over k endowed with the pullback log structure
from s, this Poincaré torsor comes from the usual Poincaré Gm-torsor.

6.2.6. We have a morphism ϕ : X →H1(X,Mgp) which sends x to the pullback
of the Poincaré torsor (6.2.5) with respect to X→ X × X , y 7→ (x, y).

If b is a morphism s→ X over s, we have a canonical morphism

ϕb : X→ J ⊂H1(X,Mgp), x 7→ ϕ(x)−ϕ(b)

called the log Albanese mapping associated to b.

6.2.7 (Self-duality of the log Jacobian). Let b and ϕb be as above. Then the pulling
back via ϕb gives an isomorphism

Ext1(J, Gm,log)
∼=
−→H1(X,Mgp)0,

which is independent of the choice of b. Hence the subgroup sheaf J of H1(X,Mgp)0

is regarded as a subgroup sheaf of Ext1(J, Gm,log). Via this, J is identified with the
dual log abelian variety J ∗ of J . Since this isomorphism J ∼= J ∗ does not depend
on b, it is defined canonically even if there is no b.

Proposition 6.2.8. Let b : s→ X be a morphism over s. Let A be any log abelian
variety over s. Then the map

Hom(J, A)→Mor(X, A), h 7→ h ◦ϕb

is bijective.

Proof. The inverse map is given as follows. Let f : X→ A be a morphism. Then
we have A∗→ Ext1(A, Gm,log)→ H1(X,Mgp)0, where the second arrow is the
pullback by f . This induces A∗→ J . Taking the dual log abelian varieties, we
have J → A. �

6.2.9. Let ` be a prime number which is invertible in k. Then we have canonical
isomorphisms

V` J ∼= H 1(X)`(1)∼=Hom(H 1(X)`,Q`).

6.3. Examples I. This subsection Examples I is for the pure case. Section 6.4,
Examples II, is for the mixed case.

The following is a part of Conjecture 3.2.2.

Proposition 6.3.1. Let X be a projective vertical log smooth curve over an fs log
scheme S. Then h(X)= h0(X)⊕ h1(X)⊕ h2(X).
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Proof. It is enough to show that for i = 0, 1, 2, the composite of the i-th projection
and the i-th inclusion

h(X)` =
2⊕

j=0

H j (X)`→ H i (X)`→
2⊕

j=0

H j (X)` = h(X)`

comes from an element of K-group ⊗Q after pulling back to any geometric stan-
dard log point. So we may assume that S is a geometric standard log point over a
field k. It is enough to show it for i = 0, 2. By the duality, the case i = 2 is reduced
to i = 0. We prove the case i = 0. If there is a section S → X , the composite
for i = 0 coincides with h(X)`→ h(S)`→ h(X)` and induced by an element of
K-group. In the general case, there is a section after Kummer log flat localization
of the base [Nakayama 2009, Proposition 4.1], so we have the desired element a
of K-group after the base change by (Spec k, n : N→ N) for some n ≥ 1. Then
the 1/n times of Tr(a) is a desired element. �

Proposition 6.3.2. Assume that S is the standard log point over C. Let X be a
connected projective strict semistable curve over S. Then the Hodge conjecture
5.2.6 for Hom(Q, h2(X)(1)) is true.

Proof. Assume that we are given a homomorphism h :Q→ H 2(X)B(1). By invari-
ant cycle theorem, this comes from the classical Betti cohomology H 2(Xan,Q(1)).
Since h(1) belongs to Fil1 H 2(X)H , it vanishes in H 2(X,OX ). Hence it comes
from the kernel of H 2(Xan,Q(1))→ H 2(X,OX ). By the exponential sequence
0→ Z(1)→OXan →O×Xan

→ 0, it comes from Pic(X)⊗Q. �

The next proposition will be proved in a forthcoming paper.

Proposition 6.3.3. Let s be a geometric standard log point of characteristic 6= `.
For i = 1, 2, let X i be a projective vertical log smooth curve over s which is strict
semistable, and let Ji be the log Jacobian variety of X i . For a homomorphism
h : H 1(X1)`→ H 1(X2)`, the following two conditions (i) and (ii) are equivalent.

(i) h is a morphism H 1(X1)→ H 1(X2) of log motives over s.

(ii) h comes from a morphism J1→ J2 in LAV(s) (via the isomorphisms in 6.2.9,
H 1(X i )`(1)∼= V` Ji ).

Proposition 6.3.4. Let X and Y be projective vertical log smooth curves over an
fs log scheme S whose geometric fibers are connected.

(1) Assume that S is the standard log point over C and that X and Y are strict
semistable over S. Then the Hodge conjecture 5.2.6 for Hom(h(X), h(Y )) is
true.

(2) Assume that S is of finite type over Q. Then the second Tate conjecture 5.2.4
for Hom(h(X), h(Y )) is true.
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(3) Assume that S is a standard log point associated to a finitely generated field
over a prime field whose characteristic is different from a prime number `.
Then the Tate conjecture 5.2.3 for Hom(h(X), h(Y )) is true.

(4) For f, g ∈ Hom(h(X), h(Y )), if f and g are numerically equivalent, then
f = g.

(5) The endomorphism ring of h(X) is a finite-dimensional semisimple algebra
over Q.

Proof. By 2.3.14, Proposition 2.1.9 and `-adic log proper base change theorem
[Kajiwara and Nakayama 2008, Proposition 5.1] (see [loc. cit., Remark 5.1.1]),
we may assume that S is a standard log point and X and Y are strict semistable
and that their double points are rational and their components are geometrically
irreducible. Let J and J ′ be the log Jacobian variety of X and Y , respectively. By
Propositions 6.3.1, 6.3.3, and the method of 4.3, we can identify Hom(h(X), h(Y ))
with HomLAV(S)⊗Q(J, J ′). Then we reduce to the results in 6.1. �

6.4. Examples II.

6.4.1. Let X be a projective vertical log smooth curve over an fs log scheme S. Let
n≥ 1 and s1, . . . , sn : S→ X be strict morphisms over S such that si (S)∩s j (S)=∅
if i 6= j . Let D :=

⋃n
i=1 si (S) and let U := X r D.

We will denote the log mixed motive corresponding to the standard object asso-
ciated to (U, X, D, 1) over S by H 1(U ).

Let 0=Ker(sum :Zn
→Z). We have W0 M =M , W−2 M = 0, W−1 M = H 1(X),

grW
0 M = 0⊗Q(−1), where M = H 1(U ).
The spectral sequence as in 4.2.4 for each realization degenerates at E2.

6.4.2. Let the notation be as in 6.4.1.
If S is over Z[1/`], we have an exact sequence

(1) 0→ H 1(X)`→ H 1(U )`→ 0⊗Q`(−1)→ 0

of Q`-sheaves.
If S is either log smooth over C or the standard log point associated to C, we

have an exact sequence

(2) 0→ H 1(X)H → H 1(U )H → 0⊗Q(−1)→ 0

of log mixed Hodge structures over S.
Assume that S is a standard log point associated to a field k, and assume that X

is connected and strict semistable and that their double points are rational and their
components are geometrically irreducible. Let J be the log Jacobian variety of X .
Then (si )i induces a homomorphism ψ := ϕ ◦ (si )i : 0→ J by the log Albanese
mapping ϕ (6.2.6).
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Note that for any log abelian variety A over S, we have a canonical homomor-
phism

(3) A(S)⊗Q→ Ext1(Q`, V`A)

by Kummer theory, which is injective if k is finitely generated over a prime field.
If k = C, we have also a canonical injective map

(4) A(S)→ Ext1(Z, H1(A)H ).

We have:

(5) Under the homomorphism Hom(0, J )→ Ext1(0⊗Q`, V` J ) induced by (3)
(applied to the log abelian variety A =Hom(0, J )), the extension class of (1)
coincides with the image of ψ : 0→ J .

(6) If k = C, under the homomorphism Hom(0, J )→ Ext1(0, H1(J )H ) induced
by (4), the extension class of (2) coincides with the image of ψ : 0→ J .

Proposition 6.4.3. Let U1, U2 be objects as U in 6.4.1.

(1) Assume that S is the standard log point over C and that X1 and X2 are
connected and strict semistable. Then for Hom(H 1(U1), H 1(U2)) the Hodge
conjecture 5.2.6 is true.

(2) Assume that S is of finite type over Q. Then the second Tate conjecture 5.2.4
for Hom(H 1(U1), H 1(U2)) is true.

(3) Assume that S is the standard log point associated to a finitely generated field
over a prime field whose characteristic is different from a prime number `.
Then the Tate conjecture 5.2.3 for Hom(H 1(U1), H 1(U2)) is true.

Proof. Similarly as in Proposition 6.3.4, we may assume that S is a standard log
point and X i are connected and strict semistable and that their double points are
rational and their components are geometrically irreducible. For i = 1, 2, let Ji be
the log Jacobian variety of X i . By (5) in 6.4.2, by the injectivity of the map (3) in
6.4.2, and by Proposition 6.3.3, the method of 4.3 shows that:

(∗) The set of morphisms H 1(U1)→ H 1(U2) is identified with the set of pairs
(a, b), where a is a homomorphism 01⊗Q→ 02⊗Q and b is a morphism
J1→ J2 in LAV(s)⊗Q such that ψ2 ◦ a = b ◦ψ1.

Hence by (5) in 6.4.2, by the injectivity of the map (3) in 6.4.2, and by this (∗),
the method of 4.3 proves (2) and (3). Similarly, by (6) in 6.4.2, by the injectivity
of the map (4) in 6.4.2, and by (∗), the method of 4.3 proves (1). �
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