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Abstract
A simplified trisection is a trisection map on a 4–manifold such that, in its critical value set,

there is no double point and cusps only appear in triples on innermost fold circles. We give a
necessary and sufficient condition for a 3–tuple of systems of simple closed curves in a surface
to be a diagram of a simplified trisection in terms of mapping class groups. As an application
of this criterion, we show that trisections of spun 4–manifolds due to Meier are diffeomorphic
(as trisections) to simplified ones. Baykur and Saeki recently gave an algorithmic construction
of a simplified trisection from a directed broken Lefschetz fibration. We also give an algorithm
to obtain a diagram of a simplified trisection derived from their construction.

1. Introduction

1. Introduction
A trisection, due to Gay and Kirby [9], is a decomposition of a 4–manifold into three

4-dimensional handlebodies, which can be considered as a 4–dimensional counterpart of a
Heegaard splitting of a 3–manifold. Indeed, we can obtain a 4–manifold with a trisection
from a 3–tuple of systems of simple closed curves in a closed surface, which is called a
trisection diagram, as we can obtain a 3–manifold with a Heegaard splitting from a Heegaard
diagram. On the other hand, we can also obtain a trisection of a 4–manifold from a stable
map to the plane with a specific configuration of the critical value set (see Figure 2), which
we will call a trisection map (or a trisection for simplicity).

In studying smooth maps from 4–manifolds to surfaces with stable and Lefschetz singu-
larities, Baykur and Saeki [6] introduced simplified trisections, which are trisection maps
such that in their critical value sets, there are no double points and cusps only appear in
triples on innermost fold circles (see Figure 3 for the critical value set of a simplified trisec-
tion). They further gave an algorithm to obtain simplified trisections from directed broken
Lefschetz fibrations, which implies the existence of a simplified trisection for an arbitrary
4–manifold. In this paper, relying on the theory of mapping class groups of surfaces, we
study trisection diagrams associated with simplified trisections.

We first discuss when a 3–tuple of (ordered) systems of simple closed curves is a dia-
gram associated with a simplified trisection in terms of mapping class groups. Since the
critical value set of a simplified trisection is nested circles with cusps (see Figure 3), we can
take a monodromy along a loop between each consecutive pair of components in the critical
value set. We will simultaneously give an algorithm to determine such a monodromy from
curves in a diagram of a simplified trisection, and a necessary and sufficient condition for
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18 K. Hayano

a given 3–tuple of systems of curves to be a diagram associated with a simplified trisection
(Theorem 3.4 and Lemma 3.5). Note that, strictly speaking, these results do not directly
explain relation between simplified trisections and their diagrams: the curves ai, b j, c j in
Theorem 3.4 are not curves in a trisection diagram, but vanishing cycles of indefinite folds
of a simplified trisection (see the second paragraph of Section 3). We will clarify relation
between the vanishing cycles in Theorem 3.4 and curves in a diagram of a simplified tri-
section (Proposition 3.1). As an application of the results, we will show that trisections
of spun 4–manifolds constructed by Meier [13] are diffeomorphic to simplified trisections
(Theorem 3.7). We will also classify simplified trisections with genus 2 using Theorem 3.4
(Theorem 3.9). This classification can also be obtained as merely a corollary of the classi-
fication of genus–2 trisections given in [14], in which the authors relied on deep results on
genus–2 Heegaard splittings of S 3, while we will reduce the classification to linear algebraic
problems, which is easy to solve.

By analyzing how vanishing cycles are changed in algorithmic construction of simplified
trisections from broken Lefschetz fibrations given in [6], we next give an algorithm to obtain
trisection diagrams from vanishing cycles of broken Lefschetz fibrations. In the analysis of
vanishing cycles, we will be faced with problems concerning how parallel transports are
affected by homotopies of stable maps called R2–moves, which change the critical value
sets like the Reidemeister move of type II. We will solve such problems by making use of
the results by the author [12], which completely describe the effect of R2–moves on parallel
transports (and thus that on vanishing cycles) in terms of mapping class groups. Lastly
we will apply the algorithm to genus–1 simplified broken Lefschetz fibrations, resulting in
diagrams associated with simplified trisections on S 4, the connected sum of S 1 × S 3 and
an S 2–bundle over S 2, and manifolds Ln and L′n due to Pao [15] (Example 4.6). Using
the diagram obtained there, we will verify that a simplified (3, 1)–trisection on S 4 obtained
from a genus–1 simplified broken Lefschetz fibration is diffeomorphic to the stabilization
of the (0, 0)–trisection of S 4 (Figure 20 explicitly gives sequences of handle-slides between
diagrams corresponding to the two trisections).

2. Preliminaries

2. Preliminaries
Throughout the paper, we will assume that any manifold is smooth, connected, compact

and oriented unless otherwise noted. We will describe the image of definite (resp. indefinite)
folds by red (resp. black) curves with co-orientations as shown in Figures 1(1) and 1(2). As
shown in Figure 1(3), we will describe the image of a Lefschetz singularity by a cross. Note
that these conventions are the same as those in [6].

2.1. Mapping class groups and monodromies along indefinite folds.
2.1. Mapping class groups and monodromies along indefinite folds. Let Σ be a sur-

face, V1, . . . ,Vk ⊂ Σ discrete subsets, and c1, . . . , cl simple closed curves. We denote the set
of orientation preserving diffeomorphisms fixing V1, . . . ,Vk setwise by Diff+(Σ; V1, . . . ,Vk),
and we put

Mod(Σ; V1, . . . ,Vk)(c1, . . . , cl) =
{
[ϕ] ∈ π0

(
Diff+(Σ; V1, . . . ,Vk)

)∣∣∣ϕ(ci) = ci (i = 1, . . . , l)
}
.

We endow it with a group structure by compositions of representatives. Let Σci be a surface
obtained by applying surgery along ci (i.e. attaching two disks to Σ\ν(ci), where ν(ci) ⊂ Σ is
a tubular neighborhood of ci), and v0, v

′
0 ∈ Σci the centers of the disks. We define a (pointed)
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Fig.1. Fibers around critical values.

surgery homomorphism

Φ∗ci
: Mod(Σ; V1, . . . ,Vk)(c1, . . . , cl)→ Mod(Σci ; {v0, v

′
0},V1, . . . ,Vk)(c1, . . . , ci−1, ci+1, . . . , cl)

as follows. For an element ϕ ∈ Diff+(Σ; V1, . . . ,Vk), we first modify ϕ by an isotopy so that it
preserves ν(ci). Let ϕ̃ : Σci → Σci be an extension of the diffeomorphism ϕ|Σ\ν(ci) preserving
the set {v0, v

′
0}. We then put Φ∗ci

([ϕ]) = [ϕ̃]. It is known that the map Φ∗ci
is well-defined and

the kernel of Φ∗ci
is generated by the Dehn twist tci (for the proof, see [4, Lemma 3.1]∗, for

example). We put Φci = Fv0,v
′
0
◦ Φ∗ci

, which is also called a surgery homomorphism, where
Fv0,v

′
0

is the forgetting map.
Let f : X → Σ be a smooth map on a 4–manifold to a surface and  ⊂ Crit( f ) be a

circle consisting of indefinite folds. Assume that the restriction f | is embedding and the
complement ν( f ()) \ f (), where ν( f ()) is a tubular neighborhood of f (), does not
contain any critical values of f . The complement ν( f ()) \ f () has two components. We
take two points p0, q0 from each of the components. Let α and β be loops in ν( f ()) \
f () based at p0 and q0, respectively, such that these curves represent the same element in
H1(ν( f ());Z). We take an oriented simple path γ ⊂ ν( f ()) from p0 to q0 intersecting
with f () on one point transversely. Assume that the orientation of γ coincides with the
co-orientation of f () at the intersection. The arc γ gives rise to a vanishing cycle c ⊂
Σ = f −1(p0) and an identification of f −1(q0) with Σc. It is known that the monodromy
μ ∈ Mod(Σ) along α is contained in Mod(Σ)(c) and, under the identification above, the
monodromy along β is equal to Φc(μ) (see [3, 4]).

2.2. Trisections of 4–manifolds.
2.2. Trisections of 4–manifolds. Let X be a closed 4–manifold. A decomposition X =

X1 ∪ X2 ∪ X3 is called a (g, k)–trisection if
• for each i = 1, 2, 3, there is a diffeomorphism φi : Xi → 	k(S 1 × D3), and
• for each i = 1, 2, 3, taking indices mod 3, φi(Xi∩Xi+1) = Y−k,g and φi(Xi∩Xi−1) = Y+k,g,

where ∂
(
	k(S 1 × D3)

)
= �k(S 1×S 2) = Y+k,g∪Y−k,g is a Heegaard splitting of �k(S 1×S 2)

obtained by stabilizing the standard genus–k Heegaard splitting g − k times.
A stable map f : X → R2 is called a (g, k)–trisection map if its critical value set is as
shown in Figure 2, where each of the three white boxes, called a Cerf box of f , consists
of a Cerf graphic without cusps and definite folds (i.e. it consists of indefinite fold images
with transverse double points but without “radial tangencies”). A trisection map f is said

∗The authors merely dealt with the case k = 0 and l = 1 in [4], yet the proof there works for general cases.
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to be simplified if its Cerf boxes do not contain double points. Note that, by the definition
of a simplified trisection, cusps of it only appear in triples on innermost fold circles (see
Figure 3). Let α, β, γ be g–tuples of simple closed curves in Σg. A tuple (Σg;α, β, γ) is called

Fig.2. The critical value set of a trisection map.

a (g, k)–trisection diagram if each of the tuples (Σg;α, β), (Σg; β, γ) and (Σg; γ, α) is a genus–
g Heegaard diagram of �k(S 1 × S 2). In this paper we will mainly focus on trisection maps
and diagrams. For this reason, we will sometimes call trisection maps just trisections for
simplicity.

From a (g, k)–trisection map f : X → R2, we can obtain a trisection of X and a trisection
diagram as follows. The three dotted segments in Figure 2 decomposes the image of f into
three regions D1,D2 and D3. The decomposition X = X1 ∪ X2 ∪ X3 is a (g, k)–trisection
of X, where Xi = f −1(Di). Furthermore, by taking vanishing cycles of f with respect to
the three dotted segments in Figure 2, we can obtain a three g–tuples α = (α1, . . . , αg), β =
(β1, . . . , βg), γ = (γ1, . . . , γg) of simple closed curves in f −1(p0) � Σg. The tuple (Σg;α, β, γ)
is a (g, k)–trisection diagram.

Conversely, for a (g, k)–trisection diagram (Σg;α, β, γ) (or a (g, k)–trisection of X), there
exists a (g, k)–trisection map f : X → R2 such that the corresponding diagram obtained in
the procedure above is (Σg;α, β, γ). Note that the diffeomorphism type of X is uniquely de-
termined from the diagram (Σg;α, β, γ), while a trisection map f is not uniquely determined
(there are many choices of Cerf boxes, for example).

Two trisections X = X1 ∪ X2 ∪ X3 and X′ = X′1 ∪ X′2 ∪ X′3 are said to be diffeomorphic
if there exists an orientation preserving diffeomorphism Φ : X → X′ sending Xi to X′i . It is
known that two trisections of the same manifold become diffeomorphic after stabilizing each
trisection several times (for the definition of stabilization and the proof of this statement, see
[9]). Since any two handle decompositions of a genus–g handlebody with one 0–handle
and g 1–handles are related by handle-slides, two trisections are diffeomorphic if and only
if the corresponding diagrams are related by orientation preserving self-diffeomorphisms of
Σg and handle-slides, which are slides of α– (resp. β– and γ–) curves over α– (resp. β– and
γ–) curves.
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3. Description of simplified trisections via mapping class groups

3. Description of simplified trisections via mapping class groups
As we briefly reviewed in Section 2.2, three g–tuples α, β, γ of simple closed curves in

Σg is a (g, k)–trisection diagram if and only if each two of the tuples is a genus–g Heegaard
diagram of �k(S 1 × S 2). In this section, after observing relation between diagrams and
vanishing cycles of simplified trisections (Proposition 3.1), we will give a necessary and
sufficient condition for systems of simple closed curves to be vanishing cycles of a simplified
(g, k)–trisection in terms of mapping class groups. Making use of this condition, we will then
show that trisections of spun 4–manifolds constructed by Meier [13] are diffeomorphic to
simplified ones (Theorem 3.7). We will also give an elementary proof (without relying on
the more general result in [14]) of the classification of simplified trisections with genus 2
(Theorem 3.9).

Let f : X → R2 be a simplified (g, k)–trisection. We take reference paths in R2 as shown
by dotted segments in Figure 3. We denote the fiber on the center by Σ. Let ai, bi, ci ⊂ Σ
be vanishing cycles of the i–th innermost indefinite fold circle associated with the reference
paths in Figure 3. In what follows, the vanishing cycles are assumed to be in general po-
sition. Note that ai, bi and ci are unique up to isotopies and handle-slides over a1, . . . , ai−1.
Following the observation in [6, Remark 7.2], we call such handle-slides upper-triangular
handle-slides.

Fig.3. Reference paths for a simplified (g, k)–trisection.

Proposition 3.1. We can obtain a trisection diagram (Σ;α, β, γ) associated with f by
taking αi, βi, γi as follows:

• for each i = 1, . . . , g, αi = ai,
• for each j = 1, . . . , g − k, β j (resp. γ j) is a curve obtained by applying upper-

triangular handle-slides to b j (resp. c j) so that the resulting curve is disjoint from
the curves b1, . . . , b j−1 (resp. c1, . . . , c j−1),
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• for each l = g − k + 1, . . . , g, βl (resp. γl) is a curve obtained by applying upper-
triangular handle-slides to al so that the resulting curve is disjoint from b1, . . . , bl−1

(resp. c1, . . . , cl−1),

Conversely, let (Σ;α′, β′, γ′) be a trisection diagram associated with a simplified (g, k)–
trisection f ′ and a′i , b

′
j, c
′
j (i = 1, . . . , g, j = 1, . . . , g − k) vanishing cycles associated with

the reference paths in Figure 3. Then the followings hold up to upper-triangular handle-
slides:

• for each i = 1, . . . , g, a′i = α
′
i ,

• for each j = 1, . . . , g − k, b′j (resp. c′j) is equal to a curve obtained by applying
upper-triangular handle-slides to β′j (resp. γ′j) so that the resulting curve is disjoint
from the curves β′1, . . . , β

′
j−1 (resp. γ′1, . . . , γ

′
j−1),

• for each l = g − k + 1, . . . , g, α′l = β
′
l = γ

′
l .

Proposition 3.1 can be deduced immediately from the following lemma:

Lemma 3.2. Let d1, d2, d3, d4 be vanishing cycles associated with the corresponding ref-
erence paths around two consecutive cusps as shown in Figure 4(1). The curve d4 is isotopic
to t−1

td1 (d2)(d3). In particular d3 and d4 are isotopic if d3 is disjoint from d2.

Fig.4. Reference paths around two consecutive cusps.

Remark 3.3. Since d1 and d2 intersect on one point, we can always make d3 disjoint from
d2 by applying handle-slides over d1.

Proof of Lemma 3.2. Applying unsink to the left cusp in Figure 4(1), we obtain a new
map whose critical value set is shown in Figure 4(2). The curve d3 is isotopic to a vanishing
cycle associated with the red reference path in Figure 4(2). Thus, d3 is sent to d4 by the
Dehn twist along the curve td1 (d2). �

We are now ready for giving a criterion for a system of simple closed curves to be a
diagram of a simplified trisection, in terms of the corresponding vanishing cycles.

Theorem 3.4. Vanishing cycles a1, . . . , ag, b1, . . . , bg−k, c1, . . . , cg−k of a simplified (g, k)–
trisection taken as above satisfy the following conditions:

(1) the curves bi and ci intersect with ai on one point for each i = 2, . . . , g − k,
(2) for any i ∈ {0, . . . , g − k − 1}, c′i+1 = μ−1

i (ci+1) intersects bi+1 on one point, where
Σa1,...,ai = (Σa1,...,ai−1 )ai and μi ∈ Mod(Σa1,...,ai) is inductively defined as

μi =

⎧⎪⎪⎨⎪⎪⎩
[idΣ] (i = 0)

Φai(ttci ai ◦ μi−1 ◦ ttbi c
′
i
◦ ttai bi) (i > 0).
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(Note that ttci ai ◦ μi−1 ◦ ttbi c
′
i
◦ ttai bi preserves ai if c′i intersects bi on one point. In

particular the condition for i makes sense if that for i − 1 holds.)
(3) for any j ∈ {g − k, . . . , g − 1}, Φa j ◦ · · · ◦ Φag−k+1 (μg−k) preserves a j+1.

Conversely, for three sequences of curves {a1, . . . , ag}, {b1, . . . , bg−k}, {c1, . . . , cg−k} satisfying
the conditions above (such that bi and ci are disjoint from a1, . . . , ai−1), there exists a sim-
plified (g, k)–trisection f ′ : X′ → R2 whose vanishing cycles associated with the reference
paths in Figure 3 are a1, . . . , ag, b1, . . . , bg−k, c1, . . . , cg−k.

We will obtain vanishing cycles of several simplified trisections in the next section. For ex-
ample, the red and blue curves in Figure 18(2) (which are a1, a2, a3 and b1, b2, respectively)
and the green curves labeled with 1 and 2 in Figure 19(3) (which are c1, c2) are vanishing
cycles of a simplified trisection on S 4. We can easily check that these curves satisfy the
conditions in Theorem 3.4.

We need the following lemma to prove Theorem 3.4.

Lemma 3.5. The mapping class μi defined in Theorem 3.4 is the monodromy along a
loop (with counterclockwise orientation) obtained by pushing the i–th innermost circle to
the inside of it.

Proof. We prove the lemma by induction on i. The statement is obvious for i = 0. Assume
that the lemma holds for i = j−1, where j ≤ g− k−1. The curve c′i = μ

−1
i−1(ci) is a vanishing

cycle of f associated with the reference path shown in Figure 5(1). We apply unsinks to the

Fig.5. Reference paths for (1) vanishing cycles ai, bi, ci, c′i and (2) a mon-
odromy ttci ai ◦ μi−1 ◦ ttbi c

′
i
◦ ttai bi .

three cusps on the i–th innermost fold circles. The critical value set of the resulting map is
shown in Figure 5(2). Vanishing cycles of the three Lefschetz singularities are respectively
equal to tai(bi), tbi(c

′
i) and tci(ai). Thus the monodromy along the dotted curve in Figure 5(2)

is equal to ttci ai ◦ μi−1 ◦ ttbi c
′
i
◦ ttai bi . The statement then follows from the observation in

Section 2.1. Lastly, the statement for μ j with j ≥ g − k also follows from the observation in
Section 2.1, together with the induction hypothesis. �

Proof of Theorem 3.4. Let a1, . . . , ag, b1, . . . , bg−k, c1, . . . , cg−k be vanishing cycles of
a simplified (g, k)–trisection taken as above. The condition (1) holds since two vanishing
cycles of indefinite folds around a cusp intersect on one point, while the conditions (2) and
(3) immediately follow from Lemma 3.5.
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In order to prove the latter part of Theorem 3.4, suppose that three systems of curves
(a1, . . . , ag), (b1, . . . , bg−k), (c1, . . . , cg−k) satisfy the conditions in the theorem. The condition
(1) guarantees existence of a map f1 : X1 → R2, where X1 is a 4–manifold with boundary,
such that the critical value set of f1 is the same as that in the complement of the shaded
region in Figure 3 and it has the desired vanishing cycles a1, . . . , ag, b1, . . . , bg−k, c1 . . . , cg−k.
We can inductively see that the condition (2) (together with Lemma 3.5) guarantees that
we can attach g − k cusps in the shaded region to f1, and the condition (3) (together with
Lemma 3.5) further guarantees that the resulting map can be extended to the all of the shaded
region. �

For applications of Theorem 3.4, we need to describe the monodromy μi+1 of a simplified
trisection as a product of Dehn twists under the assumption that the inner monodromy μi is
trivial:

Lemma 3.6. Let f : X → R2 be a simplified trisection. Suppose that the monodromy μi

obtained as in Theorem 3.4 is trivial. We denote Σa1,...,ai by Σ and ai+1 (resp. bi+1, ci+1) by a
(resp. b, c) for simplicity.

(1) A regular neighborhood of a ∪ b ∪ c is a genus–1 surface with three boundary compo-
nents.

(2) The monodromy μi+1 is t2
δ1

t2
δ3

t−1
δ2

if we can take orientations of a, b and c so that the
algebraic intersections a · b, b · c and c · a are all equal to 1 (Figure 6(1)), and is equal
to t−2

δ1
t−2
δ3

tδ2 otherwise (Figure 6(2)).

Fig.6. Two possibilities of configurations of vanishing cycles of f .

Proof. The first statement immediately follows from Theorem 3.4 and the assumption
(note that each two of the curves a, b, c intersect on one point). Since the monodromy μi+1

becomes the inverse of it when we change the orientation of X (and thus that of Σ), it is
enough to show the statement under the assumption that we can take orientations of a, b and
c so that the algebraic intersections a · b, b · c and c · a are all equal to 1 (i.e. a, b and c are
as shown in Figure 6(1)). In what follows, for (an isotopy class of) a simple closed curve
d in Σ, we also denote the Dehn twist along it by d (which is contained in Mod(Σ; ∂Σ)).
For an element ϕ ∈ Mod(Σ; ∂Σ), let ϕ(d) be the isotopy class of a simple closed curve in Σ
represented by the image of d by a representative of ϕ.

We take simple closed curves x and y as shown in Figure 7. By Lemma 3.5 and the
assumption, the monodromy μi+1 is equal to Φa(c(a)b(c)a(b)). Since the curve c is equal
to xya(b), we can calculate c(a)b(c)a(b) as follows (in the following calculation, the only
underlined part in each line is changed when proceeding to the next line):
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Fig.7. Simple closed curves in a neighborhood of a ∪ b ∪ c.

c(a)b(c)a(b) =cac · bcb · aba

=(xyabxya) · a · (xyabxya) · b · (xyabxya) · b · aba

=xyab · (a) · bxyabxya · (b(x)b(y)b)(a2ba2)

=xy · (a2ba) · xyab · (axby · b(x)) · (Δa,ba4)

=xya2baxy · (baxbx) · yb(x)Δa,ba4

=xya2baxybaxb · (ybx) · Δa,ba4

=xya2bax · (bybabbxby) · xΔa,ba4

=xya2baxby · (abaa2xbx) · yxΔa,ba4

=xya2bax · (ybyab) · a2xbxyxΔa,ba4

=xya2baxyby · (xabba2x) · ba2xbxyxΔa,ba4

=xya2 · baxy(b) · ba2 x(b) · xyxΔa,ba4,

where we denote the product (ab)3 by Δa,b. We can easily check that the curves baxy(b) and
ba2 x(b) are as shown in Figure 8. These curves are disjoint from the curve a, in particular

Fig.8. Simple closed curves in a neighborhood of a ∪ b ∪ c.

the Dehn twists along them are contained in Mod(Σ)(a). The map Φa sends the Dehn twists
along baxy(b) and ba2 x(b) to tδ2 and tδ3 , respectively. We can thus calculate the monodromy
Φa(c(a)b(c)a(b)) as follows:

Φa(c(a)b(c)a(b)) = Φa(xya2 · baxy(b) · ba2 x(b) · xyxΔa,ba4)

=δ3δ1δ2δ3δ3δ1δ3 = δ
2
1δ2δ

2
3.

This completes the proof. �

Meier [13] constructed a (3g, g)–trisection of the spun manifold (M) of a 3–manifold M
with a genus–g Heegaard splitting. He also gave an algorithm to obtain a trisection diagram
of it from a Heegaard diagram of M. Using Theorem 3.4, together with this algorithm, we
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can prove:

Theorem 3.7. Meier’s trisection on (M) is diffeomorphic to one associated with a sim-
plified trisection.

Proof. Let (Σg; δ, ε) be a genus–g Heegaard diagram of M such that ε–curves are in the
standard position (see Figure 9). According to [13, Theorem 1.4], a trisection diagram of

Fig.9. A standard Heegaard diagram.

the spun manifold (M) can be obtained by replacing a neighborhood of each εi in the
Heegaard diagram (Σg; δ, ε) (which is shown in Figure 10(1)) with a genus–3 surface and
curves given in Figures 10(2), 10(3) and 10(4), where αδ = {αδ1 , . . . , αδg} and αδ j coin-
cides with δ j outside of the union of neighborhoods of εi’s. We will show that the curves
α1, . . . , α2g, αδ1 , . . . , αδg , β1, . . . , β2g, γ1, . . . , γ2g satisfy the conditions in Theorem 3.4. The
statement then follows immediately from Proposition 3.1. The first condition is obvious,

Fig.10. Curves in a trisection diagram of (M).

while we can easily deduce the second and the third conditions from the following claim:

Claim. The element μi ∈ Mod(Σα1,...,αi) determined from α1, . . . , α2g, β1, . . . , β2g, γ1, . . . ,

γ2g is equal to the Dehn twist along tβi+1 (αi+1) if i is odd, and equal to the identity if i is even.

The claim is obvious for i = 0. Suppose that the claim holds for i = 2k − 2. Each two of
the curves α2k−1, β2k−1, γ2k−1 intersect on one point. One of the boundary component of a
regular neighborhood of α2k−1 ∪ β2k−1 ∪ γ2k−1 bounds a disk, while the other components
are isotopic to tβ2k (α2k). Thus, we can deduce from Lemma 3.6 that μ2k−1 is equal to the
Dehn twist along tβ2k (α2k) (note that we can take orientations of α2k−1, β2k−1, γ2k−1 so that the
algebraic intersections α2k−1 · β2k−1, β2k−1 · γ2k−1 and γ2k−1 · α2k−1 are all equal to 1).

For simplicity, we denote α2k, β2k, γ2k by α, β, γ, respectively. It is easy to see that the
curve γ′ = μ−1

2k−1(γ) intersects with β on one point. Thus, we can calculate the monodromy
μ2k as follows (in the following calculation, the only underlined part in each line is changed
when proceeding to the next line):
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μ2k =Φα

(
γ(α) · μ2k−1 · β(γ′) · α(β)

)

=Φα
(
γαγ · βαβ · βγ′β · αβα

)
=Φα

(
(αγα) · βα · (μ2k−1γμ2k−1) · (αβα2)

)
=Φα

(
γαβα · (βαβ) · γ · (βαβ) · αβ

)
(Note that α ∈ Ker(Φα).)

=Φα
(
γα · α · γβα · (αβα)

)
=Φα

(
α2(αγ)3(αβ)3α3

)
= 1.

This completes the proof of the claim. �

Remark 3.8. In Section 4 we will also obtain a diagram of a simplified (3, 1)–trisection
of Lp � (L(p, q)) constructed from a genus–1 simplified broken Lefschetz fibration on
it (see Example 4.6). Although some of such simplified trisections (e.g. those of S 4 and
S 1 × S 3�S 2 × S 2) are diffeomorphic to those constructed by Meier [13], the author does not
know whether any simplified trisection obtained from a genus–1 simplified broken Lefschetz
fibration is diffeomorphic to that obtained from a genus–1 Heegaard splitting of some lens
space.

Another application of Theorem 3.4 is the classification of 4–manifolds admitting genus–
2 simplified trisections:

Theorem 3.9. A 4–manifold X admits a genus–2 simplified trisection if and only if X
is diffeomorphic to either S 2 × S 2 or a connected sum of CP2, CP2 and S 1 × S 3 with two
summands.

As we noted in the beginning of the section, we can deduce this theorem as merely a corol-
lary of the classification of genus–2 general trisections in [14]. Although we only deal with
simplified trisections, our proof below relies on easy linear-algebraic calculations, while that
in [14] involves subtle arguments on configurations of curves in genus–2 surfaces.

Proof of Theorem 3.9. Since S 1 × S 3,CP2 and CP2 admit genus–1 simplified trisections,
any connected sum of them with two summands admits a genus–2 simplified trisection.
Furthermore, we can deduce from [6, Theorem 1.4] that S 2 × S 2 also admits a genus–2
simplified trisection. These observations prove the if part of the theorem, so we will prove
the only if part.

Let f : X → R2 be a simplified (2, k)–trisection (k = 0, 1, 2). The manifold X is diffeo-
morphic to �2(S 1 × S 3) if k is equal to 2 (see [9, Remark 5]). Assume that k is not equal
to 2. We take vanishing cycles a1, a2 and b j, c j ( j = 1, . . . , g − k) in Σ = Σ2 as we took in
Theorem 3.4. By changing the orientation of X if necessary, we can assume that there are
orientations of a1, b1 and c1 such that the algebraic intersections a1 · b1, b1 · c1 and c1 · a1 are
equal to 1. Let Σ′ ⊂ Σ be a regular neighborhood of a1 ∪ b1 ∪ c1, which is a genus–1 surface
with three boundary components by Lemma 3.6. We denote the three boundary components
of Σ′ by δ1, δ2 and δ3 as shown in Figure 6(1). If k = 1, we can deduce from Theorem 3.4
and Lemma 3.6 that the product t2

δ1
t2
δ3

t−1
δ2

(which is regarded as an element in Mod(Σa1 )) pre-
serves the isotopy class of a2. Since Σa1 is a torus, it is easy to see that a2 is disjoint from
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the curves δ1, δ2, δ3, and thus from a1, b1, c1. We can therefore change f by homotopy so
that the innermost triangle in f (Crit( f )) is moved to the outermost region (i.e. the region
bounded by the definite fold image). We can then apply unwrinkle to the resulting map,
which yields a Lefschetz singularity with a trivial vanishing cycle. Thus, the manifold X is
a blow-up of a manifold admitting (1, 1)–trisection, which is diffeomorphic to S 1 × S 3.

In what follows, we assume that k = 0. Since the genus of Σ is 2, we can obtain Σ by
capping ∂Σ′ by either (1) a genus–1 surface with one boundary component and two disks,
or (2) an annulus and a disk. For the case (1), either of the components δ1 and δ3 bounds a
disk in Σ. In particular we can apply unwrinkle to f so that the inner indefinite fold image
of f becomes a Lefschetz critical value with a trivial vanishing cycle. Thus X is a blow-up
of a 4–manifold admitting a (1, 0)–trisection, which is either CP2 or CP2.

Assume that the components δ1, δ2, δ3 bound an annulus and a disk in Σ. By Lemma 3.6
the monodromy ψ ∈ Mod(Σa1 ) along the loop going between the inner and the outer fold
images of f is a (single or fourth power of) Dehn twist along an essential simple closed
curve d. We take an identification of H1(Σa1 ;Z) with Z2 so that d represents the element

(
1
0

)
.

Let
( p

q
)
, ( r

s ) and
( t

u
) ∈ Z2 be elements represented by a2, b2 and c2, respectively. Since a2

intersects each of the curves b2 and c2 on one point, the following equality holds:

(1) ps − qr = pu − qt = 1⇐⇒
(
s −r
u −t

) (
p
q

)
=

(
1
1

)
.

If one of the integers q, s, u is equal to zero, one of the curves a2, b2 and c2 is disjoint from
the three curves a1, b1 and c1. Thus we can apply a homotopy to f so that the nested indef-
inite fold images of f becomes two circles bounding disjoint disks as shown in Figure 11.
Since a regular fiber inside each of the two circles is a genus–1 surface, we can further apply

Fig.11. Homotopies applied to a genus–2 simplified trisection.

wrinkles so that the two indefinite circles become two (possibly achiral) Lefschetz singular-
ities. We can thus conclude that the total space of the original trisection is a connected sum
of CP2 and CP2 with two summands. In what follows we will assume q, s, u � 0.

If ψ is equal to td (i.e. δ2 is a boundary component of an annulus in Σ \ Σ′), we can apply
unwrinkle to f so that the inner indefinite fold circle becomes a Lefschetz singularity with
a vanishing cycle d (see the first two figures in Figure 12). Since the curve d(c2) =

( t−u
u

)
intersects b2 = ( r

s ) on one point by Theorem 3.4, we obtain ur − (t − u)s = ±1 and ur − ts =
−us ± 1. Suppose that ts − ur = − det

( s −r
u −t

)
is not equal to 0 and |q| is greater than 1. We

can deduce the following inequality from the equality (1):

2 ≤ |q| = |s − u|
| − us ± 1|

⇒2(|us| − 1) − (|u| + |s|) ≤ 0
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Fig. 12. Homotopies applied to a genus–2 simplified trisection. Note that
the second one can be applied only if one of the integers q, s and u is equal
to ±1.

⇒
(
|s| − 1

2

) (
|u| − 1

2

)
≤ 5

4
.

The last inequality implies that either |s| or |u| is equal to 1 (note that we assume s, u � 0).
We can thus conclude that one of the integers q, s, u is equal to ±1 if det

( s −r
u −t

)
is not equal to

0. If det
( s −r

u −t
)

is equal to 0, we can deduce from the equality (1) that ( s
u ) is equal to ±

(
1
1

)
.

In any case, one of the curves a2, b2 and c2 intersects d on one point. We can thus apply
unsink as shown in Figure 12. Let d1, d2, d3 and d4 be vanishing cycles of indefinite fold
arcs between two of the four cusps. Since two consecutive cycles di and di+1 (taking indices
mod 4) intersect on one point, it is easy to deduce that either of the followings occurs for
some i ∈ Z/4Z:

• the cycles di and di+2 are disjoint,
• the cycles di and di+2 intersect on one point,

In the former case, we can apply flip and slip to f so that the resulting map f̃ does not have
cusps. Let D ⊂ R2 be a open disk inside the innermost fold image of f̃ . It is easy to see that
the complement X \ f̃ −1(D) admits a trivial bundle over S 1 with a fiber S 2 × I, and X can be
obtained from this bundle by attaching two copies of the trivial bundle S 2 × D2 over D2 by
fiber-preserving diffeomorphisms. We can thus conclude that X is an S 2–bundle over S 2.

Lastly, we will prove that the monodromy ψ never be equal to t4
d (i.e. δ2 never bound a

disk in Σ \ Σ′) under the assumption that q, s, u � 0. To do this, suppose that ψ would be
equal to t4

d. The curve
d

4 (c2) =
( t−4u

u
)

would intersect b2 = ( r
s ) on one point by Theorem 3.4

and Lemma 3.6. Thus det
( s −r

u −t
)
= −4us ± 1 would not be equal to 0, and we obtain:

1 ≤ |q| = |s − u|
| − 4us ± 1|

⇒(4|us| − 1) − (|u| + |s|) ≤ 0

⇒
(
2|s| − 1

2

) (
2|u| − 1

2

)
≤ 5

4
.

This contradicts the assumption that s and u are not equal to 0. �

4. Trisection diagrams from broken Lefschetz fibrations

4. Trisection diagrams from broken Lefschetz fibrations
In [6] the authors gave an explicit algorithm to obtain a simplified trisection from a di-

rected broken Lefschetz fibration. In this section, we first explain how to obtain a trisection
diagram of a simplified trisection obtained by this algorithm. Although our method works
for Lefschetz fibrations and directed broken Lefschetz fibrations, we will only focus on sim-
plified broken Lefschetz fibrations for simplicity. We then apply this method to genus–1
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simplified broken Lefschetz fibrations.
We begin with a brief review of the algorithm in [6] mentioned above. Let f : X → S 2

be a genus–g simplified broken Lefschetz fibration with k Lefschetz singularities. We first
take a decomposition S 2 = D1 ∪D2 ∪D3, where D1 is a disk including all the critical values
of f , D3 ⊂ S 2 \ D1 is a small disk neighborhood of a regular value with a lower genus fiber
and D2 is an annulus between the two disks. We take identifications D2 � S 1 × [−1, 1] and
f −1(D2) � S 1 × [−1, 1] × Σg−1 under which the restriction f | f −1(D2) is the projection onto
the former components. Let h : Σg−1 → [1, 2] be a Morse function with 2g − 2 index–1
critical points, one index–0 critical point and one index–2 critical point. Using h we define
ϕ : [−1, 1] × Σg−1 → [1, 3] as ϕ(t, x) = 1 + (1 − t2)h(x)† and f1 : X → R2 as follows: f1
is a composition of f | f −1(Di) and a suitable diffeomorphism from Di to a unit disk D2 ⊂ R2

on f −1(Di) for i = 1, 3, and is a composition of idS 1 ×ϕ and a suitable diffeomorphism from
S 1 × [1, 3] to an annulus in R2 on f −1(D2) � S 1 × [−1, 1] × Σg−1. The critical value set of f1
is as shown in Figure 13(1), where it has 2g− 1 outward-directed indefinite fold circles. We
first apply R2–moves twice to interchange the first and the second innermost circles, yielding
the critical value set shown in Figure 13(2). The Lefschetz singularities can be moved to the
outside of the innermost region by a homotopy, and the resulting critical value set is shown
in Figure 13(3). We can then apply flip and slip and unsink to obtain an indefinite fold circle
with three cusps as shown in Figure 13(5). Finally, we can obtain a simplified trisection
by applying wrinkles and pushing Lefschetz singularities inside successively. The resulting
trisection has 2g−1 indefinite fold circles without cusps and k+2 indefinite fold circles with
three cusps, so it is a simplified (2g + k + 1, 2g − 1)–trisection.

We denote the map appearing in the algorithm with critical value set Figures 13(2),. . . ,
13(6) by f2, . . . , f6, respectively. In order to obtain a trisection diagram associated with
a simplified trisection constructed above, we have to get vanishing cycles of f1 and know
how these are changed in each of the homotopies applied in the algorithm. Let G′ be a
Riemannian metric on Σg−1 so that the pair (h,G′) satisfies the Morse–Smale condition (for
details of this condition, see [2]) and G = (h(x)dt2) ⊕G′, which is a Riemannian metric on
[−1, 1] × Σg−1. We first determine stable and unstable manifolds of ϕ with respect to the
metric G.

Lemma 4.1. Let ε > 0 be a sufficiently small positive number.

(1) The fiber ϕ−1(2+ε) is diffeomorphic to a closed surface obtained by attaching two copies
of h−1([1 + ε, 2]) by the identity along the boundary.

(2) For the index–0 critical point x0 ∈ Crit(h), the intersection between ϕ−1(2 + ε) and the
stable manifold W s(0, x0) of (0, x0) is the boundary of the two copies of h−1([1 + ε, 2])
under the identification given in the proof of (1).

(3) For an index–1 critical point x ∈ Crit(h), the intersection between ϕ−1(2 + ε) and the
unstable manifold Wu(0, x) of (0, x) is the union of two copies of the intersection between
h−1([1+ ε, 2]) and the unstable manifold Wu(x) of x under the identification given in the
proof of (1).

†Here we take a different ϕ from that in [6] in order to make it easy to take a vector field giving vanishing
cycles.
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Fig.13. Critical value sets appearing in the algorithm to obtain a trisection.

Proof. For simplicity, we denote the two copies of the surface h−1([1 + ε, 2]) by Σ′1 and
Σ′2. It is easy to see that the map Φ : ϕ−1(2 + ε)→ Σ′1 ∪id Σ

′
2 defined as

Φ(t, x) =

⎧⎪⎪⎨⎪⎪⎩
x ∈ Σ′1 (t ≥ 0)

x ∈ Σ′2 (t ≤ 0)

is a diffeomorphism, in particular the statement (1) holds. Let cp(s) be the integral curve
of grad(h) with the initial point p ∈ Σg−1 and C(t,q)(s) =

(
C1

(t,q)(s),C2
(t,q)(s)

)
be the integral

curve of grad(ϕ) with the initial point (t, q) ∈ ϕ−1(2 + ε). Since the gradient grad(ϕ) of ϕ is
equal to −2t ∂

∂t + (1 − t2) grad(h), the components C1
(t,q)(s) and C2

(t,q)(s) are respectively equal

to t exp (−2s) and cq

(
s − t2

4
(
1 − exp(−4s)

))
. Thus, the point (t, q) ∈ h−1(1 + ε) is contained

in W s(0, x0) if and only if lim
s→−∞ cq

(
s − t2

4
(
1 − exp(−4s)

))
= x0 and lim

s→−∞ t exp(−2s) = 0.

We can deduce from the second equality that t is equal to 0. Since Φ(0, q) is contained in
W s(x0) (in particular lim

s→−∞ cq (s) = x0), the statement (2) holds. Similarly, for an index–1

critical point x ∈ Crit(h), the point (t, q) ∈ h−1(1 + ε) is contained in Wu(0, x) if and only if

lim
s→∞ cq

(
s − t2

4
(
1 − exp(−4s)

))
= x and lim

s→∞ t exp(−2s) = 0. The second equality holds for

any t and the first equality implies that q is contained in Wu(x). This completes the proof of
the statement (3). �

By Lemma 4.1 we can obtain vanishing cycles of the map f1 in a regular fiber on the
second innermost annulus (i.e. the fiber on the dot in Figure 13(1)): the blue curve in Fig-
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ure 14, which we denote by c, is a vanishing cycle of the second innermost fold circle, red
curves are vanishing cycles of the outer fold circles, and the pair of the two shaded disks
is a neighborhood of a vanishing set of the innermost fold circle. A regular fiber of f2 on

Fig.14. Vanishing cycles of f1.

the innermost annulus (i.e. the fiber on the dot in Figure 13(2)) can be obtained by apply-
ing surgery along the two shaded disks in Figure 14. We denote this regular fiber by Σ. A
vanishing cycle of the second innermost fold circle, which we denote by d, is parallel to the
boundary of one of the shaded disks in Figure 14. while the other vanishing cycles are the
same as those of f1.

In order to get vanishing cycles of the maps f2, . . . , f6, we need to determine a monodromy
ϕ2 ∈ Mod(Σ) along a dotted black circle in Figure 13(2). Let c1, . . . , ck be vanishing cycles
of the Lefschetz singularities with respect to some Hurwitz path system. We regard these
cycles as curves in Σc, which is a surface obtained by applying surgery along c ⊂ Σ.

Proposition 4.2. Suppose that g is greater than 2. For any element ϕ ∈ Ker(Φd) satisfying
the condition Φc(ϕ) = tck ◦ · · · ◦ tc1 ∈ Mod(Σc), there exist R2–moves applied to f1 in the
algorithm above such that the resulting monodromy ϕ2 is equal to ϕ.

Proof. We can prove the proposition in a way similar to that of the proof of [12, Theorem
3.9] provided that the following claim holds:

Claim. The subgroup Ker(Φc) ∩ Ker(Φd) ⊂ Mod(Σ)(c, d) is generated by the following
set: ⎧⎪⎪⎨⎪⎪⎩tδ̃(η) ◦ t−1

c ◦ t−1
d ∈ Mod(Σ)(c, d)

∣∣∣∣∣∣∣
η ∈ Π

(
Σc,d \ {vi, w j}, vk, wl

)
{i, k} = { j, l} = {1, 2}

⎫⎪⎪⎬⎪⎪⎭ ,
where v1, v2 ∈ Σc,d (resp. w1, w2 ∈ Σc,d) are the origins of the two disks attached in surgery
along c (resp. d), and Π

(
Σc,d \ {vi, w j}, vk, wl

)
and δ̃(η) are defined in the same way as in [12,

Section 3].

Let Fv1,v2 and Fw1,w2 be the forgetting map defined on Mod(Σc,d; v1, v2, w1, w2). To prove the
claim, we first observe that the restriction

Φ∗c ◦ Φ∗d |Ker(Φc)∩Ker(Φd) : Ker(Φc) ∩ Ker(Φd)→ Ker(Fv1,v2 ) ∩ Ker(Fw1,w2 )

is an isomorphism (see the proof of [12, Lemma 3.1]). We denote the connected component
of Σc,d containing v1, w1, w2 (resp. v2) by Σ′ (resp. Σ′′). It is easy to see that Ker(Fv1,v2 ) ∩
Ker(Fw1,w2 ) is contained in the kernel of Fv1 : Mod(Σ′; v1, w1, w2)→ Mod(Σ′;w1, w2), where
we regard Mod(Σ′; v1, w1, w2) as a subgroup of the group Mod(Σc,d; v1, v2, w1, w2) in the ob-



Simplified Trisections andMapping Class Groups 33

vious way. Since Σ′ is not a sphere, in particular a connected component of Diff+(Σ′, w1, w2)
is contractible, the kernel of Fv1 : Mod(Σ′; v1, w1, w2) → Mod(Σ′;w1, w2) is isomorphic to
π1(Σ′ \ {w1, w2}, v1). The intersection Ker(Fv1 )∩Ker(Fw1,w2 ) is then isomorphic to the kernel
of the map i∗ : π1(Σ′ \ {w1, w2}, v1)→ π1(Σ′, v1) since the diagram

π1(Σ′ \ {w1, w2}, v1)
P1−−−−−→ Mod(Σ′; v1, w1, w2)

i∗
⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐�Fw1 ,w2

π1(Σ′, v1)
P2−−−−−→ Mod(Σ′; v1)

commutes and the pushing map P2 : π1(Σ′, v1)→ Mod(Σ′; v1) is injective (note that it would
not hold if the genus of Σ′ were equal to 1). The rest of the proof of the claim is quite similar
to that of [12, Theorem 3.4], so we leave it to the reader. �

Note that Proposition 4.2 would not hold without the assumption on g. In order to get a
monodromy ϕ2 of f2 with small fiber genera, we need to take a section on the annulus
bounded by the blue and red dotted circles in Figure 13(2) which intersects with the higher-
genus connected component of a regular fiber on the innermost region. Using such a section,
we can take a lift ϕ̃2 ∈ Mod(Σ; x) of the monodromy ϕ2, and we can prove the following in
the same way as that of the proof of Proposition 4.2:

Proposition 4.3. For any element ϕ̃ ∈ Ker(Φd : Mod(Σ, x)(d) → Mod(Σd, x)) satisfying
the condition Φc(ϕ̃) = tck ◦ · · · ◦ tc1 ∈ Mod(Σc, x), there exist R2–moves applied to f1 in the
algorithm above such that the resulting lift ϕ̃2 is equal to ϕ̃.

We can regard the vanishing cycles c1, . . . , ck as curves in Σ and these are also vanishing
cycles of the Lefschetz singularities of f3. As shown in [12, Figure 6], a regular fiber on the
dot in the upper triangle in Figure 15(1), which we denote by Σ̃, can be obtained by applying
surgery on a pair of disks in Σ. We denote by ϕ4 ∈ Mod(Σ) the monodromy along the dotted

Fig. 15. Parts of critical value sets (1) before and (2) after an R2–move
applied to f4.

circle in Figure 15, which is equal to ϕ2 ◦ t−1
c1
◦ · · · ◦ t−1

ck
. Let ei ⊂ Σ̃ be a vanishing cycle

associated with a reference path in Figure 15(2) labeled by i (i = 1, 2, 3, 4). Although we
can easily obtain e1, e2, e3 (see [12, Figure 6]), e4 depends on ϕ4:

Proposition 4.4. Suppose that g is greater than 2. For any element ψ ∈ Ker(Φe3 ) ∩
Mod(Σ̃)(e1) satisfying the condition Φe1 (ψ) = ϕ4, there exists an R2–move applied to f4
such that the resulting vanishing cycle e4 is equal to ψ(e2).
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Proposition 4.4 immediately follows from [12, Theorem 4.1].
Again, in order to get e4 when the genus of a fiber is small, we have to take sections of

f4 on the disk bounded by the dotted circle in Figure 15. The complement Σ̃ \ (e1 ∪ e3) has
two connected components Σh and Σl, where the genus of Σh is one larger than that of Σl.
We take a section which intersects with Σl if g = 2, while we take four sections σ1

l , σ
2
l , σ

3
l

and σh so that σh (resp. σi
l) intersects with Σh (resp. Σl) if g = 1. Using the sections we can

take a lift ϕ̃4 of the monodromy ϕ4, which is contained in Mod(Σ̃; x)(e1, e3) if g = 2, or in
Mod(Σ̃; x1, x2, x3, x4)(e1, e3) if g = 1.

Proposition 4.5. For any element ψ̃, which is an element in Ker(Φe3 ) ∩Mod(Σ̃; x)(e1) if
g = 2 or in Ker(Φe3 )∩Mod(Σ̃; x1, x2, x3, x4)(e1) if g = 1, satisfying the conditionΦe1 (ψ̃) = ϕ̃4,
there exists an R2–move applied to f4 such that the resulting vanishing cycle e4 is equal to
ψ̃(e2).

We can prove Proposition 4.5 as the author proved the theorems in [12, Section 5].
We can regard the vanishing cycles c1, . . . , ck as curves in Σ̃, and these are also vanishing

cycles of Lefschetz singularities of f5. It is also easy to obtain a vanishing cycle of a Lef-
schetz singularity appearing when applying unsink to obtain f5. The simplified trisection f6
can be obtained by applying wrinkles and pushing Lefschetz singularities across indefinite
folds. Since we can easily understand how vanishing cycles are changed by these moves (for
wrinkles, see [7, Figure 8]), we can eventually obtain a trisection diagram associated with
the trisection f6.

Example 4.6. Here we will apply the algorithm above to genus–1 simplified broken Lef-
schetz fibrations without Lefschetz singularities. Such fibrations were first given in [1] and
then completely classified in [5, 11]: a 4–manifold X admits a genus–1 simplified broken
Lefschetz fibration without Lefschetz singularities if and only if X is diffeomorphic to one
of the manifolds S 4, S 1 ×S 3�S 2 ×S 2, S 1 ×S 3�CP2�CP2, Ln and L′n, where Ln and L′n (n ≥ 2)
are 4–manifolds introduced in [15]‡. For simplicity of the notations, we put L1 = L′1 = S 4,
L0 = S 1 × S 3�S 2 × S 2 and L′0 = S 1 × S 3�CP2�CP2.

Let f : X → S 2 be a genus–1 simplified broken Lefschetz fibration without Lefschetz
singularities and f1 : X → R2 be a map appearing when applying the algorithm to f (the
critical value set of f1 is shown in Figure 16(1)). Let ν( f (Crit( f ))) be a tubular neighborhood
of f (Crit( f )) ⊂ S 2. Since the composition of the restriction f |ν( f (Crit( f ))) and the natural
projection ν( f (Crit( f ))) → f (Crit( f )) is a trivial bundle, the composition of the restriction

Fig.16. Critical value sets of (1) f1, (2) f2, (3) f4 and (4) f6.

‡In this paper, we assume that a simplified broken Lefschetz fibration has indefinite folds.
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of f1 on the preimage of the shaded annulus in Figure 16(1) and a retraction to one of the
boundary components of the annulus is also a trivial bundle. Thus we can take a section σ of
f1 over the shaded annulus in Figure 16(1) so that the resulting lifted monodromies (which
are contained in the mapping class groups of pointed surfaces) along the two boundary
components are both trivial. By proposition 4.3 we can apply R2–moves to f1 so that the
monodromy along the boundary of the shaded disk in Figure 16(2) is trivial.

There exists a genus–1 simplified broken Lefschetz fibration f0 : L0 → S 2 such that a
section σ above can be taken so that it can be extended to the inside of the shaded annulus in
Figure 16(1). We take four sections σ1, . . . , σ4 of f0,2 over the shaded disk in Figure 16(2)
so that one of them intersects the torus component of the central fiber, while the others
intersect the sphere component of it. We also take two regular values of f0,4 as shown in
Figure 16(3). We can obtain vanishing cycles e0, . . . , e4 associated with the reference paths
in Figure 16(3), together with points corresponding to sections as shown in Figures 17(1)
and 17(2).

Fig.17. Regular fibers of f0,2. Note that e4 is equal to e2 for f0,2.

A map fn,2 : Ln → R2 derived from a genus–1 simplified broken Lefschetz fibration fn :
Ln → S 2 can be obtained from f0,2 by applying multiplicity–1 logarithmic transformation
along the torus component of the central fiber with the direction η (which is described in
Figure 17(1)) and the auxiliary multiplicity n (for the definition of the direction and the
auxiliary multiplicity of a logarithmic transformation, see [10, Section 8.3]). Furthermore,
we can obtain f ′n,2 derived from a genus–1 fibration f ′n : L′n → S 2 from fn by applying
Gluck twist along the sphere component of the central fiber. We can thus deduce from
Proposition 4.5 that the vanishing cycle of fn,4 associated with the reference path labeled by
4 (see Figure 16(3)) is ψn(e2), while that of f ′n,4 is ψ′n(e2), where ψn = tn

d+
t−n
d− , ψ′n = tn

d+
t−n
d− te

and d+, d−, e, e2 are curves given in Figure 17(2).
Applying unsink to the cusp between the reference paths labeled by 2 and 3, and wrinkle

to the resulting Lefschetz singularity, we can finally obtain a (3, 1)–trisection whose critical
value set is shown in Figure 16(4). Figure 18(1) describes vanishing cycles of f0,6 in a
fiber of the point outside of the innermost triangle in Figure 16(4), where the central fiber
can be obtained by applying surgery on the two red disks (we can obtain this diagram by
embedding a diagram in [7, Figure 8] in a suitable way). Using the diagram in Figure 18(1),
we can further obtain vanishing cycles a1, a2, a3, b1, b2, c1, c2 of f0,6 obtained by following
the procedure in the beginning of Section 3: ai, bi and ci are the red, blue and green curves in
Figures 18(2) and 18(3) with label i, respectively. It is easy to see that the surgeries changing
f0 to f ′n (that is, logarithmic transformations and Gluck twists) do not affect the curves ai’s,
bi’s and c1 (i.e. curves in Figure 18(2)). These surgeries change only c0,2 = c2 to cn,2 =
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Fig.18. Vanishing cycles of f0,4.

tn
d(c0,2) or c′n,2 = tn

dte(c0,2). Applying Proposition 3.1, we can eventually obtain trisection
diagrams (Σ3;αn, βn, γn) and (Σ3;α′n, β′n, γ′n) associated with fn,6 and f ′n,6, respectively, where

• (αn)i = (α′n)i = ai and (βn) j = (β′n) j = b j for each i = 1, 2, 3 and j = 1, 2 (note that
b2 is disjoint from b1),
• (βn)3 = (β′n)3 = a3, (γn)1 = c1, (γn)2 = cn,2 and (γ′n)2 = c′n,2,
• (γn)3 (resp. (γ′n)3) can be obtained from a3 by applying handle-slides (over a1 and

a2) so that the resulting curve is disjoint from (γn)1 and (γn)2 (resp. (γ′n)1 and (γ′n)2).
Some examples of such diagrams are shown in Figure 19. We can put (γ0)3 = (γ′0)3 = a3

since c0,2 and c′0,2 are disjoint from a3, while we should slide a3 over a2 once to obtain (γ1)3

since a3 intersects (γ1)2 = c1,2.

Fig.19. γ-curves of trisection diagrams associated with simplified trisections.

Using the diagram we can prove that the (3, 1)–trisection of S 4 obtained from a genus–
1 simplified broken Lefschetz fibration is diffeomorphic to the standard (3, 1)–trisection of
S 4 (i.e. the stabilization of the (0, 0)–trisection, whose diagram is given in [9, Figure 2])
as follows. First, by applying a diffeomorphism of Σ3 representing t(γ1)1 t(α1)1 t(γ1)1 to the
trisection diagram of S 4 obtained above, we can obtain another (but equivalent) diagram,
which is shown in Figure 20(1). We then apply handle-slides as indicated by the dotted
arrows in Figure 20(1). The resulting diagram is shown in Figure 20(2). We further apply
handle-slides to β–curves as indicated by the dotted arrows in Figure 20(2). We eventually
obtain the diagram in Figure 20(3), which is obviously equivalent to the standard (3, 1)–

Fig.20. (3, 1)–trisection diagrams of S 4.
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trisection diagram of S 4. Similarly, we can also prove that the (3, 1)–trisections of L0 and
L′0 obtained from genus–1 simplified broken Lefschetz fibrations are diffeomorphic to a
connected sum of the (1, 1)–trisection of S 1 × S 3 and the (2, 0)–trisections of S 2–bundles
over S 2.
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