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Abstract
We analyze the topology and geometry of a polyhedron of dimension 2 according to the min-

imum size of a cover by PL collapsible polyhedra. We provide partial characterizations of the
polyhedra of dimension 2 that can be decomposed as the union of two PL collapsible subpoly-
hedra in terms of their simple homotopy type and certain local properties.

1. Introduction

1. Introduction
The Lusternik-Schnirelmann (L-S) category of a topological space X is the minimum

cardinality of a cover of X by open sets which are contractible in the space. It is a classical
homotopy invariant of a space, introduced in [12], which has became over the years an
important tool in homotopy theory (see [5] for a good account on the subject). A natural
upper bound for the L-S category of a space X is provided by its geometric category gcat(X),
defined as the minimum number of open contractible sets that cover X. For a polyhedron P
(i.e. the underlying topological space of some simplicial complex), the geometric category
coincides with the minimum number of contractible subpolyhedra that cover P.

In this note we propose to study a variant of the geometric category in the context of com-
pact connected polyhedra, which we call PL geometric category and denote it by plgcat. For
this invariant, we replace the purely topological notion of “contractible” in the definition
of geometric category by the more geometrically flavored notion of “PL collapsible” (refer
to Section 2 for precise definitions). This point of view allows to exploit certain combina-
torial properties of a space that admits triangulations while at the same time accounts for
its inherent geometry and topology. We show in first place that the PL geometric category
of a polyhedron of dimension n is bounded by n + 1, thus generalizing the corresponding
result for geometric category (cf. [5, Proposition 3.2]). This implies that the PL geometric
category of a non PL collapsible polyhedron of dimension 2 may only be 2 or 3. One of our
main objectives is to understand the topological and geometrical properties that distinguish
2-dimensional polyhedra P with plgcat(P) = 2 from those with plgcat(P) = 3. In this di-
rection, we find that the condition of having PL geometric category 2 is fairly restrictive. In
particular, it determines the simple homotopy type of the polyhedron: by Proposition 2.10
below, such a polyhedron is simple homotopy equivalent to a wedge sum of spheres of di-
mension 1 and 2. Moreover, it is not difficult to verify that a contractible polyhedron P of
dimension 2 with plgcat(P) = 2 satisfies the Andrews-Curtis conjecture [1], which states
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that a compact contractible 2-dimensional polyhedron 3-deforms to a point (see Remark
2.11). However, as observed in Section 2, the PL geometric category is not a (simple) ho-
motopy invariant of a polyhedron. This leads us to study this invariant also from a local point
of view. In this context we describe a special class of 2-dimensional polyhedra, which we
call inner-connected polyhedra, defined by a property satisfied among others by all closed
surfaces. We obtain a criterion which states that sufficiently “regular” inner-connected poly-
hedra cannot have PL geometric category 2 (see Theorem 2.18).

Section 3 is devoted to the computation of the PL geometric category of complexes as-
sociated to one-relator presentations. The main result of this section, Theorem 3.4, shows
that it is possible to read off the PL geometric category of such a complex directly from the
presentation.

In the recent works [6], [2] discrete versions of the L-S category and related invariants
were introduced in the setting of finite simplicial complexes and finite topological spaces.
These discrete versions depend mainly on the combinatorial structure of the involved spaces.
Our notion relies more strongly on the topology and geometry of the underlying spaces.

2. PL geometric category

2. PL geometric category
In this section we introduce the notion of PL geometric category of a polyhedron. We

collect some necessary definitions first.
By a polyhedron we understand a topological space which admits triangulations, i.e. the

underlying space of some simplicial complex. A subspace Q of a polyhedron P is a sub-
polyhedron if it is the underlying space of a subcomplex of some triangulation of P. We
recall next the basic definitions of Whitehead’s simple homotopy theory. Let K be a fi-
nite simplicial complex. A simplex σ of K is a free face of K if there is a unique simplex
τ ∈ K containing σ. In that case, we say that there is an elementary collapse from K to
L = K \ {σ, τ}, denoted K↘e L. More generally, K collapses to L, denoted by K↘ L, if
there is a sequence K1 = K,K2, . . . ,Kr = L such that Ki↘e Ki+1 for every i. We also say
that L expands to K and denote L↗ K. The complex K is called collapsible if it collapses
to a complex with only one vertex. A pair of simplicial complexes K and L are simple ho-
motopy equivalent if there exists a finite sequence of complexes K1 = K,K2, . . . ,Kr = L
such that for every i either Ki ↗e Ki+1 or Ki↘e Ki+1. In that situation, we also say that there
is an n-deformation from K to L if the dimension of complexes K1, . . .Kr is at most n. A
polyhedron P PL collapses to a subpolyhedron Q (and we still denote P↘ Q) if there exist
coherent triangulations K, L of P and Q respectively such that K↘ L (see [11, Ch.2]). A
polyhedron P is called PL collapsible if it PL collapses to a point, (i.e. some simplicial
complex that triangulates P collapses to a vertex).

The polyhedra that we work with are assumed to be compact and connected. Likewise,
the simplicial complexes are assumed to be finite and connected.

Definition 2.1. Let P be a polyhedron. The PL geometric category plgcat(P) of P is the
minimum number of PL collapsible subpolyhedra that cover P.

It is a well-known fact that the geometric category of a (compact, connected) polyhedron
P of dimension n is at most n + 1. We will show an analogous result for PL geometric cat-
egory, namely, that a polyhedron of dimension n is covered by at most n + 1 PL collapsible



On PL Collapsible Covers of Polyhedra 41

subpolyhedra. The strategy for proving this, similarly as in the proof of the geometric cate-
gory version, is to proceed by induction on the dimension of the polyhedron. However, for
the inductive step to work in our context, a slight technical detour is needed. Specifically,
we resort to the theory of strong homotopy types of [4].

Definition 2.2 ([4]). Let K be a simplicial complex and v ∈ K a vertex. We say that v is
dominated by a vertex v′ � v if every maximal simplex that contains v also contains v′. If v is
dominated by some vertex v′, we say that there is an elementary strong collapse from K to
K \ v and denote K↘↘e K \ v. In that situation we also say that there is an elementary strong
expansion from L = K \v to K and denote it by L↗e ↗ K. If there is a sequence of elementary
strong collapses that starts in K and ends in L, we say that there is a strong collapse from K
to L and denote K↘↘ L. The inverse of a strong collapse is called a strong expansion and
denoted by L↗↗ K.

Remark 2.3 ([4, Remark 2.4]). K↘↘ L implies that K↘ L.

Recall that the star of a vertex v in a simplicial complex K is the subcomplex stK(v) ⊆ K
formed by the union of the simplices σ ∈ K such that σ ∪ v ∈ K. The link of v is the
subcomplex lkK(v) ⊆ stK(v) of the simplices that do not contain v. For a given simplex σ, its
boundary σ̇ is the subcomplex formed by the simplices τ strictly contained in σ.

Remark 2.4. A vertex v in a simplicial complex K is dominated by v′ if and only if the
link lkK(v) is a simplicial cone with apex v′, i.e. lkK(v) = v′M for certain subcomplex M.

Lemma 2.5. Let σn be the standard n-simplex. Consider the subcomplex of the second
barycentric subdivision of σn defined as Kn := σ′′n \ stσ′′n ({v}), where v is the barycenter of
σn. Then Kn strong collapses to (σ̇n)′′.

Proof. We view the simplices of the second subdivision of σn as chains of simplices of
σ′n ordered by inclusion. That is, we think of a vertex of σ′′n as a 0-chain {τ} where τ is some
simplex of σ′n, an edge of σ′′n as a 1-chain {τ ⊆ η} for some simplices τ, η of σ′n and so on.
Let w ∈ lkσ′′n ({v}) be a vertex. This means that there is a 1-simplex in σ′′n with vertices {v}
and w, so that there is a chain of inclusion of simplices of σ′n {{v} ⊆ w}. Suppose w = {e},
where e = {v, a} is a 1-simplex of σ′n. Then, any maximal simplex of σ′′n containing w either
contains {v} or {a}. Since {v} � Kn, this shows that w is dominated by {a} in Kn. Consider
now the complex K̃n obtained from Kn by removing all the vertices of the form {e} for e a
1-simplex of σ′n containing v. Take a vertex u ∈ lkσ′′n ({v}) ∩ K̃n. Suppose that u = {τ} for
some 2-simplex τ = {v, a, b} of σ′n. Since K̃n does not contain vertices of the form {{v, x}},
nor the vertex {v}, any maximal simplex of K̃n containing u also contains {a, b}. Hence u is
dominated by {a, b} in K̃n. By removing the vertices of lkσ′′n ({v}) in non-decreasing order of
the dimension of the simplex of σ′n that they represent, we see that Kn↘↘ (σ̇n)′′. �

Lemma 2.6. Let K, L be simplicial complexes such that L↗↗ K. If L can be covered by
n strong collapsible subcomplexes, so does K.

Proof. Let {L1, . . . , Ln} be a cover of L by n strong collapsible subcomplexes and assume
that there is an elementary strong expansion from L to K, say L = K \ v for a certain v ∈ K.
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Let v′ ∈ K be a vertex that dominates v, so that lkK(v) = v′M for some subcomplex M of L.
For each 1 ≤ i ≤ n, define the subcomplex Ki of K as

Ki =

⎧⎪⎪⎨⎪⎪⎩
Li ∪ v(v′M ∩ Li) if v′M ∩ Li � ∅,
Li otherwise.

If v′M ∩ Li is nonempty, then v ∈ Ki and is clearly dominated by v′ because lkKi(v) =
v′(M ∩ Li). In any case, Ki strong collapses to Li and is therefore strong collapsible. This
shows that K is covered by n strong collapsible subcomplexes. The conclusion follows by
induction on the number of elementary strong expansions from L to K. �

We are now able to prove that the PL geometric category of a polyhedron of dimension n
is bounded from above by n + 1. We will prove the following slightly stronger result.

Proposition 2.7. Let K be a complex of dimension n. Then, the second barycentric sub-
division K′′ of K can be covered by n + 1 strong collapsible subcomplexes.

Proof. Proceed by induction on n, the dimension of K. When n = 1, K is a simplicial
graph. We show first that in this case K′ admits a cover by two strong collapsible subcom-
plexes. In order to produce the strong collapsible cover, let T be a spanning tree of the graph
K and note that each edge e ∈ K \ T becomes the union of two edges in K′, say e = e1 ∪ e2.
Consider the following subcomplexes of K′:

K1 = T ′ ∪
⋃

e∈K\T
e1 , K2 = T ′ ∪

⋃

e∈K\T
e2.

As K1, K2 both strong collapse to T ′, they are strong collapsible and they clearly cover K′.
Since their barycentric subdivisions are also strong collapsible, the base case is complete.

Let now K be a simplicial complex of dimension n. By inductive hypothesis, the second
barycentric subdivision of the (n − 1)-skeleton

(
K(n−1)

)′′
of K can be covered by n strong

collapsible subcomplexes K1, . . . ,Kn. Let v1, . . . , vr be the barycenters of the maximal sim-
plices of K. By Lemma 2.5, we see that

(
K(n−1)

)′′ ↗↗ K′′ \⋃r
i=1 stK′′({vi}) and so Lemma 2.6

implies that this last complex is covered by n strong collapsible subcomplexes. Since K′′

is connected and stK′′({vi}) is strong collapsible for every i, we can include their union in a
strong collapsible subcomplex of K′′. �

As a consequence, in dimension 1 the PL geometric category only distinguishes trees
(contractible graphs) from the rest of graphs. The first non trivial case is the class of 2-
dimensional polyhedra. Since PL collapsible polyhedra are relatively well understood, the
interest is centered in understanding the difference between polyhedra of PL geometric cat-
egory 2 from those of PL geometric category 3. Our first step in this direction concerns the
simple homotopy type of a polyhedron P of dimension 2 with plgcat(P) = 2. By a result of
C.T.C. Wall [13], a polyhedron P with gcat(P) = 2 has the homotopy type of a finite wedge
sum of spheres of dimension 1 and 2. We show that a polyhedron P with plgcat(P) = 2
3-deforms to the suspension of a graph.

Lemma 2.8. Let K be a simplicial complex of dimension 2 which is covered by collapsible
subcomplexes K1, K2. Then there is a 3-deformation from K to the suspension Σ(K1 ∩ K2)
of K1 ∩ K2.
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Proof. Cone off K1, K2 with vertices v1, v2. This gives an expansion K↗ v1K1 ∪ v2K2.
Collapse every new simplex based on a simplex contained in K1 or K2 but not in both.
Hence, K↗ v1K1 ∪ v2K2↘ v1(K1 ∩ K2) ∪ v2(K1 ∩ K2), which is the desired 3-deformation.

�

Lemma 2.9. Let K be a collapsible simplicial complex of dimension 2 and L a subcom-
plex of K. If dim L = 2, L collapses to a graph, i.e. a complex of dimension 1.

Proof. Choose an ordering σ1, σ2, . . . , σr of the 2-simplices of K that induces a valid
sequence of collapses. It is clear then that the first 2-simplex of L appearing in that list must
have a free face in L and hence L collapses to a subcomplex with one fewer 2-simplex. By
induction on the number of 2-simplices of L, it follows that L collapses to a graph. �

Proposition 2.10. Let P be a polyhedron of dimension 2 such that plgcat(P) = 2. Then P
3-deforms to the suspension of a graph.

Proof. Take a triangulation K of P covered by collapsible subcomplexes K1, K2. By
Lemma 2.8, K 3-deforms to Σ(K1 ∩ K2) = v1(K1 ∩ K2) ∪ v2(K1 ∩ K2) and by Lemma 2.9
K1 ∩ K2 collapses to a 1-dimensional subcomplex G. It follows that vi(K1 ∩ K2)↘ viG for
i = 1, 2, and hence K 3-deforms to the suspension of G. �

Remark 2.11. As a consequence of Proposition 2.10, the Andrews-Curtis conjecture is
satisfied by contractible polyhedra which admit a cover by two PL collapsible subpolyhedra.
Indeed, let P be a contractible polyhedron covered by collapsible subpolyhedra P1, P2. From
the Mayer Vietoris sequence, the intersection P1 ∩ P2 has trivial homology and by Lemma
2.9, P1 ∩ P2 collapses to a tree. By Proposition 2.10, P 3-deforms to a point.

As it was to be expected, the property of having PL geometric category 2 is not a (simple)
homotopy invariant of a polyhedron. To illustrate this point, we invoke the classical example
used by Fox [7] to show that the geometric category is not a homotopy invariant. Let P1 be
the wedge sum of S 2 and two circles and let P2 be the space obtained from S 2 by identifying
three distinct points. Notice that P1 and P2 are simply homotopy equivalent (in fact, there
is a 3-deformation from P1 to P2). By splitting every sphere in P1 in two, we see that
P1 admits a cover by two PL collapsible subpolyhedra and hence plgcat(P1) = 2. On the
other hand, since P2 does not admit covers by two contractible subpolyhedra by [7,§39],
plgcat(P2) = 3.

Thus, the global simple homotopy type is not enough to characterize 2-dimensional poly-
hedra of PL geometric category 2. A study of a more local nature is required. In this context
a special class of polyhedra of dimension 2, which we proceed to describe, appears naturally.

Definition 2.12. Let K be a simplicial complex of dimension 2. We say that an edge of
K is inner if it is a face of exactly two 2-simplices of K.

Recall that a simplicial complex K of dimension n is homogeneous or pure if all of its
maximal simplices have dimension n.
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Definition 2.13. Let K be a homogeneous 2-dimensional simplicial complex. We say
that K is inner-connected if any pair of 2-simplices σ, τ of K is connected by a sequence of
2-simplices σ = η1, η2, . . . , ηr = τ such that ηi∩ηi+1 is an inner edge of K for each 1 ≤ i < r.
We call such a sequence an inner sequence. We say that a polyhedron P is inner-connected
if one (=all) of its triangulations is inner-connected.

Recall that K is strongly connected if it is homogeneous and for every pair of 2-simplices
σ, τ of K there is a sequence of 2-simplices of K σ1 = σ,σ2, . . . , σn = τ such that σi ∩ σi+1

is an edge of K for each i. Obviously, an inner-connected complex of dimension 2 is strongly
connected. A strongly connected complex of dimension 2 is a pseudosurface if each of its
edges is a face of at most two 2-simplices .

Example 2.14. Surfaces or more generally pseudosurfaces are inner-connected. The pre-
sentation complex associated to finite one-relator presentation in which every generator ap-
pears at least once in the relator is also inner-connected.

Consider a 2-dimensional polyhedron P which is the union of two collapsible subpolyhe-
dra P1, P2. We know by Lemma 2.9 that the intersection P1 ∩ P2 collapses to a graph. The
main reason why inner-connected polyhedra are useful as a technical tool is the following:
if P is assumed to be inner-connected, it is possible to deform P1 and P2 so that P1 ∩ P2 is
a graph.

Lemma 2.15. Let K be an inner-connected and non collapsible simplicial complex of
dimension 2. Suppose that K is the union of collapsible subcomplexes K1, K2. Then there
exist collapsible subcomplexes L1, L2 such that K = L1 ∪ L2 and L1 ∩ L2 is 1-dimensional.

Proof. Suppose K1∩K2 has at least one 2-simplex η. Since K1∩K2 is a proper subcomplex
of K, we can find a 2-simplex not in K1 ∩ K2 and an inner sequence joining it to η. Then
there are 2-simplices σ, τ together with an inner edge e = σ ∩ τ such that τ ∈ K1 ∩ K2 but
σ � K1 ∩ K2. Without loss of generality, suppose σ ∈ K1. Then e is a free face of the
complex K2, which implies that we can remove τ from K2. That is, the complexes K1 and
K̃2 = K2 \ τ form again a collapsible cover of K and K1 ∩ K̃2 has one fewer 2-simplex than
K1 ∩ K2. It follows by induction that it is possible to find collapsible subcomplexes L1, L2

that cover K and intersect in a graph. �

Even if a polyhedron P admits covers by two PL collapsible subpolyhedra intersecting
in a graph, the possible structure of these intersection graphs is constrained by the local
topology of P. More concretely, we show that the topology of small neighborhoods around
a point that is a leaf of an intersection graph satisfies certain condition.

Definition 2.16 ([9]). Let K be a simplicial complex. A vertex v of K is a bridge if K \ v
has more connected components than K. We say that v is splittable if the link lkK(v) has
bridges. Note that it makes sense to say that a point in a polyhedron is splittable because this
property depends only on the homeomorphism type of a small closed neighborhood around
the point and not on a specific triangulation of the space.

The statement and proof of the following lemma are based on results from [3, 9].
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Lemma 2.17. Let K be a homogeneous complex of dimension 2 which admits a collapsi-
ble cover of size two. Suppose additionally that the link of every non splittable vertex of K
is connected. Then, there exist collapsible subcomplexes L1, L2 that cover K and such that
every leaf of the 1-skeleton (L1 ∩ L2)(1) of L1 ∩ L2 is a splittable vertex of K.

Proof. Let K1 and K2 be subcomplexes of K that form a collapsible cover of K. Take
η = vw ∈ (K1 ∩ K2)(1) an edge such that w is a leaf, i.e. lk(K1∩K2)(1) (w) = v, but not a splittable
vertex. Suppose in first place that η is not maximal in either of the subcomplexes K1,K2, so
that there exist vertices vi ∈ Ki with vwvi ∈ Ki for i = 1, 2. As w is not a splittable vertex,
we can find a path joining v1 and v2 in lkK(w) \ v. But then there must be at least another
edge in lkK1∩K2 (w) contradicting the hypothesis that η is a leaf of (K1 ∩ K2)(1). Suppose now
η is maximal in K1 and take τ = v2η a 2-simplex of K2 containing η (we can find one by
homogeneity of K). We show that in this case K1 collapses to K1 \ w. If it was not the
case, there should be another edge η′ ∈ K1 hanging from w. By the homogeneity of K, η′

is the face of some 2-simplex σ = v1η′ which per force is in K1 but not in K2. Since by
hypothesis w is not splittable and has connected link, there is a path in lkK(w) \ v joining v1
to v2 and so w cannot be a leaf of (K1 ∩ K2)(1), a contradiction. By performing the collapses
that correspond to edges in the second case, we may assume the the leaves of (K1 ∩ K2)(1)

are splittable vertices. �

Consider again a 2-dimensional polyhedron P covered by collapsible subpolyhedra P1,
P2. A straightforward computation using the (reduced) Mayer-Vietoris long sequence re-
veals that

H̃0(P1 ∩ P2) ≡ H1(P), H1(P1 ∩ P2) ≡ H2(P),

where the homology groups are taken with coefficients in Z. From Proposition 2.10, we
know that H1(P) and H2(P) are finitely generated free abelian groups. Suppose that rk H2(P)
< rk H1(P). Since by Lemma 2.9 the polyhedron P1 ∩ P2 collapses to a graph, at least two
connected components of P1 ∩ P2 are collapsible (because at least two of them are acyclic).
When these components are graphs and P is homogeneous (for example, this is the case
if P is inner-connected), by Lemma 2.17 its leaves should be located in splittable vertices
or vertices with non connected links. Thus, P should have at least two such vertices. The
conclusion reached in this paragraph is roughly that an inner-connected polyhedron which
is regular both in a local and a global sense does not admit PL collapsible covers of size two.

Theorem 2.18. Let P be an inner-connected polyhedron of dimension 2 such that H2(P) ≡
0 or rk H2(P) < rk H1(P). Suppose additionally that P is not PL collapsible, has at most
one splittable vertex and that the link of every non splittable vertex is connected. Then
plgcat(P) = 3.

Proof. The case rk H2(P) < rk H1(P) was already treated in the paragraph above. Suppose
then H2(P) ≡ H1(P) ≡ 0 and that P is the union of PL collapsible subpolyhedra P1, P2 that
intersect in a graph. Hence, P1 ∩ P2 is a tree and since we may assume by Lemma 2.17
that its leaves are located in splittable vertices, P1 ∩ P2 should be a point. It follows that
P is a wedge sum of PL collapsible polyhedra, which contradicts the hypothesis that P be
inner-connected. �
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Example 2.19. The dunce hat D is an inner-connected contractible polyhedron with only
one splittable vertex and such that every other vertex has connected link. Hence, by Theo-
rem 2.18 no triangulation of D admits a cover by two collapsible subcomplexes. In fact, we
can say a little more. The dunce hat D can be viewed as the presentation complex associ-
ated to the one-relator presentation 〈 a | aaa−1 〉 (see the first paragraph of Section 3). More
generally, by Theorem 2.18 none of the presentation complexes associated to a presentation
of the form 〈 a | ana−(n−1) 〉 (n ≥ 2) admits a cover by two PL collapsible subpolyhedra.

We remark that this example generalizes a result from [8], where the authors show that
a specific triangulation of the dunce hat cannot be written as the union of two collapsible
subcomplexes.

Example 2.20. The standard Bing’s house with two rooms admits a PL collapsible cover
of size two (to see this, split the complex in two halves, each one containing the walls which
support the vertical tunnels). Note that unlike the dunce hat, the Bing’s house with two
rooms is not inner-connected. Moreover, as a consequence of the proof of Theorem 2.18 it
is impossible to cover this polyhedron by two PL collapsible subpolyhedra intersecting in a
graph.

3. The geometry of one-relator presentations

3. The geometry of one-relator presentations
We use the results of the previous section to provide a complete characterization of one-

relator presentation complexes that admit a PL collapsible cover of size two.
Recall that associated to a finite presentation  = 〈 X |R 〉 there is a topological model

built as follows. Let K = ∨x∈XS 1
x be a wedge sum of 1-spheres indexed by X. Every word

r ∈ R spells out a combinatorial loop on the space K based on the wedge point, which is used
to attach a 2-cell on K. The resulting 2-dimensional CW-complex is called the presentation
complex of  and is denoted by K . Since the attaching maps are combinatorial, the pre-
sentation complex K is a polyhedron (see [10, Chapter 2] for more details). When the set
R consists of only one word r the presentation 〈 X | r 〉 is called a one-relator presentation.

In what follows, we will assume that the one-relator presentation complexes are homo-
geneous, that is, every generator appears in the relator. There is no loss of generality in this
assumption. Indeed, if it was not the case, the associated complex K would decompose as
a wedge sum of a bouquet of 1-spheres and a homogeneous one-relator complex K. It is
easy to see then that to compute plgcat(K ), it is enough to compute plgcat(K).

Lemma 3.1. Let K be a connected simplicial complex and let L1, . . . , Ln be disjoint
collapsible subcomplexes of K. Then there exists a collapsible subcomplex of K containing⋃n

i=1 Li.

Proof. Since K is connected and L1 is disjoint with
⋃n

i=2 Li, there exists a simple path p
in the 1-skeleton of K joining a vertex of L1 with a vertex of some Li (i � 1) with no edges
in
⋃n

i=1 Li. Consider the subcomplex M of K defined as M := L1 ∪ p ∪ Li. Since L1 and Li

are collapsible, they collapse to any of its vertices and hence M collapses to p which is in
turn collapsible. The result now follows from induction. �



On PL Collapsible Covers of Polyhedra 47

Proposition 3.2. Let  = 〈 x1, . . . , xk | r 〉 be a finite one-relator presentation and suppose
that r admits an algebraic collapse, that is, there is a generator x which occurs only once
in r with exponent ±1. Then K admits a cover by two PL collapsible subpolyhedra, that is,
plgcat(K ) ≤ 2.

Proof. We may assume that x = x1 and r = x±1a1 . . . am−1, where each ai is equal to
some x±1

j , j � 1. Picture the complex K as a disk with the boundary subdivided in m
edges labeled in counterclockwise order according to r. Subdivide the edge labeled x in
2(m − 1) + 1 edges and subdivide the rest of the edges in three edges. Join the 2i-th edge
of the subdivided x to the central edge of (the edge labeled as) ai by a 2-dimensional strip
inside the disk in such a way that the strips are pairwise disjoint (see Figure 1).

Fig. 1. The strips (shaded) PL collapse to a tree through the edge which
intersects the edge labeled x.

Both the subpolyhedron P1 formed by the union of these strips and its complement P2

consist of a disjoint union of PL collapsible subpolyhedra of K . Hence by Lemma 3.1, P1

and P2 may be included in PL collapsible polyhedra Q1 and Q2 that cover K . �

The presentation complex of a (homogeneous) one-relator presentation is an inner-
connected polyhedron and each of its points has a connected link, except possibly the wedge
point. Moreover, if such a complex admits no algebraic collapses only the wedge point may
be splittable. It is a consequence of Theorem 2.18 that most such complexes do not admit
PL collapsible covers of size two.

Proposition 3.3. Let  = 〈x1, . . . , xk | r〉 be a finite one-relator presentation such that
r does not admit algebraic collapses. Then plgcat(K ) = 2 if and only  is of the form
〈 x | (xx−1)±1 〉.

Proof. By cellular homology, the group H2(K ) is free abelian of rank at most 1. More-
over, by a straightforward Euler characteristic computation we know that

rk H2(K ) − rk H1(K ) = 1 − k.

Hence, if  has k > 1 generators, we have rk H1(K ) < rk H2(K ) and the conclusion
follows from Theorem 2.18. The case H2(P) ≡ 0 is also covered by Theorem 2.18.

It remains then to analyze the case of one-relator presentations with one generator and
non trivial second homology group. Those are exactly the presentations of the form 〈 x | r 〉,
where r is a word on letters x, x−1 with total exponent 0. Suppose that a triangulation of
K admits a cover by collapsible subcomplexes K1, K2. We may assume that K1 ∩ K2 is
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a graph with at most one leaf. Since H0(K1 ∩ K2) ≡ Z2 and H1(K1 ∩ K2) ≡ Z, one of the
connected components of K1∩K2 is acyclic and therefore consists of only one point. For this
to be possible, the link of the wedge point must have more than one connected component.
By drawing the Whitehead graph of r (see [10, Ch.6]), we see that this is the case only for
presentations of the form 〈 x | (xx−1)±n〉, n ∈ N. Call C the other connected component of
K1 ∩ K2. Since it is a connected graph with one cycle and no leaves, C is homeomorphic to
S 1. Moreover, it is not difficult to show that the intersection of this component with the loop
x may by assumed to be 0-dimensional, that is, a finite set of points. Also, notice that the
intersection C ∩ x is not empty. Indeed, suppose that the loop x is entirely contained in K1

(the argument for K2 is identical). Since the homology class determined by x is a generator
of the first homology group H1(K ), K1 does not have trivial H1, a contradiction. Let then
v be a point in C ∩ x and let a, b the edges of the subdivision of x that contain v. Since
the intersection of C with the loop x is 0-dimensional, we may assume that a ∈ K1 \ K2

and b ∈ K2 \ K1. The edges a, b are faces of 2n 2-simplices in any triangulation of K .
Furthermore, the (open) star of v is homeomorphic to a union of 2n half euclidean planes
with the x axis identified. It follows that vertex v has valency 2n in the graph C. This is
impossible unless n = 1. Finally, observe that the complex associated to a presentation of
the form 〈 x | (xx−1)±1 〉 is homeomorphic to a 2-sphere with its poles identified and so admits
a cover by two PL collapsible subpolyhedra. �

As a corollary to Propositions 3.2 and 3.3 we obtain the announced characterization,
which shows that the property of admitting a PL collapsible cover of size two is very restric-
tive for this class.

Theorem 3.4. Let  = 〈x1, . . . , xk | r〉 be a finite one-relator presentation. Then K can
covered by two PL collapsible subpolyhedra if and only if r admits an algebraic collapse or
 is of the form 〈 x | (xx−1)±1 〉.
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