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Abstract
In this paper we consider the initial boundary value problem for the 3D Boussinesq system
with the velocity dissipation and weak damping effect to instead of the dissipation effect for
the thermal conductivity and establish the global existence of weak solutions. Furthermore, we
prove that the global weak solution is strong and unique under some small initial data condition.

1. Introduction

The purpose of this paper is to investigate the initial-boundary value problem of the three-
dimensional Boussinesq system with the velocity dissipation and thermal damping effect
which can be written as

Ou+u-Vu—Au+ VIl =0ez, x€Q,t>0,
(1.1) 00+ u-V0+«kl =0, xeQ, >0,
V-u=0, xeQ,t>0,

with the initial condition

(1.2) (u, Ni=0 = (o, 6p), x € Q
and the natural boundary condition

(1.3) ulaa =0,

where Q c R? is a bounded domain with smooth boundary. u = (u;(t, x), ux(t, x), us(t, x))
denotes the velocity of the fluid, 8 and II stand for the scalar temperature and pressure,
respectively. fes is buoyancy force with e3 = (0,0, 1), and the damping coeflicient « is a
positive number.

The Boussinesq equations arise from a zero order approximation to the coupling between
Navier-Stokes equations and the thermodynamic equations and describe many geophysical
phenomena in atmospheric and oceanographic sciences [28, 30]. There has been a huge
amount of literature on the study of the Boussinesq system by many physicists and math-
ematicians due to its physical importance and mathematical challenges, for example, see
[1,3,4,6,8,13, 14, 19, 20, 21, 29, 36, 37, 41] and the references therein.

Here we recall some of the recent progresses in terms of the following generalized Boussi-
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nesq system on the domain Q c R?

Ot + u - Vu — div(u(@)Vu) + VII = Oey,
0,0+ u-V0—diviv(6)V0) = 0,
V-u=0,

(u(0, x), (0, x)) = (uo(x), Oo(x)).

Recently, big progresses have been made on the global well-posedness of the system
(1.4) especially for the case Q = R?(d = 2). Chae [7], Hou and Li [15] independently
proved the global existence of smooth solutions to (1.4) in R? for v(6) = 0 and u(0) = u > 0.
When v(#) = v6 with v > 0 and u(f) = 0, Hmidi and Keraani [12] proved the global
existence and uniqueness of solutions to (1.4) in R? with the suitable initial data. Wang and
Zhang [35] obtained the global existence of smooth solutions to (1.4) under the assumptions
that both u(-) and v(-) belong to L*(R*) and have positive lower bounds. Very recently,
Abidi and Zhang [2] addressed the global well-posedness of the system (1.4) in R? for
—div(v(6)VO) = (—A)%G under the framework of Besov space and |ju(-) — 1|~ < & for

(1.4)

some sufficiently small &. Here the fractional Laplacian has been found wide applications in
mathematical physics [38], in control and optimization [16, 17] and so on.

Subsequently, we consider the two-dimensional Boussinesq system with variable kine-
matic viscosity in the velocity equation and with weak damping, and establish the global
well-posedness for the two-dimensional Boussinesq system with general initial data in [42].

The results we mentioned above are obtained for the whole space R?. In many real-world
applications, the flows are often restricted to bounded domains with suitable constraints
imposed on the boundaries and these applications naturally lead to the studies of the initial-
boundary value problems. In addition, solutions of the initial-boundary value problems may
exhibit much richer phenomena than those of the whole space counterparts. When u and
v depend on the temperature, Lorca and Boldrini [26, 27] proved the global existence of
weak solution with small initial data and the local existence of strong solution for general
data to the problem (1.4). Recently, Sun and Zhang [33] extend the global existence of
smooth solution to the Boussinesq system (1.4) with full dissipations (both ¢ and v have
positive lower bound) in [35] to the case of bounded domain. For the partial dissipation
cases, when p(6) = v > 0 and v(6) = 0 in (1.4), Lai, Pan and Zhao [19] obtained the unique
classical solution for H* initial value and the non-slip boundary condition for a bounded
smooth domain Q C R2. Subsequently, Li, Pan and Zhang [24] obtained the unique classical
solution to the system (1.4) with ¢ = 0 and x(6) > 0 for H° initial value and the slip boundary
condition for a bounded smooth domain Q c R?.

However, to the best of our knowledge, there are few results for partial dissipation cases
u(@ = u > 0 and v(#) = 0 which corresponds to our system (1.1) with « = 0 in Q = R3.
The local smooth solution to the system (1.1) with k = 0 has been established. The global
regularity or finite time singularity for strong solutions of the system (1.1) with x = 0 in
R3 with large initial data is still a challenging open problem just like the three-dimensional
Navier-Stokes equations. Some regularity criterions for the system (1.1) have been obtained
(see e.g. [10, 31]). It is mentioning that different regularized 3D Boussinesq system have
been proposed(we refer interested readers to [5, 39, 40] and the references therein).

On one hand, the system (1.1) without damping mechanism can be viewed as that the
Navier-Stokes system which is forced by the temperature. On the other hand, we have no
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way to capture the regularity effect or decay property of 6 which will bring us the main
obstacle consists in the propagation of the regularity of u since the temperature equation
without a damp term is a pure transport equation. Except for the one [42] mentioned above,
very little result is known which studies thermal damping for the Boussinesq system as we
know. That is why in the present paper we consider the initial boundary value problem to
the system (1.1) with damping mechanism in a bounded smooth domain Q c R?.

To state our main result clearly, we define

16012,
K2

e 1ol

2 . 2
+[luoll;. and By := +[[Vuoll7-

Now, we state our main results.

Theorem 1.1. Let 0 < o < % 3<p< ﬁ, the initial data 6y € L® N H' and ug € D(l),(r.

There exists a sufficiently small positive constant &y depending only on the initial data such
that if

(1.5) A By < &,

then the system (1.1)-(1.3) has a unique global strong solution (u(t, x), 6(t, x), I1(¢, x)) satis-
fying that for any given 0 < 7 < T < oo,

0eC(0,T];HY,

Vu e L0, T); L>) N L=((r, T); W'"") n C([r, T]; H' n W'P),
e l>(r,T); W-?ynC([r,Tl; H n W'P),

u, € L*((0,T); L) N L™((1, T); L*), VII, € L*((t,T); L?),

Vu, € L2((r, T); H)Y N L*((1, T); L?), uy € L*((t, T); L?).

Furthermore, there holds for all t > 0

(1.6) IV, DI, < Ce™

L2

and forallt > 1
(1.7) IV D72 + IV, DI s + IV DI, < Ce™?

where 6 := min{d, k" } and k= < k is any positive constant closed enough to k, the constant C

2

72, the damping constant k and the Poincaré

depends only on the initial norms |6y, ug, V||
constant A.

RemMark 1.1. In Theorem 1.1, we do not need to impose any additional initial compat-
ibility conditions unlike in [19, 24] for the two-dimensional case. On the other hand, the
exponential decay-in-time properties in (1.6)-(1.7) involve the higher-order derivatives of
the strong solutions (6, u, IT) to the system (1.1)-(1.3).

Remark 1.2. It is easy to see from (1.5) that problem (1.1)-(1.3) has a unique strong
solution (0, u, IT) on Q X [0, c0), provided Ay is sufficiently small or B is small enough. It
is worth mentioning that the damping coefficient « just has to be sufficiently large such that
it does not need to require any smallness condition on the initial norm ||6||;-.
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Remark 1.3. The obvious advantage of the damping term lies in that it provides exponen-
tial decay of ||6||.» , which has been sufficiently explored in the paper. However, the global
well-posedness of system (1.1) without damping effect for the temperature equation is an
interesting open problem.

The rest of this paper is organized as follows. In Section 2 we present some notions
and basic tools. In Section 3 we first establish the global existence of weak solutions, then
obtain the higher regularity for the weak solutions, where the crucial ingredient is to utilize
the polynomial decay-in-time estimate for small time and the exponential decay-in-time
estimate for large time in terms of the velocity field which is inspired by the recent work
given by He, Li and Lii [11]. In Section 4 we complete the proof of Theorem 1.1.

2. Preliminaries

In this section, we introduce some notations and conventions, and recall some basic tools
which will be used throughout this paper. In particular, we provide the Gagliardo-Nirenberg
type inequalities and the regularity estimates for elliptic equations in bounded domains.

First of all, we use the convention that C (or C(s)) to denote strictly positive constants
depending on the index s, respectively, whose values are insignificant and may change from
line to line. We denote k- < « is any positive constant closed enough to . For X a Banach
space and / an interval of R, we denote by C(/; X) the set of continuous functions on / with
values in X, and by LP(I; X) with p € [1, o] stands for the set of measurable functions
on I with values in X, such that r — ||f(¢)llx € LP(I). Let Q c R? be a smooth bounded
domain. For r € [1, o] and k € N, the homogeneous and nonhomogeneous Sobolev spaces
are defined in a standard way,

L :=L'(Q), W ={feL|D°felL Vol <k}, H' =Wk
D ={feL ID'felL), D':={fel’Dfel?,

Coy :={f€CIV-f=0}, D(l)ﬂ = Coy closure in the norm of D!,
I llx,nx, =1l llx, + Il - llx,» for two Banach spaces X; and X»,
Lf1s -5 fillx == [l fillx + -+ + |l fellx,  for Banach space X.

We start with the well-known Gagliardo-Nirenberg inequality for bounded domains which
will be used frequently later.

Lemma 2.1 ([18]). Let Q c R? be a bounded domain with smooth boundary 0Q. We
have

H' < L? for p € (1,6], particularly, ||f|l,e < C||V £l for f € Hé(Q);
. Whe s L™ for p € (3, c0);
1 1

Al < CUALIV AL, for f e HY(Q);
Al < CUAILIV AL, for f e HY(Q);
Al < CUALLIV AL, for f € HY(Q) N HA(Q).

We will need the Poincaré type inequality.

I N O
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Lemma 2.2 ([9]). Let Q C R? be a bounded domain with smooth boundary and f €
Hé (Q). Then, there exists a constant A depending only on Q such that

IAllz2 < AV fll2,
where A is Poincaré constant which depends only on Q.

Finally, we recall the following regularity estimate for elliptic equations in a bounded
domain.

Lemma 2.3 ([32]). Let Q c R3 be a bounded domain with smooth boundary. Consider
the Stokes problem

—uAu+VII=F, xeQ,
2.1) V-u=0, x€eQ,
u=0, x € 0Q.

If F € W™P with p € (1,00) and m > —1, then it holds u € WP and I1 € W"+1-»,
Furthermore, we have

||M||Wm+2,p + ||Hllwm+l.p < C”F”Wm,p’

where the constant C depends only on C and the indices p, u, m.

3. Global existence of weak solutions

The goal of this section is to prove the global existence of weak solutions to the system
(1.1)-(1.3), which is an important step in the proof of our main theorem. We first recall the
definition of weak solutions.

DeriNtTioN 3.1. Let Q ¢ R? be a bounded domain with smooth boundary dQ. Assume
(19, 6p) € L*(Q). A pair of measurable functions (u, ) is called a weak solution of (1.1)-
(1.3) if for any T > 0, u € C([0, T1; L*(€)) N L*([0, T1; Hy(€)), 6 € C([0, T1; LP()) with
1 <p<ooand

T
fM0'¢odX+f f(u-qﬁt+u-V¢-u—Vu-V¢+6¢3)dxdt=0,
Q 0o Jo

T
f Ooodx + f f(&tﬁ, + (u - V)0 — kO¢)dxdt = 0,
Q 0o Ja

hold for any ¢ = (¢1, ¢, ¢3) € C7(Q2 X [0, T1)3 satisfying ¢(x, T) =0 and V - ¢ = 0, and for
any ¢ € C7(Q X [0, T]) satisfying y(x, T) = 0.

Next, we state the main result of this section as a proposition.

Proposition 3.1. Under the assumptions of Theorem 1.1, there exists a global weak so-
lution (u,0) of (1.1)-(1.3) such that for any T > 0, u € C([0, T); L*(€)) NL*([0, T); H} (),
and 0 € C([0,T); LP(Q)) with 1 < p < co.

Before proving the above proposition, we need to establish two lemmas which involve
the basic estimates of 8 and u.
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By the standard energy method, it is easy to derive the following exponential decay esti-
mate for ||6||.», which plays an essential role in the proof of our main theorem.

Lemma 3.1. Under the assumptions of Theorem 1.1, we have forall 1 < p < oo
(3.1 16llzr = e Nl6ollzr < ll6ollLr-

Proof. Taking the L? inner product of 6 equation in (1.1) with |9|’~26 and using the
divergence-free condition V - u = 0, we obtain

1d
];EH@IIZ +«lll, =0,

which reduces to %ueu 1» + «|10llL» = 0. Solving this differential equation leads to (3.1). The
proof of Lemma 3.1 is ended. m|

With the aid of the above exponential decay estimate for ||6]|.», we can obtain the basic
energy estimate involving the velocity u.

Lemma 3.2. Under the assumptions of Theorem 1.1, we have

3.2) sup ||u||L2 f||Vu|| ,dt < 3Ay.
t€[0,T]

Proof. Taking the L? inner product of the velocity equation in (1.1) with u and using the
fact V- u = 0, we obtain

1d
(3.3) Ed—llull 2+ IVl = f9u3dx < 116l 2 llul| 2,
t Q
due to (3.1), it gives that
1
(3.4 llullz2 < ;HGOHLZ + [luollz2-
Inserting (3.4) into (3.3) and using (3.1), we get

d —Ki
(3.5) iz + 209l < 2ol

116012
L uollzz)-
K
Integrating (3.5) with respect to time ¢ over [0, T'] yields the desired result (3.2). This com-
pletes the proof of Lemma 3.2. |

We now prove the Proposition 3.1.

Proof of Proposition 3.1. The proof is a consequence of Schauder’s fixed point argument
which follows [19, 25]. For the sake of completeness, we prove the Proposition 3.1 in detail.
For any fixed T € (0, o0), we consider the problem (1.1)-(1.3) in Q X [0, T']. For notational
convenience, we write

X := C([0, T1; LA(2)) N L*([0, T1; Hy(Q)

with [[VII5 := [IVIIZ +IVIE and define

C([0,TT:L*(Q)) L*([0.T]; H (Q))

B={VeX:|Vlx < Rol,
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where Ry will be specified later. Clearly, 3 C X is closed and convex.

We fix € € (0, 1) and define a continuous map on B. For any V € B, we regularize it and
the initial data (ug, 6p) via the standard mollifying process, we first mollify V by the standard
procedure (see [25]) to get

Ve=Ve * Pe/2s

where V. is the truncation of V in Q, = {x € Q : dist(x, dQ) > €} (extended by 0 to Q), and
Pe/2 18 the standard mollifier. Then v, satisfies

(3.6) Ve € C([0, T]; Ci, () with C7(Q) == {f € C3(Q) : V- f = 0};
(3.7) IVelleqo,riz@)y < CliVIleqo,rz2)s
(3.8) IWVell2qo. a1 @) < ClVI20.11:81 )

for some constant C > 0 which is independent of €. Similarly, we regularize the initial data
to obtain the smooth approximation ¢ for €y and ug for ug respectively, such that

65 € C(Q) and |65 — Ol ) < €,

u(e) S CS?O_(Q) and ”M(E) - I/l()”Hl(Q) < E.
Then the transport equation with smooth initial data

00+ V.- VO+«k0=0,
39
G2 { 60, x) = 05().
has a unique solution 6(z, x).

We next solve the nonhomogeneous (linearized) Navier-Stokes equation with smooth ini-
tial data ug(x)

Oiu+ Ve -Vu— Au+ VII = 63,
(3.10) V-u=0,ulpg =0,
u(0, x) = ug(x),
and denote its solution by u€. This process allows us to define a map

T(V) = uf.

The solvability of (3.9) and (3.10) follow easily from [19, 25]. We then apply Schauder’s
fixed point theorem to construct a sequence of approximate solutions to (1.1)-(1.3). It suf-
fices to show that, for any fixed € € (0,1), T¢ : B — B is continuous and compact. More
precisely, we need to show the following dissertations:
(D) |lull5 < Ro, namely, T maps B3 into B for any fixed € € (0, 1);
(2) ||Me||c([o,T];H(;(Q)) + [[ull2qo @) < Cs
B) |IT(Vy) = T(W)lIs < C||Vy — Vsl for C independent of € and any Vi, V, € B.

It is easy to verify (1). In fact, due to Lemma 3.1, we have for any ¢ € [0, T'],

T
(3.11) 16117, + f 16117, dt < [l6ll7, + €C(Q, p) for p € [2,00)
0

and
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160]12, + eC(Q, p)

T
(3.12) sup [uc7, + f IVucF,dr < 3( 5 + lluoll?.)-
1€[0,7] 0 K

Next, we prove (2) which implies the compactness of T, by the Sobolev embedding the-
orem. Similar to (3.3), we obtain

d
(3.13) lluf1l7, + Envufniz = f(—ve - Vu€ + 6e3) - udx
Q
< C(IVe - VIR, + 16°12 ) + ellu?.
< CI611. + NVellFoIVuel, ) + ellud ..

which follows from (3.11) and the Gronwall inequality that

T T

2 2 2 2 el

(3.14)  sup [IVul}, +f 1.t < C(16612, + € + [[Vul2, )€ b Vel
te[0,T] 0

Recalling the elliptic regularity estimate (see Lemma 2.3), we have

(3.15) V207, + VI,

A

Cllu + Ve - Vu — 6°es] 12,

2 2 2 2
Cllug Il + NVellz VUl + 16°1172).

IA

Combining (3.15) with (3.11) and (3.14) gives that

T
2 2 2 2
(3.16) V0Nl 2o vz + I 2oz < C(1I60l IVuollZ,, f IVel-ds).
0

Now, we prove the continuity of T,. Let T¢(v;) = u;(i = 1,2). By definition of T, we have

0u§ + Vie - Vus — Aus + VIIS = 6fe;, x€Q,1>0,
0,65 + Vi - VO + k65 = 0, xeQ,t>0,
Veus =0,ulpq = 0, xeQ,t>0,
(u5(0, x), 670, x)) = (ug(x), 65(x)).

Subtracting the equation for i = 2 from the one for i = 1, we have

(3.17)

O + Vie - Vu® — Au€ + Ve - Vu§ + VIIC = 6e3, x€Q,1>0,
010 + Vie - VO  + Ve - VO5 + k6 = 0, xeQ,t>0,
V-u=0,uflsgn =0, xeQ,t>0,
(u“(0, x), 6°(0, x)) = (0,0),

where u® = u§ —uj, Ve = Vo = Vi, 0° = 65 — 0] and 11€ = I15 — T17.
Taking the L? inner product of (3.18), with #° and using the divergence-free condition
V - v1e = 0, we obtain

(3.18)

1d
(3.19) S 6N + wlleell;, = —f Ve - VO, 0°dx
2dt Q
€ € K e €12 2
<O M2l Vell2 VO |l < 2II0 72 + CllVO Iz Vel

Since 65 € C([0,T1; C(‘;"(Q)), we get from (3.19) that

T
(3.20) I6°117, + & f 161175 < CTIVEllZ o 71020
0
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Taking the L? inner product of (3.18); with u€ and using the divergence-free condition V -

Vie = 0, we obtain
f O°usdx — f Ve Vu5 - udx
Q Q

1d
1622l N2 + [IVellz2 Vs el 5

(B21) 5 —[lull7, + Va7
1
AN 2Vusllzz + CANVellp2lluas ]2Vl 2

2dt

IA

IA

A

1
< COIEN, + Cle, DIVl NS, + Enwniz,

which from u5 € L*([0, T]; H*(Q)) and (3.20) yields that

2 2 2
(322) ||ME”C([()’T];L2(Q)) + ”uE”Lz([O’T];H(I)(Q)) S C(Ka /la T)“Vl - VZ”C([O,T];LZ(Q))’
that is,
(3.23) ITe(Vi) = TVl < ClIVi = Vall

which implies that T : B — B is continuous.
Therefore, the Schauder’s fixed point theorem implies that for any fixed € € (0, 1), there
exists u¢ € B such that T.(«€) = u®, namely,

O + ue - Vu® — Au€ + VII€ = 63, xe€ Q,t>0,
0,6+ u, - VO° + k6 = 0, xeQ,t>0,
V-u=0,ulyo =0, xeQ,t>0,
(u“(0, x), 6°(0, x)) = (ugy(x), 65(x)),

where u, is the regularization of u®. By a bootstrap argument (c.f. [19, 25]) we know that
(6%, u¢) € C¥(Q x [0, T]). Then it is obvious that (6, u€) satisfies the integral identities,

(3.24)

T
(3.25) f ug - podx + f f(uE s+ ue - Vo ut = Vu - Vo + 0°¢3)dxdt = 0,
Q 0o Jo

T
(3.26) f Owodx + f f (60, + (ue - V)6 — k6°)dxdt = 0,
Q 0 Q

for any € > 0, ¢ = (¢1, ¢, ¢3) € C(Q x [0, T])? satisfying ¢(x,T) = 0 and V - ¢ = 0, and
for any € CP(Q X [0, T]) satisfying ¢(x, T) = 0.

In view of (3.11), (3.12) and from the definition of u¢ we know that there exist functions
ue Band 0 e C(0,T];, LP(Q)) for 2 < p < oo such that as e — 07,

ut = u weakyin C([0,T]; L*(Q)) N L*(0, T; Hy()),
6° — 0 weakyin C([0,T];L7(Q)),

and

2 2
(327) ||u||C([O,T];L2(Q)) + ”u”Lz([O,T];Hé(Q)) < C(GO, Uo, Q),
(3.28) 16llcqo.r1Lr@) + 10Nl o,r1,20 ) < N100lleqo.r1:00()-

Since u - Vi € C([0, T; L*(Q)), we have

T
If f(ue-Vw-HE—u-le-B)dxdtl
0o Ja
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T T
s|f f(ug—u)~V1//~95dxdt|+|f fu-Vt/l-(He—Q)dxdtI
0 Q 0 Q

T
< N6 20, 7122001t = wll20.71:02(02)) + | f f u- Vi - (6° — 0)dxdt|
0 Jo

T
< Cllu® = ull2qo.11.200) + | f f u-Vip- (65— O)dxdt) - 0 as € — 0.
0 Q

Moreover, since

T
If f(ue-qu-uE—u-Vqﬁ-u)dxdtl
0o Jo

T T
<] f f ue - V- (u€ — u)dxdt| + | f f(ue —u) - V¢ - udxdt|
0o Ja 0o Ja

< ||Me||L2([0,T];L2(Q))||ME - M||L2([0,T];L2(Q)) + ||u”L2([O,T];L2(Q))”Me - M||L2([0,T];L2(Q))

< C‘HME - u”Lz([O,T];LZ(Q)) -0 as e— O+,

letting € — 0" in (3.25) and (3.26), respectively, we verify that (u, ) is a weak solution to
(1.1)-(1.3) in Q x [0, T]. We conclude the argument by noticing that 7 is arbitrary. This
combining with (3.27) and (3.28) completes the proof of Proposition 3.1. O

4. Global regularity with small initial data

In this section, we prove that the weak solutions described in Proposition 3.1 are actually
strong solutions by establishing the global regularity for small initial data.

Proposition 4.1. Let (6y, uy) satisfy the conditions in Theorem 1.1 and (6, u,I1) be the
global weak solution obtained in Proposition 3.1. Then it holds that

T
(4.1) fo IVully.dt < 2(By + BY).

Before proving Proposition 4.1, we first establish an auxiliary result, the time-weighted
estimate on the gradient of velocity.

Lemma 4.1. Assume that (6y, ug) satisfies the conditions in Theorem 1.1. Let (0, u,I1) be
the global weak solution obtained in Proposition 3.1. It holds that

T T
4.2) s[lél;](t“||Vu||iz)+ fo “llul2,dt < CAGBY™ exp{C fo IVl dt).
t€l0,

Proof. Firstly, taking the L? inner product of u equation in (1.1) with u, and using the
divergence-free condition V - u = 0, we obtain

d
4.3) gl 2, + Enwniz = f (—u - Vu + 0e3) - u,dx.
Q

Recalling that (u, IT) satisfies the following Stokes system
—Au+ VIl = —-u, —u-Vu+0e;, xeg,

4.4) V-u=0, xeQ,
u=0, x € 0Q.
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It follows from Lemma 2.3 and Gagliardo-Nirenberg’s inequality that

IV2ullz + IVl < Cllug + u - Vi = fesl 2
< Cllullzz + el zsl[Vuellz + 1161]22)
< Clludlzz + IVull}, + 161122) + %nvzuny,
which gives that
(4.5) IV2ull2 + IVl 2 < C(llugllzz + 11Vl + 116122).

Combining with (4.3) and using the Holder and Young inequalities, we obtain

d
2 2 2 2 2
i + 2V, < (1l Val, + 1613) + el

< C(IlZsIVully, + 16117.) + &llull}
< C(IVulBIV?ullz + 11611, ) + 2l
< (U017, + 1VullS.) + 3ellu7..
which gives that
4 2 d v/ 2 2 \v/ 6
(4.6) ez + —IIValz, < C(IEIE, + IV},
Utilizing the Gronwall inequality to (4.6) gives that
T T
4.7 sup [IVull?, + f llufl2.dt < CByexp {c f ||Vu||§2dz}.
1e[0,T] 0 0
Multiplying (4.6) by ¢, one has
(4.8) 7, + i(rnwnz ) < IVl + C(AOIE + IVl A1V ull?, )
. tly2 dt 12) = 12 12 12 12 )
which together with (3.3) and the Gronwall inequality yields that
T T
4.9) sup #|Vul?, + f tlu2.dt < CAgexp{C f IVull? ).
t€[0,T] 0 0

Consequently, it follows from (4.7)-(4.9) that

T
(4.10) sup (¢|[Vull?.) + f 1\l dt

1€[0,T)
2(1- 2(1- 2 \@
= sup [||Vu||< “(dvali2,) | + f el (Mo 7. ) e
) \1-a a T 2 a
< (sup (1VulZ,) | sup (aIvulZ)]" ||u,||det | 2 dr)
t€[0,T] t€[0,T] 0

T
< CAGBy ™ exp|{C f IVully.dt}.
0
This ends the proof of Lemma 4.1. m|

Next, we recall the following abstract bootstrap argument or continuity argument which
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will be needed to prove Proposition 4.1.

Lemma 4.2 ([34]). Let T > 0. For each t € [0,T], we have two statements, a “Hypothe-
sis” H(t) and a “Conclusion” C(t). Suppose we can verify the following four assertions:

(1) (Hypothesis implies Conclusion) If H(t) holds for some time t € [0, T], then C(t) also
holds for the same t;

(2) (Conclusion is stronger than Hypothesis) If C(t) holds for some time ty € [0, T], then
H(1) holds for t in a neighborhood of ty;

(3) (Conclusion is closed) If C(t,) holds for the time sequences {t,} C [0,T] and t, — t,
then C(t) holds;

(4) (Base case) If H(t) holds for at least one t; € [0,T].
Then C(t) holds for all t € [0, T].

Proof of Proposition 4.1. If T < 1, due to (4.2), we have

T P T
(4.11) f IVullf.de < sup (¢lIVull2,) f 2 dt
0 0

1€[0,T]

A

IA

T
CAY By exp|{C f IVull}dt}
0

T
CA By Byexp|{C f IVuly.dt}.
0

On the other hand, if T > 1, due to (3.2) and (4.2), we have
T
(4.12) f IVull},dt
0

b 1 T
< sup (#IVull?,) f 29dt + sup (¢]Vull?,) f IVull?,dt
0 1

1€[0,1] 1€[1,T]

T T
< CAP B expC fo IVulif.drf + CAG By exp {C fo IV}

< CAY By (By + By exp{C fo ' IVull}, ).

For the sake of simplicity, we define function E(7) on [0, T] as follows

!
E() := f IVull}ds.
0

In summary, for both the cases < 1 and ¢ > 1, respectively, there is a positive constant C
such that

(4.13) E() < CAYBy(Bo+ B)exp{CE®).
Next, we use the bootstrap argument. Setting
(4.14) Hypothesis H(t) : E(t) < 4(130 + Bg) for r€[0,7T]

and
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(4.15) Conclusion C(r) : E(t) <2(By + Bj) for t€[0,T].

The conditions (2)-(4) in Lemma 4.2 are clearly true and it remains to verify (1) under the
small initial data condition (1.5). Once this is verified, then the bootstrap argument would
imply that (4.15) actually holds for any 7 € [0, T'].

It follows from (4.13) and (4.14) that,

E(t) < CAY By (Bo + By ) exp {4C(Bo + B)} < 2(Bo + B),
provided that (1.5) holds.
Thus, this ends the proof of Proposition 4.1. O

Proposition 4.2. Let (6y, ug) satisfy the conditions in Theorem 1.1 and (0, u,I1) be the
global weak solution obtained in Proposition 3.1. Then it holds that

(1)

1 2 1 2

@.16)  sup P, + f” (N al2dr < C (160, o, Vuollz. 6ol &)
t€[0,0(T)] 0

where o(t) := min{1, t}.
Proof. Taking 7-derivative of the u equations in (1.1), one has
(417) Uy +u- Vl/tt + U - VM - Al/lt + VHt = 0;@3.

Taking the L? inner product of (4.17) with u, and using the fact V - u = 0, we obtain

d
(4.18) Enutniz S\

:—fut-Vu-utdx+f9,e3-u,dx
Q Q
:—fut-Vu-utdx—f(u'VGeg)-u,dx—Kfeeg-utdx
Q Q Q
3
:ZZL’,
i=1

where we have used the 6 equation, namely, 6, = —u - V@ — «6.
We estimate the above three terms one by one as follows

4.19) I, = —fu,-Vu-u,dxsCIIutlli4I|Vu||Lz
Q
1 3
< Clludl NIVl 2 IVullz2 < llVullz, + Cliugli7 |V ully
(4.20) L = —f(u-VHeg)-u,dx:fu-Vu,-Hegdx
Q Q
< Cllull 281111V udlz2 < &llVudl2 + ClBIZ Nl
4.21) I; = —Kf9€3-utdeCKHQHLzHutHLz
Q

2
< «llllzz + Cll6ll 2 llull-.-

Substituting (4.19)-(4.21) into (4.18) and absorbing the e- terms, one has
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d
(4.22) E”Mz”iz + Va7, < CUIVully, + K6l |7, + ClOITlull7, + ll6l 2.
Multiplying (4.22) by '@ yields that

d 1 2 1 2 2 4 1 2
(4.23) E(I +"Iluzlle) + IVl < (L4 o)t lludly, + CAVall + cl@llz)e Nl
1 2 2 1
+ Ct 6Nz llull> + Crt 116l 2.

Due to (3.1) and (3.2), we have

o (T) o (T)
2 2 2 -2, 2
(4.24) f ld .+ 1161.-dt sup [lull}.) f 1ol dr
0 0

<
1€[0,0(T)]
< Ao
and
(4.25) | " el i = | " e Syl < Wolle,
0 0

where the following basic calculation has been performed for m € Z*

o (T) 1 (T) 1 +a () 1+ a
f ey = —— " kde™™ < — f ke dl < ——.
0 mk 0 mk 0 m-K

Invoking the Gronwall inequality to (4.23) and using (4.24)-(4.25) yields that (4.16). |
Next, we will prove the following exponential decay estimates in time with respect to the
velocity for large time, which plays a crucial role in our analysis.

Proposition 4.3. Let (6y, uy) satisfy the conditions in Theorem 1.1 and (6, u,I1) be the
global weak solution obtained in Proposition 3.1. Then it holds that

T
(4.26) sup e”Ilull7 + f ”|Vull7,dt < C,
1€[0,T] 0
T
(4.27) sup €”||Vull7, + f e lufll?.dt < C,
t€[0,T] 0
T
(4.28) sup  €”lul}, + f ||Vul[7,dt < C,
te[o(T),T] o(T)
(4.29) sup " (|IV2ull3, + VI, ) < C,
te[o(T),T]

where 6 := min{A, k™ } and k= < k is any positive constant closed enough to « as mentioned
above, the constant C depends only on the initial norm ||6y, uy, Vugl|12, |60~ and , A.

Proof. First, coming back to (3.5), and using the Poincaré inequality (see Lemma 2.2),
we have

d » 1
(4.30) TNl + Sl + 192l < e Vollzz(~60lz> + Ihollz2)-

Integrating (4.30) with respect to time variable over [0, T'] yields the desired result (4.26).
Next, multiplying (4.6) by €%, one has
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d
— (" IVull}:) < 5™ IVul7: + C(e™IO17: + IVullyze™ [Vl ).

Integrating (4.31) with respect to time variable over [0, T'], using (3.1), (4.1), (4.26) and the
Gronwall inequality yield that (4.27).
Similarly, multiplying (4.22) by ¢, one has

@.31) ”lull7, +

d
(4.32) (" lF:) + €IVl < 6l + CAIVal]: + llell2)e el

2 ot 12 5
+ Cll6llz e lully, + xe™ [0l

Integrating (4.32) with respect to time variable over [o(T), T, using (3.1), (4.1), (4.27) and
Gronwall inequality yield that (4.28).
Due to (4.5), one has

O 2 112 2 o 2 6 2
sup e (IV2ully, + IVITIZ) < € sup e (llwfll7, + IVullf. + 1617,
t€[o(T),T] 1€[o(T),T]

which together with (3.1), (4.27) and (4.28) gives that (4.29). ]

Proposition 4.4. Let (6y, uy) satisfy the conditions in Theorem 1.1 and (0, u,I1) be the
global weak solution obtained in Proposition 3.1. It holds that

T
(4.33) fIIVullLoodt < C,
0

where the constant C depends only on the initial norm ||0y, uy, Vuolliz, [160ll~ and k, A.

Proof. It follows from Lemma 2.3 and Gagliardo-Nirenberg’s inequality that
IV%ull + IVl

< Cllu; + u - Vu — Ges||r»

6—p 3p-6

< C(lludl 2 I192ll, 2 + Nl ol Vall o + 1160
Lo-»
6-p 3p—6 P ) 4p—6
2 2, 5p-6 5p-6
< C(Iladl 2 IVl + 1V ull 20 Vall % 1Vl + 1160

6—p 3p-6 6p—6

o 3p-6 1,
< Clllul 1Vl +19ull 3+ Vel ) + 19wl

which gives that

6—p 3p-6 6p—6

(4.34) IV2ully + IVITe < C(lluall 2 1Vuill, 7+ Vull, 2+ l6ll0).

From (4.34) and Sobolev inequality, we have

(4.35) IVullps < ClIVullz + CIIVZulls
< C(IVullye + llll 7 1Veell, 7 + Ve, 2+ 11610)-

Due to (3.1), (3.2), (4.16) and (4.27), we have

(1) o (T) 6-p 3p=6 6p=6
(4-36)fg IVull~dt < Cf (llVM||L2+||Mz||Lzzp IVal,” + 11Vull, ] +||9||L1>)dl
0 0
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o (T)
< C f IVull?,dt
0
6—p 3p—6

7 o(T) l+a e
+ sup (t )T f e (NVul7,)
0

1€[0,07(T))
s oM 160l
, 4 0ll122nL>
+ sup |[Vull ] f7 IVull},dt + —=2
1€[0,0°(T)] 0 K

< (1160, uo, Vuolly2, 6ollL, & 2),

where we have used the fact

6
1+2a°

On the other hand, we have from (3.1), (4.27) and (4.28)

T . . .
OU( V21400 gt < o which requires the condition p <

T T 6p=6
@37 | IVuled: < C f (IVullez + lleallz + 19llzz + Vall, 2+ 612 )de
o(T) o(T)

IA

T

St 5t

C sup eZ||Vu,ut||sz e 2 dt
telo(T).T] o(T)

T 1 T 1
+C( f e di)’( f |IVu|.dr)’
o o(T)

(T)

e T 4 l6ollz2n 7
+ sup |[Vull, IVull}.dt + ————
te[o(T),T] o(T) K

C(1160, o, Vuoll7, 16oll., &, ).

IA

725

Combining this with (4.36) gives (4.33) and finishes the proof of Proposition 4.4. m]
Proposition 4.5. let (6y, uy) satisfy the conditions in Theorem 1.1 and (6, u,I1) be the

global weak solution obtained in Proposition 3.1. Then it holds that

(4.38) IVOll> < Ce™IV6oll.2,

where the constant C depends only on the initial norm ||0y, uy, Vuolliz, [16ollz and k, A.
Proof. Taking the x;-derivative of the 8 equations in (1.1), one has

(439) (9,'9, +u- V8,9 + K(’i,@ = —8iu - V.

Taking the L? inner product of # equation in (4.39) with 9,6, using the divergence-free con-
dition V - 4 = 0 and summing over i, we obtain

1d
EE”W”iZ + KlIVOIIT, < [IVull=[VOl7..,

which together with (4.33) and the Gronwall inequality lead to (4.38). m|

The following lemma is necessary for further estimating on the higher-order derivatives
of the strong solution (6, u, I1).

Proposition 4.6. Assume that (6y, uy) satisfies the conditions stated in Theorem 1.1. Let
(0, u,I1) be the global weak solution obtained in Proposition 3.1. It holds that
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(4.40) sup o)’ (lull7> + IV2ull?, + IVII[I%,)
te[0,T]

T
+ f (T IVul2, + IV2ull?, + IVI7,)dt < C,
0

where the constant C depends only on the initial norm ||6y, uo, Vuoll,, 116ollr~ and k, A.

>
Proof. Multiplying (4.22) by o (t)e®, one has
i ot 2 ot 2
(4.41) (T Nul2) + eIV,
d
< — (e Ylunly: + CAVullz, + kel e @e w7

25ty s
+ ClI6lI 7€ llull + ke |16l .

which together with (3.1), (4.1), (4.26), (4.27) and the Gronwall inequality yield that

T
(4.42) sup o (e lull7, + f o (e’ || Vu,l7.dt < C.
te[0,T] 0
Due to (4.5), (4.26), (4.27) and (4.42), one has
T
(4.43) sup a()e” (IV2ully, + IIVITIZ,) + f " (IV2ull?, + IVITII, )dt
1€[0,T] 0

2 6 2
< C sup o(Me”(|lul7. + I1Vull, + 1617, )
t€[0,T]

T
+C f ¢ (Il + 192l + 16117 )ds < C.
0

Thus, the proof of Proposition 4.6 is completed. m|

The following proposition is concerned with the estimates on the higher-order derivatives
on the strong solutions u, IT which in particular imply the continuity in time of both V21 and
VII in the L? N L? norm.

Proposition 4.7. Let (6y, uy) satisfy the conditions in Theorem 1.1 and (6, u,I1) be the
global weak solution obtained in Proposition 3.1. Then it holds that
T
(4.44) sup () Vg2, + f (O ulPadr < C.
1€[0,T] 0
where the constant C depends only on the initial norm ||0y, uy, Vuollip [16ollz and k, A.

Proof. Taking the L? inner product of (4.17) with u, and using the divergence-free con-
dition V - 4 = 0, we obtain

4.45)  —IVully, + llugll;, == | w-Vu-updx— | w-Vu-uydx — | 63 - uydx
2 2 2 2 2 2
< élluglly, + NullplIVurl, + Nl IVullzs + 1617
< 2 ClIV 2 \v/ 2 c(Iv 2 Vv 2 0 2 2 0 2
< éllugll, + ClIVullglIVudl;, + CAIVully, + [IVudlly, + 11017l + 110117

2 2 2 2 2 2 2 2
< élluallz, + CAIVully + Nudlp)IVudlz, + CAIVully + 16117l udlz> + 11607
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2 2 2 2 2 2
< elluullz + 16172 + CUIVully, + el + 16171V ull72

where we have used the facts ||u||~ < C||Vu||z and

(4.40) IVulls < C(IVullz + [[Vudllz + 116l]2r),

(4.34) and the Poincaré inequality in the last step due to u|q = 0.
In view of the 6 equation (1.1), one has

(4.47) 1617, < llu - VOI, + clesll7, < ClIVully, + «l6ll7.

Inserting (4.47) into (4.45), absorbing the &- term, we obtain

d
(4.48) Enw,niz +lluall?, < CUVUR, + w7, + 1617 Vill7,
+ClIVull?, + 6l

Next, multiplying (4.48) by o(¢)e’, one has

d
(4.49) (e OIuF,) + e

d
< — (e )IVuilz, + Ce™IVulf, + e 6l
+ C(IVully,y + w7, + 1017,)(o (e | Va7, ).
together (3.1), (4.26), (4.27), (4.40) and the Gronwall inequality yield that (4.44). m]

Proposition 4.8. Let (6y, ug) satisfy the conditions in Theorem 1.1 and (0, u,I1) be the
global weak solution obtained in Proposition 3.1. It holds that

T

(4.50) sup o)e”(IIV2ul}, + IVIIIZ, ) + fo o()e” (Vw7 + VI, )d < C,
€[o,

where the constant C depends only on the initial norm ||0y, uy, Vuolliz, [160llz and k, A.

Proof. Recalling that (i, I1,) satisfies the following Stokes system

—Au[ + VH[ = —Uy —U- Vu[ — Uy - Vu + 0[63, X € Q,
(4.51) V-ou =0, xeQ,
Mtz(), anQ

It follows from Lemma 2.3 and (4.45)-(4.47) that
4.52) IV 7, + IVILIZ,

IA

Clluy +u -V, + uy - Vu — bre3[7,

Cllunll?s + NullZ Va7 + Nl 2V ull7e + 16117)
Clluull7, + CANVullz, + N2 + 16171 Vael 2
+C|Vull7, + Ckliéll7.,

IA

IA

from which, (4.40) and (4.44), it follows that
T
(4.53) f o (IV?ull7, + IVILII,)dt < C.
0

Due to (4.34), we have
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12(p-1)

(4.54) IV2ullg, + IVIIZ, < Clludl7, + IVulz, + 1Vull,," -+ 1161,

which combining (4.40) and (4.44) implies that

(4.55) sup (e’ (IV2ully, + IVIIZ,)
1€[0,7]
< C sup o) (IVull, +11Vully, +116lI7,) < C.
1€[0,T]
Thus, the proof of Proposition 4.8 is completed. m|

Finally, we give the proof of our main Theorem 1.1.

Proof of Theorem 1.1. From (4.26), (4.27), (4.29), (4.40) and (4.50), we deduce that
(4.56) Vu, T € C([7, T1; L) N C([7, T1 x Q),
where we have used the standard embedding

L=([r, T H' n W) n H'([r,T1; L*) = C([7, T]; L*) N C([7, T] x Q).

Furthermore, it follows from (3.1) and (4.38) that
(4.57) 0€C(0,T1; HY.
Due to (4.27) and (4.40), one obtains that
(4.58) u, € H((r,T);L*) — C([1, T]; L),
which together with (4.56) yields that
(4.59) u+u-Vu e C([t,T]; L?).
Since (u, 0) fulfills (4.4), we deduce from (4.50), (4.56)-(4.59) that for any p € (3,6/(1+2a))
(4.60) Vu, T € C([r,T]; D' n D"P).

With the global regularity established at our hand, we can prove the uniqueness of the
solution. This idea is borrowed from [22] which is introduced in [20, 23].

Let (u;,6,)(i = 1,2) be two global smooth solutions to system (1.1)-(1.3) with the same
initial data (ug, 6p). Denote

(u, 0,11) = (uy — up, 6; — 65, 11; —ID).
Obviously, the difference (u, 8, I1) satisfies

Ot + VII — Au = —div(u; @ u + u ® up) + fes,
0,0 + k0 = —div(u10 + u6,),
(4.61) divu = 0,
(u(0, x),6(0, x)) = (0,0),
u(t, x)|o = 0.

Introduce some new notations (i, 8, IT) = (I — A) Y (u 6,10), from (4.61), we have
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A+ VI — Ali = —(I — A7 M div(u; @ u + u ® up) + e,
8,0 + k0 = —(I — A)~"div(u, 0 + ub,),
(4.62) diva = 0,
(@(0, x), 6(0, x)) = (0,0),
u(t, Yl = 0.

Taking the L? inner product of (4.62); and (4.62), with (I — A)u and (I — A, respectively,
we obtain

(4.63)
Ld u, Vi, 0, VO|?, + ||Vu, Au, 6, kV6||?
EE”M’ u,@, 0||L2+|| uvAuvkevk HIILZ
:—f(u1®u+u®u2)-Vﬁdx+f@(I—A)ﬁgdx—fulé-Védx—thQz-V@dx
Q Q Q Q
4
= Z Ji.
=1

1

Next, we estimate the above four terms one by one.

(4.64) Ji o= —f(u|®u+u®u2)-Vﬁdx
Q
< f (Ieer| + o)1) + A7) Vet x
Q
< Mo, wall o (2l 21Vl + AT 21Vl
< &llVi, All}, + ClIVuy, Vol I, Vil

(4.65) S = f 6(I — Ayuzdx
Q
< 1602 (el + 1A% 2) < ellAzl, + Cll, 617,
(4.66) Jy o= - f w16 - Védx = — f ui(I — A)6 - Védx
Q Q
3 — — —-—
= -, f e 048 - VOdx < |[Vuuy ||| VA7
k=18
(4.67) Iy = - f ub> - Vodx < f 10 (1l + | Al VBld:x
Q Q
< 10l (Il + 1Az IVl

< &llVO, Aull2, + Cli6lI7- 1, VI,

Plugging (4.63)-(4.67) into (4.63) and absorbing the e-terms, we have
1d _ __ - - = =
(4.68) 5 —liu. Ve, 6, VIE, < C(1 + |Vur, Vi, + 621 ) 7. V. 6, VA7,

which together with the zero initial data and the Gronwall inequality yields that 7 = 6 = 0.
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By definition of (i, ), one obtain that u = 6 = 0 which implies the uniqueness.
Thus, we have finished the proof of Theorem 1.1. m|
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