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Abstract
We give short proofs of the following two facts: Iterated principal circle bundles are precisely
the nilmanifolds. Every iterated circle bundle is almost flat, and hence diffeomorphic to an
infranilmanifold.

An infranilmanifold is a closed manifold diffeomorphic to the quotient space N/I" of a
simply-connected nilpotent Lie group N by a discrete torsion-free subgroup I" of the semidi-
rect product N = C where C is a maximal compact subgroup of Aut(V). If I' lies in the N
factor, the infranilmanifold is called a nilmanifold.

An iterated circle bundle is defined inductively as the total space of a circle bundle whose
base is an iterated circle bundle of one dimension lower, and the base at the first step is a
point. If at each step the circle bundle is principal, the result is an iterated principal circle
bundle.

This note was prompted by a question of Xiaochun Rong who asked me to justify the fol-
lowing fact mentioned in [1]:

Theorem 1. A manifold is an iterated principal circle bundle if and only if it is a nilmanifold.

The proof of Theorem 1 combines some bundle-theoretic considerations with classical re-
sults of Mal’cev [8]. The “if” direction was surely known since [8] but [3, Proposition 3.1]
seems to be the earliest reference. The statement of Theorem 1 is mentioned without proof
in [14, p.98] and [4, p.122].

Summary of previous work:

(1) Every iterated principal circle bundle has torsion-free nilpotent fundamental group be-
cause the homotopy exact sequence converts a principal circle bundle into a central extension
with infinite cyclic kernel.

(2) Theorem 1.2 of [9] implies that every iterated principal circle bundle is diffeomorphic
to an infranilmanifold; this was explained to me by Xiaochun Rong. Thus [9] gives another
(less elementary) proof of the “only if”” direction in Theorem 1 because every iterated prin-
cipal circle bundle is homotopy equivalent to a nilmanifold, and the diffeomorphism type of
an infranilmanifold is determined by its homotopy type [7].
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(3) According to [10] a manifold is a principal torus bundle over a torus if and only if it is a
nilmanifold modelled on a two-step nilpotent Lie group.

(4) Every 3-dimensional infranilmanifold has a unique Seifert fiber space structure, see [13,
Theorem 3.8], hence it is an iterated circle bundle if and only if the base orbifold (of
the Seifert fibering) is non-singular, i.e., the 2-torus or the Klein bottle. Thus some 3-
dimensional infranilmanifolds are not iterated circle bundles.

(5) In [6] it is proven that every iterated circle bundle is homeomorphic to an infranilmani-
fold. Their argument splits in two parts: finding a homotopy equivalence and upgrading it to
a homeomorphism. The latter uses topological surgery, which does not extend to the smooth
setting.

(6) A natural way to establish the smooth version of the above-mentioned result in [6] is
to show that every iterated circle bundle is almost flat, and then apply the celebrated work
of Gromov-Ruh [5, 12] that infranilmanifolds are precisely the almost flat manifolds. Re-
call that a closed manifold is almost flat if it admits a sequence of Riemannian metrics of
uniformly bounded diameters and sectional curvatures approaching zero. To this end we
prove:

Theorem 2. Any iterated circle bundle is almost flat, and therefore diffeomorphic to an
infranilmanifold.

Proof of Theorem 1. We use [11, Chapter II] as a reference for Mal’cev’s work. If N/T"
is a nilmanifold, then I' is finitely generated, torsion-free, and nilpotent, and conversely,
any such group is the fundamental group of a nilmanifold, see [11, Theorem 2.18]. Every
automorphism of I' extends uniquely to an automorphism of N, see [11, Theorem 2.11].
Applying this to conjugation by an element of the center of I' we get the inclusion of centers
Z() € Z(N). Nilpotency of I" ensures that Z(I') is nontrivial, and therefore, there is a one-
parameter subgroup R < Z(N) such that R N Z(I') is nontrivial, and hence infinite cyclic.
Clearly RNI' = Rn Z(I'). The left R-action on N descends to a free R/(R N I')-action
on N/I', which makes N/I" into a principal circle bundle whose base B, is a nilmanifold,
namely, the quotient of N/R by I'/(R N TI'). This proves the “if”” direction.

Conversely, let p: E — B be a principal circle bundle over a nilmanifold B. Its homotopy
exact sequence is a central extension, so m1(E) is finitely generated torsion-free nilpotent.
Consider a nilmanifold N/T" with I' = (E), and let z € Z(I') be the element corresponding
to the circle fiber of p through the basepoint. Let R < N be the one-parameter subgroup
that contains z. As above R C Z(N) and N/I is the total space of a principal circle bundle
p.: N/I' = B, whose base B, is a nilmanifold and the fibers are the R/(R N I')-orbits.
The cyclic group R N I' is generated by z because its generator projects to a finite order
element in the torsion-free group I'/{z) = m(B). Thus the isomorphism 7{(E) = m;(N/I')
descends to an isomorphism m1(B) — m(B.). Since all these manifolds are aspherical,
the fundamental group isomorphisms are induced by homotopy equivalences, and we get a
homotopy-commutative square
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—*S N/T

|
—— 5,

<~ iy

where & and 8 are homotopy equivalences. We can assume that S is a diffeomorphism
because by [11, Theorem 2.11] any homotopy equivalence of nilmanifolds is homotopic
to a diffeomorphism. The Gysin sequence implies that the Euler class of a circle bundle
generates the kernel of the homomorphism induced on the second cohomology by the bundle
projection. The map of the Gysin sequences of p and p,. induced by the commutative square
shows that 8 preserves their Euler classes up to sign, and after changing the orientation if
necessary we can assume that the Euler classes are preserved by . The isomorphism type
of a principal circle bundle is determined by its Euler class. Since p and the pullback of p,.
via 8 have the same Euler class, they are isomorphic, which gives a desired diffeomorphism
of E and N/T" and completes the proof of the “only if” direction. m|

Proof of Theorem 2. In view of [5, 12] it is enough to prove inductively that the total space
of any circle bundle over an almost flat manifold is almost flat. This comes via the following
standard argument. Let p: E — B be a smooth circle bundle over a closed manifold B.
For any Riemannian metric g on B there is a metric g on E such that p is a Riemannian
submersion with totally geodesic fibers which are isometric to the unit circle, see [2, 9.59].
As in [2, 9.67] let ¢’ be the metric on E obtained by rescaling g by a positive constant ¢
along the fibers of p, i.e., ¢’ and g have the same vertical and horizontal distributions V,
H, and ¢'|y = tgly and ¢l = gly. The fibers of p are ¢'-totally geodesic [2, 9.68] so
the T tensor vanishes. The diameters of g’, § satisfy diam(g’) < diam(g§) + O(Vf). The
following lemma finishes the proof of almost flatness of E. O

Lemma 3. The sectional curvatures K', K of ¢, § satisfy |K'| < |K| + O(V1).

Proof. Fix any 2-plane o tangent to E. Since H has codimension one, o contains a ¢'-
unit horizontal vector X. Let C be a ¢'-unit vector in o that is ¢’ -orthogonal to X. Write
C =U+Y where U € V, Y € H. The sectional curvature of o~ with respect to ¢’ is given
by

K, = (R'(C,X)C,X)' = (R(Y, X)Y, X)" + 2(R'(Y, X\)U, X)' + (R'(U, X)U, X)'
where (C, D) := ¢'(C, D) and R’ is the curvature tensor of ¢'.

Lemma 9.69 of [2] relates the A tensors A’, A of ¢', g as follows: A}X = AyX and
A%U =tAxU. Recall that AyX is vertical and AxU is horizontal. The formulas in [2, 9.28,
9.69] give

vvvvv

(R'(Y,X)U,X)" = ~[((DxA)yX, U)]" = —t g(DxA)y X, U)

(R'(U,X)U, XY = (ALU,ALUY + [{((DyA)xX, U)]' = Pg(AxU, AxU)
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where [((DyA)xX, U)]" = 0 by the last formula in [2, 9.32].

Since g(X,X) = 1 = ¢(C,C) = g(Y,Y) + tg(U, U), the vectors X, Y, Vt U lie in the g-unit
disk bundle of TE, which is compact, so the functions g(AyX, AyX), Vig((DxA)yX, U),
tg(AxU, AxU) are bounded.

Therefore, if Y # 0 and & is the projection of o in T B, then

K. = RV, X)¥, %) + 0D = A|§(V, V) K5 + O(VO)
and if ¥ = 0, then K. = 2 g(AxU, AxU) = O(¢). Thus |K'| < |[Ks| + O(V1). o
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