

Title	ITERATED CIRCLE BUNDLES AND INFRANILMANIFOLDS
Author(s)	Belegradek, Igor
Citation	Osaka Journal of Mathematics. 2020, 57(1), p. 165-168
Version Type	VoR
URL	https://doi.org/10.18910/73743
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

ITERATED CIRCLE BUNDLES AND INFRANILMANIFOLDS

IGOR BELEGRADEK

(Received May 18, 2018, revised October 18, 2018)

Abstract

We give short proofs of the following two facts: Iterated principal circle bundles are precisely the nilmanifolds. Every iterated circle bundle is almost flat, and hence diffeomorphic to an infranilmanifold.

An *infranilmanifold* is a closed manifold diffeomorphic to the quotient space N/Γ of a simply-connected nilpotent Lie group N by a discrete torsion-free subgroup Γ of the semidirect product $N \rtimes C$ where C is a maximal compact subgroup of $\operatorname{Aut}(N)$. If Γ lies in the N factor, the infranilmanifold is called a *nilmanifold*.

An *iterated circle bundle* is defined inductively as the total space of a circle bundle whose base is an iterated circle bundle of one dimension lower, and the base at the first step is a point. If at each step the circle bundle is principal, the result is an *iterated principal circle bundle*.

This note was prompted by a question of Xiaochun Rong who asked me to justify the following fact mentioned in [1]:

Theorem 1. A manifold is an iterated principal circle bundle if and only if it is a nilmanifold.

The proof of Theorem 1 combines some bundle-theoretic considerations with classical results of Mal'cev [8]. The "if" direction was surely known since [8] but [3, Proposition 3.1] seems to be the earliest reference. The statement of Theorem 1 is mentioned without proof in [14, p.98] and [4, p.122].

Summary of previous work:

- (1) Every iterated principal circle bundle has torsion-free nilpotent fundamental group because the homotopy exact sequence converts a principal circle bundle into a central extension with infinite cyclic kernel.
- (2) Theorem 1.2 of [9] implies that every iterated principal circle bundle is diffeomorphic to an infranilmanifold; this was explained to me by Xiaochun Rong. Thus [9] gives another (less elementary) proof of the "only if" direction in Theorem 1 because every iterated principal circle bundle is homotopy equivalent to a nilmanifold, and the diffeomorphism type of an infranilmanifold is determined by its homotopy type [7].

²⁰¹⁰ Mathematics Subject Classification. Primary 20F18; Secondary 57R22.

This work was partially supported by the Simons Foundation grant 524838.

166 I. Belegradek

- (3) According to [10] a manifold is a principal torus bundle over a torus if and only if it is a nilmanifold modelled on a two-step nilpotent Lie group.
- (4) Every 3-dimensional infranilmanifold has a unique Seifert fiber space structure, see [13, Theorem 3.8], hence it is an iterated circle bundle if and only if the base orbifold (of the Seifert fibering) is non-singular, i.e., the 2-torus or the Klein bottle. Thus some 3-dimensional infranilmanifolds are not iterated circle bundles.
- (5) In [6] it is proven that every iterated circle bundle is homeomorphic to an infranilmanifold. Their argument splits in two parts: finding a homotopy equivalence and upgrading it to a homeomorphism. The latter uses topological surgery, which does not extend to the smooth setting.
- (6) A natural way to establish the smooth version of the above-mentioned result in [6] is to show that every iterated circle bundle is almost flat, and then apply the celebrated work of Gromov-Ruh [5, 12] that infranilmanifolds are precisely the almost flat manifolds. Recall that a closed manifold is *almost flat* if it admits a sequence of Riemannian metrics of uniformly bounded diameters and sectional curvatures approaching zero. To this end we prove:

Theorem 2. Any iterated circle bundle is almost flat, and therefore diffeomorphic to an infranilmanifold.

Proof of Theorem 1. We use [11, Chapter II] as a reference for Mal'cev's work. If N/Γ is a nilmanifold, then Γ is finitely generated, torsion-free, and nilpotent, and conversely, any such group is the fundamental group of a nilmanifold, see [11, Theorem 2.18]. Every automorphism of Γ extends uniquely to an automorphism of N, see [11, Theorem 2.11]. Applying this to conjugation by an element of the center of Γ we get the inclusion of centers $Z(\Gamma) \subset Z(N)$. Nilpotency of Γ ensures that $Z(\Gamma)$ is nontrivial, and therefore, there is a one-parameter subgroup $R \leq Z(N)$ such that $R \cap Z(\Gamma)$ is nontrivial, and hence infinite cyclic. Clearly $R \cap \Gamma = R \cap Z(\Gamma)$. The left R-action on N descends to a free $R/(R \cap \Gamma)$ -action on N/Γ , which makes N/Γ into a principal circle bundle whose base B_{Γ} is a nilmanifold, namely, the quotient of N/R by $\Gamma/(R \cap \Gamma)$. This proves the "if" direction.

Conversely, let $p \colon E \to B$ be a principal circle bundle over a nilmanifold B. Its homotopy exact sequence is a central extension, so $\pi_1(E)$ is finitely generated torsion-free nilpotent. Consider a nilmanifold N/Γ with $\Gamma \cong \pi_1(E)$, and let $z \in Z(\Gamma)$ be the element corresponding to the circle fiber of p through the basepoint. Let $R \leq N$ be the one-parameter subgroup that contains z. As above $R \subset Z(N)$ and N/Γ is the total space of a principal circle bundle $p_\Gamma \colon N/\Gamma \to B_\Gamma$ whose base B_Γ is a nilmanifold and the fibers are the $R/(R \cap \Gamma)$ -orbits. The cyclic group $R \cap \Gamma$ is generated by z because its generator projects to a finite order element in the torsion-free group $\Gamma/\langle z \rangle \cong \pi_1(B)$. Thus the isomorphism $\pi_1(E) \cong \pi_1(N/\Gamma)$ descends to an isomorphism $\pi_1(B) \to \pi_1(B_\Gamma)$. Since all these manifolds are aspherical, the fundamental group isomorphisms are induced by homotopy equivalences, and we get a homotopy-commutative square

$$E \xrightarrow{\varepsilon} N/\Gamma$$

$$\downarrow p_{\Gamma} \qquad \downarrow p_{\Gamma}$$

$$B \xrightarrow{\beta} B_{\Gamma}$$

where ε and β are homotopy equivalences. We can assume that β is a diffeomorphism because by [11, Theorem 2.11] any homotopy equivalence of nilmanifolds is homotopic to a diffeomorphism. The Gysin sequence implies that the Euler class of a circle bundle generates the kernel of the homomorphism induced on the second cohomology by the bundle projection. The map of the Gysin sequences of p and p_Γ induced by the commutative square shows that β preserves their Euler classes up to sign, and after changing the orientation if necessary we can assume that the Euler classes are preserved by β . The isomorphism type of a principal circle bundle is determined by its Euler class. Since p and the pullback of p_Γ via β have the same Euler class, they are isomorphic, which gives a desired diffeomorphism of E and N/Γ and completes the proof of the "only if" direction.

Proof of Theorem 2. In view of [5, 12] it is enough to prove inductively that the total space of any circle bundle over an almost flat manifold is almost flat. This comes via the following standard argument. Let $p \colon E \to B$ be a smooth circle bundle over a closed manifold B. For any Riemannian metric \check{g} on B there is a metric g on E such that p is a Riemannian submersion with totally geodesic fibers which are isometric to the unit circle, see [2, 9.59]. As in [2, 9.67] let g^t be the metric on E obtained by rescaling g by a positive constant t along the fibers of p, i.e., g^t and g have the same vertical and horizontal distributions \mathcal{V} , \mathcal{H} , and $g^t|_{\mathcal{V}} = tg|_{\mathcal{V}}$ and $g^t|_{\mathcal{H}} = g|_{\mathcal{H}}$. The fibers of p are p^t -totally geodesic [2, 9.68] so the p^t -totally geodesic The diameters of p^t -totally geodesic [2, 9.68]. The following lemma finishes the proof of almost flatness of p^t -totally geodesic [2, 9.68].

Lemma 3. The sectional curvatures K^t , \check{K} of g^t , \check{g} satisfy $|K^t| \leq |\check{K}| + O(\sqrt{t})$.

Proof. Fix any 2-plane σ tangent to E. Since \mathcal{H} has codimension one, σ contains a g^t -unit horizontal vector X. Let C be a g^t -unit vector in σ that is g^t -orthogonal to X. Write C = U + Y where $U \in \mathcal{V}$, $Y \in \mathcal{H}$. The sectional curvature of σ with respect to g^t is given by

$$K_{\sigma}^{t} = \langle R^{t}(C, X)C, X \rangle^{t} = \langle R^{t}(Y, X)Y, X \rangle^{t} + 2\langle R^{t}(Y, X)U, X \rangle^{t} + \langle R^{t}(U, X)U, X \rangle^{t}$$

where $\langle C, D \rangle^t := g^t(C, D)$ and R^t is the curvature tensor of g^t .

Lemma 9.69 of [2] relates the A tensors A^t , A of g^t , g as follows: $A^t_Y X = A_Y X$ and $A^t_X U = t A_X U$. Recall that $A_Y X$ is vertical and $A_X U$ is horizontal. The formulas in [2, 9.28, 9.69] give

$$\check{g}(\check{R}(\check{Y},\check{X})\check{Y},\check{X}) - \langle R^t(Y,X)Y,X\rangle^t = 3\langle A_Y^tX,A_Y^tX\rangle^t = 3t \, g(A_YX,A_YX) \\
\langle R^t(Y,X)U,X\rangle^t = -[\langle (D_XA)_YX,U\rangle]^t = -t \, g((D_XA)_YX,U) \\
\langle R^t(U,X)U,X\rangle^t = \langle A_Y^tU,A_Y^tU\rangle^t + [\langle (D_UA)_XX,U\rangle]^t = t^2 g(A_XU,A_XU)$$

168 I. Belegradek

where $[\langle (D_U A)_X X, U \rangle]^t = 0$ by the last formula in [2, 9.32].

Since $g(X,X) = 1 = g^t(C,C) = g(Y,Y) + tg(U,U)$, the vectors X, Y, $\sqrt{t}U$ lie in the g-unit disk bundle of TE, which is compact, so the functions $g(A_YX,A_YX)$, $\sqrt{t}g((D_XA)_YX,U)$, $tg(A_XU,A_XU)$ are bounded.

Therefore, if $Y \neq 0$ and $\check{\sigma}$ is the projection of σ in TB, then

$$K_{\sigma}^{t} = \check{g}(\check{R}(\check{Y},\check{X})\check{Y},\check{X}) + O(\sqrt{t}) = \sqrt{\check{g}(\check{Y},\check{Y})} K_{\check{\sigma}} + O(\sqrt{t})$$

and if Y = 0, then $K_{\sigma}^t = t^2 g(A_X U, A_X U) = O(t)$. Thus $|K_{\sigma}^t| \le |K_{\sigma}| + O(\sqrt{t})$.

References

- [1] I. Belegradek and G. Wei: *Metrics of positive Ricci curvature on vector bundles over nilmanifolds*. Geom. Funct. Anal. **12** (2002), 56–72.
- [2] A.L. Besse: Einstein manifolds, Classics in Mathematics. Springer-Verlag, Berlin, 2008, Reprint of the 1987 edition
- [3] E. Fadell and S. Husseini: On a theorem of Anosov on Nielsen numbers for nilmanifolds; in Nonlinear functional analysis and its applications (Maratea, 1985), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 173, Reidel, Dordrecht, 47–53, 1986.
- [4] Y. Félix, J. Oprea, and D. Tanré: Algebraic models in geometry, volume 17 of Oxford Graduate Texts in Mathematics 17, Oxford University Press, Oxford, 2008.
- [5] M. Gromov: Almost flat manifolds. J. Differential Geom. 13 (1978), 231–241.
- [6] J.B. Lee and M. Masuda: Topology of iterated S¹-bundles, Osaka J. Math. **50** (2013), 847–869.
- [7] K.B. Lee and F. Raymond: *Geometric realization of group extensions by the Seifert construction.*; in Contributions to group theory, Contemp. Math, Amer. Math. Soc., Providence, RI, 353–411, 1984.
- [8] A.I. Mal'cev: On a class of homogeneous spaces, Izvestiya Akad. Nauk. SSSR. Ser. Mat., 13 (1949), 9-32.
- [9] M. Nakayama: On the S¹-fibred nilBott tower, Osaka J. Math. **51** (2014), 67–87, 2014.
- [10] R.S. Palais and T.E. Stewart: Torus bundles over a torus, Proc. Amer. Math. Soc, 12 (1961), 26–29.
- [11] M.S. Raghunathan: Discrete subgroups of Lie groups, Springer-Verlag, New York-Heidelberg, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, 1972.
- [12] E.A. Ruh: Almost flat manifolds, J. Differential Geom, 17 (1982), 1–14.
- [13] P. Scott: The geometries of 3-manifolds, Bull. London Math. Soc, 15 (1983), 401–487.
- [14] S. Weinberger: The topological classification of stratified spaces. Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1994.

School of Mathematics Georgia Tech Atlanta, GA, USA 30332 e-mail: ib@math.gatech.edu