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Abstract

We establish what semi-discrete linear Weingarten surfaces with Weierstrass-type representa-
tions in 3-dimensional Riemannian and Lorentzian spaceforms are, confirming their required
properties regarding curvatures and parallel surfaces, and then classify them. We then define
and analyze their singularities. In particular, we discuss singularities of (1) semi-discrete sur-
faces with non-zero constant Gaussian curvature, (2) parallel surfaces of semi-discrete minimal
and maximal surfaces, and (3) semi-discrete constant mean curvature 1 surfaces in de Sitter
3-space. We include comparisons with different previously known definitions of such singular-
ities.

1. Introduction

Smooth (spacelike) linear Weingarten surfaces in 3-dimensional Riemannian or
Lorentzian spaceforms are those for which the Gaussian and mean curvatures K and H
satisfy an affine linear relation

aK+28H+vy=0

for constants a, § and y not all zero, and generally these surfaces will have singularities.
There are special cases of these surfaces that admit Weierstrass-type representations:

(1) minimal surfaces in 3-dimensional Euclidean space R? and their parallel surfaces,

(2) maximal surfaces in 3-dimensional Minkowski space R>! and their parallel surfaces,

(3) surfaces in 3-dimensional hyperbolic space H? such that« = 1 = fand y = -1 — 3,
referred to here as linear Weingarten surfaces of Bryant type, or BrLW surfaces for
short (note that flat surfaces occur when g8 = 0),

(4) surfaces in 3-dimensional de Sitter space S>! such that @ = —1 —Bandy = 1 — 3,
referred to here as linear Weingarten surfaces of Bianchi type, or BiLW surfaces for
short.

The case of fully discrete surfaces with Weierstrass-type representations was considered
in [19], and the semi-discrete case is considered here. The semi-discrete case incorporates
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properties of both the smooth and fully discrete cases, and is informative for understanding
differences between those two cases, and in this work we elucidate some aspects of this, par-
ticularly with regard to properties of singularities of these surfaces. Singularities of smooth
surfaces with Weierstrass representations have been carefully examined recently, see, for
example, [6], [8], [11], [15], [21].

Amongst our results, we establish the next two facts (see Section 4), which are impor-
tant for confirming that our choices for Weierstrass-type representations for semi-discrete
surfaces are correct.

Fact 1. Semi-discrete surfaces with Weierstrass representations satisfy the same affine
linear relations between the Gaussian and mean curvatures as both smooth and fully discrete
surfaces with Weierstrass representations do.

In the smooth case, as mentioned in [16], parallel surfaces of BrLW surfaces in H3, resp.
BiLW surfaces in S>!, are also BrLW surfaces, resp. BiLW surfaces, and these surfaces
are classified into three types. Including minimal and maximal surfaces, there are then
five types, like as listed in Fact 2 below. The same is true of fully discrete surfaces with
Weierstrass-type representations, see [19].

In this paper we investigate semi-discrete linear Weingarten surfaces with Weierstrass-
type representations. As will be seen later, together with explanations of the terminologies
used, semi-discrete linear Weingarten surfaces are classified as in Fact 2 below.

Fact 2. Semi-discrete surfaces with Weierstrass-type representations can be classified
into the following five types:

(1) minimal surfaces and their parallel surfaces in R,

(2) maximal surfaces and their parallel surfaces in R>',

(3) flat surfaces in H? and S>!,

(4) linear Weingarten surfaces of hyperbolic type in H? and S*',
(5) linear Weingarten surfaces of de Sitter type in H> and S*'.

Parallel surfaces of each type belong again to the same type.

Singularities on semi-discrete surfaces. In the smooth case, linear Weingarten surfaces
with Weierstrass-type representations as listed in Fact 2 above might have singularitites. So
it is natural to expect that semi-discrete linear Weingarten surfaces with Weierstrass-type
representations also have some notion of “singularities” (for the fully discrete case, see [14],
[19], [22]). The main purpose in this paper is to clarify and characterize such singularities.

Let us remark on two previous works on singularities of semi-discrete surfaces:

(1) In [23], the first author described semi-discrete maximal surfaces in R>! and ana-
lyzed their singularities. Singularities of semi-discrete maximal surfaces were de-
fined on the set of edges and so are called singular edges, and they reflect the prop-
erty of non-spacelikeness of tangent planes of smooth maximal surfaces at singular
points (see [23] and Definition 5.5 here).

(2) Though singular edges can appear on semi-discrete spacelike surfaces with
Weierstrass-type representations in Lorentzian spaceforms, they do not appear on
such semi-discrete surfaces in Riemannian spaceforms. In [24], in order to consider
singularities of general semi-discrete surfaces in Riemannian spaceforms as well,
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Fig. 1. Two different parallel surfaces of a semi-discrete Enneper minimal
surface in R3, with singularities (which have the appearance of cuspidal
edges and swallowtails).

points along the smooth curves of the semi-discrete surfaces that could be singular
were introduced, which were called flat-parabolic-singular (FPS, for short) points.
FPS points are directly related to behaviors of the principal curvatures of semi-
discrete surfaces. Applying this, singularities of particular semi-discrete surfaces
were analyzed.

However, as already mentioned in [24], those FPS points did not identify certain possible
singularities that we would like to consider. So we need to modify the definition of FPS
points of semi-discrete surfaces (see Definition 5.1 here). This enables us to analyze possible
singularities that we could not analyze before.

The semi-discrete case has some uniquely interesting singular behaviors, since it com-
bines elements from both the smooth and fully discrete cases. In the final section, we es-
tablish a definition of singularities on semi-discrete surfaces which takes into account that
singularities can occur with respect to either the smooth parameter or the discrete param-
eter for the surface. Because, like in the fully discrete case, this definition incorporates
sign changes in the principal curvatures, we need to also include the possibilities of flat and
parabolic points. Examples of such singularities can be seen in Figure 1.

We thus find ourselves in a situation where we have two independent notions of potential
singularities of semi-discrete surfaces, one defined on edges and the other defined at points
in the smooth curves of the surfaces. It is natural to look for relations between these two
notions, and this is the purpose of Theorems 5.3 and 5.5 here. Specifically, we prove that
singular points on semi-discrete maximal surfaces in R>! and semi-discrete CMC 1 surfaces
in S>! as defined in this paper imply existence of neighboring singular edges (see Theorems
5.3 and 5.5). Finally we give criteria for singular edges of semi-discrete CMC 1 surfaces
in S>! and prove the analogous result as in Theorem 1.2 in [23] for this case as well (see
Theorem 5.4). With these two theorems we see strong correspondence between the two
notions of potential singularities, giving us further confidence in the usefulness of these two
notions.

Along the way, we give criteria for determining singularities on parallel surfaces of semi-
discrete minimal and maximal surfaces (see Theorem 5.1), as well as on semi-discrete sur-
faces of Bryant and Bianchi types (see Theorem 5.2).
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2. Semi-discrete Legendre immersions in 3-dimensional spaceforms

Let M? be a 3-dimensional Riemannian or Lorentzian spaceform that is a quadric in a
4-dimensional Riemannian or Lorentzian vector space V*. A semi-discrete map is a map

x(k,t) : D - M?,

where D is a subdomain of Z x R. We define derivatives and differences of x by

d
x=x(k, 1), x; = x(k+1,¢t), 0x = d—):, Ax =x; — x.

We will assume x is a conjugate net, that is, dx, dx; and Ax lie in a 2-plane in V4, called the
tangent plane of the surface at the edge [x, x;] with endpoints x and x;.

Definition 2.1. This map x(k, t), together with a unit normal map n(k, t), is called a semi-
discrete Legendre immersion

D 3 (k, 1) = (x,n) € T\M°>

if it satisfies the following conditions:

(1) On, Ony and An all lie in the tangent plane of the surface at the edge [x, xi],
(2) Ax, ny and n all lie in one 2-dimensional plane in V*,
(3) n is perpendicular to Ox.

Like for the fully discrete case, the curvature line condition in the discrete direction is
partially built into condition (2) above, but we would additionally require that An is parallel
to Ax. The curvature line condition in the smooth direction is simply that dx and dn are
parallel, as in the next definition. Existence of a curvature-line parametrization in the case
of smooth surfaces rules out most types of umbilic points, and so in the following definition
we are implicitly ruling out any semi-discrete surface with some notion of umbilic point.

Definition 2.2. If An||Ax and 0x||0n and the tangent cross ratio
cr(x, x1) := dx - (Ax)™" - dx; - (Ax)™!
satisfies that
cr(x,x;) €R and cr(x,x;) <0,
we say that x is curvature-line parametrized.

To define the tangent cross ratio cr(x, x;) above requires that we multiply and invert points
in M3, which can be done as follows: we set

R := {(21,22,23,0) |z € R} C V = R* := {(z1, 22, 23, 24) | j € R}
with standard Euclidean metric
(21,22,23,24) © (W1, W2, W3, Wa) = Z1W1 + Z2W) + Z3W3 + 24y
on V, and set H® = H3 U H?, with

3. 2 2 2 2
HY :={(z1,22,23,20) |12; €ER, 27 + 55 + 23 — 75 = —1, 20 > O},
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H? = {(z1,22,23,20) |2, ER, &2 + 23 + 25 — 2 = 1, 79 < 0},
and
sl = {(z1,22,23,20) 12 € R, zf + z% + z% - z% =1},
all lying in
V=R ={(z1,22,23.20)|1z; € R}
with the Minkowski metric
(21,22, 23, 20) © (W1, w2, W3, Wo) = Z1W1 + 22w + Z3W3 — ZoWo -

The relevant 4-dimensional spaces are only R* and R*!, and we can identify points in those
two spaces with 2 by 2 matrices as follows:

21+iz 3 +izu

20+23 21— i
—zz+iz 71— i '

3,1
, R 3(z1,22,23,20) .
21+ 20 —13

4
R" 3 (21,22,23,24) P (

We then can regard multiplication and inversion of points in M3 as multiplication and inver-
sion of matrices. For example, in the case of R3L

(21,22, 23, 20) © (W1, w2, w3, Wo) =
ltr((z() +z3 71— iz2)( 0 1)(w0 +w3 wy - iwg)t( 0 1)]
2 21+1i2 20— 73 -1 0 wp +iw; Wy — w3 -1 0))°
Note that the tangent cross ratio being real, which means it is a real scalar multiple of the
2 by 2 identity matrix and then we can regard that scalar multiple as the tangent cross ratio
itself, implies the circularity condition, that is, there is a circle through x and x; which is

tangent to dx at x and dx; at x;.
We can then define semi-discrete isothermic surface as follows:

Definition 2.3. A semi-discrete x in M° is semi-discrete isothermic if the equation

cr(x(k,t), x(k + 1,1)) = % <0

holds, where T = 1(t) € R depends only on t and o = o(k) € R depends only on k.

3. Curvatures of curvature-line parametrized semi-discrete surfaces
First we define the principal curvatures:

Definition 3.1. For a semi-discrete Legendre map (x,n), the scalar functions ki(t),
Kik+1(2) given by

on = —k()0x , An = —kppr1(H)Ax,
are called the principal curvatures of x. Here we abbreviate
Kk =k(t), k1 = Kes1(D),  Ko1 = Kipr1(8)  (also k-10 = Kr—14(2)).

The following Definition 3.2 in the case of M> = R3 was given in [13], then in M? = R>!
in [23]. The definition of H for semi-discrete surfaces in general 3-dimensional spaceforms



174 M. Yasumoro aND W. RossmMAN

M? was given in [3], and here we also give the definition of K for general M?>. For this
definition we use the mixed area formulation found in [3].

For two semi-discrete conjugate surfaces x,y : D — V* satisfying parallelity conditions
0x || 0y and Ax || Ay, we define the mixed area element

1
A(x,y) = Z((@x +0x1) A Ay + (Oy + dyy) A Ax) ,
where the operator A is defined by
(anb)c:=(aoc)b—(boc)a.

Definition 3.2. Let (x,n) : ZXR — T\ M? be a semi-discrete curvature-line parametrized
surface. Then the Gaussian curvature K and mean curvature H of x are defined, as functions
on the set of edges [x, x1], by

An,n) =K -A(x,x), A(x,n)=-H-A(x,x).

Similarly , the Gaussian and mean curvatures of n can be defined, regarding x as the normal
vector of n.

Similarly to the arguments in [1] and [24], we have the following proposition:

Proposition 3.1. Let x be a semi-discrete curvature-line parametrized surface with Gauss
map n so that (x,n) is a Legendre immersion. Let k, k1, ko1, K, H be the resulting principal,
Gaussian and mean curvatures. Then

2
_ ko1(2kKy — KKo1 — K1Ko1) o KK

K , = —
K1+K—2K01 K1+K—2K0|

ExampLe 3.1. Like as seen in [18], where semi-discrete catenoids in R? with smooth
profile curves were shown to have the same profile curves as smooth catenoids, one can now
check here that, more generally, semi-discrete linear Weingarten surfaces in spaceforms with
smooth profile curves have the same profile curves as their smooth counterparts.

4. Semi-discrete surfaces with Weierstrass representations

4.1. The cases of R? and R%!. Let g be a semi-discrete holomorphic function, that is, a
semi-discrete isothermic map into the plane, with tangent cross ratio factorizing functions 7,
o. We assume the semi-discrete analog of a smooth holomorphic function having a nonzero
derivative, that is, dg and Ag are never zero, and we now state the Weierstrass-type represen-
tations for semi-discrete isothermic minimal and maximal surfaces, i.e. those with H = 0 in
R3 and R>!:

Proposition 4.1 ([18], [23]). Any semi-discrete minimal (resp. maximal) surface in R3
(resp. R*>!) can be piecewise represented using a semi-discrete holomorphic function g by
solving

. 1 — eg? - 1 —€egg
(1) Ox = Re 250 i(1+eg®)||, Ax=Re|—/i(l1+egg)l||,
gl 5 2Ag
€g elg+g1)

with € = 1 (resp. € = —1), and the normal field is
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2€eRe(g)
2elm(g) |.

T T r dgP
1 - egP

Direct computation shows the following lemma.

Lemma 4.1. For any semi-discrete minimal (resp. maximal) surface, the k and Koy in
Definition 3.1 satisfy

—4|dg|? —4|Agl?
=, K = .
(1 +elglP?” "' (1 + elglP)(1 + €elgi )

One can also confirm this corollary:

2)

Corollary 4.1. For any choice of 6 € R, the parallel surface
Xg:=x+0-n

satisfies the circularity condition, with Gaussian and mean curvatures

. Ko . Hy — 0Ky
Ky = ., Hy =
1—29'H0+92'K0 1—29'H0+92'K0

satisfying

Hy

Fg - _
Also, the principal curvatures for xqy satisfy

K Ko1
KGZI—Q'K’ K01'9:1—9'K()1'

4.2. The cases of H*> and S>!. Taking the same ¢ as in Subsection 4.1, we make the
genericity assumption

T :=1+sg9#0

for some chosen constant s € R. Take A4 € R to be any non-zero constant so that 1 — Ao # 0.
Solving, for E € GL,C,

0 A 0
(3) EilAE = (/lo‘ g) > EilaE = (/l‘r ag) ’

a 0 g 0
and defining
0 VT
VT ONT

and the surface x and its normal n by

sgn(T)
X =

) detE

T\ _Sgn(T) I 0) —,
EL(EL) , n= dotE EL(O _1)(EL) s

we will see that these are discrete BrLW surfaces and BiLW surfaces in H* and S>!, respec-
tively. First, analogous to the discrete case, we have the following proposition.
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Proposition 4.2. Semi-discrete BrLW surfaces in H> and BiLW surfaces in S*' with
Weierstrass-type representations as in Equations (3), (4), (5) are circular nets.

Proof. Let x be a BrLW surface in H? described by a semi-discrete holomorphic function
g. Observing that det E does not depend on the smooth parameter ¢, we have

0 dg(1 + slgl”) )_,
Ox=cE E ,
! (a.z;(l +slgP)  —s(gdg + gog)

I Ag 0 dg1(1 + slg1 ) ) 1)
0x1 = E| 4o _ - = ME,
L (i—g 1)(091(1+SIg1I2) —5(g1091 + 91991\ Ag
Agl(1 2 Ag(1 2
Ax:03E(| gl~(1 + slgl) g(1 + slgl*)

—t
I E,
Ag(1 +slgl?)  Ao(1 + slgil*) — s(lgil* - Iglz))
where

(1= 9I0gP + Ar( +slg™)? (1= 9I9giP + Ax(1 + slgi )
0gP(1 + slgP2detE ~ 7 |8giP(1 + slgiP)2(1 — Ac) det E’
(1= )|AgP + Ao (1 + slgP)(1 + slg1[?)

~ 1AgP( + slgP)(1 + slgi P)(1 — Ac) det E

Cc| =

. . . 1 0
By an isometry of R*!, without loss of generality, we can assume that E = ( 1) at one
point. Using the tangent cross ratio condition cr(g, g;) = 1, by a calculation, we have

-1 1 1 0
Ox - (Ax)" -0x; - (Ax)"" = cr(x,x1)

0 1
with

o(1—-20) {(1—9ldgP + Ar(1 + slg*)* {1 — $)|0g, > + Ar(1 + slg,1*)*}
cr(x,xy) = . .

{(1 = 9)IAgl* + Ao (1 + slglP)(1 + slgi11)}*
Thus x is a circular net. Note that x is not generically semi-discrete isothermic.

A proof that n is a semi-discrete circular net will be given just after Lemma 4.2. m|

Direct computations confirm this lemma:

Lemma 4.2. For any allowed choice of s, we have the following:
e Jx || On, Ax || An in R>', and the principal curvatures in Definition 3.1 satisfy
0gP*(=1 = ) + (1 + slgI*)* A7
6) k= 5 S5 > Kol
10g|*(1 = ) + (1 + slgl*)* AT

_ |AgP*(=1 = 5) + (1 + slgP)(1 + slgi ) Ao
[AgP(1 = s) + (1 + slgP)(1 + slg1 D) Ao
e 1+slgl> >0, resp. 1+ slg|* <0, if and only if x lies in H3, resp. H>.

o Ax, Ox, Ox; lie in a plane (that is generically spacelike) in R>, and thus x satisfies
the circularity condition.

Now we show the semi-discrete circularity of semi-discrete BILW surfaces in $>!. Let n

be a semi-discrete BiLW surface described by a semi-discrete holomorphic function g. By
Lemma 4.2, we have
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on-(Any™ - any - (A = Zlax - (A dx, - (An)!

Ko
_ (1 =20) {(=1 = 9)ldgl* + Ax(1 + slg»)*H( = 9)dg* + Ax(1 + slgi*)*) (1 o)
T {(=1 = $)|AgP + (1 + slglP)(1 + slg1[?)}2 0 1)

Thus 7 is also semi-discrete circular, proving the last part of Proposition 4.2.

Furthermore, combining Proposition 4.2 and Lemma 4.2, we can show the following
curvature properties of semi-discrete Br(LW and BiLW surfaces, which also imply Fact 1 in
the introduction:

Proposition 4.3. A semi-discrete BrLW surface x in H? and a semi-discrete BiLW surface
n in S*! described by a semi-discrete holomorphic function g via Equations (3), (4), (5)
satisfy the following curvature conditions:

@) 2s(H* - 1D+ (1 =s)(K*=1)=0, 2s(H'-1)-(1+s)(K"-1)=0,

where H* and K~ are the mean and Gaussian curvatures of x and H" and K" are the mean
and Gaussian curvatures of n.

Proof. The curvature condition for x can be obtained by a direct but tedious calculation,
which we omit here. We now see the curvature conndition for n from the curvature condition

for x: The surfaces satisfy K* = X H = o Substituting K*, H* into the curvature
condition for x, we have the curvature condition for n, proving the proposition. O

Like in the smooth and fully discrete cases, we define types of semi-discrete BrLW and
BiLW surfaces as follows:

Definition 4.1. The surfaces x and n are said to be of hyperbolic type if s > 0, and of de
Sitter type if s < 0.

Let x be a semi-discrete BrLW surface in H> and let n be a semi-discrete BiLW surface
in S>! described by a single choice of g and s. Then we define the parallel surface x4 of x at
distance 6 (6 € R) as

xg := coshf - x +sinh @ -n € H>.
One can confirm the following proposition, which proves Fact 2 in the introduction:

Proposition 4.4. For any choices of s and 6 € R, the parallel surface xq of a semi-discrete
circular surface x in H? with unit normal vector field

ng :=sinh - x + cosh - n € §>!
satisfies the circularity condition, and
LK cosh’ @ — H sinh(26) + sinh” ¢ . —(Kj +1)sinh(26) + 2H; cosh(26)
~ cosh? 0 — H}sinh(260) + K sinh®6~°  2{cosh®6 — H sinh(20) + K sinh’ 6}

In particular, if x is a semi-discrete BrLW surface in H?, xq is also of Bryant type satisfying

®) 2s9(Hy — 1)+ (1 = sp)(Ky —1) =0,

26

where sy = e “"s, and xy can be also obtained from the Weierstrass-type representation.
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Moreover, the normal ng also satisfies the circularity condition, and is of Bianchi type
satisfying
9) 2s9(Hy = 1) = (1 + 59)(Ky = 1) = 0,
and ng can be also obtained from the Weierstrass-type representation.

Proof. Combining Lemma 4.2 and the definition of the tangent cross ratio, we can easily
show the circularity conditions for xy and ny. Next we determine the mean and Gaussian
curvatures of a parallel surface of a semi-discrete circular surface in H>. Let K3, HY) (resp.
K, Hy) be the Gaussian and mean curvatures of x (resp. xy). By a calculation, we have

A(xg, xg) = cosh? @ - A(x, x) + sinh(26) - A(x, n) + sinh® 6 - A(n, n)
= {cosh? 6§ — H{ sinh(26) + K sinh? 0} - A(x, x).
Similarly, we have
A(ng, ng) = {sinh? @ — H{ sinh(26) + K} cosh? 6} - A(x, x),
A(xg,ng) = %{(Kg + 1) sinh(26) — 2H] cosh(26)} - A(x, x).
Thus we have K, H; of the forms as in Proposition 4.4.
Here we assume that (x,n) is a pair of a semi-discrete BrLW surface in H?> and a semi-

discrete BiLW surface in S>! described by a single choice of g and s. Note that x is a parallel
surface of x, with distance —6, that is, x = (xy)_g. Then we have

K cosh® 0 + H sinh(26) + sinh” 6 (K7 + 1) sinh(26) + 2H cosh(26)
X — s H())c = .
O cosh?@ + Hy sinh(20) + K sinh? 0 2{cosh® 6 + Hy sinh(20) + K sinh? 6}

Substituting these into Equation (7), we have the relation (8). By a similar argument as in
the proof of Proposition 4.3, we have Equation (9).

Finally, we show that any parallel surfaces of semi-discrete BrLW and BiLW surfaces
with Weierstrass-type representations can be also described by Weierstrass-type representa-
tions. First we consider parallel surfaces of semi-discrete BrLW surfaces in H*. Let x be a
semi-discrete BrLW surface in H® and x be a parallel surface of x with distance 6. Here we
assume that 7 > 0 (even when 7 < 0, the conclusion is the same). Then

1 ¢ 0\t 1 (e +sgg)  —selg
Xy = —EL( e_(’) (EL) = mE[ _9= S+se gy | E

9)
detE 0 —se %G v 99
L[ (e o))1+ma —w*g( k%ﬂ 0)) | ot
=——|E 2e 2,5 || E = ——=FL(EL) ,
detE ( ( 0 "))\ -sef % 0 " detE (EL)
3 2 . (1+335 -35
where E := E( 0 69/2) and L := 5 57 (G = %, § = se”?’). By the defini-
14507

tion of E, E is a solution of
. (0 0dg . ~(0 Ag
oE=E|l. Y. aE=E|, Y|
I S
7 7

Thus x4 can be obtained via the Weierstrass-type representation by replacing g in Equations
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(3), (4), (5) with g and choosing §. Similarly, we consider semi-discrete BiLW surfaces in
S21. Let n be a semi-discrete BILW surface in S>! and let ng be a parallel surface of n at
distance 6. Then ny can be obtained via the Weierstrass-type representation by replacing g
in Equations (3), (4), (5) with g and choosing §, proving the proposition. ]

We have thus arrived at Facts 1 and 2 in the introduction. The smooth and fully discrete
cases can be found in [10], [16], [19].

5. Singularities of semi-discrete surfaces with Weierstrass representations

Influenced by definitions of singularities in the smooth and fully discrete cases, we make
the following definition, refining the definition in [24] (recall that flat points on smooth
surfaces are those for which both principal curvatures are zero, and parabolic points are
those for which exactly one principal curvature is zero):

T B

Fig.2. Left: A typical example of the first part of item (1) in Definition 5.1.
Right: A typical example of the first part of item (2).

Definition 5.1. We say that a point (ko, ty), also its image x(ko, ty), is a flat (F) or par-
abolic (P) or singular (S) point of the semi-discrete surface x(k,t), with respect to either
the discrete direction represented by changing k (see the left-hand side of Figure 2) or the
smooth direction represented by changing t (see the right-hand side of Figure 2), as follows:

(1) x(ko, tp) is an FPS point with respect to the discrete direction if

Kig—1.4o (20) * Kig eo+1(f0) < 0, or at least one of Ki,-1 x,(10), Kiy ky+1(f0) IS infinite.
(2) x(ko, ty) is an FPS point with respect to the smooth direction if
Kio—1(f0) - Ky (f0) < O 0r ki, (T0) - Kiy+1(f0) < 0 or
at least one of ki,—1(t0), Kk, (10), Ki,+1(t0) 1S infinite.

In the latter cases of either (1) or (2) above, where infinite values occur, we can say that
x(ko, to) is a singular (S) point.

Like in [19], we are interested in cases where we can differentiate between FP and S
vertices. This is the purpose of the next two definitions, which are independent of whether
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the surface has a Weierstrass representation.

Definition 5.2. We say that a semi-discrete circular surface x is embedded at a given
edge [x, x1] if Ox and Ox; lie to the same side of the line through Ax within the tangent
plane. Embeddedness of the Gauss map n is similarly defined.

Generically, in the (non-umbilic) smooth case, rank 1 singularities of a surface correspond
to flat or parabolic points of the surface’s unit normal field, and vice versa. When x or n is not
locally embedded, we certainly have a singular point, and this motivates the next definition.

Definition 5.3. Let x be a semi-discrete circular surface with bounded principal curva-
tures and spacelike tangent planes on its edges. Suppose that x(ko, ty) is an FPS point with
respect to just the smooth direction, and that precisely one of {_1o 1= ky,—1(to) - Kk, (to) and
€10 1= K, (t0) - Kiy+1(f0) is negative and the other is positive. Then we call x(ko,ty) an FP
point (i.e. non-singular), resp. a singular (S) point, if the Gauss map is not embedded, resp.
is embedded, on the edge corresponding to the €.y that is negative att = ty (* = —1 or 1).

REMARK. Suppose ki,—1(f0) Kk, (f0) is negative. Then n is embedded on the edge [xk,-1, Xk, ]
at t = to if and only if cr(ng,_1,nk,) < 0, since the tangent plane is spacelike. By definition,
cr(Xg, 1, Xg,) = K,%O_l 1"1;01—1@01“(”/60—1 , Mg, ), 50 1 is embedded if and only if cr(x,_1, xx,) > 0.

It was pointed out in [19] that parallel surfaces of minimal and maximal surfaces never
have flat or parabolic points, and this was used in that work to justify the analog of the
definition below for the fully discrete surface case. Similarly, the definition just below is
also justified in the semi-discrete case. In fact, we can see from the formulas for «y and «o; ¢
in Corollary 4.1 that these principal curvatures are never zero.

Definition 5.4. On any parallel surface of a semi-discrete minimal or maximal surface,
all FPS points are called simply singular (S) points.

Lemma 4.2 now provides proofs of the following two theorems.

Theorem 5.1. For a parallel surface xy of a semi-discrete minimal or maximal surface
at oriented distance 6 (in the maximal case € = —1 we assume |g_1|, |g|, |g1| are all not 1),
the condition for k_y¢ - kg1 to be nonpositive — that is, xy(ko, ty) is FPS (and in fact singular,
by Definition 5.1) with respect to the discrete direction — is

6 € [min(a_y,a;), max(a_1,a;)],

where

—o(1 + €lgP)(1 + €lg.|?
g = —oU *€lgl )(2 do-D ity
4|Ago.l
and the condition for k-« to be nonpositive — that is, xg(ko, to) is FPS (and in fact singular, by
Definition 5.1) with respect to the smooth direction (with regard to the edge [ xy(ko, ty), xg(ko+

1,20)]) —is

6 € [min(b, by), max(b, b1)] ,

where
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“t(l gl =t +egP)
4ogl> 40g:?

One can analogously give a condition for xy(ko, ty) to be singular in the smooth direction
with regard to the edge [x¢(ko — 1, ty), x9(ko, to)].

b=

For notational simplicity, set
a-i1(s) := L+ slg_i % a(s) == 1+ slgP, ai(s) := 1 + sl .
‘We then have the next theorem.

Theorem 5.2. Let x be a semi-discrete BrLW surface with Gauss map n a semi-discrete
BiLW surface. The condition for k*, - k), (equivalently, K" - k) to be nonpositive — that
is, we have an FPS point with respect to the discrete direction — is

Ag_1P(1 + 5) = Ao_ja_1(s)a(s)} - {|AgF(1 + 5) — dTa(s)a (s)} > 0,

(1Ag-1P(1 = 5) + Ao 1a-1()a(s)} - {1AgF(1 = 5) + doa(s)ai(s)} <0,
or

(1Ag-12(1 + 5) = Ao 1a-1(a()} - (IAgP(L + ) = doa(s)a(s)} <0,

(1Ag-1P(1 = ) + Ao _1a-1(9)a()} - {1AgF(1 = ) + doa(s)ai(s)} > O,

and the condition for * - k| (equivalently, " - k) to be nonpositive — that is, we have an FPS
point with respect to the smooth direction — is

{16g1(1 + 5) — Ara(s)’} - {19g1|(1 + ) — ATa1(s)*} > O,
{{Ié‘gl(l — ) + Ara(s)’} - {10gl(1 = 5) + A1 (5)°) < 0,
or
{10g1(1 + 5) = Ara(s)*} - {10g1|(1 + 5) — ATy ()} < O,
{nam(l = 5) + Ata(s)} - {19g11(1 = 5) + AT ()%} > 0,

In [23], the second author established a notion of singular edges for semi-discrete surfaces
in Lorentzian spaceforms:

Definition 5.5. An edge [x, x1] of a semi-discrete surface is said to be singular if the
tangent plane at this edge is not spacelike.

With this definition in hand, the second author proved this in [23]: Let g be a semi-discrete
holomorphic function and let x be a semi-discrete maximal surface determined from g by
Equation (1). Then an edge [x, x;] is singular if and only if the tangent circle C at g, g;
intersects the unit circle S! = {z € C||z] = 1}.

We now prove the following relationship between singular points and singular edges:

Theorem 5.3. At any singular point x(k,t) of a semi-discrete maximal surface with re-
spect to the discrete direction such that ki_, ; and ki +1 are both finite, at least one of the
two adjacent edges is singular.

At any singular point with respect to the smooth direction, the only possibility is that k is
infinite there and the corresponding image of g lies in S' there.
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Proof. Proof of the first paragraph:
16/Ag_10l*[AgorI*
o_10001(1 = lg-1»)(A = lg»)>(A = |g1l*)
and thus 0 > (1 — |g_;>)(1 = |g1[%), which implies exactly one of g_; and g, lies inside S'.

Proof of the second paragraph: By Equation (2), x cannot change sign, and the result
follows. O

0> k10 ko1 =

We have the analogous definition for singular edges of semi-discrete CMC 1 surfaces in
S%1, as was given for semi-discrete maximal surfaces in R>! in [23]:

Definition 5.6. Let n be a semi-discrete CMC 1 surface in S>'. Then [n,n;] for some
(k,t) € ZXR is a singular edge if the plane P(n, ny) spanned by {0n, An, 0An} is not spacelike.

Now, similar to Theorem 1.2 in [23], we have the following proposition, which is prepara-
tory for proving Theorem 5.5 below.

Theorem 5.4. Let n be a semi-discrete CMC 1 surface in S>'. Then [n,n,] for some
(k,t) € Z xR is a singular edge for all A sufficiently close to zero if and only if the circle
tangent to 8g and dg; at g and gy, respectively, intersects S' transversely.

Proof. By Lemma 4.2, d(x + n) || dn and A(x + n) || An, implying that each tangent plane
of x +n at the edge [x + n, x| + n] is parallel to the one for x. Thus checking the causality of
a tangent plane of x at [x, x;] is equivalent to checking causality of a tangent plane of x + n
at the edge [x + n, x| + np].

. 1 —g
Defi F:=E
efining (O )

F 2 (lgP g\\=
tn=——0o»[—— (" I)F,
e detF(1—|g|2(g 1

= F 2 |91|2 g1 ff
T T detF\ (- — g\ a1 1 ’

where F and g satisfy

—a2\ 1 _ Pl
anF(g 9)_T, AF:F(Q ggl)_(f 0910011 _ T

), we have the following forms:

1 -g)dg 1 -g1]Ag"  |Agl o’
Then
d(x+n) = ;FXIFI, A(x+n) = 2 FX,F",
(1—1gl)* det F (1 =20)1 = lg»( —|g1|*) det F
where

y ._[(09:-9+9-05 dg+g* g
"\ dg+5tog  dg-g+g-0g)°

lgil> =g Ag+ gglAé) ) (Igl2 g)
X =7 _ + Ao (1 — _ .
’ (Ag +3giAg  lgil* —lgl? (1 =lonl) 1

Because d(x + n), A(x + n) and d(x; + n;) are coplanar, our task is to find a condition,
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call it condition (C), for the span of X; and X, to be non-spacelike for all A close to zero,
ie. (X1, Xi¥{X2,Xo) — (X;,X2)? < 0 (for all A close to 0), and show that this condition
(C) is equivalent to the circle tangent to dg and dg, at g and g, respectively, intersecting
S' transversely. When |g| = 1, respectively |g;| = 1, we know that d(x + n), respectively
d(x; + ny), itself is lightlike for all 4 € R\ {0}, so the tangent plane will certainly not be
spacelike. Thus, it remains only to find the condition (C) when |g| and |g,| are both not 1,
and in this case it is

41AgPlogl (1 — g1 = lgil*) < {(1 — gg1)Ag - dg + (1 — ggn)Ag - dg)* .

A direct computation verifies that this condition (C) is precisely the condition that the circle
tangent to dg and dg; at g and g, respectively, intersects S' transversely. |

We now prove the theorem we have been aiming towards:

Theorem 5.5. Consider a point (k,t) in the domain of a semi-discrete CMC 1 surface in
S>L. Suppose this point is a singular point with respect to the discrete direction such that
Ki—1x and Ky 41 are both finite, for all A sufficiently close to 0. Then at least one of the two
adjacent edges is also singular for all A sufficiently close to 0.

Proof. From the Weierstrass-type representation, we can write the surface as n in $>!
given by some semi-discrete holomorphic function g with s = —1, with corresponding HMC
1 surface x in H? using the same g and same value of s. The assumptions regarding (k, f)
being a singular point for all A close to 0 imply that none of |g|, |g;| and |g_;| are 1, and also
that g; and g_; lie on opposite sides of S!.

By Theorem 5.4, the edge [n(k,t),n(k + 1,1)] is singular for all A close to zero if and
only if the circle tangent to dg and dg; at g and g, respectively, intersects S! transversely.
From the above properties of g, g; and g_y, it is clear that at least one of the two edges
[n(k,t),n(k + 1,0)] and [n(k — 1, 1), n(k, t)] is then singular for all A close to zero. m]

Fig.3. Left-hand side: a semi-discrete CMC 1 Enneper cousin in H3, right-
hand side: a semi-discrete HMC 1 surface in H? U H?. The hyperbolic 3-
spaces H2 and H? are visualized here by stereographically projecting within
4-dimensional Minkowski space to a horizontal 3-dimensional spacelike
vector subspace.
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Fig.4. Left-hand side: a semi-discrete CMC 1 Enneper cousin in S>!, right-
hand side: a semi-discrete HMC 1 surface in S>!. The de Sitter 3-space S>!
is visualized here using the hollow ball model (see [7]).
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