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Introduction

Two techniques, branched covering space and Dehn surgery, are known as
popular methods by which we obtain new 3-manifolds from a link in S3. In
1977, Montesinos [8] showed the following relationship between the 2-fold cyclic
branched covering of S® branched over a link and the closed, orientable
3-manifold which is obtained by doing surgery on a link in S3. A link in S® is
called strongly invertible if there is an orientation preserving involution of S3
which induces in each component of L an involution with two fixed points.

Theorem (MONTESINOS). Let M be a closed, orientable 3-manifold that is
obtained by doing surgery on a strongly invertible link L of n components. Then
M is a 2-fold cyclic covering of S® branched over a link of at most n+1
components. Conversely, every 2-fold cyclic branched covering of S® can be obtained
in this fashion.

A nontrivial knot is called of unknotting number one if there exists a crossing
which is exchanged to deform the knot into a trivial knot. From the proof of
this theorem, as a special case, we have the following: the 2-fold cyclic branched
covering of S® branched over an unknotting number one knot can be obtained
by doing surgery on a strongly invertible knot. In this paper, we give a relationship
between these two knots.

We define the Conway polynomial V(z)e Z[z]) [1] by the following recursive
formulas:

(1) For threelinks L., L_ and L, which differ only in one place as shown in Fig. 1,

VL. @)=V _(2)=2V(2).

(2) For a trivial knot U, Vy(z)=1.
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A X)X
L, L. L, L,

(1) (2)

Fig. 1

Then, for a link L, the Conway polynomial V,(z) of L can be written as

0

Y a (L),

n=r—1

where r is the number of the components of L and a,(L)=0 except a finite number
ofn. If Lis aknot, the Conway polynomial V L(z) can be written as 2 a,,(L)z*".
For a knot K, we define the arf invariant Arf(K) [11] [4] of K by

Arf(K)=a,(K) (mod 2).

For a knot K in S3, we denote by X,(K) the 2-fold branched covering space
of S3 branched over K. Let K be an unknotting number one knot. Then there
is a 3-ball B in S® for which we can change K into a trivial knot U by applying
the modification as shown in Fig. 2. For the 2-fold cyclic branched cover
f:Z,(U)(=8% — S° branched over U, let C be the core of the solid torus V' =f"1(B)
in Z,(U). It is easy to see that C is a strongly invertible knot. By Montesinos’
theorem, X,(K) can be obtained by doing surgery on C. We call the strongly
invertible knot C a surgical knot for Z,(K). Then we have:

Main Theorem. Let K be an unknotting number one knot and C be a surgical
knot for £,(K). Then

Arf(C)=a,(K) (mod 2).

In §1, we construct a surgical knot C for X,(K). In §2, we calculate the arf
invariant of C.
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Fig. 2
1. Construction of a surgical knot

Let K be an unknotting number one knot. Then there exists a crossing which
is exchanged to deform K into a trivial knot. We can choose the crossing as
shown in Fig. 3. Near the crossing, we modify K as shown in Fig. 3, where R
is a 2-string tangle. That is, R is a pair (By,k,), where B, is a 3-ball and k, is
a pair of disjoint arcs in B; with B,nk,=0k,. Let (By,k,) be the complementary
tangle. Thus (S3, K)=(Bo,ko)U(B,,k;). If we replace R with a tangle S=(B,,k,)
with a band b as shown in Fig. 4, we obtain a trivial knot U with b;
(S3, U)=(By, ko)U(By,k,). Let h:0B,—» 0B, be a homeomorphism such that

(8%, K)=(Bgy,ko)U(B,, k,). (we may take h as h,oh,, where h, is given in [12,
h

pp- 300-302].) Let C* be the core of b whose endpoints meet the trivial knot
U. If we transform U into the standard form, C* becomes an arc coiled around
U. By an isotopy, we can deform C* as shown in Fig. 5(1), where P is a
tangle. Considering the 2-fold branched cover f:X,(U)— S* branched over U,
the preimage /= '(C*) of C* is a strongly invertible knot as shown in Fig. 5(2), where
the tangle q is obtained by flipping P. This is a surgical knot for X,(K), which
we denote by C.

/
/ J—

Fig. 3



196 Y. MIYAZAWA

Fig. 4

We orient U and C* as shown in Fig. 5(1). For each crossing, we give the
signature as follows: If a crossing is positive as shown in Fig. 1(1), then the
signature is +1. If a crossing is negative as shown in Fig. 1(2), then the signature
is —1.

Let ¢ be the sum of the signatures of the crossings of U and C*. (Thus we
do not count for the self-crossings of U or of C*) If ¢ is not zero, we can coil
C* around U near an endpoint of C* so that ¢ is equal to zero. Thus we assume
that ¢ is zero.

(1) (2)

Fig. §

Let U=f"'(U). Let C,, C_, Cy and C,, be the oriented links as shown in
Fig. 6, which are identical outside a 3-ball Q inside it are as shown in Fig. 7 and
P is the same tangle as in Fig. 5. Note that, for each link, the orientations of
strings in Q extend to the link compatibly. The three links C,, C_ and C, have
period 2 with periodic map the covering translation of £,(U). Let C, C. and
C}, be the factor knots of C,, C_ and C,, respectively. Since the absolute value of
the linking number |/k(C%,U)| of C% and Uis 1, C, and C_ are knots. And so
C, is a 2-component link. Now C, is a strongly invertible knot and its knot
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type is the same one as the surgical knot C as shown in Fig. 5(2). So we can
regard C as a knot closely related to the three links C,, C_ and C, with period
2. In§2, we will calculate the arfinvariant of a surgical knot from this point of view.

@

N\ 7,

A X)X
C, C. Co C

Fig. 7

2. Calculation of the arf invariant

We give some lemmas before proving Main Theorem. We define the Jones
polynomial W(f)(€ Z[t*'/*]) [2] by the following recursive formulas:

(1) For threelinks L ,, L_ and L, which differ only in one place as shown in Fig. 1,
VL=tV (=" =7 )V (),

(2) For a trivial knot U, Vy(f)=1.

Let L be an oriented link and D be its diagram. We denote the writhe of D by
w(D), which is the sum of the signatures of all the crossings of D. The Kauffman
polynomial Fy(a,z)(€ Z[a*',z*!]) [5] of L is defined by a™*®A(a, z), where Ap(a, z)
is a regular isotopy invariant of D determined by the following properties:

(1) Aola,2)=1,

() As(a,2)=al|a,z), As(a,z)=a"'Afa,z),



198 Y. MIYAZAWA
(3) Ax(a,2)+Ax (@,2)=2(Ay@a,2) + A<(a,2)

Lemma 1 ([3, Lemma 1]). Let L., L_, Ly and L, be four links which differ
only in one place as shown in Fig. 1. If L, is a knot and L, is a 2-component
link J,UJ,, then

1 1
a)(Ly)=— 5(“2(L+) +ay(L.)+2ay(Jy) +a,(J,) + Ea,(LO)Z.

Proof. Let D,, D_, D, and D, be diagrams of L,, L_, L, and L,
respectively. We may assume that the four diagrams differ only in one place as
shown in Fig. 1. Let d be the writhe of Dy, and 1=1Ik(J,,J,)=a,(L,). Then the
writhes of D,, D_ and D are d+1,d—1 and d—4J, respectively. From the
definition, we have:

AD+(aa Z) + AD- (a’ Z) = Z(ADO(a’ Z) + AD“(a’ z))‘
Hence
afa™“* VA, (@,2)} +a”{a VA _(a,2))
=z2(a""Apa,2)+a a7V, (a,2)}).
And thus

aFy (a,2)+a"'Fy (a,2)=z(F,(a,z)+a” **F;_(a,z)).
Since Vi (f)=Fy(—t~ 34 tY* 4+t~ 14 [6], we have
— 7Y (- V (O =" 4+ VAV L0+ 22V ().
Taking the second derivative of both sides at =1, we obtain

21

3
— VD=3 VM) + VLN (D)

3 3
—(= RVL-(1)+EV‘L‘3(1)+ V1)

1
=D+ Ve (1)
+2{V@1)+3434— 1)V, (1) + 64V (1) + V2 (1)},

where V(1) and V(1) are the first and second derivatives of W(f) at t=1,
respectively. It is shown in [9] that, for an oriented r-component link
L=K,u---UK,,
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M) = —3(=2Y "2 Y 24D)
and
VPW= 3(=2r Y ay(K)
i=1
+3(=2r 1 Y AALY

i<j

A= Y AADALL)
D E D

+3(=2Y "2 Y. Ai/L)

i<j
+r—=1)(=2y73,
where 4;(L) is the linking number of K; and K, i#j. Since L, is a 2-component

link and L., L_ and L, are knots, we obtain the following:

VEND)= 12(a,01) + aal05) — 60, (Lo + 3ay(Lo)—
V()= (1) = V(1) =0;

V()= —6ay(L,);

V()= —6ay(L_);

V‘Lzl(l)= —6a,(L).

Using these foumulas, we have the result.

We consider the links C,, C_, C, and C_(=C) given in §l.
Lemma 2.
a)(C,)= —%al(Co) (mod 2).
Proof. By Lemma 1, we obtain
0x(C.)= = C.)+x(C )+ €aldy) +ada) +50,(Cof

where J, and J, are the components of C,. Since a,(C.)—a,(C_)=a,(C,), the
right-hand side is equal to



200 Y. MIYAZAWA
1 1 )
“az(c-)+2(“2(J1)+02(Jz))—'2‘01(co)+5‘11(C0) .

Two knots C, and C_ have period 2 for the covering translation of Z,(U). C%
and C* are the factor knots of C, and C_, respectively, and U=f(0). Since
|Ik(C?%, U)) =1, we have the following relationship between the Conway polynomials
of C, and C% [10]:

Ve ()=Ves(2)* (mod 2).

Since Vs (2)> =1+2a,(C%)z* + O(z*), we obtain a,(C,)=2a,(C%)=0 (mod 2). We
have the same result for C_. Hence

a,(Co)=a,(C4)—ay(C-)=0 (mod 2).

This completes the proof.

In order to prove Main Theorem, by Lemma 2, we have only to calculate
a,(C,), the linking number of C,. Before doing this, we consider the writhe of
C and the second coefficient of the Conway polynomial of K.

We consider the oriented knot U and the arc C* as shown in Fig. 5(1). Suppose
the tangle P in Fig. 5(1) consists of n strings and has g crossings. If we trace
the arc C* from the bottom endpoint according to its orientation, we can number
the n strings in the tangle P in the order of passage. We denote the string with
number i by y;, i=1,2,---,n. We devide the g crossings in the tangle P into two
types. A crossing where y; and y;, i=j (mod 2), intersect, is called of Type I. A
crossing which is not of Type I is called of Type II. Let o (resp. a_) be the
number of Type I crossings with positive (resp. negative) signatures. Let f,(resp.
B_) be the number of Type II crossings with positive (resp. negative)
signatures. Then it is clear that g=a, +a_+p,+p_. From Fig. 51), U and
C* intersect at 2p(=2(n— 1)) crossings.

First we calculate the writhe of C.

Lemma 3. Let w be the writhe of C. Then
w=2a,—a_—B,+p_)+p.

Proof. We notice the knot C is oriented as shown in Fig. 5(2). Among the
strings in the tangle P in Fig. 5(2), y;, i=0 (mod 2), has the orientation opposite
to the original one in Fig. 5(1). So, the signature of a Type II crossing in the
tangle P in Fig. 5(1) changes in Fig. 5(2). However, the signature of a Type I
crossing does not change in Fig. 5(2). Hence the sum of the signatures of all the
crossings in the tangle P is a, —a_—pf,+f_. As for the other tangle 9 , we
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have the same result. If we consider the p crossings which are not included in
these two tangles, the sum of the signatures is p since all the p crossings are
positive. This completes the proof.

Next, we calculate the second coefficient of the Conway polynomial of K. To
do this, we transform K. Replacing the tangle R in Fig. 3 with S in Fig. 4, K
is deformed to a trivial knot U with C* as shown in Fig. 5(1). We deform U
along the band b so that the tangle S becomes small as shown in Fig. 4. If we
replace S with the tangle R as shown in Fig. 3, we obtain K again. Since we
can gather crossings derived from twists of the deformed band b, we may assume
that K has a diagram as shown in Fig. 8, where P is the 2n-string tangle obtained
from P by replacing each arc y; with parallel two arcs in the projection plane and
W is a tangle whose strings are twisted. We orient K as shown in Fig.8.

Lemma 4.

—(r+a,—a_+B,—f) ft(W)=2r,

a2(K)={r+1+a+ —oa_+p,—p_ if(W)=2r+1,

where (W) is the number of the half twists in W and re Z

Proof. First, we prove for the case #(W)=2r. The signatures of the two
crossings in the tangle R are positive. Since the link L_, obtained by changing
a crossing in R, is a trivial knot and the link L,, obtained by smoothing the
crossing, is a 2-component link, the second coefficient a,(K) of the Conway
polynomial of K is equal to the linking number of L, from the recursive formula
of the Conway polynomial. Let L,=K,UK,, where K, is the component which
passes the point at infinity. The sums of the signatures of the crossings where
K, and K, intersect in W and P are —2r and —2a,—o_+f,—p_),
respectively. Since the sum of the signatures of the other crossings where K, and
K, intersect is zero, the linking number of L, is equal to —(r+a, —a_+f,—f_).
Thus a,(K)=—(r+oa,—a_+p,—p_) .

Next, we prove for the case {(W)=2r+1. The signatures of the two crossings
in R are negative. Considering in the same way, —a,(K) is equal to the linking
number of the 2-component link L, obtained by smoothing a crossing in R. Let
L,=K,UK,, where K, is the component which passes the point at infinity. The
sums of the signatures of the crossings where K; and K, intersect in W and P
are —(2r+1) and —2(a, —a_+p,—p_), respectively. Since the sum of the
signatures of the other crossings where K, and K, intersect is —1, the linking
number of L, is equal to —(r+1+a,—a_+p,.—p_). Hence a,(K)=r+1+
o, —o_+p,—p_. This completes the proof.
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=

Y

R
)

d=

W X = + 1 half twist

Fig. 8

In order to obtain X,(K) by doing surgery on C, we need a surgery coefficient
for C. It is shown in [7] that a surgery coefficient for C is H:Z2EN where
|H(2,(K))| is the order of the first homology group of X,(K). Note that
|H,(Z,(K))|=|Ax(—1)|, where Ag(—1) is the value of the normalized Alexander
polynomial Ag(f) at t=—1. Note that Ag(f)=Vi(t'>—1t"1?). Let N(C) be a
tubular neighbourhood of C. Let / and m be a preferred longitude (see p. 31 of
[12]) and a meridian of N(C), respectively. We assume that / and C have parallel
orientation and lk(m,C) =1. The tangle R=(B,,k,) in Fig. 8 is deformed as in
Fig. 9, where e is the equator given in Fig. 2. Let V be the solid torus which is
the 2-fold branched covering of B, branched over k,. Let g:Z,(K)—S> be the
2-fold branched cover branched over K induced by f in §l1. Then the
homeomorphism 4:0B,—0B, given in §1 is covered by a longitudinal twist & of

a solid torus. Thus Z,(K)=(S*—intN(C))uV, and A sends a meridian of oV to
i

the curve m’ which is homologous to m+2¢ in dN(C), where ¢ is one of the
components of g~'(¢). From Fig. 9, ¢’ is homologous to [+ ({ W)+ p+w)m, and
so m' is homologous to 2/+(2{W)+2p+2w+ 1)m. Therefore, £,(K) is obtained
by k/2 surgery on C, where k=2(t(W)+p+w)+1.

We consider the case #(W)=2r. Since, by Lemmas 3 and 4, w=2(o, —o_ —
B.+B-)+p and r=—ay(K)— (o, —a_+ B, —p_), we have

2r+p—(—w)=—2a,(K)—2(, —a_+B, —B_)+p
+20—a_—p+B)+p
= —2a,(K)—4(B+ —B-)+2p.
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Hence *31= —a,(K)—2(B, —f-)+p. Note that Ay(—1)=1(mod 4). So we obtain
k=Ag(—1) and

_1 A=D1

=B, —-B_)-%
5 2 +ay)(K)=(B+—B-) 5

For the case {W)=2r+1, we have
2r+p+1—(—w)=2a,(K)—4(f, —pf-)+2p—1.
Hence ¥-1=a,(K)—2(8, —B_)+p. So we obtain k= —Ay(—1) and

1 A(—1)—1 RN
5(—4—+02(K))—(ﬂ+ B-) 5

Therefore we have:

Lemma 5.

g P __pomer ! A=D1
B+—B- ) (=1 2( 7 +a,(K)).

Fig. 9

We calculate the linking number of C,.

Lemma 6.
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a,(Cy)=(—1yom+1 1 A=D1

2 4 +ay(K)).

Proof. In the tangle P, the crossings where two different componets intersect
are those of type II. Since the orientations of strings in P of Fig. 5(1) and Fig.
6 coincide, the sum of their signatures is f, —f_. For the other tangle, we have
the same result. We consider the p crossings which are not included in these two
tangles. Since they are the crossings at which two different components
intersect and all the signatures of them are negative, the sum of thier signatures

P
is —p. Hence the linking number of C,, is equal to 3{2(8, —B_)—p}=B,—B_— >

By Lemma 5, we have the desired formula.

Proof of Main Theorem. Since

1 1 A(—1)—1
—aiC)=(=1 AR o
= D) mod 2,

we have only to check {(A==R=1 4 4. (K)=a,(K) (mod 2).

Since Ag(—1)=Vg(2/—1),
A(—1)=1—4a,(K)+ 16a,(K)—64a¢(K)+ -

Hence

é"(_Tl)_—l = — ay(K) +4a,(K)— 16a4(K)+ -
And so,

T )= a0~ ek +

=a,(K) (mod 4).
This completes the proof of Main Theorem.

ExaMPLE. We consider the knot 8,; [12, Appendix C]. If we apply the
modification as shown in Fig. 2 for the 3-ball B, or B, as shown in Fig. 10, we
have a trivial knot. These two unknotting operations are not equivalent [13]. By
an isotopy preserving B,, we can deform the knot 8, into the knot as shown in
Fig. 8, where p=2, t(W)= —11, P is a tangle given in Fig. 11(1). And so, the
surgical knot C, is the torus knot of type (2,7). The writhe of C; is —6, and so
¥,(8,) is obtained by —29/2 surgery on C;. Similarly, using B,, the knot 8,
is deformed into the knot as shown in Fig. 8, where p=2, {(W)=2, and P is a
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tangle given in Fig. 11(2). And so, the surgical knot C, is the knot 10,,,, which
is the torus knot of type (3,5). The writhe of C, is 10, and so Z,(8,3) is obtained
by 29/2 surgery on C,. Although the knot type of C, is different from that of
C,, from Main Theorem, we have Ar f{C,)=Ar flC,)=a,(8,;) (mod 2). In fact,
a,(C1)=6, a)(Cy)= 8 and a,(85)=2.

N\

\

Fig. 11




206

[1]
(2]
(31

[4]
(5]
[6]

7]
(8]

4]
(10]
[11]
(12]
[13]

Y. MIYAZAWA

References

J.H. Conway: An enumeration of knots and links, in “Computational Problems in Abstract
Algebra,” (ed.J. Leech) Pergamon Press, New York, 1969, pp. 329-358.

V.FR. Jones: A polynomial invariant for knots via von Neumann algebra, Bull. Amer. Math. Soc.
12 (1985), 103-111.

T. Kanenobu: An evaluation of the first derivative of the Q polynomial of a link, Kobe J. Math. §
(1988), 179-184.

L.H. Kauffman: The Conway polynomial, Topology 20 (1981), 101-108.

L.H. Kauffman: An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990), 417-471.
W.B.R. Lickorish: A relatinship between link polynomials, Math. Cambridge Philos. Soc. 100 (1986),
109-112.

W.B.R. Lickorich:  The unknotting number of a classical knot, Contemp. Math. 44 (1985), 117-121.
JM. Montesinos: Surgery on links and double branched cover of S°, in “Knots, groups and
3-manifold,” Ann. Math. Studies 84, Princeton Univ. Press, 1975, pp. 227-259.

H. Murakami: On the derivatives of the Jones polynomial, Kobe J. Math. 3 (1986), 61-64.

K. Murasugi: On periodic knots, Conmmnet. Math. Helv. 46 (1971), 162-174.

R.A. Robertello:  An invariant of knot cobordism, Commun. Pure. Appl. Math. 18 (1965), 543-555.
D. Rolfsen: Knots and links, Lecture Series no.7, Publish or Perish, Berkeley, 1976.

K. Taniyama: On unknotting operations of two-bridge knots, Math. Ann. 291 (1991), 579-589.

Department of Mathematics
Osaka City University
Sugimoto, Sumiyoshi-Ku
Osaka 558, Japan

Current Address
Department of Mathematics
Yamaguchi University
Yamaguchi 753, Japan





