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Abstract
We give examples of degree functions degW R! M[{�1}, whereR is C[X,Y]

or C[X, Y, Z] and M is Z or N, whose behaviour with respect toC-derivations
D W R! R is pathological in the sense that{deg(Dx) � deg(x) j x 2 R n {0}} is not
bounded above. We also give several general results statingthat such pathologies do
not occur when the degree functions satisfy certain hypotheses.

1. Introduction

Let B be a ring and (G, C, �) a totally ordered abelian group. A map

degW B ! G [ {�1}

is called adegree functionif it satisfies, for allx, y 2 B,
(1) deg(x) D �1 iff x D 0;
(2) deg(xy) D deg(x)C deg(y);
(3) deg(x C y) � max(deg(x), deg(y)).

It is easy to see that ifB admits a degree function thenB is either the zero ring
or an integral domain. Also, if degW B ! G[ {�1} is a degree function andx, y 2 B
are such that deg(x) ¤ deg(y), then deg(x C y) D max(deg(x), deg(y)).

Let B be an integral domain and degW B ! G [ {�1} a degree function, where
G is a totally ordered abelian group. Given a derivationD W B ! B,

U D {deg(Dx) � deg(x) j x 2 B n {0}}

is a nonempty subset of the totally ordered setG[{�1}. If U has a greatest element,
we define deg(D) to be that element; ifU does not have a greatest element, we say
that deg(D) is not defined. Note that ifD is the zero derivation then deg(D) is defined
and is equal to�1; in fact the conditionD D 0 is equivalent to deg(D) D �1. Also
note that, in the special caseG D Z, deg(D) is defined if and only if the setU is
bounded above.

Consider the associated graded ring Gr(B), which is a G-graded integral domain
determined by the pair (B, deg) (see Paragraph 1.9 for details). It is well known that
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54 D. DAIGLE

each derivationD W B ! B such thatdeg(D) is definedgives rise to a homogeneous
derivation gr(D) W Gr(B) ! Gr(B). The technique of replacingD by gr(D), called
“homogenization of derivations”, is used quite systematically in the study ofGa-actions
on affine algebraic varieties. We stress that homogenization requires prior verification
that deg(D) is defined with respect to the given degree function. To clarify the discus-
sion, we introduce the following notion:

DEFINITION 1.1. Let A � B be integral domains of characteristic zero, and let
G be a totally ordered abelian group. A degree function degW B ! G [ {�1} is said
to be tame over A, or A-tame, if it satisfies:

deg(D) is defined for allA-derivations D W B ! B.

If deg is not tame overA, we say that it iswild over A, or A-wild.

The present paper has two objectives:
I. To give examples ofk-wild degree functions degW k[X, Y] ! Z [ {�1} and
degW k[X, Y, Z] ! Z [ {�1}, wherek is a field of characteristic zero;
II. to give results which state that degree functions satisfying certain hypotheses
are tame.

There is a good measure of confusion in relation with degree functions. Consider
the following statement:

(�)
If B is an integral domain and a finitely generatedC-algebra, then
all degree functions on B are tame overC.

Assertion (�) is false, as it is contradicted by either one of Propositions 1.2 and 1.3
(see below). However, (�) has been used by several authors to justify the homogen-
ization of derivations. Examples: [4, Proof of Lemma 1], [5,Proof of Lemma 5], [7,
Proof of Theorem 3.1]; in [2], a variant1 of (�) is stated on p. 3 and implicitly used in
the proof of Proposition 2; a (necessarily incorrect) proofof (�) is given in [1, 6.2],
and (�) is then used to prove the following false statement [1, Corollary 6.3]: for aC-algebra B, if there exists a degree functiondegW B ! Z [ {�1} such thatGr(B)
is rigid, then B is rigid2 (Proposition 1.2 is a counterexample, asB is not rigid but
Gr(B) D k[t, t�1] is rigid). We provide the correction:if there exists aC-tame degree
function degW B ! G [ {�1} such thatGr(B) is rigid, then B is rigid.

Also, one can find many examples in the literature where authors simply omit to
raise the question whether deg(D) is defined, as if it were a priori clear that deg(D) is
always defined. We hope that our examples will clear-up some of this confusion.

1Instead of assuming thatB is finitely generated, the variant assumes that Gr(B) is finitely gen-
erated. This variant is false: in Proposition 1.2, bothB and Gr(B) are finitely generated but deg
is wild.

2One says thatB is rigid if the only locally nilpotent derivationD W B ! B is the zero derivation.
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Sections 2 and 3 prove the following facts (the reader shouldcompare these results
to the statement of Theorem 1.7, below).

Proposition 1.2. Let k be a field of characteristic zero and BD k[X, Y] D k[2] .
Then there exists a degree functiondegW B ! Z [ {�1} satisfying:
(a) deg(�) D 0 for all � 2 k�;
(b) Gr(B) � k[t, t�1];
(c) the onlyk-derivation DW B ! B such thatdeg(D) is defined is the zero derivation.

In the above statement and throughout this paper, we writeA D R[n] to indicate
that A is a polynomial ring inn variables overR. The proof of Proposition 1.2 is
given in Section 2. The next fact is the special case “A D k[1] ” of Corollary 3.8; it
shows that wild degree functions with values inN do exist:

Proposition 1.3. Let k be an uncountable field of characteristic zero and BD
k[X, Y, Z] D k[3] . Then there exists a degree functiondegW B ! N [ {�1} such that
deg(�) D 0 for all � 2 k� and with respect to which the degree of�=�X W B ! B is
not defined.

We have a similar result forB D k[2] , but with more restrictions onk:

Proposition 1.4. Let k be a function field3 over an uncountable field of charac-
teristic zero, and let BD k[X,Y] D k[2] . Then there exists a degree functiondegW B !N [ {�1} such thatdeg(�) D 0 for all � 2 k� and with respect to which the degree
of �=�X W B ! B is not defined.

Proposition 1.4 is an immediate consequence of part (e) of the next result, which
exhibits some pathologies with respect to the process of extending degree functions:

Proposition 1.5. Let k0 be an uncountable field of characteristic zero, k1 a func-
tion field overk0 and k2 the algebraic closure ofk1. Consider the polynomial rings
B0 � B1 � B2, where Bi D k i [X, Y] D k[2]

i . Then there exist degree functions

deg0 W B0 ! N [ {1}, deg1 W B1 ! N [ {1} and deg2 W B2 ! Z [ {1}

satisfying the following conditions:
(a) if i � j then degi is the restriction ofdegj ;
(b) for each iD 0, 1, 2, degi (�) D 0 for all � 2 k�i ;
(c) deg0 is determined by the grading B0 DL

i2N Ri of B0 defined by X2 R2 and
Y 2 R3 but, for each iD 1, 2, degi is not determined by a grading of Bi ;

3A function fieldis a finitely generated field extension of transcendence degree at least 1.
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(d) Gr(Bi ) is affine overk i if i 2 {0, 2}, but not if i D 1;
(e) degi (Di ) is defined if iD 0 but not if i 2 {1, 2}, where Di D �=�Y W Bi ! Bi .

See Paragraph 3.7 for the proof of Proposition 1.5. The notion of a degree function
determined by a gradingis defined in Paragraph 1.9. It may be worthwile to state the
following consequence of Proposition 1.5:

Corollary 1.6. Let S be the set of degree functionsdegW C[X, Y] ! Z [ {�1}

satisfyingdeg(�) D 0 for all � 2 C�, deg(X) D 2 and deg(Y) D 3. Then there exist
elements d and d0 of S satisfying:

djQ[X,Y] D d0jQ[X,Y] , d is C-tame and d0 is C-wild.

See Paragraph 3.9 for the proof of Corollary 1.6.
The proof of Proposition 1.2 is quite simple, but those of Propositions 1.3–1.5

are more delicate because they involve constructing degreefunctionswith nonnegative
valuesand which are still wild. The crucial step is the proof, in Lemma 3.6.7, that
ordt ( f ) � 0 for every nonzero elementf of the subringk1[x, y] of k2((t)). The idea
that this inequality could be proved by using an expansion lemma such as Lemma 3.2
was inspired by past frequentations with expansion techniques à la Abhyankar-Sathaye.

Section 4 proves an array of results which assert that degreefunctions satisfying
certain hypotheses are tame. Some of those facts are summarized in the following
statement, but note that the results of Section 4 are stronger:

Theorem 1.7. Suppose that B is an integral domain containing a fieldk of char-
acteristic zero. Let G be a totally ordered abelian group anddegW B ! G [ {�1} a
degree function. Then, in each of the cases(a)–(d) below, deg is tame overk:
(a) B is k-affine anddeg is determined by some G-grading of B.
(b) Gr(B) is k-affine and{deg(x) j x 2 B n {0}} is a well-ordered subset of G.
(c) trdegk(B) <1, Frac(B) is a one-dimensional function field over the field of frac-
tions of the ring{x 2 B j deg(x) � 0}, and deg has values inN.
(d) trdegk(B) <1 and degD deg1 for some locally nilpotent derivation1 W B ! B.

Here, Frac(B) denotes the field of fractions ofB and “k-affine” means “finitely
generated as ak-algebra”. Assertions (a), (b), (c) and (d) of Theorem 1.7 follow from
Corollaries 4.8, 4.23, Proposition 4.24 and Corollary 4.12, respectively (also note that
(d) is a special case of (c)).

Assertions (b) and (c) of Theorem 1.7 appear to be new. The case G D Z of The-
orem 1.7 (a) is well known, and since the general case has the same proof we assume
that it is also known. Assertion (d) of Theorem 1.7 appeared in [3, Theorem 2.11,
p. 40], etc., with the mention that it was unpublished work ofthis author. The material
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in Definitions 4.15–Proposition 4.24 appears to be new. The results given in Setup 4.1–
Definition 4.14 are generalizations and strengthenings of known results.

Let us also mention that most of the errors that we pointed outin the discus-
sion between Definition 1.1 and Proposition 1.2 can be fixed byusing the above The-
orem 1.7 in conjunction with the following observation (Lemma 1.8 is an immediate
consequence of Lemma 4.11, below):

Lemma 1.8. Let B be an integral domain containing a fieldk of characteristic
zero, S� B a multiplicative set, DEGW S�1B ! G [ {�1} a degree function(where
G is a totally ordered abelian group) and degW B ! G[ {�1} the restriction ofDEG.
If DEG is tame overk then so isdeg.

1.9. Conventions, notations and terminologies. Given a totally ordered group
G, it is understood thatG [ {�1} is totally ordered and satisfies�1 < x for all
x 2 G. The same convention applies toN [ {�1}. In this article,N is the set of
nonnegative integers, i.e., 02 N.

By a “domain”, we mean an integral domain. IfA is a domain then FracA denotes
its field of fractions. If A � B are domains then trdegA(B) denotes the transcendence
degree of Frac(B) over Frac(A). The symbolA� denotes the set of units of a ringA.
A polynomial ring in n variables overA is denotedA[n] . A subring A of a domainB
is said to befactorially closed in Bif the conditionsx, y 2 B and xy 2 A n {0} imply
that x, y 2 A.

If A� B are rings then Der(B) (resp. DerA(B)) is the set of derivations (resp.A-
derivations)D W B ! B.

Let B be a domain andG a totally ordered abelian group. Then eachG-gradingg
of B determines a degree function deg

g
W B ! G[{�1} as follows. LetB DL

i2G Bi

be the gradingg. Given x 2 B, write x DP
i2G xi (xi 2 Bi ) and consider the finite set

Sx D {i 2 G j xi ¤ 0}; then define deg
g
(x) to be the greatest element ofSx [ {�1}.

This is what we mean by a degree function “determined by a grading”.
Let B be a domain and degW B ! G [ {�1} a degree function, whereG is a

totally ordered abelian group. For eachi 2 G, let

Bi D {x 2 B j deg(x) � i }, Bi� D {x 2 B j deg(x) < i }, B[i ] D Bi =Bi� .

The direct sum Gr(B) DL
i2G B[i ] is a G-graded integral domain referred to as theas-

sociated graded ring; it is determined by (B,deg). Note that Gr(B) comes equipped with
the degree function deg

g
W Gr(B) ! G [ {�1} whereg denotes the grading Gr(B) DL

i2G B[i ] . One also defines a set map grW B ! Gr(B) by gr(0)D 0 and, forx 2 Bn{0},
gr(x) D xC Bi� 2 B[i ] n {0}, wherei D deg(x). The map gr preserves multiplication but,
in general, not addition. For allx 2 B, gr(x) is a homogeneous element of Gr(B) and
deg(x) D deg

g
(gr(x)).

As mentioned in the introduction, each derivationD W B ! B such that deg(D) is
defined gives rise to a homogeneous derivation gr(D) W Gr(B) ! Gr(B); although this
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is not needed in the present paper, let us recall the definition. Let d D deg(D). If
d D �1, set gr(D) D 0. If d ¤ �1 then d 2 G and (for eachi 2 G) D mapsBi into
B(iCd) and Bi� into B(iCd)� , and so a mapD[i ] W B[i ] ! B[iCd] is defined byxC Bi� 7!
D(x)C B(iCd)� ; then, given an elementy DP

i2G yi of Gr(B) (with yi 2 B[i ]), define
gr(D)(y) DP

i D[i ](yi ). If D is nonzero then so is gr(D), and if D is locally nilpotent
then so is gr(D).

2. Proof of Proposition 1.2

Let k be a field of characteristic zero.

2.1. Consider the fieldk((t)) of Laurent power series overk and the order valu-
ation ordW k((t)) ! Z [ {C1}. Define

(1) degW k((t)) ! Z [ {�1}, deg(f ) D � ord( f ) for all f 2 k((t)).

Then deg is a degree function onk((t)) and it is easily verified that the associated
graded ring Gr(k((t))) is isomorphic tok[t, t�1].

2.2. Note that if B is any ring such thatk � B � k((t)) then the restriction

degW B ! Z [ {�1}

of the degree function (1) is a degree function onB satisfying deg(�) D 0 for all � 2
k�. Also, there is an injectivek-homomorphism Gr(B) ,! Gr(k((t))). As any ring A
satisfyingk � A � k[t, t�1] is k-affine, we see that Gr(B) is k-affine.

Proof of Proposition 1.2. One can show that there existsf (t) 2 k((t)) such that
(t, f (t), f 0(t)) are algebraically independent overk and ord f (t) � 0. Choose such an
f (t) DP1

jD0 a j t j ; let x D t�1 and y D f (t) and consider the subalgebraB D k[x, y]

of k((t)). Note that B D k[2] . Define degW B ! Z [ {�1} as in Paragraph 2.2 and
note (as in Paragraph 2.2) that Gr(B) is k-affine and that deg(�) D 0 for all � 2 k�.
Note that deg(y� a0) is a negative integer; as deg(x) D 1, it follows that{deg(h) j h 2
B n {0}} D Z. From this, it is easy to deduce that the natural embedding ofGr(B) into
Gr(k((t))) � k[t, t�1] is actually an isomorphism:

Gr(B) � k[t, t�1].

For eachn � 1,

xny D t�n f (t) D 1X
jD0

a j t
j�n D n�1X

jD0

a j t
j�n C 1X

jDn

a j t
j�n D n�1X

jD0

a j x
n� j C 1X

jDn

a j t
j�n
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so if we definegn 2 B by gn D xny �Pn�1
jD0 a j xn� j , then gn DP1

jDn a j t j�n, so

the set SD {n j deg(gn) D 0} is infinite.

We have�gn=�y D xn and

�gn�x
D nxn�1y� n�1X

jD0

(n� j )a j x
n� j�1 D nt1�n

1X
jD0

a j t
j � n�1X

jD0

(n� j )a j t
j�nC1

D n�1X
jD0

ja j t
j�nC1 C 1X

jDn

naj t
j�nC1 D t2�n

"
n�1X
jD0

ja j t
j�1 C 1X

jDn

naj t
j�1

#

D t2�n[�n C "n]

with �n DPn�1
jD0 ja j t j�1 and"n DP1

jDnnaj t j�1. Notice that{�nC"n}
1
nD1 is a sequence

in k((t)) which converges tof 0(t) with respect to the (t)-adic topology.
Consider thek-derivation D D u �=�x � v �=�y W B ! B, whereu, v 2 B, and as-

sume that deg(D) is defined. Then there existsd 2 Z satisfying deg(D(gn))�deg(gn) �
d for all n � 1, so in particular

(2) ord(tn D(gn)) � n� d for all n 2 S.

On the other hand we have

(3) tn D(gn) D tn

�
u
�gn�x

� v �gn�y

� D t2[�n C "n]u � v D [�n C "n]x�2u � v.

The right hand side of (3) is a convergent sequence ink((t)), with limit f 0(t)x�2u� v;
so the sequence{tnD(gn)}1nD1 is convergent and, by (2), must converge to 0; so

(4) f 0(t)x�2u � v D 0.

If u ¤ 0 then (4) implies f 0(t) D x2v=u 2 k(x, y) D k(t, f (t)), which contradicts our
choice of f (t). So u D 0 and, by (4),v D 0. So D D 0.

3. Wild degree functions with values inN
NOTATIONS 3.1. For each finite subsetS D {u1, : : : , un} of a ring A, define�(S) D Qn

iD1 ui 2 A (where�(;) D 1 by convention). IfE is a set,Pfin(E) denotes
the set of finite subsets ofE andP�

fin(E) is the set of nonempty finite subsets ofE.

Lemma 3.2. Let (ai )i2N be a sequence of elements of a ring A. Define a se-
quence(Fi )i2N in A[Y] D A[1] by F0 D Y and, for each i2 N, FiC1 D F2

i � ai . Then
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each nonzero element of A[Y] has a unique expression as a finite sum

�1�(S1)C � � � C �N�(SN),

where N� 1, �i 2 A n {0} and S1, : : : , SN are distinct finite subsets of{Fi j i 2 N}.

Proof. As Fi is monic of degree 2i , we see that�(S) is monic for each finite
subsetS of {Fi j i 2 N}, and S 7! deg(�(S)) is a bijection from the set of finite subsets
of {Fi j i 2 N} to N. The lemma follows from this.

Lemma 3.3. Let L=K be an extension of fields of characteristic¤ 2 and U a
subset of L satisfying:
(i) u2 2 K for all u 2 U ;
(ii) �(F) � K for all F 2 P�

fin U .
Then the family(�(F))F2Pfin(U ) of elements of L is linearly independent over K .

Proof. This is certainly well known but, in lack of a suitablereference, we pro-
vide a proof. We imitate the proof that ifp1, : : : , pn are distinct prime numbers then
[Q(

p
p1, : : : ,ppn) WQ] D 2n, see for instance [8]. The first step is to prove that the set

6 D {(F, G) 2 Pfin(U )2 j F ¤ ;, F \ G D ; and�(F) 2 K [G]}

is empty. Suppose the contrary, and choose (F, G) 2 6 which minimizesjGj. Note
that G ¤ ; by (ii); pick g 2 G and let G0 D G n {g}. By minimality of jGj,
(5) (F 0, G0) � 6 for all F 0 2 Pfin(U ).

Since�(F) 2 K [G] D K [G0][g] and g2 2 K by (i), we have�(F) D aC bg for some
a, b 2 K [G0]. Using (i) again givesK 3 �(F)2 D a2C 2abgC b2g2; since charK ¤ 2,
abg 2 K [G0]. If ab¤ 0 then g 2 K [G0], so ({g}, G0) 2 6 contradicts (5). Ifa D 0
then �(F [ {g}) D �(F)g D bg2 2 K [G0], so (F [ {g}, G0) 2 6 contradicts (5). If
b D 0 then�(F) D a 2 K [G0], so (F, G0) 2 6 contradicts (5). These contradictions
show that6 D ;.

We now prove the assertion of the lemma, by contradiction. Suppose thatS1,: : : ,Sn

are distinct elements ofPfin(U ) such that�(S1), : : : ,�(Sn) are linearly dependent over
K , and suppose thatn is the least natural number for which such sets exist. Observe
that n � 2 and hence

Sn
iD1 Si ¤Tn

iD1 Si . Pick u 2Sn
iD1 Si nTn

iD1 Si . Relabel the sets
S1, : : : , Sn so as to haveu 2 S1 \ � � � \ Sm and u � SmC1 [ � � � [ Sn, and note that
1 � m � n � 1. Choosea1, : : : , an 2 K not all zero such that

Pn
iD1 ai�(Si ) D 0 and

note thata1, : : : , an 2 K � by minimality of n. Let SDSn
iD1 Si . We have

u
mX

iD1

ai�(Si n {u}) D � nX
iDmC1

ai�(Si ),
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where the two sums belong toK [Sn{u}] and where
Pm

iD1ai�(Si n{u})¤ 0 by minimal-
ity of n. Thusu 2 K [Sn {u}] and consequently ({u}, Sn {u}) 2 6, a contradiction.

3.4. Consider the following conditions on a 4-tuple (k0, k1, k2, U ):
(i) k0 � k1 � k2 are fields of characteristic zero andk2 is algebraic overk1;
(ii) U is an uncountable subset ofk2;
(iii) u2 2 k1 for all u 2 U ;
(iv) �(S) � k1 for eachS2 P�

fin(U );
(v) some element ofU is transcendental overk0.
Note that, by Lemma 3.3, any 4-tuple (k0, k1, k2, U ) satisfying (i)–(v) also satisfies:
(vi) the family (�(F))F2Pfin(U ) of elements ofk2 is linearly independent overk1.

Lemma 3.5. Let k0 be an uncountable field of characteristic zero, k1 a function
field over k0 and k2 the algebraic closure ofk1. Then there exists a subsetU of k2

such that(k0, k1, k2, U ) satisfies the conditions ofParagraph 3.4. Moreover, if A is a
ring such thatk0 � A � k1 and Frac(A) D k1, then U can be chosen in such a way
that u2 2 A for all u 2 U .

Proof. Choose a transcendence basis{t1,: : : ,tn} of k1=k0 such that{t1,: : : ,tn} � A,
let RD k0[t1, : : : , tn] and k D k0(t1, : : : , tn) D FracR. As k1=k0 is a function field, we
haven � 1 and it makes sense to defineP D {t1�� j � 2 k0}, which is an uncountable
set of prime elements ofR satisfying:

If p, q are distinct elements ofP, then p ­ q in R.

Choose a subsetU1 of k2 such thatx 7! x2 is a bijection fromU1 to P. Then
• u2 2 k for all u 2 U1;
• �(S) � k for eachS2 P�

fin(U1).
By Lemma 3.3, the family (�(F))F2Pfin(U1) of elements ofk2 is linearly independent
over k; as [k1 W k] <1, it follows that E D {F 2 Pfin(U1) j �(F) 2 k1} is a finite set.
Thus C DS

F2E F is a finite subset ofU1 andU D U1 nC is uncountable. It is easily
verified that (k0, k1, k2, U ) satisfies the conditions of Paragraph 3.4. Moreover,u2 2 A
for all u 2 U .

3.6. We now fix (k0, k1, k2,U ) satisfying the requirements of Paragraph 3.4. This
is in effect throughout Paragraph 3.6.

3.6.1. Let X0, X1, X2, : : : be a countably infinite list of indeterminates overk1.
For eachn 2 N, let En D { f 2 k1[X0, : : : , Xn] j degXn

f D 1}. Note that the setsEn

are pairwise disjoint; whenf 2 En, we write co(f ) 2 k1[X0, : : : , Xn�1] n {0} for the
coefficient of Xn in f .
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For eachp 2 N, let 6p be the set of series� 2 k1(X0, X1, : : : )((t)) of the form

(6) � D t�3( f p C f pC1t3 C f pC2t6 C � � � ) D t�3
1X

nD0

f pCnt3n,

such that fi 2 Ei for all i � p. Given � 2 6p with notation as in (6), define

V(� ) D {

(a0, : : : , ap) 2 k pC1
2 f p(a0, : : : , ap) ¤ 0

and8i>p degXi
( fi (a0, : : : , ap, XpC1, : : : , Xi )) D 1

}

.

Lemma 3.6.2. Let p2 N and � D t�3P1
nD0 f pCnt3n 2 6p (where fi 2 Ei for all

i � p). Let � 0 D �2 � f 2
p t�6 2 k1(X0, X1, : : : )((t)). Then

(a) � 0 2 6pC1.
(b) If (a0, : : : , ap) 2 V(� ) then there is a countable subset C ofk2 such that, for all
apC1 2 k2 n C, (a0, : : : , apC1) 2 V(� 0).

Proof. A straightforward calculation gives

� 0 D �2 � f 2
p t�6 D t�3(2 f p f pC1 C (2 f p f pC2 C f 2

pC1)t3 C � � � )
D t�3(gpC1 C gpC2t3 C gpC3t6 C � � � ) D t�3

1X
nD0

gpC1Cnt3n,

where

(7) gpC1Cn D nC1X
iD0

f pCi f pC1Cn�i for all n 2 N.

Note thatgpC1Cn is equal to 2f p f pC1Cn plus a sum of terms of the formfi f j with
i , j < pC 1C n; this shows that

(8) gi 2 Ei and co(gi ) D 2 f p co( fi ) for all i � pC 1.

In particular,� 0 2 6pC1.
Suppose that (a0, : : : , ap) 2 V(� ). Then f p(a0, : : : , ap) ¤ 0 and

(9) degXi
fi (a0, : : : , ap, XpC1, : : : , Xi ) D 1 for all i � pC 1.

Let C D {apC1 2 k2 j (a0, : : : , apC1) � V(� 0)}; we have to show thatC is countable.
Note thatC is a countable union,C DS1

iDpC1 Ci , where

CpC1 D {apC1 2 k2 j gpC1(a0, : : : , apC1) D 0}
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and, for eachi � pC 2,

Ci D {apC1 2 k2 j degXi
gi (a0, : : : , apC1, XpC2, : : : , Xi ) < 1}.

SincegpC1(a0, : : : , apC1) D 2 f p(a0, : : : , ap) f pC1(a0, : : : , apC1) where f p(a0, : : : , ap) ¤ 0
and f pC1(a0, : : : , ap, XpC1) 2 k2[XpC1] has degree 1 by the casei D pC 1 of (9), we
see thatCpC1 is a finite set. Leti � pC 2. Then co(gi ) D 2 f p co( fi ) by (8), so

co(gi )(a0, : : : , ap, XpC1, : : : , Xi�1)

D 2 f p(a0, : : : , ap) co( fi )(a0, : : : , ap, XpC1, : : : , Xi�1).

Since f p(a0, : : : , ap) ¤ 0 and, by (9), co(fi )(a0, : : : , ap, XpC1, : : : , Xi�1) ¤ 0, we have

co(gi )(a0, : : : , ap, XpC1, : : : , Xi�1) 2 k2[XpC1, : : : , Xi�1] n {0}.

Consequently, there are only finitely manyapC1 2 k2 satisfying

co(gi )(a0, : : : , apC1, XpC2, : : : , Xi�1) D 0,

or equivalently

degXi
gi (a0, : : : , apC1, XpC2, : : : , Xi ) < 1.

So Ci is a finite set (for eachi ) and it follows thatC is countable.

3.6.3. For eachp 2 N we define a set map (well-defined by Lemma 3.6.2)

6p ! 6pC1, � 7! � 0
by setting� 0 D �2 � f 2

p t�6, where the notation for� 2 6p is as in (6). Define a se-

quence (�p)p2N by setting �0 D t�3 P1
nD0 Xnt3n 2 60 and �pC1 D � 0p for all p 2 N.

Note that�p 2 6p for all p 2 N, and let the notation be as follows:

�p D t�3
1X

nD0

f p, pCnt3n ( f p, pCn 2 EpCn).

By (7) we have f pC1,pC1Cn DPnC1
iD0 f p, pCi f p, pC1Cn�i for all p,n 2 N, and in particular

(10) f pC1,pC1 D 2 f p, p f p, pC1 for all p 2 N.

Lemma 3.6.4. For each u0 2 U , there exists a sequence(ai )i2N of elements of
k2 satisfying the following conditions:
(a) a0 D u0;
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(b) (a0, : : : , ap) 2 V(�p), for each p2 N;
(c) p 7! f p, p(a0, : : : , ap) is an injective map fromN to U .

Proof. We define (ai )i2N by induction. Definea0 D u0; note that (a0) 2 V(�0)
and that f0,0(a0) D a0 D u0 2 U .

Let p � 0 and assume that (ai )
p
iD0 is such thata0 D u0, (a0, : : : , ai ) 2 V(�i ) for

all i 2 {0, : : : , p}, and i 7! fi ,i (a0, : : : , ai ) is an injective map{0, : : : , p} ! U .
Defineei D fi ,i (a0,:::,ai ) 2 U , 0� i � p. By Lemma 3.6.2, there exists a countable

set C � k2 such that, for eachapC1 2 k2 n C, (a0, : : : , apC1) 2 V(�pC1). By (10) we
have f pC1,pC1 D 2 f p, p f p, pC1, so

f pC1,pC1(a0, : : : , ap, XpC1) D 2 f p, p(a0, : : : , ap) f p, pC1(a0, : : : , ap, XpC1)

D 2ep f p, pC1(a0, : : : , ap, XpC1)

2 k2[XpC1] is a polynomial of degree 1,

because (a0, : : : , ap) 2 V(�p). Consequently,x 7! f pC1,pC1(a0, : : : , ap, x) is a bijective
map k2 ! k2; asU n {e0, : : : , ep} is uncountable, we may chooseapC1 2 k2 nC such
that f pC1,pC1(a0, : : : , apC1) 2 U n {e0, : : : , ep}. Then (a0, : : : , apC1) 2 V(�pC1) and
i 7! fi ,i (a0, : : : , ai ) is an injective map{0, : : : , pC 1} ! U .

Corollary 3.6.5. There exist sequences(ai )i2N and (ei )i2N of elements ofk2 sat-
isfying:
(a) fi ,i (a0, : : : , ai ) D ei for each i2 N;
(b) i 7! ei is an injective map fromN to U ;
(c) a0 D e0 is transcendental overk0.

Proof. By Paragraph 3.4 (v), we may picku0 2 U transcendental overk0; then
choose (ai )i2N satisfying conditions (a)–(c) of Lemma 3.6.4 and setei D fi ,i (a0, : : : ,ai )
for eachi 2 N.

DEFINITION 3.6.6. Choose sequences (ai )i2N and (ei )i2N of elements ofk2 sat-
isfying the conditions of Corollary 3.6.5. Definex D t�2 and y D t�3 P1

nD0 ant3n 2
k2((t)) and, for eachi 2 {0, 1, 2}, consider the subringBi D k i [x, y] of k2((t)) and
the degree function degi W Bi ! Z[ {�1} defined by degi ( f ) D �ordt ( f ), for f 2 Bi .
Then B0 � B1 � B2, degi is the restriction of degj when i � j , and (for eachi D 0,1,2)
degi (�) D 0 for all � 2 k�i .

The notations of Definition 3.6.6 are fixed until the end of Paragraph 3.6. We will
now show thatx, y are algebraically independent overk1 and that deg1 has values inN [ {�1}. Let h2, 3i denote the submonoid of (Z, C) generated by{2, 3}.

Lemma 3.6.7. B1 D k[2]
1 and deg1( f ) 2 h2, 3i for all f 2 B1 n {0}.
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Proof. Consider the subringR of k1(X0,X1,:::)((t)) whose elements are the seriesP
i2Z fi t i satisfying fi 2 k1[X0, X1, : : : ] for all i 2 Z and fi D 0 for i � 0, and the

homomorphism ofk1-algebras

' W R! k2((t)),
X
i2Z fi (X0, X1, : : : )t i 7!X

i2Z fi (a0, a1, : : : )t i .

As �p 2 6p � R, we may defineyp D '(�p) 2 k2((t)) for each p 2 N. Then yp D
t�3 P1

nD0 f p, pCn(a0, : : : , apCn)t3n, so in particular

(11) yp D ept�3 C higher powers oft , for all p 2 N.

Note thaty0 D t�3P1
nD0ant3n and ypC1 D '(�2

p� f 2
p, pt�6)D y2

p� f p, p(a0,: : : ,ap)2t�6, so

(12) y0 D y and ypC1 D y2
p � e2

px3 for all p 2 N.

As e2
p 2 k1 for all p, this implies that (yp)p2N is a sequence of elements ofB1 D

k1[x, y]. Consider the polynomial ringk1[X, Y] D k[2]
1 and let� W k1[X, Y] ! B1 be

the k1-homomorphism sendingX to x and Y to y. Also define the sequence (Fp)p2N
of elements ofk1[X,Y] by F0 D Y and FpC1 D F2

p�e2
pX3 (p 2 N). Then (12) implies

that �(Fp) D yp for all p 2 N.
Given a finite subsetS D {p1, : : : , pr } of N (with p1 < � � � < ps), let FS DQr

iD1 Fpi 2 k1[X, Y], yS D Qr
iD1 ypi 2 k1[x, y], and eS D Qr

iD1 epi 2 k2 (in particular
F; D 1, y; D 1 ande; D 1). Then (11) implies that, given�(X) 2 k1[X] n {0},

(13) �(�(X)FS) D �(x)yS D �eStm C higher powers oft ,

for some� 2 k�1 and m 2 h�2,�3i.
Let G 2 k1[X, Y] n {0}. By Lemma 3.2,

G D �1(X)FS1 C � � � C �N(X)FSN ,

where N � 1, �i (X) 2 k1[X] n {0} for eachi , and S1, : : : , SN are distinct finite subsets
of N. Then (13) gives

�(G) D NX
iD1

�i (x)ySi D
NX

iD1

(�i eSi t
mi C higher powers oft)

for some�1, : : : , �N 2 k�1 and m1, : : : , mN 2 h�2,�3i. By part (vi) of Paragraph 3.4
together with the fact thatp 7! ep is injective, the elementseS1, : : : , eSN of k2 are
linearly independent overk1; so�(G)¤ 0 and ordt (�G)Dmin{m1,:::,mN} 2 h�2,�3i.
It follows that � W k1[X, Y] ! B1 is bijective, soB1 D k[2]

1 . We also obtain deg1( f ) D� ordt ( f ) 2 h2, 3i for all f 2 B1 n {0}, so the lemma is proved.
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As k2=k1 is algebraic, Lemma 3.6.7 implies thatx, y are algebraically independent
over k2, so:

Corollary 3.6.8. Bi D k[2]
i for i D 0, 1, 2.

Lemma 3.6.9. Let A be a subring ofk1 satisfying u2 2 A for all u 2 U . Consider
the subring A[x, y] D A[2] of B1 D k1[x, y], the degree functiondegW A[x, y] ! N [
{�1} defined bydeg(f ) D � ordt ( f ), and the A-derivation�=�y W A[x, y] ! A[x, y].
Thendeg(�=�y) is not defined.

Proof. Consider the sequence (yp)p2N of elements ofB1 defined in the proof
of Lemma 3.6.7. Asy0 D y 2 A[x, y] and e2

p 2 A for all p 2 N, (12) implies that
yp 2 A[x, y] for all p 2 N. Also, (11) shows that deg(yp) D 3 for all p 2 N. Write
D D �=�y, then D(ypC1) D D(y2

p � e2
px3) D D(y2

p) D 2ypD(yp), so deg(DypC1) D
3C deg(Dyp). Consequently, deg(Dyp) D 3p and hence deg(Dyp)� deg(yp) D 3p� 3
for all p 2 N. So deg(D) is not defined.

For eachi D 0,1,2, define thek i -derivationDi D �=�yW Bi ! Bi . By Lemma 3.6.9
we know that deg1(D1) is not defined, so in fact:

Corollary 3.6.10. deg1(D1) and deg2(D2) are not defined.

Lemma 3.6.11. {deg2( f ) j f 2 B2 n {0}} D Z.

Proof. Consider the elementw D y2�a2
0x3�2a1y�2a0a2Ca2

1 of k2[x, y]. Using
y D a0t�3 C a1 C a2t3 C � � � and x D t�2, we findw D 2a0a3t3 C higher powers oft ,
so ordt (w) > 0. Note thatw ¤ 0, since x, y are algebraically independent overk2.
So deg(w) is a negative integer and consequentlyh2, 3, deg(w)i D Z, which proves
the lemma.

Lemma 3.6.12. Gr(B1) is not affine overk1 and Gr(B2) is affine overk2.

Proof. The fact that Gr(B2) is affine overk2 follows from k2 � B2 � k2((t)) and
deg2 D � ordt , by Paragraph 2.2. BecauseB1 � k1((t)), we cannot apply the same
argument and show that Gr(B1) is affine. In fact Theorem 1.7 (b) implies that Gr(B1)
is not affine overk1, because deg1 has values inN (Lemma 3.6.7) and deg1(D1) is not
defined (Corollary 3.6.10).

The fact thata0 is transcendental overk0 (cf. Corollary 3.6.5 and Definition 3.6.6)
played no role up to this point. It is needed for the following:
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Lemma 3.6.13. Let g be theN-grading B0 D k0[x, y] DL
i2N Ri of B0 defined

by the conditions R0 D k0, x 2 R2 and y2 R3. Thendeg0 is the degree function de-
termined byg. Consequently, deg0(D0) is defined andGr(B0) is affine overk0.

Proof. For eachi , j 2 N,

xi y j D a j
0 t�2i�3 j C higher powers oft ,

and a0 is transcendental overk0. It easily follows that ifS is a nonempty finite subset
of N2 and (�i j )(i , j )2S is a family of elements ofk0 n {0}, then

ordt

 X
(i , j )2S

�i j x
i y j

!
D min{�2i � 3 j j (i , j ) 2 S},

or equivalently, deg0
�P

(i , j )2S�i j xi y j
�Dmax{2iC3 j j (i , j ) 2 S}. So deg0 is the degree

function determined byg. A straightforward calculation shows that deg0(D0) is defined
and is equal to�3 (alternatively, deg0(D0) is defined by Theorem 1.7). Since deg0 is
determined by a grading ofB0, we have Gr(B0) � B0, so Gr(B0) is affine.

3.7. Proof of Proposition 1.5. Let k0 be an uncountable field of characteristic
zero, k1 a function field overk0 and k2 the algebraic closure ofk1. By Lemma 3.5,
there exists a setU such that (k0, k1, k2,U ) satisfies the requirements of Paragraph 3.4;
then all results of Paragraph 3.6 are valid when applied to (k0, k1, k2, U ). Define the
degree functions degi (i D 0,1,2) as in Definition 3.6.6 and note that, by Lemma 3.6.7,
deg0 and deg1 have values inN [ {�1}. Assertions (a) and (b) of Proposition 1.5 are
clear, and (c), (d), (e) follow from Corollary 3.6.10, Lemmas 3.6.12 and 3.6.13 (note
that, for eachi D 1, 2, degi cannot be determined by a grading ofBi because that
would imply that degi (Di ) is defined, by Theorem 1.7).

Corollary 3.8. Let A be a domain which contains an uncountable fieldk of char-
acteristic zero, and such thatFrac(A) is a function field overk. Consider A[X, Y] D
A[2] and the A-derivation�=�Y W A[X, Y] ! A[X, Y]. Then there exists a degree func-
tion degW A[X, Y] ! N [ {�1} such thatdeg(a) D 0 for all a 2 A n {0}, and such
that deg(�=�Y) is not defined.

Proof. Letk0 D k, k1 D Frac(A) andk2 the algebraic closure ofk1. By Lemma 3.5,
there exists a setU such that (k0, k1, k2, U ) satisfies the requirements of Paragraph 3.4
andu2 2 A for all u 2 U . So we are done by Lemma 3.6.9.

3.9. Proof of Corollary 1.6. There exist an uncountable fieldk0 of character-
istic zero and a function fieldk1 over k0 such that the algebraic closure ofk1 is C.
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Then the triple (k0, k1, k2 D C) satisfies the hypothesis of Proposition 1.5. Let us de-
note by d0 the degree function deg2 W B2 D C[X, Y] ! Z [ {�1} given by Propos-
ition 1.5. Also consider the grading ofC[X, Y] defined by stipulating thatX, Y are
homogeneous of degrees 2 and 3 respectively, and letd W C[X, Y] ! Z[ {�1} be the
degree function determined by this grading. Using Proposition 1.5, it is easily verified
that djQ[X,Y] D d0jQ[X,Y] and thatd0 is wild over C. By Theorem 1.7 (a),d is tame
over C. So d and d0 satisfy the desired conditions.

4. Some positive results

We prove several results which assert that degree functionssatisfying certain hy-
potheses are tame. The main results are Propositions 4.6, 4.21 and 4.24.

SETUP 4.1. Throughout Section 4 we consider a triple (B, G, deg) whereB is
a domain of characteristic zero,G be a totally ordered abelian group and degW B !
G [ {�1} a degree function.

4.2. Let (B, G, deg) be as in Setup 4.1. IfDW B ! B is a derivation, one defines
an auxiliary mapÆD W B ! G[{�1} by ÆD(0)D �1 and, givenx 2 Bn{0}, ÆD(x) D
deg(Dx) � deg(x). Note that

deg(Dx) D ÆD(x)C deg(x), for all x 2 B.

We also defineÆD(S) 2 G [ {�1} for certain subsetsS of B. If S is a nonempty
subset ofB such that the subsetUS D {ÆD(x) j x 2 S} of G [ {�1} has a greatest
elementM, we defineÆD(S) D M. If US does not have a greatest element, we leaveÆD(S) undefined. We also defineÆD(;) D �1. Note in particular thatÆD(S) is defined
for every finite subsetS of B. If S1, S2 are subsets ofB then the equality “ÆD(S1) DÆD(S2)” is to be understood as meaning: either bothÆD(S1) and ÆD(S2) are undefined,
or both are defined and are equal to the same element ofG[ {�1}. We also observe
that the equality deg(D) D ÆD(B) always holds (i.e., either both sides are undefined, or
both sides are defined and are equal to the same element ofG [ {�1}).

Define the transitive relation�D on the powersetP(B) of B by declaring that, for
S, S0 2 P(B),

S�D S0 � 8s2S9s02S0ÆD(s) � ÆD(s0).
Then it is clear that

(14) S�D S0 and S0 �D SH) ÆD(S) D ÆD(S0).
Noting thatS� S0 implies S�D S0, we obtain the following useful special case of (14):

(15) S� S0 and S0 �D SH) ÆD(S) D ÆD(S0).
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DEFINITION 4.3. Let (B, G, deg) be as in Setup 4.1. By a 0-subring of B we
mean a subringZ of B such that deg(x) D 0 for all x 2 Z n {0}.

Lemma 4.4. Let (B, G, deg) be as inSetup 4.1. Let DW B ! B be a derivation
and x1, : : : , xn 2 B.
(1) ÆD(x1x2 � � � xn) � max1�i�n ÆD(xi ).
(2) If deg(x1C� � �C xn) D max1�i�n deg(xi ), then ÆD(x1C� � �C xn) � max1�i�n ÆD(xi ).
(3) If x1,:::,xn 2 Z for some0-subring Z of B, thenÆD(x1C� � �Cxn) �max1�i�nÆD(xi ).

Proof. We writeÆ D ÆD. Given x, y 2 B n {0},

Æ(xy) D deg(D(xy)) � deg(xy) D deg(y DxC x Dy) � deg(xy)

� max(deg(y Dx), deg(x Dy)) � deg(xy)

D max(deg(Dx)C deg(y), deg(Dy)C deg(x)) � deg(xy) D max(Æ(x), Æ(y))I
assertion (1) follows by induction.

If deg(x1 C � � � C xn) D max1�i�n deg(xi ) then

deg

 
D

 X
i

xi

!!
D deg

 X
i

Dxi

!
� max

i
(deg(Dxi )) D max

i
(Æ(xi )C deg(x)i )

� max
i
Æ(xi )Cmax

i
deg(x)i D max

i
Æ(xi )C deg

 X
i

xi

!
,

so assertion (2) holds. Assertion (3) immediately follows.

Lemma 4.5. Let (B, G, deg) be as inSetup 4.1and let A� Z be 0-subrings of
B. Suppose that S is a subset of Z such that Z is algebraic over A[S]. Then, for all
D 2 DerA(B), ÆD(Z) D ÆD(S).

Proof. Let D 2 DerA(B) and letÆ D ÆD. Consider a product

(16) � D ax1 � � � xn (with a 2 A and x1, : : : , xn 2 S).

As Æ(a) D �1, we haveÆ(ax1 � � � xn) � max(Æ(a), Æ(x1), : : : , Æ(xn)) D maxi Æ(xi ) by
Lemma 4.4, soÆ(�) � Æ(s) for somes 2 S. Now consider an element� 2 A[S]. Then� is a finite sum,� D �1C � � �C�m, where each�i is a product of the form (16); so,
for each i 2 {1, : : : , m}, there existssi 2 S such thatÆ(�i ) � Æ(si ); consequently we
may chooses 2 S such thatÆ(�i ) � Æ(s) holds for all i 2 {1, : : : , m}. As �1, : : : ,�m 2
Z, part (3) of Lemma 4.4 givesÆ(� ) � maxi Æ(�i ), so Æ(� ) � Æ(s). This shows that
A[S] �D S.
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Let b 2 Z n {0}. As b is algebraic overRD A[S], we may choose a polynomial8(T) DP
i r i T i 2 R[T ] n{0} (whereT is an indeterminate andr i 2 R) of minimal de-

gree such that8(b)D 0. Then 0D D8(b)D8(D)(b)C80(b)Db and (using charBD 0)80(b) 2 Z n {0} imply deg(8(D)(b)) D deg(Db) D Æ(b). Now 8(D)(b) DP
i D(r i )bi , so

Æ(b) D deg(8(D)(b)) D deg

 X
i

D(r i )b
i

!
� max

i
deg(D(r i )b

i )

and deg(D(r i )bi ) D deg(Dr i ) D Æ(r i ) for each i , so Æ(b) � maxi Æ(r i ). It follows that
there existsr 2 A[S] such thatÆ(b) � Æ(r ), i.e., we have shown thatZ �D A[S]. We
get Z �D S by transitivity andÆ(Z) D Æ(S) by assertion (15) of Paragraph 4.2.

Proposition 4.6. Let G be a totally ordered abelian group, B D L
i2G Bi a

G-graded integral domain of characteristic zero anddegW B ! G [ {�1} the de-
gree function determined by the grading. Assume that B is finitely generated as a
B0-algebra and let A be a subring of B0 satisfyingtrdegA(B0) <1. Thendeg is tame
over A.

More precisely, given any choice of z1,: : : ,zm 2 B0 and homogeneous x1,: : : ,xn 2 B
such that B0 is algebraic over A[z1, : : : , zm] and BD B0[x1, : : : , xn],

deg(D) D max{ÆD(z1), : : : , ÆD(zm), ÆD(x1), : : : , ÆD(xn)} for all D 2 DerA(B).

Proof. Let z1, : : : , zm 2 B0 and x1, : : : , xn 2 B be as in the statement. LetD 2
DerA(B) and letÆ D ÆD. Define M D max{ÆD(z1), : : : , ÆD(zm), ÆD(x1), : : : , ÆD(xn)} (so
M 2 G[ {�1}). It suffices to show thatÆ(x) � M for all x 2 B n {0}. Indeed, if this
is true then deg(D) D M.

Lemma 4.5 (withSD {z1,:::,zm} and Z D B0) implies thatÆ(B0)Dmax1�i�mÆ(zi ),
so Æ(b) � M certainly holds for allb 2 B0.

Let x 2 B n {0}. Then x is a finite sum,x D h1 C � � � C hm, where eachhi is
homogeneous and deg(h1) < � � � < deg(hm). Then deg(h1 C � � � C hm) D maxi deg(hi ),
so part (2) of Lemma 4.4 implies thatÆ(h1 C � � � C hm) � maxi Æ(hi ). So it’s enough
to show thatÆ(hi ) � M for all i , i.e., we may assume thatx is homogeneous.

Suppose thatx 2 Bd n{0}, for somed 2 G. Thenx is a finite sum,x D �1C� � �C�m, where each�i 2 Bdn{0} is a monomial of the form�i D bi x
ei 1
1 � � �xein

n with bi 2 B0

and ei j 2 N. We have deg(�1 C � � � C �m) D maxi deg(�i ), so part (2) of Lemma 4.4
implies thatÆ(x) D Æ(�1C� � �C�m) � maxi Æ(�i ). So it’s enough to show thatÆ(�i ) �
M for all i . Part (1) of Lemma 4.4 givesÆ(�i ) �max(Æ(bi ),Æ(x1),: : : ,Æ(xn)), so Æ(�i ) �
M and we are done.

Corollary 4.7. Let G be a totally ordered abelian group, BDL
i2G Bi a G-graded

integral domain of characteristic zero anddegW B ! G[ {�1} the degree function de-
termined by the grading. Assume:
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(1) B has finite transcendence degree over a fieldk;
(2) B is finitely generated as a B0-algebra.
Thendeg is tame overk.

More precisely, given any choice of z1,: : : ,zm 2 B0 and homogeneous x1,: : : ,xn 2 B
such that B0 is algebraic overk[z1, : : : , zm] and BD B0[x1, : : : , xn],

deg(D) D max{ÆD(z1), : : : , ÆD(zm), ÆD(x1), : : : , ÆD(xn)} for all D 2 Derk(B).

Proof. Ask is necessarily included inB0, this is Proposition 4.6 withAD k.

The next two results are consequences of Corollary 4.7.

Corollary 4.8. Let k be a field of characteristic zero, B a k-affine integral do-
main and G a totally ordered abelian group. IfdegW B ! G [ {�1} is the degree
function determined by some G-grading of B, then deg is tame overk.

More precisely, given any choice of homogeneous elements x1, : : : ,xn 2 B satisfying
B D k[x1, : : : , xn], we havedeg(D) D max1�i�n ÆD(xi ) for all D 2 Derk(B).

Proof. Fix a gradingB DL
i2G Bi which determines deg and note thatk � B0.

Given homogeneous elementsx1, : : : , xn 2 B satisfying B D k[x1, : : : , xn], it is certainly
the case thatBD B0[x1,:::,xn]. We may also choosez1,:::,zm 2 B0 such that eachzi is
a monomial of the formxei 1

1 � � �xein
n (ei j 2 N) and B0 is algebraic overk[z1, : : : ,zm]. Let

D 2 Derk(B), then deg(D)Dmax{ÆD(z1),:::,ÆD(zm),ÆD(x1),:::,ÆD(xn)} by Corollary 4.7.
Part (1) of Lemma 4.4 givesÆD(zi ) � max1� j�n ÆD(x j ), so deg(D) D max1�i�n ÆD(xi ).

Corollary 4.9. Let R be a domain of finite transcendence degree over a fieldk
of characteristic zero and let BD R[X1, : : : , Xn] D R[n] . Let G be a totally ordered
abelian group and define a G-grading on B by choosing(d1,:::,dn) 2 Gn and declaring
that the elements of Rn {0} are homogeneous of degree0 and that ( for each i) Xi is
homogeneous of degree di . Let degW B ! G[{�1} be the degree function determined
by this grading. Thendeg is tame overk.

More precisely, if z1, : : : , zm 2 R are such that R is algebraic overk[z1, : : : , zm],
then deg(D) D max{ÆD(z1), : : : , ÆD(zm), ÆD(X1), : : : , ÆD(Xn)} for every D2 Derk(B).

Proof. Let B DL
i2G Bi be the grading and choose�1, : : : , �N 2 B0 such that

each �i is a monomial of the formXei 1
1 � � � Xein

n (ei j 2 N) and B0 is algebraic over
R[�1, : : : ,�N ]; then B0 is algebraic overk[z1, : : : ,zm,�1, : : : ,�N ] and BD B0[X1, : : : , Xn].
If D 2 Derk(B) then, by Corollary 4.7,

deg(D) D max{ÆD(z1), : : : , ÆD(zm), ÆD(�1), : : : , ÆD(�N), ÆD(X1), : : : , ÆD(Xn)}.

Part (1) of Lemma 4.4 givesÆD(�i ) � max1� j�n ÆD(X j ), so we are done.
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Paragraph 4.10 and Lemma 4.11 are simple observations aboutlocalization of de-
gree functions. These facts are used in the proofs of4 Corollaries 4.12, 4.14 and 4.24.
Note that Lemma 4.11 appeared in [6].

4.10. Let B be a domain,G a totally ordered abelian group and degW B ! G [
{�1} a degree function. IfS� B n {0} is a multiplicative set, then deg has a unique
extension to a degree functionDEGW S�1B ! G [ {�1}. Indeed, it is easily verified
that the mapDEG defined byDEG(0)D �1 and DEG(x=s) D deg(x)� deg(s) (for x 2
Bn{0} ands 2 S) is a well-defined degree function and is the unique extension of deg.

Lemma 4.11. Let B be a domain of characteristic zero, S� B n {0} a multiplica-
tive set, G a totally ordered abelian group, anddegW B! G[{�1} and DEGW S�1B!
G[{�1} degree functions such thatdegis the restriction ofDEG. Consider D2 Der(B)
and its extension S�1D 2 Der(S�1B). Thendeg(D) is defined if and only ifDEG(S�1D)
is defined, and if both degrees are defined then they are equal.

Proof. AsÆDW B! G[{�1} is the restriction ofÆS�1DW S�1B ! G[{�1}, we
haveU � U 0, where we defineU D {ÆD(x) j x 2 B} and U 0 D {ÆS�1D(x) j x 2 S�1B}.
We first observe that ifs 2 S then
(17)ÆS�1D(1=s) D DEG((S�1D)(1=s)) � DEG(1=s)

D DEG(�D(s)=s2) � DEG(1=s) D deg(Ds) � 2 deg(s)C deg(s) D ÆD(s).

Applying part (1) of Lemma 4.4 toÆS�1D gives, for anyx 2 B and s 2 S,

ÆS�1D(x=s) D ÆS�1D(x(1=s)) � max(ÆS�1D(x), ÆS�1D(1=s)) D max(ÆD(x), ÆD(s)) 2 U .

This shows that8u02U 09u2U u0 � u. This, together withU � U 0, proves the lemma.

Recall that ifB is a domain of characteristic zero then each locally nilpotent deriva-
tion 1 W B ! B determines a degree function deg1 W B ! N [ {�1} (cf. for instance
[3, 1.1.7]).

Corollary 4.12. Let B be a domain of finite transcendence degree over a fieldk
of characteristic zero. Letdeg1 W B ! N [ {�1} be the degree function determined
by a locally nilpotent derivation1 W B ! B. Thendeg1 is tame overk.

Moreover, if t 2 B is such that1(t) ¤ 0 and 12(t) D 0, and z1, : : : , zm 2 ker1
are such thatker1 is algebraic overk[z1, : : : , zm], then for each D2 Derk(B)

(18) deg1(D) D max{ÆD(z1), : : : , ÆD(zm), ÆD(t)}.

4Lemma 4.11 would also be used for proving Lemma 1.8, but this proof is omitted.
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Proof. Let A D ker1, � D 1(t) 2 A n {0} and SD {�n j n 2 N}. ThenS�1B D
(S�1A)[t ] D (S�1A)[1] (cf. for instance [3, p. 27]). Moreover, ifDEGW S�1B ! N[{�1}

denotes thet-degree then deg1 is the restriction ofDEG, so the hypothesis of Lemma 4.11
is satisfied. Apply either Corollaries 4.7 or 4.9 toDEG andS�1D 2 Derk(S�1B): asS�1A
is algebraic overk[z1, : : : , zm], DEG(S�1D) D max{ÆS�1D(z1), : : : , ÆS�1D(zm), ÆS�1D(t)}.
We have deg1(D) D DEG(S�1D) by Lemma 4.11, so we are done.

REMARK 4.13. Let the notations and assumptions be as in Corollary 4.12. Then
(18) can be rewritten (thanks to Lemma 4.5) as

deg1(D) D max{ÆD(ker1), ÆD(t)}.

However, if we suppose that kerD ¤ ker1 then Corollary 2.16 on p. 42 of [3] asserts
that deg1(D) D ÆD(ker1); this last claim is not correct, as shown by the following
example. LetB D k[z, t ] D k[2] , 1 D �=�t and D D z �=�zC t2 �=�t . As 1(t) ¤ 0,12(t) D 0 and ker1 D k[z], (18) gives deg1(D) D max{ÆD(z), ÆD(t)} D max{0, 1} D 1,
while ÆD(ker1) D ÆD(k[z]) D 0.

Here is another common situation where Lemma 4.11 is useful (compare with
Lemma 1.8):

Corollary 4.14. Let LD k[X�1
1 , : : : , X�1

n ] be the ring of Laurent polynomials in
n variables over a fieldk of characteristic zero, let g be a G-grading of L where G
is some totally ordered abelian group, and let deg

g
W L ! G [ {�1} be the degree

function determined byg. Let B be a ring such thatk[X1, : : : , Xn] � B � L and
let degW B ! G [ {�1} be the restriction ofdeg

g
. Thendeg is tame overk. More-

over, if we also assume that each Xi is a g-homogeneous element of L thendeg(D) D
max1�i�n ÆD(Xi ) for all D 2 Derk(B).

Proof. Let SD {Xe1
1 � � � Xen

n j (e1, : : : , en) 2 Nn} and note thatS�1B D L. Let
D 2 Derk(B). By Corollary 4.8, deg

g
(S�1D) is defined; by Lemma 4.11, it follows

that deg(D) is defined and deg(D) D deg
g
(S�1D); in particular, deg is tame overk.

Under the additional assumption that eachXi is homogeneous, Corollary 4.8 gives

deg
g
(S�1D) D max{ÆS�1D(X1), ÆS�1D(1=X1), : : : , ÆS�1D(Xn), ÆS�1D(1=Xn)}

D max{ÆD(X1), : : : , ÆD(Xn)},

where for the last equality we used thatÆS�1D(1=Xi ) D ÆD(Xi ) for each i (see (17)
in the proof of Lemma 4.11). We already noted that deg(D) D deg

g
(S�1D), so we

are done.
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Finite generation of the associated graded ring

We shall now study triples (B, G, deg) as in Setup 4.1 which satisfy the additional
condition that Gr(B) is a finitely generated algebra over a zero-subring (as explained
in Lemma 4.18, below). For this type of consideration, the following device is useful.

DEFINITION 4.15. Let (B, G, deg) be as in Setup 4.1.
(1) By a subpair of (B, Gr(B)), we mean a pair (A, NA) where A is a subset ofB,
1 2 A, NA is a homogeneous subring of Gr(B) and:

Each homogeneous element ofNA is of the form gr(a) for somea 2 A.(†)

(2) Let D 2 Der(B). By a D-subpair of (B, Gr(B)), we mean a subpair (A, NA) of
(B, Gr(B)) such thatÆD(A) is defined.
(3) If ( A, NA) is a subpair of (B, Gr(B)) and x 2 B, we define

(A, NA)x D (Ax, NA[gr(x)]),

where Ax is the collection of all elementsb 2 B which can be written in the form
bDPm

iD0 ai xi for somem 2 N and a0, : : : , am 2 A satisfying:

deg(a j x
j ) D deg(b) for all j such that a j ¤ 0.(‡)

REMARK 4.16. As in part (3) of Definition 4.15, consider a subpair (A, NA) of
(B, Gr(B)) and x 2 B. Then A [ {x} � Ax � R[x], where R is the subring ofB
generated byA.

Lemma 4.17. Let (B, G, deg) be as inSetup 4.1.
(1) If (A, NA) is a subpair of(B, Gr(B)), then so is(A, NA)x for each x2 B.
(2) Let D 2 Der(B). If (A, NA) is a D-subpair of(B, Gr(B)), then so is(A, NA)x for
each x2 B. Moreover, ÆD(Ax) D ÆD(A[ {x}).

Proof. Let (A, NA) be a subpair of (B, Gr(B)), let x 2 B, and consider (A, NA)x D
(Ax, NA[gr(x)]); we show that (A, NA)x is a subpair of (B, Gr(B)). We may assume that
x ¤ 0, because (A, NA)0 D (A, NA). As 12 A and A� Ax, we have 12 Ax. We have to
show that if Ny is a homogeneous element ofNA[gr(x)] then Ny D gr(y) for somey 2 Ax.
Note that this is clear ifNy D 0 (because (†) implies 02 A, hence 02 Ax), so assumeNy ¤ 0. We have

Ny D mX
iD0

Nai gr(x)i

for somem 2 N and some homogeneous elementsNa0, : : : , Nam 2 NA satisfying

(19) deg(Naj gr(x) j ) D deg(Ny) for all j such that Naj ¤ 0.
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By (†), there exista0, : : : , am 2 A such that gr(ai ) D Nai for all i . Since deg(a j x j ) D
deg(gr(a j x j )) D deg(Naj gr(x) j ), (19) implies that deg(a j x j ) D deg(Ny) whenevera j ¤ 0.
Consequently,

Ny D mX
iD0

gr(ai x
i ) D

8�����<
�����:

gr

 
mX

iD0

ai x
i

!
, if deg

 
mX

iD0

ai x
i

!
D deg(Ny),

0, if deg

 
mX

iD0

ai x
i

!
< deg(Ny).

Since Ny ¤ 0, it follows that deg
�Pm

iD0 ai xi
� D deg(Ny) (so

Pm
iD0 ai xi 2 Ax) and thatNy D gr

�Pm
iD0 ai xi

�
, so Ny D gr(y) for some y 2 Ax. So (A, NA)x is indeed a subpair of

(B, Gr(B)), and assertion (1) is proved.
Let D 2 Der(B), assume that (A, NA) is a D-subpair of (B, Gr(B)) and let x 2 B.

To show that (A, NA)x is a D-subpair of (B, Gr(B)), we have to show thatÆD(Ax) is
defined. We may assume thatx ¤ 0. Let y 2 Ax; then we may writey DPm

iD0 ai xi

for somem 2 N and a0, : : : , am 2 A such that (‡) holds, i.e.,

deg(a j x
j ) D deg(y) whenever a j ¤ 0.

Write f (X) DPm
iD0 ai Xi ; then y D f (x) and Dy D f (D)(x)C f 0(x) Dx.

If j is such thata j ¤ 0 then

deg(D(a j )x
j ) D ÆD(a j )C deg(a j )C deg(x j ) D ÆD(a j )C deg(a j x

j ) D ÆD(a j )C deg(y),

so deg(f (D)(x)) � ÆD(�) C deg(y) for some� 2 A. Also, if j > 0 is such thata j ¤
0 then

deg(ja j x
j�1D(x)) D deg(a j x

j ) � deg(x)C deg(D(x)) D deg(y)C ÆD(x),

so deg(f 0(x)D(x)) � deg(y)C ÆD(x). Thus,

ÆD(y)C deg(y) D deg(D(y)) � max(deg(f (D)(x)), deg(f 0(x)D(x)))

� max(ÆD(�)C deg(y), deg(y)C ÆD(x))

and it follows thatÆD(y) � max(ÆD(�), ÆD(x)). We have shown thatAx �D A [ {x}.
As 12 A, we havex 2 Ax and henceA[ {x} � Ax. Thus

(20) ÆD(Ax) D ÆD(A[ {x}),

by Paragraph 4.2. AsÆD(A) is defined, so isÆD(A[ {x}); so, by (20),ÆD(Ax) is de-
fined. This proves assertion (2).
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Lemma 4.18. Given (B, G, deg) as in Setup 4.1,the following hold.
(1) For any 0-subring Z of B(cf. Definition 4.3), Gr(B) is a Z-algebra.
(2) If deg(x) � 0 for all x 2 B n {0} then the subring ZD {x 2 B j deg(x) � 0} of
B is in fact a 0-subring of B, and is factorially closed in B. By(1), it follows that
Gr(B) is a Z-algebra.
(3) If {deg(x) j x 2 B n {0}} is a well-ordered subset of G thendeg(x) � 0 for all
x 2 B n {0}, i.e., the hypothesis of(2) is satisfied.

Proof. Let Z be a 0-subring ofB. If Bi , Bi� and B[i ] are defined as in Para-
graph 1.9 then the compositeZ ,! B0 ! B[0] ,! Gr(B) is an injective homomorphism
of rings Z ! Gr(B), z 7! gr(z). This defines a structure ofZ-algebra on Gr(B): if
z 2 Z and � 2 Gr(B), then z� D gr(z)� . Assertions (2) and (3) are trivial.

Lemma 4.19. Let (B, G, deg)be as inSetup 4.1and let Z be a0-subring of B.
Assume thatGr(B) is finitely generated as a Z-algebra(cf. Lemma 4.18)and consider
elements x1, : : : , xn 2 B satisfyingGr(B) D Z[gr(x1), : : : , gr(xn)].
(1) There exists a set E satisfying Z[ {x1, : : : , xn} � E � Z[x1, : : : , xn] and:

(a) 8x2Bn{0}9e2E deg(x � e) < deg(x)
(b) ÆD(E)D ÆD(Z[{x1, : : : , xn}) for every D2 Der(B) such thatÆD(Z) is defined.

(2) If {deg(x) j x 2 B n {0}} is a well-ordered subset of G then BD Z[x1, : : : , xn].

Proof. We have Gr(B) D Z[ Nx1, : : : , Nxn], where we defineNxi D gr(xi ) for all i .
Define A0 D Z � B and NA0 D {gr(z) j z 2 Z} � Gr(B), and note that (A0, NA0) is a
subpair of (B, Gr(B)). For 1� i � n, define (Ai , NAi ) D (Ai�1, NAi�1)xi ; then setE D An

and note thatZ[ {x1, : : : , xn} � E � Z[x1, : : : , xn], by Remark 4.16. Also, (An, NAn) is
(by Lemma 4.17) a subpair of (B, Gr(B)) and NAn D NA0[ Nx1, : : : , Nxn] D Z[ Nx1, : : : , Nxn] D
Gr(B); it follows that each homogeneous element of Gr(B) D NAn is of the form gr(e)
for somee2 E D An; so E satisfies condition (a). LetD 2 Der(B) be such thatÆD(Z)
is defined; then (A0, NA0) is a D-subpair of (B, Gr(B)); so, by repeated application of
Lemma 4.17, (An, NAn) is a D-subpair of (B, Gr(B)) and ÆD(E) D ÆD(An) D ÆD(Z [
{x1, : : : , xn}). So E satisfies (b).

We prove (2) by contradiction: assume that{deg(x) j x 2 B n {0}} is well-ordered
and B ¤ Z[x1, : : : ,xn]. Pick b0 2 Bn Z[x1, : : : ,xn] such that deg(b0) is the least element
of {deg(x) j x 2 B n Z[x1, : : : , xn]}. Then there existse2 E � Z[x1, : : : , xn] such that
deg(b0 � e) < deg(b0), and this leads to a contradiction. SoB D Z[x1, : : : , xn].

REMARK 4.20. The assumption that{deg(x) j x 2 B n {0}} is well-ordered, in
Lemma 4.19 (2), is needed. Indeed, considerB D k[x, y] and degW B ! Z [ {�1}

as in the proof of Proposition 1.2. Then deg(x) D 1 and deg(y � a0) D �k where
k � 1. Definex1 D x and x2 D x2k�1(y� a0)2, then deg(x1) D 1 and deg(x2) D �1, so
Gr(B) D k[gr(x1), gr(x2)] (because Gr(B) � k[t, t�1]). However, B ¤ k[x1, x2].
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Proposition 4.21. Let (B, G, deg) be as inSetup 4.1and suppose that
(1) {deg(x) j x 2 B n {0}} is a well-ordered subset of G;
(2) Gr(B) is finitely generated as a Z-algebra,
where ZD {x 2 B j deg(x) � 0} (cf. Lemma 4.18). Then the following hold:
(3) B is finitely generated as a Z-algebra;
(4) if A is a subring of Z such thattrdegA(Z) <1, then deg is tame over A.
More precisely, let A be as in(4) and let z1, : : : , zm 2 Z and x1, : : : , xn 2 B be
such that Z is algebraic over A[z1, : : : , zm] and Gr(B) D Z[gr(x1), : : : , gr(xn)]; then
B D Z[x1, : : : , xn] and

deg(D) D max{ÆD(z1), : : : , ÆD(zm), ÆD(x1), : : : , ÆD(xn)}, for all D 2 DerA(B).

Proof. In view of Lemma 4.18, assumption (1) implies thatZ is a 0-subring ofB
and hence that Gr(B) is a Z-algebra, so assumption (2) makes sense. Letz1, : : : , zm 2
Z and x1, : : : , xn 2 B be such thatZ is algebraic overA[z1, : : : , zm] and Gr(B) D
Z[gr(x1), : : : , gr(xn)]; then B D Z[x1, : : : , xn] by Lemma 4.19. LetD 2 DerA(B). To
prove the proposition, we have to show thatÆD(x) � M for all x 2 B, where we define

M D max{ÆD(z1), : : : , ÆD(zm), ÆD(x1), : : : , ÆD(xn)}.

Choose a subsetE � Z[x1, : : : , xn] satisfying the requirements of Lemma 4.19. By
Lemma 4.5,ÆD(Z) is defined and is equal to max1�i�m ÆD(zi ); so E satisfies:

8x2Bn{0}9e2E deg(x � e) < deg(x) and ÆD(E) D ÆD(Z [ {x1, : : : , xm}) D M.

By contradiction, assume that somex 2 B satisfiesÆD(x) > M; then the setS0 D {i 2
G j 9x2B(deg(x) D i and ÆD(x) > M)} is not empty. By assumption (1), we may con-
sider the least elementi0 of S0. Now pick x 2 B such that deg(x)D i0 andÆD(x) > M;
note in particular thatÆD(x) > M and ÆD(E) D M imply that x � E. Choosee 2 E
such that deg(x � e) < deg(x) and note thatx � e¤ 0; so deg(x � e) is an element of
G strictly less thani0. By minimality of i0, it follows that ÆD(x � e) � M.

Note that deg(x) D deg(e). If deg(Dx) D deg(De), it follows immediately thatÆD(x) D ÆD(e) � M, a contradiction; so deg(Dx) ¤ deg(De) and consequently
deg(Dx � De) D max(deg(Dx), deg(De)). Then

ÆD(x)C deg(x) D deg(Dx) � max(deg(Dx), deg(De))

D deg(D(x � e)) D ÆD(x � e)C deg(x � e) � M C deg(x � e),

so ÆD(x) � M C deg(x � e) � deg(x) < M, a contradiction.

Corollary 4.22. Let B be an integral domain of finite transcendence degree over
a field k of characteristic zero. Suppose thatdegW B! G[{�1} (where G is a totally
ordered abelian group) is a degree function satisfying the conditions
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(1) {deg(x) j x 2 B n {0}} is a well-ordered subset of G,
(2) Gr(B) is a finitely generated algebra over the ring ZD {x 2 B j deg(x) � 0}.
Then deg is tame overk and B is finitely generated as a Z-algebra. More precisely,
if z1, : : : , zm 2 Z and x1, : : : , xn 2 B are such that Z is algebraic overk[z1, : : : , zm]
and Gr(B) D Z[gr(x1), : : : , gr(xn)], then BD Z[x1, : : : , xn] and

deg(D) D max{ÆD(z1), : : : , ÆD(zm), ÆD(x1), : : : , ÆD(xn)}, for all D 2 Derk(B).

Proof. In view of Lemma 4.18, assumption (1) implies thatZ is a 0-subring of
B and hence that Gr(B) is a Z-algebra, so assumption (2) makes sense. It is also
noted in Lemma 4.18 thatZ is factorially closed inB; this implies thatk � Z, so
all hypotheses of Proposition 4.21 are satisfied withA D k. The result follows from
Proposition 4.21.

Corollary 4.23. Let B be an integral domain containing a fieldk of character-
istic zero. Suppose thatdegW B ! G [ {�1} (where G is a totally ordered abelian
group) is a degree function satisfying the conditions
(1) {deg(x) j x 2 B n {0}} is a well-ordered subset of G;
(2) Gr(B) is a finitely generatedk-algebra.
Then deg is tame overk and B is a finitely generatedk-algebra. More precisely, if
x1, : : : , xn 2 B are such thatGr(B) D k[gr(x1), : : : , gr(xn)], then:
(3) B D k[x1, : : : , xn];
(4) deg(D) D max{ÆD(x1), : : : , ÆD(xn)} for all D 2 Derk(B);
(5) Z D k[z1, : : : , zm], where we define ZD {x 2 B j deg(x) � 0} and where z1, : : : , zm

denote the elements of{x1, : : : , xn} of degree0.

Proof. By Lemma 4.18, assumption (1) implies thatZ D {x 2 B j deg(x) � 0}

is a 0-subring ofB (so Gr(B) is a Z-algebra) and is factorially closed inB. The last
condition implies thatk � Z, so Gr(B) is a k-algebra and assumption (2) makes sense.

Let x1, : : : , xn 2 B n {0} be such that Gr(B) D k[gr(x1), : : : , gr(xn)]. As k is a
0-subring of B (becausek � Z), Lemma 4.19 implies thatB D k[x1, : : : , xn].

Write Gr(B) DL
i2G B[i ] with notation as in Paragraph 1.9. Let� W Z ! B[0] be

the mapZ D B0 ! B0=B0� D B[0] , and note that� is an isomorphism ofk-algebras
and �(z) D gr(z) for all z 2 Z. Let z1, : : : , zm be the elements of{x1, : : : , xn} of
degree 0; as Gr(B) D k[gr(x1), : : : , gr(xn)] where deg(gr(xi )) D deg(xi ) � 0 for eachi ,

it follows that B[0] D k[gr(z1), : : : , gr(zm)]. So the compositek[z1, : : : , zm] ,! Z
��! B[0]

is surjective, and consequentlyZ D k[z1, : : : , zm]. All hypotheses of Corollary 4.22 are
satisfied, so

deg(D) D max{ÆD(z1), : : : , ÆD(zm), ÆD(x1), : : : , ÆD(xn)} D max{ÆD(x1), : : : , ÆD(xn)}

for every D 2 Derk(B).
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Proposition 4.24. Let B an integral domain of finite transcendence degree over
a field k of characteristic zero anddegW B ! G [ {�1} a degree function, where G
is a totally ordered abelian group. Assume:
(a) {deg(x) j x 2 B n {0}} is a well-ordered subset of G;
(b) Frac(B)=Frac(Z) is a one-dimensional function field, where Z denotes the subring
{x 2 B j deg(x) � 0} of B.
Thendeg is tame overk. Moreover, the ordered monoid{deg(x) j x 2 B n {0}} can be
embedded in(N, C, �).

Proof. LetSD Z n {0}, B0 D S�1B and Z0D S�1Z D Frac(Z). By Paragraph 4.10,
deg extends to a degree function deg0 W B0! G [ {�1}. Note that

trdegk(B0) <1,(21)

{deg0(x) j x 2 B0 n {0}} is equal to{deg(x) j x 2 B n {0}} and hence is a well-
ordered subset ofG,

(22)

Z0 D {x 2 B0 j deg0(x) � 0}.(23)

Let L D Frac(B) and, using Paragraph 4.10 again, letDEGW L ! G [ {�1} be
the unique degree function which extends deg and deg0. Let v W L ! G [ {1} be the
valuation ofL defined byv(x) D �DEG(x). As deg(x) D 0 for all x 2 Z n{0}, we note
that v is a valuation overZ0; as L=Z0 is a one-dimensional function field, it follows
that v is a rank 1 discrete valuation; so the residue field� of v is a finite extension of
Z0 and {v(x) j x 2 L�} � Z. It follows that {deg(x) j x 2 B n {0}} can be embedded in
(N, C, �).

Consider the associated graded rings Gr(B), Gr(B0) DL
i2G B0

[i ] and Gr(L) deter-
mined by (B,deg), (B0,deg0) and (L ,DEG) respectively, and note thatZ0 D B0

[0] �Gr(B0).
As DEG extends deg0 and deg0 extends deg, there are injective degree-preserving homo-
morphisms of graded rings, Gr(B) ,! Gr(B0) ,! Gr(L). Using thatv is a rank 1 discrete
valuation, we get Gr(L) � �[t, t�1] where t is an indeterminate over�. Thus

Z0 � Gr(B0) � �[t, t�1].

Now [�W Z0] <1, so�[t,t�1] is a finitely generatedZ0-algebra of transcendence degree
1 over Z0; it follows that

(24) Gr(B0) is finitely generated as aZ0-algebra.

Let D 2 Derk(B), and considerS�1D 2 Derk(B0). By (21), (22), (23) and (24),
(B0, G, deg0) and Z0 satisfy the hypothesis of Corollary 4.22 and consequently
deg0(S�1D) is defined; by Lemma 4.11, deg(D) is defined. So deg is tame overk.
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REMARK 4.25. Let us indicate how to compute the value of deg(D), in the above
proof. We havek � Z, because (Lemma 4.18)Z is factorially closed inB; so we may
choosez1, : : : , zm 2 Z such thatZ is algebraic overk[z1, : : : , zm]. Also note that
Gr(B) ,! Gr(B0) is the localization: Gr(B0) D S�1 Gr(B); this and (24) imply that we
can choosex1, : : : , xn 2 B satisfying Gr(B0) D Z0[gr(x1), : : : , gr(xn)]. As Z0 is algebraic
over k[z1, : : : , zm] and Gr(B0) D Z0[gr(x1), : : : , gr(xn)], Corollary 4.22 gives

deg0(S�1D) D max{ÆS�1D(z1), : : : , ÆS�1D(zm), ÆS�1D(x1), : : : , ÆS�1D(xn)}

D max{ÆD(z1), : : : , ÆD(zm), ÆD(x1), : : : , ÆD(xn)}.

Now Lemma 4.11 implies that deg(D) D deg0(S�1D), so we conclude that

deg(D) D max{ÆD(z1), : : : , ÆD(zm), ÆD(x1), : : : , ÆD(xn)}.
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