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1. Introduction

Recently, in [1], [11] an analytic characterization of all (non-symmetric) Dirichlet
forms (on general state spaces) which are associated with pairs of special standard
porocesses has been proved extending fundamental results in [8], [9], [18], [5],
[10] (cf. also the literature in [11]). These Dirichlet forms are called quasi-regular
(cf. Section 3 below). The processes forming the pairs are in duality w.r.t. the
reference (speed) measure of the Dirichlet form. From a probabilistic point of
view, however, this duality is quite restrictive. It arises from the fact that a
Dirichlet form by the definition in [1], [11] exhibits a contraction property in
both of its arguments. More precisely, we recall that a coercive closed form
(€,D(&)) on LYE;m) (cf. Section 2 below) is called a Dirichlet form if for all ue D(&)
we have u* AleD(&) and

(1.1 Eu+ut Nu—utN1)>0
1.2) Ew—ut ANlu+u*t A1)>0.

The purpose of this paper is to show that quasi-regularity is also sufficient and
necessary for the existence of an associated special standard process if the given
coercive closed form is merely a semi-Dirichlet form, i.e., only (1.1) (or (1.2))
holds. The existence of a (Hunt) process associated with a semi-Dirichlet form
(&,D(&)) was first proved in [5] in the case where E is a locally compact separable
metric space under much more stronger assumptions on (&, D(&)).

Let us now briefly describe the contents of the single sections of this paper in
more detail. In section 2 we first prove a few new results for the (one sided)
analytic potential theory of semi-Dirichlet forms which are needed later. Here
we only require that E is a measurable space in contrast to earlier work on this
subject (cf. [5], [2], [3], where e.g. the measure representation of potentials was
crucial which could only be obtained because E was assumed to be locally
compact). In particular, we give a new proof for the characterization of a-excessive
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functions in terms of the semi-Dirichlet form in this purely measure theoretic
context (Theorem 2.4 below). This proof does not use the “dual structure” of the
semi-Dirichlet (i.e., the dual semigroup (7)), ,, generator L etc) at all giving rise
to possible extensions to more general situations. Furthermore, we show that
the infimum of an o excessive function in L%(E;m) and a function in D(&) belongs
to D(&) (which appears to be new even if (£,D(&)) is a Dirichlet form; cf. Theorem
2.6). Another important result is the characterization of &-nests in terms of a
suitably defined capacity without duality (cf. Theorem 2.14) if E is a topological
space. Section 2 furthermore contains a description of the general setting and a
review of the underlying terminology. Based on these results the construction of
the process and the proof of necessity is then analaogous to the case considered
in [1], [11]. The corresponding theorems are formulated in Section 3 where we
also summarize the necessary facts on quasi-regularity. Finally we want to
emphasize that due to the results of this paper, all results in [11] carry over to
semi-Dirichlet forms.

This paper was motivated both by the results in [5], [20] for finite dimensional
state spaces and by applications to cases with infinite dimensional state spaces,
more precisely to measure valued diffusions, in particular the construction of
Fleming-Viot processes with selection. The situation in Section I1.3 of [20] cannot
be handled within the theory of Dirichlet forms, but only with the help of
semi-Dirichlet forms. We describe our results, which extend the examples in [5]
and a part of the results in [20], in Subsection 3.4 below, where we also sketch
the applications to the Fleming-Viot processes. The details of the latter are
contained in a forthcoming joint paper of the two last-named authors and B.
Schmuland.

2. Analytic potential theory of semi-Dirichlet forms

In this section we state the definiton of semi-Dirichlet forms and develop the necessary
potential theoretic tools on which the construction of the process will be based. As
far as the proofs in [11] apply (i.e., only use (1.1), not (1.2)) we just quote them
and concentrate on the new parts.

2.1. Semi-Dirichlet forms and excessive functions

Let (E,#,m) be a measure space. Let & be a bilinear form with domain D(&) on
the (real) Hilbert space L2(E; m) with inner product (,). Weset &:=&+a(,),a>0.

DEFINITION 2.1. (&,D(&)) with D(&) dense in L*E;m) is called a coercive
closed form if:

(i) (&,D(&)) is positive definite and closed on L*(E;m), where
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E(u,v):=1/2(Ew,v) +&W,u)) is the symmetric part of &.

(ii) (Sector condition). There exists a constant K>0 such that
|6, (u,v)| < K& (u,u)2&,(v,v)'/? Yu,ve D(6).

(€,D(&)) is called a semi-Dirichlet form on L2%(E;m) if in addition:

(ili) (Semi-Dirlchlet property) For every ue D(&), u* A1 e D(&) and
Ew+ut AN,u—u* N1)>0.

From now on we fix a semi-Dirichlet form (&,D(€)) on L*(E;m). Below D(&) is
always equipped with the norm &1/2,

REMARK 2.2. (i) Let (T),>0, (Gp.>o denote the semigroup and resolvent (of
operators) associated with (£,D(&)) as in [11, Diagram 2, page 27]. By [11, 1.4.4]
the semi-Dirlchlet property is equivalent to the sub-Markov property of T, and
aG, for all t,a>0, i.e, 0<f<1 implies 0< T,f,aG,f<1.

(i) If also the dual form &(u,v):= &(v,u) satisfies 2.1 (iii) then (&, D(&)) is a Dirlchlet
form (cf. [11, Chapter 1.4]). This, however, is not always the case as the following
example shows (cf. [12, 1.4.3a]).

Let dx denote Legesgue measure. Consider on L%*(]0,1[,dx) the coercive closed
form &(u,v)= [su'v'dx+ [sbu'vdx,D(&)= H5*(10,1[), with b(x):=/x. Let (T),»o
(T'),» o be the strongly continous contraction semigroups associated with (&,D(&)),
(€,D(&)) respectively (cf. (i)). Let (L,D(L)) be the L>-generator of (T),>o (cf. [11,
Chapter I]). Suppose (7)), is sub-Markovian. Then for all >0

IIT,uldx < f T Juldx < ﬁm Tldx< ﬁuldx,

i.e., the operators T, are L'(]0,1[,dx)-contractive. Hence its L!-generator is accretive
(cf. [14, Theorem X 48]) and, since it coincides on CF(]0,1[) with L, we obtain that

1 1
—J u"dx+f bu'dx>0 for all ue C$(J0,1[), u=0

0 0

Since [ju"dx=0 integration by parts implies that b'=1/2x"'/?

10,1[. Therefore, (7)), cannot be sub-Markovian.

is negative on

(iii) By [11, 1.4.4] we know that 2.1 (iii) is equivalent with the following:
For all ue D(&) and >0, uAaeD(&) and EuAo, u—uAa)>0.

In particular, u*,u",|u|e D(&), and thus u Av,uVve D(&) for all ve D(8). Since for
all ue D(6),a>0,
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EuNo,uNo) <& (u o, u) < K& (u Mo, u Aat) 128 (u,u)/?,

it follows that

E(uNho, u Na)'’? < K& (u,u)'/?.

Hence, since |u|=u* +u~ = —((—u) A0)+(u A0), by the triangle inequality we obtain
that
2.1 & (jul,lul) <4K*&(u,u) for all ue D(8).

(iv) A detailed study of the analytic theory of semi-Dirichlet forms in case E is
a locally compact separable metric space and £ its Borel o-algebra #(E), can be
found in [2], [3].

Below we write f<g or f<g for f,ge L*(E;m) if the inequality holds m-a.e. for
corresponding m-versions. We say that f is positive if f>0. Let us now consider
excessive functions.

DEFINITION 2.3. Let a€]0,00[. ueL*(E;m) is called a-excessive if e *Tu<u
for all £>0.

It is easy to check that an a-excessive function u is positive. Furthermore, we have:

REMARK. Let ue LA(E;m). Then u is a-excessive if and only if fG,. u<u
for all $>0. The “only if” part is clear since (cf. [11. Chapter 1.1])

G1=J e *Tdt, a>0.
0
The “if” part is shown as follows. By the resolvent equation we have that
e *T,Gys =" "T(G,(u— PGy 1)

< G(u—BGyt)

=Gﬂ+¢u
where the inequality follows by assumption, since G,f is a-excessive for every
feL¥E;m), f>0. Hence by the strong continuity

e'“'T,u:}i_{?oe‘“‘ ,(ﬁG,+,u)s}mﬂGﬂ+,u =u.

Also in the case of semi-Dirichlet forms it is possible to characterize a-excessive
functions purely in terms of the form in this purely measure theoretic context. This
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will be crucial below in order to show that reduced functions are 1-excessive.

REMARK. Also “(ii))=>(i)” of the following theorem is proved in [11,
I11.1.2]. One only has to realize that the dual semigroup (7}),», and resolvent
(G,),>o are still positivity preserving in our more general situation. For possible
later generalizations, however, we present a different new proof here which does
not use the dual structure of the semi-Dirichlet form at all.

Theorem 2.4. Letue D(&)ando>0. The following assertions are equivalent.
(1) u is a-excessive.
(i) &(u,v)=0 for all ve D(8), v=0.
Proof. (i) = (ii) see [11, IIL.1.2.].
(ii) = (i):
Claim 1: u>0:

We have that
E(u—uV0),u—(uVo)
=&(—w)—(—wA0),(—u)—(—u)A0))
=&(=u), (=)= (=) AO) — &(—u) AO,(— ) —((—u) AO)).

The second term is positive by the semi-Dirichlet property (see 2.2 (iii)) and because
f[(—u)AO):(—u)—(u*)*]dm=0. The first term is negaitve by assumption
(ii). Therefore, the strict positivity of &, implies u=uV0, i.e., u>0.

Claim 2.

Let # be the topological dual of (D(€),£}/?). For a>0 let U:# — D(&) be the
linear map defined as follows: If Je # then

&(UJ),w)=J(w) for all we D(&).

The existence of U, follows by the Theorem of Lax-Milgram and it is obvious
that U, is a bijection. Furthermore for «,f>0 we have a “resolvent equation”

22 Up()) = UJ) = (2 — A G, Uyl)).

Indeed, for all we D(€) we have that



102 ZM. Ma, L. OverBeck and M. RGCKNER

ELUHJ) —(a— )G, UyJ), w)
=6UpJ),w)+ (00— BYU(J),w) — (@ — BIUp(J), w)
=Jw)=E(U)),w).
In particular, (2.2) implies that G,Uy(J)=G,U,J).

Claim 3: 1If J(v)>0 for all ve D(&) with v>0, then U,(J)>0 m-a.e. for all a>0.

The positivity of J implies &(U,J),v)=0 for all ve D(&) with v>0. Hence by
Claim 1 UyJ)=0 m-a.e. for all «>0.

Claim 4: wu is a-excessive.

Let ve D(&), v=0,>0.
(u— PG u,v)= (G u—PG,Gp 4 41,v)
=&(Gp i ql,V) (resolvent equation)
=6&(Gy4,UU;'w),v) (U, is a bijection)
=8(G,Up+lUy; 'u)y)  (Claim 2)
>0,
because Up.(U; 'u) is positive by Claim 3 and assumption (i) and because G,f
is a-excessive, if f is positive.
For v=1G,f with 0<fe L*(E;m) we thus have that 0<(u— BG.,u,AG,f), which

yields as A — oo that 0<(u— Gy, u,f) for all fe LX(E;m), f>0, and (i) follows by
he remark preceding this theorem. O

REMARK 2.5. (i) If ue D(L), the crucial point in Claim 4 can be prove without
using U, (u—BGyrothyV)=E(Gp gty ) =Gy Golt— Dit,V) = 8(G, Gy ot — L))
>0, since because of

((c— L)u,v)=&(u,v)=>0 for all ve D(&),v=>0,
the function (x—L)u is positive. By the Markov property G, —L)u is still
positive which implies that G,Gy, (x—L)u is a-excessive.

(i) Theorem 2.4 is well-known if E is a locally compact separable metric space
and £ its Borel c-algebra Z(E). The classical proof is based on measure
representation of potentials (see [2]).

The domain of a Diriclet form is inf-stable. The next theorem extends this result



MARKOV PROCESSES 103

to semi-Dirichlet forms under the restriction that one of the functions is 1-excessive
but not necessarily in the Dirichlet space.

Theorem 2.6. Let ue(&,D(8)) and he L*(E;m), 1-excessive. Then u/A\he D(&)
and & (uNhu)>&uNh,uNh). In particular, any 1-excessive function bounded by
a function ued(8) is itself in D(&).

Proof. Definite for a,f>0,u,ve LX(E;m)
(&) P(w,v):= B(1 — BGpy + Ju,v).
Fix f>0. The identity u=(u—h)* +uAh implies that
(2.3 ()P u Ny u—uNh)=(&)Punh,(u—h)*).
Since (G,),>o is sub-Markovian and A is 1-excessive it follows that
(u—h)*(1—BGps NuAh)=(@—h)* (h— PGy 1h) =0,
and hence
(2.4) (E)Pu A, (u—h)*)=B(1 — BGpy 1 Nu AB), (u—h)*) 2.
Furthermore,
@ —h)*, w—h)*")=(E) P, (u—h) ") — (&) U A, (u—h)*)

<(@E)Pw,—h*)  (by (24)
<K+ )& (uu) 2(E)P(u—h)*, (w—h)*)2

where the last inequality follows by [11, 1.2.11 (iii)] applied to the form (&,,D(&))
and its resolvent (G, ,,),>o- Consequently,

sup (E)P((u—h)*,(u—h)")< o0,

which implies that (u—h)*eD(&) (by [11, 1.2.13 (i)]), and hence uAh
=u—(wu—h)*eD&). By [11, 1.2.13 (iii)]

EWNh,u—u/Nh) =Ilgin(1) (6)PuANh,u—uNh),

and the desired inequality follows by (2.3) and (2.4). O

REMARK 2.7. Theorem 2.6 generalizes the result of inf-stability of the Dirichlet
space [11, 1.4.11] as well as the result that an a-excessive function is in the Dirichlet
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space D(&) if it is dominated by an a-coexcessive function in D(&) (cf. [ 11, ITL.1.3 (ii)]).

2.2. Reduced functions

In this section we recall the definition of reduced functions and collect properties
which remain true if (§,D(£)) is merely a semi-Dirichlet form. We assume from
now on that E is a Hausdorff topological space and take # to be its Borel
o-algebra #(E). We also assume that m is a o-finite positive measure on %(E).

Proposition 2.8. Let h be a function on E. Define for U c E, U open,
G ={weD(E)\w=h m-ae. on U}.
Suppose that %, y#0. Then:
(i) There exists a unique hye %, y such that for all we %, y
&,(hy,w) = &(hy, hy).

(i) & (hy,w)=0 for all we D(8) with w>0 m-ae. on U. In particular, hy is
1-excessive and &,(hy,w)=0 for all we D(&)y., where

D(8)ye:={ue D(&)|u=0 m-ae. on U},

and UF:=FE\U.

(ili) hy is the smallest function u on E such that u/Ahy is a 1-excessive function in
D(&) and u>h m-a.e. on U. In particular, (0 <)hy <h(m-a.e. on E) if and only if
hAhy is a 1-excessive function in D(&). In this case hy=h m-a.e. on U.

Suppose that V< Uc E, V open. Then:
(iv) Ly > Lf#9), hy <hy, and
&(hy,hy) < K*&,(hy, hy).
(V) If hAhy is a 1-excessive function in D(&), then (hy)y=hy.
(vi) If g:E— R, with &, ,#0 and g>h m-a.e. on U, then gy>hy (m-a.e. on E).

Proof. Because of Theorem 2.4, 2.6, the proofs in [11, ITL.1.5 (i)-(v) and II1.1.6
(iil)] carry over to the case of semi-Dirchlet forms. O

2.3. Capacities

We first recall the notion of “&-nest” and “&-quasi-continuity”.
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DEFINITION 2.9.

(i) An increasing squence (F),.n Of closed subsets of E is called an &-nest if

(J D(&)f, is dense in D(&).

k=1

(i) An &-nest (F)en is regular if for all ke N, U < E, U open, m(Un F,)=0 implies
that U < F.

(i) A subset Nc E is called &-exceptional if Nc< () F; for some &-nest
k>1
(Fiken- We say that a property of points in E holds &-quasi-everywhere

(abbreviated &-g.e.), if the property holds outside some &-exceptional set.

Lemma 2.10.

(i) Let Uc E, U open, and let (F )iy be an &-nest. Let h be a 1-excessive function
in D(&). Then hy g — hy in D(8) as k — 0.

(i) Let he D(¢) and U, < E, U open, U,{ U. Then hy,— hy in D(&) as n— oo.

Proof. (i) Since by Proposition 2.8 (iv) (hy r:hen is @ decreasing sequence
of functions, klim hyors=:h,, exists m-a.e. and in L*(E;m). Since by the inequality

in Proposition 2.8 (iv) (hy,rg)ken is bounded in &1/2-norm, it follows that it weakly
converges to k. in (D(&),(&) (cf. [11, 1.2.12]).

Step 1. Assume U=0.

For every we | D(6)r,

keN
& (hy,w)= klin;é’l(hp,c‘,w) =0.
Becasue (F}),.n is an &-nest, this implies 1, =0. By Proposition 2.8. (ii) we see that
lim sup & (hpg,hpg) = lim & (hrz, ) =0,

hence

hge =0 in D(&) as k — oo.

Step 2. Assume U c E, open.
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We have by Proposition 2.8 (iii)
hyorg <hy+hgs,

hence h,<hy But it is obvious that h >h m-ae. on U and that h, is
1-excessive. Therefore, h,, >hy, and consequently, i, =hy.

Because 4 is 1-excessive, we have that Ay pz=h=hy m-a.e. on U by Proposition
2.8 (iii), and therefore, by Proposition 2.8 (ii)

é01("11 - hvup,i, hU - hvuri)
= éal(hUuFf(a hUqu) - év(hvupf‘, hy)
= épl(hUuFf(’ h)— é’1(hvup,i, hy)
g & (hy,h—hy)=0.
(i)): (Ay )sen 1s increasing and bounded in (D(&),&,) by Proposition 2.8 (iv). Let

h,, be the pointwise and weak limit. Then the weak convergence of (hy, ), in
(D(&),8) yields

limsup &,(h,, —hy,, h,—hy,)
= lim Sup é’l(hun,h(]") - éal(hw,hq))
<limsup &(hy,,h ) — & (h,h ) =0,

where the inquality follows from Proposition 2.8 (i) since clearly 4, >A m-a.e. on
each U, O

The description of “small sets” by Definition 2.9 (iii) is essentially sufficient to
formulate quasi-regularity and to construct the process. But for the proofs we
need to “quantify” &-nests. Therefore, we introduce a capacity whose zero sets
are exactly the &-exceptional sets.

DeFINITION 211, Let ¢eL?*(E;m) such that 0<¢<1 m-ae. and set
h:=G,¢(>0). Then h is a 1-excessive function in D(&) and strictly positive
m-a.e. Define for U < E, U open,

cap (V)= (y. )

and for any A < E
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cap (4):=inf{cap (U)l4 = U, U open}.

REMARK 2.12. (i) A cap 4-ZE10 set is also an m-zero set, since

cap,(4)> inf f Uh¢dm_>_ J hpdm.

A

(i) Note that if (&,D(&)) is a Dirichlet form and if we set g:=G,¢, then by (2.5),
2.8 (i) and [11, I11.2.4] cap(4)=Cap, (4), where Cap,, is the capacity defined
in [11, I11.2.4].

(iii) We have for U < E, U open,

- a a 1 1
(2.5 cap (U)=&(hy,G,19) < K&(G1¢,G 1$)26,(hy, hy)?,
where (G,),-, is the resolvent of & (cf. 2.2 (ii)).

Proposition 2.13. (i) If Uc W, U and W open, with m(W\U)=0, then
cap,(U)=cap ().

(ii) A = B= cap (A)<cap (B).
(iii) U,1 U, U, open=> limcap (U,)=cap oU):
(iv) A, < E=cap AH,A")S Zn:cap o(An)-

Proof. (i) Clearly, %, y= 4, w, hence hy, = hy m-a.e. and the assertion follows.

(i)): It is sufficient to consider open sets 4 = B. The assertion follows then from
hg>h,, (cf. Proposition 2.8 (iv)).

(iii): Trivial by Lemma 2.10 (ii).
(iv): Let U,,---,U, be open subsets of E. Then

k
> hu,>h
n=1

I C=

Un
1

and hence

;(hun, o=« ).

u Up

n=1

Letting kK — oo we obtain the assertion by (ii) if 4,= U, is open. Then the assertion
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trivially follows for all sets in E. O
The crucial result connecting cap , With &-nests is the following

Theorem 2.14. An increasing squence (F\)n 0f closed subsets of E is an &-nest
if and only if lim, _, ,cap (F;)=0.

Proof. The “only if” part follows by Lemma 2.10 (i) (with U=0). To prove
the converse let u € D(&) such that & (w,u)=0 for all we UD(é’)Fk. By the theorms
k

of Hahn-Banach and Lax-Milgram it is enough to show u=0.
Let g<h,geD(8), the gy<hy by Proposition 2.8 (vi) for every open set
Uc E. Hence

0<(gr5 ) <(hg, D).
Hence by assumption, since (gpz)in is decreasing by Proposition 2.8 (iv), gz = 0
in L%E;m) as k - oc0. But sup 6y(grs,8r;) <00 (by Proposition 2.8 (iv)); hence by

[11, 1,2.12] gp — 0 weakly in (D(&),&). Now we specify g as G,(1,¢4) where
AeAB(E). Then

Ozgl(g_gi'fau)k::ogl(g’u)= .f ¢udm
A

Because 4 € %(E) is arbitrary and ¢ >0 m-a.e., it follows that u=0. O

2.4. &-quasi continuity

Given an &-nest (F), .y We define

C{F})={f1A-> R\ F, = A < E/flg, is continuous for every ke N}.
k>1

DEFINITION 2.15.  An &-q.e. defined function fon E is called &-quasi-continuous
if there exists an &-nest (F)n such that fe C({F,}).

Proposition 2.16. Let S be a countable family of &-quasi-continuous functions
on E. Then there exists an &-nest (Fy)n such that S < C({F.}).

Proof. (cf. [11, II1.3.3]) Let S={f]|/le N}. Choose for every /e N an &-nest
(Fiken such that
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cap (Fi) < !
) k) = Zlk'

The sets F,:=n,F, satisfy the assertion by the sub-additivity of cap o O
The following analogue of the Chebychev inequality is crucial.

Proposition 2.17. Let ue D(&) such that it has an &-quasi-continuous m-version
i. Then for all A>0

. 4K* . . 1 12
Capd,({lul>1})STé’1(G1¢,G1¢)2é’1(u,u) 2,

Proof. Let (Fi);y be an &-nest such that de C({F,}). Consider the open set
U,:={lif> 2} UF; and the function u,:=A""|i#| +hp € D(€), which dominates & on
U, m-ae. (since h=G;¢$<1). Then

& (hy,,hy,) <& (hy,uy)
=171 (hy,, lul) + & (hy, hrs)
<K& (hyohu)' (A7 8y (lul,lu) 12 + & (hpg, hs) ' 12).
Therefore, using Proposition 2.13 (ii) and (2.5) we obtain that
cap ({|i1l> A}) < cap (U,)
< K661, G190 E,(ubul)' ' + & e ) ).

The second summand tends to 0 as k — co by Theorem 2.14, hence (2.1) implies
the assertion. O

We can now prove the remaining necessary results of the analytic potential theory
of semi-Dirichlet forms in exactly the same way as in [11, IIL3].

Proposition 2.18.

(i) Let u,eD(&), which have &-quasi-continuous m-vesions #,, n€N, such that
u, > ueD(&) as n > oo w.r.t. £\/*.  Then there exists a subsequence (u, )iy and
an &-quasi-continuous m-version @ of u such that (i, ) converges &-

quasi-uniformly to i, i.e., there is an &-nest (Fy)en Such that limi, = uniformly
n—oo
on each F,.

(i) Suppose h in Definition 2.11 has an &-quasi-continuous m-version h and let
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(Fxen be an &-nest such that ke C({F,}). Let (O)wn be a decreasing sequence
of positive numbers and that klim 0,=0. Then there exists an &-nest (F\).n
= o0

such that F, < F, and h>5, on F, for every keN. In particular, {k=0} is
&-exceptional.

(i) Let (Fy)n be an &-nest. Suppose that the relative topology on each F is
strongly Lindeldf (i.e., every open cover of any given open set has a countable
subcover). Set Fy:=support[15, -m], then (F)y is a regular &-nest, such that
F, c F, for all keN.

(iv) Suppose (F)en is a regular &-nest and fe C({Fy}). If f>0 m-a.e. on an open
set U then f(2)=0 for all zeUkZlem U.

Proof. (i), (iii), and (iv) are proved as in [11,111.3.5,3.8,3.9]. To prove (ii) set
Fo:={h>6,)nF,
Then (F,),.y is an increasing sequence of closed sets. Let
u:=(hA&)+hps, keN.
Then for each ke N, u,e D(&), u,>h m-ae. on F{ and
(2.6) &y (hps, hipe) < 8 (s, uy)
=& (hys, h \Oy) + &y (hie, hps)
<K& (hzs,hzg)'?
(B (h NS h NS * + 8, (hps,hpe) ).
Since by Remark 2.2 (iii)

@7 E(MASh N&) < E(h NSy, h)
<KE(h NS, h AS) 28 (h, )2,

it follows by [11, 1.2.12] that h/\ékk—> 0 weakly in (D(€),&), hence by (2.7)
hAékk—> 0 w.r.t. &&. Now (2.6) and (2.5) imply the assertion. O
Proposition 2.19. Suppose that the following condition holds.

(2.8) Every ue D(&) has an &-quasi-continuous m-version denoted by ii.

Let f be an &-quasi-continuous function on E.
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(i) If f=0 m-a.e. on some open set U E then f>0 &-q.e. on U. In particular,
&-quasi-continuous m-versions of elements in D(&) are unique &-q.e.

(ii) Let A c E and define
L a={weD@E\W=f £-qe. on A}.
Assume L 4#0. Then there exists a unique f € ¥, 4 such that for allwe %, 4
ESaW) 2 E\(f4:S4)-

This extends the notion of “reduced function on A” to arbitrary sets
A < E. Furthermore, the correspondingly modified analogues of Proposition
2.8 with A, freplacing U,h respectively and “£-q.e.” replacing “m-a.e.” remain true.

Proof. (i) The same arguments as in [4, Proposition I. 8.1.6] prove the
assertion.

(ii): By Proposition 2.18 (i) the proof is analogous to that of Proposition 2.8. []

Theorem 2.20. Let h be as in Definition 2.11. Suppose that condition (2.8)
holds and let A — E. Then

Cap¢(A) = (hAa ¢)( = épl(hA’ él ¢))

Proof. Let Uc E, U open, with 4 =« U. Then by Proposition 2.19 (ii) we
have that ki, <hy, &-qe. on E, hence

cap,(U) = (g, $) > (1, ¢).

Consequently, cap¢(A)2(h »®). To prove the dual inequality let (U,),.n be a
decreasing sequence of open sets in E such that 4 < U,, ne N, and

cap¢(Un) Lcap (4) as n— .

By Propositions 2.16 and 2.18 (ii) there exists an &-nest (Fy)n Such that 4,4, € C({F,})
and #>0 on each F,. Let ke N and define

Vk:={5A>(l—£)ﬁ}uFf.
Then V, is open, V, > A\N for some &-exceptional set N and

h4+£h+hﬁ‘2h m-ae. on V,.
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Since hh,hpe are 1-excessive, we conclude by Proposition 2.8 (iii) and (iv) that
1
hA +Eh+hpf‘2hyk2hvnnyk for all nEN

Hence
(hs9)= lim lim (g, -y, )

= lim lim cap JUn Vi)

k- on—+ o

>cap ¢(A\N) =cap ¢(A).
O

Using Proposition 2.18 (i) we can prove the following lemma exactly as Lemma 2.10

Lemma 2.21. Let heD(&) and A, < E, A,1A. Then h, —h, in D(&) as
n— 00.

Corollary 2.22. Under the assumption of Theorem 2.20 we have that cap o IS
a Choquet capacity on E, ie., it has the following two properties:

(i) If (A,)nen is an increasing sequence of subsets of E then

cap,( | 4,)=supcap,(4,)

n>1

(i) If (K,)uen is a decreasing sequence of compact subsets of E then

cap,( () K,)= nlgf; cap,(K,).

nx>1
Proof. (i): It is clear that the left-hand side dominates the right-hand
side. The dual inequality follows immediately by Theorem 2.20 and Lemma 2.21.
(ii): Straightforward, cf. [11, I11.2.8]. O

3. Quasi-regularity: a necessary and sufficient condition for the existence of
an associated special standard process

In this section for simplicity we assume that %(E) is generated by the continuous
functions on E. Let us first recall some notions from the general theory of Markov
processes (cf. [11, IV.1], [16]).



(i1)

(iii)

(iv)
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3.1. Association of right processes and Dirichlet forms

DEFINITION 3.1.

Let M=(Q,% (%),> 0,(X,),20,(PZ)ZE,5A) be a normal strong Markov process with
state space E, life time {, cemetery A, and shift operators 0,,t>0. M is called
a right process if for each weQ, t— X(w) is right continuous on [0,00[.

Let u be a positive measure on (E,,Z(E,)). A right process M is called
u-tight if there exists an increasing sequence (K,),.y of compact metrizable sets in
E such that

P,‘[ lim g x, < c] =0,

where op:=inf{t>0|X,€ B} is the first hitting time of a subset B of E,.

Let m be a o-finite positive measure on (E,,Z(E,)). A right process M is
called an m-special standard process if for one (and hence all) probability
measures u on (E,,%#(E,)), which are equivalent to m, it has the following
additonal properties:

(@) (left limits up to {) X,_ :=li{n X, exists in E for all t€]0,{[ P,—a.s.
sTt

s<t
(b) (quasi-left continuity up to { and special) If 1,t,, ne N, are (% F*)-stopping
times such that 7,17, then X, — X, as n— o0 P,-a.s. on {t<{(} and X,

is \/ Z [»-measurable.
neN

M is called a special standard process if it is a p-special standard process for
all probability measures u on (E,,%(E,)).

REMARK 3.2. Z/* denotes the completion of &, w.rt. to P,:=[P,u(dz) and

from now on we will assume without restriction that (%), , is the natural filtration
of M, cf. [11, IV 1.10]. Let E,[-] denote the expectation w.rt. P,zeE,.

DEFINITION 3.3. A right process M with state space E is said to be (properly)

associated with a semi-Dirichlet form (&,D(&)) on L*(E;m) iff p,f:=E[f(X,)] is an
(&-quasi-continuous) m-version of T,f for all f: E — R, #(E)-measurable, m-square
integrable, and all ¢>0.

Proposition 3.4. Let (p,),~ o and M be as in 3.3 and let (§, D(&)) be a semi-Dirichlet

form with resolvent (G,),»o. Let for f:E — R, B(E)-measurable, bounded,
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0

Raf(z):zf e *p.f(z)dt, ze E, a>0,

0

(e, (R),>0 is the resolvent (of kernels) associated with (p,),»o resp. M). Then the
following are equivalent.

(i) M is properly associated with (&,D(&8)).
(i) R,f is an &-quasi continuous m-version of G,f for all a>0 and all

B(E)-measurable, bounded, m-square integrable functions f- E — R.

Proof. Because of Proposition 2.18 (i) the proof is the same as that of
Proposition IV.2.8 in [11]. O

In order to state our main theorem we have to extend the notion of quasi-regularity
to semi-Dirichlet forms.

DerINITION 3.5. A semi-Dirichlet form (&,D(€)) on L*E;m) is called
quasi-regular if:
(i) There exists an &-nest (E,),.n consisting of compact sets.

(i) There exists an &1/2-dense subset of D(&) whose elements have &-quasi-
continuous m-versions.

(iii) There exist u,e D(&), ne N, having &-quasi-continuous m-versions #,, ne N,
and an &-exceptional set N < E such that {i7,|n € N} separates the points of E\N.

The next proposition collects the properties of quasi-regular semi-Dirichlet forms
which are important for the construction of an assocaited process.

Proposition 3.6. Let (£,D(8)) be a quasi-regular semi-Dirichlet form on
LXE;m). Then:
(i) There exists an &-nest of metrizable compact sets.
(i) D(&) is separable w.r.t. /2.
(iil) Each element ue D(&) has an &-quasi-continuous m-version denoted by ii.

(iv) If fis &-quasi-continuous and >0 m-a.e. on an open subset U of E, then >0
&-q.e. on U. In particular, ii is &-q.e. unique for all ue D(&).

) If @, is a dense subset of D(&), then there exists an &-exceptional set N c E
and &-quasi-continuous m-versions 4, ue 9,, such that {iilue 2,} separates the

points of E\N.
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(vi) There exists a countable subset 23 of D(&) consisting of bounded 1-excessive
Junctions such that 2§ — ¢ is dense in 9(&), an &-exceptional set N c E and
&-quasi-continuous m-versions i, u€ D , such that {iilue 2§ } separates the points

of E\N.

Proof. By virtue of our results in Section 2 the proofs of [11, IV 3.3, 3.4]
carry over to the case of semi-Dirichlet forms. O

REMRK 3.7. (i) As shown in [11, IV 3.2 (iii)] the set L*(E;m) can canonically
be identified with L*(Y;m), where Y:=UE, and (E,),.y is an &-nest of metrizable
compacts, because m(E\Y)=0 and #(Y)=B(E)nY. The set Y is a topological
Lusin space. Therefore, when dealing with quasi-regular semi-Dirichlet forms one
could assume without loss of generality that E is a (topological) Lusin space.

(ii) It will turn out that form-a.e.z€ E, P,-a.e. M takes values in the Lusin space Y.
3.2. Sufficiency of quasi-regularity

Theorem 3.8. Let (&,D(6)) be a quasi-regular semi-Dirichlet form on
L*(E;m). Then there exists an m-tight special standard process M which is properly
associated with (&,D(8)).

After having developed all the necessary analytic potential theory of semi-Dirichlet
forms in Section 2 and because of Propositions 3.4 and 3.6, the proof of Theorem
3.8 can be done by carrying over the proof of Theorem IV.3.5 in [11] (cf. also [17)
word by word.

The idea is to construct a set Y, with E\Y, &-exceptional and via a nice countable
set #, = D(&) of 1-excessive &-quasi-continuous functions a compactification E of
Y,U{A} and from (G,),>, a corresponding Ray-resolvent (R,),, on E. Then we
show that the corresponding right process M can be restricted to Y, uU{A} and
that this restriction is an m-tight special standard process properly associated with
(&,D(8)).

3.3. Necessity of quasi-regularity

Theorem 3.9. Suppose that there exists an m-special standard process
M=(Q,7 ,(X);50,(P.).ce ) with state space E and life time { which is m-tight and
associated with (é”,D(g’)). Then (8,D(8)) is quasi-regular, i.e., satisfies 3.5
(i)-(ili). Moreover, M is properly associated with (&,D(8)).

After our preparation the proof of properties 3.5 (i) and (ii) can be done in exactly
the same way as in [11, IV.5a and b]. Now let us turn to the proof of 3.5
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(ii). We first note that by Proposition 2.18 (i) it follows from property 3.5 (ii),
which we have just proved, that every ue D(&) has an &-quasi continuous version
4. Hence, we know by Corollary 2.22 that cap . is a Choquet capacity. Now
the proof of property 3.5 (iii) parallels entirely the proof in [11, IV.5¢c]. The fact
that cap, is a Choquet capacity was crucial in [11, IV.5c] for the proof of
Theorem 5.28 (i), which implies that the resolvent of the process maps a bounded
2B(E)-measurable funcion to an &-continuous function.

ReMARK 3.10. (i) For the same reasons as above all other results in [11,
Chapters IV-VI] on Dirichlet form carry over to semi-Dirichlet forms (as far as
they still make sense), like e.g. the one-to-one correspondence between semi-Dirichlet
forms (&,D(€)) and special standard processes M, the equivalence of the local
property of (&,D(8)) with the continuity of the sample paths of M, the
regularization/transfer method developed in [11, VI] etc. We also mention that
the crucial relation of the capacity with the hitting probabilities given by

cap (A) = f Ex[f e~ *O(X)ds]p(x)m(dx),
E TA

still holds. Here Ae%(F) and t, is the first touching time of A and @ is an
m-version of ¢ such that ®(z)>0 for all zeE.

(i) Using the regularization/transfer method mentioned above one can also derive
a proof of the “sufficiency part” of our result, i.e., Theorem 3.8, from [5] (ie., the
“regular locally compact” case).

3.4. Examples

(i) Let U be an open (not necessarily bounded) subset in R? and let dx denote
d-dimensional Lebesgue measure. Let a;;,b,,d,ce L}, (U;dx),1<ij<d, and define
for u,ve C¥(U):=the set of all infinitely differentiable functions with compact
support in U)

4 (ou @ 4 (9
)= Y —“Eﬁai,dx+ ; J (T;vb,-dx

ij=1 ax,- XJ

[ ov
+ Y, |u—didx+ |uvcdx.
i=1 ax,-

Then (&,C3(U)) is a densely defined bilinear form on L*(U;dx). Set d;;:=3(a;;+a;),
a;; :=%(aij—aﬁ), b:=(by,---,b)), d:=(dy,--,d;) and let | | denote the Euclidean
distance. Suppose that

(3.1) (strict ellipticity) There exists ve]0,00[ such that
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d
Y a;&=>vE)? dx-a.e. for all {é=(¢,,--,&)eR%
i,j=1

(3.2) 4;jeL>(U;dx),1<i,j<d.
(3.3) 1161, ldll € L§, (U dx),c € Ly (U ; dx).

loc
(34) ||b—d| e L>(U;dx)u L U;dx).
(3.5) There exists ae]0,00[ such that

d . d .
(c+aydx— ), Od; and  (c+a)dx— L
i=10X; i=laxi

are positive measures on A(U), where B:=(fy,--,.),7: =y, v BsVi€
Lj,(U;dx), 1<i<d, such that b=p+y with ||f|le L*(U;dx)uL?(U;dx) for
some p<d.

Then (&, C(U)) is closable on L%(U;dx) and its closure (&,D(&)) is a quasi-regular
semi-Dirichlet form, (in fact it is regular in the sense of Fukushima [8], [9]). In
particular, the corresponding semi-group (7T7),>, is sub-Markovian and there exists
a special standard process porperly associated with (&,D(&)) which is in fact a
diffusion (cf.[11, V.1.5]). The poof of this statement is similar to that in [11,
Chapter 11.2d.], so we do not repeat it here. For a more general result including
sub-elliptic possibly degenerate cases and its detailed proof we refer to [15]. Note
that if §#£0, (&,D(&,)) is in general not a Dirichlet form as shown in Remark 2.2
(ii). In [5], based on the classical results in [19], only the case, where in addition
to our conditions d;;€ L*(U;dx) and ||b],||d|| € LY(U;dx) (globally!), was treated. We
were able to treat the more general case above because of the more refined
closability results in [11] and [15]. In [20, Theorem II.3.8] the case a;;€ L*(U;dx),
d;;j=0 for 1<i,j<d,y,d=0, and feL®(U;dx) was considered. We emphasize,
however, that Stroock’s result is stronger in this particular case since he even
proves the corresponding semigroup to be strongly Feller and to have a density
w.r.t. dx.

(ii) In a forthcoming paper [13] we shall use Theorem 3.8 to construct a
Fleming-Viot process with generalized selection associated with a semi-Dirichlet
form(&,D(€)) on L*(E;m), where E is the set of all probability measures on a polish
space S and m the unique reversible measure of the Fleming-Viot process with
neutral mutation, but without any selection, cf. [7], [17]. (&,D(8)) is defined by

E(u,v)= J dm(u)(<Vu(p), V() +u(u)<b(u), V), + au(pv(p),
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with D(&) the closure of the finitely based functions #%;° w.r.t. the norm &Y. The
gradient Vu(u) is the function in L2(S;u) defined by

Vi) = o ),

where & is the Gaiteaux derivative in direction of the Dirac measure §,.
For two functions f,ge L%(S; ), the scalar product < f,g>, is the covariance of
fand g w.rt. p

The only assumption on the “generalized selection” function

b: {probability measures on S} xS — R is that
sgp <b(p,"),b(p,")>, < 0.
This is less restrictive than
sup sup b(p,x) < 00,

which is assumed by D.A. Dawson [6, 7.2.2, 10.1.1] in order to construct Fleming-Viot
processes with selection by a Girsanov type transformation. (D.A. Dawson,
however, also shows uniqueness of the corresponding martingale problem.)
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