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Introduction

Throughout the present paper, R will represent a ring with identity 1.
Let I be a right ideal of R, and by(I)={rR|RrCI}. Then, bg(I) is the
largest ideal of R contained in I. We shall call that I is a prime right ideal
provided that if X and Y are right ideals of R with XY I, then either X I
or YcI. Itis clear that a maximal right ideal is a prime right ideal. If I
is a prime right ideal, then by(I) is a prime ideal. Next, let S be a ring ex-
tension of a ring R with the same identity 1. S is said to be a left torsionfree
R-bimodule if r4(X)=0 for every essential ideal X of R, where 74(X) is the
right annihilator of X in S (cf. [1]). Right torsionfree is defined similarly,
and S is said to be ftorsionfree if it is both left and right torsionfree. More-
over, S is said to be fully torsionfree if, for every prime ideal P of S, S/P is a
right torsionfree R/(P N R)-bimodule (cf. [3]). Furthermore, we say that S is
a finite normalizing extension (resp. a lberal extension) of R if there exists
a finite subset {a,, a,, -*+, a,} of S such that S=33%., Ra; and Ra;=a;R for all
1=1,2, -+, n (resp. ra;=a;r for all rER and for all i=1, 2, -+, n). A ring ex-
tension 7" of R is said to be an intermediate normalizing extension (resp. an
intermediate extension) if there exists a finite normalizing extension (resp. a
liberal extension) S of R containing 7.

Recently, Heinicke and Robson [1, 2], Lorenz [5], Jabbour [3] and others,
gave some descriptions of the relationship between the prime ideals of R and
any intermediate normalizing extension 7. In this paper, we shall verify
that there is a similar relationship between the prime right ideals of R and 7.
In Section 1, we shall prove a “lying over” theorem for a liberal extension,
and a “lying inside” theorem and a “lying outside” theorem for an intermediate
extension. In Sections 2 and 3, we shall prove a “cutting down” theorem
for a fully torsionfree finite normalizing extension and an intermediate nor-
malizing extension of a fully torsionfree finite normalizing extension.
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1. Prime right ideals of a liberal extension

In this section, we discuss the relationship of prime right ideals of a liberal
extension and an intermediate extension.

Theorem 1.1 (Lying over). Let S be a liberal extension of a ring R. If
K is a prime right ideal of R, then there exists a prime right ideal I of S such that
INR=K. When this is the case, there hold by(I)NR=>5b(K) and I N R=
KSNR=K.

Proof. Since bg(K) is a prime ideal, there exists a prime ideal P of S such
that P N R=b,(K) and P is a maximal with respect to P NR=>0,K) by [9,
Theorem 4.1]. By [9, Lemma 3.2], S/P is a liberal extension of R/bg(K).
Hence we may assume that S is a prime liberal extension of a prime ring R
such that BN R=+0 for each non-zero ideal B of S, and K is a prime right ideal
of R with b,(K)=0. Since, by [9, Lemma 3.5], there is a non-zero ideal 4
of S such that R+ A4 is contained in a full matrix ring M,(R), we have
KAcM,(K), and so KANRCK. Consequently, by Zorn’s Lemma, there
exists a right ideal I of S which is maximal with respect to /N RCK and
IDKA. Let X and Y be right ideals of S with XY I and Y ¢ 1. Then
we have (X-+I)NR)(SYNR)cK. Since SY=+0, SYNR is a non-zero
ideal of R, and so SYNREK. Therefore (X+I)NRCK, and so XCI.
This implies that I is a prime right ideal of S. According to [9, Theorem
4.6], it is clear that bs(I)=0 and Ad¢ . Since KSA=KANI, we have KSCI
and KS NR=INR=K.

By making use of the same methods as in the proof of the above theorem,
we readily obtain the following

Corollary 1.2 (Going up). Let S be a liberal extension of R. If K,OK
are prime right ideals of R and I is a prime right ideal of S with I N R=K, then
there exists a prime right ideal I, of S such that 1,>1 and I,N R=K,.

If P and Q are prime ideals of .S such that PO Q and PN R=QNR, then
P=Q ([1, Theorem 5.10]). We shall now present some examples of liberal
extensions in which there does not hold an ‘“‘incomparability’” theorem for
prime right ideals.

D D
ExampLE 1.3. Let D be a division ring, and S=(D D)' Then S'is a

do 0 0
liberal extension of Dz{(o d)‘dED} , and [ =(D D) is a maximal right

ideal of S with b5(I)=0. But I N D=0 which is a prime ideal of D.
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ExampLE 1.4. Let A be a simple ring with a non-zero maximal right
44 M M M M
ideal M, and Sz( 4 A)' Then Il:(A A,) and Izz(M M) are prime
right ideals of S such that I, 21, but ;N A=M=1I,N A, which is a prime
right ideal but not an ideal.

In the rest of this section, we investigate the relationship of the prime
right ideals between R and any intermediate extension.

Theorem 1.5 (Lying outside). Let T be a intermediate extension of R
with a liberal extension S of R containing T, and J a prime right ideal of T. Then
J O R is a prime right ideal of R, and there exists a prime right ideal I of S such
that INT C J and bs(I) N R=b,(J) N R=bx(J N R)=bx(I N R).

Proof. By Zorn’s Lemma, there exists an ideal P of S which is maximal
with respect to the property P N T Cby(J). Since b,(]) is a prime ideal of T,
P is prime and P N R=b,(J)N R (cf. [7, Theorem 12.3] and [8, Theorem 3.2]).
Then, since S/POT|(PNT)DR/(PNR), we may assume that S is a prime
liberal extension of a prime ring R, and 7 is a subring of S containing R, and
J is a prime right ideal of 7 such that b(J) N R=0and QN T ¢ J for each non-
zero ideal Q of S. By Zorn’s Lemma, there is a right ideal I which is maximal
with respect to the property INTc J. It is clear that by(I)=0. Suppose
that X and Y are right ideals of S with XY c/and Y& I. Then (X+I)NT)
X(SYNT)cINn TcJand SY is a non-zero ideal of S. Therefore we obtain
(X+I)NTcJ, and so X< I.Thus I is a prime right ideal of S. Next we
claim that /N R is a prime right ideal of R. To prove this, assume that X,
and X, are right ideals of R with X,X,c JNR and X,& JNR. Now, by [8,
Proposition 2.5], there exist a liberal extension S'=33%_,6,CR of CR and a
non-zero ideal X of CR such that XS'c CT cS'cCS, where C is the center
of the complete ring of quotients of R, and b,, b,, +*+, b,V 5(CR). Moreover,
by [8, Lemma 4.1], there exist non-zero ideals Y, Y, of R such that 33%.,5,Y,
is a ring (without 1) and TY, T C3X3_,b,Y,CT. Then we have X,TY,TX,Y,T
cX 26, V,X,Y,TCcX,Y,X,>;b; Y, TcX,X,TcJ. Since Y,%0, Y,#0 and
X,=+0, Y, X,Y, is a non-zero ideal of R contained in the ideal 7Y, TX,Y,T of
T. Since by(J)NR=0, we have X;T'c J. Hence J N R is a prime right ideal.
Once again, using [8, Lemma 4.1], we obtain that TY,Tb;(J NR)Y,T C J, and
so bx(JNR)Y,TcJ. This implies that bg(J N R)=0. The rest is clear.

Corollary 1.6. Let R, T, S and J be as in the above theorem.If (J N R)S N
T C ], then there exists a prime right ideal I of S such that IN TCJ and
INR=JNR. In this case, there holds that bg(I) N R=b(J)NR=bx(J N R)=
be(I N R).
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Let T be an intermediate extension of R, and S a fixed liberal extension
of R containing 7. Let K be a prime right ideal of R and I a prime right ideal
of S with INR=K. Then, by Zorn’s Lemma, there exists a right ideal J
of T which is maximal with respect to the property /N R=K and JDINT.
In this situation, we shall prove the following

Lemma 1.7. hy(K)=>b(J)NR=by(I)N R and bs(I)N T Cb,(J).

Proof. Obviously we obtain bs(I) N T'Cb (J). Since bg(K)S is an ideal of
S contained in 7, this implies bx(K) Cbx(K)S NRCby(I)NRCH(J)NRCb(K).

Proposition 1.8 (Lying inside). [ is a prime right ideal of T if and only
if bp(J) is a prime ideal of T.

Proof. 1If b,(J) is prime, then b;(J) is an ideal Q of T which is maximal
with respect to QN R=bk(K) and ODby(I)NT (cf. [7, Theorem 12.7 and 8,
Theorem 3.3]). Suppose that X and Y are right ideals of T with XY I and
Y& J. Then TY+b(J)*b(J) and (X+)NR) (TY+b(J)NR)CJNR
=K. Hence it follows from the maximality of 4,(J) that (X-+J)NRcK, and
so [ is a prime right ideal.

The following examples show that whether J is a prime right ideal or not.

A A
ExampLE 1.9. Let 4, M and S be as in Example 1.4, and let T' =(0 A)'

MM
Then I:(A A) is a prime right ideal of S with /TN A=M. Since

0 4/\0 0
and which is a prime right ideal of T

M A\ (A A . ) ) M A\ . .
( ) )CI NT,INT is not prime right. ( 0 A) is the required J,

ExampLE 1.10. Let 4 be a simple ring having at least two maximal right
ideals, and let M and N be distinct maximal right ideals. Let us put S=

AAA A A0 MMM

A A Al and T=(0 4 0) . Since A4 is two-sided simple, I=|{A4 A4 A)

A A A 0 04 N NN

is a prime right ideal of S and INA=M NN is a prime right ideal of 4.
MAO MAO\ [AAO

Hence, ( 0 A4 0] is the required J. However, since [0 4 0|0 40]|c 7
0 0N 004/ \000

J is not a prime right ideal.
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2. Prime right ideals of a finite normalizing extension

In the rest of our study, suppose that S is a finite normalizing extension
of R.

Proposition 2.1 (Lying over). Suppose that S is a finite normalizing ex-
tension of R. If K is a prime right ideal of R, then there exists a prime right ideal
I of S such that INRCK and bp(K) is a minimal prime ideal over bs(I)N R.

Proof. Since bx(K) is a prime right ideal of R, there exists a prime ideal
Q of S such that bg(K) is a minimal prime ideal over QN R. Hence we may
assume that S is a prime finite normalizing extension of R and K is a prime
right ideal of R such that 4N R bk(K) for each non-zero ideal 4 of S and
bg(K) is minimal prime. We next claim that there is a prime right ideal I of
S which satisfies I N RCK and by(/)NR=0. By Zorn’s Lemma, there exists
a right ideal I of S which is maximal with respect to / NRCK. Let X and
Y be right ideals of S such that XY/l and Y& /. Since (X+I)NR)
X(SYNR)cINRCK and SY is a non-zero ideal of S, we have X C L.
Thus [ is a prime right ideal of R. Clearly we have bg(1)=0.

Lemma 2.2. Let S be a torsionfree finite normalizing extension of R. If
Y is an essential ideal of R, then bs(Y'S)=0.

Proof. If X is an R-S-subbimodule of S with Y:S N X=0, then YX=0.
Since Y =0, there holds X=0. Hence it follows that YS is an essential R-
S-subbimodule of S. By [6, Lemma 4], we have b4(Y'S)=0.

Proposition 2.3. Let S be a prime torsionfree finite normalizing extension
of a prime ring R. If I is a prime right ideal of S with by(I)=0, then I N R is
a prime right ideal of R with by(I N R)=0.

Proof. Assume that X and Y are right ideals of R with XY cINR and
Y& INR. Then we obviously obtain XSb(RYS)C I, and hence we have
either XS CI or bs(RYS)c1. On the other hand, since R is prime, RY is
an essential ideal of R, and so, b5(RY'S) is a non-zero ideal of S by Lemma 2.2.
Hence there holds XS c1I. Therefore, it follows that TN R is a prime right
ideal of R. The rest of the proof is clear from Lemma 2.2.

If R is not prime, then it may happen that I N R is not a prime right ideal
of R.

A0
ExampLE 2.4. Let A, M and S be as in Example 1.4. Putting Rz(o A) )

S is a prime torsionfree finite normalizing extension of R and R is not prime.
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Let S=2>1'_1Ra; (Ra;=a;R) be a prime torsionfree finite normalizing
extension of R. Let Q(S) be the right Martindale quotient of S. Then,
there exist orthogonal idempotents fi, f,, **+, f,, In Vo)(R)={g€O(S)|rg=gqr
for all r&R} such that fi+f,++-+f,=1 and m<n. We set here P; =ry(f),
i=1,2,.-,m. Then, the P; are m distinct minimal prime ideals of R such
that N7.,P;=0, and R/P;=R/P, for all i. Let us set D;=N7_ ;+;P;, for
all &z Then each D; is a non-zero ideal of R with f,d=d (for all d=D,), and
so D; is an essential ideal of f;R. Since f;=Q(S), there exists an essential ideal
B of S such that f;BCS for all ¢ (cf. [1] and [5]). By [1, Theorem 5.7], each
f:Sfi (1=i=<m) is a prime torsionfree finite normalizing extension of the prime
ring f;R. Now, let I be a prime right ideal of S with bg(/)=0. Let us set
gi()={fsficf.Sf;| fisfiBcI}. Then we have f,Sf;BC f,BCS by [1l, Pro-
position 5.5], and so g;(I) is a right ideal of f;Sf;. Then g,(I)=f,Sf; if and
only if ;B> 1. Under this situation, we shall prove the following

Lemma 2.5. There exists an f; such that g(I)= f.Sf;. Such an f; is
independent of a choice of an essential ideal B.

Proof. If g(I)=f;Sf; for i=1,2, ---, m, then we have BC fiB+f,B-}--
+f.BCI. This is a contradiction. To prove the rest, for essential ideals B,
B’ of S, we assume that f;Bd I and f;B'CI. Since f;BB'C f;B'CI and f,B¢ I,
we have B’ C I, which contradicts b5(1)=0. Hence f;Bd I if and only if f;Bd I.

By Lemma 2.5, we may assume that f,Bd-I if i=1,2,---,¢, and f,BCI
if i=t-+1, -, m.

Lemma 2.6. For each i=1,2, -+, t, g(I) is a prime right ideals of f;Sf;
with by;sr(g(1))=0.

Proof. For s=3XY.,rja,€S(r;eR), we put ¢ =3 y,r;a;,, where
$()={j| fia;f;%+0}, and then fisf;= @ f, ([1, Proposition 5.4]). Let s®f;
and s*@f; be any elements of f;Sf; such that s*f f,Sfis"*®f, Cg(I) and
s f. &g (). Then we obtain §*®f;B.Ss'*Of.BC ¢ f Ss*®fBC 1. Since
fis'fiEgi(1), it follows that Ss*®f,BC I and so f;sf;BCI. Thus, g,(I) is a
prime right ideal of f;Sf;. Next, if fisf;€g/I) and f.Sf.fisf; Cg«(I), then
fiB-SfsfBC f:Sfisf:Bc 1. Since f,B& I, we have Sf;sf;BC I. 'This implies
Sf:sf:B=0, and so f;sf;B=0. Since f;sf;Q(S) and B is an essential ideal of
S,it follows that by,s/,(g:(1))=0.

Combining Proposition 2.3 with Lemma 2.6, we obtain the following
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Corollary 2.7. g/(I)N fR is a prime right ideal of f;R such that bs(g/(I)N
fiR)=0 for i=1, 2, .-+, t.

Theorem 2.8 (Cutting down). Let .S be a prime torsionfree finite normaliz-
ing extension of R. If Iis a prime right ideal of S such that bs(1)=0, then there
exist prime right ideals K, K,, -+, K, of R such that 0., K;=I N\ R, by(K;)=P;
fori=1,2, .-, t. In this case, there holds bx(I N R)= N}, P;.

Proof. By Lemma 2.5, we may assume that f;B¢ I for i=1, 2, .-+, ¢, and
fiBcI for i=t+1, ---,m. By Corollary 2.7, g1 )N f;R (1=i<t) is a prime right
ideal of f;R such that b;:(g:(I)N f:R)=0. Here we set K,={reR|frec
&N fiRy (1=i<t). Then, it is easily seen that each K; is a prime right
ideal of R such that by(K;)=P;. Now we claim that N{., K;=INR. Actually,
if reni.iK; then freg(l)NfR for i=1,2, -+, ¢, and so frBCI. On the
other hand, for i=t+41, -, m, frBC f;BCI. Hence rBC frB-+frB-+---+
foeB+frB+ - +frBCI. Since I is the prime right ideal of S with
bs(I)=0, we have therefore r€I NR. Thus Ni.; K;cINR. Conversely, for
rel N R, we have rf,BC I, which implies that fzf;= g(I)N f;R for i=1,2, -+, ¢,
and so r& N1 K;. Therefore, Ni{.; K;=INR. The rest of the proof is

clear.

Corollary 2.9. Let S be an arbitrary fully torsionfree finite normalizing
extension of R. If I is a prime right ideal of S, then there exist prime right ideals
K, K, +++, K, of R such that INR=N}_,K;, and each be(K;) (1=i=<n) is a
minimal prime ideal of R over bs(I)NR. In this case, there holds by(I N R)=
N1 b(K)DB(I)NR.

ExampLE 2.10. Let 4 and M be as in Example 1.4. Let us set
AAA A4 0 0

S=|4 A4 A| and R=(0 4 0) . Since R is an only essential ideal of R, S is
444 004
a prime torsionfree finite normalizing extension of R. For the prime right ideal
M M M
I=|{MMM)| of S with by(I)=0, we immediately obtain that I N R =
A4 A4 A
MO0
0 M 0| is a right ideal of R which is not prime and not an ideal. On the
004
000 400 A00
other hand, P,=(0A4 0|, P,=|0 0 0] and P;=| 0 A 0| are the all minimal
004 004 000
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M 00 A 00
0 40| and K,=|(0M O
0 04 004

right ideals of R such that INR=K,NK, and bg(I N R)=bx(K,) N be(K;)=
P,NP,=+0 and t=2=3=m.

prime ideals of R. Moreover, K, = are prime

3. Prime right ideals of an intermediate normalizing extension

In this section, we shall prove a “cutting down” theorem for prime right
ideals of an intermediate normalizing extension which corresponds to that of
Section 2. Throughout this section, suppose that T is an intermediate nor-
malizing extension of R, and S is a fixed finite normalizing extension of R con-
taining 7.

Lemma 3.1. Let S be a torsionfree R-bimodule. If Y is an essential ideal
of R, then YT is an essential R-submodule of T and there exists a non-zero ideal
A of Swith 0+ ANT Ch(YT).

Proof. Since Y be an essential ideal of R, by making use of the same
methods as in the proof of Lemma 2.2, we readily obtain that YT is an essential
R-subbimodule of T. Let T* be a relative complement of 7" in the R-bimodule
S. Then, by [6, Lemma 4], YT+ T* contains a non-zero ideal 4 of S which
is an essential R-subbimodule of S, and so 04N T cb,(YT).

Now, let O be a prime ideal of T. Then, by [3, Proposition 5.6], there
exists a prime ideal P of S such that PN T cQ and ANT dQ for all ideals
A=2P of S. Obviously, S/P is a finite normalizing extension of R/(P NR)
and Q/(PNT) is a prime ideal of an intermediate normalizing extension
T/(PNT) of R(PNR) such that BIPNT|(PNT)EQ/(PNT) for each non-
zero ideal B/P of S/P. As in [2], Q will be called a standard setting if S is a
prime ring and Q satisfies BN T' ¢ Q for each non-zero ideal B of S.

Proposition 3.2. Let S be a prime torsionfree finite normalizing extension
of a prime ring R. If J is a prime right ideal of T such that b(]) is a standard
setting, then J N\ R is a prime right ideal of R with bg(] N R)=0.

Proof. Let X and Y be right ideals of R with XY C JNRand Y& JNR.
Since R is prime, RY is an essential ideal of R, and so, by Lemma 3.1, there
exist a non-zero ideal 4 of S with 04ANT Cb(RYT). Hence, we have
b (RYT)X J since by (J) is a standard setting. Noting XTb,(RYT)C J, we
obtain X cXT NRcC JNR. The assertion bz(J N R)=0is clear by Lemma 3.1.

Throughout the rest of our study, we assume that S is a prime torsionfree
finite normalizing extension of R. The notations in Section 2 will be used
again here. As was seen, each f,Sf;(1=<7=<m) is a prime torsionfree finite



PriME ONE-SI1DED IDEALS 831

normalizing extension of the prime ring f;R. Now, by Ty; we denote the
subring of the prime ring f;Sf; which is generated by f;7f;. Then, by [3,
Proposition 5.1 (2)], there exists an ideal V; of Ty such that Vi, CT and
V( is an essential f;R-subbimodule of T';;. Then V(;, can be regarded as an
essential R-subbimodule of Ty;;. Hence, 37, Viy=>"1P V, is an essential
R-subbimodule of 37.,@Tr;;. It is obvious that (37.; Tty) NR=R. More-
over, for a prime right ideal J of T such that b,(J) is a standard setting, we
set h(J)={9€TtalgViyJ}. Then, hy(J)= T if and only if VT C]J.
Using a similar argument to Lemma 2.5 making use of the above remark and
Lemma 3.1, we obtain the following

Lemma 3.3. (37..Vy)NR is an essential R-subbimodule of R, and
VT & J for some f;.

By Lemma 3.3, we may assume that V(, T & J fori=1,2,+--,s,and V(,, T J
for i=s+41, -+, m. In this situation, we shall prove the following

Lemma 3.4. b, (J)NRcCP,NP,N--NP,.

Proof. Let 1=<7/=<s. Since V,T'¢ J, we obtain TVyTdE J and sc
TV i T & br(]). If TVyViyTC bT(]), then we have TV, TV ,yTC
TV fiTfVoTcTV,VinT cb(J) and so TV ;T Cby(J), which contradicts
TV T &b (J). Hence we have TV VT by (J). We set here Pl)=
{t,€Tia| TV itV T by (J)}. Then, by the correspondence of prime ideals

in a Morita contest
T TV,
C — ( ()) ’
VT Tia

Pl;y is a prime ideal of Ty such that P{;, DV, ,TV). We now claim that
A'N Tiac Py for all non-zero ideals A’ of f;Sf;. Let A’ be a non-zerc ideal
of f;Sf; such that A'N Tty C Py, and let A={s&S|f;SsSf;cA’}y. Then 4
is an ideal of S. Since f;Sf;A'f;BC f,Sf.BC f,BCS and f;S(f;Sf;A'f;B)Sf;C
f:Sf.A'fBficA’, we have f;Sf;A'f;BCA. By the Morita context C;, b,(])
is the prime ideal of T' corresponding to the prime ideal P{;, of Ty;. Clearly,
Vi T(ANT)TV < fiSASfN Tranc A'N TincPliy.  This implies ANT b (J).
Since b;(J) is a standard setting, we have 4=0, and so f;Sf;A'f;Bf;=0.
Recalling that f;Sf; is a prime ring, we have A’=0, which is contradictory to
A’'+0. Hence we obtain that 4" N Ttyd P{;y for all non-zero ideals 4’ of f;Sf;.
If PiyNf;R=+0, then, by Lemma 3.1, there exists a non-zero ideal 4’ of
fiSfi such that 0= A'N Tty (PN fiR) Tt P{iy, which is a contradiction.
Therefore we have P(;N f;R=0. Since TV, fi(b:(J)NR)f: VT Cb(J), it
follows that f;(b,(J)NR)f;CP(;N f;R=0, and hence b,(J)NRCry(f;)=P;.
This implies b,(J)NRCP,NP,N -+ N P,, completing the proof.
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Lemma 3.5. Let J be a prime right ideal of T such that by(])is a standard
setting. Then, for each i=1,2, -+, s, h(]J) is a prime right ideal of Tt such
that by, (h(])) is a standard setting in the extension f;Sf; of fiR.

Proof. Itis clear that ,(J) is a right ideal of T;. Let X and Y be right
ideals of T';; with XY chy(J) and Y& £(J). Then, we have YV,T C J and
XVyTYVyTcJ. Hence XV ], and so X Chy(J). Therefore hi(]J) is
a prime right ideal of Tp;. Next we shall show that &, (4(J))N fiR=0.
Now, let fr be an arbitrary element in bz, (2:(J))N fiR (r€R). Then
TiafeVewT ], and Vi Tfi= Vi fiTf;C Ty, Hence we have Vi, TrVT=
VoITfaViaT ], and so vV, CTrVy T Cb(J) J. Since the ideal D; of R
is an essential ideal of f;R, we obtain »(D;NV,))Cb(J)NRCP; by Lemma
3.4. Noting that D;NV,+0 and fr(D;,NV)C f;P;=0, we have fir=0.
Thus b7 ,h:(J)N fiR=0. If by (h(])) is not a standard setting, then there
exists a non-zero ideal A of f;Sf; with AN TnCby, (h(J)). By [1, Theorem
5.10], AN f:R=+0, this is a contradiction to by, (h(J))N fiR=0. This com-
pletes the proof.

Combining Lemma 3.5 with Proposition 3.2, we obtain the following

Corollary 3.6. If ] is a prime right ideal of T such that b;([J)is a standard
setting, then h,(J)N fiR is a prime right ideal of f;:R with bs,zh(J(N f;R)=0 for
alli=1,2, -, s.

Now we arrived at the position to prove the following theorem which
corresponds to Theorem 2.8.

Theorem 3.7 (Cutting down). Let S be a prime torsionfree finite normaliz-
ing extension of a ring R, and T a ring with RCT C.S. If J is a prime right ideal
of T such that b;(J) is a standard setting, then there exist prime right ideals
K, K,, -+, K, of R such that | N\R=N;i.1K;, bp(K,)=P; for i=1,2, -+, s, and
be(JNR)=Ni.1 PiDb(J)NR.

Proof. By Lemma 3.3, we may assume that Vi T'd J for i=1,2,«,s,

and VT cJ for i=s+1, -, m. Then, by Lemma 3.4, we have (/N R)C

i.1P;. Let us set K;={reR|freh(J)N f;R} for i=1,2,-.-,;s. Then, by

Corollary 3.6, k,(J)N f;R is a prime right ideal of f;R with bs,z(:(J) N f:R)=0.

Hence it follows that K; is a prime right ideal of R with b4(K;)=P;. By

making use of the same methods as in the proof of Theorem 2.8, we obtain
JNR=Nia K.

Corollary 3.8. Let S be an arbitrary fully torsionfree finite normalizing
extension of R, and T a ring with RC TCS. If J is a prime right ideal of T,
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then there exist prime right ideals K,, K,, -+, K, of R such that JNR=
121K be(J NR)= N1 b(K))Dbr(J)N R, be(K)=P; for all i=1,2, 5,
and the P; are minimal prime over by (J)NR.
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