

Title	A characterization of quasi-Frobenius rings
Author(s)	Ikeda, Masatoshi
Citation	Osaka Mathematical Journal. 1952, 4(2), p. 203- 209
Version Type	VoR
URL	https://doi.org/10.18910/7415
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Osaka Mathematical Journal Vol. 4, No. 2, December, 1952

A Characterization of Quasi-Frobenius Rings

By Masatoshi IKEDA

In this note we shall consider the problem: in what ring A can every homomorphism between two left ideals be extended to a homomorphism of A? ("Homomorphism" means "operator homomorphism"). We shall call this condition as *Shoda's condition*.¹⁾ When A is a ring with a unit element, Shoda's condition is equivalent to the next one:

(a): every homomorphism between two left ideals is given by the right multiplication of an element of A.

The main purpose of this note is to show that if A is a ring with a unit element satisfying the minimum condition for left and right ideals, then A satisfies Shoda's condition if and only if A is a quasi-Frobenius ring.

T. Nakayama characterized quasi-Frobenius rings as the rings in which the duality relations l(r(I)) = I and r(l(r)) = r hold for every left ideal I and right ideal r^{2} . Our result gives another characterization of quasi-Frobenius rings.

A denotes always a ring with the minimum condition for left and right ideals. Let N be the radical of A and $\overline{A} = A/N = \overline{A}_1 + \cdots + \overline{A}_n$ be the direct decomposition of \overline{A} into simple two-sided ideals. Then, as is well known, we have two direct decompositions of A:

$$A = \sum_{k=1}^{n} \sum_{l=1}^{f(k)} Ae_{k, l} + l(E) = \sum_{k=1}^{n} \sum_{l=1}^{f(k)} e_{k, l} A + r(E)$$
(1)

where $E = \sum_{k=1}^{n} \sum_{i=1}^{j(\kappa)} e_{\kappa,i}$, $e_{\kappa,i}$ ($\kappa = 1, 2, ..., n$; $i = 1, 2, ..., f(\kappa)$) are mutually orthogonal primitive idempotents, $Ae_{\kappa,i} \simeq Ae_{\kappa,1} = Ae_{\kappa}$ for $i = 1, ..., f(\kappa)$, $Ae_{\kappa,i} \simeq Ae_{\lambda,j}$ if $\kappa \neq \lambda$ and the same is true for $e_{\kappa,i}A$, and l(*) (r(*)) is the left annihilator (right annihilator) of *. Moreover we use matric units $c_{\kappa,i,j}(\kappa = 1, ..., n; i, j = 1, ..., f(\kappa))$, $c_{\kappa,1,1} = e_{\kappa,1} = e_{\kappa}$, $c_{\kappa,i,j} = e_{\kappa,i}$ and $c_{\kappa,i,j}c_{\lambda,j,i} = \delta_{\kappa,\lambda}\delta_{j,k}c_{k,i,i}$. We start with the following preliminary lemmas

We start with the following preliminary lemmas.

¹⁾ This problem was suggested by Prof. K. Shoda. Cf. K. Shoda [4].

²⁾ See T. Nakayama [1], [2].

M. IKEDA

Lemma 1. If A satisfies (a) for simple left ideals, then A has a right unit element.

Proof. To prove this, we show l(E) = 0 in (1). If $l(E) \neq 0$, then it contains a simple left subideal $I \neq 0$. The identity automorphism of I is given, from (a), by the right multiplication of an element a. a = Ea + (a - Ea), where $a - Ea \in r(E)$. Since l(E) and r(E) are contained in N, $I = Ia = I(a - Ea) \subset N^2$. Since $I \subset N^2$, $I = I(a - Ea) \subset N^3$. Thus we have finally I = 0, which is a contradiction.

Lemma 2. If A has a left unit element and satisfies (a) for simple left ideals, then A has a unit element and there exists a permutation π of $(1, 2, \dots, n)$ such that the largest completely reducible left subideal of $Ae_{\kappa,i}$ is a direct sum of simple left subideals which are isomorphic to $Ae_{\pi(\kappa)}/Ne_{\pi(\kappa)}$.

Proof. From Lemma 1, A has a unit element. Hence r(N) $=\sum_{\kappa=1}^{n} E_{\kappa} r(N) = \sum_{\kappa=1}^{n} r(N) E_{\kappa}$, where $E_{\kappa} = \sum_{i=1}^{r(\kappa)} e_{\kappa,i}$. $E_{\kappa} r(N)$ is a two-sided ideal for each κ , since $AE_{\kappa}r(N) = (\sum E_{\lambda}AE_{\lambda} \bigcup N)E_{\kappa}r(N) = E_{\kappa}r(N)$. If $E_{\kappa}r(N) \neq 0$ and $a \neq 0$ is an arbitrary element of $E_{\kappa}r(N)$, then there exists an $e_{\kappa,i}$ such that $e_{\kappa,i} a \neq 0$. $Ae_{\kappa,i} a \simeq Ae_{\kappa}/Ne_{\kappa}$ is obvious. Since $E_{\kappa}r(N)$ is a direct sum of simple left ideals which are isomorphic to Ae_{κ}/Ne_{κ} , each component has the form $Ae_{\kappa,i}$ ab, and this shows that $E_{\kappa}r(N) = AaA$ and $E_{\kappa}r(N)$ is a simple two-sided ideal. Hence $E_{\kappa}r(N)N = 0$, $E_{\kappa}r(N) \subseteq l(N)$ and consequently $r(N) \subseteq l(N)$. Since $r(N)E_{s}$ is the largest completely reducible left subideal of AE_{s} , $r(N)E_{s} \neq 0$. Since $r(N) \subseteq l(N)$, $r(N)E_{\kappa}A = r(N)E_{\kappa}(\sum E_{\lambda}AE_{\lambda} \setminus /N) = r(N)E_{\kappa}$. Hence $r(N) E_{\kappa}$ is a non-zero two-sided ideal for each κ . Then, from $r(N) = \sum_{\kappa=1}^{n} E_{\kappa} r(N) = \sum_{\kappa=1}^{n} r(N) E_{\kappa}$, it follows that $r(N) E_{\kappa} = E_{\pi(\kappa)} r(N)$ is a non-zero simple two-sided ideal for each κ , where π is a permutation of $(1, 2, \dots, n)$. This shows that the largest completely reducible left subideal of $Ae_{\kappa,i}$ is a direct sum of simple subideals which are isomorphic to $Ae_{\pi(\kappa)}/Ne_{\pi(\kappa)}$.

In the case of algebras, we have by Lemma 2,

Proposition 1. Let A be an algebra with a finite rank over a field F. If A has a left unit element and satisfies (a) for simple left ideals, then A is a quasi-Frobenius algebra.

Proof. To prove this, we show that $r(N) e_{\kappa, i}$ is simple for each κ . If $r(N) e_{\kappa, i}$ is not simple, then, by Lemma 2, $r(N) e_{\kappa, i} = \sum_{j=1}^{s} m_{j}$,

204

where s > 1 and $m_j \simeq Ae_{\pi(\kappa)}/Ne_{\pi(\kappa)}$. Since $m_1 \simeq Ae_{\pi(\kappa)}/Ne_{\pi(\kappa)}$, the endomorphismring of m_1 , is isomorphic to $e_{\pi(\kappa)}Ae_{\pi(\kappa)}/e_{\pi(\kappa)}Ne_{\pi(\kappa)}$. On the other hand, every endomorphism of m_1 is given by the right multiplication of an element of $e_{\kappa,i}Ae_{\kappa,i}$. Since $r(N) \subseteq l(N)$, elements of $e_{\kappa,i}Ne_{\kappa,i}$ induce zero-endomorphism and those elements of $e_{\kappa,i}Ae_{\kappa,i}$ which are not in $e_{\kappa,i}Ne_{\kappa,i}$ induce isomorphisms. Hence we have a natural isomorphism of $e_{\pi(\kappa)}Ae_{\pi(\kappa)}Ne_{\pi(\kappa)}Ne_{\pi(\kappa)}$ into $e_{\kappa,i}Ae_{\kappa,i}/e_{k,i}Ne_{\kappa,i}$.

Since s > 1, this isomorphism is not an onto isomorphism, and $(e_{\pi(\kappa)} A e_{\pi(\kappa)} / e_{\pi(\kappa)} N e_{\pi(\kappa)} : F) \cong (e_{\kappa, i} A e_{\kappa, i} / e_{\kappa, i} N e_{\kappa, i} : F) = (e_{\kappa} A e_{\kappa} / e_{\kappa} N e_{\kappa} : F)$. Similarly $(e_{\pi^{\vee}(\kappa)} A e_{\pi^{\vee}(\kappa)} / e_{\pi^{\vee}(\kappa)} N e_{\pi^{\vee}(\kappa)} : F) \leq (e_{\pi^{\vee}-1(\kappa)} A e_{\pi^{\vee}-1(\kappa)} / e_{\pi^{\vee}-1(\kappa)} N e_{\pi^{\vee}-1(\kappa)} : F)$, where $\pi^{\vee}(\kappa) = \pi (\pi (\dots \pi (\kappa))))$. Since π is a permutation, it follows that $(e_{\kappa} A e_{\kappa} / e_{\kappa} N e_{\kappa} : F) \cong (e_{\kappa} A e_{\kappa} / e_{\kappa} N e_{\kappa} : F)$. This is a contradiction. Hence $r(N) e_{\kappa, i}$ is simple. Then, by Nakayama's theorem,³⁾ we have our result.

Proposition 2. Let A be a ring with a left unit element. If A satisfies (a) for every left ideal, then A is a quasi-Frobenius ring.

Proof. By Lemma 2, $r(N) e_{\kappa} = \sum_{j=1}^{s} \mathfrak{m}_{j}$ and $\mathfrak{m}_{j} \simeq A e_{\pi(\kappa)} / N e_{\pi(\kappa)}$. Hence $\mathfrak{m}_{j} = A e_{\pi(\kappa)} a_{j}$ for a suitable element a_{j} in \mathfrak{m}_{j} . Assume s > 1, then the correspondences $e_{\pi(\kappa)} a_1 \rightarrow e_{\pi(\kappa)} a_2$ and $e_{\pi(\kappa)} a_2 \rightarrow e_{\pi(\kappa)} a_1$ define an automorphism of $m_1 + m_2$. Then, by (a), there is an element c of $e_{\kappa} A e_{\kappa}$ such that $e_{\pi(\kappa)}a_1c = e_{\pi(\kappa)}a_2$ and $e_{\pi(\kappa)}a_2c = e_{\pi(\kappa)}a_1$. Hence $e_{\pi(\kappa)}a_1c^2 = e_{\pi(\kappa)}a_1$ and $e_{\pi(\kappa)}a_1(c^2-e_{\kappa})=0$. c^2-e_{κ} is in $e_{\kappa}Ne_{\kappa}$. For, otherwise, it is a unit of $e_{\kappa} A e_{\kappa}$ and consequently $e_{\pi(\kappa)} a_1 = 0$. Hence $c = \pm e_{\kappa} + n$, where *n* belongs to $e_{\kappa} N e_{\kappa}$. Since $r(N) \subseteq l(N)$, $e_{\pi(\kappa)} ac = e_{\pi(\kappa)} a_1(\pm e_{\kappa} + n)$ $=\pm e_{\pi(\kappa)}a_1$. This is a contradiction. Hence $r(N)e_{\kappa}$ is simple. Now if $l(N) e_{\kappa} \supseteq r(N) e_{\kappa}$, than $l(N) e_{\kappa}$ contains a left subideal I such that $l/r(N) e_{\kappa}$ is irreducible. We suppose $l/r(N) e_{\kappa} \simeq A e_{\pi(\lambda)} / N e_{\pi(\lambda)}$ Since $r(N) e_{\lambda} \simeq A e_{\pi(\lambda)} / N e_{\pi(\lambda)}$, there is a homomorphism θ between 1 and $r(N) e_{\lambda}$. This homomorphism θ is given by the right multiplication of an element of $e_{\kappa}Ae_{\lambda}$. If $\kappa \neq \lambda$, then $e_{\kappa}Ae_{\lambda} \subset N$ and $i \cdot e_{\kappa}Ae_{\lambda}$ $\subseteq l(N)N = 0$. If $\kappa = \lambda$, θ is given by the right multiplication of an element of $e_{\kappa} N e_{\kappa}$, since the homomorphisms defined by the elements of $e_{\kappa}Ae_{\kappa}$ which are not in $e_{\kappa}Ne_{\kappa}$ induce isomorphisms. Then $l \cdot e_{\kappa}Ne_{\kappa}$ $\subseteq l(N) \cdot N = 0$. Thus we have contradictions. Hence $l(N) e_{\kappa} = r(N) e_{\kappa}$. Then it follows easily that $l(N) e_{\kappa, i} = r(N) e_{\kappa, i}$ and l(N) = r(N). We write l(N) = r(N) = M. Since $E_{\pi(\kappa)} M = M E_{\kappa}$, the largest completing reducible right subideal of $e_{\pi(\kappa)}A$ is a direct sum of simple right subideals which are isomorphic to $e_{\kappa} A/e_{\kappa} N$. Since Me_{κ} is simple and is

³⁾ See T. Nakayama [3].

M. IKEDA

isomorphic to $Ae_{\pi(\kappa)}/Ne_{\pi(\kappa)}$, $Me_{\kappa} = Ae_{\pi(\kappa)}me_{\kappa}$ for a suitable element $e_{\pi(\kappa)}me_{\kappa}$ in Me_{κ} . Let x be an arbitrary element in $e_{\pi(\kappa)}Ae_{\pi(\kappa)}$ but not in $e_{\pi(\kappa)}Ne_{\pi(\kappa)}$. Then the correspondence $e_{\pi(\kappa)}me_{\kappa} \to xe_{\pi(\kappa)}me_{\kappa}$ defines an automorphism of Me_{κ} . For if $x'e_{\pi(\kappa)}me_{\kappa} = 0$, then $x' \in A(1-e_{\pi(\kappa)}) \bigcup N$ and $x'xe_{\pi(\kappa)}me_{\kappa}$ $\in (A(1-e_{\pi(\kappa)}) \bigcup N) e_{\pi(\kappa)}M = 0$. By (a), this automorphism is given by the right multiplication of an element of $e_{\kappa}Ae_{\kappa}$. Furthermore $e_{\pi(\kappa)}Ne_{\pi(\kappa)}me_{\kappa} = 0$ is obvious. Hence $e_{\pi(\kappa)}Ae_{\pi(\kappa)}me_{\kappa} \subseteq e_{\pi(\kappa)}me_{\kappa}Ae_{\kappa}$. On the other hand, since $e_{\pi(\kappa)}me_{\kappa}A$ is a simple right subideal of $e_{\pi(\kappa)}M$ and $E_{\pi(\kappa)}M$ is a simple two-sided ideal, $e_{\pi(\kappa)}M$ is a direct sum of simple right subideals of the form $\xi e_{\pi(\kappa)}me_{\kappa}A$, where ξ is a suitable unit of $e_{\pi(\kappa)}Ae_{\pi(\kappa)}$. But, as was shown, $e_{\pi(\kappa)}Ae_{\pi(\kappa)}me_{\kappa}\subseteq e_{\pi(\kappa)}me_{\kappa}A$. Thus we see that $e_{\pi(\kappa)}M = e_{\pi(\kappa)}me_{\kappa}A$ is a unique simple left subideal of $e_{\pi(\kappa)}A$. This completes our proof.

Remark. From the assumption (a) for simple left ideals, we can not conclude that A has a left unit element. For example, let F be a field and A = Fe + Fu, where $e^2 = e$, ue = u, eu = 0, $u^2 = 0$. This algebra over F has no left unit element, but it satisfies (a).

If A is a ring and not an algebra, then we can not conclude that A is a quasi-Frobenius ring, from the assumption (a) for simple left ideals and the existence of a left unit element. For example, let F(x) be a rational function field over a field F and A = F(x) + uF(x), where $u^2 = 0$, $xu = ux^2$. Then this is not a quasi-Frobenius ring, but it has a unit element and (a) is valid for simple left ideals.

Proposition 3. If A is a ring in which (a) is valid for simple left ideals and the same is true for simple right ideals, then A is a quasi-Frobenius ring.

Proof. By Lemma 1, A has a unit element. r(N) = l(N) = M, $Me_{\kappa} = \sum_{j=1}^{s} \mathfrak{m}_{j}$ and $e_{\pi(\kappa)} M = \sum_{k=1}^{r} \mathfrak{n}_{k}$, by Lemma 2. As was shown in the proof of Theorem 2, $e_{\pi(\kappa)} Ae_{\pi(\kappa)} me_{\kappa} \subseteq e_{\pi(\kappa)} me_{\kappa} Ae_{\kappa}$, if we write $\mathfrak{m}_{1} = Ae_{\pi(\kappa)} me_{\kappa}$. Similarly $e_{\pi(\kappa)} Ae_{\pi(\kappa)} me_{\kappa} \supseteq e_{\pi(\kappa)} me_{\kappa} Ae_{\kappa}$, since $e_{\pi(\kappa)} me_{\kappa} A$ is a simple right subideal of $e_{\pi(\kappa)} M$. Hence $e_{\pi(\kappa)} Me_{\kappa} Qe_{\pi(\kappa)} me_{\kappa} Ae_{\kappa}$. On the other hand, \mathfrak{m}_{j} has the form $\mathfrak{m}_{1}\xi = Ae_{\pi(\kappa)} me_{\kappa}\xi$, where ξ is an element of $e_{\kappa}Ae_{\kappa}$. Hence s = 1 and similarly r = 1. Thus A is a quasi-Frobenius ring.

Lemma 3. Let A be a quasi-Frobenius ring and let $I = I_1 \bigcup I_2$ be a left ideal homorphic to a left ideal I' by a homomorphism θ , where I_1 and I_2 are two left subideals of I. If the homomorphisms from I_1 and I_2 into I' induced by θ are given by the right multiplication of elements a_1 and a_2

206

respectively, then there is an element a such that θ is given by the right multiplication of a.

Proof. Of course $\mathfrak{l}' = \mathfrak{l}_1^{\theta} \bigcup \mathfrak{l}_2^{\theta}$. Then elements a_1 and a_2 define the same homomorphism for $\mathfrak{l}_1 \cap \mathfrak{l}_2$. Hence $a_1 - a_2 \in r(\mathfrak{l}_1 \cap \mathfrak{l}_2) = r(\mathfrak{l}_1) \cup r(\mathfrak{l}_2)$, since A is a quasi-Frobenius ring. Hence $a_1 - a_2 = r_2 - r_1$ for suitable $r_1 \in r(\mathfrak{l}_1)$ and $r_2 \in r(\mathfrak{l}_2)$. We write $a_1 + r_1 = a_2 + r_2$ as a. Then a defines θ for \mathfrak{l} . For if l_i is an element of \mathfrak{l}_i (i = 1, 2), then $l_i a = l_i (a_i + r_i) = l_i a_i = l_i^{\theta}$.

Theorem 1. Let A be a ring with a unit element. Then A satisfies Shoda's condition if and only if A is a quasi-Frobenius ring.

Proof The "only if" part follows from Proposition 2.

We shall prove the "if" part. If a left ideal l' is a homomorphic image of a principal left ideal l = Aa, then l' is also a principal ideal. We denote this homomorphism by θ , and show that θ is given by the right multiplication of an element. Since θ is a homomorphism, $l(a) = l(aA) \subseteq l(a^{\theta}) = l(a^{\theta}A)$. Since A is a quasi-Frobenius ring, r(l(aA)) $= aA \supseteq r(l(a^{\theta}A)) = a^{\theta}A$. Hence there is an element c such that $a^{\theta} = ac$.

Since every left ideal I has a finite basis, we can write $I = \bigcup_{i=1}^{s} Aa_{i}$. Then, by Lemma 3, every homomorphism between two left ideals is given by the right multiplication of a suitable element. This completes our proof.

Therem 2. Let A be a quasi-Frobenius ring. Then for every isomorphism θ between two left ideals we can choose a suitable unit which defines θ , that is, every isomorphism between two left ideals can be extended to an isomorphism of A.

Proof. Let θ be an isomorphism between I and I'. Then, by Theorem 1, there is an element a_{θ} which defines θ , that is, $Ia_{\theta} = I'$. Then $Ia_{\theta}r(I') = I'r(I') = 0$. This shows that $a_{\theta}r(I') \subseteq r(I)$.

Case I. $a_{\theta}r(\mathfrak{l}') = r(\mathfrak{l}).$

If r is an arbitrary element of r(I), then there is an element r' in r(I') such that $a_{\theta}r' = r$. Let θ^{-1} be the inverse isomorphism of θ and let $b_{\theta^{-1}}$ be the element which defines θ^{-1} . It is easy to see that $1-a_{\theta}b_{\theta^{-1}}=r_0 \in r(I)$. Then $a_{\theta}(b_{\theta^{-1}}+r'_0)=a_{\theta}b_{\theta^{-1}}+r_0=1$. Hence a_{θ} is a unit.⁴⁾

Case II. $a_{\theta}r(\mathfrak{l}') \subseteq r(\mathfrak{l})$. In this case, $\overline{\mathfrak{l}} = l(a_{\theta}r(\mathfrak{l}')) \supseteq l(r(\mathfrak{l})) = \mathfrak{l}$, since A is a quasi-Frobenius

⁴⁾ Since A satisfies the minimum condition for left and right ideals, it ab=1, then ba=1.

M. IKEDA

ring. It follows, from $Ia_{\theta}r(l') = 0$, that $Ia_{\theta} \subseteq l'$. But $Ia_{\theta} \supseteq Ia_{\theta} = l'$. Hence $\bar{l}a_{\theta} = l'$. Let \bar{l} be an element of \bar{l} and $\bar{l}a_{\theta} = l'$, then l' is in l'and there is an element l of l such that $la_{\theta} = l'$. Hence $(l-l)a_{\theta} = 0$. Since no element of I is annihilated by a_{θ} , I is the direct sum of I and I_0 which is annihilated by a_0 . Let $Ae_{\pi(\kappa)}a(\simeq Ae_{\pi(\kappa)}/Ne_{\pi(\kappa)})$ be a simple left subideal of l_0 . We write $Ae_{\pi(\kappa)}a + l = l^*$. Since $l^*/l \simeq Ae_{\pi(\kappa)}/Ne_{\pi(\kappa)}$, it follows evidently that $r(\mathfrak{l})/r(\mathfrak{l}^*) \simeq e_{\kappa} A/e_{\kappa} N$. Hence $r(\mathfrak{l}) = re_{\kappa} A$ $\bigvee r(\mathfrak{l}^*)$ for a suitable element r of $r(\mathfrak{l})$. Since $re_{\kappa}A \subset r(\mathfrak{l})$, the homomorphism defined by $a_{\theta} + re_{s}b$, for an arbitrary b of A, coincides with θ in 1. $l^*(a_{\theta} + re_{\kappa}b)$ is homomorphic to l^* and contains $l(a_{\theta} + re_{\kappa}b) = l'$. Now if we take a suitable b, then $I(a_{\theta} + re_{s}b)$ is actually different from I'. For otherwise, $Ae_{\pi(\kappa)} a (a_{\theta} + re_{\kappa}b) = Ae_{\pi(\kappa)} are_{\kappa}b \subset I (a_{\theta} + re_{\kappa}b) = I'$ for every b of A. Hence $Ae_{\pi(\kappa)} are_{\kappa}A \subset l'$. Since $Ae_{\pi(\kappa)} are_{\kappa} \subset ME_{\kappa}^{5}$ and ME_{κ} is a simple two-sided ideal, $ME_{\kappa} = Ae_{\pi(\kappa)} \operatorname{are}_{\kappa} A \subset \mathfrak{l}'$ and $\mathfrak{l}'b_{\theta^{-1}} = \mathfrak{l} \supset ME_{\kappa}$. On the other hand $ME_{\kappa} = E_{\pi(\kappa)}M$ contains every simple left ideal which is isomorphic to $Ae_{\pi(\kappa)}/Ne_{\pi(\kappa)}$. Hence ME_{κ} contains $Ae_{\pi(\kappa)}a$. Thus I contains $Ae_{\pi(\kappa)}a$. But this contradicts $I \cap I_0 = 0$. Thus we can take an element b such that $l^*(a_{\theta} + re_{\kappa}b) \supseteq l'$. Obviously $l^*(a_{\theta} + re_{\kappa}b)$ $\simeq I^*$. We write the isomorphism between I^* and $I^*(a_{\theta} + re_{\kappa}b)$ defined by the right multiplication of $a_{\theta} + re_{\kappa}b$, by Θ . Then Θ coindides with θ in l, as was shown.

Since our assertion is true for A, suppose now that our assertion is true for every left ideal L for which A/L has a shorter composition length than that of A/I. Then we can choose a unit a_{Θ} for Θ . a_{Θ} defines Θ for I^{*}, hence a_{Θ} defines θ for I. This completes our proof. The following lemma is trivial Θ

The following lemma is trivial.⁶

Lemma 4. Let A be a ring with a unit element. If every residue class ring of A satisfies Shoda's condition, then A is a uni-serial ring, and conversely.

Theorem 3.7 Let A be such a ring with a unit element that if $I/m \sim I'/m$ for any two left ideals I, I' with their common left subideal m, then for every homomorphism θ from I/m onto I'/m there is such a homomorphism Θ from I onto I' that is given by the right multiplication of an element of A and that coincides with θ in I/m. Then A is a direct sum of a semi-simple ring and completely primary uni-serial rings, and conversely.

208

⁵⁾ See T. Nakayama [2] p. 10.

⁶⁾ See M. Ikeda [5] p. 239. Cf. K. Shoda [4].

⁷⁾ Cf. K. Shoda [4].

Proof. It is clear that every residue class ring satisfies Shoda's condition. Hence A is a uni-serial ring. Since the above assumption holds for primary components of A, we prove our assertion for a primary uni-serial ring A_1 satisfying the above assumption. If A_1 is neither a simple ring nor a completely primary uni-serial ring, then A_1 is a total matric ring of degree n > 1 over a completely primary uniserial ring D. The radical N_p of D is a principal ideal: $N_p = D\pi$ $=\pi D$. Then the principal ideal $A\pi = \pi A$ is the radical N of A. Let $N^{\rho-1} = 0$ and $N^{\rho} = 0$. Then $N^{\rho-1}e_1 = A\pi^{\rho-1}e_1 = Ae_1\pi^{\rho-1}$ and $N^{\rho-1}e_2$ $=A\pi^{
ho-1}e_2 = Ae_2\pi^{
ho-1}$ are the unique simple left subideals of Ae_1 and Ae_2 respectively. $Ae_1\pi^{
ho-1} \cong Ae_2\pi^{
ho-1}$ by the correspondence $e_1\pi^{
ho-1}$ $\leftrightarrow c_{12}\pi^{\rho-1}$. Then $N^{\rho-1}(e_1+c_{12}) = A(e_1+c_{12})\pi^{\rho-1}$ is a simple left ideal and contained in $A(e_1+c_{12})$. Since $A(e_1+c_{12})$ is an indecomposable left ideal, $N^{\rho-2}(e_1+c_{12})$ contains $N^{\rho-1}(e_1+c_{12})$ as its unique simple left subideal. It is clear that $N^{\rho-2}(e_1+c_{12})/N^{\rho-1}(e_1+c_{12}) \simeq N^{\rho-1}e_1+N^{\rho-1}e_2$ $/N^{\rho-1}(e_1+c_{12})$. But, as was shown, $N^{\rho-2}(e_1+c_{12})$ is not isomorphic to $N^{\rho-1}e_1+N^{\rho-1}e_2$. This contradicts our assumption. Thus if A_1 is a primary uni-serial ring satisfying our assumption, then A_1 is either a simple ring or a completely primary uni-serial ring. The converse is trivial.

Remark. Let A be such a ring with a unit element that if $I/m \sim l'/m$ for any two left ideal I, I' with their common left subideal m, then for every homomorphism θ from I/m onto I'/m and every endomorphism φ of m there is a homomorphism Θ from I onto I' which is given by the right multiplication of an element of A and coincides with θ in I/m and with φ in m. Then A is a semi-simple ring and conversely.

(Received March 28, 1952)

References

- [1] T. Nakayama: On Frobeniusean algebra. I. Ann. of Math. 40 (1939).
- [2] ——: On Frobeniusean algebras II, Ann. of Math. 42 (1941).
- [3] —: Supplementary remarks on Frobeniusean algebras I, Proc. Jap. Acad. (1949).
- [4] K. Shoda: Ein Satz über die Abelschen Gruppen mit Operatoren, forthcoming in Proc. Jap. Acad.
- [5] M. Ikeda: Some genelarizations of quasi-Frobenius rings, Osaka Math. J. 3 (1951).