Title	Universal coefficient sequences for cohomology theories of CW-spectra. II
Author(s)	Yosimura, Zen-ichi
Citation	Osaka Journal of Mathematics. 1979, 16(1), p. 201-217
Version Type	VoR
URL	https://doi.org/10.18910/7417
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

UNIVERSAL COEFFICIENT SEQUENCES FOR COHOMOLOGY THEORIES OF CW-SPECTRA, II

Dedicated to Professor A. Komatu on his 70th birthday

Zen-ichi YOSIMURA

(Received October 17, 1977)

Let E be a $C W$-spectrum and G be an abelian group. Following Kainen [11] we can construct a $C W$-spectrum $\hat{E}(G)$ which has a universal coefficient sequence

$$
0 \rightarrow \operatorname{Ext}\left(E_{*-1}(X), G\right) \rightarrow \hat{E}(G)^{*}(X) \rightarrow \operatorname{Hom}\left(E_{*}(X), G\right) \rightarrow 0
$$

In the previous paper [14] with the same title we investigated several properties of $\hat{E}(G)$. But some of our results are restrictive as yet, e.g., Proposition 8 and Theorem 4 in [14]. In this note we continue the investigations to develop and improve our partial results.

First we discuss whether the correspondences $G \rightarrow \hat{E}(G)$ as well as $G \rightarrow E G$ are functorial in G, as analogous discussions were done in [9] and [10]. Next, under some finiteness assumption on E or G we show that $\hat{E}(G)$ and $\hat{E}(R) G$ are homotopy equivalent where $Z \subset R \subset Q$ (Theorem 1). This result is a satisfactory improvement of [14, Proposition 8]. As an application of the main result of Huber and Meier [10] we can then give a criterion for $E G^{*}(X)$ being Hausdorff (Theorem 2). Moreover we discuss the uniqueness of $\hat{E}(G)$ again to improve a partial result obtained in [14, Theorem 4]. When E is the sphere spectrum S we have a complete result (Theorem 3), but for a general E we need still some restriction although the finiteness assumptions on E and G can be eliminated in our previous result (Theorem 4). Finally we show that the universal coefficient sequence is pure under some restriction on E or G, adopting an argument given in [9].

In this note we shall work in the stable homotopy category of $C W$-spectra (see [1] or [13]).

The author wishes to thank Professors Huber and Meier for sending him their preprint [10] by which he has been motivated to write this sequel.

1. Functoriality of $\hat{\boldsymbol{E}}(\boldsymbol{G})$

1.1. Let E be a $C W$-spectrum and G be an abelian group. Then there
is a $C W$-spectrum $\hat{E}(G)$ so that E and $\hat{E}(G)$ are related by a universal coefficient sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Ext}\left(E_{*-1}(X), G\right) \xrightarrow{\eta_{G}} \hat{E}(G)^{*}(X) \xrightarrow{\tau_{G}} \operatorname{Hom}\left(\hat{E}_{*}(X), G\right) \rightarrow 0 \tag{1.1}
\end{equation*}
$$

(see [11] and [14]). Let us first recall the eonstruction of $\hat{E}(G)$ involving an injective resolution of G. By the representability theorem there is a $C W$ spectrum $\hat{E}(I)$ and a natural equivalence $\tau_{I}: \hat{E}(I)^{*}() \rightarrow \operatorname{Hom}\left(E_{*}(), I\right)$ for every injective I. Take any injective resolution $0 \rightarrow G \rightarrow I \xrightarrow{\psi} J \rightarrow 0$ and denote by $\hat{\psi}: \hat{E}(I) \rightarrow \hat{E}(J)$ the unique map induced by ψ. We define $\hat{E}(G)$ to be the fiber of $\hat{\psi}$, i.e.

$$
\hat{E}(G) \rightarrow \hat{E}(I) \xrightarrow{\hat{\psi}} \hat{E}(J)
$$

is a cofibering. The homotopy type of $\hat{E}(G)$ is independent of the choice of an injective resolution.

Let us denote by S the sphere spectrum. By the exactness of function spectra [13] there ls a cofibering

$$
F(E, \hat{S}(G)) \rightarrow F(E, \hat{S}(I)) \xrightarrow{F(E, \hat{\psi})} F(E), \hat{S}(J))
$$

By the aid of Five lemma [I3] we obtain
Proposition 1. For any abelian group G the spectrum $\hat{E}(G)$ has the same homotopy type as the function spectrum $F(E, \hat{S}(G))$.

Given an abelian group G, each map $f: W \rightarrow E$ of $C W$ - spectra determines the unique map $\hat{f}=F(f, \hat{S}(G)): F(E, \hat{S}(G)) \rightarrow F(W, \hat{S}(G))$. Tbereby Proposition 1 contains the following functorial property.

Corollary 2. Fix an abelian group G. Then the correspondence $E \rightarrow \hat{E}(G)=$ $F(E, \hat{S}(G))$ is a contravariant exact functor.

We may now turn our attention to the spectrum $\hat{S}(G)$. The map τ_{G} gives rise to an isomorphism

$$
\begin{equation*}
t_{G}: \pi_{0}(\hat{S}(G)) \xrightarrow{\tau_{G}} \operatorname{Hom}\left(\pi_{0}(S), G\right) \cong G . \tag{1.2}
\end{equation*}
$$

Lemma 3. The composition map

$$
\hat{S}(G)^{*}(X) \xrightarrow{\tau_{G}} \operatorname{Hom}\left(\pi_{*}(X), G\right) \xrightarrow{t_{G^{*}}} \operatorname{Hom}\left(\pi_{*}(X), \pi_{0}(\hat{S}(G))\right)
$$

is just the homomorphism κ assigning to a map f the induced homomorphism f_{*} in 0 -th homotopy groups.

Proof. It is sufficient to show the equality $t_{G}=\tau_{G}\left(1_{\hat{S}(G)}\right)$ for the identity map $1_{\hat{S}(G)}$ of $\hat{S}(G)$. Take any element f of $\pi_{0}(\hat{S}(G))$, i.e., a map $f: S \rightarrow \hat{S}(G)$. By the naturality of τ_{G} we have

$$
t_{G}(f)=\tau_{G}(f)\left(1_{S}\right)=\left(\tau_{G}\left(1_{\hat{S}}(G)\right) f_{*}\right)\left(1_{S}\right)=\tau_{G}\left(1_{\hat{S}(G)}\right)(f)
$$

Because of Lemma 3 we may employ κ instead of τ_{G}. Thus there is a natural exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Ext}\left(\pi_{*-1}(X), G\right) \xrightarrow{\eta_{G}} \hat{S}(G)^{*}(X) \xrightarrow{\kappa} \operatorname{Hom}\left(\pi_{*}(X), G\right) \rightarrow 0 \tag{1.3}
\end{equation*}
$$

where $\pi_{0}(\hat{S}(G))$ is identified with G via the map t_{G}.
Let E be a ring spectrum and F be an (associative) right E-module spectrum equipped with a structure map $\mu: F_{\wedge} E \rightarrow F$. Then there is a unique map

$$
\bar{\mu}_{G}: E_{\wedge} \hat{F}(G) \rightarrow \hat{F}(G)
$$

such that $e_{F, G}\left(1_{F} \wedge \bar{\mu}_{G}\right)=e_{F, G}\left(\mu \wedge \hat{1}_{\hat{F}(G)}\right)$ where $e_{F, G}: F \wedge \hat{F}(G) \rightarrow \hat{S}(G)$ is the evaluation map. Thereby $\hat{F}(G)$ is an (associative) left E-module spectrum. Using the structure maps μ and $\bar{\mu}_{G}$ we can give $\operatorname{Hom}\left(F_{*}(), G\right)$ and $\hat{F}(G)^{*}()$ structures of left $E^{*}()$-modules. Thus we have two homomorphisms

$$
\begin{aligned}
& \mu_{\#}: E^{*}(Y) \otimes \operatorname{Hom}\left(F_{*}(X), G\right) \rightarrow \operatorname{Hom}\left(F_{*}\left(Y_{\wedge} X\right), G\right) \\
& \bar{\mu}_{\sharp}: E^{*}(Y) \otimes \hat{F}(G)^{*}(X) \rightarrow \hat{F}(G)^{*}(Y \wedge X)
\end{aligned}
$$

defined in the obvious way. By virtue of Lemma 3 we have
Proposition 4. Let E be a ring spectrum and F be a right E-module spectrum. Then the universal coefficient sequence

$$
0 \rightarrow \operatorname{Ext}\left(F_{*-1}(X), G\right) \xrightarrow{\eta_{G}} \hat{F}(G)^{*}(X) \xrightarrow{\tau_{G}} \operatorname{Hom}\left(F_{*}(X), G\right) \rightarrow 0
$$

is an exact sequence of left $E^{*}()$-modules.
Proof. As is easily seen, the induced homotopy homomorphism κ is a map of left $E^{*}()$-modules, i.e., the following square

is commutative. By a routine computation the result is immediate.
1.2. Take any homomorphism $\phi: G \rightarrow H$ of abelian groups, then there is a (non-unique) map $\hat{\phi}: \hat{S}(G) \rightarrow \hat{S}(H)$ making the diagram below commutative

Thus the correspondence $G \rightarrow \hat{S}(G)$ is quasi-functorial in G [11].
Lemma 5. If $0 \rightarrow G \xrightarrow{\phi} H \xrightarrow{\psi} K \rightarrow 0$ is a short exact sequence, then there exist maps $\hat{\phi}: \hat{S}(G) \rightarrow \hat{S}(H)$ and $\hat{\psi}: \hat{S}(H) \rightarrow \hat{S}(K)$ which give us a cofibering

$$
\hat{S}(G) \xrightarrow{\hat{\phi}} \hat{S}(H) \xrightarrow{\hat{\psi}} \hat{S}(K) .
$$

Proof. Choose an injective resolution $0 \rightarrow H \rightarrow I \rightarrow J_{1} \rightarrow 0$ and consider commutative exact diagram

in which there appear three injective resolutions of G, H and K. By applying Verdier's lemma [6] we obtain a cofibering as desired.

Denote by $k_{G, H}$ the composition map

$$
\hat{S}(H)^{0}(\hat{S}(G)) \xrightarrow{\tau_{H}} \operatorname{Hom}\left(\pi_{0}(\hat{S}(G)), H\right) \stackrel{t_{G}^{*}}{\approx} \operatorname{Hom}(G, H)
$$

It is epic, in fact we observe that

$$
\begin{equation*}
k_{G, H}(\hat{\phi})=\phi_{*}\left(1_{G}\right)=\phi, \tag{1.4}
\end{equation*}
$$

by making use of the equality $t_{G}=\tau_{G}\left(1_{\hat{S}(G)}\right)$. But $\operatorname{Ker} k_{G, H} \cong \operatorname{Ext}\left(\pi_{-1}(\hat{S}(G)), H\right)$ $\cong \operatorname{Ext}\left(\operatorname{Hom}\left(Z_{2}, G\right), H\right) \cong \operatorname{Ext}\left(G, Z_{2} \otimes H\right)$. By an easy computation we verify that
(1.5) $k_{G, H}$ is an isomorphism if and only if either G is 2-torsion free or H is 2-divisible.

This implies
Proposition 6. If G is 2-torsion free or if H is 2-divisible, then $\hat{\phi}=$ $F(E, \hat{\phi}): \hat{E}(G) \rightarrow \hat{E}(H)$ is uniquely determined for each $\phi: G \rightarrow H$.

Let us denote by $\eta: \Sigma^{1} S \rightarrow S$ the Hopf map, i.e., the non-zero element of $\pi_{1}(S)$. A $C W$-spectrum E is said to be good if $\eta \wedge 1_{E}: \Sigma^{1} E \rightarrow E$ is trivial [9]. For a good E we have the following functorial property.

Proposition 7. Assume that a fixed $C W$-spectrum E is good. Then the composite $G \rightarrow \hat{S}(G) \rightarrow \hat{E}(G)=F(E, \hat{S}(G))$ is a covariant exact functor.

Proof. We show that the homomorphism

$$
F(E, \quad):\{\hat{S}(G), \hat{S}(H)\} \rightarrow\{\hat{E}(G), \hat{E}(H)\}
$$

factors through $k_{G, H}$. Recall that $F(E, \quad)$ is given by the composition

$$
\{\hat{S}(G), \hat{S}(H)\} \xrightarrow{e_{G}^{*}}\{E \wedge \hat{E}(G), \hat{S}(H)\} \cong \text { 气 }\{\hat{E}(G), \hat{E}(H)\}
$$

where $e_{G}=e_{E, G}: E_{\wedge} \hat{E}(G) \rightarrow \hat{S}(G)$ is the evaluation map. So it is enough to show that there is a homomorphism λ making the diagram below commutative

Consider the commutative diagram

The left arrow η^{*} is trivial by our hypothesis on E, and the central one η^{*} is monic by use of the right square. This implies that the upper arrow $e_{G^{*}}$ is trivial. The existence of λ is now immediate. Therefore the correspondence $G \rightarrow \hat{E}(G)$ is a functor which is exact by Lemma 5 .
1.3. For each abelian group G we denote by $S G$ the Moore spectrum of type G. Then there is a universal coefficient sequence in the form of a natural exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Ext}\left(G, \pi_{*+1}(X)\right) \rightarrow\{S G, X\}_{*} \xrightarrow{\kappa} \operatorname{Hom}\left(G, \pi_{*}(X)\right) \rightarrow 0 \tag{1.6}
\end{equation*}
$$

where κ is just the induced homotopy homomorphism [8]. In particular we have a short exact sequence

$$
0 \rightarrow \operatorname{Ext}\left(G, \pi_{1}(S H)\right) \rightarrow\{S G, S H\} \xrightarrow{\kappa} \operatorname{Hom}(G, H) \rightarrow 0
$$

Given a homomorphism $\phi: G \rightarrow H$, there is a (non-unique) map $S \phi: S G \rightarrow S H$ inducing $S \phi_{*}=\phi: \pi_{0}(S G) \rightarrow \pi_{0}(S H)$. Since $\pi_{1}(S H) \cong H \otimes Z_{2}$ we have an analogous result to Proposition 6.

Proposition 8. Assume that G is 2-torsion free or that H is 2-divisible. Then $1_{E} \wedge S \phi: E G \rightarrow E H$ is uniquely determined for each $\phi: G \rightarrow H$ (see [10, Proposition 3.2]).

By choosing suitably free resolutions in the dual way to the proof of Lemma 5 we can show that there is a cofibering

$$
\begin{equation*}
S G \xrightarrow{S \phi} S H \xrightarrow{S \psi} S K \tag{1.7}
\end{equation*}
$$

if $0 \rightarrow G \xrightarrow{\phi} H \xrightarrow{\psi} K \rightarrow 0$ is a short exact sequence.
Corresponding to [9 , Appendix] we obtain
Proposition 9. Assume that a fixed $C W$-spectrum E is good. Then the composite $G \rightarrow S G \rightarrow E G$ is a covariant exact functor.

Proof. The homomorphism $1_{E \wedge}-:\{S G, S H\} \rightarrow\{E G, E H\}$ is just the composition

$$
\{S G, S H\} \xrightarrow{\varepsilon_{H^{*}}}\{S G, F(E, E H)\} \xrightarrow{\cong}\{E G, E H\}
$$

where $\varepsilon_{H}: S H \rightarrow F(E, E H)$ is the dual of $1_{E H}$. So we consider the following commutative diagram

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Ext}\left(G, \pi_{1}(S H)\right) \rightarrow\{S G, S H\} \xrightarrow{\kappa} \operatorname{Hom}(G, H) \rightarrow 0 \\
&\left(\varepsilon_{H_{*}}\right) * \mid \\
& \operatorname{Ext}\left(G, \pi_{1}(F(E, E H))\right) \rightarrow\{S G, F(E, E H)\} .
\end{aligned}
$$

In the commutative square

$$
\begin{gathered}
\pi_{0}(S H) \xrightarrow{\varepsilon_{H^{*}}} \pi_{0}(F(E, E H)) \\
\downarrow \eta^{*} \\
\eta_{1}(S H) \xrightarrow{\varepsilon_{H^{*}}} \pi_{1}(F(E, E H))
\end{gathered}
$$

the left arrow η^{*} is epic, but the right one η^{*} is trivial by our hypothesis on E. Hence the lower arrow $\varepsilon_{H^{*}}$ is trivial, too. This claims that $\varepsilon_{H^{*}}:\{S G, S H\} \rightarrow$ $\{S G, F(E, E H)\}$ factors through κ. Our result is now obvious.

2. Important properties of $\hat{\boldsymbol{E}}(\boldsymbol{G})$

2.1. Let us denote by R a subring of the rationals Q and l^{c} be the set of primes which are invertible in R. A $C W$-spectrum E is called an R-spectrum if
$p \cdot 1_{E}: E \rightarrow E$ is a homotopy equivalence for each $p \in l^{c}$. Notice that E is an R-spectrum if and only if $\pi_{*}(E)$ is an R-module. An R-spectrum E is said to be of finite type if $\pi_{*}(E)$ is of finite type as an R-module.

We now study whether the $C W$-spectra $\hat{E}(G)$ and $\hat{E}(R) G$ are homotopy equivalent. Assume that an R-spectrum E is of finite type or that an R-module G is finitely generated. Let us first recall our partial result [14] in the special case when G is free. In this case we write P instead of G, i.e., $P=\sum_{a} R$. The canonical injections $i_{\alpha}: R \rightarrow P$ give rise to the map $\vee_{\alpha} \hat{i_{\alpha}}: \vee_{\alpha} \hat{E}(R) \rightarrow \hat{E}(P)$ which is unique by Proposition 6. According to [14, Lemma 7] the map $V \hat{i}_{\alpha}$ is a homotopy equivalence under our assumption. Consequently the composite map

$$
\begin{equation*}
\iota_{E, P}: \hat{E}(R) P \leftarrow \underset{w}{\vee} \hat{E}(R) \rightarrow \hat{E}(P) \tag{2.1}
\end{equation*}
$$

is a homotopy equivalence, too.
Notice that the map $\iota_{E, P}$ has a factorization

$$
F(E, \hat{S}(R)) P \xrightarrow{j} F(E, \hat{S}(R) P) \xrightarrow{F\left(E, \iota_{S, P}\right)} F(E, \hat{S}(P))
$$

whose decomposed maps are both homotopy equivalences. By applying Five lemma we obtain that the canonical map

$$
\begin{equation*}
j: F(E, \hat{S}(R)) G \rightarrow F(E, S(R) G) \tag{2.2}
\end{equation*}
$$

is a homotopy equivalence under our finiteness assumption on E or G.
We here give the following interesting result.
Theorem 1. Let E be an R-spectrum and G be an R-module. Assume that E is of finite type or that G is finitely generated. Then $\hat{E}(G)$ and $\hat{E}(G) R$ have the same homotopy type.

Proof. Take a free resolution $0 \rightarrow P_{1} \xrightarrow{\phi} P_{0} \xrightarrow{\psi} G \rightarrow 0$ of R-modules, and consider the diagram

involving two cofiberings in (1.7) and Lemma 5. In order to show that the square is commutative, we use the map $\kappa: \hat{S}\left(P_{0}\right)^{0}\left(\hat{S}(R) P_{1}\right) \rightarrow \operatorname{Hom}\left(\pi_{0} \hat{S}(R) P_{1}\right)$, $\pi_{0}\left(\hat{S}\left(P_{0}\right)\right)$) which is an isomorphism. After $\pi_{0}\left(\hat{S}(R) P_{1}\right)$ and $\pi_{0}\left(\hat{S}\left(P_{0}\right)\right)$ are identified with P_{1} and P_{0} respectively, we compute that

$$
\begin{aligned}
\kappa\left(\hat{\phi} \cdot \iota_{S, P_{1}}\right) & =\phi_{*} \kappa\left(\iota_{S, P_{1}}\right)=\phi_{*}\left(1_{P_{1}}\right)=\phi^{*}\left(1_{P_{0}}\right)=\phi^{*} \kappa\left(\iota_{s, P_{0}}\right) \\
& =\kappa\left(\iota_{s, P_{0}} \cdot 1 \wedge S \phi\right)
\end{aligned}
$$

which claims $\hat{\phi} \cdot \iota_{S, P_{1}}=\iota_{S, P_{0}} \cdot 1 \wedge S \phi$. By (2.1) the vertical maps $\iota_{S, P_{i}}$ are both homotopy equivalences. By use of Five lemma we obtain a homotopy equivalence

$$
\hat{S}(R) G \rightarrow \hat{S}(G)
$$

in the special case $E=S$.
For a general E we use (2.2) to obtain that the composite map

$$
F(E, \hat{S}(R) G) \xrightarrow{j} F(E, \hat{S}(R) G) \rightarrow F(E, \hat{S}(G))
$$

is a homotopy equivalence.
If E is an R-spectrum of finite type, then it has a nice property that there is a homotopy equivalence

$$
\begin{equation*}
h_{E}: E \rightarrow E R \rightarrow \widehat{\hat{E}(R)(R)} \tag{2.3}
\end{equation*}
$$

(see [14, Theorem 2]). Putting two important results, Theorem 1 and (2.3), together we obtain a natural exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Ext}\left(\hat{E}(R)_{*-1}(X), G\right) \rightarrow E G^{*}(X) \rightarrow \operatorname{Hom}\left(\hat{E}(R)^{*}(X), G\right) \rightarrow 0 \tag{2.4}
\end{equation*}
$$

if E is an R-spectrum of finite type. Applying the main result of Huber and Meier [10, Theorem 1.1] we can extend our criterion [14, Theorem 3] for $E^{*}(X)$ being Hausdorff.

Theorem 2 ([10]). Assume that E is an R-spectrum of finite type. Then $E G^{*}(X)$ is Hausdorff if and only if $\operatorname{Pext}\left(\hat{E}(R)_{*-1}(X), G\right)=0$.
2.2. For a $C W$-spectrum E we denote by $E(-\infty, n](=E(-\infty, n+1))$ the ($n+1$)-coconnective Postnikov cof ber of E and by $E(n, \infty)(=E[n+1, \infty))$ the n-connective Postnikov fiber of E (see [3]). Thus $E(-\infty, n]$ is an $(n+1)$ coconnective $C W$-spectrum such that there is a map $j_{n}: E \rightarrow E(-\infty, n]$ which induces an isomorphism $j_{n^{*}} ; \pi_{r}(E) \rightarrow \pi_{r}(E(-\infty, n])$ for each $r \leqq n$, and $E(n, \infty)$ an n-connective $C W$-spectrum such that there is a map $i_{n}: E(n, \infty) \rightarrow E$ which induces an isomorphism $i_{n^{*}} ; \pi_{r}(E(n, \infty)) \rightarrow \pi_{r}(E)$ for each $r>n$. Notice that the sequence

$$
E(n, \infty) \xrightarrow{i_{n}} E \xrightarrow{j_{n}} E(-\infty, n]
$$

is a cofibering.
By routine computations we have

Lemma 10. i) The map j_{n} induces a homotopy equivalence

$$
E(-\infty, n] G \stackrel{\cong}{\approx} \begin{cases}E G(-\infty, n] & \text { if } \operatorname{Tor}\left(\pi_{n}(E), G\right)=0 \\ E G(-\infty, n+1] & \text { if } \pi_{n+1}(E) \otimes G=0\end{cases}
$$

ii) The map i_{n} induces a homotopy equivalence

$$
E(n, \infty) G \stackrel{\cong}{\cong} \begin{cases}E G(n, \infty) & \text { if } \operatorname{Tor}\left(\pi_{n}(E), G\right)=0 \\ E G(n+1, \infty) & \text { if } \pi_{n+1}(E) \otimes G=0\end{cases}
$$

Lemma 11. i) The map \hat{i}_{n} induces a homotopy equivalence
ii) The map $\widehat{i_{n}}$ induces a homotopy equivalence

$$
\widehat{E(n, \infty)}(G) \stackrel{\leftrightarrow}{\cong} \begin{cases}\hat{E}(G)(-\infty,-n) & \text { if } \operatorname{Ext}\left(\pi_{n}(E), G\right)=0 \\ \hat{E}(G)(-\infty,-n-1) & \text { if } \operatorname{Hom}\left(\pi_{n+1}(E), G\right)=0\end{cases}
$$

Combining Theorem 1 with Lemmas 10 and 11 we obtain
Proposition 12. Assume that an R-spectrum E is of finite type or that an R module G is finitely generated. If $\operatorname{Ext}\left(\pi_{n}(E), G\right)=0$, then $\left.\widehat{E(-\infty, n}\right](G)$ has the same homotopy type as $\hat{E}(R)[-n, \infty) G$ and $\widehat{E(n, \infty)}(G)$ does the same as $\hat{E}(R)(-\infty,-n) G$.

For the $B U-E O-\simeq \mathrm{d} B S p$ - spectrum $K, K O$ and $K S p$ we have determined in [14, Theorem 5] (or see [2]) that

$$
\begin{equation*}
\hat{K}(G)=K G \quad \text { and } \quad \widehat{K S p}(G)=K O G \tag{2.5}
\end{equation*}
$$

Applying Proposition 12 we get

$$
\begin{equation*}
\widehat{K[0, \infty})(G)=K(-\infty, 0] G, \widehat{K S p}[0, \infty)(G)=K O(-\infty, 0] G \text { and so on. } \tag{2.6}
\end{equation*}
$$

2.3. Let $\tau: F(W, \hat{V}(G)) \rightarrow F(V, \hat{W}(G))$ be the homotopy equivalence induced by the switching map $T: W \wedge V \rightarrow V \wedge W$. Putting $V=E$ and $W=\hat{E}(G)$, τ yields the map

$$
\varepsilon_{E, G}: E \rightarrow \widehat{\hat{E}(G)(G)}
$$

which is the dual of $e_{E, G} T$ where $e_{E, G}: E \wedge \hat{E}(G) \rightarrow \hat{S}(G)$ denotes the evaluation map. Observe that the composition

$$
\begin{equation*}
\{W, E\} \xrightarrow{\varepsilon_{E, G^{*}}}\{W, \widehat{\hat{E}(G)(G)}\} \stackrel{\tau_{\#}}{\cong}\{\hat{E}(G), \hat{W}(G)\} \tag{2.7}
\end{equation*}
$$

is just the map $F(, \hat{S}(G))$.
Proposition 13. If an R-spectrum E is of finite type, then the map

$$
F(, \hat{S}(R)):\{W, E\} \rightarrow\{\hat{E}(R), \hat{W}(R)\}
$$

is an isomorphism for each W, and equivalently the canonical map $\varepsilon_{E, R}: E \rightarrow \widehat{E}(R)(R)$ is a homotopy equivalence (cf., (2.3)).

Proof. Take a homotopy equivalence $h_{E}: E \rightarrow \widehat{\hat{E}(R)}(R)$ of (2.3) and introduce the composite map

$$
\rho_{E}: F(W, E) \rightarrow F(W, \widehat{\hat{E}(R)}(R)) \xrightarrow{\tau} F(\hat{E}(R), \hat{W}(R)),
$$

given by use of h_{E}, which is functorial with respect to W. We modify the map ρ_{E} a bit as it induces the map $F(, \hat{S}(R))$. Since $\rho_{E \sharp}:\{W, E\} \rightarrow\{\hat{E}(R), \hat{W}(R)\}$ is an isomorphism, we can find a map $f: E \rightarrow E$ such that $\rho_{E \ddagger}(f)=1_{\hat{E}(R)}$. The map $\hat{f}: \hat{E}(R) \rightarrow \hat{E}(R)$ gives rise to a split epic $f_{*}: \pi_{*}(\hat{E}(R)) \rightarrow \pi_{*}(\hat{E}(R))$ since $\hat{f} \cdot \rho_{E \sharp}\left(1_{E}\right)=\rho_{E *}\left(f^{*}\left(1_{E}\right)\right)=1_{\hat{E}(R)}$. But the R-module $\pi_{*}(\hat{E}(R))$ is of finite type, so \hat{f}_{*} is isomorphic. This means that the map \hat{f} is a homotopy equivalence. Consider the composite map

$$
F(W, E) \xrightarrow{\rho_{E}} F(\hat{E}(R), \hat{W}(R)) \stackrel{F(\hat{f}, \hat{W}(R))}{\rightleftarrows} F(\hat{E}(R), \hat{W}(R)) .
$$

Obiously the induced isomorphism

$$
\{W, E\} \xrightarrow{\rho_{E^{*}}}\{\hat{E}(R), \hat{W}(R)\} \stackrel{\hat{f}^{*}}{\longleftrightarrow}\{\hat{E}(R), \hat{W}(R)\}
$$

conicides with the map $F(, \hat{S}(R))$.
We next define a generalization $\hat{F}_{G, H}:\{W G, E H\} \rightarrow\{\hat{E}(R) G, \dot{W}(R) H\}$ of the isomorphism $F(, \hat{S}(R))$. The evaluation map $e_{E, R}: E \wedge \hat{E}(R) \rightarrow \hat{S}(R)$ gives us a homomorphism

$$
e_{E \sharp}:\{W G, E H\} \rightarrow\{W \wedge \hat{E}(R) G, \hat{S}(R) H\}
$$

defined in the obvious way. On the other hand, if W is an R-spectrum of finite type or if H is a finitely generated R-module, then the map $j: F(W, \hat{S}(R)) H \rightarrow$ $F(W, \hat{S}(R) H)$ induces an isomorphism

$$
\{\hat{E}(R) G, \hat{W}(R) H\} \rightarrow\{W \wedge \hat{E}(R) G, \hat{S}(R) H\}
$$

by (2.2). We compose the above two to obtain a generalization $\hat{F}_{G, H}$ under the finiteness restriction on W or H.

Proposition 14. Assume that W is an R-spectrum of finite type or that H is a finitely generated R-module. If an R-spectrum E is of finite type, then the map

$$
\hat{F}_{G, H}:\{W G, E H\} \rightarrow\{\hat{E}(R) G, \hat{W}(R) H\}
$$

is an isomorphism.
Proof. For a free R-module P we consider the following commutative diagram

The upper arrow $e_{E *} \otimes 1$ is an isomorphism by Proposition 13, and two vertical arrows are both isomorphisms for any finite W (use (2.1) and the proof of [14,Lemma 7 ii$)]$). This implies that the lower one $e_{E \#}$ is an isomorphism for a general W. Now a routine argument shows that $e_{E \ddagger}:\{W G, E H\} \rightarrow$ $\{W \wedge \hat{E}(R) G, \hat{S}(R) H\}$ is an isomorphism for any G and H, and hence so is the map $\hat{F}_{G, H}$.

For simplicity we write \hat{S} instead of $\hat{S}(Z)$. When $W=E=S, \hat{F}_{G, H}$ is equal to the map $1_{\hat{S} \wedge} \wedge:\{S G, S H\} \rightarrow\{\hat{S} G, \hat{S} H\}$. So we have

Corollary 15. The map

$$
1_{\hat{s} \wedge} \wedge:\{S G, S H\} \rightarrow\{\hat{S} G, \hat{S} H\}
$$

is an isomorphism for any G and H.

3. Uniqueness of $\hat{E}(\boldsymbol{G})$

3.1. We here discuss the uniqueness of $\hat{E}(G)$ as it was done in [14, Theorem 4]. Our attention is first turned to the special case $E=S$. In this case we have the following satisfactory result.

Theorem 3. If a $C W$-spectrum F has a natural exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Ext}\left(\pi_{*-1}(X), G\right) \rightarrow F^{*}(X) \xrightarrow{\tau} \operatorname{Hom}\left(\pi_{*}(X), G\right) \rightarrow 0 \tag{*}
\end{equation*}
$$

for a fixed abelian group G, then F has the same homotopy type as $\hat{S}(G)$.
Proof. By the same argument as Lemma 3 we may regard τ as the induced homotopy homomorphism κ, after G is identified with $\pi_{0}(F)$ via the isomorphism $t_{F, G}: \pi_{0}(F) \xrightarrow{\tau} \operatorname{Hom}\left(\pi_{0}(S), G\right) \cong G$. Then there is a map

$$
h: \hat{S}(G) \rightarrow F
$$

whose induced homomorphism $h_{*}: \pi_{0}(\hat{S}(G)) \rightarrow G$ is equal to the isomorphism
t_{G} of (1.2). Using the commutative square

$$
\begin{gathered}
\pi_{-1}(\hat{S}(G)) \xrightarrow{\kappa} \operatorname{Hom}\left(\pi_{1}(S), \pi_{0}(\hat{S}(G))\right) \\
\mid h_{*} \\
\pi_{-1}(F) \xrightarrow{\kappa} \operatorname{Hom}\left(\pi_{1}\left(h_{*}\right), \pi_{0}(F)\right)
\end{gathered}
$$

we verify that $h_{*}: \pi_{-1}(\hat{S}(G)) \rightarrow \pi_{-1}(F)$ is also an isomorphism. Applying the natural exact sequences $(*)$ and (1.3) we can see that

$$
h^{*}: F^{0}(F) \rightarrow F^{0}(\hat{S}(G)) \quad \text { and } \quad h^{*}: \hat{S}(G)^{0}(F) \rightarrow \hat{S}(G)^{0}(\hat{S}(G))
$$

are both isomorphisms. A routine argument shows that h is a homotopy equivalence.
3.2. In a general case E we next attempt to weaken some restrictions in our previous result [14, Theorem 4].

Theorem 4. Let G be a fixed abelian group and D be the maximal divisible subgroup. Assume that a $C W$-spectrum E satisfies $\operatorname{Hom}\left(t \pi_{*}(E), G / D\right)=0$ where $t \pi_{*}(E)$ denotes the torsion subgroup of $\pi_{*}(E)$. If two $C W$-spectra E and F are related by a natural exact sequence

$$
0 \rightarrow \operatorname{Ext}\left(E_{*-1}(X), G\right) \rightarrow F^{*}(X) \xrightarrow{\tau} \operatorname{Hom}\left(E_{*}(X), G\right) \rightarrow 0,
$$

then F has the same homotopy type as $\hat{E}(G)$.
Proof. Since the short exact sequence $0 \rightarrow D \rightarrow G \rightarrow G / D \rightarrow 0$ is split we may choose a map $f: F \rightarrow \hat{E}(D)$ so that it induces the composition

$$
F^{*}(X) \xrightarrow{\tau} \operatorname{Hom}\left(E_{*}(X), G\right) \rightarrow \operatorname{Hom}\left(E_{*}(X), D\right) \stackrel{\cong}{\oiiint} \hat{E}(D)^{*}(X) .
$$

Denoting by F_{R} the fiber of f, the cofibering

$$
F_{R} \rightarrow F \xrightarrow{f} \hat{E}(D)
$$

is split as $f_{*}: F^{*}(X) \rightarrow \hat{E}(D)^{*}(X)$ is epic. With an application of 3×3 lemma as in [14, Theorem 4] we get a natural exact sequence

$$
0 \rightarrow \operatorname{Ext}\left(E_{*-1}(X), G / D\right) \rightarrow F_{R}^{*}(X) \rightarrow \operatorname{Hom}\left(E_{*}(X), G / D\right) \rightarrow 0 .
$$

Evidently $\operatorname{Hom}(Q, G / D)=0$, i.e., G / D is reduced (see [7]). Therefore we have to show that F_{R} and $\hat{E}(G / D)$ have the same homotopy type for the reduced G / D.

We may now assume that G is a reduced group with $\operatorname{Hom}\left(t \pi_{*}(E), G\right)=0$. Take a free resolution $0 \rightarrow P_{1} \xrightarrow{\phi} P_{0} \xrightarrow{\psi} G \rightarrow 0$ and proceed our proof as in [14, Theorem 4]. By Lemma 5 the resolution gives us a cofibering

$$
\hat{E}\left(P_{1}\right) \xrightarrow{\hat{\phi}} \hat{E}\left(P_{0}\right) \xrightarrow{\hat{\psi}} \hat{E}(G) .
$$

Evidently $\operatorname{Hom}\left(E Q_{*}(X), P_{t}\right)=\operatorname{Hom}\left(E Q / Z_{*}(X), P_{t}\right)=0$ for $i=1,2$ and also $\operatorname{Hom}\left(E Q_{*}(X), G\right)=0$ as G is reduced. We then obtain maps

$$
\tilde{\psi}: F\left(S Q, \hat{E}\left(P_{0}\right)\right) \rightarrow F(S Q, F) \quad \text { and } \quad \bar{\psi}: F\left(S Q / Z, \hat{E}\left(P_{0}\right)\right) \rightarrow F(S Q / Z, F)
$$

which make the diagrams below commutative
and

By easy diagram chases we observe that two bottom sequences in the above diagrams are exact. In particular, the composite maps $\tilde{\psi} \cdot \hat{\phi}$ and $\bar{\psi} \cdot \hat{\phi}$ are both trivial where $F(S Q, \hat{\phi})$ and $F(S Q / Z, \hat{\phi})$ are abbreviated as $\hat{\phi}$'s. Then there are two maps

$$
\hat{h}: F(S Q, \hat{E}(G)) \rightarrow F(S Q, F), \quad \bar{h}: F(S Q / Z, \hat{E}(G)) \rightarrow F(S Q / Z, F)
$$

such that $\hat{h} \cdot \hat{\psi}=\frac{\tilde{y}}{r}$ and $\bar{h} \cdot \hat{\psi}=\bar{\psi}$. As is easily seen, the map \tilde{h} is a homotopy equivalence. On the other hand, our assumption means that $\operatorname{Hom}\left(\pi_{*}(E Q / Z)\right.$, $G)=0$ since the map $\operatorname{Hom}\left(\operatorname{Tor}\left(\pi_{*-1}(E), Q / Z\right), G\right) \rightarrow \operatorname{Hom}\left(\pi_{*}(E Q / Z), G\right)$ is an isomorphism for any reduced G. Thereby the coefficients sequence

$$
\begin{equation*}
0 \rightarrow \hat{E}\left(P_{1}\right) *(S Q / Z) \xrightarrow{\hat{\phi}_{*}} \hat{E}\left(P_{0}\right) *(S Q / Z) \xrightarrow{\bar{\psi}_{*}} F^{*}(S Q / Z) \rightarrow 0 \tag{3.1}
\end{equation*}
$$

is short exact. By means of [15, Lemma A] (see [5]) we find that the map \bar{h} is a homotopy equivalence, too.

Corresponding to the injective resolution $0 \rightarrow Z \rightarrow Q \rightarrow Q / Z \rightarrow 0$ there is a cofibering

$$
S \xrightarrow{i} S Q \xrightarrow{j} S Q / Z .
$$

It is easy to see that the maps $\tilde{\psi}, \bar{\psi}$ and $\hat{\psi}$'s are compatible with j 's. Consequently we have the following diagram.

in which all but the right square are commutative, and the maps \bar{h} and \tilde{h} are homotopy equivalences. The map $\hat{\psi}$ induces a monomorphism

$$
\hat{\psi}^{*}: F^{*}(F(S Q / Z, \hat{E}(G)) Q) \rightarrow F^{*}\left(F\left(S Q / Z, \hat{E}\left(P_{0}\right)\right) Q\right)
$$

because $\hat{\psi}_{*}: \pi Q_{*}\left(F\left(S Q / Z, \hat{E}\left(P_{0}\right)\right)\right) \rightarrow \pi Q_{*}(F(S Q / Z, \hat{E}(G)))$ is epic by (3.1). Hence we get immediately that the right square is commutative like the rest. Thereby we have a homotopy equivalence

$$
h: \hat{E}(G) \rightarrow F
$$

by applying Five lemma.
Note that $\operatorname{Hom}(t A, G)=0$ if $\operatorname{Tor}(A, G)=0$. The above theorem asserts that the finiteness restrictions on G and E may be eliminated in [14, Theorem 4].

4. Purity of the universal coefficient sequence

4.1. We now study whether the universal coefficient sequence (1.1) is pure as Huber and Meier [10] tried. But our method owes to Mislin [12] rather than Hilton and Deleanu [9, Theorem 3.2]. Consider first the universal coefficient sequence of the form

$$
\begin{equation*}
0 \rightarrow E_{*}(X) \otimes Z_{q} \rightarrow E Z_{q^{*}}(X) \rightarrow \operatorname{Tor}\left(E_{*-1}(X), Z_{q}\right) \rightarrow 0 \tag{4.1}
\end{equation*}
$$

According to Araki and Toda [4, Theorem 2.7] (or [9]) we have that
(4.2) the universal coefficient sequence (4.1) is split if $q \neq 2 \bmod 4$ or if E is good.

An abelian group G is said to be 2-high if the homomorphism $\operatorname{Tor}\left(G, Z_{4}\right)$ $\rightarrow \operatorname{Tor}\left(G, Z_{2}\right)$, induced by the projection $Z_{4} \rightarrow Z_{2}$, is epic [9]. If a 2-high group G is finitely generated, then it doesn't contain Z_{2} as a direct summand. Any 2-high group is certainly the union of all finitely generated 2-high subgroups. Even if E is not good, we still have the following nice result by adopting the argument in [9, Theorem 4.3].
(4.3) If $E_{n}(X)$ is 2-high, then the exact sequence (4.1) is split in the n-th and $(n+1)$-th dimensions.

A short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is called 2-high pure if the induced homomorphism $A \otimes Z_{q} \rightarrow B \otimes Z_{q}$ is monic for any $q \not \equiv 2 \bmod 4$. Evidently an exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is 2-high pure if and only if the induced homomorphisms $A \otimes G \rightarrow B \otimes G$ are monic for all 2-high G.

Assume that there is a natural exact sequence

$$
0 \rightarrow \operatorname{Ext}\left(E_{*-1}(X), G\right) \xrightarrow{\eta} F^{*}(X) \xrightarrow{\tau} \operatorname{Hom}\left(E_{*}(X), G\right) \rightarrow 0 .
$$

Of course we may introduce $\hat{E}(G)$ as F if necessary. Consider the commutative square

$$
\begin{aligned}
\operatorname{Ext}\left(E_{*-1}(X), G\right) \otimes Z_{q} & \xrightarrow{\eta \otimes 1} F^{*}(X) \otimes Z_{q} \\
\operatorname{Ext}\left(E Z_{q^{*}}(X), G\right) & \xrightarrow{\eta} F^{*+1}\left(X Z_{q}\right) .
\end{aligned}
$$

The upper arrow $\eta \otimes 1$ is monic if and only if the left vertical arrow is monic. The latter condition is equivalent to say that the sequence
$0 \rightarrow \operatorname{Ext}\left(\operatorname{Tor}\left(E_{*-1}(X), Z_{q}\right), G\right) \rightarrow \operatorname{Ext}\left(E Z_{q^{*}}(X), G\right) \rightarrow \operatorname{Ext}\left(E_{*}(X) \otimes Z_{q}, G\right) \rightarrow 0$ induced by (4.1) is exact. Hence we obtain
(4.4) the natural exact sequence (**) is always 2-high pure, and it is pure whenever the exact sequence (4.1) with $q=2$ is split.

Moreover we notice
(4.5) the purity of the natural exact sequence (**) doesn't depend on the choice of F.
4.2. We here compute the group $\{\hat{S}(G), \hat{S}(H)\}$.

Lemma 16. If either G or H is 2-high, then

$$
\{\hat{S}(G), \hat{S}(H)\} \cong \operatorname{Hom}(G, H) \dashv \operatorname{Ext}\left(G, H \otimes Z_{2}\right) .
$$

Proof. First assume that G is 2-high. Then the exact sequence

$$
0 \rightarrow \pi_{0}(\hat{S}(G)) \otimes Z_{q} \rightarrow \pi_{0}\left(\hat{S}(G) Z_{q}\right) \rightarrow \operatorname{Tor}\left(\pi_{-1}(\hat{S}(G)), Z_{q}\right) \rightarrow 0
$$

is split by (4.3). Because of (4.4) the exact sequence

$$
0 \rightarrow \operatorname{Ext}\left(\pi_{-1}(\hat{S}(G)), H\right) \rightarrow \hat{S}(H)^{0}(\hat{S}(G)) \rightarrow \operatorname{Hom}\left(\pi_{0}(\hat{S}(G)), H\right) \rightarrow 0
$$

is pure. $\operatorname{Ext}\left(\pi_{-1}(\hat{S}(G)), H\right)$ is bounded, and hence it is algebraically compact (see [7]). So the pure exact sequence is split.

We next assume that H is 2-high. By use of Corollary 15 and Theorem 1 we get an isomorphism $\{S G, S H\} \rightarrow\{\hat{S}(G), \hat{S}(H)\}$. So we use the exact sequence

$$
0 \rightarrow \operatorname{Ext}\left(G, \pi_{1}(S H)\right) \rightarrow S H^{0}(S G) \rightarrow \operatorname{Hom}\left(G, \pi_{0}(S H)\right) \rightarrow 0
$$

Consider the commutative square

The left vertical arrow is monic since the exact sequence

$$
0 \rightarrow \pi_{1}(S H) \otimes Z_{q} \rightarrow \pi_{1}\left(S H Z_{q}\right) \rightarrow \operatorname{Tor}\left(\pi_{0}(S H), Z_{q}\right) \rightarrow 0
$$

is split by (4.3). Thus the above exact sequence is pure. Thereby it is split as $\operatorname{Ext}\left(G, \pi_{1}(S H)\right)$ is bounded.

We now show the purity of the exact sequence ($* *$) under some restriction on either E or G.

Theorem 5. Assume that there is a natural exact sequence

$$
0 \rightarrow \operatorname{Ext}\left(E_{*-1}(X), G\right) \rightarrow F^{*}(X) \rightarrow \operatorname{Hom}\left(E_{*}(X), G\right) \rightarrow 0 .
$$

If the $C W$-spectrum E is good or if the abelian group G is 2-high, then the above exact sequence is pure. (Cf., [10, Corollary 3.4]).

Proof. When E is good, the purity follows from (4.2) and (4.4) Assume that G is 2 -high, then $\left\{\hat{S}(G), \hat{S}\left(G \otimes Z_{q}\right)\right\}$ is a Z_{q}-module by Lemma 16. So we have a commutative square

$$
\begin{gathered}
\operatorname{Ext}\left(E_{*-1}(X), G\right) \otimes Z_{q} \xrightarrow{\eta_{G} \otimes 1} \hat{E}(G)^{*}(X) \otimes Z_{q} \\
\quad \cong \\
\operatorname{Ext}\left(E_{*-1}(X), G \otimes Z_{q}\right) \xrightarrow{\eta_{G \otimes Z_{q}}} \hat{E}\left(G \otimes \tilde{Z}_{q}\right)^{*}(X) .
\end{gathered}
$$

The upper arrow $\eta_{G} \otimes 1$ is monic, and hence the universal coefficient sequence

$$
0 \rightarrow \operatorname{Ext}\left(E_{*-1}(X), G\right) \xrightarrow{\eta_{G}} \hat{E}(G)^{*}(X) \xrightarrow{\tau_{G}} \operatorname{Hom}\left(E_{*}(X), G\right) \rightarrow 0
$$

is pure. By virtue of (4.5) we get the purity of our exact sequence.
Huber and Meier [10] gave several conditions under which each pure exact sequence of the form ($* *$) is split. In particular, we have

Corollary 18 ([10]). Assume that E is good or that G is 2-high. If
$\operatorname{Pext}(\underset{\sim}{\mid} \mid Z, t G)=0$, e.g., the torsion subgroup $t G$ is algebraically compact, then a natural exact sequence

$$
0 \rightarrow \operatorname{Ext}\left(E_{*-1}(X), G\right) \rightarrow F^{*}(X) \rightarrow \operatorname{Hom}\left(E_{*}(X), G\right) \rightarrow 0
$$

is split.

Osaka City University

References

[1] J.F. Adams: Stable homotopy and generalized homology, Chicago Lecture in Math., Univ. of Chicago Press, 1974.
[2] D.W. Anderson: Universal coefficient theorems for K-iheory, mimeographed notes, Berkeley.
[3] S. Araki: Generalized cohomology (in Japanese), Kinokuniya Book Store, 1975.
[4] S. Araki and H. Toda: Multiplicative structures in mod q cohomology theories, I, Osaka J. Math. 2 (1965), 71-115.
[5] N.A. Baas: On bordism theory of manifolds with singularities, Math. Scand. 33 (1973), 279-302.
[6] J. Boardman: Stable homotopy theory, mimeographed notes, Univ. of Warwick, 1965.
[7] L. Fuchs: Infinite abelian groups I, Academic Press, 1970.
[8] P.J. Hilton: Homotopy theory and duality, Gordon and Breach, 1965.
[9] P.J. Hilton and A. Deleanu: On the splitting of universal coefficient sequences, Proc. Adv. Study Inst. on Alg. Top., vol. I, Aarhus (1970), 180-201.
[10] M. Huber and W. Meier: Cohomology theories and infinite CW-complexes, Comment. Math. Helv. 53 (1978), 239-257.
[11] P.C. Kainen: Universal coefficient theorems for generalized homology and stable cohomotopy, Pacific J. Math. 37 (1971), 337-407.
[12] G. Mislin: The splitting of the Künneth sequence for generalized cohomology, Math. Z. 122 (1971), 237-245.
[13] R. Vogt: Boardman's stable homotopy category, Lecture notes series 21, Aarhus Univ., 1970.
[14] Z. Yosimura: Universal coefficient sequences for cohomology theories of $C W$-spectra, Osaka J. Math. 12 (1975), 305-323.
[15] Z. Yosimura: A note on the relation of Z_{2}-graded complex cobordism to complex K-theory, Osaka J. Math. 12 (1975), 583-595.

