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Let E be a CfF-spectrum and G be an abelian group. Following Kainen
[11] we can construct a CW-spectrum ή(G) which has a universal coefficient
sequence

0 -* ΈxtiE^X), G) -> έ(G)*(X) - Hom{E*{X), G) - 0 .

In the previous paper [14] with the same title we investigated several properties
of έ(G). But some of our results are restrictive as yet, e.g., Proposition 8 and
Theorem 4 in [14]. In this note we continue the investigations to develop
and improve our partial results.

First we discuss whether the correspondences G->E(G) as well as G-+EG
are functorial in G, as analogous discussions were done in [9] and [10]. Next,
under some finiteness assumption on E or G we show that E(G) and E(R)G are
homotopy equivalent where ZdR C.Q (Theorem 1). This result is a satisfactory
improvement of [14, Proposition 8]. As an application of the main result of
Huber and Meier [10] we can then give a criterion for EG*(X) being HausdorfT
(Theorem 2). Moreover we discuss the uniqueness of E(G) again to improve
a partial result obtained in [14, Theorem 4]. When E is the sphere spectrum
S we have a complete result (Theorem 3), but for a general E we need still some
restriction although the finiteness assumptions on E and G can be eliminated in
our previous result (Theorem 4). Finally we show that the universal coefficient
sequence is pure under some restriction on E or G, adopting an argument given
in [9].

In this note we shall work in the stable homotopy category of CW-spectra
(see [1] or [13]).

The author wishes to thank Professors Huber and Meier for sending him
their preprint [10] by which he has been motivated to write this sequel.

1. Functorίality of E(G)

1.1. Let E be a CW-spectrum and G be an abelian group. Then there
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is a CW-spectrum ή(G) so that E and E(G) are related by a universal coefficient
sequence

(1.1) 0 - E x t ( ^ U ) , G) — > έ(G)*(X) - ^ Horn (£*(*), G) - 0

(see [11] and [14]). Let us first recall the construction of ή(G) involving an
injective resolution of G. By the representability theorem there is a CW-
spectrum ίt(I) and a natural equivalence r7: ^(/)*( )->Hom(£l^ί( ), /) for

every injective /. Take any injective resolution 0 -> G -> / >/-* 0 and denote
by ψ: ή(I)->ή(J) the unique map induced by -ψ\ We define ή(G) to be the
fiber of ψ, i.e.

is a cofibering. The homotopy type of E(G) is independent of the choice of
an injective resolution.

Let us denote by S the sphere spectrum. By the exactness of function
spectra [13] there Is a cofibering

F(E, S(G)) - F(E, ̂ (/))^1V(£), S(J)) •

By the aid of Five lemma [13] we obtain

Proposition 1. For any abelίan group G the spectrum E(G) has the same
homotopy type as the function spectrum F(Ey S(G)).

Given an abelian group G, each map /: W-> E of CW- spectra determines
the unique map f=F(f, S(G)): F(E, S(G))->F(I^, S(G)). Thereby Proposi-
tion 1 contains the following functorial property.

Corollary 2. Fix an abelian group G. Then the correspondence E^ή(G) =
F(E, S(G)) is a contravariant exact functor.

We may now turn our attention to the spectrum S(G). The map rG gives
rise to an isomorphism

(1.2) tG: πo(S(G)) — Hom(7r0(S), G)^G .

Lemma 3. The composition map

^ > Hom(τr*(X), G)-^>Hom(;r*(X), τro(S(G)))

is just the homomorphism tc assigning to a map f the induced homomorphism f* in
0-th homotopy groups.
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Proof. It is sufficient to show the equality tG=τG(l*(G)) for the identity map
1 J(G) of S(G). Take any element / of ττo(S(G)), i.e., a map /: S-*S(G). By the
naturality of τG we have

toU) = τG(/)(ls) = {τG{H<cύf*)(h) = τG(lS(G,)(/).

Because of Lemma 3 we may employ /c instead of τG. Thus there is a
natural exact sequence

(1.3) 0 -> E x t ^ . ^ X ) , G) - ^ > &(G)*(X) - ^ > Hom(;r*(X), G) -> 0

where πo(S(G)) is identified with G via the map ίG.
Let £* be a ring spectrum and F be an (associative) right i?-module spectrum

equipped with a structure map μ: F /\E—>F. Then there is a unique map

such that eFG(lF/\μG) = eFtG(μ Al£(G)) where eFG: F AF(G)-+S(G) is the
evaluation map. Thereby r (G) is an (associative) left iί-module spectrum.
Using the structure maps μ and ~μG we can give Hom(F*( ), G) and fi(G)*( )
structures of left E*( )-modules. Thus we have two homomorphisms

μf. E*(Y)®Hom(F*(X), G) -> Hom(F*(YAX), G)

defined in the obvious way. By virtue of Lemma 3 we have

Proposition 4. Let E be a ring spectrum and F be a right E-module spectrum.
Then the universal coefficient sequence

0 -> Ext ίn^j f ) , G) — P(G)*(X) - X Hom(F*(X), G) -> 0

sequence of left E*{ )-modules.

Proof. As is easily seen, the induced homotopy homomorphism K is a map
of left i?*( )-modules, i.e., the following square

16̂ )
, πo(S(G)))

j {
P(G)*(YAX) -?->Hom{F*{Y ΛX), πo(S(G)))

is commutative. By a routine computation the result is immediate.

1.2. Take any homomorphism φ: G-+H of abelian groups, then there
is a (non-unique) map φ: S(G)^> o(H) making the diagram below commutative
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0 -* E x t ^ . ^ X ) , G) ^ S(G)*(X) - X Hom(7r*(X), G) -> 0

I φ * Φ* Φ*
0 -> E x t ^ ^ X ) , #) —ίU S(H)*(X) —ίU Hom(7r*(X), H) -* 0 .

Thus the correspondence G->S(G) is quasi-functorial in G [11].

φ ψ
Lemma 5. i/* 0->G > H > K->0 is a short exact sequence, then there

exist maps φ: S(G)-*S(H) and ψ : S(H)->S(K) which give us a cofibering

S(G) - ^ S(H) -^-> S(K).

Proof. Choose an injective resolution 0->H->I~>J1->0 and consider

commutative exact diagram

0 0

1 I
0-* G -> H^K-+0

I I
1 = 1
I I

o->κ->jo-> j^o
1 I
oo

in which there appear three injective resolutions of G, H and K. By applying

Verdier's lemma [6] we obtain a cofibering as desired.

Denote by kG H the composition map

S(H)\S(G)) - ^ U Hom(^0(S(G)), H) <^~ Hom(G, H).

It is epic, in fact we observe that

(1.4) kGtH(φ) = φ*(lG) = φ ,

by making use of the equality tG=τG(lj(G)). But Ker kG H^Ext(π.ι(S(G))y H)

^Ext(Hom(Z 2, G), i/)^Ext(G, Z2®H). By an easy computation we verify

that

(1.5) kGH is an isomorphism if and only if either G is 2-torsion free or H is

2-divisible.

This implies

Proposition 6. // G is 2-to*sion free or if H is 2-divisible, then $ =

F(E9 φ): έ(G)-+E(H) is uniquely determined for each φ: G-+H.
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Let us denote by η: 1>}S->S the Hopf map, i.e., the non-zero element of
πλ(S). A CW-spectrum E is said to be good if ^ Λ V- ΣιE-*E is trivial [9].
For a good E we have the following functorial property.

Proposition 7. Assume that a fixed CW-spectrum E is good. Then the
composite G -> S(G)->E(G)=F(E, S(G)) is a covarίant exact functor.

Proof. We show that the homomorphism

F(E, ): {S(G), S(H)} - {E(G), έ(H)}

factors through kG H. Recall that F(E, ) is given by the composition

), S(H)} - ^ {E Λ E(G), S(H)} ̂ - 0(G), έ{H)}

where eG=eE 0: E Λ E(G)-*S{G) is the evaluation map. So it is enough to show
that there is a homomorphism λ making the diagram below commutative

0 -* Ext(^_,(S(G))( H) -^* {S(G), S(H)} ̂ > Hom(G, H) -* 0

-U^ Λ

Consider the commutative diagram

έ(G)), / / ) — {EAE(G), S(H)}

^ S), G)

πo(EAE(G)) ~^ Λ

The left arrow 77* is trivial by our hypothesis on E> and the central one y* is
monic by use of the right square. This implies that the upper arrow eG* is
trivial. The existence of λ is now immediate. Therefore the correspondence
G-*E(G) is a functor which is exact by Lemma 5.

1.3. For each abelian group G we denote by SG the Moore spectrum of
type G. Then there is a universal coefficient sequence in the form of a natural
exact sequence

(1.6) 0 ~> Ext(G, τr*+1(X)) -> {SG, X} * -^-* Hom(G, π*{X)) -* 0

where K is just the induced homotopy homomorphism [8]. In particular we

have a short exact sequence

0 - Ext(G, πx(SH)) -> {SG, SH) — HomfG, H) -> 0 .
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Given a homomorphism φ: G->H, there is a (non-unique) map Sφ: SG-+SH

inducing Sφ* = φ: πo(SG)->πo(SH). Since πλ(SH)^H®Zz we have an

analogous result to Proposition 6.

Proposition 8. Assume that G is 2-torsion free or that H is 2-divisible.

Then lE/\Sφ: EG->EH is uniquely determined for each φ: G->H (see [10,

Proposition 3.2]).

By choosing suitably free resolutions in the dual way to the proof of Lemma

5 we can show that there is a cofibering

Sφ SΛIT

(1.7) SG-^SH—^SK

Φ Ψ
if 0->G >H >K-+0 is a short exact sequence.

Corresponding to [9, Appendix] we obtain

Proposition 9. Assume that a fixed CW-spectrum E is good. Then the

composite G-> SG —> EG is a covarrant exact functor.

Proof. The homomorphism 1EA~: {SG, SH} -> {EG, EH} is just the

composition

{SG, SH} — {SG, F(Ey EH)} - ^ {EG, EH}

where 8H: SH->F(E, EH) is the dual of 1EH. So we consider the following

commutative diagram

0 -> Ext(G, π^SH)) -> {SG, SH} - ^ > Hom(G, H) -* 0

j Jj
Ext(G, nx(F(Ey EH))) -> {SG, F(E, EH)} .

In the commutative square

I77*
the left arrow ??* is epic, but the right one v* is trivial by our hypothesis on E.

Hence the lower arrow SH* is trivial, too. This claims that SH*: {SG, SH} ->

{SG, F(E, EH)} factors through K. Our result is now obvious.

2. Important properties of E(G)

2.1. Let us denote by R a subring of the rationals Q and lc be the set of

primes which are invertible in R. A CW-spectrum E is called an R-spectrum if
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pΛE\ E->E is a homotopy equivalence for each p&lc. Notice that E is an
i?-spectrum if and only if π*(E) is an P-module. An Λ-spectrum E is said to
be of finite type if π*(E) is of finite type as an i?-module.

We now study whether the CW-spectra E(G) and E(R)G are homotopy equi-
valent. Assume that an i?-spectrum E is of finite type or that an i?-module G
is finitely generated. Let us first recall our partial result [14] in the special case
when G is free. In this case we write P instead of G, i.e., P = Σ R. The

canonical injections ia: R-+P give rise to the map Via: \/E(R)->ίt(P) which
Ob Λ

Λ

is unique by Proposition 6. According to [14, Lemma 7] the map \/iΛ is a
homotopy equivalence under our assumption. Consequently the composite
map

(2.1) cE P: E(R)P <- vέ(R) - έ(P)

is a homotopy equivalence, too.
Notice that the map ιEP has a factorization

F(E9 S(R))P-U F(E9 S(R)P) — ^ F(E, S(P))

whose decomposed maps are both homotopy equivalences. By applying Five
lemma we obtain that the canonical map

(2.2) j : F(E, S(R))G - F(E, S(R)G)

is a homotopy equivalence under our finiteness assumption on E or G.
We here give the following interesting result.

Theorem L Let E be an R-spectrum and G be an R-module. Assume that
E is of finite type or that G is finitely generated. Then ή(G) and ή(G)R have the
same homotopy type.

Proof. Take a free resolution 0-+P1—+P0 > G->0 of Λ-modules, and
consider the diagram

SΛIΓ Λ

S{R)G

involving two cofiberings in (1.7) and Lemma 5. In order to show that the
square is commutative, we use the map K: S(P0)°(S(R)P1)'-^ΐlom.(π0(S(R)P1)f

τro(S(Po))) which is an isomorphism. After πo(S(R)P1) and τro(S(Po)) a r e

identified with Pλ and P o respectively, we compute that
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/c(<f>-ιSfPl) = φ*/c(ιStPi) = φ*(lpα) == Φ*(lp0) = Φ M ' S .

which claims φ cStPι=tStPo l /\Sφ. By (2.1) the vertical maps £SjP. are both

homotopy equivalences. By use of Five lemma we obtain a homotopy

equivalence

S(R)G -

in the special case E=S.

For a general 2? we use (2.2) to obtain that the composite map

F(E, S(R)G) -Ϊ-+ F(E, S(R)G) -> F(£, S(G))

is a homotopy equivalence.

If E is an i?-spectrum of finite type, then it has a nice property that there

is a homotopy equivalence

/ \
(2.3) hE\E->ER-> έ(R)(R)

(see [14, Theorem 2]). Putting two important results, Theorem 1 and (2.3),

together we obtain a natural exact sequence

(2.4) 0 -» ExtOECR)*..^), G) -> £G*(X) -> Hom(έ(R)*(X), G) -> 0

if 5 is an i?-spectrum of finite type. Applying the main result of Huber and

Meier [10, Theorem 1.1] we can extend our criterion [14, Theorem 3] for

E*(X) being Hausdorff.

Theorem 2 ([10]). Assume that E is an R-spectrum of finite type. Then

EG*(X) is Hausdorff if and only ι / P e x t ^ Λ ) * - ^ , G)=0.

2.2. For a CίF-spectrum E we denote by E(— oo, n ] (=£(—00, n+1)) the

(w+l)-coconnective Postnikov cofiber of E and by E(n, 00) (=i?[n+l , 00)) the

n-connective Postnikov fiber of E (see [3]). Thus E(—ooy n] is an (n+l)-

coconnective CPF-spectrum such that there is a map jn: E->E(—°°, n] which

induces an isomorphism^*; πr(E)-*πr(E(—°°> n]) for each r<^n, and E(n> 00)

an ^-connective CίF-spectrum such that there is a map in: E(n, °o)-*Έ which

induces an isomorphism in+\ πr(E(n, oo))->7rf(£<) for each r>n. Notice that

the sequence

E(n, oo)-^L>E-^E(-ooyn]

is a cofibering.

By routine computations we have
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Lemma 10* i) The mapjn induces a homotopy equivalence

(- - nΛG % \I EG(-oo, n+ί] if πn+1(E)®G = 0 .

ii) The map in induces a homotopy equivalence

Bin ) G l
\EG(n+l,oo) if πn+ι{E)®G = 0 .

Lemma 11. i) The map in induces a homotopy equivalence

/ - \ « f έ(G)[-n, co) if Έxt(πn(E), G) = 0

I °°,«J(, )-»[£(G)[_n_ltOθ) if Uom(τrn+1(E), G) = 0 .

ii) The map ίn induces a homotopy equivalence

ί
+1(£ ), G) = 0 .

Combining Theorem 1 with Lemmas 10 and 11 we obtain

Proposition 12. Assume that an R-spectrum E is of finite type or that an R-

module G is finitely generated. If Ext(τrn(£), G) = 0, then £ ( - o o , W](G) Λαί

the same homotopy type as E(R) [—n, oo)G and ί(n^ °°)(G) does the same as

, -n)G.

For the BU-, EO- z.zd BSp- spectrum Ky KO and KSp we have determined
in [14, Theorem 5] (or see [2]) that

(2.5) K(G) = KG and KSρ(G) = KOG .

Applying Proposition 12 we get

(2.6) iqθ, oo)(G) = i ^ ( - oo, 0]G, KSρ[0, oo)(G) = ϋ : 0 ( - oô  0] G

2.3. Let T: F(ίΓ, 1^(G))-^F(F, lfr(G)) be the homotopy equivalence

induced by the switching map T: WA V~>VΛ fF. Putting F - 5 1 and P F = ^

T yields the map

which is the dual of eEGT where eEG: E /\E(G)->S(G) denotes the evaluation
map. Observe that the composition

(2.7) {W, E) - ^ [W, έ(G)(G)} J ί
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is just the map F( , S(G)).

Proposition 13. // an R-spectrum E is of finite type, then the map

F( , S(R)): {Wy E} -> {έ(R)> M^)}

is an isomorphism for each W> and equivalently the canonical map SER: E->E(R)(R)
is a homotopy equivalence (cf., (2.3)).

Proof. Take a homotopy equivalence hE: E->E(R)(R) of (2.3) and intro-
duce the composite map

/ \ τ

pE: F(Wy E) - F(W, E(R)(R)) • F(έ{R), W(R)),

given by use of hEy which is functorial with respect to W. We modify the map
pE a bit as it induces the map F( , S(R)). Since pEt: {Wy E}-*{E{R), lfr(R)}
is an isomorphism, we can find a map /: E->E such that P£t(/)=1 £(/?)• The
map / : ή(R)-*ή(R) gives rise to a split epic /*: π*(It(R))-+π*(ή(R)) since
f PE*0>E)=pEiif^EΪ) =l£(je) B u t t n e Λ-module π*(ίt(R)) is of finite type, so
/* is isomorphic. This means that the map / is a homotopy equivalence.
Consider the composite map

F(έ(R), W(R)) F ( i - ί - ( i ? ) )

 F(έ(R),

Obiously the induced isomorphism

J
conicides with the map F( , S(R)).

We next define a generalization FGy. {WG, EH} -> {E(R)Gy W(R)H}
of the isomorphism F( , S(R)). The evaluation map eEyR\ E AJ2(R)->S(R)
gives us a homomorphism

eEt: {WG, EH} -> {WAE(R)G, S(R)H}

defined in the obvious way. On the other hand, if W is an i?-spectrum of finite
type or if H is a finitely generated i?-module, then the map j : F(W, S(R))H->
F(Wy S(R)H) induces an isomorphism

{έ(R)G, W(R)H] - {WAέ(R)G, S(R)H}

by (2.2). We compose the above two to obtain a generalization FGH under the
finiteness restriction on W or H.

Proposition 14. Assume that W is an R-spectrum of finite type or that H is
a finitely generated R-module. If an R-spectrum E is of finite type, then the map
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FGy. {WG, EH} -» {έ(R)G, W(R)H)

is an isomorphism.

Proof. For a free i?-module P we consider the following commutative
diagram

{W, E}®P e^X {WAέ(R), S(R)}®P

I I ^
{W, EP} » {WAE(R), S(R)P} > {WAE(R), S(P)} .

eE% CS,P*

The upper arrow eE$(&l is an isomorphism by Proposition 13, and two vertical
arrows are both isomorphisms for any finite W (use (2.1) and the proof of

[14,Lemma 7 ii)]). This implies that the lower one eE% is an isomorphism
for a general W. Now a routine argument shows that eEf. {WG, EH}-^
{W /\ίt(R)G, S(R)H} is an isomorphism for any G and H, and hence so is the
map FG>H.

For simplicity we write S instead of S(Z). When W=E=S, FG H is equal
to the map hs Λ - : {SGy SH} -> {SG, SH}. So we have

Corollary 15. The map

l ί Λ - : {SG, SH} - {SGy SH}

is an isomorphism for any G and H.

Λ

3. Uniqueness of E{G)

3.1. We here discuss the uniqueness of E(G) as it was done in [14, Theorem
4]. Our attention is first turned to the special case E=S. In this case we
have the following satisfactory result.

Theorem 3. If a CW-spectrum F has a natural exact sequence

(*) 0 -> E x t ^ ^ X ) , G) - F*{X) — Hom(τr*(X), G) -> 0

for a fixed abelian group G, then F has the same homotopy type as S(G).

Proof. By the same argument as Lemma 3 we may regard T as the induced
homotopy homomorphism K, after G is identified with 7ΓO(JF) via the isomor-

T

phism tFG: πQ(F) • Hom(7Γ0(S), G)^G. Then there is a map

h: S(G)-*F

whose induced homomorphism h%: πo(S(G))-*G is equal to the isomorphism
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tG of (1.2). Using the commutative square

), πo(S(G)))

U*
), τro(F))

we verify that h*: π-1(S(G))-*π-1(F) is also an isomorphism. Applying the

natural exact sequences (*) and (1.3) we can see that

A*: F°(F) -> F°(S(G)) and A*: S(G)°(F) -> §(G)°(έ(G))

are both isomorphisms. A routine argument shows that A is a homotopy

equivalence.

3.2. In a general case 2? we next attempt to weaken some restrictions in

our previous result [14, Theorem 4].

Theorem 4. Let G be a fixed abelίan group and D be the maximal divisible

subgroup. Assume that a CW-spectrum E satisfies Hom(tπ*(E)y G/Z>)=0 where

tπ*(E) denotes the torsion subgroup of π*(E). If two CW-spectra E and F are

related by a natural exact sequence

0 - ExtiE^X), G) - F*(X) - ^ - * Hom(£*(X), G) -> 0 ,

then F has the same homotopy type as ίt(G).

Proof. Since the short exact sequence 0 -*• D -» G -> GjD -> 0 is split we

may choose a map/: F->ή(D) so that it induces the composition

F*(X) - ^ Hom(E*(X), G) - Hom(E*(X), D) <^~ έ(D)*(X).

Denoting by FR the fiber of/, the cofibering

is split as/*: JF*(X)->i?(Z))*(X) is epic. With an application of 3 X 3 lemma

as in [14, Theorem 4] we get a natural exact sequence

0 -> ExtiE^iX), G/D) - F%X) -> Hom(E*(X), G/D) -> 0 .

Evidently Hom(£, G/D)=Oy i.e., GjD is reduced (see [7]). Therefore we have

to show that FR and E{GjD) have the same homotopy type for the reduced GjD.

We may now assume that G is a reduced group with Hom(tπ*(E), G)=0.

Φ Ψ
Take a free resolution 0—>P1 > Po >G—>0 and proceed our proof as in

[14, Theorem 4]. By Lemma 5 the resolution gives us a cofibering
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Evidently Hom(EQ*{X), P,)=Hom(EQIZ*(X), P,) = 0 for i=\, 2 and also
Hom(EO*(X), Gf)=0 as G is reduced. We then obtain maps

φ: F(SO, έ(P0)) — F(50, /?) and f: ^(50/Z, j£(P0)) -* F(SQjZ, F)

which make the diagrams below commutative

, P 0 ) - ίX E x t ^ ρ * . ^ ) , G) -> o

ή{P,)*{XO) -^U F*(X0

and

, Λ) - ^ Ext^p/Z^^Z), Po) - ^ Ext^ρ/Z^^X), G) -> 0

Λ ~

- ^ £(P0)*(AΌ/Z) ^ > F*(XOIZ)

By easy diagram chases we observe that two bottom sequences in the above
diagrams are exact. In particular, the composite maps ψ φ and ψ'φ are both
trivial where ^(50, φ) and F{SQjZ, φ) are abbreviated as φ's. Then there are
two maps

h: F(SQ, έ(G)) - F(SQ, F), h: F(SO/Z, έ(G)) - F(SQ/Z, F)

such that h'ΛJr=\[r and h ψ = ψ. As is easily seen, the map h is a homotopy
equivalence. On the other hand, our assumption means that Hom^^Z^/Z),
G)=0 since the map Horn (Tor (π^E), Q/Z), G)->Hom(τrHί(£>ρ/Z), G) is an
isomorphism for any reduced G. Thereby the coefficients sequence

(3.1) 0 - E(Pλ)*(SQIZ) i E(P*)*(SQIZ) ^X F*(SQIZ) - 0

is short exact. By means of [15, Lemma A] (see [5]) we find that the map h is
a homotopy equivalence, too.

Corresponding to the injective resolution 0->Z-^Q-^O/Z->0 there is a
cofibering

S-^> S0-1-+ SQ/Z.

It is easy to see that the maps ψ, ψ and Λ/Λ'S are compatible with /s.

Consequently we have the following diagram
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F(SQjZ, έ(P0)) —-> F(SQ/Z, F)

< n
F(SQIZ, έ(G))

I j

F(SQ, έ(G))
j

F(SQ, έ(P0))

in which all but the right square are commutative, and the maps h and h are

homotopy equivalences. The map ψ induces a monomorphism

ψ*: F*(F{SQIZ, έ(G))Q) - F*(F(SQIZ, έ(P0))Q)

because ψ*: πQ*(F(SQIZ, έ(PB)))^πQ*(F(SQIZ, έ(G))) is epic by (3.1).
Hence we get immediately that the right square is commutative like the rest.

Thereby we have a homotopy equivalence

h:ή(G)->F

by applying Five lemma.

Note that Horn (tA, G)=0 if Tor (A, G)=Q. The above theorem asserts

that the ίiniteness restrictions on G and E may be eliminated in [14, Theorem 4].

4. Purity of the universal coefficient sequence

4.1. We now study whether the universal coefficient sequence (1.1) is

pure as Huber and Meier [10] tried. But our method owes to Mislin [12]

rather than Hilton and Deleanu [9, Theorem 3.2]. Consider first the universal

coefficient sequence of the form

(4.1) 0 -> E*(X)®Zq - EZq*(X) - Tor (E^X), Zq)-*Q.

According to Araki and Toda [4, Theorem 2.7] (or [9]) we have that

(4.2) the universal coefficient sequence (4.1) is split if q^2 mod 4 or if E is good.

An abelian group G is said to be 2-hίgh if the homomorphism Tor (G, Z4)

->Tor (G, Z2), induced by the projection Z±->Z2> is epic [9]. If a 2-high group

G is finitely generated, then it doesn't contain Z2 as a direct summand. Any

2-high group is certainly the union of all finitely generated 2-high subgroups.

Even if E is not good, we still have the following nice result by adopting the

argument in [9, Theorem 4.3].
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(4.3) If En(X) is 2-hίgh, then the exact sequence (4.1) is split in the n-th and
{n-\-\)-th dimensions.

A short exact sequence 0->A->B->C-*0 is called 2-hίgh pure if the induced
homomorphism A®Zq-^B®Zq is monic for any q^β2 mod 4. Evidently an
exact sequence 0->A->2?->C-^0 is 2-high pure if and only if the induced
homomorphisms A®G->B®G are monic for all 2-high G.

Assume that there is a natural exact sequence

(**) 0 -> Ext(E^(X)9 G) — ^ F*(X) - ^ Hom(£*(X), G) - 0 .

Of course we may introduce E(G) as F if necessary. Consider the commutative
square

V®1
), G)®Zq > F*(X)®Zq

, G) ^U F*+\XZq).

The upper arrow ^<g)l is monic if and only if the left vertical arrow is monic.
The latter condition is equivalent to say that the sequence

0 — Ext (Tor (£*_!(X), Zq\ G) -* Ext (EZe(X), G) -> Ext(E*(X)®Zv G) - 0

induced by (4.1) is exact. Hence we obtain

(4.4) the natural exact sequence (**) is always 2-hίgh pure, and it is pure whenever
the exact sequence (4.1) with q=2 is split.

Moreover we notice

(4.5) the purity of the natural exact sequence (**) doesn't depend on the choice of F.

4.2. We here compute the group {S(G), S(H)}.

Lemma 16. If either G or H is 2-high} then

{S(G), S(#)}^Hom(G, #)ΘExt(G, H®Z2).

Proof. First assume that G is 2-high. Then the exact sequence

0 -> πo(S(G))®Zq -* πo(S(G)Zq) -> Ύor(π^(S(G))y Zq) - 0

is split by (4.3). Because of (4.4) the exact sequence

0 -> Ext(π^(S(G))y H) - S(H)°(S(G)) - Hom(π0(S(G)), H)-+0

is pure. Ext(^r_1(S(G)), H) is bounded, and hence it is algebraically compact

(see [7]). So the pure exact sequence is split.
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We next assume that H is 2-high. By use of Corollary 15 and Theorem 1
we get an isomorphism {SG, SH} -» {S(G), S(H)}. So we use the exact
sequence

0 -> Ext (G, π{(SH)) -> SH°(SG) -> Horn (G, πo(SH)) -> 0 .

Consider the commutative square

Ext(G, πi(SH))®Zq -> SH\SG)®Zq

Ext(G, πλ{SHZq)) -> SHZ°q(SG).

The left vertical arrow is monic since the exact sequence

0 - πx{SH)®Zq - πx(SHZq) -> Tor (πo(SH), Zq) -> 0

is split by (4.3). Thus the above exact sequence is pure. Thereby it is split
as Ext(G, π^SH)) is bounded.

We now show the purity of the exact sequence (**) under some restriction
on either E or G.

Theorem 5. Assume that there is a natural exact sequence

0 -* E x t ^ ^ X ) , G) - F*(X) -> Horn (£*(X), G) -> 0 .

If the CW-spectrum E is good or if the abelian group G is 2-high, then the above
exact sequence is pure. (Cf., [10, Corollary 3.4]).

Proof. When E is good, the purity follows from (4.2) and (4.4) Assume
that G is 2-high, then {S(G), S(G®Zq)} is a ZΓmodule by Lemma 16. So
we have a commutative square

. ,,G)®Zq-
G-^έ(G)*(X)®Zq

+ VG®Z<, Λ I

[X), G®Zq) *> E{G®ZqY{X).

The upper arrow rjG®\ is monic, and hence the universal coefficient sequence

0 -> Ext (£*_!(X), G) - ^ > έ(G)*(X) — Hom(£,(I ) , G) -* 0

is pure. By virtue of (4.5) we get the purity of our exact sequence.

Huber and Meier [10] gave several conditions under which each pure exact
sequence of the form (**) is split. In particular, we have

Corollary 18 ([10]). Assume that E is good or that G is 2-high. If
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Pext (O/Z, tG)—Q> e.g., the torsion subgroup tG is algebraically compact, then a

natural exact sequence

0 -> Ext {E^{X\ G) -> F*(Z) -> Horn (E*(X\ G) -> 0

is split.
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